WorldWideScience

Sample records for biologically resistant contaminants

  1. Biological Remediation of Petroleum Contaminants

    Science.gov (United States)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  2. Biological control of aflatoxin contamination of crops

    Institute of Scientific and Technical Information of China (English)

    Yan-ni YIN; Lei-yan YAN; Jin-hua JIANG; Zhong-hua MA

    2008-01-01

    Aflatoxins produced primarily by two closely related fungi, Aspergillus flavus and Aspergillus parasiticus, are mutagenic and carcinogenic in animals and humans. Of many approaches investigated to manage aflatoxin contamination, biological control method has shown great promise. Numerous organisms, including bacteria, yeasts and nontoxigenic fungal strains of A.flavus and A. parasiticus, have been tested for their ability in controlling aflatoxin contamination. Great successes in reducing aflatoxin contamination have been achieved by application of nontoxigenic strains of A. flavus and A. parasiticus in fields of cotton, peanut, maize and pistachio. The nontoxigenic strains applied to soil occupy the same niches as the natural occurring toxigenic strains. They, therefore, are capable of competing and displacing toxigenic strains. In this paper, we review recent development in biological control of aflatoxin contamination.

  3. Environmental contamination by carbapenem-resistant Enterobacteriaceae.

    Science.gov (United States)

    Lerner, A; Adler, A; Abu-Hanna, J; Meitus, I; Navon-Venezia, S; Carmeli, Y

    2013-01-01

    In the last decade, the global emergence of carbapenem resistance in Enterobacteriaceae has posed great concern to public health. Data concerning the role of environmental contamination in the dissemination of carbapenem-resistant Enterobacteriaceae (CRE) are currently lacking. Here, we aimed to examine the extent of CRE contamination in various sites in the immediate surroundings of CRE carriers and to assess the effects of sampling time and cleaning regimens on the recovery rate. We evaluated the performance of two sampling methods, CHROMAgar KPC contact plate and eSwab, for the detection of environmental CRE. eSwab was followed either by direct plating or by broth enrichment. First, 14 sites in the close vicinity of the carrier were evaluated for environmental contamination, and 5, which were found to be contaminated, were further studied. The environmental contamination decreased with distance from the patient; the bed area was the most contaminated site. Additionally, we found that the sampling time and the cleaning regimen were critical factors affecting the prevalence of environmental CRE contamination. We found that the CHROMAgar KPC contact plate method was a more effective technique for detecting environmental CRE than were eSwab-based methods. In summary, our study demonstrated that the vicinity of patients colonized with CRE is often contaminated by these organisms. Using selective contact plates to detect environmental contamination may guide cleaning efficacy and assist with outbreak investigation in an effort to limit the spread of CRE.

  4. Complex Electrical Resistivity for Monitoring DNAPL Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Stephen R. Brown; David Lesmes; John Fourkas

    2003-09-12

    Nearly all Department of Energy (DOE) facilities have landfills and buried waste areas. Of the various contaminants present at these sites, dense non-aqueous phase liquids (DNAPL) are particularly hard to locate and remove. There is an increasing need for external or non-invasive sensing techniques to locate DNAPLs in the subsurface and to track their spread and monitor their breakdown or removal by natural or engineered means. G. Olhoeft and colleagues have published several reports based on laboratory studies using the complex resistivity method which indicate that organic solvents, notably toluene, PCE, and TCE, residing in clay-bearing soils have distinctive electrical signatures. These results have suggested to many researchers the basis of an ideal new measurement technique for geophysical characterization of DNAPL pollution. Encouraged by these results we proposed to bring the field measurement of complex resistivity as a means of pollution characterization from the conceptual stage to practice. We planned to document the detectability of clay-organic solvent interactions with geophysical measurements in the laboratory, develop further understanding of the underlying physical and chemical mechanisms, and then apply these observations to develop field techniques. As with any new research endeavor we note the extreme importance of trying to reproduce the work of previous researchers to ensure that any effects observed are due to the physical phenomena occurring in the specimen and not due to the particular experimental apparatus or method used. To this end, we independently designed and built a laboratory system, including a sample holder, electrodes, electronics, and data analysis software, for the measurement of the complex electrical resistivity properties of soil contaminated with organic solvents. The capabilities and reliability of this technique were documented. Using various standards we performed measurement accuracy, repeatability, and noise immunity

  5. Biological improvement of radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Chun, K. J.; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J

    2000-08-01

    To investigate the mechanisms of gene action related to the radiation resistance in microorganisms could be essentially helpful for the development of radiation protectants and hormeric effects of low dose radiation. This book described isolation of radiation-resistant microorganisms, induction of radiation-resistant and functionally improved mutants by gamma-ray radiation, cloning and analysis of the radiation resistance related genes and analysis of the expressed proteins of the radiation resistant related genes.

  6. Biologically resistant contaminants, primary treatment with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Echegaray, Diego F. [White Martins Gases Industriais do Nordeste S.A., Salvador, BA (Brazil); Olivieri, Nadja F. [White Martins Gases Industriais S.A., Cordovil, RJ (Brazil)

    1993-12-31

    Organic effluent oxidation tests were conducted in petrochemical companies, in Camacari Petrochemical Complex (Northeast Brazil), to reduce treatment costs and improve the primary treatment efficiency in each industrial process. Ozone achieved 99.96 percent benzene reduction and 100 percent ethyl benzene and toluene reduction. Process efficiency is strongly dependent on the wastewater chemical composition and concentration. For this reason it is necessary to run pilot trials for each specific case. Ozone was obtained feeding commercial oxygen through a corona discharge generator and dissolved in the effluent with a bubble column. Commercial oxygen was used instead of air to increase 250 percent the ozone production, using the same ozone generator. (author). 4 figs., 2 tabs.

  7. Biologically mediated transport of contaminants to aquatic systems.

    Science.gov (United States)

    Blais, Jules M; Macdonald, Robie W; Mackay, Donald; Webster, Eva; Harvey, Colin; Smol, John P

    2007-02-15

    The prevailing view is that long-range transport of semivolatile contaminants is primarily conducted by the physical system (e.g., winds, currents), and biological transport is typically ignored. Although this view may be correct in terms of bulk budgets and fluxes, it neglects the potential of animals to focus contaminants into foodwebs due to their behaviors and lifecycles. In particular, gregarious animals that biomagnify and bioaccumulate certain contaminants and then migrate and congregate can become the predominant pathway for contaminants in many circumstances. Fish and birds provide prominent examples for such behavior. This review examines the potential for biovector transport to expose populations to contaminants. In addition, we apply a modeling approach to compare the potential of biovector transport to other physical transport pathways for a hypothetical lake receiving large numbers of fish. We conclude that biovector transport should not be neglected when considering environmental risks of biomagnifying contaminants.

  8. Mapping Contaminant Remediation with Electrical Resistivity Tomography

    Science.gov (United States)

    Gerhard, J.; Power, C.; Tsourlos, P.; Karaoulis, M.; Giannopoulos, A.; Soupios, P. M.; Simyrdanis, K.

    2014-12-01

    The remediation of sites contaminated with industrial chemicals - specifically dense non-aqueous phase liquids (DNAPLs) like coal tar and chlorinated solvents - represents a major geoenvironmental challenge. Remediation activities would benefit from a non-destructive technique to map the evolution of DNAPL mass in space and time. Electrical resistivity tomography (ERT) has long-standing potential in this context but has not yet become a common tool at DNAPL sites. This work evaluated the potential of time-lapse ERT for mapping DNAPL mass reduction in real time during remediation. Initially, a coupled DNAPL-ERT numerical model was developed for exploring this potential at the field scale, generating realistic DNAPL scenarios and predicting the response of an ERT survey. Also, new four-dimensional (4D) inversion algorithms were integrated for tracking DNAPL removal over time. 4D ERT applied at the surface for mapping an evolving DNAPL distribution was first demonstrated in a laboratory experiment. Independent simulation of the experiment demonstrated the reliability of the DNAPL-ERT model for simulating real systems. The model was then used to explore the 4D ERT approach at the field scale for a range of realistic DNAPL remediation scenarios. The approach showed excellent potential for mapping shallow DNAPL changes. However, remediation at depth was not as well resolved. To overcome this limitation, a new surface-to-horizontal borehole (S2HB) ERT configuration is proposed. A second laboratory experiment was conducted that demonstrated that S2HB ERT does better resolve changes in DNAPL distribution relative to surface ERT, particularly at depth. The DNAPL-ERT model was also used to demonstrate the improved mapping of S2HB ERT for field scale DNAPL scenarios. Overall, this work demonstrates that, with these innovations, ERT exhibits significant potential as a real time, non-destructive geoenvironmental remediation site monitoring tool.

  9. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    Science.gov (United States)

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  10. Factors influencing biological treatment of MTBE contaminated ground water

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  11. Sol-gel derived contamination resistant antireflective coatings

    Science.gov (United States)

    Shen, Jun; Liu, Yuan; Wu, Guangming; Zhou, Bin; Zhang, Zhihua; Zhu, Yumei

    2011-02-01

    Silica-based sol-gel antireflective (AR) optical coatings are critical components for high peak power laser systems. It is well known that water vapor and volatile organic compounds in both the laser bay and target bay environments will reduce the antireflective efficiency and laser-damage resistance of the sol-gel AR coating. In this study, alkylation with organosilanes in the vapor state was investigated. Sol-gel AR coatings were vapor-phase treated with hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS) at room temperature, and the resulting post-treated sol-gel AR coatings were tested for their resistance to contamination by a series of volatile organic compounds. Contact angle measurements were taken to discern the degree of silanization. After the vapor treatment of sol-gel AR coatings with organosilanes, the spectral performance of the coatings were analyzed by spectrophotometer, both before and after the exposure to volatile organic compounds. It is found that the coatings treated with ammonia and HMDS show a better contamination resistant capability. After being contaminated 70 hours with hexane, the transmittance of the coatings presents no obvious decrease. And the vapor treatment produces an increase in their damage threshold at 1064 nm (10ns pulse width) as compared to untreated control samples.

  12. Airborne chemical contamination of a chemically amplified resist

    Science.gov (United States)

    MacDonald, Scott A.; Clecak, Nicholas J.; Wendt, H. R.; Willson, C. Grant; Snyder, Clinton D.; Knors, C. J.; Deyoe, N. B.; Maltabes, John G.; Morrow, James R.; McGuire, Anne E.; Holmes, Steven J.

    1991-06-01

    We have found that the performance of the t-BOC/onium salt resist system is severely degraded by vapor from organic bases. This effect is very pronounced and can be observed when the coated wafers stand for 15 minutes in air containing as little as 15 parts per billion (ppb) of an organic base. The observed effect, caused by this chemical contamination, depends on the tone of the resist system. For negative tone systems the UV exposure dose, required to obtain the correct linewidth, increases. While for the positive tone system, one observes the generation of a skin at the resist-air interface. Both effects are caused by the photogenerated acid being neutralized by the airborne organic base. There are a wide variety of commonly used materials which can liberate trace amounts of volatile amines and degrade resist performance. For example, fresh paint on a laboratory wall can exhibit this detrimental effect. These effects can be minimized by storing and processing the resist coated wafers in air that has passed through a specially designed, high efficiency carbon filter. The implementation of localized air filtration, to bathe the resist in chemically pure air, enabled this resist system to operate in a manufacturing environment at a rate of 100 wafers/hour.

  13. Metal resistant plants and phytoremediation of environmental contamination

    Science.gov (United States)

    Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

    2010-04-20

    The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

  14. Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop radiation resistant hybrid Lotus Effect photoelectrocatalytic self-cleaning anti-contamination coatings for application to Lunar...

  15. 9 CFR 105.3 - Notices re: worthless, contaminated, dangerous, or harmful biological products.

    Science.gov (United States)

    2010-01-01

    ..., dangerous, or harmful biological products. 105.3 Section 105.3 Animals and Animal Products ANIMAL AND PLANT... Notices re: worthless, contaminated, dangerous, or harmful biological products. (a) If at any time it...-Serum-Toxin Act, of any biological product by any person holding a license or permit may be dangerous...

  16. Fall 1998 200 East area biological vector contamination report

    Energy Technology Data Exchange (ETDEWEB)

    CONNELL, D.J.

    1999-03-17

    The purpose of this report is to document the investigation into the cause of the spread of radioactive contamination in September and October 1998 at the Hanford Site's 200 East Area and its subsequent spread to the City of Richland Landfill; identify the source of the contamination; and present corrective actions. The focus and thrust of managing the incident was based on the need to accomplish the following, listed in order of importance: (1) protect the health and safety of the Site workers and the public; (2) contain and control the spread of contamination; (3) identify the source of contamination and the pathways for its spread; and (4) identify the causal factors enabling the contamination.

  17. Biological Treatment of Petroleum in Radiologically Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    BERRY, CHRISTOPHER

    2005-11-14

    This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

  18. Assessment of Blood Contamination in Biological Fluids Using MALDI-TOF MS.

    Science.gov (United States)

    Laks, Katrina; Kirsipuu, Tiina; Dmitrijeva, Tuuli; Salumets, Andres; Palumaa, Peep

    2016-06-01

    Biological fluid sample collection often includes the risk of blood contamination that may alter the proteomic profile of biological fluid. In proteomics studies, exclusion of contaminated samples is usually based on visual inspection and counting of red blood cells in the sample; analysis of specific blood derived proteins is less used. To fill the gap, we developed a fast and sensitive method for ascertainment of blood contamination in crude biological fluids, based on specific blood-derived protein, hemoglobin detection by MALDI-TOF MS. The MALDI-TOF MS based method allows detection of trace hemoglobin with the detection limit of 0.12 nM. UV-spectrometry, which was used as reference method, was found to be less sensitive. The main advantages of the presented method are that it is fast, effective, sensitive, requires very small sample amount and can be applied for detection of blood contamination in various biological fluids collected for proteomics studies. Method applicability was tested on human cerebrospinal and follicular fluid, which proteomes generally do not contain hemoglobin, however, which possess high risk for blood contamination. Present method successfully detected the blood contamination in 12 % of cerebrospinal fluid and 24 % of follicular fluid samples. High percentage of contaminated samples accentuates the need for initial inspection of proteomic samples to avoid incorrect results from blood proteome overlap.

  19. The effect of terminal cleaning on environmental contamination rates of multidrug-resistant Acinetobacter baumannii.

    Science.gov (United States)

    Strassle, Paula; Thom, Kerri A; Johnson, J Kristie; Johnsonm, J Kristie; Leekha, Surbhi; Lissauer, Matthew; Zhu, Jingkun; Harris, Anthony D

    2012-12-01

    We evaluated the prevalence of multidrug-resistant Acinetobacter baumannii environmental contamination before and after discharge cleaning in rooms of infected/colonized patients. 46.9% of rooms and 15.3% of sites were found contaminated precleaning, and 25% of rooms and 5.5% of sites were found contaminated postcleaning. Cleaning significantly decreased environmental contamination of A baumannii; however, persistent contamination represents a significant risk factor for transmission. Further studies on this and more effective cleaning methods are needed.

  20. Antibiotic resistance shaping multi-level population biology of bacteria.

    Science.gov (United States)

    Baquero, Fernando; Tedim, Ana P; Coque, Teresa M

    2013-01-01

    Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi

  1. Isolation, screening and identification of mercury resistant bacteria from mercury contaminated soil

    Directory of Open Access Journals (Sweden)

    Kowalczyk Anna

    2016-01-01

    Full Text Available New bacterial strains resistant to high concentration of mercury were obtained and character iz ed focusing on their potential application in bioremediation. The biological material was isolated from soil contaminated with mercury. The ability to removal of Hg from the liquid medium and the effect of the various pH and mercury concentrations in the environment on bacterial strains growth kinetics were tested. The selected strains were identified by analysis of the 16S ribosome subunit coding sequenc es as Pseudomonas syringae. The analysis of Hg concentration in liquid medium as effect of microbial metabolism demonstrated that P. syringae is able to remove almost entire metal from medium after 120 hours of incubation. Obtained results revealed new ability of the isolated strain P. syringae. Analyzed properties of this soil bacteria species able to reduce concentration of Hg ors immobi lize this metal are promising for industrial wastewater treatment and bioremediation of the soils polluted especially by mercury lamps scrapping, measuring instruments, dry batteries, detonators or burning fuels made from crude oil, which may also contain mercury. Selected bacteria strains provide efficient and relatively low-cost bioremediation of the areas and waters contaminated with Hg.

  2. Electrical resistivity characteristics of diesel oil-contaminated kaolin clay and a resistivity-based detection method.

    Science.gov (United States)

    Liu, Zhibin; Liu, Songyu; Cai, Yi; Fang, Wei

    2015-06-01

    As the dielectric constant and conductivity of petroleum products are different from those of the pore water in soil, the electrical resistivity characteristics of oil-contaminated soil will be changed by the corresponding oil type and content. The contaminated soil specimens were manually prepared by static compaction method in the laboratory with commercial kaolin clay and diesel oil. The water content and dry density of the first group of soil specimens were controlled at 10 % and 1.58 g/cm(3). Corresponding electrical resistivities of the contaminated specimens were measured at the curing periods of 7, 14, and 28 and 90, 120, and 210 days on a modified oedometer cell with an LCR meter. Then, the electrical resistivity characteristics of diesel oil-contaminated kaolin clay were discussed. In order to realize a resistivity-based oil detection method, the other group of oil-contaminated kaolin clay specimens was also made and tested, but the initial water content, oil content, and dry density were controlled at 0~18 %, 0~18 %, 1.30~1.95 g/cm(3), respectively. Based on the test data, a resistivity-based artificial neural network (ANN) was developed. It was found that the electrical resistivity of kaolin clay decreased with the increase of oil content. Moreover, there was a good nonlinear relationship between electrical resistivity and corresponding oil content when the water content and dry density were kept constant. The decreasing velocity of the electrical resistivity of oil-contaminated kaolin clay was higher before the oil content of 12 % than after 12 %, which indicated a transition of the soil from pore water-controlled into oil-controlled electrical resistivity characteristics. Through microstructural analysis, the decrease of electrical resistivity could be explained by the increase of saturation degree together with the collapse of the electrical double layer. Environmental scanning electron microscopy (ESEM) photos indicated that the diesel oil

  3. The roles of biological interactions and pollutant contamination in shaping microbial benthic community structure

    OpenAIRE

    Louati, H.; Ben Said, O.; A. Soltani; Got, P; Mahmoudi, E.; Cravo-Laureau, C.; Duran, R.; Aissa, P.; Pringault, Olivier

    2013-01-01

    Biological interactions between metazoans and the microbial community play a major role in structuring food webs in aquatic sediments. Pollutants can also strongly affect the structure of meiofauna and microbial communities. This study aims investigating, in a non-contaminated sediment, the impact of meiofauna on bacteria facing contamination by a mixture of three PAHs (fluoranthene, phenanthrene and pyrene). Sediment microcosms were incubated in the presence or absence of meiofauna during 30...

  4. Using a biological indicator to detect potential sources of cross-contamination in the dental operatory.

    Science.gov (United States)

    Hackney, R W; Crawford, J J; Tulis, J J

    1998-11-01

    The authors conducted a study using surveillance monitoring methodology to identify operatory contamination and to evaluate the effectiveness of infection control procedures. Viridans streptococci were evaluated as biological indicators of oral contamination. Viridans streptococci, abundant in human saliva, were detected on operatory surfaces after dental treatments were finished and surfaces were disinfected. The findings validate current concepts of infection control as demonstrated in barrier methods.

  5. Long-term autonomous resistivity monitoring of oil-contaminated sediments from the Deepwater Horizon spill

    Science.gov (United States)

    Heenan, J. W.; Slater, L. D.; Ntarlagiannis, D.; Atekwana, E. A.; Ross, C.; Nolan, J. T.; Atekwana, E. A.; Werkema, D. D.; Fathepure, B.

    2012-12-01

    We conducted a long-term electrical resistivity survey at Grand Terre 1 (GT1) Island off the coast of Louisiana, a site contaminated with crude oil associated with the April 2010 BP Deepwater Horizon oil spill. Electrical resistivity has proven sensitivity to biogeochemical processes associated with the biodegradation of hydrocarbons in the subsurface. However, most of these studies have been in freshwater environments and for aged spills. The BP Deepwater Horizon oil spill therefore provided an unprecedented opportunity to capture the early time biogeophysical signals resulting from the physical, chemical and microbial transformation of crude oil in highly saline environments. We used a multi-channel resistivity system powered by solar panels to obtain continuous measurements twice a day on both a surface array and two shallow borehole arrays. This system operated for approximately 1.5 years and provided a unique long-term dataset of resistivity changes. Temperature and specific conductance values for the shallow groundwater were continuously logged. . Resistivity changes likely associated with biodegradation processes were then isolated from these environmental factors by modeling. In addition, groundwater was sampled for geochemical analyses from wells installed at the study site and soil samples were collected for microbial analyses at several locations, including both contaminated and uncontaminated locations. Microcosms were set up to determine the biodegradation potential of indigenous populations, and microbial diversity analysis was used to determine microbial community composition. Surface and borehole resistivity arrays revealed an initial resistive anomaly co-located with the known contamination. Pixel time series analysis of an inverted time sequence of resistivity sections highlighted differing responses between contaminated and uncontaminated locations. The contaminated locations exhibit persistent resistivity decreases over time, whereas areas

  6. Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil

    Science.gov (United States)

    Liu, Haorui; Yang, Heli; Yi, Fengyan

    2016-08-01

    Heavy metals such as arsenic and chromium often contaminate soils near industrialized areas. Soil samples, made with different water content and chromate pollutant concentrations, are often needed to test soil quality. Because complex resistivity and complex dielectric characteristics of these samples need to be measured, the relationship between these measurement results and chromium concentration as well as water content was studied. Based on soil sample observations, the amplitude of the sample complex resistivity decreased with an increase of contamination concentration and water content. The phase of complex resistivity takes on a tendency of initially decrease, and then increase with the increasing of contamination concentration and water content. For a soil sample with the same resistivity, the higher the amplitude of complex resistivity, the lower the water content and the higher the contamination concentration. The real and imaginary parts of the complex dielectric constant increase with an increase in contamination concentration and water content. Note that resistivity and complex resistivity methods are necessary to adequately evaluate pollution at various sites.

  7. In-Situ Biological Reclamation of Contaminated Ground Water

    Science.gov (United States)

    1992-01-01

    laboratory scale methanogenic anaerobic filter treating rum distillery wastewater . The liquid detention time in the second column was two days. Having the...waste mining and in-situ mining) Non-waste Land application Materials transport and transfer Wastewater (e.g, spray irrigation) operations Vastewater...the use of biological treatment for domestic and industrial wastewaters is a common practice for many municipalities across the United Itates, the use

  8. [Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].

    Science.gov (United States)

    Yang, Qian; Wu, Man-li; Nie, Mai-qian; Wang, Ting-ting; Zhang, Ming-hui

    2015-05-01

    Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number (MPN), polymerase chain reaction (PCR) combined agarose electrophoresis, and PCR-denaturing gradient electrophoresis (DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ-1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.

  9. [Quality of interior air: biological contaminants and their effects on health; bioaerosols and gathering techniques].

    Science.gov (United States)

    Bălan, Gabriela

    2007-01-01

    Indoor Air Quality: biological contaminants and health effects; airborne organisms and sampling instruments. Biological contaminants include bacteria, molds, viruses, animal dander and cat saliva, house dust, mites, cockroaches and pollen. Symptoms of health problems caused by biological pollutants include sneezing, watery eyes, coughing, shortness of breath, dizziness, lethargy, fevers. Children, elderly people with breathing problems, allergies and lung diseases are particularly susceptible to disease-causing biological agents in the indoor air. It is convenient to consider microbiological samplers for collecting organisms in air as falling into several broad categories. Many popular microbiological air samplers use the principle of impaction to trap the organisms by impacting them directly on to agar. Further distinct groups are the impingers, which operate by impinging organisms into liquid.

  10. Contamination resistant coatings for enhanced laser damage thresholds

    Science.gov (United States)

    Weiller, Bruce H.; Fowler, Jesse D.; Villahermosa, Randy M.

    2012-11-01

    This paper describes a novel approach for the suppression of contamination enhanced laser damage to optical components by the use of fluorinated coatings that repel organic contaminates. In prior work we studied laser damage thresholds induced by ppm levels of toluene under nanosecond 1.064 μm irradiation of fused silica optics. That work showed that moderate vapor-phase concentrations (alcohols dramatically increased the laser damage threshold. The data are consistent with the hypothesis that water and alcohols interact more favorably with the hydroxylated silica surface thereby displacing toluene from the surface. In this work, preliminary results show that fluorinated self assembled monolayer coatings can be used to accomplish the same effect. Optics coated with fluorinated films have much higher survival rates compared with uncoated optics under the same conditions. In addition to enhancing survival of laser optics, these coatings have implications for protecting spacecraft imaging optics from organic contamination.

  11. Adaptive resistance to antibiotics in bacteria: a systems biology perspective.

    Science.gov (United States)

    Sandoval-Motta, Santiago; Aldana, Maximino

    2016-05-01

    Despite all the major breakthroughs in antibiotic development and treatment procedures, there is still no long-term solution to the bacterial antibiotic resistance problem. Among all the known types of resistance, adaptive resistance (AdR) is particularly inconvenient. This phenotype is known to emerge as a consequence of concentration gradients, as well as contact with subinhibitory concentrations of antibiotics, both known to occur in human patients and livestock. Moreover, AdR has been repeatedly correlated with the appearance of multidrug resistance, although the biological processes behind its emergence and evolution are not well understood. Epigenetic inheritance, population structure and heterogeneity, high mutation rates, gene amplification, efflux pumps, and biofilm formation have all been reported as possible explanations for its development. Nonetheless, these concepts taken independently have not been sufficient to prevent AdR's fast emergence or to predict its low stability. New strains of resistant pathogens continue to appear, and none of the new approaches used to kill them (mixed antibiotics, sequential treatments, and efflux inhibitors) are completely efficient. With the advent of systems biology and its toolsets, integrative models that combine experimentally known features with computational simulations have significantly improved our understanding of the emergence and evolution of the adaptive-resistant phenotype. Apart from outlining these findings, we propose that one of the main cornerstones of AdR in bacteria, is the conjunction of two types of mechanisms: one rapidly responding to transient environmental challenges but not very efficient, and another much more effective and specific, but developing on longer time scales. WIREs Syst Biol Med 2016, 8:253-267. doi: 10.1002/wsbm.1335 For further resources related to this article, please visit the WIREs website.

  12. Biological air contamination in elderly care centers: geria project.

    Science.gov (United States)

    Aguiar, Lívia; Mendes, Ana; Pereira, Cristiana; Neves, Paula; Mendes, Diana; Teixeira, João Paulo

    2014-01-01

    Indoor air quality (IAQ) affects health particularly in susceptible individuals such as the elderly. It has been estimated that the older population spends approximately 19-20 h/d indoors, and the majority of the elderly spend all of their time indoors in elderly care centers (ECC). Older individuals may be particularly at risk of exposure to detrimental effects from pollutants, even at low concentrations, due to common and multiple underlying chronic diseases that increase susceptibility. This study, aimed to assess the impact of indoor biological agents in 22 ECC located in Porto, was conducted during summer and winter from November 2011 to August 2013 at a total of 141 areas within dining rooms, drawing rooms, medical offices, and bedrooms (including the bedridden). Air sampling was carried out with a microbiological air sampler (Merck MAS-100) and using tryptic soy agar for bacteria and malt extract agar for fungi. The results obtained were compared with the recently revised Portuguese standards. In winter, mean fungi concentration exceeded reference values, while bacteria concentrations were within the new standards in both seasons. The main fungi species found indoors were Cladosporium (73%) in summer and Penicillium (67%) in winter. Aspergillus fumigatus, Aspergillus niger, and Aspergillus flavus, known potential pathogenic/toxigenic species, were also identified. Although the overall rate and mean values of bacteria and fungi found in ECC indoor air met Portuguese legislation, some concern is raised by the presence of pathogenic microorganisms. Simple measures, like opening windows and doors to promote air exchange and renewal, may improve effectiveness in enhancing IAQ.

  13. Carbapenem-resistant Enterobacteriaceae: frequency of hospital room contamination and survival on various inoculated surfaces.

    Science.gov (United States)

    Weber, David J; Rutala, William A; Kanamori, Hajime; Gergen, Maria F; Sickbert-Bennett, Emily E

    2015-05-01

    Carbapenem-resistant Enterobacteriaceae (CRE) only contaminated the environmental surfaces of rooms housing CRE colonized/infected patients infrequently (8.4%) and at low levels (average, 5.1 colony-forming units [CFU]/120 cm² per contaminated surface). Three species of CRE (Klebsiella, Enterobacter, and Escherichia) survived poorly (>85% die-off in 24 hours) when ~2 log10 CFU were inoculated onto 5 different environmental surfaces.

  14. Acinetobacter baumannii: biology and drug resistance - role of carbapenemases.

    Science.gov (United States)

    Nowak, Pawel; Paluchowska, Paulina

    2016-01-01

    Acinetobacter baumannii is a Gram-negative, glucose-non-fermenting, oxidase-negative coccobacillus, most commonly associated with the hospital settings. The ability to survive in adverse environmental conditions as well as high level of natural and acquired antimicrobial resistance make A. baumannii one of the most important nosocomial pathogens. While carbapenems have long been considered as antimicrobials of last-resort, the rates of clinical A. baumannii strains resistant to these antibiotics are increasing worldwide. Carbapenem resistance among A. baumannii is conferred by coexisting mechanisms including: decrease in permeability of the outer membrane, efflux pumps, production of beta-lactamases, and modification of penicillin-binding proteins. The most prevalent mechanism of carbapenem resistance among A. baumannii is associated with carbapenem-hydro-lysing enzymes that belong to Ambler class D and B beta-lactamases. In addition, there have also been reports of resistance mediated by selected Ambler class A carbapenemases among A. baumannii strains. Resistance determinants in A. baumannii are located on chromosome and plasmids, while acquisition of new mechanisms can be mediated by insertion sequences, integrons, transposons, and plasmids. Clinical relevance of carbapen-em resistance among strains isolated from infected patients, carriers and hospital environment underlines the need for carbapenemase screening. Currently available methods vary in principle, accuracy and efficiency. The techniques that deserve particular attention belong to both easily accessible unsophisticated methods as well as advanced techniques based on mass spectrometry or molecular biology. While carbapenemases limit the therapeutic options in A. baumannii infections, studies concerning novel beta-lactamase inhibitors offer a new insight into effective therapy.

  15. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    Energy Technology Data Exchange (ETDEWEB)

    Tuckfield, C; J V Mcarthur (NOEMAIL), J

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10 metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect

  16. Developing maize germplasm lines with multiple insect and disease resistance and low aflatoxin contamination

    Science.gov (United States)

    Yield and quality losses caused BY insects, diseases, and mycotoxin contaminations are the critical impediments for maize production under warm climate. In order to develop maize germplasm lines with resistance to multiple insect pests and aflatoxin accumulation, a set of 13 reciprocal breeding cro...

  17. DELINEATION OF SUBSURFACE HYDROCARBON CONTAMINANT DISTRIBUTION USING A DIRECT PUSH RESISTIVITY METHOD

    Science.gov (United States)

    A direct push resistivity method was evaluated as a complementary screening tool to provide rapid in-situ contaminant detection to aid in better defining locations for drilling, sampling, and monitoring well installation at hazardous waste sites. Nine continuous direct push resi...

  18. Prevalence of antibacterial resistant bacterial contaminants from mobile phones of hospital inpatients

    Directory of Open Access Journals (Sweden)

    B. Vinod Kumar

    2014-10-01

    Full Text Available Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9% out of 106 mobile phones were found to be contaminated with bacteria. Fifty-two (49.0% coagulase-negative Staphylococcus, 12 (11.3% Staphylococcus aureus, 7 (6.6% Enterobacter cloacae, 3 (2.83% Pseudomonas stutzeri, 3 (2.83% Sphingomonas paucimobilis, 2 (1.8% Enterococcus faecalis and 10 (9.4% aerobic spore bearers were isolated. All the isolated bacteria were found to be resistant to various antibiotics. Hence, regular disinfection of mobile phones of hospital inpatients is advised.

  19. Metabolomics identifies a biological response to chronic low-dose natural uranium contamination in urine samples.

    Science.gov (United States)

    Grison, Stéphane; Favé, Gaëlle; Maillot, Matthieu; Manens, Line; Delissen, Olivia; Blanchardon, Eric; Banzet, Nathalie; Defoort, Catherine; Bott, Romain; Dublineau, Isabelle; Aigueperse, Jocelyne; Gourmelon, Patrick; Martin, Jean-Charles; Souidi, Maâmar

    2013-01-01

    Because uranium is a natural element present in the earth's crust, the population may be chronically exposed to low doses of it through drinking water. Additionally, the military and civil uses of uranium can also lead to environmental dispersion that can result in high or low doses of acute or chronic exposure. Recent experimental data suggest this might lead to relatively innocuous biological reactions. The aim of this study was to assess the biological changes in rats caused by ingestion of natural uranium in drinking water with a mean daily intake of 2.7 mg/kg for 9 months and to identify potential biomarkers related to such a contamination. Subsequently, we observed no pathology and standard clinical tests were unable to distinguish between treated and untreated animals. Conversely, LC-MS metabolomics identified urine as an appropriate biofluid for discriminating the experimental groups. Of the 1,376 features detected in urine, the most discriminant were metabolites involved in tryptophan, nicotinate, and nicotinamide metabolic pathways. In particular, N-methylnicotinamide, which was found at a level seven times higher in untreated than in contaminated rats, had the greatest discriminating power. These novel results establish a proof of principle for using metabolomics to address chronic low-dose uranium contamination. They open interesting perspectives for understanding the underlying biological mechanisms and designing a diagnostic test of exposure.

  20. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    Directory of Open Access Journals (Sweden)

    Celio I. Chagas

    2014-10-01

    Full Text Available Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in depressions along the tributary network from these lands devoted to cattle production. The aims of this work were: (i to gather a reliable set of data from different monitoring periods and scales, (ii to search for simple and sensible variables to be used as indicators for surface water quality advising purposes and (iii to corroborate previous biological contamination conceptual models for this region. Concentration of pollution indicators in these ponds was related to mean stocking rates from nearby fields and proved to depend significantly on the accumulated water and sediments. Viable mesophiles and total coliforms were found mainly attached to large sediments rather than in the runoff water phase. Seasonal sampling showed that the time period between the last significant runoff event and each sampling date regarding enterococci proved to be a sensible variable for predicting contamination. Enterococci concentration tended to increase gradually until the next extraordinary runoff event washed away contaminants. The mentioned relationship may be useful for designing early warning surface water contamination programs regarding enterococci dynamics and other related microbial pollutants as well.

  1. Joining the club: Conforming to and resisting biology in practice

    Science.gov (United States)

    Buxton, Cory Alexander

    2000-10-01

    This study explores how science and scientists were produced and reproduced within the setting of a university biology department. It builds upon recent work in anthropology of education and feminist science studies. My purpose was to look at both the contextual and constitutive values of science as they were negotiated and played out in the training of scientists in a setting where: (1) women were well represented in leadership positions; and (2) "mainstream" science was being both taught and practiced. Findings included the organization of a status hierarchy within the department, the meanings of science and scientists that students constructed within the social spaces they occupied, examples of individual resistance to certain norms of biology practice, and examples of institutional opposition to that resistance. There was some evidence that the unusually high representation of women in positions of leadership in the biology department did result in changes in both the contextual and constitutive values of how science was conceptualized, practiced and taught in this setting. Contextually, social spaces controlled by women were likely to emphasize: (1) teamwork bringing together participants with varied backgrounds and perspectives; (2) flexible and collaborative use of physical space; and (3) willingness to do work for which they went unacknowledged or to share rewards equally even when the work distribution was not equitable. Constitutively, these social spaces were prone to: (1) interdisciplinary synthesis and comprehensive approaches; (2) the study of topics that reconsidered beliefs about gender roles in plant and animal reproduction; (3) work that would be slower and take longer to produce (and publish) but might make a large contribution (be a high quality product) eventually; and (4) an awareness by women that their practices were different in some ways than the practices of their male colleagues.

  2. Novel homologs of the multiple resistance regulator marA in antibiotic-contaminated environments.

    Science.gov (United States)

    Castiglioni, Sara; Pomati, Francesco; Miller, Kristin; Burns, Brendan P; Zuccato, Ettore; Calamari, Davide; Neilan, Brett A

    2008-10-01

    Antibiotics are commonly detected in the environment as contaminants. Exposure to antibiotics may induce antimicrobial-resistance, as well as the horizontal transfer of resistance genes in bacterial populations. We selected the resistance gene marA, mediating resistance to multiple antibiotics, and explored its distribution in sediment and water samples from surface and sewage treatment waters. Ciprofloxacin and ofloxacin (fluoroquinolones), sulphamethoxazole (sulphonamide), erythromycin, clarythromycin, and spiramycin (macrolides), lincomycin (lincosamide), and oxytetracycline (tetracycline) were measured in the same samples to determine antibiotic contamination. Bacterial populations from environmental samples were challenged with antibiotics to identify resistant isolates. The gene marA was found in almost all environmental samples and was confirmed by PCR amplification in antibiotic-resistant colonies. 16S rDNA sequencing revealed that the majority of resistant isolates belonged to the Gram-positive genus Bacillus, not previously known to possess the regulator marA. We assayed the incidence of marA in environmental bacterial populations of Escherichia coli and Bacillus by quantitative real-time PCR in correlation with the levels of antibiotics. Phylogenetic analysis indicated the possible lateral acquisition of marA by Bacillus from Gram-negative Enterobacteriaceae revealing a novel marA homolog in Bacillus. Quantitative PCR assays indicate that the frequency of this gene in antropised environments seems to be related to bacterial exposure to water-borne antibiotics.

  3. The restoration project : decontamination of facilities from chemical, biological and radiological contamination after terrorist action

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div; Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Payette, P.; Duncan, L.; Best, M.; Krishnan; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada)

    2005-07-01

    Bioterrorism poses a real threat to the public health and national security, and the restoration of affected facilities after a chemical, biological or radiological attack is a major concern. This paper reviewed aspects of a project conducted to collect information, test and validate procedures for site restoration after a terrorist attack. The project began with a review of existing technology and then examined new technologies. Restoration included pickup, neutralization, decontamination, removal and final destruction and deposition of contaminants as well as cleaning and neutralization of material and contaminated waste from decontamination. The project was also intended to test existing concepts and develop new ideas. Laboratory scale experiments consisted of testing, using standard laboratory techniques. Radiation decontamination consisted of removal and concentration of the radioisotopes from removal fluid. General restoration guidelines were provided, as well as details of factors considered important in specific applications, including growth conditions and phases of microorganisms in biological decontamination, or the presence of inhibitors or scavengers in chemical decontamination. Various agents were proposed that were considered to have broad spectrum capability. Test surrogates for anthrax were discussed. The feasibility of enhanced oxidation processes was examined in relation to the destruction of organophosphorus, organochlorine and carbamate pesticides. The goal was to identify a process for the treatment of surfaces contaminated with pesticides. Tests included removal from carpet, porous ceiling tile, steel plates, and floor tiles. General radiation contamination procedures and techniques were reviewed, as well as radiological decontamination waste treatment. It was concluded that there is no single decontamination technique applicable for all contaminants, and decontamination methods depend on economic, social and health factors. The amount of

  4. Bacterial Contamination and Antibiotic Resistance of Staphylococcus Aureus Isolated from Automated Teller Machine

    Directory of Open Access Journals (Sweden)

    Moshtaghi, H. (PhD

    2015-05-01

    Full Text Available Background and Objective: Automated Teller Machine (ATMs is likely to be contaminated with various microorganisms specially pathogen germs. This may be due to their exposure to dust and their vast dermal contact with multiple users. This study investigated the bacterial contamination on the keyboard of ATMs and drug resistance of the bacteria isolated from them. Material and Methods: the keyboards of 50 ATMs in Shahrekord city, Iran, were examined from October 2012 to February 2013. The sterile swab sticks moistened with Triptose soy broth were used for sampling. The bacteriological tests used were culture, biochemical test and agar disk diffusion method for antibiogram. Results: All the samples were found to be contaminated with Coagulase negative staphylococci (57.54%, Bacillus species (21.92%, Staphylococcus aureus (19.18% and coliform bacteria (1.36%. The resistance of Staphylococcus aureus was 92.8% to penicillin, 85.7% to amoxicilin، 71.4% to ampicillin, 57.1% to nytrofuran, 50% to tetracycline, 42.8% to erythromycin, 42.8% to gentamycin, 14.2 % to ciprofloxacin, 7.1% to trimethoprim and sulfamtuksazul. All species were susceptible to, ofloxacine, chloramphenicol, clindamycin, tobramycin, vancomycin and cefotaxime. Conclusion: given the presence of pathogens on ATMs and their role in transferring the contamination, we recommend considering personal hygiene and periodically disinfecting the keyboards to reduce contamination

  5. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  6. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils

    Directory of Open Access Journals (Sweden)

    Wang Gejiao

    2009-01-01

    Full Text Available Abstract Background Arsenic is known as a toxic metalloid, which primarily exists in inorganic form [As(III and As(V] and can be transformed by microbial redox processes in the natural environment. As(III is much more toxic and mobile than As(V, hence microbial arsenic redox transformation has a major impact on arsenic toxicity and mobility which can greatly influence the human health. Our main purpose was to investigate the distribution and diversity of microbial arsenite-resistant species in three different arsenic-contaminated soils, and further study the As(III resistance levels and related functional genes of these species. Results A total of 58 arsenite-resistant bacteria were identified from soils with three different arsenic-contaminated levels. Highly arsenite-resistant bacteria (MIC > 20 mM were only isolated from the highly arsenic-contaminated site and belonged to Acinetobacter, Agrobacterium, Arthrobacter, Comamonas, Rhodococcus, Stenotrophomonas and Pseudomonas. Five arsenite-oxidizing bacteria that belonged to Achromobacter, Agrobacterium and Pseudomonas were identified and displayed a higher average arsenite resistance level than the non-arsenite oxidizers. 5 aoxB genes encoding arsenite oxidase and 51 arsenite transporter genes [18 arsB, 12 ACR3(1 and 21 ACR3(2] were successfully amplified from these strains using PCR with degenerate primers. The aoxB genes were specific for the arsenite-oxidizing bacteria. Strains containing both an arsenite oxidase gene (aoxB and an arsenite transporter gene (ACR3 or arsB displayed a higher average arsenite resistance level than those possessing an arsenite transporter gene only. Horizontal transfer of ACR3(2 and arsB appeared to have occurred in strains that were primarily isolated from the highly arsenic-contaminated soil. Conclusion Soils with long-term arsenic contamination may result in the evolution of highly diverse arsenite-resistant bacteria and such diversity was probably caused in

  7. Molecular biology of insect sodium channels and pyrethroid resistance.

    Science.gov (United States)

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S

    2014-07-01

    Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Many of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors.

  8. Antimicrobial resistance and biological governance: explanations for policy failure.

    Science.gov (United States)

    Wallinga, D; Rayner, G; Lang, T

    2015-10-01

    The paper reviews the state of policy on antimicrobial use and the growth of antimicrobial resistance (AMR). AMR was anticipated at the time of the first use of antibiotics by their originators. For decades, reports and scientific papers have expressed concern about AMR at global and national policy levels, yet the problem, first exposed a half-century ago, worsened. The paper considers the explanations for this policy failure and the state of arguments about ways forward. These include: a deficit of economic incentivisation; complex interventions in behavioural dynamics; joint and separate shifts in medical and animal health regimes; consumerism; belief in technology; and a narrative that in a 'war on bugs' nature can be beaten by human ingenuity. The paper suggests that these narratives underplay the biological realities of the human-animal-biosphere being in constant flux, an understanding which requires an ecological public health analysis of AMR policy development and failure. The paper suggests that effective policy change requires simultaneous actions across policy levels. No single solution is possible, since AMR is the result of long-term human intervention which has accelerated certain trends in the evolution of a microbial ecosystem shared by humans, animals and other biological organisms inhabiting that ecosystem. Viewing the AMR crisis today through an ecological public health lens has the advantage of reuniting the social-ecological and bio-ecological perspectives which have been separated within public health.

  9. Analytical Applications of Nanomaterials in Monitoring Biological and Chemical Contaminants in Food.

    Science.gov (United States)

    Lim, Min-Cheol; Kim, Young-Rok

    2016-09-28

    The detection of food pathogens is an important aspect of food safety. A range of detection systems and new analytical materials have been developed to achieve fast, sensitive, and accurate monitoring of target pathogens. In this review, we summarize the characteristics of selected nanomaterials and their applications in food, and place focus on the monitoring of biological and chemical contaminants in food. The unique optical and electrical properties of nanomaterials, such as gold nanoparticles, nanorods, quantum dots, carbon nanotubes, graphenes, nanopores, and polydiacetylene nanovesicles, are closely associated with their dimensions, which are comparable in scale to those of targeted biomolecules. Furthermore, their optical and electrical properties are highly dependent on local environments, which make them promising materials for sensor development. The specificity and selectivity of analytical nanomaterials for target contaminants can be achieved by combining them with various biological entities, such as antibodies, oligonucleotides, aptamers, membrane proteins, and biological ligands. Examples of nanomaterial-based analytical systems are presented together with their limitations and associated developmental issues.

  10. The validation of forensic DNA extraction systems to utilize soil contaminated biological evidence.

    Science.gov (United States)

    Kasu, Mohaimin; Shires, Karen

    2015-07-01

    The production of full DNA profiles from biological evidence found in soil has a high failure rate due largely to the inhibitory substance humic acid (HA). Abundant in various natural soils, HA co-extracts with DNA during extraction and inhibits DNA profiling by binding to the molecular components of the genotyping assay. To successfully utilize traces of soil contaminated evidence, such as that found at many murder and rape crime scenes in South Africa, a reliable HA removal extraction system would often be selected based on previous validation studies. However, for many standard forensic DNA extraction systems, peer-reviewed publications detailing the efficacy on soil evidence is either lacking or is incomplete. Consequently, these sample types are often not collected or fail to yield suitable DNA material due to the use of unsuitable methodology. The aim of this study was to validate the common forensic DNA collection and extraction systems used in South Africa, namely DNA IQ, FTA elute and Nucleosave for processing blood and saliva contaminated with HA. A forensic appropriate volume of biological evidence was spiked with HA (0, 0.5, 1.5 and 2.5 mg/ml) and processed through each extraction protocol for the evaluation of HA removal using QPCR and STR-genotyping. The DNA IQ magnetic bead system effectively removed HA from highly contaminated blood and saliva, and generated consistently acceptable STR profiles from both artificially spiked samples and crude soil samples. This system is highly recommended for use on soil-contaminated evidence over the cellulose card-based systems currently being preferentially used for DNA sample collection.

  11. Restoration projects for decontamination of facilities from chemical, biological and radiological contamination after terrorist actions

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Lumley, T.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Payette, P.; Laframboise, D.; Best, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Krishnan, J.; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Winnipeg, MB (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada); Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada)

    2006-07-01

    This paper reviewed studies that identified better decontamination methods for chemical, biological and radiological/nuclear (CBRN) attacks. In particular, it reviewed aspects of 3 projects in which procedures were tested and validated for site restoration. Cleanup targets or standards for decontaminating buildings and materials after a CBRN attack were also developed. The projects were based on physicochemical and toxicological knowledge of potential terrorist agents and selected surface matrices. The projects also involved modeling and assessing environmental and health risks. The first multi-agent project involved gathering information on known procedures for restoration of areas including interiors and exteriors of buildings, contents, parking lots, lawn, and vehicles. Air inside the building was included. The efficacy of some of the proposed concepts was tested. Results included the determination of appropriate surrogates for anthrax and tests of liquid and gaseous biocides on the surrogates. The development of new contamination procedures using peroxyacetic acid were also discussed. The second project involved decontamination tests on CBRN using specially-constructed buildings at the Counter-terrorism Technology Centre at Defence Research and Development Canada in Suffield. The buildings will be contaminated with chemical and biological agents and with short-lived radionuclides. They will be decontaminated using the best-performing technologies known. Information collected will include fate of the contaminant and decontamination products, effectiveness of the restoration methods, cost and duration of cleanup and logistical problems. The third project is aimed at developing cleanup standards for decontaminating buildings and construction materials after a chemical or biological attack. It will create as many as 12 algorithms for the development of 50 standards which will help cleanup personnel and first-responders to gauge whether proposed methods can achieve

  12. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements.

    Directory of Open Access Journals (Sweden)

    Erik Kristiansson

    Full Text Available The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance.

  13. Methicillin-resistant staphylococcal contamination of cellular phones of personnel in a veterinary teaching hospital

    Directory of Open Access Journals (Sweden)

    Julian Timothy

    2012-07-01

    Full Text Available Abstract Background Hospital-associated infections are an increasing cause of morbidity and mortality in veterinary patients. With the emergence of multi-drug resistant bacteria, these infections can be particularly difficult to eradicate. Sources of hospital-associated infections can include the patients own flora, medical staff and inanimate hospital objects. Cellular phones are becoming an invaluable feature of communication within hospitals, and since they are frequently handled by healthcare personnel, there may be a potential for contamination with various pathogens. The objective of this study was to determine the prevalence of contamination of cellular phones (hospital issued and personal carried by personnel at the Ontario Veterinary College Health Sciences Centre with methicillin-resistant Staphylococcus pseudintermedius (MRSP and methicillin-resistant Staphylococcus aureus (MRSA. Results MRSP was isolated from 1.6% (2/123 and MRSA was isolated from 0.8% (1/123 of cellular phones. Only 21.9% (27/123 of participants in the study indicated that they routinely cleaned their cellular phone. Conclusions Cellular phones in a veterinary teaching hospital can harbour MRSP and MRSA, two opportunistic pathogens of significant concern. While the contamination rate was low, cellular phones could represent a potential source for infection of patients as well as infection of veterinary personnel and other people that might have contact with them. Regardless of the low incidence of contamination of cellular phones found in this study, a disinfection protocol for hospital-issued and personal cellular phones used in veterinary teaching hospitals should be in place to reduce the potential of cross-contamination.

  14. Resistance of Pseudomonas aeruginosa to liquid disinfectants on contaminated surfaces before formation of biofilms.

    Science.gov (United States)

    Sagripanti, J L; Bonifacino, A

    2000-01-01

    A comparison was made of the effectiveness of popular disinfectants (Cavicide, Cidexplus, Clorox, Exspor, Lysol, Renalin, and Wavicide) under conditions prescribed for disinfection in the respective product labels on Pseudomonas aeruginosa either in suspension or deposited onto surfaces of metallic or polymeric plastic devices. The testing also included 7 nonformulated germicidal agents (glutaraldehyde, formaldehyde, peracetic acid, hydrogen peroxide, sodium hypochlorite, phenol, and cupric ascorbate) commonly used in disinfection and decontamination. Results showed that P. aeruginosa is on average 300-fold more resistant when present on contaminated surfaces than in suspension. This increase in resistance agrees with results reported in studies of biofilms, but unexpectedly, it precedes biofilm formation. The surface to which bacteria are attached can influence the effectiveness of disinfectants. Viable bacteria attached to devices may require dislodging through more than a one-step method for detection. The data, obtained with a sensitive and quantitative test, suggest that disinfectants are less effective on contaminated surfaces than generally acknowledged.

  15. Multiple metal resistant transferable phenotypes in bacteria as indicators of soil contamination with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.P.; Ryan, D.J.; Dowling, D.N. [Dept. of Science and Health, Inst. of Tech. Carlow, Carlow (Ireland)

    2005-07-01

    Environmental contamination by heavy metals affects microbial communities. The number of single and multiple heavy metal resistant bacteria may be an indicator of the level of contamination. This paper details the isolation and characterisation of metal resistant microorganisms isolated from rhizosphere/soil samples obtained from an abandoned zinc, lead and copper mine and a local unaffected site. This data was compared to the level of heavy metal in the soils to establish the effect of metals on the microbial community and to determine the relationship between pollutant levels and resistant strains. This paper outlines the diversity of transferable resistance determinants between both sites and details the levels of heavy metal resistant bacteria and those expressing transferable multiple heavy metal tolerance. Methods. The sample sites were located in Co. Galway, Ireland. The first sample site (site A) was a former lead, zinc and copper mine, which was closed in 1961 due to exhaustion of ore. The second site (site B) was located two and a half kilometres from the mining site and was not affected by the mining operations. Composite soil samples were characterised for general soil matrix composition, organic content, pH and general chemical parameters. The soil was also enumerated for the total viable heterotrophic counts and tested on Pseudomonas selective agar (PSA) for total Pseudomonas counts and Sucrose Asparagine (SA), which is semi-selective for fluorescent Pseudomonas. (orig.)

  16. Biological markers in animals can provide information on exposure and bioavailability of environmental contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L.R.; Adams, S.M.; Jimenez, B.D.; Talmage, S.S.; McCarthy, J.F.

    1987-01-01

    Epidemiologic studies of agents present in the environment seek to identify the extent to which they contribute to the causation of a specific toxic, clinical, or pathological endpoint. The multifactorial nature of disease etiology, long latency periods and the complexity of exposure, all contribute to the difficulty of establishing associations and casual relationships between a specific exposure and an adverse outcome. These barriers to studies of exposures and subsequent risk assessment cannot generally be changed. However, the appropriate use of biological markers in animal species living in a contaminated habitat can provide a measure of potential damage from that exposure and, in some instances, act as a surrogate for human environmental exposures. Quantitative predictivity of the effect of exposure to environmental pollutants is being approached by employing an appropriate array of biological end points. 34 refs., 1 fig., 6 tabs.

  17. Fluorescent resonance energy transfer based detection of biological contaminants through hybrid quantum dot-quencher interactions.

    Science.gov (United States)

    Ramadurai, D; Norton, E; Hale, J; Garland, J W; Stephenson, L D; Stroscio, M A; Sivananthan, S; Kumar, A

    2008-06-01

    A nanoscale sensor employing fluorescent resonance energy transfer interactions between fluorescent quantum dots (QDs) and organic quencher molecules can be used for the multiplexed detection of biological antigens in solution. Detection occurs when the antigens to be detected displace quencher-labelled inactivated (or dead) antigens of the same type attached to QD-antibody complexes through equilibrium reactions. This unquenches the QDs, allowing detection to take place through the observation of photoluminescence in solution or through the fluorescence imaging of unquenched QD complexes trapped on filter surfaces. Multiplexing can be accomplished by using several different sizes of QDs, with each size QD labelled with an antibody for a different antigen, providing the ability to detect several types of antigens or biological contaminants simultaneously in near real-time with high specificity and sensitivity.

  18. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    Science.gov (United States)

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks.

  19. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    Science.gov (United States)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  20. Bioremediation of oil contaminated soil from service stations. Evaluation of biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, J.; Jorgensen, K.S.; Strandberg, T.; Suortti, A.M.

    1995-11-01

    Biological treatment of contaminated soil has received much attention during the last decade. Microbes are known to be able to degrade many oil hydrocarbons. However, research is needed to ensure that new technologies are implemented in a safe and reliable way under Finnish climatic conditions. The main points of interest are the rate of the degradation as well as the survival and efficiency of microbial inoculants possibly introduced during the treatment. During 1993 the biotreatability of oil-contaminated soil from service stations was investigated in cooperation with the Finnish Petroleum Federation. The goal of this field-scale study was to test how fast lubrication oil can be composted during one Finnish summer season and to find out whether microbial inoculants would enhance the degradation rate. The soil was excavated from three different service stations in the Helsinki metropolitan area and was transported to a controlled composting area. The soil was sieved and compost piles, also called biopiles, were constructed on the site. Bark chips were used as the bulking agent and nutrients and lime were added to enhance the biological activity. Two different commercial bacterial inoculants were added to two of the piles. The piles were turned by a tractor-drawn screw-type mixer at two to four weeks interval. Between the mixings, the piles were covered with tarpaulins to prevent evaporation and potential excessive wetting. Several microbiological parameters were determined during the test period as well as the temperature and mineral oil content

  1. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kefeng [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Ramakrishna, Wusirika, E-mail: wusirika@mtu.edu [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  2. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth.

    Science.gov (United States)

    Li, Kefeng; Ramakrishna, Wusirika

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal solubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  3. Ethical Considerations Regarding the Biological Contamination of Climatically Recurrent Special Regions.

    Science.gov (United States)

    Clifford, S. M.

    2014-04-01

    With the dawn of planetary exploration, the international science community expressed concerns regarding the potential contamination of habitable planetary environments by the introduction of terrestrial organisms on robotic spacecraft. The initial concern was that such contamination would confound our efforts to find unambiguous evidence of life elsewhere in the Solar System, although, more recently, this concern has been expanded to include ethical considerations regarding the need to protect alien biospheres from potentially harmful and irreversible contamination. The international agreements which address this concern include the UN Space Treaty of 1967 and the Planetary Protection Policy of the International Council for Science's Committee on Space Research (COSPAR). In the context of Mars exploration, COSPAR calls a potentially habitable environment a 'Special Region', which it defines as: "A region within which terrestrial organisms are likely to propagate, or a region which is interpreted to have a high potential for the existence of extant Martian life forms." Specifically included in this definition are regions where liquid water is present or likely to occur and the Martian polar caps. Over the years, scientists have debated the level of cleanliness required for robotic spacecraft to investigate such environments with the goal of defining international standards that are strict enough to ensure the integrity of life-detection efforts during the period of 'biological exploration', which has been somewhat arbitrarily defined as 50 years from the arrival date of any given mission. More recently, NASA and ESA have adopted a definition of Special Regions as any Martian environment where liquid water is likely to exist within the next 500 years. While this appears to be a more conservative interpretation of the original COSPAR definition, it specifically excludes some environments where there is a high probability of liquid water on timescales greater than 500

  4. Distribution of radiation resistances of microbiological contaminants of a cotton-based medical product

    Science.gov (United States)

    Yan Aoshuang; Tallentire, Alan

    1995-02-01

    A distribution of radiation resistances of microorganisms has been compiled from the results of D 10 determinations of isolates recovered from a cotton-based medical product. In all, 250 organisms were isolated from a total microbial population of around 21,000 organisms present on about 170 g of product. D 10 values of the isolates fall within the range of 0.5 to 3.6 kGy. The findings indicate that organisms having a D 10 value greater than 3.6 kGy occur amongst contaminants on this cotton product at a probability of less than 1 in 5000. The overall resistance of the population of organisms found in the present study is somewhat less than that of the 'Standard Distribution of Resistances' used in 'AAMI dose setting methods'.

  5. Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field

    Science.gov (United States)

    Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize (Zea mays L.) and affecting the crop yield and quality. Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus ...

  6. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa

    Directory of Open Access Journals (Sweden)

    Evelyn Madoroba

    2016-03-01

    Full Text Available Antimicrobial resistant Salmonella are among the leading causes of foodborne infections. Our aim was to determine Salmonella contamination during cattle slaughter in South African rural abattoirs (n = 23 and environmental samples. Furthermore, antimicrobial resistance patterns of the Salmonella isolates were determined. Samples of cattle faeces (n = 400, carcass sponges (n = 100, intestinal contents (n = 62, hides (n = 67, and water from the abattoirs (n = 75 were investigated for Salmonella species using microbiological techniques and species-specific polymerase chain reaction targeting the invA gene. In total 92 Salmonella species isolates were recovered. The Salmonella mean frequency of occurrence on hides, carcasses, and intestinal contents was 35.37% (n = 81. Eleven faecal samples (2.75% tested positive for Salmonella. The predominant serovar was Salmonella Enteritidis. Diverse serovars that were identified on carcasses were not necessarily found on the hides and intestinal contents. The inconsistent occurrence of the diverse Salmonella serovars on hides, carcasses, and intestinal contents implies that in addition to carriage on hides and in intestinal contents, other external factors also play an important role regarding carcass contamination. The 92 Salmonella were serotyped and tested for susceptibility towards the following antimicrobials: ampicillin, cefotaxime, enrofloxacin, kanamycin, and oxytetracycline using the disk diffusion method. Most Salmonella (n = 66; 71.7% isolates were resistant to at least one antimicrobial with highest resistance observed towards oxytetracycline (51.90%, which highlights the need for strict hygiene during slaughter and prudent antimicrobial use during animal production. In conclusion, cattle slaughtered in South African rural abattoirs harbour diverse Salmonella serovars that are resistant to antimicrobials, which could be a public health risk. The findings should assist policymakers with improving

  7. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno

    2006-12-08

    Biological in situ measures can be efficient and cost effective options for the remediation of contaminated sites. However, the accepted application requires a detailed and reliable analysis of potential impacts. An important objective is to quantify the potential of contaminant degradation and metabolite formation. This thesis addresses a quantitative multimedia risk assessment. Methodologies and tools were developed for this objective and applied to evaluate in situ bioremediation of soils contaminated with polychlorinated biphenyls (PCBs). Soil bacteria in conjunction with plant roots were addressed (rhizoremediation) with a focus on the use of genetically modified microorganisms (GMOs). PCBs are known to be harmful compounds that are ubiquitously distributed in the environment. PCB contaminations in soil and groundwater were identified as important problems. 209 different congeners are sterically possible, but not all are of environmental significance. PCB congeners of concern were evaluated with respect to their potential toxicity, environmental occurrence and mobility. For this objective, congener specific data on the toxicity potential and the frequency in environmental matrices were collected. To quantify the mobility potential, multimedia modelling was performed applying deterministic and probabilistic procedures. 56 PCB congeners of concern were evaluated, and multimedia risk assessments of PCB-contaminated soils should concentrate on this group. Kinetics parameters were specified for degradation experiments with individual PCB congeners in solution and different bacterial strains. These laboratory assays were performed with wild-type Burkholderia sp. strain LB400 and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180. The F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere (mesocosm experiments). Therefore, and due to high depletion rates, rhizoremediation with F113L::1180 and willow

  8. Time-lapse electrical resistivity anomalies due to contaminant transport around landfills

    Directory of Open Access Journals (Sweden)

    J. Yang

    2007-06-01

    Full Text Available The extent of landfill leachate can be delineated by geo-electrical imaging as a response to the varying electrical resistivity in the contaminated area. This research was based on a combination of hydrogeological numerical simulation followed by geophysical forward and inversion modeling performed to evaluate the migration of a contaminant plume from a landfill. As a first step, groundwater flow and contaminant transport was simulated using the finite elements numerical modeling software FEFLOW. The extent of the contaminant plume was acquired through a hydrogeological model depicting the distributions of leachate concentration in the system. Next, based on the empirical relationship between the concentration and electrical conductivity of the leachate in the porous media, the corresponding geo-electrical structure was derived from the hydrogeological model. Finally, forward and inversion computations of geo-electrical anomalies were performed using the finite difference numerical modeling software DCIP2D/DCIP3D. The image obtained by geophysical inversion of the electric data was expected to be consistent with the initial hydrogeological model, as described by the distribution of leachate concentration. Numerical case studies were conducted for various geological conditions, hydraulic parameters and electrode arrays, from which conclusions were drawn regarding the suitability of the methodology to assess simple to more complex geo-electrical models. Thus, optimal mapping and monitoring configurations were determined.

  9. The effect of blood contamination on dislocation resistance of different endodontic reparative materials.

    Science.gov (United States)

    Üstün, Yakup; Topçuoğlu, Hüseyin S; Akpek, Firdevs; Aslan, Tuğrul

    2015-09-01

    This study evaluated the retention characteristics of ProRoot mineral trioxide aggregate (MTA), RetroMTA, Supra MTA, and Biodentine biomaterials used to repair furcation perforations contaminated with blood. Furcal perforations measuring 1.3 mm in diameter and 2 mm in height were created in 96 mandibular first molar teeth, which were then randomly divided into the following two groups (n = 48): contaminated (+) or non-contaminated (-) with blood. The groups were subdivided into four groups (n = 12) according to the material used (ProRoot MTA, RetroMTA, Supra MTA, and Biodentine) to seal the perforations. The samples were allowed to set for 14 days and were then subjected to push-out testing. The results were analyzed using ANOVA, and the failure modes were examined using a surgical microscope. ProRoot MTA (+/-) and RetroMTA (+/-) exhibited superior bond strength values; in addition, there were no significant differences among these groups (P > 0.05). Biodentine (+) showed intermediate values that were sometimes statistically similar to the ProRoot MTA (+/-) and RetroMTA (+/-) groups (P > 0.05) and, at other times, the Biodentine (-) and Supra MTA (+/-) groups (P > 0.05). The lowest bond strength values were shown by the Biodentine (-) and Supra MTA groups (P > 0.05). "Adhesive failure mode" was the most frequently observed type for all tested materials. Blood contamination did not affect the dislocation resistance of materials.

  10. Resistance to disinfection of a polymicrobial association contaminating the surface of elastomeric dental impressions.

    Science.gov (United States)

    Giammanco, Giovanni M; Melilli, Dario; Rallo, Antonio; Pecorella, Sonia; Mammina, Caterina; Pizzo, Giuseppe

    2009-04-01

    The aim of this study was to evaluate the ability to resist disinfection of a polymicrobial association contaminating the surface of dental impressions obtained with two different elastomers: a polyether (Impregum) and an addition-polymerized silicone (Elite). Impressions were contaminated with a mixture of three biofilm-forming microorganisms (Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) and disinfected immediately after contamination, or after microbial layers were allowed to develop during a six-hour storage. Two commercial disinfectants were tested: MD 520 containing 0.5% glutaraldehyde and Sterigum Powder without glutaraldehyde. Residual contamination was recovered by mechanical rinsing immediately after disinfection and after a six-hour storage of disinfected impressions, and assessed by colony counting. Both disinfectants tested were shown to be effective in reducing the microbial presence on the impression materials, achieving at least a 102 reduction of microbial counts compared to water rinsing. However, Sterigum was generally less effective on the Elite elastomer and could not grant disinfection on six-hour aged P. aeruginosa and C. albicans microbial layers. The results of this study suggest that the materials used for the impressions influence the efficacy of disinfection. Disinfectants should be tested according to conditions encountered in everyday clinical practice and the need for immediate disinfection of impressions should be clearly indicated by manufacturers.

  11. Soil biological attributes in arsenic-contaminated gold mining sites after revegetation.

    Science.gov (United States)

    Dos Santos, Jessé Valentim; de Melo Rangel, Wesley; Azarias Guimarães, Amanda; Duque Jaramillo, Paula Marcela; Rufini, Márcia; Marra, Leandro Marciano; Varón López, Maryeimy; Pereira da Silva, Michele Aparecida; Fonsêca Sousa Soares, Cláudio Roberto; de Souza Moreira, Fatima Maria

    2013-12-01

    Recovery of arsenic contaminated areas is a challenge society faces throughout the world. Revegetation associated with microbial activity can play an essential role in this process. This work investigated biological attributes in a gold mining area with different arsenic contents at different sites under two types of extant revegetation associated with cover layers of the soil: BS, Brachiaria sp. and Stizolobium sp., and LEGS, Acacia crassicarpa, A. holosericea, A. mangium, Sesbania virgata, Albizia lebbeck and Pseudosamanea guachapele. References were also evaluated, comprising the following three sites: B1, weathered sulfide substrate without revegetation; BM, barren material after gold extraction and PRNH (private reserve of natural heritage), an uncontaminated forest site near the mining area. The organic and microbial biomass carbon contents and substrate-induced respiration rates for these sites from highest to lowest were: PRNH > LEGS > BS > B1 and BM. These attributes were negatively correlated with soluble and total arsenic concentration in the soil. The sites that have undergone revegetation (LEGS and BS) had higher densities of bacteria, fungi, phosphate solubilizers and ammonium oxidizers than the sites without vegetation. Principal component analysis showed that the LEGS site grouped with PRNH, indicating that the use of leguminous species associated with an uncontaminated soil cover layer contributed to the improvement of the biological attributes. With the exception of acid phosphatase, all the biological attributes were indicators of soil recovery, particularly the following: microbial carbon, substrate-induced respiration, density of culturable bacteria, fungi and actinobacteria, phosphate solubilizers and metabolic quotient.

  12. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno

    2006-12-08

    Biological in situ measures can be efficient and cost effective options for the remediation of contaminated sites. However, the accepted application requires a detailed and reliable analysis of potential impacts. An important objective is to quantify the potential of contaminant degradation and metabolite formation. This thesis addresses a quantitative multimedia risk assessment. Methodologies and tools were developed for this objective and applied to evaluate in situ bioremediation of soils contaminated with polychlorinated biphenyls (PCBs). Soil bacteria in conjunction with plant roots were addressed (rhizoremediation) with a focus on the use of genetically modified microorganisms (GMOs). PCBs are known to be harmful compounds that are ubiquitously distributed in the environment. PCB contaminations in soil and groundwater were identified as important problems. 209 different congeners are sterically possible, but not all are of environmental significance. PCB congeners of concern were evaluated with respect to their potential toxicity, environmental occurrence and mobility. For this objective, congener specific data on the toxicity potential and the frequency in environmental matrices were collected. To quantify the mobility potential, multimedia modelling was performed applying deterministic and probabilistic procedures. 56 PCB congeners of concern were evaluated, and multimedia risk assessments of PCB-contaminated soils should concentrate on this group. Kinetics parameters were specified for degradation experiments with individual PCB congeners in solution and different bacterial strains. These laboratory assays were performed with wild-type Burkholderia sp. strain LB400 and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180. The F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere (mesocosm experiments). Therefore, and due to high depletion rates, rhizoremediation with F113L::1180 and willow

  13. Evaluation of radiation resistance of the bacterial contaminants from femoral heads processed for allogeneic transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rita [Radiation Dosimetry and Processing Group, Defence Laboratory, Jodhpur 342011 (India)], E-mail: singhritadr@yahoo.com; Singh, Durgeshwer [Radiation Dosimetry and Processing Group, Defence Laboratory, Jodhpur 342011 (India)

    2009-09-15

    Femoral heads excised during surgery were obtained from patients who had a fractured neck of the femur and were processed as bone allograft. The bacterial contaminants were isolated from femoral heads at different stages of processing and identified based on morphological characteristics and biochemical tests. Bacterial contaminants on bone were mainly Gram-positive bacilli and cocci (58.3%). Twenty-four isolates from bone samples were screened for resistance to radiation. The D{sub 10} values for Gram-negative bacteria isolated from femoral heads ranged from 0.17 to 0.65 kGy. Higher D{sub 10} values 0.56-1.04 kGy were observed for Gram-positive bacterial isolates.

  14. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa.

    Science.gov (United States)

    Madoroba, Evelyn; Kapeta, Daniel; Gelaw, Awoke K

    2016-05-26

    Antimicrobial resistant Salmonella are among the leading causes of foodborne infections. Our aim was to determine Salmonella contamination during cattle slaughter in South African rural abattoirs (n = 23) and environmental samples. Furthermore, antimicrobial resistance patterns of the Salmonella isolates were determined. Samples of cattle faeces (n = 400), carcass sponges (n = 100), intestinal contents (n = 62), hides (n = 67), and water from the abattoirs (n = 75) were investigated for Salmonella species using microbiological techniques and species-specific polymerase chain reaction targeting the invA gene. In total 92 Salmonella species isolates were recovered. The Salmonella mean frequency of occurrence on hides, carcasses, and intestinal contents was 35.37% (n = 81). Eleven faecal samples (2.75%) tested positive for Salmonella. The predominant serovar was Salmonella Enteritidis. Diverse serovars that were identified on carcasses were not necessarily found on the hides and intestinal contents. The inconsistent occurrence of the diverse Salmonella serovars on hides, carcasses, and intestinal contents implies that in addition to carriage on hides and in intestinal contents, other external factors also play an important role regarding carcass contamination. The 92 Salmonella were serotyped and tested for susceptibility towards the following antimicrobials: ampicillin, cefotaxime, enrofloxacin, kanamycin, and oxytetracycline using the disk diffusion method. Most Salmonella (n = 66; 71.7%) isolates were resistant to at least one antimicrobial with highest resistance observed towards oxytetracycline (51.90%), which highlights the need for strict hygiene during slaughter and prudent antimicrobial use during animal production. In conclusion, cattle slaughtered in South African rural abattoirs harbour diverse Salmonella serovars that are resistant to antimicrobials, which could be a public health risk. The findings should assist policymakers with improving implementation

  15. Bridging Physics and Biology Using Resistance and Axons

    Science.gov (United States)

    Dyer, Joshua M.

    2014-01-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics. A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology.…

  16. Bridging Physics and Biology Using Resistance and Axons

    Science.gov (United States)

    Dyer, Joshua M.

    2014-01-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics. A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite…

  17. Validation of cross-contamination control in biological safety cabinet for biotech/pharmaceutical manufacturing process.

    Science.gov (United States)

    Hu, Shih-Cheng; Shiue, Angus; Tu, Jin-Xin; Liu, Han-Yang; Chiu, Rong-Ben

    2015-12-01

    For class II, type A2 biological safety cabinets (BSC), NSF/ANSI Standard 49 should be conformed in cabinet airflow velocity derivation, particle contamination, and aerodynamic flow properties. However, there exists a potential problem. It has been built that the cabinet air flow stabilize is influenced by the quantity of downflow of air and the height above the cabinet exhaust opening. Three air downflow quantities were compared as an operating apparatus was placed from 20 to 40 cm above the bench of the cabinet. The results show that the BSC air downflow velocity is a function of increased sampling height, displaying that containment is improvingly permitted over product protection as the sampling height decreases. This study investigated the concentration gradient of particles at various heights and downflow air quantity from the bench of the BSC. Experiment results indicate that performance near the bench was better than in the rest of the BSC. In terms of height, the best cleanliness was measured at a height of 10 cm over the bench; it reduced actually with add in height. The empirical curves accommodate, founded on the concentration gradient of particle created was elaborated for evaluating the particle concentration at different heights and downflow air quantity from the source of the bench of the BSC. The particle image velocimetry system applied for BSC airflow research to fix amount of airflow patterns and air distribution measurement and results of measurements show how obstructions can greatly influence the airflow and contaminant transportation in a BSC.

  18. Enterobacter asburiae KUNi5, a Nickel Resistant Bacterium for Possible Bioremediation of Nickel Contaminated Sites.

    Science.gov (United States)

    Paul, Anirudha; Mukherjee, Samir Kumar

    2016-01-01

    Nickel resistant bacterial strain Enterobacter asburiae KUNi5 was isolated and showed resistance up to 15 mM and could remove Ni optimally better at 37 degrees C and pH 7. Maximum removal was found at initial concentration of 0.5 to 2 mM, however, growth and Ni removal were affected by other heavy metals. Major amount of the metal was accumulated in the membrane fractions and certain negatively charged groups were found responsible for Ni binding. KUNi5 could also produce 1-aminocyclopropane-1-carboxylate deaminase, indole-acetic acid and siderophore. It seems that KUNi5 could be a possible candidate for Ni detoxification and plant growth promotion in Ni-contaminated field.

  19. Resistance Measurements and Interpretations Relating to Flashover of Artificially Contaminated Ceramic Insulator Strings

    Institute of Scientific and Technical Information of China (English)

    B. Subba Reddy; G. R. Nagabhushana

    2003-01-01

    The flashover of insulator strings occurring at normal working voltages under contaminated/polluted conditions, obviously deserves serious consideration. Though much research has been gone into pollution-induced flashover phenomena but grey areas still exist in our knowledge. In the present experimental study the breakdown (flashover) voltages across gaps on insulator top surfaces and gaps between sheds (on the underside of an insulator), also the flashover studies on a single unit and a 3-unit insulator strings were carried out. An attempt has been made to correlate the values obtained for all the cases. From the present investigation it was found that resistance measurement of individual units of a polluted 3-unit string before and after flashover indicates that strongly differing resistances could be the cause of flashover of ceramic disc insulator strings.

  20. A coupled advanced oxidation-biological process for recycling industrial wastewater containing persistent organic contaminants (CADOX)

    Energy Technology Data Exchange (ETDEWEB)

    Malato, S.; Blanco, J.; Maldonado, M.I.; Alarcon, D.C.; Fernandez, P.; Oller, I.; Gernjak, W. [Platforma Solar de Almeria, CIEMAT (Spain)

    2004-07-01

    This article concentrates on coupled processes to treat seven highly water-soluble pesticides and three non-biodegradable chlorinated solvents. These are considered priority substances by the European Union and are thus the focus of some attention. The coupled processes include three oxidation processes: photocatalysis by titanium dioxide, photo-Fenton, and ozone; as well as biological degradation. The article reports on work in progress. The full project will include building two small prototypes embodying these technologies, the construction of a demonstration treatment plant based on the results obtained from the prototypes, conceptual design of a full size plant. New solar collectors were built to facilitate the photocatalysis and photo-Fenton. To date it has been determined that the photo-catalysis and photo-Fenton are suitable if the concentrations of the above contaminants is high enough. Ozone can enhance the treatment in the case of the pesticides, but not in the case of the non-biodegradable chlorinated solvents. Biotreatment is also not suitable for the solvents. The best biological system has been determined and the optimal recovery of catalyst has also been found. 5 refs., 2 tabs., 4 figs.

  1. Measurement of radioactive contamination in the high-resistivity silicon CCDs of the DAMIC experiment

    CERN Document Server

    Aguilar-Arevalo, A; Bertou, X; Bole, D; Butner, M; Cancelo, G; Vázquez, A Castañeda; Chavarria, A E; Neto, J R T de Mello; Dixon, S; D'Olivo, J C; Estrada, J; Moroni, G Fernandez; Torres, K P Hernández; Izraelevitch, F; Kavner, A; Kilminster, B; Lawson, I; Liao, J; López, M; Molina, J; Moreno-Granados, G; Pena, J; Privitera, P; Sarkis, Y; Scarpine, V; Schwarz, T; Haro, M Sofo; Tiffenberg, J; Machado, D Torres; Trillaud, F; You, X; Zhou, J

    2015-01-01

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify $\\alpha$ and $\\beta$ particles. Uranium and thorium contamination in the CCD bulk was measured through $\\alpha$ spectroscopy, with an upper limit on the $^{238}$U ($^{232}$Th) decay rate of 5 (15) kg$^{-1}$ d$^{-1}$ at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from $^{32}$Si-$^{32}$P or $^{210}$Pb-$^{210}$Bi sequences of $\\beta$ decays. The decay rate of $^{32}$Si was found to be $80^{+110}_{-65}$ kg$^{-1}$ d$^{-1}$ (95% CI). An upper limit of $\\sim$35 kg$^{-1}$ d$^{-1}$ (95% CL) on the $^{210}$Pb decay rate was obtained independently by $\\alpha$ spectroscopy and the $\\beta$ decay sequence search. These levels of radioactive contamination are su...

  2. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research.

  3. Translational research in ovarian carcinoma : cell biological aspects of drug resistance and tumor aggressiveness

    NARCIS (Netherlands)

    Zee, Ate Gerard Jan van der

    1994-01-01

    In this thesis diverse cell biological features that in cultured (ovarian) tumor cells have been linked to drug resistance and/or tumor aggressiveness are studied in tumor specimens of epithelial ovarian carcinomas.

  4. Mechanisms and Biological Costs of Bacterial Resistance to Antimicrobial Peptides

    OpenAIRE

    Lofton Tomenius, Hava

    2016-01-01

    The global increasing problem of antibiotic resistance necessarily drives the pursuit and discovery of new antimicrobial agents. Antimicrobial peptides (AMPs) initially seemed like promising new drug candidates. Already members of the innate immune system, it was assumed that they would be bioactive and non-toxic. Their common trait for fundamental, non-specific mode of action also seemed likely to reduce resistance development. In this thesis, we demonstrate the ease with which two species o...

  5. Leaf Rust of Wheat: Pathogen Biology, Variation and Host Resistance

    Directory of Open Access Journals (Sweden)

    James Kolmer

    2013-01-01

    Full Text Available Rusts are important pathogens of angiosperms and gymnosperms including cereal crops and forest trees. With respect to cereals, rust fungi are among the most important pathogens. Cereal rusts are heteroecious and macrocyclic requiring two taxonomically unrelated hosts to complete a five spore stage life cycle. Cereal rust fungi are highly variable for virulence and molecular polymorphism. Leaf rust, caused by Puccinia triticina is the most common rust of wheat on a worldwide basis. Many different races of P. triticina that vary for virulence to leaf rust resistance genes in wheat differential lines are found annually in the US. Molecular markers have been used to characterize rust populations in the US and worldwide. Highly virulent races of P. triticina are selected by leaf rust resistance genes in the soft red winter wheat, hard red winter wheat and hard red spring wheat cultivars that are grown in different regions of the US. Cultivars that only have race-specific leaf rust resistance genes that are effective in seedling plants lose their effective resistance and become susceptible within a few years of release. Cultivars with combinations of race non-specific resistance genes have remained resistant over a period of years even though races of the leaf rust population have changed constantly.

  6. Research of resisting of the biological active point for constant and alternative current

    Directory of Open Access Journals (Sweden)

    S. N. Peregudov

    2008-05-01

    Full Text Available Is conducted research of resistance of biologically active point (BAT on a direct and variable current. Research results are presented. The estimation of intercommunication between resistance of skin and by an electromagnetic radiation in BAT is done. Is shown possibility of the use of experimental information for diagnostics of the state of human to the organism.

  7. Frequency of Bacterial Contamination and Antibiotic Resistance Patterns in Devices and in Personnel of Endoscopy and Colonoscopy Units

    Directory of Open Access Journals (Sweden)

    Torabi, P. (BSc

    2014-06-01

    Full Text Available Background and Objective: This study was aimed to determine the extent of bacterial contamination and drug resistance patterns of isolates colonized in colonoscope and endoscope and in relevant personnel. Material and Methods: A total of 107 samples were obtained from staff of endoscopy and colonoscopy units (SEU and SCU and gastroenterological imaging equipment. For isolation and identification of the bacteria, swab culture method and biochemical identification test were used, respectively. Antimicrobial resistance profiles, multi-drug resistance (MDR patterns and phenetic relatedness of these isolates were also analyzed according to standard methods. Results: Most frequent pathogenic bacteria among the SEU and gastroenterological imaging related equipments were included S. aureus (20.8 % and 0 %; Enterococcus spp. (0 % and 5.4%; Pseudomonas spp. (0% and 13.5 %, and Clostridium difficile (0% and 12.5%. Analysis of resistance phenotypes showed a high frequency of MDR phenotypes among the SEU (82.1%, and also in endoscopes, colonoscopes, and other equipments (20%, 50% and 100%, respectively. Phylotyping of S. epidermidis isolates showed the role of staff in transmission of resistance strains to medical equipments and also circulation of strains with identical resistance phenotype among the studied samples. Conclusion: High frequency of pathogenic bacteria in colonoscopes, endoscopes and in the staff of endoscopy & colonoscopy units, and also contamination of these instruments with MDR pathogens emphasize the need for proper disinfection of endoscopes and colonoscopes and also instruction of staff in these units. Key words: Bacterial Contamination; Endoscope; Colonoscope; Antimicrobial Resistance; Gastrointestinal Disease.

  8. Occupational exposure to contaminated biological material: perceptions and feelings experienced among dental students

    Directory of Open Access Journals (Sweden)

    Camila PINELLI

    Full Text Available INTRODUCTION: Dental students may be a particularly vulnerable group exposed to the risk of acquiring infections through occupational injuries.OBJECTIVE: To investigate the perceptions with regard to their occupational exposure to potentially infectious biologic materials.MATERIAL AND METHOD: Interviews were conducted by means of a script with open questions. The speeches were recorded, transcribed and qualitative analysis was performed with the aid of QUALIQUANTISOFT® software. The Collective Subject Discourse (CSD was obtained.RESULT: The feeling most frequently experienced was related to the fear of contagion. Most accidents occurred during the handling of sharp dental instruments. Respondents attributed the occurrence of accidents especially the lack of attention, carelessness while handling sharp instruments, and lack of use of Personal Protective Equipment. As regards the measures taken right after the exposure, they "washed the local area". Other respondents reported they "continued the dental treatment". They complained mostly about the fear of having been infected, and because they had to leave the faculty to take blood exams for HIV screening. As part of the learning experience the injured reported they paid more attention when handling sharp instruments. The students informed that any type of injury due to contact with contaminated material must be notified. However, they were neglectful about reporting their own injury.CONCLUSION: Education strategies for preventive measures related to occupational exposure must be restructured, because the knowledge and the fear of contagion among dental students were not always sufficient for a complete adherence to treatment protocols and notification.

  9. Salmonella contamination of eggs of native Kohgiluyeh va Boyerahmad using PCR1 techniques and the evaluation of drug resistance

    Directory of Open Access Journals (Sweden)

    M Monadi

    2014-05-01

    Full Text Available Abstract Background & aim:Foodborne disease, a major health and economic problem in industrialized and non-industrialized countries.The purpose of this study was to investigate Salmonella contamination of eggs by native province kohgiloyeh va Boyerahmad by PCR and evaluation of their drug resistance. Methods: This cross-sectional study-descriptive study of 210 eggs collected from native Kohgiluyeh va Boyerahmad done. Biochemical tests for identification of bacteria was isolated. Salmonella bacteria have suspected reactions were tested by PCR with specific primers invA genes were examined. Results: The results showed that 14 number of eggs (6/66 percent were contaminated with Salmonella genus. Dehdasht area of highest contamination and less pollution Charusa areas, Dyshmuk, Lndeh and was Basht And no significant correlation was found between the type and extent of contamination and the region.The antibiotic resistance of most resistance to penicillin (100% was observed.This study uses data from the nineteenth and application soft ware spss version microsofte office 2007-square test and Fisher were analyzed. Significant level of p>0/05 was considered. Conclusion: Microbial agents such as Salmonella can cause food spoilage and disease are. Resistance in Salmonellais recommended to avoid the in discriminate use of antibiotics in live stock and poultry should be avoided. Key words: Salmonella,Egg,drug resistance, invA, PCR.

  10. Diversity and biology of heat-resistant fungi

    NARCIS (Netherlands)

    Houbraken, J.; Dijksterhuis, J.; Samson, R.A.; Wong, Hin-Chung

    2012-01-01

    Heat-resistant fungi survive high temperatures (75°C or more for at least 30 min). For food microbiology, these fungi are of interest because of spoilage of canned and pasteurized food products, and cause damage for millions of dollars in the fruit-juice and beverage branch. Many studies have been c

  11. Contamination of renal patients’ hospital chart covers with vancomycin resistant enterococci: Handle with care

    Directory of Open Access Journals (Sweden)

    Edward Zimbudzi

    2011-10-01

    Full Text Available BackgroundVancomycin-­‐resistant enterococci(VREhave been increasingly associated with patients with renal failureattending large metropolitan teaching hospitals.Monash Medical Center has been following guidelines issued by the Department of Human Services to reduce the spread of VRE, but unfortunately this has had limited impact, especially in the renalunit.In an attempt to investigate the causes of the sustained VRE prevalence in the renal unit, this study sought to determine if renal patient chart covers were contaminated with VRE and iftherewasanygeneticsimilaritytopatientVREisolates.MethodUsingconveniencesampling,chartcoversofpatientscolonisedorinfectedwithVREwereswabbedfromJulytoSeptember2010(n=46.Sampleswerealsocollectedfromchartcoversofnon-­‐VREpatients.MoleculartypingofallmatchingVREpatientandchartisolateswasperformedusingpulsedfieldgelelectrophoresis(PFGEbythepublichealthlaboratory(MicrobiologicalDiagnosticUnit,UniversityofMelbourne.ResultsNoneofthepatientswhowereVREnegative(n=14hadcontaminatedchartcovers.VREwasrecoveredfromtwodrugchartcovers(patientAandBfromthe31VREpositivepatientssampled.Onepatient(patientCwasmisidentifiedasaVREpatientfortwoweeksandwassubjecttocontactprecautionswhilebeingdialysed,yetthreecharttypesbelongingtothispatientwerefoundtobecontaminatedwithVRE.ConclusionThefindingsofthisstudydemonstratethatitispossibleforpatients’hospitalchartcoverstobecontaminatedwithVREeventhoughtherewasnogeneticsimilaritytothecurrentpatientstrain.Inthisregard,thestudyrevealsthatpatientchartsmayhaveanimportantroleinspreadingVRE.

  12. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Directory of Open Access Journals (Sweden)

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  13. PREVALENCE AND ANTIBIOTIC RESISTANCE OF FOOD BORNE BACTERIAL CONTAMINATION IN SOME EGYPTIAN FOOD food

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-09-01

    Full Text Available This study was undertaken to investigate the prevalence and antibiotic resistance of food borne bacterial contamination in some Egyptian food. Total viable bacteria and total coliform bacteriawere isolated from different sources of food; carbohydrates (bread, flour and basbousa, vegetables (outer and inner tissues of potato and outer and inner tissues of cucumber and proteins (mincedmeat, cheese and milk. The study resulted in maximum value of total viable bacteria found in outer tissue of potato 68X104±1.0, while the minimum value found in inner tissues of potato andcucumber. The study resulted in total coliform was maximum value in minced meat 6.4X103±0.3. Basbousa and inner tissue of potato and cucumber were free from coliforms. The ability of isolatesto producing proteolytic enzymes was tested, we found that 326 isolate (63.92% from all isolates had this ability, thus we selected most 2 potent proteolytic isolates. The two isolates were identifiedas Bacillus cereus and Escherichia coli. The identification confirmed by microlog 34.20 system and 16SrRNA for two isolates and the same result was founded. Sensitivity tested for the most potentproteolytic species to 12 of the most commonly used antibiotics in the Egyptian pharmacy. The results showed that all species were sensitive to most of antibiotics, except B. cereus which was strongly susceptible to azteronam and ceftazidim. The data showed that raw meat, cooked food products, and raw milk were most commonly contaminated with foodborne pathogens and many pathogens were resistant to different antibiotics. The study provided useful information for assessment of the possible risk posed to consumers, which has significant public health impact.

  14. A combined approach of physicochemical and biological methods for the characterization of petroleum hydrocarbon-contaminated soil.

    Science.gov (United States)

    Masakorala, Kanaji; Yao, Jun; Chandankere, Radhika; Liu, Haijun; Liu, Wenjuan; Cai, Minmin; Choi, Martin M F

    2014-01-01

    Main physicochemical and microbiological parameters of collected petroleum-contaminated soils with different degrees of contamination from DaGang oil field (southeast of Tianjin, northeast China) were comparatively analyzed in order to assess the influence of petroleum contaminants on the physicochemical and microbiological properties of soil. An integration of microcalorimetric technique with urease enzyme analysis was used with the aim to assess a general status of soil metabolism and the potential availability of nitrogen nutrient in soils stressed by petroleum-derived contaminants. The total petroleum hydrocarbon (TPH) content of contaminated soils varied from 752.3 to 29,114 mg kg(−1). Although the studied physicochemical and biological parameters showed variations dependent on TPH content, the correlation matrix showed also highly significant correlation coefficients among parameters, suggesting their utility in describing a complex matrix such as soil even in the presence of a high level of contaminants. The microcalorimetric measures gave evidence of microbial adaptation under highest TPH concentration; this would help in assessing the potential of a polluted soil to promote self-degradation of oil-derived hydrocarbon under natural or assisted remediation. The results highlighted the importance of the application of combined approach in the study of those parameters driving the soil amelioration and bioremediation.

  15. Trophic-metabolic activity of earthworms (Lumbricidae as a zoogenic factor of maintaining reclaimed soils’ resistance to copper contamination

    Directory of Open Access Journals (Sweden)

    Y. L. Kulbachko

    2014-07-01

    Full Text Available Soil contamination by heavy metals, first of all, influences biological and ecological conditions, and it is able to change the conservative soil features, such as humus content, aggregation, acidity and others, leading to partial or total diminishing of soil fertility and decrease in soil economic value. Zoogenic issues of soil protective capacity formation in conditions of heavy metal content rise under technogenesis have been studied. The article discusses the features of earthworm trophic-metabolic activity in the afforested remediated site (Western Donbass, Ukraine with different options of mixed soil bulk. Western Donbass is the large center of coal mining located in South-Western part of Ukraine. High rates of technical development in this region lead to surface subsidence, rising and outbreak of high-mineralized groundwater, and formation of dump pits of mine wastes. Remediated area is represented by the basement of mine wastes covered by 5 options of artificial mixed soil with different depth of horizons. The following tree species were planted on top of artificial soil: Acer platanoides L., Robinia pseudoacacia L., and Juniperus virginiana L. The main practical tasks were to define on the quantitative basis the buffer capacity of artificial mixed soil and earthworm excreta in relation to copper contamination and to compare its immobilization capacity in conditions of artificial forest plants in the territory of Western Donbass. It was proved that earthworm excreta had a great influence on soil immobilization capacity (particularly, on soil buffering to copper which increased for excreta in the following range: humus-free loess loam – top humus layer of ordinary chernozem. Immobilization efficiency of copper by earthworm excreta from ordinary chernozem bulk compared with baseline (ordinary chernozem was significantly higher. It should be noted that trophic-metabolic activity of earthworms plays very important role as a zoogenic factor

  16. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil.

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    A mercury resistant bacterial strain, SA2, was isolated from soil contaminated with mercury. The 16S rRNA gene sequence of this isolate showed 99% sequence similarity to the genera Sphingobium and Sphingomonas of α-proteobacteria group. However, the isolate formed a distinct phyletic line with the genus Sphingobium suggesting the strain belongs to Sphingobium sp. Toxicity studies indicated resistance to high levels of mercury with estimated EC50 values 4.5 mg L(-1) and 44.15 mg L(-1) and MIC values 5.1 mg L(-1) and 48.48 mg L(-1) in minimal and rich media, respectively. The strain SA2 was able to volatilize mercury by producing mercuric reductase enzyme which makes it potential candidate for remediating mercury. ICP-QQQ-MS analysis of Hg supplemented culture solutions confirmed that almost 79% mercury in the culture suspension was volatilized in 6 h. A very small amount of mercury was observed to accumulate in cell pellets which was also evident according to ESEM-EDX analysis. The mercuric reductase gene merA was amplified and sequenced. The deduced amino acid sequence demonstrated sequence homology with α-proteobacteria and Ascomycota group.

  17. Microbiological contamination and resistance genes in biofilms occurring during the drinking water treatment process.

    Science.gov (United States)

    Farkas, Anca; Butiuc-Keul, Anca; Ciatarâş, Dorin; Neamţu, Călin; Crăciunaş, Cornelia; Podar, Dorina; Drăgan-Bularda, Mihail

    2013-01-15

    Biofilms are the predominant mode of microbial growth in drinking water systems. A dynamic exchange of individuals occurs between the attached and planktonic populations, while lateral gene transfer mediates genetic exchange in these bacterial communities. Integrons are important vectors for the spread of antimicrobial resistance. The presence of class 1 integrons (intI1, qac and sul genes) was assessed in biofilms occurring throughout the drinking water treatment process. Isolates from general and specific culture media, covering a wide range of environmental bacteria, fecal indicators and opportunistic pathogens were tested. From 96 isolates tested, 9.37% were found to possess genetic determinants of putative antimicrobial resistance, and these occurred in both Gram-positive and Gram-negative bacteria. Class 1 integron integrase gene was present in 8.33% of bacteria, all positive for the qacEΔ1 gene. The sul1 gene was present in 3.12% of total isolates, representing 37.5% of the class 1 integron positive cells. The present study shows that biofilm communities in a drinking water treatment plant are a reservoir of class 1 integrons, mainly in bacteria that may be associated with microbiological contamination. Eight out of nine integron bearing strains (88.8%) were identified based on 16S rRNA gene sequencing as either enteric bacteria or species that may be connected to animal and anthropogenic disturbance.

  18. Mercury remediation potential of a mercury resistant strain Sphingopyxis sp. SE2 isolated from contaminated soil.

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Naidu, Ravi; Megharaj, Mallavarapu

    2017-01-01

    A mercury resistant bacterial strain SE2 was isolated from contaminated soil. The 16s rRNA gene sequencing confirms the strain as Sphingopyxis belongs to the Sphingomonadaceae family of the α-Proteobacteria group. The isolate showed high resistance to mercury with estimated concentrations of Hg that caused 50% reduction in growth (EC50) of 5.97 and 6.22mg/L and minimum inhibitory concentrations (MICs) of 32.19 and 34.95mg/L in minimal and rich media, respectively. The qualitative detection of volatilized mercury and the presence of mercuric reductase enzyme proved that the strain SE2 can potentially remediate mercury. ICP-QQQ-MS analysis of the remaining mercury in experimental broths indicated that a maximum of 44% mercury was volatilized within 6hr by live SE2 culture. Furthermore a small quantity (23%) of mercury was accumulated in live cell pellets. While no volatilization was caused by dead cells, sorption of mercury was confirmed. The mercuric reductase gene merA was amplified and sequenced. Homology was observed among the amino acid sequences of mercuric reductase enzyme of different organisms from α-Proteobacteria and ascomycota groups.

  19. Study on contamination of sheep meat in Shahrekord area with Listeria ivanovii and determination its antibiotic resistance pattern

    Directory of Open Access Journals (Sweden)

    Farid Khalili Borujeni

    2013-06-01

    Full Text Available Background and objectives: Listeria monocytogenes and Listeria ivanovii are two pathogenic species of Listeria. The role of Listeria ivanovii is important in abortion, stillbirth, septicemia in animals and this bacterium sometimes is pathogenic in humans. Contamination of ovine carcasses during the slaughter and processing can cause foodborne infections in humans. In this study we examined the contamination of sheep meat in slaughter house of Shahrekord city to Listeria ivanovii and determined its antibiotic resistance pattern.Material and Methods: A total 200 samples of sheep meat were collected from abattoir and processed by use of two enrichment method. After doing specific biochemical tests and PCR, Listeria spp was identified and antibiotic resistance of isolated Listeria were tested by the agar disc diffusion method. Results: The contamination of sheep carcasses with listeria was 2.5% (5 out of 200 samples. All five isolates (2.5% were recognized as Listeria ivanovii and were resistant to four antibiotics, sensitive to six antibiotics and intermediate to other antibiotics.  Conclusion: According to the contamination rate in sheep carcasses with Listeria ivanovii and the relatively high antibiotic resistance specified in this bacteria, the role of red meat in transmission of Listeria spp. and appropriate use of antibiotics against this bacteria should be considered.

  20. Klebsiella sp. FIRD 2, a TBT-resistant bacterium isolated from contaminated surface sediment along Strait of Johor Malaysia.

    Science.gov (United States)

    Abubakar, Abdussamad; Mustafa, Muskhazli B; Johari, Wan Lutfi Wan; Zulkifli, Syaizwan Zahmir; Ismail, Ahmad; Mohamat-Yusuff, Ferdaus Binti

    2015-12-15

    A possible tributyltin (TBT)-degrading bacterium isolated from contaminated surface sediment was successfully identified as Klebsiella sp. FIRD 2. It was found to be the best isolate capable of resisting TBT at a concentration of 1000 μg L(-1). This was a concentration above the reported contaminated level at the sampling station, 790 μg L(-1). Further studies revealed that the isolate was Gram negative and resisted TBT concentrations of up to 1500 μg L(-1) in a Minimal Salt Broth without the addition of any carbon source within the first 48 h of incubation. It is expected that additional work could be conducted to check the degradation activity of this new isolate and possibly improve the degradation capacity in order to contribute to finding a safe and sustainable remediation solution of TBT contamination.

  1. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  2. Development of a new class of chemical and biological ultrasensors: Ribonuclease contamination and control

    Science.gov (United States)

    1984-01-01

    In order to define ribonuclease contamination, an assay for ribonuclease having picogram level sensitivity was established. In this assay, polycytidylic acid is digested by ribonuclease leading to smaller fragments of poly C that remain soluble after treatment of the sample with perchloric acid and lanthanum acetate. An absorbance measurement at 260 nm of the supernatant from the centrifuged sample measures the ribonuclease. A standard curve is shown. Using this assay procedure, ribonuclease contamination was found to be significant in routine laboratory proteins, in particular, bovine serum albumin, lysozyme, catalase, and cytochrome C. This was confirmed by demonstrating a considerable reduction in this activity in the presence of phosphate buffer since phosphate inhibits ribonuclease. Ribonuclease contamination was not significantly encountered in routine laboratory glassware, plasticware, column surfaces, chromatographic particles, and buffer reagents, including airborne contamination. Some contamination could be introduced by fingerprints, however.

  3. Biology of biological meshes used in hernia repair.

    Science.gov (United States)

    Novitsky, Yuri W

    2013-10-01

    Successful repair of most hernias requires the use of a prosthetic implant for reinforcement of the defect. Because of the need for prosthetic implants to resist infections as well to support repairs in contaminated or potentially contaminated fields, biological meshes have been developed to take the place of nondegradable synthetic meshes in cases where mesh infection is of high concern. The ideal is a biological matrix that resists infection while providing durable reinforcement of a hernia repair. This article reviews the validity of assumptions that support the purported notion of the biological behavior of biological meshes.

  4. Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments

    Science.gov (United States)

    Mao, D.; Revil, A.; Hort, R. D.; Munakata-Marr, J.; Atekwana, E. A.; Kulessa, B.

    2015-11-01

    Geophysical methods can be used to remotely characterize contaminated sites and monitor in situ enhanced remediation processes. We have conducted one sandbox experiment and one contaminated field investigation to show the robustness of electrical resistivity tomography and self-potential (SP) tomography for these applications. In the sandbox experiment, we injected permanganate in a trichloroethylene (TCE)-contaminated environment under a constant hydraulic gradient. Inverted resistivity tomograms are able to track the evolution of the permanganate plume in agreement with visual observations made on the side of the tank. Self-potential measurements were also performed at the surface of the sandbox using non-polarizing Ag-AgCl electrodes. These data were inverted to obtain the source density distribution with and without the resistivity information. A compact horizontal dipole source located at the front of the plume was obtained from the inversion of these self-potential data. This current dipole may be related to the redox reaction occurring between TCE and permanganate and the strong concentration gradient at the front of the plume. We demonstrate that time-lapse self-potential signals can be used to track the kinetics of an advecting oxidizer plume with acceptable accuracy and, if needed, in real time, but are unable to completely resolve the shape of the plume. In the field investigation, a 3D resistivity tomography is used to characterize an organic contaminant plume (resistive domain) and an overlying zone of solid waste materials (conductive domain). After removing the influence of the streaming potential, the identified source current density had a magnitude of 0.5 A m-2. The strong source current density may be attributed to charge movement between the neighboring zones that encourage abiotic and microbially enhanced reduction and oxidation reactions. In both cases, the self-potential source current density is located in the area of strong resistivity

  5. Non-target time trend screening: a data reduction strategy for detecting emerging contaminants in biological samples.

    Science.gov (United States)

    Plassmann, Merle M; Tengstrand, Erik; Åberg, K Magnus; Benskin, Jonathan P

    2016-06-01

    Non-targeted mass spectrometry-based approaches for detecting novel xenobiotics in biological samples are hampered by the occurrence of naturally fluctuating endogenous substances, which are difficult to distinguish from environmental contaminants. Here, we investigate a data reduction strategy for datasets derived from a biological time series. The objective is to flag reoccurring peaks in the time series based on increasing peak intensities, thereby reducing peak lists to only those which may be associated with emerging bioaccumulative contaminants. As a result, compounds with increasing concentrations are flagged while compounds displaying random, decreasing, or steady-state time trends are removed. As an initial proof of concept, we created artificial time trends by fortifying human whole blood samples with isotopically labelled standards. Different scenarios were investigated: eight model compounds had a continuously increasing trend in the last two to nine time points, and four model compounds had a trend that reached steady state after an initial increase. Each time series was investigated at three fortification levels and one unfortified series. Following extraction, analysis by ultra performance liquid chromatography high-resolution mass spectrometry, and data processing, a total of 21,700 aligned peaks were obtained. Peaks displaying an increasing trend were filtered from randomly fluctuating peaks using time trend ratios and Spearman's rank correlation coefficients. The first approach was successful in flagging model compounds spiked at only two to three time points, while the latter approach resulted in all model compounds ranking in the top 11 % of the peak lists. Compared to initial peak lists, a combination of both approaches reduced the size of datasets by 80-85 %. Overall, non-target time trend screening represents a promising data reduction strategy for identifying emerging bioaccumulative contaminants in biological samples. Graphical abstract

  6. Biofilm formation and sanitizer resistance of Escherichia coli O157:H7 strains isolated from "high event period" meat contamination.

    Science.gov (United States)

    Wang, Rong; Kalchayanand, Norasak; King, David A; Luedtke, Brandon E; Bosilevac, Joseph M; Arthur, Terrance M

    2014-11-01

    In the meat industry, a "high event period" (HEP) is defined as a time period during which commercial meat plants experience a higher than usual rate of Escherichia coli O157:H7 contamination. Genetic analysis indicated that within a HEP, most of the E. coli O157:H7 strains belong to a singular dominant strain type. This was in disagreement with the current beef contamination model stating that contamination occurs when incoming pathogen load on animal hides, which consists of diverse strain types of E. coli O157:H7, exceeds the intervention capacity. Thus, we hypothesize that the HEP contamination may be due to certain in-plant colonized E. coli O157:H7 strains that are better able to survive sanitization through biofilm formation. To test our hypothesis, a collection of 45 E. coli O157:H7 strains isolated from HEP beef contamination incidents and a panel of 47 E. coli O157:H7 strains of diverse genetic backgrounds were compared for biofilm formation and sanitizer resistance. Biofilm formation was tested on 96-well polystyrene plates for 1 to 6 days. Biofilm cell survival and recovery growth after sanitization were compared between the two strain collections using common sanitizers, including quaternary ammonium chloride, chlorine, and sodium chlorite. No difference in "early stage" biofilms was observed between the two strain collections after incubation at 22 to 25°C for 1 or 2 days. However, the HEP strains demonstrated significantly higher potency of "mature" biofilm formation after incubation for 4 to 6 days. Biofilms of the HEP strains also exhibited significantly stronger resistance to sanitization. These data suggest that biofilm formation and sanitization resistance could have a role in HEP beef contamination by E. coli O157:H7, which highlights the importance of proper and complete sanitization of food contact surfaces and food processing equipment in commercial meat plants.

  7. Toward elucidation of genetic and functional genetic mechanisms in corn host resistance to Aspergillus flavus infection and aflatoxin contamination

    Directory of Open Access Journals (Sweden)

    Xueyan eShan

    2014-07-01

    Full Text Available Aflatoxins are carcinogenic mycotoxins produced by some species in the Aspergillus genus, such as A. flavus and A. parasiticus. Contamination of aflatoxins in corn profusely happens at pre-harvest stage when heat and drought field conditions favor A. flavus colonization. Commercial corn hybrids are generally susceptible to A. flavus infection. An ideal strategy for preventing aflatoxin contamination is through the enhancement of corn host resistance to Aspergillus infection and aflatoxin production. Constant efforts have been made by corn breeders to develop resistant corn genotypes. Significantly low levels of aflatoxin accumulation have been determined in certain resistant corn inbred lines. A number of reports of quantitative trait loci (QTLs have provided compelling evidence supporting the quantitative trait genetic basis of corn host resistance to aflatoxin accumulation. Important findings have also been obtained from the investigation on candidate resistance genes through transcriptomics approach. Elucidation of molecular mechanisms will provide in-depth understanding of the host-pathogen interactions and hence facilitate the breeding of corn with resistance to A. falvus infection and aflatoxin accumulation.

  8. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    Science.gov (United States)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was

  9. Meticillin-resistant Staphylococcus aureus (MRSA) environmental contamination in a radiology department

    Energy Technology Data Exchange (ETDEWEB)

    Shelly, M.J., E-mail: martinshelly@gmail.com [Department of Radiology, Mater Misericordiae University Hospital, Dublin (Ireland); Scanlon, T.G. [Department of Radiology, Mater Misericordiae University Hospital, Dublin (Ireland); Ruddy, R.; Hannan, M.M. [Department of Clinical Microbiology, Mater Misericordiae University Hospital, Dublin (Ireland); Murray, J.G. [Department of Radiology, Mater Misericordiae University Hospital, Dublin (Ireland)

    2011-09-15

    Aim: To explore the potential risk to patients and healthcare workers of acquiring meticillin-resistant Staphylococcus aureus (MRSA) in clinical and non-clinical areas within a radiology department. Materials and methods: High-risk sites in clinical and non-clinical areas within the Department of Radiology were identified and 125 environmental swabs were obtained by an infection control nurse specialist. Decontamination methods and protocols were reviewed and compared against international decontamination best practice. Results: One of 125 samples was culture positive for MRSA. The positive sample was isolated from the surface of the bore of the magnetic resonance imaging (MRI) unit. A hypochlorite cleaning agent was applied using a long-handled brush to clean the bore of the MRI unit. A repeat environmental screen found the MRI unit to be culture negative for MRSA. Conclusion: This study has demonstrated that standard decontamination measures are adequate to prevent environmental contamination with MRSA in a radiology department. However, the MRI unit requires special attention because of its long bore and difficult access.

  10. Chemical and biological risk assessment of chronic exposure to PAH contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Means, J.; McMillin, D.; Kondapi, N. [Louisiana State Univ., Baton Rouge, LA (United States)

    1995-12-31

    Chronically contaminated sediments represent a long-term source of mixtures of contaminants, exposing aquatic ecosystems to PAH through desorption and bioaccumulation. Chronic toxicity assessments must address potential of these bond contaminants. Environmental impacts and ecological health hazards of sediment-bound normal, alkylated and heterocyclic aromatic hydrocarbons are functions of their entry into aquatic food webs and are controlled by both abiotic and biotic factors. Laboratory and field microcosm exposures of fish and invertebrates were conducted followed by assessments of effects using chemical analysis and biomarkers of potential genotoxic effects. Chemical analysis of accumulated residues of 62 individual PAH were conducted in oysters, Crassostrea virginica exposed to PAH contaminated sediments in the field. The rates and equilibrium bioaccumulation constants for each were determined. Fish were exposed to the same contaminated sediments in laboratory and field exposures. Measurements of ethoxy-resorufin-o-deethylase activity induction as well as alterations in the expression of the p53 tumor suppressor gene were performed on exposed fish liver samples. EROD activities were increased significantly relative to unexposed and laboratory/field control sediment-exposed fish, however, the responses of individuals were highly variable. Fundulus grandis or Gambusia affinis, exposed to contaminated sediments in the laboratory, revealed changes in the expression of the p53 tumor suppressor gene. The degree to which mutations within the gene occurred was assessed using PCR followed by measurement of single stranded DNA polymorphisms using gel electrophoresis chromatography.

  11. Prevalence of Nontyphoidal Salmonella and Salmonella Strains with Conjugative Antimicrobial-Resistant Serovars Contaminating Animal Feed in Texas.

    Science.gov (United States)

    Hsieh, Yi-Cheng; Poole, Toni L; Runyon, Mick; Hume, Michael; Herrman, Timothy J

    2016-02-01

    The objective of this study was to characterize 365 nontyphoidal Salmonella enterica isolates from animal feed. Among the 365 isolates, 78 serovars were identified. Twenty-four isolates (7.0%) were recovered from three of six medicated feed types. Three of these isolates derived from the medicated feed, Salmonella Newport, Salmonella Typhimurium var. O 5- (Copenhagen), and Salmonella Lexington var. 15+ (Manila), displayed antimicrobial resistance. Susceptibility testing revealed that only 3.0% (12) of the 365 isolates displayed resistance to any of the antimicrobial agents. These 12 isolates were recovered from unmedicated dry beef feed (n = 3), medicated dry beef feed (n = 3), cabbage culls (n = 2), animal protein products (n = 2), dry dairy cattle feed (n = 1), and fish meal (n = 1). Only Salmonella Newport and Salmonella Typhimurium var. O 5- (Copenhagen) were multidrug resistant. Both isolates possessed the IncA/C replicon and the blaCMY-2 gene associated with cephalosporin resistance. Plasmid replicons were amplified from 4 of 12 resistant isolates. Plasmids (40 kb) were Salmonella Montevideo and Salmonella Kentucky. Conjugation experiments were done using 7 of the 12 resistant isolates as donors. Only Salmonella Montevideo, possessing a plasmid and amplifying IncN, produced transconjugants. Transconjugants displayed the same antimicrobial resistance profile as did the donor isolate. Three isolates that amplified replicons corresponding to IncA/C or IncHI2 did not produce transconjugants at 30 or 37°C. The results of this study suggest that the prevalence of antimicrobial-resistant Salmonella contaminating animal feed is low in Texas. However, Salmonella was more prevalent in feed by-products; fish meal had the highest prevalence (84%) followed by animal protein products (48%). Ten of the 35 feed types had no Salmonella contamination. Further investigation is needed to understand the possible role of specific feed types in the dissemination of antimicrobial

  12. A Contaminant Trap as a Tool for Isolating and Measuring the Desorption Resistant Fraction of Soil Pollutants

    DEFF Research Database (Denmark)

    Mayer, Philipp; Lund Olsen, Jannik; Gouliarmou, Varvara;

    2011-01-01

    Bioremediation of contaminated soils often leaves a desorption-resistant pollutant fraction behind in the soil, which in the present study was isolated with a combination of diffusive carrier and infinite diffusive sink. Such a diffusive sink was made by casting a composite of silicone...... and activated carbon into the bottom of a large glass. Field-contaminated soil samples were then suspended in a cyclodextrin solution and incubated in such glasses for the continuous trapping of PAH molecules during their release from the soil matrix. The PAH concentrations remaining in the soil were determined...... by exhaustive extraction and compared with a biodegradation experiment. The concentration decline in the first soil was faster in the contaminant trap than in the biodegradation experiment, but the halting of the biodegradation process before reaching the legal threshold level was well indicated...

  13. Determination of biological removal of recalcitrant organic contaminants in coal gasification waste water.

    Science.gov (United States)

    Ji, Qinhong; Tabassum, Salma; Yu, Guangxin; Chu, Chunfeng; Zhang, Zhenjia

    2015-01-01

    Coal gasification waste water treatment needed a sustainable and affordable plan to eliminate the organic contaminants in order to lower the potential environmental and human health risk. In this paper, a laboratory-scale anaerobic-aerobic intermittent system carried out 66 operational cycles together for the treatment of coal gasification waste water and the removal capacity of each organic pollutant. Contaminants included phenols, carboxylic acids, long-chain hydrocarbons, and heterocyclic compounds, wherein the relative content of phenol is up to 57.86%. The long-term removal of 77 organic contaminants was evaluated at different hydraulic retention time (anaerobic24 h + aerobic48 h and anaerobic48 h +aerobic48 h). Contaminant removal ranged from no measurable removal to near-complete removal with effluent concentrations below the detection limit. Contaminant removals followed one of four trends: steady-state removal throughout, increasing removal to steady state (acclimation), decreasing removal, and no removal. Organic degradation and transformation in the reaction were analysed by gas chromatography/mass spectrometry technology.

  14. Cross-Contamination of Residual Emerging Contaminants and Antibiotic Resistant Bacteria in Lettuce Crops and Soil Irrigated with Wastewater Treated by Sunlight/H2O2.

    Science.gov (United States)

    Ferro, Giovanna; Polo-López, María I; Martínez-Piernas, Ana B; Fernández-Ibáñez, Pilar; Agüera, Ana; Rizzo, Luigi

    2015-09-15

    The sunlight/H2O2 process has recently been considered as a sustainable alternative option compared to other solar driven advanced oxidation processes (AOPs) in advanced treatment of municipal wastewater (WW) to be reused for crop irrigation. Accordingly, in this study sunlight/H2O2 was used as disinfection/oxidation treatment for urban WW treatment plant effluent in a compound parabolic collector photoreactor to assess subsequent cross-contamination of lettuce and soil by contaminants of emerging concern (CECs) (determined by QuEChERS extraction and LC-QqLIT-MS/MS analysis) and antibiotic resistant (AR) bacteria after irrigation with treated WW. Three CECs (carbamazepine (CBZ), flumequine (FLU), and thiabendazole (TBZ) at 100 μg L(-1)) and two AR bacterial strains (E. coli and E. faecalis, at 10(5) CFU mL(-1)) were spiked in real WW. A detection limit (DL) of 2 CFU mL(-1) was reached after 120 min of solar exposure for AR E. coli, while AR E. faecalis was more resistant to the disinfection process (240 min to reach DL). CBZ and TBZ were poorly removed after 90 min (12% and 50%, respectively) compared to FLU (94%). Lettuce was irrigated with treated WW for 5 weeks. CBZ and TBZ were accumulated in soil up to 472 ng g(-1) and 256 ng g(-1) and up-taken by lettuce up to 109 and 18 ng g(-1), respectively, when 90 min treated WW was used for irrigation; whereas no bacteria contamination was observed when the bacterial density in treated WW was below the DL. A proper treatment time (>90 min) should be guaranteed in order to avoid the transfer of pathogens from disinfected WW to irrigated crops and soil.

  15. Removal of Pesticides and Inorganic Contaminants in Anaerobic and Aerobic Biological Contactors

    Science.gov (United States)

    This presentation contains data on the removal of pesticides (acetochlor, clethodim, dicrotophos), ammonia, nitrate, bromate and perchlorate through aerobic and anaerobic biological treatment processes.

  16. Sequential ozone advanced oxidation and biological oxidation processes to remove selected pharmaceutical contaminants from an urban wastewater.

    Science.gov (United States)

    Espejo, Azahara; Aguinaco, Almudena; García-Araya, J F; Beltrán, Fernando J

    2014-01-01

    Sequential treatments consisting in a chemical process followed by a conventional biological treatment, have been applied to remove mixtures of nine contaminants of pharmaceutical type spiked in a primary sedimentation effluent of a municipal wastewater. Combinations of ozone, UVA black light (BL) and Fe(III) or Fe₃O₄ catalysts constituted the chemical systems. Regardless of the Advanced Oxidation Process (AOP), the removal of pharmaceutical compounds was achieved in 1 h of reaction, while total organic carbon (TOC) only diminished between 3.4 and 6%. Among selected ozonation systems to be implemented before the biological treatment, the application of ozone alone in the pre-treatment stage is recommended due to the increase of the biodegradability observed. The application of ozone followed by the conventional biological treatment leads high TOC and COD removal rates, 60 and 61%, respectively, and allows the subsequent biological treatment works with shorter hydraulic residence time (HRT). Moreover, the influence of the application of AOPs before and after a conventional biological process was compared, concluding that the decision to take depends on the characterization of the initial wastewater with pharmaceutical compounds.

  17. Use of biological meshes for abdominal wall reconstruction in highly contaminated fields

    Institute of Scientific and Technical Information of China (English)

    Andrea; Cavallaro; Emanuele; Lo; Menzo; Maria; Di; Vita; Antonio; Zanghì; Vincenzo; Cavallaro; Pier; Francesco; Veroux; Alessandro; Cappellani

    2010-01-01

    Abdominal wall defects and incisional hernias represent a challenging problem. In particular, when a synthetic mesh is applied to contaminated wounds, its removal is required in 50%-90% of cases. Biosynthetic meshes are the newest tool available to surgeons and they could have a role in ventral hernia repair in a potential-ly contaminated field. We describe the use of a sheet of bovine pericardium graft in the reconstruction of abdominal wall defect in two patients. Bovine pericardium graft was placed in th...

  18. [Applications of molecular biology techniques for the control of aflatoxin contamination].

    Science.gov (United States)

    Sanchis, V

    1993-02-01

    Aflatoxins are mycotoxins produced by species of Aspergillus flavus group. These toxins have received increased attention from the food industry and the general public because they shown a high toxicity against humans and animal. Different methods are applying to control the aflatoxin contamination. But these conventional methods do not seem to resolve the problem. So, new methods using techniques in biotechnology are now being developed: a) Inhibit the biosynthetic and secretory process responsible for aflatoxin contamination. b) Using biocompetitive agents that replace aflatoxigenic strains with non aflatoxigenic strains in the field. c) Using genetic engineering techniques to incorporate antifungal genes into specific plant species.

  19. Biological Processes Affecting Bioaccumulation, Transfer, and Toxicity of Metal Contaminants in Estuarine Sediments

    Science.gov (United States)

    2011-12-01

    concentrations of Hg than do benthic food webs in relatively uncontaminated systems ( Karimi et al., 2007). However, whether this is true of contaminated...sediment-bound metals to marine bivalve molluscs: An overview. Estuaries 27, 826-838. Karimi , R., Chen, C.Y., Pickhardt, P.C., Fisher, N.S., Folt, C.L

  20. Environmental Sampling Procedures and Methods to Respond to Biological Contamination (White Powder)

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Amidan, Brett G.; Matzke, Brett D.

    2008-11-01

    This is a contribution to the annual report for the DHS Standards Office. It summarizes statistics-focused work associated with developing validated sampling procedures and methods. The main focus is on the experimental and sampling design constructed for contamination and decontamination field tests conducted during September 2007 in a remote, unused office building on the Idaho National Laboratory site.

  1. Molecular characterization of antibiotic-resistant bacteria in contaminated chicken meat sold at supermarkets in Bangkok, Thailand.

    Science.gov (United States)

    Chaisatit, Chaiyaporn; Tribuddharat, Chanwit; Pulsrikarn, Chaiwat; Dejsirilert, Surang

    2012-01-01

    We assessed contamination by antibiotic-resistant bacteria in chicken meat obtained from supermarkets in Bangkok, Thailand. The prevalence of Salmonella enterica and Escherichia coli was 18.7% (14/75) and 53% (106/200), respectively. Most probable number (MPN) analysis showed that 56.7% of the samples (34/60) were in violation of the limit of allowable coliform bacteria in chicken meat, for which the maximum is 46,000 MPN/g. Multidrug-resistant phenotypes of both S. enterica and E. coli were found. The presence of class 1 integrons was demonstrated by polymerase chain reaction (PCR) and dot-blot hybridization. PCR showed that class 1 integrons were present in 42.9% (6/14) and 37.7% (40/106) of S. enterica and E. coli isolates, respectively. Resistance genes identified in this study were aadA2, aadA4, aadA22, and aadA23 (for aminoglycoside resistance); dfrA5 (for trimethoprim resistance), and lnuF (for lincosamide resistance). Four S. enterica isolates underwent multilocus sequence typing and the results were sequence type (ST) 50, ST 96, ST 1543, and ST 1549, which matched well with strains from many countries and reflected an international spread. Our study revealed that class 1 integrons have spread into community sources and might play an important role in horizontal antibiotic resistance gene transfer.

  2. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    Science.gov (United States)

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

  3. Effect of soil biochar amendment on grain crop resistance to Fusarium mycotoxin contamination

    Science.gov (United States)

    Mycotoxin contamination of food and feed is among the top food safety concerns. Fusarium spp. cause serious diseases in cereal crops reducing yield and contaminating grain with mycotoxins that can be deleterious to human and animal health. Fusarium graminearum and Fusarium verticillioides infect whe...

  4. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    Science.gov (United States)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  5. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection.

    Science.gov (United States)

    Gerrity, Daniel; Gamage, Sujanie; Holady, Janie C; Mawhinney, Douglas B; Quiñones, Oscar; Trenholm, Rebecca A; Snyder, Shane A

    2011-02-01

    In an effort to validate the use of ozone for contaminant oxidation and disinfection in water reclamation, extensive pilot testing was performed with ozone/H(2)O(2) and biological activated carbon (BAC) at the Reno-Stead Water Reclamation Facility in Reno, Nevada. Three sets of samples were collected over a five-month period of continuous operation, and these samples were analyzed for a suite of trace organic contaminants (TOrCs), total estrogenicity, and several microbial surrogates, including the bacteriophage MS2, total and fecal coliforms, and Bacillus spores. Based on the high degree of microbial inactivation and contaminant destruction, this treatment train appears to be a viable alternative to the standard indirect potable reuse (IPR) configuration (i.e., membrane filtration, reverse osmosis, UV/H(2)O(2), and aquifer injection), particularly for inland applications where brine disposal is an issue. Several issues, including regrowth of coliform bacteria in the BAC process, must be addressed prior to full-scale implementation.

  6. Environmental Contaminants Monitoring in Selected Wetlands of Wyoming: Biologically Active Elements Study

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment, water and biota were collected from selected wetlands in Wyoming for the Biologically Active Elements (BAE) Study in 1988, 1989 and 1990 to identify...

  7. Assessing the biological activity of oil-contaminated soddy-podzolic soils with different textures

    Science.gov (United States)

    Vershinin, A. A.; Petrov, A. M.; Akaikin, D. V.; Ignat'ev, Yu. A.

    2014-02-01

    The respiratory activity features in oil-contaminated soddy-podzolic soils of different textures have been studied. Unidirectional processes occur in contaminated loamy and loamy sandy soddy-podzolic soils; their intensities depend on the soil parameters. The mineralization rates of the oil products and the activity of the microflora in loamy soils exceed the corresponding parameters for loamy sandy soils. The long-term impact of oil and its transformation products results in more important disturbances of the microbial community in light soils. It has been shown that light soils containing 9% oil require longer time periods or more intensive remediation measures for the restoration of soil microbial cenoses disturbed by the pollutant.

  8. A tiered, integrated biological and chemical monitoring framework for contaminants of emerging concern in aquatic ecosystems.

    Science.gov (United States)

    Maruya, Keith A; Dodder, Nathan G; Mehinto, Alvine C; Denslow, Nancy D; Schlenk, Daniel; Snyder, Shane A; Weisberg, Stephen B

    2016-07-01

    The chemical-specific risk-based paradigm that informs monitoring and assessment of environmental contaminants does not apply well to the many thousands of new chemicals that are being introduced into ambient receiving waters. We propose a tiered framework that incorporates bioanalytical screening tools and diagnostic nontargeted chemical analysis to more effectively monitor for contaminants of emerging concern (CECs). The framework is based on a comprehensive battery of in vitro bioassays to first screen for a broad spectrum of CECs and nontargeted analytical methods to identify bioactive contaminants missed by the currently favored targeted analyses. Water quality managers in California have embraced this strategy with plans to further develop and test this framework in regional and statewide pilot studies on waterbodies that receive discharge from municipal wastewater treatment plants and stormwater runoff. In addition to directly informing decisions, the data obtained using this framework can be used to construct and validate models that better predict CEC occurrence and toxicity. The adaptive interplay among screening results, diagnostic assessment and predictive modeling will allow managers to make decisions based on the most current and relevant information, instead of extrapolating from parameters with questionable linkage to CEC impacts. Integr Environ Assess Manag 2016;12:540-547. © 2015 SETAC.

  9. AFM₁ in Milk: Physical, Biological, and Prophylactic Methods to Mitigate Contamination.

    Science.gov (United States)

    Giovati, Laura; Magliani, Walter; Ciociola, Tecla; Santinoli, Claudia; Conti, Stefania; Polonelli, Luciano

    2015-10-23

    Aflatoxins (AFs) are toxic, carcinogenic, immunosuppressive secondary metabolites produced by some Aspergillus species which colonize crops, including many dietary staple foods and feed components. AFB₁ is the prevalent and most toxic among AFs. In the liver, it is biotransformed into AFM₁, which is then excreted into the milk of lactating mammals, including dairy animals. AFM₁ has been shown to be cause of both acute and chronic toxicoses. The presence of AFM₁ in milk and dairy products represents a worldwide concern since even small amounts of this metabolite may be of importance as long-term exposure is concerned. Contamination of milk may be mitigated either directly, decreasing the AFM₁ content in contaminated milk, or indirectly, decreasing AFB₁ contamination in the feed of dairy animals. Current strategies for AFM₁ mitigation include good agricultural practices in pre-harvest and post-harvest management of feed crops (including storage) and physical or chemical decontamination of feed and milk. However, no single strategy offers a complete solution to the issue.

  10. [Biological toxicity effect of petroleum contaminated soil before and after physicochemical remediation].

    Science.gov (United States)

    Lian, Jing-Yan; Ha, Ying; Huang, Lei; Ju, Yi; Shi, Shuo; Liu, Lei; Zhang, Rui-Ling; Sui, Hong; Li, Xin-Gang

    2011-03-01

    Toxicity analysis was studied from using seed germination as an ecological indicator, and the earthworm was considered as a suitable biomonitor animal to determine the ecological hazard of polluted soil. The main results are as follows: These crop seeds have significantly different responses to petroleum pollution. Compared with those plants in clean soil, the germination of most crop seeds planted in contaminated soils is obviously inhabited. Soybean, horse bean and maize are the crop affected most adversely. Fortunately, strong endurance is observed for green soybean under 4 different levels of petroleum pollution, and the seed germination rate are all above 90%. When exposed to pollutants, earthworms could be changed obviously on the level of physiology. That might affect the survival and growth capacity of earthworms, and changed population finally. In high petroleum contaminated soil (concentration of petroleum > 30 000 mg/kg) earthworms can only survive about 5 days. The results suggest that petroleum pollution has great poison to earthworms and can kill earthworms finally. Because pollutants make them dehydrate. Even on the low pollution level, the survival time of earthworm is still very short (3 d or so) in the treated petroleum-contaminated soil. Because after a petroleum ether-treated, the nutrients of soil are disposed with the oil, and the organic matter and other nutrients of the soil have a great impact on the survival of earthworms.

  11. Molecular characterization of conjugative plasmids in pesticide tolerant and multi-resistant bacterial isolates from contaminated alluvial soil.

    Science.gov (United States)

    Anjum, Reshma; Grohmann, Elisabeth; Malik, Abdul

    2011-06-01

    A total of 35 bacteria from contaminated soil (cultivated fields) near pesticide industry from Chinhat, Lucknow, (India) were isolated and tested for their tolerance/resistance to pesticides, heavy metals and antibiotics. Bacterial isolates were identified by 16S rDNA sequencing. Gas Chromatography analysis of the soil samples revealed the presence of lindane at a concentration of 547 ng g(-1) and α-endosulfan and β-endosulfan of 422 ng g(-1) and 421 ng g(-1) respectively. Atomic Absorption Spectrophotometry analysis of the test sample was done and Cr, Zn, Ni, Fe, Cu and Cd were detected at concentrations of 36.2, 42.5, 43.2, 241, 13.3 and 11.20 mg kg(-1) respectively. Minimum inhibitory concentrations of all the isolates were determined for pesticides and heavy metals. All the multi-resistant/tolerant bacterial isolates were also tested for the presence of incompatibility (Inc) group IncP, IncN, IncW, IncQ plasmids and for rolling circle plasmids of the pMV158-family by PCR. Total community DNA was extracted from pesticide contaminated soil. PCR amplification of the bacterial isolates and soil DNA revealed the presence of IncP-specific sequences (trfA2 and oriT) which was confirmed by dot blot hybridization with RP4-derived DIG-labelled probes. Plasmids belonging to IncN, IncW and IncQ group were neither detected in the bacterial isolates nor in total soil DNA. The presence of conjugative or mobilizable IncP plasmids in the isolates indicate that these bacteria have gene transfer capacity with implications for dissemination of heavy metal and antibiotic resistance genes. We propose that IncP plasmids are mainly responsible for the spread of multi-resistant bacteria in the contaminated soils.

  12. Biological characteristics and resistance analysis of the novel fungicide SYP-1620 against Botrytis cinerea.

    Science.gov (United States)

    Zhang, Xiaoke; Wu, Dongxia; Duan, Yabing; Ge, Changyan; Wang, Jianxin; Zhou, Mingguo; Chen, Changjun

    2014-09-01

    SYP-1620, a quinone-outside-inhibitor (QoI), is a novel broad-spectrum fungicide. In this study, 108 isolates of Botrytis cinerea from different geographical regions in Jiangsu Province of China were characterized for baseline sensitivity to SYP-1620. The curves of baseline sensitivity were unimodal with a mean EC50 value of 0.0130±0.0109 μg/mL for mycelial growth, 0.01147±0.0062 μg/mL for spore germination, respectively. The biological characterization of SYP-1620 against B. cinerea was determined in vitro. The results indicated that SYP-1620 has a strong inhibiting effect on spore germination, mycelial growth, and respiration. The protective and curative test of SYP-1620 suggested that protective effect was better than curative either on strawberry leaves or on cucumber leaves in vivo. In addition, the biological characterization of SYP-1620-resistant mutants of B. cinerea was investigated. SYP-1620 has no cross-resistance with other types of fungicide. Compared to the sensitive isolates, the resistant mutants had lower mycelial growth and virulence but not differ in mycelial dry weight. Sequencing indicated that SYP-1620 resistance was associated with a single point mutation (G143A) in the cytochrome b gene.

  13. Cleaning-resistant Cupriavidus and Ralstonia bacteria contaminating spacecrafts and the ultra clean rooms they are assembled in.

    Science.gov (United States)

    Leys, N.; Dams, A.; Bossus, A.; Provoost, A.; Venkateswaran, K.; Mergeay, M.

    Background Planetary Protection is preventing microbial contamination of both the target planet and the Earth when sending spacecrafts on interplanetary space mission It is important to preserve the natural conditions of other planets and to not bring with robots earthly microbes forward contamination when looking for spores of extra terrestrial life Spacecrafts and the ultra clean rooms they are assembled in are routinely monitored for microbial contamination It was shown that the floor air and surfaces of such spacecraft assembly rooms often contain Cupriavidu s and Ralstonia bacteria These bacteria not only contaminated the clean rooms but have also been found prior-to-flight on surfaces of space robots such as the Mars Odyssey Orbiter La Duc et al 2003 and even in-flight in ISS cooling water and Shuttle drinking water unpublished Aim In this study several Cupriavidus and Ralstonia strains isolated from space craft assembling rooms and spacecrafts were characterized and analysed in detail Results The analysis showed that all the Cupriavidus and Ralstonia clean-room isolates are able to use a wide variety of substrates as carbon sources including ethanol and acetone In addition they all have accumulated moderate resistances to an extraordinary collection of physical and chemical antimicrobial agents Some of the test strains were able to form biofilms on plastic and metal materials used for space robots a nutritional and

  14. Radiation resistances and decontamination of common pathogenic bacteria contaminated in white scar oyster ( Crassostrea belcheri) in Thailand

    Science.gov (United States)

    Thupila, Nunticha; Ratana-arporn, Pattama; Wilaipun, Pongtep

    2011-07-01

    In Thailand, white scar oyster ( Crassostrea belcheri) was ranked for premium quality, being most expensive and of high demand. This oyster is often eaten raw, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. As limited alternative methods are available to sterilize the oyster while preserving the raw characteristic, irradiation may be considered as an effective method for decontamination. In this study, the radiation resistance of pathogenic bacteria commonly contaminating the oyster and the optimum irradiation doses for sterilization of the most radiation resistant bacteria were investigated. The radiation decimal reduction doses ( D10) of Salmonella Weltevreden DMST 33380, Vibrio parahaemolyticus ATCC 17802 and Vibrio vulnificus DMST 5852 were determined in broth culture and inoculated oyster homogenate. The D10 values of S. Weltevreden, V. parahaemolyticus and V. vulnificus in broth culture were 0.154, 0.132 and 0.059 kGy, while those of inoculated oyster homogenate were 0.330, 0.159 and 0.140 kGy, respectively. It was found that among the pathogens tested, S. Weltevreden was proved to be the most resistant species. An irradiation dose of 1.5 kGy reduced the counts of 10 5 CFU/g S. Weltevreden inoculated in oyster meat to an undetectable level. The present study indicated that a low-dose irradiation can improve the microbial quality of oyster and further reduce the risks from the food-borne pathogens without adversely affecting the sensory attributes.

  15. Chemical, Biological, and Radiological (CBR) Contamination Survivability, Small Items of Equipment

    Science.gov (United States)

    2012-06-22

    packing closed cell foam planks Expected to absorb and desorb chemical agents and trap nuclear and biological agents. May disintegrate when exposed...property-effects of liquids X 34 Peel/lap shear strength change X X X X 35 Adhesion (loss of), blistering , spalling X X X X X

  16. Arsenic species extraction of biological marine samples (Periwinkles, Littorina littorea) from a highly contaminated site.

    Science.gov (United States)

    Whaley-Martin, K J; Koch, I; Reimer, K J

    2012-01-15

    Arsenic is ubiquitous in the tissues of marine organisms and in uncontaminated environments it is dominantly present as the highly soluble and easily extractable non-toxic arsenical, arsenobetaine. However in contaminated environments, higher proportions of inorganic arsenic, which is much less soluble, are accumulated into the tissues of marine organisms, resulting in lower extraction efficiencies (defined as the percent extracted arsenic of the total arsenic). This study carried out a comparative analysis between three different two-step arsenic extraction methods based on Foster et al. [27] from highly contaminated tissue of the marine periwinkle, Littorina littorea. The first extraction step used 100% water, 1:1 methanol-water, or a 9:1 methanol-water as the extraction solvent and the second step consisted of a gently heated dilute nitric acid extraction. The optimized two step extraction method was 1:1 methanol-water extraction followed by a 2% HNO(3) extraction, based on maximum amounts of extracted species, including organoarsenic species.

  17. Use of Trichoderma spp.for biological control of the livestock feed contaminant fungus Fusarium proliferatum

    Institute of Scientific and Technical Information of China (English)

    Ruocco M; Ferraioli S; Scala F; Lorito M; Pane F; Ritieni A; Lanzuise S; Ambrosino P; Marra R; Woo S L; Ciliento R; Soriente I

    2004-01-01

    @@ Fusarium spp. are pathogens of many important agricultural crops, and are often strong mycotoxin producers. Fusarium proliferatum, in particular, causes disease in cereals and secretes the toxin Beauvaricin that contaminates livestock feed and cereals, producing a variety of toxicity symptoms ranging from poor weight gain to mortality. Beauvaricin is a cyclodepsipeptide and acts as a potent mycotoxin known to have insecticidal properties. This compound is highly toxic to human cell lines,where it induces apoptosis and specifically inhibits cholesterol acetyltransferase. Nothing is known about the role of this mycotoxin during the interaction of F. proliferatum with other microorganisms, including the fungal antagonists Trichoderma spp. In vitro tests have demonstrated that the antagonistic and mycoparasitic activity of Trichoderma is not inhibited by the presence of Beauvaricin at concentrations up to 10 mg/kg in the substrate. In vivo biocontrol assays on barley and wheat with Trichoderma against F. proliferatum isolates, producing and non-producing Beauvaricin, confirmed the ability of the antagonist to control this pathogen in all cases. Also Trichoderma culture filtrates obtained in conditions that promote _Cell Wall _Degrading Enzyme (CWDE) secretion, were able to inhibit spore germination of different F. proliferatum isolates.These results suggest the possibility of using Trichoderma and/or its metabolites to control contaminants of livestock feed by mycotoxin-producing Fusarium.

  18. Comparative assessment of the biological tolerance of chernozems in the south of Russia towards contamination with Cr, Cu, Ni, and Pb in a model experiment

    Science.gov (United States)

    Kolesnikov, S. I.; Yaroslavtsev, M. V.; Spivakova, N. A.; Kazeev, K. Sh.

    2013-02-01

    The biological properties of chernozems in the south of Russia worsen under the impact of contamination with Cr, Cu, Ni, and Pb compounds. The tolerance of chernozems towards contamination decreases in the following sequence: ordinary chernozems > typical chernozems > southern chernozems > leached vertic chernozems. This sequence is specified by the soil reaction and the organic matter content. The high humus content determines the high buffer capacity of chernozems towards contamination with chromium, whereas the high pH values ensure the soil tolerance towards contamination with copper, nickel, and lead. With respect to their adverse effect on the biological properties of the chernozems, the studied heavy metals can be arranged into the following sequence: CrO3 > CuO > PbO ≥ NiO.

  19. Modeling of the bacterial mechanism of methicillin-resistance by a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Ida Autiero

    Full Text Available BACKGROUND: A microorganism is a complex biological system able to preserve its functional features against external perturbations and the ability of the living systems to oppose to these external perturbations is defined "robustness". The antibiotic resistance, developed by different bacteria strains, is a clear example of robustness and of ability of the bacterial system to acquire a particular functional behaviour in response to environmental changes. In this work we have modeled the whole mechanism essential to the methicillin-resistance through a systems biology approach. The methicillin is a beta-lactamic antibiotic that act by inhibiting the penicillin-binding proteins (PBPs. These PBPs are involved in the synthesis of peptidoglycans, essential mesh-like polymers that surround cellular enzymes and are crucial for the bacterium survival. METHODOLOGY: The network of genes, mRNA, proteins and metabolites was created using CellDesigner program and the data of molecular interactions are stored in Systems Biology Markup Language (SBML. To simulate the dynamic behaviour of this biochemical network, the kinetic equations were associated with each reaction. CONCLUSIONS: Our model simulates the mechanism of the inactivation of the PBP by methicillin, as well as the expression of PBP2a isoform, the regulation of the SCCmec elements (SCC: staphylococcal cassette chromosome and the synthesis of peptidoglycan by PBP2a. The obtained results by our integrated approach show that the model describes correctly the whole phenomenon of the methicillin resistance and is able to respond to the external perturbations in the same way of the real cell. Therefore, this model can be useful to develop new therapeutic approaches for the methicillin control and to understand the general mechanism regarding the cellular resistance to some antibiotics.

  20. Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells.

    Science.gov (United States)

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-08-18

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs.

  1. Impact of spore biology on the rate of kill and suppression of resistance in Bacillus anthracis.

    Science.gov (United States)

    Drusano, G L; Okusanya, O O; Okusanya, A O; van Scoy, B; Brown, D L; Fregeau, C; Kulawy, R; Kinzig, M; Sörgel, F; Heine, H S; Louie, A

    2009-11-01

    Bacillus anthracis is complex because of its spore form. The spore is invulnerable to antibiotic action. It also has an impact on the emergence of resistance. We employed the hollow-fiber infection model to study the impacts of different doses and schedules of moxifloxacin on the total-organism population, the spore population, and the subpopulations of vegetative- and spore-phase organisms that were resistant to moxifloxacin. We then generated a mathematical model of the impact of moxifloxacin, administered by continuous infusion or once daily, on vegetative- and spore-phase organisms. The ratio of the rate constant for vegetative-phase cells going to spore phase (K(vs)) to the rate constant for spore-phase cells going to vegetative phase (K(sv)) determines the rate of organism clearance. The continuous-infusion drug profile is more easily sensed as a threat; the K(vs)/K(sv) ratio increases at lower drug exposures (possibly related to quorum sensing). This movement to spore phase protects the organism but makes the emergence of resistance less likely. Suppression of resistance requires a higher level of drug exposure with once-daily administration than with a continuous infusion, a difference that is related to vegetative-to-spore (and back) transitioning. Spore biology has a major impact on drug therapy and resistance suppression. These findings explain why all drugs of different classes have approximately the same rate of organism clearance for Bacillus anthracis.

  2. Treatment of Industrial Process Effluents & Contaminated Groundwater Using the Biological Granular Activated Carbon-Fluidized Bed Reactor (GAC-FBR) Process. Volume II

    Science.gov (United States)

    2007-11-02

    1974 approximately 310,200 tons of waste solvents were produced by degreasing operations (U.S. EPA, 1979). In contaminated aquifers , the most frequently...costs of adding these substrates to soils or contaminated aquifers needs to be considered. The addition of toluene and phenol may have environmental...Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55

  3. Establishment and biological characteristics of a multi-drug resistant cell line A549/Gem

    Directory of Open Access Journals (Sweden)

    Yunfeng ZHU

    2008-02-01

    Full Text Available Background and objective Multi-drug resistance is one of the most important reason why the survival time of non-small cell lung cancer patients is so short. The aim of this study is to establish multi-drug resistant cell line A549/Gem and discuss its biological characters so as to elaborate the possible mechanisms of gemcitabine resistance. Methods Human gemcitabine-resistant non-small cell lung cancer cell line A549/Gem was established by repeated clinical serous peak concentration then low but gradually increasing concentration of gemcitabine from its parental cell human lung adenocarcinoma cell line A549 which is sensitive to gemcitabine. During the course of inducement, monitored its morphology, checked its resistance index and resistant pedigree by MTT method, gathered its growth curve and calculated its doubling time, examined its DNA contents and cell cycles by flow cytometry; at the same time, measured its expression of P53, EGFR, c-erb-B-2, PTEN, PCNA, c-myc, VEGF, MDR-1, Bcl-2, nm23, MMP-9, TIMP-1, CD44v6 Proteins, and RRM1 mRNA. Results The resistance index of A549/Gem?to gemcitabine was 163.228, and the cell line also exhibited cross-resistance to vinorelbine, taxotere, fluorouraci, etoposide and cisplatin, but kept sensitivity to paclitaxol and oxaliplatin. The doubling time of it was shorter and figures in G0-G1 phase were increased than A549. Compared with A549, A549/Gem?achieved EGFR and c-myc protein expression, nm23 protein expression enhanced, p53, Cerb-B-2 and bcl-2 protein expression reduced, PTEN, PCNA and MDR-1 protein expression vanished, but that of MMP-9, VEGF, CD44v6 and TIMP-1 protein changed trivially. Meanwhile, the expression of RRM1 mRNA was augmented markedly. The resistance index of A549/Gem to gemcitabine was 129.783, and the cell line also held cross-resistance to vinorelbine, taxotere, etoposide, cisplatin and sensitivity to paclitaxol. But the resistance to fluorouracil and sensitivity to oxaliplatin

  4. Vaporous Decontamination Methods: Potential Uses and Research Priorities for Chemical and Biological Contamination Control

    Science.gov (United States)

    2006-06-01

    resistant to commonly used disinfectants and require the use of chemical sterilants† to effectively decontaminate exposed areas. Since anthrax...all micro-organisms present, including B agents. † Sterilants and disinfectants differ only in their potency; disinfectants have relatively low...of H2O2 [10]. Currently there is no reported data on the use of O3-VHP against B or C agents. DSTO-GD-0465 6 The U.K. based BIOQUELL

  5. Control of the surface radioactive contamination in the field of biological research; Control de la contaminacion radiactiva superficial en el ambito de la investigacion biologica

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, S.; Encina, A. de la; Gaspar, J.; Macias, M. T.; Sanchez, A.; Usera, F.

    2012-11-01

    The manipulation of unsealed sources in biomedical research involves significant risk of radioactive contamination. the aim of this study has been to analyze the radioactive contamination occurring in the field of biomedical research, assessing its magnitude, identifying the equipment that can be contaminated with higher probability and monitoring the evolution of the contaminations production taking into account the radioisotopes and the activities uses, and the radiation protection control applied. The data used for this study correspond to a very lengthy period of time and it have been collected in the radioactive facility, of the Centro Nacional de Biotecnologia (CSIC), a very large biological research centre that can be used perfectly as a reference for this area. The results obtained show a gradual and significant decrease in the incidence of the radioactive contamination. This is due to the optimization of radiation protection standards applied and the implementation or a systematic operational radiation protection program. (Author) 13 refs.

  6. Surface Contaminant Control Technologies to Improve Laser Damage Resistance of Optics

    Directory of Open Access Journals (Sweden)

    Xiaofeng Cheng

    2014-01-01

    Full Text Available The large high-power solid lasers, such as the National Ignition Facility (NIF of America and the Shenguang-III (SG-III laser facility of China, can output over 2.1 MJ laser pulse for the inertial confinement fusion (ICF experiments. Because of the enhancement of operating flux and the expansion of laser driver scale, the problem of contamination seriously influences their construction period and operation life. During irradiation by intense laser beams, the contaminants on the metallic surface of beam tubes can be transmitted to the optical surfaces and lead to damage of optical components. For the high-power solid-state laser facilities, contamination control focuses on the slab amplifiers, spatial filters, and final-optical assemblies. In this paper, an effective solution to control contaminations including the whole process of the laser driver is put forward to provide the safe operation of laser facilities, and the detailed technical methods of contamination control such as washing, cleanliness metrology, and cleanliness protecting are also introduced to reduce the probability of laser-induced damage of optics. The experimental results show that the cleanliness level of SG-III laser facility is much better to ensure that the laser facility can safely operate at high energy flux.

  7. Biological responses of juvenile European sea bass (Dicentrarchus labrax) exposed to contaminated sediments.

    Science.gov (United States)

    De Domenico, Elena; Mauceri, Angela; Giordano, Daniela; Maisano, Maria; Giannetto, Alessia; Parrino, Vincenzo; Natalotto, Antonino; D'Agata, Alessia; Cappello, Tiziana; Fasulo, Salvatore

    2013-11-01

    Multiple anthropogenic activities present along coastal environments may affect the health status of aquatic ecosystems. In this study, specimens of European sea bass (Dicentrarchus labrax) were exposed for 30 days to highly contaminated sediment collected from the industrial area between Augusta and Priolo (Syracuse, Italy), defined as the most mercury polluted site in the Mediterranean. The aim was to evaluate the responses of juvenile D. labrax to highly contaminated sediments, particularly enriched in Hg, in order to enhance the scarce knowledge on the potential compensatory mechanisms developed by organisms under severe stress conditions. Apoptotic and proliferative activities [cell turnover: Proliferating Cell Nuclear Antigen (PCNA) and FAS Ligand (FasL)], onset of hypoxic condition [hypoxia: Hypoxia Inducibile Factor-1α (HIF-1α)], and changes in the neuroendocrine control mechanisms [neurotransmission: Tyrosine Hydroxylase (TH), Choline Acetyltransferase (ChAT), Acetylcholinesterase (AChE), 5-Hydroxytryptamine (5-HT) and 5-Hydroxytryptamine receptor 3 (5-HT3)] were investigated in sea bass gill tissues. In the specimens exposed to the polluted sediment, the occurrence of altered cell turnover may result in impaired gas exchange that leads to a condition of "functional hypoxia". Changes in neurotransmission pathways were also observed, suggesting a remodeling process as an adaptive response to increase the O2-carrying capacity and restore the normal physiological conditions of the gills. Overall, these findings demonstrated that although chronic exposure to heavy metal polluted sediments alters the functioning of both the nervous and endocrine systems, as well as plasticity of the gill epithelium, fish are able to trigger a series of physiological adjustments or adaptations interfering with specific neuroendocrine control mechanisms that enable their long-term survival.

  8. Surface Contaminant Control Technologies to Improve Laser Damage Resistance of Optics

    OpenAIRE

    Xiaofeng Cheng; Xinxiang Miao; Hongbin Wang; Lang Qin; Yayun Ye; Qun He; Zhiqiang Ma; Longbiao Zhao; Shaobo He

    2014-01-01

    The large high-power solid lasers, such as the National Ignition Facility (NIF) of America and the Shenguang-III (SG-III) laser facility of China, can output over 2.1 MJ laser pulse for the inertial confinement fusion (ICF) experiments. Because of the enhancement of operating flux and the expansion of laser driver scale, the problem of contamination seriously influences their construction period and operation life. During irradiation by intense laser beams, the contaminants on the metallic su...

  9. Electrical Resistivity Imaging for Long-Term Monitoring of Contaminant Degradation

    Science.gov (United States)

    The results from this experiment strongly suggest that the resistivity changes seen are the results of the biodegradation of the oil. This conclusion was further supported by the results of the microcosm experiment. These results demonstrate the utility of the resistivity method ...

  10. Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigerian contaminated systems.

    Science.gov (United States)

    Oyetibo, Ganiyu O; Ilori, Matthew O; Adebusoye, Sunday Adekunle; Obayori, Oluwafemi S; Amund, Olukayode O

    2010-09-01

    Samples of soil, water, and sediments from industrial estates in Lagos were collected and analyzed for heavy metals and physicochemical composition. Bacteria that are resistant to elevated concentrations of metals (Cd(2+), Co(2+), Ni(2+), Cr(6+), and Hg(2+)) were isolated from the samples, and they were further screened for antibiotic sensitivity. The minimum tolerance concentrations (MTCs) of the isolates with dual resistance to the metals were determined. The physicochemistry of all the samples indicated were heavily polluted. Twenty-two of the 270 bacterial strains isolated showed dual resistances to antibiotics and heavy metals. The MTCs of isolates to the metals were 14 mM for Cd(2+), 15 mM for Co(2+) and Ni(2+), 17 mM for Cr(6+), and 10 mM for Hg(2+). Five strains (Pseudomonas aeruginosa, Actinomyces turicensis, Acinetobacter junni, Nocardia sp., and Micrococcus sp.) resisted all the 18 antibiotics tested. Whereas Rhodococcus sp. and Micrococcus sp. resisted 15 mM Ni(2+), P. aeruginosa resisted 10 mM Co(2+). To our knowledge, there has not been any report of bacterial strains resisting such high doses of metals coupled with wide range of antibiotics. Therefore, dual expressions of antibiotics and heavy-metal resistance make the isolates, potential seeds for decommissioning of sites polluted with industrial effluents rich in heavy metals, since the bacteria will be able to withstand in situ antibiosis that may prevail in such ecosystems.

  11. Fukushima Daiichi Nuclear Power Plant accident: facts, environmental contamination, possible biological effects, and countermeasures.

    Science.gov (United States)

    Anzai, Kazunori; Ban, Nobuhiko; Ozawa, Toshihiko; Tokonami, Shinji

    2012-01-01

    On March 11, 2011, an earthquake led to major problems at the Fukushima Daiichi Nuclear Power Plant. A 14-m high tsunami triggered by the earthquake disabled all AC power to Units 1, 2, and 3 of the Power Plant, and carried off fuel tanks for emergency diesel generators. Despite many efforts, cooling systems did not work and hydrogen explosions damaged the facilities, releasing a large amount of radioactive material into the environment. In this review, we describe the environmental impact of the nuclear accident, and the fundamental biological effects, acute and late, of the radiation. Possible medical countermeasures to radiation exposure are also discussed.

  12. Caesium 137: Properties and biological effects resulting of an internal contamination;Cesium 137: proprietes et effets biologiques apres contamination interne

    Energy Technology Data Exchange (ETDEWEB)

    Lestaevel, P.; Racine, R.; Bensoussan, H.; Rouas, C.; Gueguen, Y.; Dublineau, I.; Bertho, J.M.; Gourmelon, P.; Jourdain, J.R.; Souidi, M. [Institut de Radioprotection et de Surete Nucleaire, IRSN, laboratoire de radiotoxicologie experimentale, direction de la radioprotection de l' homme, 92 - Fontenay-aux-Roses (France)

    2010-02-15

    Caesium-137 ({sup 137}Cs) is a radionuclide present in the environment mainly as the result of the atmospheric nuclear weapons testing and accidents arising in nuclear power plants like the Chernobyl accident in 1986. Nowadays, the health consequences resulting from a chronic exposure to this radionuclide remain unknown. After absorption, the caesium is distributed relatively homogeneously within the body, with a more important load in children than in adults. The toxicity of {sup 137}Cs is mainly due to its radiological properties. A high dose of {sup 137}Cs is responsible for a medullar dystrophy, disorders of the reproductive function, and effects on liver and renal functions. Disorders of bone mineralization and brain damages were also described in human beings. At lowest dose, {sup 137}Cs induces disturbances of wakefulness-sleep cycle, but not accompanied with behavioural disorders. The cardiovascular system was also perturbed. Biological effects of {sup 137}Cs on the metabolisms of the vitamin D, cholesterol and steroid hormones were described, but do not lead to clinical symptoms. In human beings, {sup 137}Cs leads to an immune deficiency, congenital and foetal deformations, an increased of thyroid cancer, as well as neurological disorders. It seems that children are more sensitive to the toxic effects of caesium than the adults. At present, the only effective treatment for the decorporation of the ingested {sup 137}Cs is the Prussian Blue (Radiogardase). The use of pectin to de-corporate the ingested {sup 137}Cs, in children notably, is sometimes proposed, but its administration still remains an open question. To conclude, the available scientific data suggest that {sup 137}Cs could affect a number of physiological and metabolic functions and consequently, could participate in the health risks associated to the presence of other contaminants in the environment. (authors)

  13. Effect of long-term zinc pollution on soil microbial community resistance to repeated contamination.

    Science.gov (United States)

    Klimek, Beata

    2012-04-01

    The aim of the study was to compare the effects of stress (contamination trials) on the microorganisms in zinc-polluted soil (5,018 mg Zn kg(-1) soil dry weight) and unpolluted soil (141 mg Zn kg(-1) soil dw), measured as soil respiration rate. In the laboratory, soils were subjected to copper contamination (0, 500, 1,500 and 4,500 mg kg(-1) soil dw), and then a bactericide (oxytetracycline) combined with a fungicide (captan) along with glucose (10 mg g(-1) soil dw each) were added. There was a highly significant effect of soil type, copper treatment and oxytetracycline/captan treatment. The initial respiration rate of chronically zinc-polluted soil was higher than that of unpolluted soil, but in the copper treatment it showed a greater decline. Microorganisms in copper-treated soil were more susceptible to oxytetracycline/captan contamination. After the successive soil contamination trials the decline of soil respiration was greater in zinc-polluted soil than in unpolluted soil.

  14. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil

    NARCIS (Netherlands)

    Zutphen, M. van; Heron, G.; Enfield, C.G.; Christensen, T.H.

    1998-01-01

    A 2D-laboratory box experiment (12 x 56 x 116 cm) was conducted to simulate the enhancement of soil vapor extraction by the application of low frequency electrical heating Uoule heating) for the remediation of a low permeable, silty soil contaminated with trichloroethylene. Joule heating enlarged th

  15. Diallel analysis of resistance to fusarium ear rot and fumonisin contamination in maize

    Science.gov (United States)

    The fungus Fusarium verticillioides infects maize ears and kernels, resulting in Fusarium ear rot disease, reduced grain yields, and contamination of grain with the mycotoxin fumonisin. Typical hybrid maize breeding programs involve selection for both favorable inbred and hybrid performance, and the...

  16. Effectiveness of improved hydrogen peroxide in decontaminating privacy curtains contaminated with multidrug-resistant pathogens.

    Science.gov (United States)

    Rutala, William A; Gergen, Maria F; Sickbert-Bennett, Emily E; Williams, David A; Weber, David J

    2014-04-01

    We tested the ability of an improved hydrogen peroxide solution to decontaminate privacy curtains in inpatient and outpatient areas. The microbial contamination of the curtains was assessed before and after the curtains were sprayed with improved hydrogen peroxide. The disinfectant reduced the microbial load on the privacy curtains by 96.8% in 37 patient rooms.

  17. A Photo-ionization VOCs Sensor Developed the Resistance to Contamination of Electrode Surface

    Science.gov (United States)

    Hirano, Yasuyuki; Kazawa, Elito; Haramoto, Yoshiaki; Yoshida, Hiromichi

    A photo-ionization detector operated on alternating current using a lock-in amplifier was studied. Output current of covered electrodes with insulator was proportional to concentration of volatile organic compounds. And contamination made little effect on the current value.

  18. Reduced folate carrier: biochemistry and molecular biology of the normal and methotrexate-resistant cell.

    Science.gov (United States)

    Bosson, Geoffrey

    2003-01-01

    The cytotoxic drug methotrexate uses the reduced folate carrier for transport into the cell, where it inhibits key enzymes in nucleotide biosynthesis. Resistance to methotrexate can be achieved by altering the genetic code of the reduced folate carrier gene and thus change the structure and function of the protein. Our understanding of RFC structure and function is based on the information gained from studying the uptake of folates and antifolates in living cells and the application of molecular techniques to determine gene expression and genetic mutations. The aim of this essay is to explain the structure and function of the reduced folate carrier, review the molecular biology of the reduced folate carrier gene and the mutations and polymorphisms that can result in methotrexate resistance.

  19. Impact of Some Ecological Factors on Fecal Contamination of Drinking Water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig City, Egypt

    Science.gov (United States)

    Gohar, Maha Kamal; Atta, Amal Hassan

    2016-01-01

    Fecal contamination of drinking water is a major health problem which accounts for many cases of diarrhea mainly in infants and foreigners. This contamination is a complex interaction of many parameters. Antibiotic resistance among bacterial isolates complicates the problem. The study was done to identify fecal contamination of drinking water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig city and to trace reasons for such contamination, three hundred potable water samples were investigated for E. coli existence. Locations of E. coli positive samples were investigated in relation to population density, water source, and type of water pipe. Sixteen E. coli strains were isolated. Antibiotic sensitivity was done and enterotoxigenic, enteropathogenic, and enterohaemorrhagic virulence genes were investigated by PCR. Probability of fecal contamination correlated with higher population density, with increased distance from Zagazig water plant, and with asbestos cement water pipes. Resistance to at least one antimicrobial drug was found in all isolates. Virulence genes were detected in a rate of 26.27%, 13.13%, 20%, 6.67%, and 33.33% for LT, ST, stx1, stx2, and eae genes, respectively. This relatively high frequency of fecal contamination points towards the high risk of developing diarrhea by antibiotic resistant DEC in low socioeconomic communities particularly with old fashion distribution systems. PMID:27725834

  20. Impact of Some Ecological Factors on Fecal Contamination of Drinking Water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig City, Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Elsadek Fakhr

    2016-01-01

    Full Text Available Fecal contamination of drinking water is a major health problem which accounts for many cases of diarrhea mainly in infants and foreigners. This contamination is a complex interaction of many parameters. Antibiotic resistance among bacterial isolates complicates the problem. The study was done to identify fecal contamination of drinking water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig city and to trace reasons for such contamination, three hundred potable water samples were investigated for E. coli existence. Locations of E. coli positive samples were investigated in relation to population density, water source, and type of water pipe. Sixteen E. coli strains were isolated. Antibiotic sensitivity was done and enterotoxigenic, enteropathogenic, and enterohaemorrhagic virulence genes were investigated by PCR. Probability of fecal contamination correlated with higher population density, with increased distance from Zagazig water plant, and with asbestos cement water pipes. Resistance to at least one antimicrobial drug was found in all isolates. Virulence genes were detected in a rate of 26.27%, 13.13%, 20%, 6.67%, and 33.33% for LT, ST, stx1, stx2, and eae genes, respectively. This relatively high frequency of fecal contamination points towards the high risk of developing diarrhea by antibiotic resistant DEC in low socioeconomic communities particularly with old fashion distribution systems.

  1. Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology

    Directory of Open Access Journals (Sweden)

    Haiyang eJia

    2014-10-01

    Full Text Available Chemical conversions mediated by microorganisms, otherwise known as microbial biotransformations, are playing an increasingly important role within the biotechnology industry. Unfortunately, the growth and production of microorganisms are often hampered by a number of stressful conditions emanating from environment fluctuations and/or metabolic imbalances such as high temperature, high salt condition, strongly acidic solution and presence of toxic metabolites. Therefore, exploring methods to improve the stress tolerance of host organisms could significantly improve the biotransformation process. With the help of synthetic biology, it is now becoming feasible to implement strategies to improve the stress-resistance of the existing hosts. This review summarizes synthetic biology efforts to enhance the efficiency of biotransformations by improving the robustness of microbes. Particular attention will be given to strategies at the cellular and the microbial community levels.

  2. Synthetic and Biological Studies of Sesquiterpene Polygodial: Activity of 9-Epipolygodial Against Drug Resistant Cancer Cells

    Science.gov (United States)

    Dasari, Ramesh; De Carvalho, Annelise; Medellin, Derek C.; Middleton, Kelsey N.; Hague, Frédéric; Volmar, Marie N. M.; Frolova, Liliya V.; Rossato, Mateus F.; De La Chapa, Jorge J.; Dybdal-Hargreaves, Nicholas F.; Pillai, Akshita; Mathieu, Véronique; Rogelj, Snezna; Gonzales, Cara B.; Calixto, João B.; Evidente, Antonio; Gautier, Mathieu; Munirathinam, Gnanasekar; Glass, Rainer; Burth, Patricia; Pelly, Stephen C.; van Otterlo, Willem A. L.; Kiss, Robert; Kornienko, Alexander

    2015-01-01

    Polygodial, a terpenenoid dialdehyde isolated from Polygonum hydropiper L., is a known TRPV1 agonist. In this investigation a series of polygodial analogues were prepared and investigated for TRPV1 agonistic and anticancer activities. These experiments led to the identification of 9-epipolygodial, possessing antiproliferative potency significantly exceeding that of polygodial. Epipolygodial maintained potency against apoptosis-resistant cancer cells as well as those displaying the MDR phenotype. In addition, a chemical feasibility for the previously proposed mechanism of action of polygodial, involving the Paal-Knorr pyrrole formation with a lysine residue on the target protein, was demonstrated through the synthesis of a stable polygodial pyrrole derivative. These studies reveal rich chemical and biological properties associated with polygodial and its direct derivatives. They should inspire further work in this area aimed at the development of new pharmacological agents or exploration of novel mechanisms of covalent modification of biological molecules with natural products. PMID:26434977

  3. Radiation resistances and decontamination of common pathogenic bacteria contaminated in white scar oyster (Crassostrea belcheri) in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Thupila, Nunticha [Department of Fishery Products, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Rd. Ladyao, Chatuchak, Bangkok (Thailand); Ratana-arporn, Pattama, E-mail: ffispmr@ku.ac.t [Department of Fishery Products, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Rd. Ladyao, Chatuchak, Bangkok (Thailand); Wilaipun, Pongtep [Department of Fishery Products, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Rd. Ladyao, Chatuchak, Bangkok (Thailand)

    2011-07-15

    In Thailand, white scar oyster (Crassostrea belcheri) was ranked for premium quality, being most expensive and of high demand. This oyster is often eaten raw, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. As limited alternative methods are available to sterilize the oyster while preserving the raw characteristic, irradiation may be considered as an effective method for decontamination. In this study, the radiation resistance of pathogenic bacteria commonly contaminating the oyster and the optimum irradiation doses for sterilization of the most radiation resistant bacteria were investigated. The radiation decimal reduction doses (D{sub 10}) of Salmonella Weltevreden DMST 33380, Vibrio parahaemolyticus ATCC 17802 and Vibrio vulnificus DMST 5852 were determined in broth culture and inoculated oyster homogenate. The D{sub 10} values of S. Weltevreden, V. parahaemolyticus and V. vulnificus in broth culture were 0.154, 0.132 and 0.059 kGy, while those of inoculated oyster homogenate were 0.330, 0.159 and 0.140 kGy, respectively. It was found that among the pathogens tested, S. Weltevreden was proved to be the most resistant species. An irradiation dose of 1.5 kGy reduced the counts of 10{sup 5} CFU/g S. Weltevreden inoculated in oyster meat to an undetectable level. The present study indicated that a low-dose irradiation can improve the microbial quality of oyster and further reduce the risks from the food-borne pathogens without adversely affecting the sensory attributes.

  4. Protecting the Planets from Biological Contamination: The Strange Case of Mars Exploration

    Science.gov (United States)

    Rummel, J. D.; Conley, C. A.

    2015-12-01

    Beyond the Earth's Moon, Mars is the most studied and to some the most compelling target in the solar system. Mars has the potential to have its own native life, and it has environments that appear quite capable of supporting Earth life. As such, Mars is subject to policies intended to keep Earth organisms from growing on Mars, and missions to Mars are controlled to ensure that we know that no Mars life gets to Earth onboard a returning spacecraft. It seems odd, then, that Mars is also the planet on which we have crashed the most (the Moon still owns the overall title), and is still the only body that has had positive results from a life-detection experiment soft-landed on its surface. Mars has very little water, yet it snows on Mars and we have seen regular night-time frosts and near-surface ice on more than half of the planet. Despite strong UV insolation, Mars also has regular dust storms and winds that can cover spacecraft surfaces with dust that itself may be poisonous, but also can protect microbial life from death by UV light. In spite of surface features and minerals that provide ample evidence of surface water in the past, on today's Mars only relatively short, thin lines that lengthen and retract with the seasons provide a hint that there may be water near the surface of Mars today, but the subsurface is almost totally unexplored by instruments needed to detect water, itself. In the face of these contradictions, the implementation of planetary protection requirements to prevent cross contamination has to proceed with the best available knowledge, and in spite of sometimes substantial costs to spacecraft development and operations. In this paper we will review the status of Mars as a potential (hopefully not inadvertent) abode for life, and describe the measures taken in the past and the present to safeguard the astrobiological study of Mars, and project the requirements for Mars planetary protection in a possible future that involves both sample return

  5. Induced Resistance as a Mechanism of Biological Control by Lysobacter enzymogenes Strain C3.

    Science.gov (United States)

    Kilic-Ekici, Ozlem; Yuen, Gary Y

    2003-09-01

    ABSTRACT Induced resistance was found to be a mechanism for biological control of leaf spot, caused by Bipolaris sorokiniana, in tall fescue (Festuca arundinacea) using the bacterium Lysobacter enzymogenes strain C3. Resistance elicited by C3 suppressed germination of B. sorokiniana conidia on the phylloplane in addition to reducing the severity of leaf spot. The pathogen-inhibitory effect could be separated from antibiosis by using heat-inactivated cells of C3 that retained no antifungal activity. Application of live or heat-killed cells to tall fescue leaves resulted only in localized resistance confined to the treated leaf, whereas treatment of roots resulted in systemic resistance expressed in the foliage. The effects of foliar and root applications of C3 were long lasting, as evidenced by suppression of conidial germination and leaf spot development even when pathogen inoculation was delayed 15 days after bacterial treatment. When C3 population levels and germination of pathogen conidia was examined on leaf segments, germination percentage was reduced on all segments from C3-treated leaves compared with segments from non-treated leaves, but no dose-response relationship typical of antagonism was found. Induced resistance by C3 was not host or pathogen specific; foliar application of heat-killed C3 cells controlled B. sorokiniana on wheat and also was effective in reducing the severity of brown patch, caused by Rhizoctonia solani, on tall fescue. Treatments of tall fescue foliage or roots with C3 resulted in significantly elevated peroxidase activity compared with the control.

  6. Relationship between resist outgassing and EUV witness sample contamination in NXE outgas qualification using electrons and EUV photons

    Science.gov (United States)

    Pollentier, I.; Tirumala Venkata, A.; Gronheid, R.

    2014-04-01

    EUV photoresists are considered as a potential source of optics contamination, since they introduce irradiation-induced outgassing in the EUV vacuum environment. Therefore, before these resists can be used on e.g. ASML NXE:3100 or NXE:3300, they need to be tested in dedicated equipment according to a well-defined procedure, which is based on exposing a witness sample (WS) in the vicinity of a simultaneously exposed resist as it outgasses. Different system infrastructures are used at multiple sites (e.g. NIST, CNSE, Sematech, EIDEC, and imec) and were calibrated to each other by a detailed test plan. Despite this detailed tool qualifications, a first round robin comparison of identical materials showed inconsistent outgas test results, and required further investigation by a second round robin. Since the resist exposure mode is different at the various locations (some sites are using EUV photons while others use E-gun electrons), this difference has always a point of concern for variability of test results. In this work we compare the outgas test results from EUV photon and electron exposure using the resist materials of the second round robin. Since the imec outgas tester allows both exposure methods on the resist, a within-system comparison is possible and showed limited variation between photon and electron exposure mode. Therefore the system-to-system variability amongst the different outgas test sites is expected to be related to other parameters than the electron/photon exposure mode. Initial work showed that the variability might be related to temperature, E-gun emission excursion, and/or residual outgassing scaled by different wafer areas at the different sites.

  7. Control of Listeria monocytogenes contamination in an Iberian pork processing plant and selection of benzalkonium chloride-resistant strains.

    Science.gov (United States)

    Ortiz, Sagrario; López, Victoria; Martínez-Suárez, Joaquín V

    2014-05-01

    The aims of this study were to characterize the different strains of Listeria monocytogenes collected at an Iberian pork processing plant and to investigate whether their specific characteristics were associated with prolonged survival in the plant. Using pulsed-field gel electrophoresis (PFGE), 29 PFGE types were previously identified during a three-year period. Eight of these PFGE types persisted in the plant during that period. In the present study, a subset of 29 PFGE type strains, which represented the 29 different PFGE types, was further characterized by assessing the potential virulence, and using motility, surface attachment, and antimicrobial susceptibility tests. After changing the disinfection procedures in the plant, the isolation rate of L. monocytogenes decreased, and only four of the 29 PFGE types, including three of the eight persistent PFGE types, were found the following year. These four "surviving" PFGE types included three from PCR serogroup IIa that were characterized by their low virulence mutations and low-level resistance to benzalkonium chloride (BAC). Furthermore, these PFGE types comprised the only BAC-resistant isolates found in the study, and they appear to have been selected due to the control of Listeria contamination. The resistance to increased sublethal concentrations of disinfectants may lead to prolonged survival of L. monocytogenes in food plants.

  8. Expression of a Magnaporthe grisea Elicitor and Its Biological Function in Activating Resistance in Rice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The expression of a protein elicitor from Magnaporthe griesea and its biological function in activating resistance in rice (Oryza sativa L) were reported. The gene of elicitor was expressed in Escherichia coli cells and produced a His6-fusion protein with 42 kD apparent molecular weight on SDS-PAGE. The purified protein could induce the resistance to blast disease, with the control efficiency of 46.47% and 36.41% at the 14th day and the 21st day after blast inoculation, respectively.After treatment with the expressed protein, the phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities were promoted in rice plants, meanwhile, the transcription levels of STKM, FAD, PBZ1 and PR1 genes were increased in rice plants. Moreover, after comparing the profile of total rice leaf proteins on two-dimensional eiectrophoresis gel, about 14proteins were found to be increased in expression level after the expressed protein treatment. All the results indicated that the expressed protein could act as an elicitor to trigger the resistance in rice.

  9. Summary of biological and contaminant investigations related to stream water quality and environmental setting in the Upper Colorado River basin, 1938-95

    Science.gov (United States)

    Deacon, Jeffrey R.; Stephens, Verlin C.

    1996-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program, an inventory of the biological and contaminant investigations for the Upper Colorado River Basin study unit was conducted. To enhance the sampling design for the biological component of the program, previous studies about the ecology of aquatic organisms and contaminants were compiled from computerized literature searches of biological data bases and by contacting other Federal, State, and local agencies. Biological and contaminant investigations that have been conducted throughout the basin since 1938 were categorized according to four general categories of biological investigations and two categories of contaminant investigations: algal communities, macroinvertebrate communities, fish communities, habitat characterization, contaminants in organism tissue, and contaminants in bed sediment. The studies were identified by their locations in two physiographic provinces, the Southern Rocky Mountains and the Colorado Plateau, and by the predominant land use in the area of the investigation. Studies on algal communities and contaminants in organism tissue and in bed sediment are limited throughout the basin. Studies on macroinvertebrate and fish communities and habitat characterization are the most abundant in the study unit. Natural and human factors can affect biological communities and their composition. Natural factors that affect background water-quality conditions are physiography, climate, geology, and soils. Algae, macroinvertebrates, and fish that are present in the Southern Rocky Mountains and the Colorado Plateau physiographic provinces vary with altitude and physical environment. Green algae and diatoms are predominant in the higher altitude streams, and blue-green, golden-brown, and green algae are predominant in the lower altitude streams. Caddisflies, mayflies, and stoneflies are the dominant macroinvertebrates in the higher altitudes, whereas aquatic worms, leeches

  10. Systems Biology Strategy Reveals PKC-delta is Key for Sensitizing TRAIL-Resistant Human Fibrosarcoma

    Directory of Open Access Journals (Sweden)

    Kentaro eHayashi

    2015-01-01

    Full Text Available Cancer cells are highly variable and resistant to therapeutic intervention. Recently, the use of the tumor necrosis factor related apoptosis-inducing ligand (TRAIL induced treatment is gaining momentum, due to TRAIL’s ability to specifically target cancers with limited effect on normal cells. However, several malignant cancer types still remain non-sensitive to TRAIL. Previously, we developed a dynamic computational model, based on perturbation-response approach, and predicted protein kinase C (PKC as the most effective target, with over 95% capacity to kill human fibrosarcoma (HT1080 in TRAIL stimulation (Piras, V. et al. 2011, Scientific Reports. Here, to validate the model prediction, which has significant implications for cancer treatment, we conducted experiments on two TRAIL-resistant cancer cell lines (HT1080 and HT29. Using PKC inhibitor Bisindolylmaleimide I, we first demonstrate, as predicted by our previous model, cell viability is significantly impaired with over 95% death of both cancer types. Next, to identify crucial PKC isoform from 10 known members, we analyzed their mRNA expressions in HT1080 cells and shortlisted 4 isoforms for siRNA knock-down (KD experiments. From these KDs, PKC-delta produced the most cancer cell death in conjunction with TRAIL. Overall, systems biology approach, combining model prediction with experimental validation, holds promise for TRAIL-based cancer therapy.

  11. Biological Effects of Potato Plants Transformation with Glucose Oxidase Gene and their Resistance to Hyperthermia

    Directory of Open Access Journals (Sweden)

    O.I. Grabelnych

    2017-02-01

    Full Text Available It is known that regulation of plant tolerance to adverse environmental factors is connected with short term increase of the concentration of endogenous reactive oxygen species (ROS, which are signalling molecules for the induction of protective mechanisms. Introduction and expression of heterologous gox gene, which encodes glucose oxidase enzyme in plant genome, induce constantly higher content of hydrogen peroxide in plant tissues. It is not known how the introduction of native or modified gox gene affects the plant resistance to high-temperature stress, one of the most commonly used model for the study of stress response and thermal tolerance. In this study, we investigated biological effects of transformation and evaluated the resistance to temperature stress of potato plants with altered levels of glucose oxidase expression. Transformation of potato plants by gox gene led to the more early coming out from tuber dormancy of transformed plants and slower growth rate. Transformants containing the glucose oxidase gene were more sensitive to lethal thermal shock (50 °C, 90 min than the transformant with the empty vector (pBI or untransformed plants (CK. Pre-heating of plants at 37 °C significantly weakened the damaging effect of lethal thermal shock. This attenuation was more significant in the non-transformed plants.

  12. GEOPHYSICS AND SITE CHARACTERIZATION AT THE HANFORD SITE THE SUCCESSFUL USE OF ELECTRICAL RESISTIVITY TO POSITION BOREHOLES TO DEFINE DEEP VADOSE ZONE CONTAMINATION - 11509

    Energy Technology Data Exchange (ETDEWEB)

    GANDER MJ; LEARY KD; LEVITT MT; MILLER CW

    2011-01-14

    Historic boreholes confirmed the presence of nitrate and radionuclide contaminants at various intervals throughout a more than 60 m (200 ft) thick vadose zone, and a 2010 electrical resistivity survey mapped the known contamination and indicated areas of similar contaminants, both laterally and at depth; therefore, electrical resistivity mapping can be used to more accurately locate characterization boreholes. At the Hanford Nuclear Reservation in eastern Washington, production of uranium and plutonium resulted in the planned release of large quantities of contaminated wastewater to unlined excavations (cribs). From 1952 until 1960, the 216-U-8 Crib received approximately 379,000,000 L (100,000,000 gal) of wastewater containing 25,500 kg (56,218 lb) uranium; 1,029,000 kg (1,013 tons) of nitrate; 2.7 Ci of technetium-99; and other fission products including strontium-90 and cesium-137. The 216-U-8 Crib reportedly holds the largest inventory of waste uranium of any crib on the Hanford Site. Electrical resistivity is a geophysical technique capable of identifying contrasting physical properties; specifically, electrically conductive material, relative to resistive native soil, can be mapped in the subsurface. At the 216-U-8 Crib, high nitrate concentrations (from the release of nitric acid [HNO{sub 3}] and associated uranium and other fission products) were detected in 1994 and 2004 boreholes at various depths, such as at the base of the Crib at 9 m (30 ft) below ground surface (bgs) and sporadically to depths in excess of 60 m (200 ft) bgs. These contaminant concentrations were directly correlative with the presence of observed low electrical resistivity responses delineated during the summer 2010 geophysical survey. Based on this correlation and the recently completed mapping of the electrically conductive material, additional boreholes are planned for early 2011 to identify nitrate and radionuclide contamination: (a) throughout the entire vertical length of the

  13. Contaminant resistant molten carbonate fuel cell: Final report, June 1986--September 1988

    Energy Technology Data Exchange (ETDEWEB)

    Remick, R.J.; Jewulski, J.R.; Osif, T.L.; Donelson, R.

    1988-01-01

    This report summarizes the results of a 2 year program evaluating the application of solid nickel foils as hydrogen permeable barriers to contaminants in molten carbonate fuel cells. The purpose of these foils is to prevent contaminants such as H/sub 2/S, HCl, and NH/sub 3/ which are present in coal gasifier derived fuels, from reaching the electrolyte of the fuel cell, while still allowing hydrogen to reach the anode. During the first year of the program, a parametric study was conducted using 2.5 to 7.5 /mu/m thick nickel foils in both laboratory-scale and bench-scale fuel cell tests. Two design configurations were evaluated, one in which the foil was placed adjacent to the electrolyte matrix and one in which the foil was placed between two porous metal plaques. Work during the second year of the program addressed problems associated with the buildup of product gases between the foil barrier and the electrolyte and with the reduction of hydrogen flux that occurs when sulfur species were introduced into the fuel. A porous electrolyte was prepared for use with the foil anode configuration. Work was also performed to improve the removal of these product gases from barrier-anode configuration cells by constructing gas channels in the anode itself between the foil barrier and the electrolyte matrix. An apparatus was also assembled for measuring the hydrogen flux through a thin foil at 650/degree/C. Various coatings were then applied to the nickel foil to determine their impact on the permeability. The second year's work culminated in two bench-scale cell tests of the barrier-anode configuration using hardware having optimum specifications for this type of cell. The performance of these cells fell short of the design point criteria set as a goal at the beginning of this project. Therefore, this work will not be continued into the next fiscal year. 8 refs., 48 figs., 18 tabs.

  14. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium-contaminated aquifer

    Science.gov (United States)

    Flores Orozco, AdriáN.; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-09-01

    Experiments at the Department of Energy's Integrated Field Research Challenge (IFRC) site near Rifle, Colorado, have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally invasive and spatially extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IFRC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate-reducing microorganisms. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer, a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants such as uranium.

  15. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

    2011-04-01

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  16. Target and non-target screening strategies for organic contaminants, residues and illicit substances in food , environmental and human biological samples by UHPLC-QTOF-MS

    OpenAIRE

    Hernández Hernández, Félix; Díaz San Pedro, Ramón; Sancho Llopis, Juan Vicente; Ibáñez Martínez, María

    2012-01-01

    In this paper, we illustrate the potential of ultra-high performance liquid chromatography (UHPLC) coupled with hybrid quadrupole time-of-flight mass spectrometry (QTOF MS) for large scale screening of organic contaminants in different types of samples. Thanks to the full-spectrum acquisition at satisfactory sensitivity, it is feasible to apply both (post)-target and non-target approaches for the rapid qualitative screening of organic pollutants in food, biological and environmental samples. ...

  17. Evaluation of the Human Host Range of Bovine and Porcine Viruses that may Contaminate Bovine Serum and Porcine Trypsin Used in the Manufacture of Biological Products

    Science.gov (United States)

    Marcus-Sekura, Carol; Richardson, James C.; Harston, Rebecca K.; Sane, Nandini; Sheets, Rebecca L.

    2011-01-01

    Current U.S. requirements for testing cell substrates used in production of human biological products for contamination with bovine and porcine viruses are U.S. Department of Agriculture (USDA) 9CFR tests for bovine serum or porcine trypsin. 9CFR requires testing of bovine serum for seven specific viruses in six families (immunofluorescence) and at least 2 additional families non-specifically (cytopathicity and hemadsorption). 9CFR testing of porcine trypsin is for porcine parvovirus. Recent contaminations suggest these tests may not be sufficient. Assay sensitivity was not the issue for these contaminations that were caused by viruses/virus families not represented in the 9CFR screen. A detailed literature search was undertaken to determine which viruses that infect cattle or swine or bovine or porcine cells in culture also have human host range [ability to infect humans or human cells in culture] and to predict their detection by the currently used 9CFR procedures. There are more viruses of potential risk to biological products manufactured using bovine or porcine raw materials than are likely to be detected by 9CFR testing procedures; even within families, not all members would necessarily be detected. Testing gaps and alternative methodologies should be evaluated to continue to ensure safe, high quality human biologicals. PMID:22000165

  18. Mercury-resistant bacteria from salt marsh of Tagus Estuary: the influence of plants presence and mercury contamination levels.

    Science.gov (United States)

    Figueiredo, Neusa L L; Areias, Andreia; Mendes, Ricardo; Canário, João; Duarte, Aida; Carvalho, Cristina

    2014-01-01

    Mercury (Hg) contamination of aquatic systems has been recognized as a global, serious problem affecting both wildlife and humans. High levels of Hg, in particular methylmercury (MeHg), were detected in surface sediments of Tagus Estuary. MeHg is neurotoxic and its concentration in aquatic systems is dependent upon the relative efficiency of reduction, methylation, and demethylation processes, which are mediated predominantly by the microbial community, in particular mercury-resistant (HgR) bacteria. Plants in contaminated ecosystems are known to take up Hg via plant roots. Therefore, the aims of this study were to (1) isolate and characterize HgR bacteria from a salt marsh of Tagus Estuary (Rosário) and (2) determine HgR bacteria levels in the rhizosphere and, consequently, their influence in metal cycling. To accomplish this objective, sediments samples were collected during the spring season in an area colonized by Sacocornia fruticosa and Spartina maritima and compared with sediments without plants. From these samples, 13 aerobic HgR bacteria were isolated and characterized morphologically, biochemically, and genetically, and susceptibility to Hg compounds, Hg(2+), and MeHg was assessed by determination of minimal inhibitory concentration (MIC). Genetically, the mer operon was searched by polymerase chain reaction (PCR) and 16S rRNA sequencing was used for bacterial identification. Results showed that the isolates were capable of growing in the presence of high Hg concentration with MIC values for HgCl2 and MeHgCl in the ranges of 1.7-4.2 μg/ml and 0.1-0.9 μg/ml, respectively. The isolates from sediments colonized with Sacocornia fruticosa displayed higher resistance levels compared to ones colonized with Spartina maritima. Bacteria isolates showed different capacity of Hg accumulation but all displayed Hg volatilization capabilities (20-50%). Mer operon was found in two isolates, which genetically confirmed their capability to convert Hg compounds by

  19. Contamination of lettuce with antibiotic resistant E. coli after slurry application

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Storm, Christina; Baggesen, Dorte Lau

    2011-01-01

    was therefore performed to assess the survival and transfer of antibiotic-resistant E. coli from animal manure to lettuces, with E. coli serving as an indicator of bacterial enteric pathogens. Animal slurry was applied to 3 Danish fields prior to planting of lettuce seedlings, then 5-8 weeks later at the normal...... time of harvest, inner and outer leafs of 10 lettuce heads were pooled into one sample unit with a total of 50 pools per field. Additionally, in one field, 15 soil samples were collected weekly until the harvest time. E. coli was enumerated by plating 1 mL of 10-fold serial dilutions of 5 g...... of homogenized sample material, i.e. manure, soil and lettuce onto PetrifilmTM Select E. coli count plates (3M) containing 16 mg/L streptomycin or 16 mg/L ampicilin or no antibiotics. Plates were then incubated 24 h at 44°C. Selected isolates of E. coli (n=83) from slurry, soil and lettuce were analysed by PFGE...

  20. Biologically-initiated rock crust on sandstone: Mechanical and hydraulic properties and resistance to erosion

    Science.gov (United States)

    Slavík, Martin; Bruthans, Jiří; Filippi, Michal; Schweigstillová, Jana; Falteisek, Lukáš; Řihošek, Jaroslav

    2017-02-01

    Biocolonization on sandstone surfaces is known to play an important role in rock disintegration, yet it sometimes also aids in the protection of the underlying materials from rapid erosion. There have been few studies comparing the mechanical and/or hydraulic properties of the BIRC (Biologically-Initiated Rock Crust) with its subsurface. As a result, the overall effects of the BIRC are not yet well understood. The objective of the present study was to briefly characterize the BIRC from both the mineralogical and biological points of view, and especially to quantify the effect of the BIRC upon the mechanical and hydraulic properties of friable sandstone. The mineralogical investigation of a well-developed BIRC showed that its surface is enriched in kaolinite and clay- to silt-sized quartz particles. Total organic carbon increases with the age of the BIRC. Based on DNA sequencing and microscopy, the BIRC is formed by various fungi, including components of lichens and green algae. Using the method of drilling resistance, by measuring tensile strength, and based on water jet testing, it was determined that a BIRC is up to 12 times less erodible and has 3-35 times higher tensile strength than the subsurface friable sandstone. Saturated hydraulic conductivity of the studied BIRC is 15-300 times lower than the subsurface, and was measured to also decrease in capillary water absorption (2-33 times). Water-vapor diffusion is not significantly influenced by the presence of the BIRC. The BIRC thus forms a hardened surface which protects the underlying material from rain and flowing water erosion, and considerably modifies the sandstone's hydraulic properties. Exposing the material to calcination (550 °C), and experiments with the enzyme zymolyase indicated that a major contribution to the surface hardening is provided by organic matter. In firmer sandstones, the BIRC may still considerably decrease the rate of weathering, as it is capable of providing cohesion to strongly

  1. Construction of biological control strain of Trichoderma viride and study of their ability to induce plant disease resistance

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-wang; GUO Ze-jian

    2004-01-01

    @@ Plant diseases heavily affct plant growth and crop yield even in modern agriculture. Control its difficult because pathogens mutate frequently, and this leads in frequent breaking of disease resistance in commercial cultivars. The excessive application of chemical pesticides is not only producing pesticideresistant pathogens, but it is harming the environment threatening the health of human beings.Therefore, the use of biological control agents (BCA) may provide an environmental friendly alternative to chemicals for plant disease control. Hypersensitive response (HR) and systemic acquired resistance (SAR) are the typical expressions of plant defense reactions. Once SAR is established,, the plants exhibits a broad-spectrum of disease resistance against pathogen attack. Researchers have identified elicitor proteins, such as elicitins and harpins, which activate plant defense reactions. It would be useful to explore the possibility of using biological control agents to induce a status of SAR in crop plants.

  2. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Naqvi SZ

    2013-08-01

    Full Text Available Syed Zeeshan Haider Naqvi, Urooj Kiran, Muhammad Ishtiaq Ali, Asif Jamal, Abdul Hameed, Safia Ahmed, Naeem Ali Microbiology Research Laboratory, Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan Abstract: Biological synthesis of nanoparticles is a growing innovative approach that is relatively cheaper and more environmentally friendly than current physicochemical processes. Among various microorganisms, fungi have been found to be comparatively more efficient in the synthesis of nanomaterials. In this research work, extracellular mycosynthesis of silver nanoparticles (AgNPs was probed by reacting the precursor salt of silver nitrate (AgNO3 with culture filtrate of Aspergillus flavus. Initially, the mycosynthesis was regularly monitored by ultraviolet-visible spectroscopy, which showed AgNP peaks of around 400–470 nm. X-ray diffraction spectra revealed peaks of different intensities with respect to angle of diffractions (2θ corresponding to varying configurations of AgNPs. Transmission electron micrographs further confirmed the formation of AgNPs in size ranging from 5–30 nm. Combined and individual antibacterial activities of the five conventional antibiotics and AgNPs were investigated against eight different multidrug-resistant bacterial species using the Kirby–Bauer disk-diffusion method. The decreasing order of antibacterial activity (zone of inhibition in mm of antibiotics, AgNPs, and their conjugates against bacterial group (average was; ciprofloxacin + AgNPs (23 > imipenem + AgNPs (21 > gentamycin + AgNPs (19 > vancomycin + AgNPs (16 > AgNPs (15 > imipenem (14 > trimethoprim + AgNPs (14 > ciprofloxacin (13 > gentamycin (11 > vancomycin (4 > trimethoprim (0. Overall, the synergistic effect of antibiotics and nanoparticles resulted in a 0.2–7.0 (average, 2.8 fold-area increase in antibacterial activity, which clearly revealed that nanoparticles can be effectively used in

  3. Biological fitness and natural selection of amantadine resistant variants of avian influenza H5N1 viruses.

    Science.gov (United States)

    Abdelwhab, E M; Veits, Jutta; Mettenleiter, Thomas C

    2017-01-15

    Outbreaks caused by the highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry in several countries and posed a significant pandemic threat. In addition to culling of infected poultry and vaccination, amantadine has been applied in poultry in some countries to control the spread of the virus. The prevalence of the amantadine resistance marker at position 31 (Ser31Asn) of the M2 protein increased over time. However, little is known about the biological fitness and selection of H5N1 amantadine resistant strains over their sensitive counterparts. Here, using reverse genetics we investigated the biological impact of Ser31Asn in M2 commonly seen in viruses in clade 2.2.1.1 in farmed poultry in Egypt. Findings of the current study indicated that the resistance to amantadine conferred by Asn31 evolved rapidly after the application of amantadine in commercial poultry. Both the resistant and sensitive strains replicated at similar levels in avian cell culture. Asn31 increased virus entry into the cells and cell-to-cell spread and was genetically stable for several passages in cell culture. Moreover, upon co-infection of cell culture resistant strains dominated sensitive viruses even in the absence of selection by amantadine. Together, rapid emergence, stability and domination of amantadine-resistant variants over sensitive strains limit the efficacy of amantadine in poultry.

  4. As-resistance in laboratory-reared F1, F2 and F3 generation offspring of the earthworm Lumbricus rubellus inhabiting an As-contaminated mine soil

    Energy Technology Data Exchange (ETDEWEB)

    Langdon, C.J., E-mail: clangdon1@btinternet.co [C/O The Open University in the North, Baltic Buiness Quarter, Abbots Hill, Gateshead NE8 3DF (United Kingdom); Morgan, A.J., E-mail: morganaj1@cardiff.ac.u [Cardiff School of Biosciences, Cardiff University, P.O. Box 913, Cardiff CF11 3TL, Wales (United Kingdom); Charnock, J.M., E-mail: john.charnock@manchester.ac.u [STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD (United Kingdom); School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Semple, K.T., E-mail: k.semple@lancaster.ac.u [Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Lowe, C.N., E-mail: cnlowe@uclan.ac.u [School of Built and Natural Environment, University of Central Lancashire, Preston PR1 2HE (United Kingdom)

    2009-11-15

    Previous studies provided no unequivocal evidence demonstrating that field populations of Lumbricus rubellus Hoffmeister (1843), exhibit genetically inherited resistance to As-toxicity. In this study F1, F2 and F3 generation offspring derived from adults inhabiting As-contaminated field soil were resistant when exposed to 2000 mg kg{sup -1} sodium arsenate. The offspring of uncontaminated adults were not As-resistant. Cocoon viability was 80% for F1 and 82% for F2 offspring from As-contaminated adults and 59% in the F1 control population. High energy synchrotron analysis was used to determine whether ligand complexation of As differed in samples of: resistant mine-site adults, the resistant F1 and F2 offspring of the mine-site earthworms exposed to the LC{sub 25} sodium arsenate (700 mg kg{sup -1}) of the F1 parental generation; and adult L. rubellus from an uncontaminated site exposed to LC{sub 25} concentrations of sodium arsenate (50 mg kg{sup -1}). XANES and EXAFS indicated that As was present as a sulfur-coordinated species. - As-resistance in F1, F2 and F3 offspring of the earthworm Lumbricus rubellus.

  5. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance.

    Science.gov (United States)

    Alisi, Chiara; Musella, Rosario; Tasso, Flavia; Ubaldi, Carla; Manzo, Sonia; Cremisini, Carlo; Sprocati, Anna Rosa

    2009-04-01

    The aim of the work is to assess the feasibility of bioremediation of a soil, containing heavy metals and spiked with diesel oil (DO), through a bioaugmentation strategy based on the use of a microbial formula tailored with selected native strains. The soil originated from the metallurgic area of Bagnoli (Naples, Italy). The formula, named ENEA-LAM, combines ten bacterial strains selected for multiple resistance to heavy metals among the native microbial community. The biodegradation process of diesel oil was assessed in biometer flasks by monitoring the following parameters: DO composition by GC-MS, CO2 evolution rate, microbial load and composition of the community by T-RFLP, physiological profile in Biolog ECOplates and ecotoxicity of the system. The application of this microbial formula allowed to obtain, in the presence of heavy metals, the complete degradation of n-C(12-20), the total disappearance of phenantrene, a 60% reduction of isoprenoids and an overall reduction of about 75% of the total diesel hydrocarbons in 42 days. Concurrently with the increase of metabolic activity at community level and the microbial load, the gradual abatement of the ecotoxicity was observed. The T-RFLP analysis highlighted that most of the ENEA-LAM strains survived and some minor native strains, undetectable in the soil at the beginning of the experiment, developed. Such a bioaugmentation approach allows the newly established microbial community to strike a balance between the introduced and the naturally present microorganisms. The results indicate that the use of a tailored microbial formula may efficiently facilitate and speed up the bioremediation of matrices co-contaminated with hydrocarbons and heavy metals. The study represents the first step for the scale up of the system and should be verified at a larger scale. In this view, this bioaugmentation strategy may contribute to overcome a critical bottleneck of the bioremediation technology.

  6. Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy C.; Versteeg, Roelof J.; Rockhold, Mark L.; Slater, Lee D.; Ntarlagiannis, Dimitrios; Greenwood, William J.; Zachara, John M.

    2012-09-17

    Continuing advancements in subsurface electrical resistivity tomography (ERT) are giving the method increasing capability for understanding shallow subsurface properties and processes. The inability of ERT imaging data to uniquely resolve subsurface structure and the corresponding need include constraining information remains one of the greatest limitations, and provides one of the greatest opportunities, for further advancing the utility of the method. In this work we describe and demonstrate a method of incorporating constraining information into an ERT imaging algorithm in the form on discontinuous boundaries, known values, and spatial covariance information. We demonstrate the approach by imaging a uranium-contaminated wellfield at the Hanford Site in southwestern Washington State, USA. We incorporate into the algorithm known boundary information and spatial covariance structure derived from the highly resolved near-borehole regions of a regularized ERT inversion. The resulting inversion provides a solution which fits the ERT data (given the estimated noise level), honors the spatial covariance structure throughout the model, and is consistent with known bulk-conductivity discontinuities. The results are validated with core-scale measurements, and display a significant improvement in accuracy over the standard regularized inversion, revealing important subsurface structure known influence flow and transport at the site.

  7. Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects.

    Science.gov (United States)

    Mestankova, Hana; Parker, Austa M; Bramaz, Nadine; Canonica, Silvio; Schirmer, Kristin; von Gunten, Urs; Linden, Karl G

    2016-04-15

    The removal of emerging contaminants during water treatment is a current issue and various technologies are being explored. These include UV- and ozone-based advanced oxidation processes (AOPs). In this study, AOPs were explored for their degradation capabilities of 25 chemical contaminants on the US Environmental Protection Agency's Contaminant Candidate List 3 (CCL3) in drinking water. Twenty-three of these were found to be amenable to hydroxyl radical-based treatment, with second-order rate constants for their reactions with hydroxyl radicals (OH) in the range of 3-8 × 10(9) M(-1) s(-1). The development of biological activity of the contaminants, focusing on mutagenicity and estrogenicity, was followed in parallel with their degradation using the Ames and YES bioassays to detect potential changes in biological effects during oxidative treatment. The majority of treatment cases resulted in a loss of biological activity upon oxidation of the parent compounds without generation of any form of estrogenicity or mutagenicity. However, an increase in mutagenic activity was detected by oxidative transformation of the following CCL3 parent compounds: nitrobenzene (OH, UV photolysis), quinoline (OH, ozone), methamidophos (OH), N-nitrosopyrolidine (OH), N-nitrosodi-n-propylamine (OH), aniline (UV photolysis), and N-nitrosodiphenylamine (UV photolysis). Only one case of formation of estrogenic activity was observed, namely, for the oxidation of quinoline by OH. Overall, this study provides fundamental and practical information on AOP-based treatment of specific compounds of concern and represents a framework for evaluating the performance of transformation-based treatment processes.

  8. Resistance to Aspergillus flavus in maize and peanut:Molecular biology, breeding, environmental stress, and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Jake C. Fountain; Baozhu Guo; Pawan Khera; Liming Yang; Spurthi N. Nayak; Brian T. Scully; Robert D. Lee; Zhi-Yuan Chen; Robert C. Kemerait; Rajeev K. Varshney

    2015-01-01

    The colonization of maize (Zea mays L.) and peanut (Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS) within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  9. Resistance to Aspergillus flavus in maize and peanut:Molecular biology, breeding, environmental stress,and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Jake; C.Fountain; Pawan; Khera; Liming; Yang; Spurthi; N.Nayak; Brian; T.Scully; Robert; D.Lee; Zhi-Yuan; Chen; Robert; C.Kemerait; Rajeev; K.Varshney; Baozhu; Guo

    2015-01-01

    The colonization of maize(Zea mays L.) and peanut(Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species(ROS) within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A.flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  10. Contamination of environmental surfaces by methicillin-resistant Staphylococcus aureus (MRSA) in rooms of inpatients with MRSA-positive body sites.

    Science.gov (United States)

    Kurashige, E Jessica Ohashi; Oie, Shigeharu; Furukawa, H

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) can contaminate environmental surfaces that are frequently touched by the hands of patients with MRSA colonization/infection. There have been many studies in which the presence or absence of MRSA contamination was determined but no studies in which MRSA contamination levels were also evaluated in detail. We evaluated MRSA contamination of environmental surfaces (overbed tables, bed side rails, and curtains) in the rooms of inpatients from whom MRSA was isolated via clinical specimens. We examined the curtains within 7-14 days after they had been newly hung. The environmental surfaces were wiped using gauze (molded gauze for wiping of surface bacteria; 100% cotton, 4cm×8cm) moistened with sterile physiological saline. The MRSA contamination rate and mean counts (range) were 25.0% (6/24 samples) and 30.6 (0-255)colony-forming units (cfu)/100cm(2), respectively, for the overbed tables and 31.6% (6/19 samples) and 159.5 (0-1620)cfu/100cm(2), respectively, for the bed side rails. No MRSA was detected in 24 curtain samples. The rate of MRSA contamination of environmental surfaces was high for the overbed tables and bed side rails but low for the curtains. Therefore, at least until the 14th day of use, frequent disinfection of curtains may be not necessary.

  11. Meat Science and Muscle Biology Symposium: Development of bacteriophage treatments to reduce Escherichia coli O157:H7 contamination of beef products and produce.

    Science.gov (United States)

    Hong, Y; Pan, Y; Ebner, P D

    2014-04-01

    Escherichia coli O157:H7 remains a foodborne pathogen of concern with infections associated with products ranging from ground beef to produce to processed foods. We previously demonstrated that phage-based technologies could reduce foodborne pathogen colonization in live animals. Here, we examined if a 3-phage cocktail could reduce E. coli O157:H7 in experimentally contaminated ground beef, spinach, and cheese. The 3 phages were chosen from our E. coli O157:H7 phage library based on their distinct origins of isolation, lytic ranges, and rapid growth (40- to 50-min life cycle). Two phages belonged to the Myoviridae family and the other phage belonged to the Siphoviridae family. The phage cocktail was added to ground beef, spinach leaves, and cheese slices contaminated with E. coli O157:H7 (10(7) cfu) at a multiplicity of infection of 1. Phage treatment reduced (P refrigeration (4 °C), and 0.56 log10 cfu/mL in undercooked condition (internal temperature of 46 °C). Likewise, phage treatment reduced (P adsorption assays indicated that phage resistance in strains 309-PR4 and 502-PR5 was mediated, at least in part, by prevention of phage adsorption. Phage resistance in strain 309-PR1 was the result of limited phage proliferation. Phage resistance was stably maintained in vitro throughout a 4-d subculture period in the absence of phage. No significant reductions in bacterial growth or cell adhesion were observed in resistant strains. Taken together, our results provide additional support for the use of phage to control E. coli O157:H7 in food products; however, the emergence of phage-resistant bacteria could limit the efficacy of phage products. Therefore, further studies are needed to develop resistance mitigation strategies to optimize phage-based technologies.

  12. Short-Term and Long-Term Biological Effects of Chronic Chemical Contamination on Natural Populations of a Marine Bivalve.

    Directory of Open Access Journals (Sweden)

    Marine Breitwieser

    Full Text Available Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites.

  13. Chemical and biological contamination of fish products; Contaminazione chimica e biologica dei prodotti della pesca. Corso tenuto presso l`Istituto Superiore di Sanita`, Roma, 1-2 giugno 1994

    Energy Technology Data Exchange (ETDEWEB)

    Stacchini, Angelo [Istituto Superiore di Sanita`, Rome (Italy). Lab. Alimenti

    1997-03-01

    The first contribution deals with chemical contaminants, particularly heavy metals and their acceptable daily intake (ADI). The following contributions deals with sanitary measures concerning biological contamination associated with the consumption of seafood, especially shellfish, taking into consideration the epidemiological relevance of some biological contaminants in Italy and Europe. Particular sanitary aspects concerning the presence of enteric viruses in mussels are presented; new molecular biology methodologies and the different techniques for enteroviruses concentration are discussed. Some questions concerning the detection of algal bio toxins are shown, based on the experience recently acquired by the Istituto Superiore di Sanita` about the biological methods. The current chromatographic methods for PSP and DSP biotoxin determination and the most recent developments in chemical methods based on liquid chromatography and mass spectrometric techniques are presented. The last section is devoted to the parasitic contamination of seafood.

  14. Utility of a single nasal polymerase chain reaction assay in predicting absence of skin and environmental contamination in hospitalized patients with past methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Guerrero, Dubert M; Wagner, Matthew; Carson, Grace; Hanish, Christine; Thompson, Jody; Orr, Megan; Roth, Felix; Carson, Paul J

    2016-06-01

    We evaluated hospitalized patients with a history of methicillin-resistant Staphylococcus aureus (MRSA) for persistent colonization and need for contact precautions. Up to 3 daily cultures of nares, skin, and any present wounds were compared with a single nasal polymerase chain reaction (PCR) assay. Most patients (76.2%) were no longer colonized with MRSA. A single PCR assay was sufficient to exclude persistent colonization and environmental contamination and remove the contact precautions.

  15. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments.

    Science.gov (United States)

    Kim, Min-Suk; Min, Hyun-Gi; Koo, Namin; Park, Jeongsik; Lee, Sang-Hwan; Bak, Gwan-In; Kim, Jeong-Gyu

    2014-12-15

    Spent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp. chinensis Jusl.) was conducted for the biological assessment. When SCG and SCG-char were applied to acid mine drainage, the heavy metal concentrations were decreased and the pH was increased. However, for SCG, the phytotoxicity increased because a massive amount of dissolved organic carbon was released from SCG. In contrast, SCG-char did not exhibit this phenomenon because any easily released organic matter was removed during pyrolysis. While the bioavailable heavy metal content decreased in soils treated with SCG or SCG-char, the phytotoxicity only rose after SCG treatment. According to our statistical methodology, bioavailable Pb, Cu and As, as well as the electrical conductivity representing an increase in organic content, affected the phytotoxicity of soil. Therefore, applying SCG during environment remediation requires careful biological assessments and evaluations of the efficiency of this remediation technology.

  16. A molecular epidemiological study of methicillin-resistant Staphylococci environmental contamination in railway stations and coach stations in Guangzhou of China.

    Science.gov (United States)

    Lin, J L; Peng, Y; Ou, Q T; Lin, D X; Li, Y; Ye, X H; Zhou, J L; Yao, Z J

    2017-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has caused a series of public health problems since it was first found in 1961. However, there are few research studies on the MRSA environmental contamination in railway stations and coach stations. Therefore, the aim of this study was to determine MRSA environmental contamination in public transport stations. Between December 2013 and January 2014, 380 surface samples from three railway stations (180) and four coach stations (200) in Guangzhou were collected to isolate and determine the prevalence and characteristics of Staphylococci strains. 39·21% of all samples were Staphylococci isolates, 1·58% of Staphylococci isolates were MRSA isolates, and 6·05% were methicillin-susceptible S. aureus. The proportion of multidrug resistant among 149 Staphylococci isolates was 75·84%. None of MRSA isolates was identified with the Panton-Valentine Leukocidin (PVL) genes, and one of them was identified with the qac gene. Four MRSA isolates were Staphylococcal Cassette Chromosome mec IVa, and the other two were nontypeable. Staphylococcus aureus isolates were classified into several sequence types (STs), and STs showed possible cross-transmissions of isolates from various sources. Methicillin-resistant Staphylococci contamination prevalence was high, and the environment of stations may be the vectors transmitting the Staphylococci to passengers.

  17. The use of coarse, separable, condensed-phase organic carbon particles to characterize desorption resistance of polycyclic aromatic hydrocarbons in contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Y.Z.; Kochetkov, A.; Reible, D.D. [University of Texas, Austin, TX (United States)

    2007-07-15

    Physical separations were employed to characterize the source of desorption-resistant behavior for polycyclic aromatic hydrocarbons (PAHs) in laboratory- and field-contaminated sediments. Size and density separation of laboratory-contaminated sediments did not effectively separate the amorphous-phase (volatile) and condensed-phase (nonvolatile) organic carbon as measured by thermal oxidation at 375 {sup o}C. These separations also did not result in sediment fractions with significantly different desorption characteristics as measured by apparent partition coefficients. Coarse particles from a field-contaminated sediment from Utica Harbor (UH; Utica, NY, USA), however, could be directly separated into sandy fractions and organic fractions that were composed of woody organic matter, charcoal or charred vegetative matter, and coal-like and coal-cinder particles. Chemical analysis showed that coal-like (glassy, nonporous) and coal-cinder (porous, sintered) particles exhibited very high PAH concentrations and high apparent partition coefficients. These particles also exhibited significantly higher condensed-phase (nonvolatile) organic carbon contents as defined by thermal oxidation at 375{sup o}C. The apparent partition coefficients of PAHs in the coal-cinder particles were a good indication of the apparent partition coefficients in the desorption-resistant fraction of UH sediment, indicating that the coarse particles provided a reasonable characterization of the desorption-resistance phenomena in these sediments even though the coarse fractions represented less than 25% of the organic carbon in the whole sediment.

  18. The use of coarse, separable, condensed-phase organic carbon particles to characterize desorption resistance of polycyclic aromatic hydrocarbons in contaminated sediments.

    Science.gov (United States)

    Chai, Yunzhou; Kochetkov, Alexander; Reible, Danny D

    2007-07-01

    Physical separations were employed to characterize the source of desorption-resistant behavior for polycyclic aromatic hydrocarbons (PAHs) in laboratory- and field-contaminated sediments. Size and density separation of laboratory-contaminated sediments did not effectively separate the amorphous-phase (volatile) and condensed-phase (nonvolatile) organic carbon as measured by thermal oxidation at 375 degrees C. These separations also did not result in sediment fractions with significantly different desorption characteristics as measured by apparent partition coefficients. Coarse particles from a field-contaminated sediment from Utica Harbor (UH; Utica, NY, USA), however, could be directly separated into sandy fractions and organic fractions that were composed of woody organic matter, charcoal or charred vegetative matter, and coal-like and coal-cinder particles. Chemical analysis showed that coal-like (glassy, nonporous) and coal-cinder (porous, sintered) particles exhibited very high PAH concentrations and high apparent partition coefficients. These particles also exhibited significantly higher condensed-phase (nonvolatile) organic carbon contents as defined by thermal oxidation at 375 degrees C. The apparent partition coefficients of PAHs in the coal-cinder particles were a good indication of the apparent partition coefficients in the desorption-resistant fraction of UH sediment, indicating that the coarse particles provided a reasonable characterization of the desorption-resistance phenomena in these sediments even though the coarse fractions represented less than 25% of the organic carbon in the whole sediment.

  19. Impact of the ahas transgene for herbicides resistance on biological nitrogen fixation and yield of soybean.

    Science.gov (United States)

    Hungria, Mariangela; Nakatani, André Shigueyoshi; Souza, Rosinei Aparecida; Sei, Fernando Bonafé; de Oliveira Chueire, Ligia Maria; Arias, Carlos Arrabal

    2015-02-01

    Studies on the effects of transgenes in soybean [Glycine max (L.) Merr.] and the associated use of specific herbicides on biological nitrogen fixation (BNF) are still few, although it is important to ensure minimal impacts on benefits provided by the root-nodule symbiosis. Cultivance CV127 transgenic soybean is a cultivar containing the ahas gene, which confers resistance to herbicides of the imidazolinone group. The aim of this study was to assess the effects of the ahas transgene and of imidazolinone herbicide on BNF parameters and soybean yield. A large-scale set of field experiments was conducted, for three cropping seasons, at nine sites in Brazil, with a total of 20 trials. The experiment was designed as a completely randomized block with four replicates and the following treatments: (T1) near isogenic transgenic soybean (Cultivance CV127) + herbicide of the imidazolinone group (imazapyr); (T2) near isogenic transgenic soybean + conventional herbicides; and (T3) parental conventional soybean (Conquista) + conventional herbicides; in addition, two commercial cultivars were included, Monsoy 8001 (M-SOY 8001) (T4), and Coodetec 217 (CD 217) (T5). At the R2 growth stage, plants were collected and BNF parameters evaluated. In general, there were no effects on BNF parameters due to the transgenic trait or associated with the specific herbicide. Similarly, at the final harvest, no grain-yield effects were detected related to the ahas gene or to the specific herbicide. However, clear effects on BNF and grain yield were attributed to location and cropping season.

  20. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria.

    Science.gov (United States)

    Naqvi, Syed Zeeshan Haider; Kiran, Urooj; Ali, Muhammad Ishtiaq; Jamal, Asif; Hameed, Abdul; Ahmed, Safia; Ali, Naeem

    2013-01-01

    Biological synthesis of nanoparticles is a growing innovative approach that is relatively cheaper and more environmentally friendly than current physicochemical processes. Among various microorganisms, fungi have been found to be comparatively more efficient in the synthesis of nanomaterials. In this research work, extracellular mycosynthesis of silver nanoparticles (AgNPs) was probed by reacting the precursor salt of silver nitrate (AgNO3) with culture filtrate of Aspergillus flavus. Initially, the mycosynthesis was regularly monitored by ultraviolet-visible spectroscopy, which showed AgNP peaks of around 400-470 nm. X-ray diffraction spectra revealed peaks of different intensities with respect to angle of diffractions (2θ) corresponding to varying configurations of AgNPs. Transmission electron micrographs further confirmed the formation of AgNPs in size ranging from 5-30 nm. Combined and individual antibacterial activities of the five conventional antibiotics and AgNPs were investigated against eight different multidrug-resistant bacterial species using the Kirby-Bauer disk-diffusion method. The decreasing order of antibacterial activity (zone of inhibition in mm) of antibiotics, AgNPs, and their conjugates against bacterial group (average) was; ciprofloxacin + AgNPs (23) . imipenem + AgNPs (21) > gentamycin + AgNPs (19) > vancomycin + AgNPs (16) > AgNPs (15) . imipenem (14) > trimethoprim + AgNPs (14) > ciprofloxacin (13) > gentamycin (11) > vancomycin (4) > trimethoprim (0). Overall, the synergistic effect of antibiotics and nanoparticles resulted in a 0.2-7.0 (average, 2.8) fold-area increase in antibacterial activity, which clearly revealed that nanoparticles can be effectively used in combination with antibiotics in order to improve their efficacy against various pathogenic microbes.

  1. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kundi; Li, Fuli [Chinese Academy of Sciences, Qingdao (China). Qingdao Inst. of Bioenergy and Bioprocess Technology

    2011-05-15

    A novel bacterium, Cr-10, was isolated from a chromium-contaminated site and capable of removing toxic chromium species from solution by reducing hexavalent chromium to an insoluble precipitate. Sequence analysis of 16S rRNA gene of strain Cr-10 showed that it was most closely related to Serratia rubidaea JCM 1240{sup T} (97.68%). Physiological and chemotaxonomic data also supported that strain Cr-10 was identified as Serratia sp., a genus which was never specially reported chromate-resistant before. Serratia sp., Cr-10 was tolerant to a concentration of 1,500 mg Cr(VI) L{sup -1}, which was the highest level reported until now. The optimum pH and temperature for reduction of Cr(VI) by Serratia sp. Cr-10 were found to be 7.0 and 37 C, respectively. The Cr(VI) reduction was significantly influenced by additional carbon sources, and among them fructose and lactose offered maximum reduction, with a rate of 0.28 and 0.25 mg Cr(VI) L{sup -1} h{sup -1}, respectively. The cell-free extracts and filtrate of the culture were able to reduce Cr(VI) while concentration of total chromium remained stable in the process, indicating that the enzyme-catalyzed mechanism was applied in Cr(VI) reduction by the isolate. Additionally, it was found that there was hardly any chromium on the cell surface of the strain, further supporting that reduction, rather than bioadsorption, plays a major role in the Cr(VI) removal. (orig.)

  2. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  3. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    Science.gov (United States)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  4. Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab.

    Science.gov (United States)

    Faratian, Dana; Goltsov, Alexey; Lebedeva, Galina; Sorokin, Anatoly; Moodie, Stuart; Mullen, Peter; Kay, Charlene; Um, In Hwa; Langdon, Simon; Goryanin, Igor; Harrison, David J

    2009-08-15

    Resistance to targeted cancer therapies such as trastuzumab is a frequent clinical problem not solely because of insufficient expression of HER2 receptor but also because of the overriding activation states of cell signaling pathways. Systems biology approaches lend themselves to rapid in silico testing of factors, which may confer resistance to targeted therapies. Inthis study, we aimed to develop a new kinetic model that could be interrogated to predict resistance to receptor tyrosine kinase (RTK) inhibitor therapies and directly test predictions in vitro and in clinical samples. The new mathematical model included RTK inhibitor antibody binding, HER2/HER3 dimerization and inhibition, AKT/mitogen-activated protein kinase cross-talk, and the regulatory properties of PTEN. The model was parameterized using quantitative phosphoprotein expression data from cancer cell lines using reverse-phase protein microarrays. Quantitative PTEN protein expression was found to be the key determinant of resistance to anti-HER2 therapy in silico, which was predictive of unseen experiments in vitro using the PTEN inhibitor bp(V). When measured in cancer cell lines, PTEN expression predicts sensitivity to anti-HER2 therapy; furthermore, this quantitative measurement is more predictive of response (relative risk, 3.0; 95% confidence interval, 1.6-5.5; P biology approach has successfully been used to stratify patients for personalized therapy in cancer and is further compelling evidence that PTEN, appropriately measured in the clinical setting, refines clinical decision making in patients treated with anti-HER2 therapies.

  5. Genome Analysis of the First Extensively Drug-Resistant (XDR) Mycobacterium tuberculosis in Malaysia Provides Insights into the Genetic Basis of Its Biology and Drug Resistance.

    Science.gov (United States)

    Kuan, Chee Sian; Chan, Chai Ling; Yew, Su Mei; Toh, Yue Fen; Khoo, Jia-Shiun; Chong, Jennifer; Lee, Kok Wei; Tan, Yung-Chie; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2015-01-01

    The outbreak of extensively drug-resistant tuberculosis (XDR-TB) has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia.

  6. Genome Analysis of the First Extensively Drug-Resistant (XDR Mycobacterium tuberculosis in Malaysia Provides Insights into the Genetic Basis of Its Biology and Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Chee Sian Kuan

    Full Text Available The outbreak of extensively drug-resistant tuberculosis (XDR-TB has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia.

  7. Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part II. Soil biological and biochemical properties in relation to trace element speciation

    Energy Technology Data Exchange (ETDEWEB)

    D' Ascoli, R. [Dipartimento di Scienze Ambientali, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta (Italy)]. E-mail: rosaria.dascoli@unina2.it; Rao, M.A. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: maria.rao@unina.it; Adamo, P. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: adamo@unina.it; Renella, G. [Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Universita degli Studi di Firenze, P.le delle Cascine 28, 50144 Firenze (Italy)]. E-mail: giancarlo.renella@unifi.it; Landi, L. [Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Universita degli Studi di Firenze, P.le delle Cascine 28, 50144 Firenze (Italy)]. E-mail: loretta.landi@unifi.it; Rutigliano, F.A. [Dipartimento di Scienze Ambientali, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta (Italy)]. E-mail: floraa.rutigliano@unina2.it; Terribile, F. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: terribil@unina.it; Gianfreda, L. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: liliana.gianfreda@unina.it

    2006-11-15

    The effect of heavy metal contamination on biological and biochemical properties of Italian volcanic soils was evaluated in a multidisciplinary study, involving pedoenvironmental, micromorphological, physical, chemical, biological and biochemical analyses. Soils affected by recurring river overflowing, with Cr(III)-contaminated water and sediments, and a non-flooded control soil were analysed for microbial biomass, total and active fungal mycelium, enzyme activities (i.e., FDA hydrolase, dehydrogenase, {beta}-glucosidase, urease, arylsulphatase, acid phosphatase) and bacterial diversity (DGGE characterisation). Biological and biochemical data were related with both total and selected fractions of Cr and Cu (the latter deriving from agricultural chemical products) as well as with total and extractable organic C. The growth and activity of soil microbial community were influenced by soil organic C content rather than Cu or Cr contents. In fact, positive correlations between all studied parameters and organic C content were found. On the contrary, negative correlations were observed only between total fungal mycelium, dehydrogenase, arylsulphatase and acid phosphatase activities and only one Cr fraction (the soluble, exchangeable and carbonate bound). However, total Cr content negatively affected the eubacterial diversity but it did not determine changes in soil activity, probably because of the redundancy of functions within species of soil microbial community. On the other hand, expressing biological and biochemical parameters per unit of total organic C, Cu pollution negatively influenced microbial biomass, fungal mycelium and several enzyme activities, confirming soil organic matter is able to mask the negative effects of Cu on microbial community. - In studied soils organic C content resulted the principal factor influencing growth and activity of microbial community, with Cu and Cr contents having a lower relevance.

  8. Limiting the Spread of Resistant Pneumococci: Biological and Epidemiologic Evidence for the Effectiveness of Alternative Interventions

    OpenAIRE

    Stephanie J Schrag; Beall, Bernard; Scott F Dowell

    2000-01-01

    Streptococcus pneumoniae infections are a leading cause of respiratory illness in young children, the elderly, and persons with chronic medical conditions. The emergence of multidrug-resistant pneumococci has compromised the effectiveness of antibiotic therapy for pneumococcal infections. As antibiotic-resistant strains increase in prevalence, there is a need for interventions that minimize the spread of resistant pneumococci. In this review we provide a framework for understanding the spread...

  9. Molecular Biological basis for statin resistance in naturally statin-producing organisms

    DEFF Research Database (Denmark)

    Rems, Ana; Frandsen, Rasmus John Normand

    . A codonoptimized version of the mlcD gene was inserted into the Saccharomyces cerevisiae genome. The constructed yeast strain was tested for sensitivity to lovastatin, a statin structurally similar to compactin, by growing the strain on media containing lovastatin. The strain showed an increased resistance....... In addition MlcD confers statin resistance by being insensitive to the inhibiting effects of statins....

  10. Combined effects of temperature changes and metal contamination at different levels of biological organization in yellow perch

    Energy Technology Data Exchange (ETDEWEB)

    Grasset, Julie [Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6 (Canada); Ollivier, Élodie [Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Bougas, Bérénice [Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6 (Canada); Yannic, Glenn [Laboratoire d’Écologie Alpine, UMR CNRS 5553, Université de Savoie Mont Blanc, 73376 Le Bourget-du-lac (France); Campbell, Peter G.C. [Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Bernatchez, Louis [Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6 (Canada); Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca [Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada)

    2016-08-15

    Highlights: • Yellow perch were exposed to a combination of heat and metal (Cd or Ni) stress. • Kidney metal accumulation was greatly enhanced at higher temperatures. • Elevated temperatures negatively affected several indicators of condition and metabolic capacities. • Exposure to Ni stimulated gonad development. • Metal stress modified the normal response of antioxidant capacities and apoptosis to heat stress. - Abstract: In this study, we measured the effects of temperature (9 °C, 20 °C, and 28 °C), metal contamination (cadmium and nickel) and their interaction on yellow perch (Perca flavescens) using liver enzymatic and transcriptomic endpoints and biometric indices. Kidney metal concentrations increased with a rise of temperature. The biometric indices analysed (Fulton condition factor, pyloric cæca, hepatosomatic and gonadosomatic indices) generally decreased with an increase of temperature but not with metal contamination. At the enzymatic level, the activity of superoxide dismutase (SOD), involved in antioxidant response, was affected by both temperature and metal contamination, whereas the activity of glucose-6-phosphate dehydrogenase (G6PDH), involved in energy accumulation but also in antioxidant response, was only affected by metal exposure. The response of perch to the stressors at the transcriptional level differed from the metabolic response. In particular, the transcription level of the cco and g6pdh genes sharply decreased with increasing temperature, while the activities of the corresponding enzymes remained stable. The normal response of the transcription level of the apoptotic gene (diablo) to heat stress was also altered in metal-contaminated fish. The combination of metal and temperature stresses also modified the response of antioxidant metabolism induced by these stressors individually. This study contributes to a better understanding of the influences of natural stressors like temperature on biomarkers commonly used in

  11. On the multiscale origins of fracture resistance in human bone and its biological degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Barth, Holly D.; Ritchie, Robert O.

    2012-03-09

    Akin to other mineralized tissues, human cortical bone can resist deformation and fracture due to the nature of its hierarchical structure, which spans the molecular to macroscopic length-scales. Deformation at the smallest scales, mainly through the composite action of the mineral and collagen, contributes to bone?s strength or intrinsic fracture resistance, while crack-tip shielding mechanisms active on the microstructural scale contribute to the extrinsic fracture resistance once cracking begins. The efficiency with which these structural features can resist fracture at both small and large length-scales becomes severely degraded with such factors as aging, irradiation and disease. Indeed aging and irradiation can cause changes to the cross-link profile at fibrillar length-scales as well as changes at the three orders of magnitude larger scale of the osteonal structures, both of which combine to inhibit the bone's overall resistance to the initiation and growth of cracks.

  12. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress and future perspectives

    Science.gov (United States)

    The colonization of maize (Zea mays L.) and peanut (Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus and A. parasiticus results in the contamination with carcinogenic mycotoxins known as aflatoxins leading to economic losses as well as a potential health threat to human. The interactio...

  13. [Effects of biological regulated measures on active organic carbon and erosion-resistance in the Three Gorges Reservoir region soil].

    Science.gov (United States)

    Huang, Ru; Huang, Lin; He, Bing-Hui; Zhou, Li-Jiang; Yu, Chuan; Wang, Feng

    2013-07-01

    To gain a better knowledge of characteristics of soils and provide a scientific basis for soil erosion control in the Three Gorges Reservoir Area, contents of aggregates and total soil organic carbon (SOC), as well as soil active organic carbon fractions including particulate organic carbon (POC), readily oxidized organic carbon (ROC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) in the 0-30 cm soil layer under seven different biological regulated measures were studied by the field investigation combined with the laboratory analysis. Results showed that the content of the SOC and active organic carbon fractions decreased with the increasing soil depth; the content of the SOC and active organic carbon fractions in 0-10 cm was significantly higher than that in 20-30 cm. The stability of soil aggregates were also significantly influenced by biological regulated measures, the content of > 0.25 mm water-stable aggregates in seven types of biological regulated measures was in the order of Koelreuteria bipinnata + Cassia suffruticasa > hedgerows > closed forest > natural restoration > economic forest > traditional planting > control plot, moreover, the content of 0.25 mm water-stable aggregates correlated positively with the content of SOC. Soils under different biological regulated measures all demonstrated fractal features, and soil under the measure of Koelreuteria bipinnata + Cassia suffruticasa was found to have the lowest value of fractal dimension and soil erodiable K, indicating a relatively strong structure stability and erosion-resistant capacity. Negative correlation was observed when compared the content of active organic carbon fractions with the soil erodiable K. It can be concluded that properties of soil can be managed through biological regulated measures; thence had an influence on the soil erosion-resistant capacity.

  14. A Contaminant Trap as a Tool for Isolating and Measuring the Desorption Resistant Fraction of Soil Pollutants

    DEFF Research Database (Denmark)

    Mayer, Philipp; L. Olsen, Jannik; Gouliarmou, Varvara

    2011-01-01

    by the contaminant trap. The PAH concentrations in the second soil hardly decreased in the traps at all, in good agreement with the biodegradation experiment. The PAHs in this soil appeared to be “stuck” by strong sorption. The contaminant trap proved to be a practical approach to the isolation and quantification...... and activated carbon into the bottom of a large glass. Field-contaminated soil samples were then suspended in a cyclodextrin solution and incubated in such glasses for the continuous trapping of PAH molecules during their release from the soil matrix. The PAH concentrations remaining in the soil were determined...... by exhaustive extraction and compared with a biodegradation experiment. The concentration decline in the first soil was faster in the contaminant trap than in the biodegradation experiment, but the halting of the biodegradation process before reaching the legal threshold level was well indicated...

  15. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options

    Science.gov (United States)

    Lee, Chang-Ro; Lee, Jung Hun; Park, Moonhee; Park, Kwang Seung; Bae, Il Kwon; Kim, Young Bae; Cha, Chang-Jun; Jeong, Byeong Chul; Lee, Sang Hee

    2017-01-01

    Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized. PMID:28348979

  16. Impact of Spore Biology on the Rate of Kill and Suppression of Resistance in Bacillus anthracis▿

    OpenAIRE

    Drusano, G L; Okusanya, O. O.; Okusanya, A. O.; van Scoy, B.; Brown, D L; Fregeau, C.; Kulawy, R.; Kinzig, M; Sörgel, F; Heine, H. S.; Louie, A

    2009-01-01

    Bacillus anthracis is complex because of its spore form. The spore is invulnerable to antibiotic action. It also has an impact on the emergence of resistance. We employed the hollow-fiber infection model to study the impacts of different doses and schedules of moxifloxacin on the total-organism population, the spore population, and the subpopulations of vegetative- and spore-phase organisms that were resistant to moxifloxacin. We then generated a mathematical model of the impact of moxifloxac...

  17. Advances in the Development of Maize Resistance to Aflatoxin Contamination%玉米抗黄曲霉毒素污染的研究进展

    Institute of Scientific and Technical Information of China (English)

    陶芳; 程备久

    2012-01-01

    黄曲霉毒素污染是影响玉米食用安全的重要因素.筛选培育玉米抗性品种,从源头控制黄曲霉的侵染,是解决玉米田间及储存期黄曲霉污染的有效方法.对国内外玉米黄曲霉抗原种质的筛选鉴定、分子标记辅助选育及部分抗性机理等方面的研究进行了概述,并就目前存在的一些问题,探讨了我国玉米抗黄曲霉的研究方向.%Aflatoxins contamination significantly affects the food safety of maize industry. Development of afla-toxin - resistant commercial maize lines is probably the best and most widely explored strategy. This review will present information on the following areas;Identification of new sources of maize resistant germplasm; development resistance markers to aid in marker - assisted maize breeding and resistance mechanism study of maize against Aspergillus flavus. The problems in maize resistance to aflatoxin and further research efforts were discussed.

  18. Multi-species measurements of nitrogen isotopic composition reveal the spatial constraints and biological drivers of ammonium attenuation across a highly contaminated groundwater system.

    Science.gov (United States)

    Wells, Naomi S; Hakoun, Vivien; Brouyère, Serge; Knöller, Kay

    2016-07-01

    Groundwater under industrial sites is characterised by heterogeneous chemical mixtures, making it difficult to assess the fate and transport of individual contaminants. Quantifying the in-situ biological removal (attenuation) of nitrogen (N) is particularly difficult due to its reactivity and ubiquity. Here a multi-isotope approach is developed to distinguish N sources and sinks within groundwater affected by complex industrial pollution. Samples were collected from 70 wells across the two aquifers underlying a historic industrial area in Belgium. Below the industrial site the groundwater contained up to 1000 mg N l(-1) ammonium (NH4(+)) and 300 mg N l(-1) nitrate (NO3(-)), while downgradient concentrations decreased to ∼1 mg l(-1) DIN ([DIN] = [NH4(+)N] + [NO3(-)N] + [NO2(-)N]). Mean δ(15)N-DIN increased from ∼2‰ to +20‰ over this flow path, broadly confirming that biological N attenuation drove the measured concentration decrease. Multi-variate analysis of water chemistry identified two distinct NH4(+) sources (δ(15)NNH4(+) from -14‰ and +5‰) within the contaminated zone of both aquifers. Nitrate dual isotopes co-varied (δ(15)N: -3‰ - +60‰; δ(18)O: 0‰ - +50‰) within the range expected for coupled nitrification and denitrification of the identified sources. The fact that δ(15)NNO2(-) values were 50‰-20‰ less than δ(15)NNH4(+) values in the majority of wells confirmed that nitrification controlled N turnover across the site. However, the fact that δ(15)NNO2(-) was greater than δ(15)NNH4(+) in wells with the highest [NH4(+)] shows that an autotrophic NO2(-) reduction pathway (anaerobic NH4(+) oxidation or nitrifier-denitrification) drove N attenuation closest to the contaminant plume. This direct empirical evidence that both autotrophic and heterotrophic biogeochemical processes drive N attenuation in contaminated aquifers demonstrates the power of multiple N isotopes to untangle N cycling in highly complex

  19. Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants

    NARCIS (Netherlands)

    de Almeida Couto, Camila Rattes; Jurelevicius, Diogo de Azevedo; Alvarez, Vanessa Marques; van Elsas, Jan Dirk; Seldin, Lucy

    2016-01-01

    The use of dispersants in different stages of the oil production chain and for the remediation of water and soil is a well established practice. However, the choice for a chemical or biological dispersant is still a controversial subject. Chemical surfactants that persist long in the environment may

  20. EU-OPENSCREEN-chemical tools for the study of plant biology and resistance mechanisms.

    Science.gov (United States)

    Meiners, Torsten; Stechmann, Bahne; Frank, Ronald

    2014-10-01

    EU-OPENSCREEN is an academic research infrastructure initiative in Europe for enabling researchers in all life sciences to take advantage of chemical biology approaches to their projects. In a collaborative effort of national networks in 16 European countries, EU-OPENSCREEN will develop novel chemical compounds with external users to address questions in, among other fields, systems and network biology (directed and selective perturbation of signalling pathways), structural biology (compound-target interactions at atomic resolution), pharmacology (early drug discovery and toxicology) and plant biology (response of wild or crop plants to environmental and agricultural substances). EU-OPENSCREEN supports all stages of a tool development project, including assay adaptation, high-throughput screening and chemical optimisation of the 'hit' compounds. All tool compounds and data will be made available to the scientific community. EU-OPENSCREEN integrates high-capacity screening platforms throughout Europe, which share a rationally selected compound collection comprising up to 300,000 (commercial and proprietary compounds collected from European chemists). By testing systematically this chemical collection in hundreds of assays originating from very different biological themes, the screening process generates enormous amounts of information about the biological activities of the substances and thereby steadily enriches our understanding of how and where they act.

  1. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation.

    Science.gov (United States)

    Pardo, T; Clemente, R; Alvarenga, P; Bernal, M P

    2014-07-01

    The feasibility of two organic materials (pig slurry and compost) in combination with hydrated lime for the remediation of a highly acidic trace elements (TEs) contaminated mine soil was assessed in a mesocosm experiment. The effects of the amendments on soil biochemical and ecotoxicological properties were evaluated and related with the main physicochemical characteristics of soil and soil solution. The original soil showed impaired basic ecological functions due to the high availability of TEs, its acidic pH and high salinity. The three amendments slightly reduced the direct and indirect soil toxicity to plants, invertebrates and microorganisms as a consequence of the TEs' mobility decrease in topsoil, reducing therefore the soil associated risks. The organic amendments, especially compost, thanks to the supply of essential nutrients, were able to improve soil health, as they stimulated plant growth and significantly increased enzyme activities related with the key nutrients in soil. Therefore, the use of compost or pig slurry, in combination with hydrated lime, decreased soil ecotoxicity and seems to be a suitable management strategy for the remediation of highly acidic TEs contaminated soils.

  2. Biological responses to contaminants in darters (Etheostoma spp.) collected from rural and urban regions of the Grand River, ON, Canada.

    Science.gov (United States)

    Diamond, Sam R; Sultana, Tamanna; Servos, Mark R; Metcalfe, Chris D

    2016-09-01

    Urban and agricultural activities may introduce chemical stressors, including contaminants of emerging concern (CECs) and current use pesticides (CUPs) into riverine systems. The objective of this study was to determine if fish collected from various sites in the Grand River, ON, Canada show biomarkers of exposure to these classes of contaminants, and if the biomarker patterns vary in fish collected from urbanized and agricultural sites. Female rainbow darters (Etheostoma caeruleum) and female fantail darters (Etheostoma flabellare) were collected from the Grand River in June, 2014 for biomarker analysis from two urbanized sites and three agricultural sites. Over the same period of time, Polar Organic Chemical Integrative Samplers (POCIS) were deployed for 2weeks at each site to monitor for the presence of CUPs and CECs. Data on the liver somatic index for darters indicate site-specific differences in this condition factor (prural and urban sites (p<0.05). These data showing different impacts from chemical inputs related to land uses in the watershed may be useful in developing mitigation strategies to reduce impacts on fish and other aquatic organisms in receiving environments.

  3. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    Science.gov (United States)

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas

  4. Adiposity, Biological Markers of Disease, and Insulin Resistance in Mexican American Adolescents, 2004-2005

    Directory of Open Access Journals (Sweden)

    Anne R. Rentfro, PhD, RN

    2011-03-01

    Full Text Available IntroductionRates of obesity and overweight, which frequently lead to type 2 diabetes, have increased dramatically among US children during the past 30 years. We analyzed associations between insulin resistance and other markers of disease in a sample of Mexican American adolescents from a severely disadvantaged community on the Texas-Mexico border.MethodsWe analyzed results from 325 students from 1 high school in this descriptive study. We measured height, weight, waist circumference, blood pressure, blood glucose, and lipids; calculated body mass index; and estimated insulin resistance.ResultsApproximately 50% of our sample (mean age, 16 y were overweight or obese, and more participants were obese than overweight. More than 40% had high waist circumference, and 66% had elevated high-density lipoprotein cholesterol. These characteristics were already present in the youngest participants (aged 12 y. Although only 1% of participants had elevated fasting blood glucose, 27% exhibited insulin resistance and most of these were also obese. Similarly, participants with high waist circumference were more likely to exhibit insulin resistance than those with normal waist circumference.ConclusionParticipants in this sample had insulin resistance, a potent predictor of diabetes. Two markers, low high-density lipoprotein cholesterol and high waist circumference, were strongly linked to insulin resistance; the surrogate for central adiposity, waist circumference, exhibited strong association. We identified high levels of obesity and markers for future disease in our sample. These findings emphasize the need to address insulin resistance at least as early as adolescence to prevent adverse economic, social, and health consequences.

  5. Assessment of The Biological Integrity of The Native Vegetative Community In A Surface Flow Constructed Wetland Treating Industrial Park Contaminants

    Directory of Open Access Journals (Sweden)

    C. C. Galbrand

    2007-01-01

    Full Text Available A study was conducted to evaluate the biological integrity of a constructed wetland receiving landfill leachate and stormwater runoff from the Burnside Industrial Park, Dartmouth, Nova Scotia. The biological integrity of the constructed wetland was tested in the second growing season using vegetative community monitoring. The metrics analyzed were species diversity, species heterogeneity (dominance and exotic/invasive species abundance. There was no significant difference in the plant species diversity between the constructed wetland and the reference site. However, the constructed wetland supported a higher plant species richness than the reference site. The top three species in the constructed wetland were tweedy’s rush (Juncus brevicaudatus, soft rush (Juncus effusus and fowl mannagrass (Glyceria striata. In total, these three species occupied 46.4% of the sampled population. The top three species in the reference site were soft rush (Juncus effusus, sweetgale (Myrica gale and woolgrass (Scirpus cyperinus. In total, these three species occupied a more reasonable 32.6% of the sampled population. The reference site supported greater biological integrity as it had greater heterogeneity and a smaller abundance of exotic and invasive species compared to the constructed wetland (3.8% versus 10.7%. Although poor heterogeneity and the presence of weedy, exotic species can be a sign of degraded biological health and future problems, these are also common indicators of a system simply undergoing early succession. As the constructed wetland matures, its plant biodiversity may actually decrease, but its integrity, as measured by exotic and invasive species abundance as well as heterogeneity, is expected to increase, so long as invasive species present in the constructed wetland remain controlled through weeding during the first few growing seasons.

  6. Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater.

    Science.gov (United States)

    Espejo, Azahara; Aguinaco, Almudena; Amat, Ana M; Beltrán, Fernando J

    2014-01-01

    Removal of nine pharmaceutical compounds--acetaminophen (AAF), antipyrine (ANT), caffeine (CAF), carbamazepine (CRB), diclofenac (DCF), hydrochlorothiazide (HCT), ketorolac (KET), metoprolol (MET) and sulfamethoxazole (SMX)-spiked in a primary sedimentation effluent of a municipal wastewater has been studied with sequential aerobic biological and ozone advanced oxidation systems. Combinations of ozone, UVA black light and Fe(III) or Fe3O4 constituted the chemical systems. During the biological treatment (hydraulic residence time, HRT = 24 h), only AAF and CAF were completely eliminated, MET, SMX and HCT reached partial removal rates and the rest of compounds were completely refractory. With any ozone advanced oxidation process applied, the remaining pharmaceuticals disappear in less than 10 min. Fe3O4 or Fe(III) photocatalytic ozonation leads to 35% mineralization compared to 13% reached during ozonation alone after about 30-min reaction. Also, biodegradability of the treated wastewater increased 50% in the biological process plus another 150% after the ozonation processes. Both untreated and treated wastewater was non-toxic for Daphnia magna (D. magna) except when Fe(III) was used in photocatalytic ozonation. In this case, toxicity was likely due to the ferryoxalate formed in the process. Kinetic information on ozone processes reveals that pharmaceuticals at concentrations they have in urban wastewater are mainly removed through free radical oxidation.

  7. Biologic Stress, Oxidative Stress, and Resistance to Drugs: What Is Hidden Behind

    Directory of Open Access Journals (Sweden)

    Maria Pantelidou

    2017-02-01

    Full Text Available Stress can be defined as the homeostatic, nonspecific defensive response of the organism to challenges. It is expressed by morphological, biochemical, and functional changes. In this review, we present biological and oxidative stress, as well as their interrelation. In addition to the mediation in biologic stress (central nervous, immune, and hormonal systems and oxidative stress, the effect of these phenomena on xenobiotic metabolism and drug response is also examined. It is concluded that stress decreases drug response, a result which seems to be mainly attributed to the induction of hepatic drug metabolizing enzymes. A number of mechanisms are presented. Structure-activity studies are also discussed. Vitamin E, as well as two synthetic novel compounds, seem to reduce both oxidative and biological stress and, consequently, influence drug response and metabolism.

  8. A comparison of environmental contamination by patients infected or colonized with methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci: a multicenter study.

    Science.gov (United States)

    Knelson, Lauren P; Williams, David A; Gergen, Maria F; Rutala, William A; Weber, David J; Sexton, Daniel J; Anderson, Deverick J

    2014-07-01

    A total of 1,023 environmental surfaces were sampled from 45 rooms with patients infected or colonized with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant enterococci (VRE) before terminal room cleaning. Colonized patients had higher median total target colony-forming units (CFU) of MRSA or VRE than did infected patients (median, 25 CFU [interquartile range, 0-106 CFU] vs 0 CFU [interquartile range, 0-29 CFU]; P = .033).

  9. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Directory of Open Access Journals (Sweden)

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  10. Biofilm formation and sanitizer resistance of Escherichia coli 0157:H7 strains isolated from "High Event Period" meat contamination

    Science.gov (United States)

    In the meat industry, a “High Event Period” (HEP) is defined as a time period during which commercial meat plants experience a higher than usual rate of E. coli O157:H7 contamination. Genetic analysis indicated that within a HEP, most of the E. coli O157:H7 strains belong to a singular dominant str...

  11. Effects of Tebufenozide on the Biological Characteristics of Beet Armyworm (Spodoptera exigua Hübner) and Its Resistance Selection

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-wei; MU Wei; ZHU Bing-yu; LIU Feng

    2008-01-01

    In this article, the selection of tebufenozide to beet armyworm (Spodoptera exigua Hubner) was studied by the treatments to alternative generations' 3rd-instar larvae with LC50 dose and to continuous generations' larvae with LC10 dose; the effects of tebufenozide on the biological characteristics of current and subsequent generations were examined by the treatments to 3rd-instar larvae and egg pods in different concentrations. After treatments with LC50 dose till F11, the toxicity of tebufenozide to beet armyworm had no significant change, whereas the pupation rate, pupal weight, and fecundity were reduced markedly. After treatments with LC10 dose till F19, the beet armyworm only developed 3.52-fold resistance, and the main biological characteristics were nearly accordant in each generation. The livability was reduced 72 h later after treatments to 3rd-instar larvae, respectively in 2.5-40 (ig mL-', and larval duration, pupation rate, and pupal weight changed considerably with the increase in concentrations. The fecundity, larval livability, larval weight and pupal weight of subsequent generations were reduced as the dose increased over 10 ug mL-1. The hatching rate of egg pods did not differ with that of the controls obviously after treatment in 10-300 ug mL-1. But the larval livability, larval weight and pupal weight were reduced when eggs were exposed to 50 ug mL-1 dose or more. The results indicated that tebufenozide had low resistance risk to the current and subsequent generations of beet armyworm even if tebufenozide had significant effects on the biological characteristics of this insect.

  12. Nanotextured stainless steel for improved corrosion resistance and biological response in coronary stenting

    Science.gov (United States)

    Mohan, Chandini C.; Prabhath, Anupama; Cherian, Aleena Mary; Vadukumpully, Sajini; Nair, Shantikumar V.; Chennazhi, Krishnaprasad; Menon, Deepthy

    2014-12-01

    Nanosurface engineering of metallic substrates for improved cellular response is a persistent theme in biomaterials research. The need to improve the long term prognosis of commercially available stents has led us to adopt a `polymer-free' approach which is cost effective and industrially scalable. In this study, 316L stainless steel substrates were surface modified by hydrothermal treatment in alkaline pH, with and without the addition of a chromium precursor, to generate a well adherent uniform nanotopography. The modified surfaces showed improved hemocompatibility and augmented endothelialization, while hindering the proliferation of smooth muscle cells. Moreover, they also exhibited superior material properties like corrosion resistance, surface integrity and reduced metal ion leaching. The combination of improved corrosion resistance and selective vascular cell viability provided by nanomodification can be successfully utilized to offer a cell-friendly solution to the inherent limitations pertinent to bare metallic stents.

  13. Environmental and biological factors influencing the UV-C resistance of Listeria monocytogenes.

    Science.gov (United States)

    Gayán, E; Serrano, M J; Pagán, R; Álvarez, I; Condón, S

    2015-04-01

    In this investigation, the effect of microbiological factors (strain, growth phase, exposition to sublethal stresses, and photorepair ability), treatment medium characteristics (pH, water activity, and absorption coefficient), and processing parameters (dose and temperature) on the UV resistance of Listeria monocytogenes was studied. The dose to inactivate 99.99% of the initial population of the five strains tested ranged from 21.84 J/mL (STCC 5672) to 14.66 J/mL (STCC 4031). The UV inactivation of the most resistant strain did not change in different growth phases and after exposure to sublethal heat, acid, basic, and oxidative shocks. The pH and water activity of the treatment medium did not affect the UV resistance of L. monocytogenes, whereas the inactivation rate decreased exponentially with the absorption coefficient. The lethal effect of UV radiation increased synergistically with temperature between 50 and 60 °C (UV-H treatment). A UV-H treatment of 27.10 J/mL at 55 °C reached 2.99 and 3.69 Log10 inactivation cycles of L. monocytogenes in orange juice and vegetable broth, and more than 5 Log10 cycles in apple juice and chicken broth. This synergistic effect opens the possibility to design UV combined processes for the pasteurization of liquid foods with high absorptivity.

  14. Contaminant resistant molten carbonate fuel cell: Annual report, June 1986--June 1987. [Ni hydrogen-permeablel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Remick, R.J.; Jewulski, J.R.; Lu, S.H.

    1987-06-01

    This report summarizes the results of a year-long program evaluating the application of solid nickel foils as hydrogen-permeable barriers to contaminants (H/sub 2/S, HCl, NH/sub 3/) in molten carbonate fuel cells. A parametric study was conducted using 2.5 to 7.5 ..mu..m thick nickel foils in both laboratory-scale and bench-scale fuel cell tests. Two design configurations were evaluated, one in which the foil was placed adjacent to the electrolyte matrix and one in which the foil was placed between two porous metal plaques. In both cases the foil served as a barrier for contaminants. Post-test analysis of electrolyte matrices indicated that both configurations retarded or prevented contaminants from reaching the electrolyte. However, problems were encountered with the first configuration in that gaseous products built up on the electrolyte side of the anode, substantially increasing cell polarization. The second configuration performed significantly better than the first, delivering a performance nearly equal to that of a standard porous metal anode structure. However, the flux of hydrogen crossing the foil in this configuration proved to be sensitive to sulfur contaminants in the fuel. As a consequence, a reduction in current density at constant cell voltage was observed when H/sub 2/S was present in the fuel, despite the fact that no H/sub 2/S reached the three-phase region where electrode, fuel, and electrolyte meet. This behavior, however, may be overcome by using a foil other than pure nickel. 36 refs., 30 figs., 22 tabs.

  15. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains

    Directory of Open Access Journals (Sweden)

    Sara eScandorieiro

    2016-05-01

    Full Text Available Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare essential oil (OEO and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP, produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all seventeen strains tested, with minimal inhibitory concentrations (MIC ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 µM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min, while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA cells exposed to three different treatments (OEO, bio-AgNP and combination of the two, which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds

  16. Study of the influence of sporulation conditions on heat resistance of Geobacillus stearothermophilus used in the development of biological indicators for steam sterilization.

    Science.gov (United States)

    Guizelini, Belquis P; Vandenberghe, Luciana P S; Sella, Sandra Regina B R; Soccol, Carlos Ricardo

    2012-12-01

    Biological indicators are important tools in infection control via sterilization process monitoring. The use of a standardized spore crop with a well-defined heat resistance will guarantee the quality of a biological indicator. Ambient factors during sporulation can affect spore characteristics and properties, including heat resistance. The aim of this study is to evaluate the main sporulation factors responsible for heat resistance in Geobacillus stearothermophilus, a useful biological indicator for steam sterilization. A sequence of a three-step optimization of variables (initial pH, nutrient concentration, tryptone, peptone, beef extract, yeast extract, manganese sulfate, magnesium sulfate, calcium chloride and potassium phosphate) was carried out to screen those that have a significant influence on heat resistance of produced spores. The variable exerting greatest influence on G. stearothermophilus heat resistance during sporulation was found to be the initial pH. Lower nutrient concentration and alkaline pH around 8.5 tended to enhance decimal reduction time at 121 °C (D(121°C)). A central composite design enabled a fourfold enhancement in heat resistance, and the model obtained accurately describes positive pH and negative manganese sulfate concentration influence on spore heat resistance.

  17. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  18. Decontamination Strategy for Large Area and/or Equipment Contaminated with Chemical and Biological Agents using a High Energy Arc Lamp (HEAL)

    Energy Technology Data Exchange (ETDEWEB)

    Schoske, Richard [ORNL; Kennedy, Patrick [ORNL; Duty, Chad E [ORNL; Smith, Rob R [ORNL; Huxford, Theodore J [ORNL; Bonavita, Angelo M [ORNL; Engleman, Greg [ORNL; Vass, Arpad Alexander [ORNL; Griest, Wayne H [ORNL; Ilgner, Ralph H [ORNL; Brown, Gilbert M [ORNL

    2009-04-01

    A strategy for the decontamination of large areas and or equipment contaminated with Biological Warfare Agents (BWAs) and Chemical Warfare Agents (CWAs) was demonstrated using a High Energy Arc Lamp (HEAL) photolysis system. This strategy offers an alternative that is potentially quicker, less hazardous, generates far less waste, and is easier to deploy than those currently fielded by the Department of Defense (DoD). For example, for large frame aircraft the United States Air Force still relies on the combination of weathering (stand alone in environment), air washing (fly aircraft) and finally washing the aircraft with Hot Soapy Water (HSW) in an attempt to remove any remaining contamination. This method is laborious, time consuming (upwards of 12+ hours not including decontamination site preparation), and requires large amounts of water (e.g., 1,600+ gallons for a single large frame aircraft), and generates large amounts of hazardous waste requiring disposal. The efficacy of the HEAL system was demonstrated using diisopropyl methyl phosphonate (DIMP) a G series CWA simulant, and Bacillus globigii (BG) a simulant of Bacillus anthracis. Experiments were designed to simulate the energy flux of a field deployable lamp system that could stand-off 17 meters from a 12m2 target area and uniformly expose a surface at 1360 W/m2. The HEAL system in the absence of a catalyst reduced the amount of B. globigii by five orders of magnitude at a starting concentration of 1.63 x 107 spores. In the case of CWA simulants, the HEAL system in the presence of the catalyst TiO2 effectively degraded DIMP sprayed onto a 100mm diameter Petri dish in 5 minutes.

  19. Minimally invasive transcriptome profiling in salmon: Detection of biological response in rainbow trout caudal fin following exposure to environmental chemical contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Veldhoen, Nik; Stevenson, Mitchel R. [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC V7H 1B1 (Canada); Rieberger, Kevin J. [Environmental Sustainability and Strategic Policy Division, Water Protection and Sustainability Branch, British Columbia Ministry of Environment, P.O. Box 9362 Stn Prov Govt, Victoria, BC V8W 9M2 (Canada); Aggelen, Graham van [Pacific and Yukon Laboratory for Environmental Testing, Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC V7H 1B1 (Canada); Meays, Cynthia L. [Environmental Sustainability and Strategic Policy Division, Water Protection and Sustainability Branch, British Columbia Ministry of Environment, P.O. Box 9362 Stn Prov Govt, Victoria, BC V8W 9M2 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada)

    2013-10-15

    Highlights: •A minimally-invasive tail fin biopsy assay was developed for use in fish. •Quantitative real time polymerase reaction provided gene expression readout. •Results were comparable to classical liver tissue responses. •The approach was used on two salmonid species and can be coupled with genomic sex determination using an additional biopsy for maximal information. -- Abstract: An increasing number of anthropogenic chemicals have demonstrated potential for disruption of biological processes critical to normal growth and development of wildlife species. Both anadromous and freshwater salmon species are at risk of exposure to environmental chemical contaminants that may affect migratory behavior, environmental fitness, and reproductive success. A sensitive metric in determination of the presence and impact of such environmental chemical contaminants is through detection of changes in the status of gene transcript levels using a targeted quantitative real-time polymerase chain reaction assay. Ideally, the wildlife assessment strategy would incorporate conservation-centered non-lethal practices. Herein, we describe the development of such an assay for rainbow trout, Oncorhynchus mykiss, following an acute 96 h exposure to increasing concentrations of either 17α-ethinyl estradiol or cadmium. The estrogenic screen included measurement of mRNA encoding estrogen receptor α and β isoforms, vitellogenin, vitelline envelope protein γ, cytochrome p450 family 19 subfamily A, aryl hydrocarbon receptor, and the stress indicator, catalase. The metal exposure screen included evaluation of the latter two mRNA transcripts along with those encoding the metallothionein A and B isoforms. Exposure-dependent transcript abundance profiles were detected in both liver and caudal fin supporting the use of the caudal fin as a non-lethally obtained tissue source. The potential for both transcriptome profiling and genotypic sex determination from fin biopsy was extended, in

  20. Concentration of organic contaminants in fish and their biological effects in a wastewater-dominated urban stream.

    Science.gov (United States)

    Lozano, Nuria; Rice, Clifford P; Pagano, James; Zintek, Larry; Barber, Larry B; Murphy, Elizabeth W; Nettesheim, Todd; Minarik, Tom; Schoenfuss, Heiko L

    2012-03-15

    Data are presented on the concentrations of alkylphenol and alkylphenol ethoxylates (APEs) and persistent organic compounds in largemouth bass collected from a waste-water dominated stream in downtown Chicago. The fish residue concentrations of APEs are compared to concentrations of the APEs in the water that were collected at weekly intervals over two months bracketing the fall (2006) and a spring (2007) fish collection. The concentrations of APEs were significantly higher in the spring-collected fish (5.42μg/g) versus the fall (0.99μg/g) tand these differences were shared by differences in the water concentrations (spring - 11.47 versus fall - 3.44μg/L). The differences in water concentration were negatively correlated with water temperatures observed over the two sampling times. Fish residue concentrations of persistent organic compounds (PCBs, PBDEs, toxaphene, and many legacy pesticides including the DDT family) did not vary from fall to spring. Some of these residue concentrations were comparable to the highest NPE (nonylphenol ethoxylate) homologue concentrations, e.g. NP1EO was 3.5μg/g in the bass for the spring, the PBDE-congener 47 and p,p'-DDE averaged 1.0μg/g and 0.5μg/g, respectively, over both seasons. All the other persistent single-analyte concentrations were lower. Biological endpoints for endocrine effects measured in the same fish showed that there was an apparent positive correlation for physiological effects based on increased vitellogenin levels in males versus concentration of NPEs; however there were no observable histological differences in fall versus spring fish samples.

  1. Biological monitoring as a useful tool for the detection of a coal-tar contamination in bitumen-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Raulf-Heimsoth, M.; Angerer, J.; Pesch, B.; Marczynski, B.; Hahn, J.U.; Spickenheuer, A.; Preuss, R.; Ruhl, R.; Rode, P.; Bruning, T. [Institute at the Ruhr University of Bochum, Bochum (Germany)

    2008-07-01

    In our research project entitled 'Chemical irritative and/or genotoxic effect of fumes of bitumen under high processing temperatures on the airways,' 73 mastic asphalt workers exposed to fumes of bitumen and 49 construction nonexposed workers were analyzed and compared with respect to polycyclic aromatic hydrocarbons (PAHs) exposure and exposure-related health effects. In order to assess the internal exposure the monohydroxylated metabolites of pyrene, 1-hydroxypyrene (1-OHP), and phenanthrene, 1-, 2- and 9-, and 3- and 4-hydroxyphenanthrene (OHPH) were determined in pre- and post-shift urinary samples. Significantly higher concentrations 1-OHP and OHPH were detected in the post-shift urine samples of 7 mastic asphalt workers working on the same construction site compared to the reference workers and all other 66 mastic asphalt workers. The adjusted mean OHPH in the reference, 66 mastic worker, and 7 worker subgroups was 1022, 1544, and 12919 ng/g creatinine (crn) respectively, indicating a marked rise in the 7 worker subgroup. In addition, there was a more than 12-fold increase of PAH metabolites from pre- to post-shift in these 7 workers, whereas in the other mastic asphalt workers there was only a twofold rise in PAH-metabolite concentration between pre- and post-shift values. The analysis of a drilling core from the construction site of the seven workers led to the detection of the source for this marked PAH exposure during the working shift as being coal tar plates, which were, without knowledge of the workers and coordinators, the underground material of the mastic asphalt layer. The evaluation of the stationary workplace concentration showed enhanced levels of phenanthrene, pyrene, fluorene, anthracene, and acenaphthene during working shifts at the construction site of these seven workers. Our study shows that biological monitoring is also a useful tool for the detection of unrecognized sources with high PAH concentrations.

  2. Biological monitoring as a useful tool for the detection of a coal-tar contamination in bitumen-exposed workers.

    Science.gov (United States)

    Raulf-Heimsoth, Monika; Angerer, Jürgen; Pesch, Beate; Marczynski, Boleslaw; Hahn, Jens Uwe; Spickenheuer, Anne; Preuss, Ralf; Rühl, Reinhold; Rode, Peter; Brüning, Thomas

    2008-01-01

    In our research project entitled "Chemical irritative and/or genotoxic effect of fumes of bitumen under high processing temperatures on the airways," 73 mastic asphalt workers exposed to fumes of bitumen and 49 construction nonexposed workers were analyzed and compared with respect to polycyclic aromatic hydrocarbons (PAHs) exposure and exposure-related health effects. In order to assess the internal exposure the monohydroxylated metabolites of pyrene, 1- hydroxypyrene (1-OHP), and phenanthrene, 1-, 2- and 9-, and 3- and 4-hydroxyphenanthrene (OHPH) were determined in pre- and post-shift urinary samples. Significantly higher concentrations 1-OHP and OHPH were detected in the post-shift urine samples of 7 mastic asphalt workers working on the same construction site compared to the reference workers and all other 66 mastic asphalt workers. The adjusted mean OHPH in the reference, 66 mastic worker, and 7 worker subgroups was 1022, 1544, and 12919 ng/g creatinine (crn) respectively, indicating a marked rise in the 7 worker subgroup. In addition, there was a more than 12-fold increase of PAH metabolites from pre- to post-shift in these 7 workers, whereas in the other mastic asphalt workers there was only a twofold rise in PAH-metabolite concentration between pre- and post-shift values. The analysis of a drilling core from the construction site of the seven workers led to the detection of the source for this marked PAH exposure during the working shift as being coal tar plates, which were, without knowledge of the workers and coordinators, the underground material of the mastic asphalt layer. The evaluation of the stationary workplace concentration showed enhanced levels of phenanthrene, pyrene, fluorene, anthracene, and acenaphthene during working shifts at the construction site of these seven workers. Our study shows that biological monitoring is also a useful tool for the detection of unrecognized sources with high PAH concentrations.

  3. Genetically Engineering Bacillus subtilis with a Heat-Resistant Arsenite Methyltransferase for Bioremediation of Arsenic-Contaminated Organic Waste.

    Science.gov (United States)

    Huang, Ke; Chen, Chuan; Shen, Qirong; Rosen, Barry P; Zhao, Fang-Jie

    2015-10-01

    Organic manures may contain high levels of arsenic (As) due to the use of As-containing growth-promoting substances in animal feed. To develop a bioremediation strategy to remove As from organic waste, Bacillus subtilis 168, a bacterial strain which can grow at high temperature but is unable to methylate and volatilize As, was genetically engineered to express the arsenite S-adenosylmethionine methyltransferase gene (CmarsM) from the thermophilic alga Cyanidioschyzon merolae. The genetically engineered B. subtilis 168 converted most of the inorganic As in the medium into dimethylarsenate and trimethylarsine oxide within 48 h and volatized substantial amounts of dimethylarsine and trimethylarsine. The rate of As methylation and volatilization increased with temperature from 37 to 50°C. When inoculated into an As-contaminated organic manure composted at 50°C, the modified strain significantly enhanced As volatilization. This study provides a proof of concept of using genetically engineered microorganisms for bioremediation of As-contaminated organic waste during composting.

  4. Codling Moth, Cydia pomonella (Lepidoptera: Tortricidae – Major Pest in Apple Production: an Overview of its Biology, Resistance, Genetic Structure and Control Strategies

    Directory of Open Access Journals (Sweden)

    Ivana Pajač

    2011-06-01

    Full Text Available The codling moth Cydia pomonella (CM (Linnaeus is a key pest in pome fruit production with a preference for apple. The pest is very adaptable to different climatic conditions and is known for developing resistance to several chemical groups of insecticides. Because of these reasons, the populations of codling moth are differentiated in many ecotypes of various biological and physiological development requirements. The article provides a bibliographic review of investigation about: morphology, biology, dispersal, damages, resistance to insecticides, population genetic structure and genetic control of this pest.

  5. Resistance and susceptibility of alfalfa (Medicago sativa L.) cultivars to the aphid Therioaphis maculata (Homoptera:Aphididae): insect biology and cultivar evaluation

    Institute of Scientific and Technical Information of China (English)

    ALEXANDRE DE ALMEIDA E SILVA; ELENICE MOURO VARANDA; JOS(E) RICARDO BAROSELA

    2006-01-01

    Biology of the aphid Therioaphis maculata was studied on alfalfa (Medicago sativa L.), including four resistant (Mesa-Sirsa, CUF101, Baker and Lahontan) and two susceptible (ARC and Caliverde) alfalfa cultivars, and one of the most cropped Brazilian cultivars, Crioula. Under controlled conditions, antibiosis (i.e., reduced longevity, fecundity and increased mortality of the aphid) was observed mainly on the resistant alfalfa cultivars,except on Lahontan. Crioula seemed to be tolerant to aphids. Present data support geographic limitation usage of cultivars, and we suggest Baker and Mesa-Sirsa as sources of antibiosis,and provide biological information of a tropical T. maculata biotype on alfalfa.

  6. Biological and physical approaches to improve induced resistance against green mold of stored citrus fruit.

    Science.gov (United States)

    Arras, G; Dhallewin, G; Petretto, A; Marceddu, S; Loche, M; Agabbio, M

    2005-01-01

    Health and environmental concerns have point out the need to improve or change several manufacturing steps in the food chain. In this context particular attention should be given to the technologies involved in fruits and vegetables production. Nearly all fresh fruit and vegetables are subjected to different periods of storage and/or shelf-life before of their consumption. This implies the need to protect the commodities from microbial spoilage. Some Citrus species (e.g. lemon and grapefruit) may be stored for several months before consumption and then post-harvest treatments are essential to contain green (Penicillium digitatum) and blue (P. italicum) moulds. Alternative approaches to chemicals usually have a lower efficacy in containing rots but fulfill the consumer's expectation. Among the alternative strategies, the improvement of host natural resistance is promising. In this regard, we report some results concerning the use of biotic (yeast) and abiotic agents as inducers of phytoalexin (i.e. scoparone and/or scopoletin) accumulation in Citrus rind and its importance in the control of fungal decay. In all experiments the inducers were applied on fruits before or 24 h after inoculation with P. digitatum and the rot severity was monitored 7 days later. The accumulation of phytoalexins was monitored according to a standard methodology by HPLC. In all experiments a positive correlation was found between increase of the phytoalexin scoparone in host tissue and reduction of decay.

  7. A pitfall in diagnosis of human prion diseases using detection of protease-resistant prion protein in urine. Contamination with bacterial outer membrane proteins.

    Science.gov (United States)

    Furukawa, Hisako; Doh-ura, Katsumi; Okuwaki, Ryo; Shirabe, Susumu; Yamamoto, Kazuo; Udono, Heiichiro; Ito, Takashi; Katamine, Shigeru; Niwa, Masami

    2004-05-28

    Because a definite diagnosis of prion diseases relies on the detection of the abnormal isoform of prion protein (PrPSc), it has been urgently necessary to establish a non-invasive diagnostic test to detect PrPSc in human prion diseases. To evaluate diagnostic usefulness and reliability of the detection of protease-resistant prion protein in urine, we extensively analyzed proteinase K (PK)-resistant proteins in patients affected with prion diseases and control subjects by Western blot, a coupled liquid chromatography and mass spectrometry analysis, and N-terminal sequence analysis. The PK-resistant signal migrating around 32 kDa previously reported by Shaked et al. (Shaked, G. M., Shaked, Y., Kariv-Inbal, Z., Halimi, M., Avraham, I., and Gabizon, R. (2001) J. Biol. Chem. 276, 31479-31482) was not observed in this study. Instead, discrete protein bands with an apparent molecular mass of approximately 37 kDa were detected in the urine of many patients affected with prion diseases and two diseased controls. Although these proteins also gave strong signals in the Western blot using a variety of anti-PrP antibodies as a primary antibody, we found that the signals were still detectable by incubation of secondary antibodies alone, i.e. in the absence of the primary anti-PrP antibodies. Mass spectrometry and N-terminal protein sequencing analysis revealed that the majority of the PK-resistant 37-kDa proteins in the urine of patients were outer membrane proteins (OMPs) of the Enterobacterial species. OMPs isolated from these bacteria were resistant to PK and the PK-resistant OMPs from the Enterobacterial species migrated around 37 kDa on SDS-PAGE. Furthermore, nonspecific binding of OMPs to antibodies could be mistaken for PrPSc. These findings caution that bacterial contamination can affect the immunological detection of prion protein. Therefore, the presence of Enterobacterial species should be excluded in the immunological tests for PrPSc in clinical samples, in

  8. Biologia e resistência a herbicidas de espécies do gênero Conyza / Biology and herbicide resistance of Conyza species

    Directory of Open Access Journals (Sweden)

    Oscar Mitsuo Yamashita

    2011-08-01

    Full Text Available Buva é o nome popular de plantas daninhas do gênero Conyza pertencentes à família Asteraceae e representadas no Brasil particularmente por duas espécies Conyza canadensis e Conyza bonariensis. Ambas infestam áreas de cultivo agrícola, além de campos, áreas de pastagem e áreas não-cultivadas. Suas características biológicas como a produção de grande quantidade de sementes viáveis, capacidade em se desenvolver sob palhada e dispersão a longas distâncias, tornam-se importantes infestantes em áreas de cultivo, especialmente em sistema de semeadura direta (SSD. Com essa prática, visando à manutenção da cobertura vegetal e o não revolvimento do solo, o manejo de plantas daninhas se limitou ao controle químico. Essas duas espécies, adaptadas às características de SSD, sofreram pressão de seleção devido à intensa e repetida utilização dos mesmos herbicidas, surgindo e se multiplicando biótipos resistentes a diversos ingredientes ativos. O conhecimento da ecofisiologia das espécies permite o desenvolvimento e implantação de práticas culturais adequadas para reduzir os efeitos negativos da infestação cada vez maior de Conyza. Dada à importância dessas espécies nos agroecossistemas, e a necessidade de informações sobre a sua biologia germinativa, objetivou-se nesta revisão, descrever as características morfo-fisiológicas dessas espécies, além de relatar o desenvolvimento da resistência a herbicidas.AbstractHorseweed is the popular name of weeds belonging to Asteraceae family and represented in Brazil, particularly by two species: Conyza canadensis and Conyza bonariensis. Both species infest areas of agricultural crop, besides fields, pasture and no-cultivated areas. Their biological characteristics as the production of great amount of viable seeds, ability in develop under straw and dispersion over long distances make them important in the no till system. Due to the practice of maintenance of the

  9. Transfer of drug-resistance plasmids by conjugation from nosocomial strains of Serratia marcescens to Escherichia coli in biological fluids of human origin.

    Science.gov (United States)

    Mendez, F J; Mendoza, M C; Llaneza, J J; Hardisson, C

    1982-09-01

    Six independent isolates of multi-resistant Serratia marcescens associated with nosocomial infections were examined for their ability to transfer drug-resistance plasmids by conjugation to Escherichia coli in biological fluids of human origin, such as normal and pathological urine, faeces, blood plasma and ascitic fluid. Luria broth was used as a control. Positive transfer was found in all media assayed. The different patterns of linked transferable resistance found in the transconjugants corresponded to the phenotypic expression of five plasmids. The frequencies of transfer varied with plasmid types and media employed. The culture media did not affect the phenotypic expression of the plasmids.

  10. Characterization of the extremely arsenic-resistant Brevibacterium linens strain AE038-8 isolated from contaminated groundwater in Tucumán, Argentina

    Science.gov (United States)

    Maizel, Daniela; Blum, Jodi S.; Ferrero, Marcela A.; Utturkar, Sagar M.; Brown, Steven D.; Rosen, Barry P.; Oremland, Ronald S.

    2015-01-01

    Brevibacterium linens AE038-8, isolated from As-contaminated groundwater in Tucumán (Argentina), is highly resistant to arsenic oxyanions, being able to tolerate up to 1 M As(V) and 75 mM As(III) in a complex medium. Strain AE038-8 was also able to reduce As(V) to As(III) when grown in complex medium but paradoxically it could not do this in a defined minimal medium with sodium acetate and ammonium sulfate as carbon and nitrogen sources, respectively. No oxidation of As(III) to As(V) was observed under any conditions. Three copies of the ars operon comprising arsenic resistance genes were found on B. linens AE038-8 genome. In addition to the well known arsC, ACR3 andarsR, two copies of the arsO gene of unknown function were detected.

  11. Chlor-alkali plant contamination of Aussa River sediments induced a large Hg-resistant bacterial community

    Science.gov (United States)

    Baldi, Franco; Marchetto, Davide; Gallo, Michele; Fani, Renato; Maida, Isabel; Covelli, Stefano; Fajon, Vesna; Zizek, Suzana; Hines, Mark; Horvat, Milena

    2012-11-01

    A closed chlor-alkali plant (CAP) discharged Hg for decades into the Aussa River, which flows into Marano Lagoon, resulting in the large-scale pollution of the lagoon. In order to get information on the role of bacteria as mercury detoxifying agents, analyses of anions in the superficial part (0-1 cm) of sediments were conducted at four stations in the Aussa River. In addition, measurements of biopolymeric carbon (BPC) as a sum of the carbon equivalent of proteins (PRT), lipids (LIP), and carbohydrates (CHO) were performed to correlate with bacterial biomass such as the number of aerobic heterotrophic cultivable bacteria and their percentage of Hg-resistant bacteria. All these parameters were used to assess the bioavailable Hg fraction in sediments and the potential detoxification activity of bacteria. In addition, fifteen isolates were characterized by a combination of molecular techniques, which permitted their assignment into six different genera. Four out of fifteen were Gram negative with two strains of Stenotrophomonas maltophilia, one Enterobacter sp., and one strain of Brevibacterium frigoritolerans. The remaining strains (11) were Gram positive belonging to the genera Bacillus and Staphylococcus. We found merA genes in only a few isolates. Mercury volatilization from added HgCl2 and the presence of plasmids with the merA gene were also used to confirm Hg reductase activity. We found the highest number of aerobic heterotrophic Hg-resistant bacteria (one order magnitude higher) and the highest number of Hg-resistant species (11 species out of 15) at the confluence of the River Aussa and Banduzzi's channel, which transport Hg from the CAP, suggesting that Hg is strongly detoxified [reduced to Hg(0)] at this location.

  12. Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil.

    Science.gov (United States)

    Li, Zhefei; Ma, Zhanqiang; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2014-03-01

    Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed both copper resistance and growth promotion of leguminous plants in copper-contaminated soil. Nevertheless, the genetic and biochemical mechanisms responsible for copper resistance in S. meliloti CCNWSX0020 remained uncharacterized. To investigate genes involved in copper resistance, an S. meliloti CCNWSX0020 Tn5 insertion library of 14,000 mutants was created. Five copper-sensitive mutants, named SXa-1, SXa-2, SXc-1, SXc-2, and SXn, were isolated, and the disrupted regions involved were identified by inverse PCR and subsequent sequencing. Both SXa-1 and SXa-2 carried a transposon insertion in lpxXL (SM0020_18047), encoding the LpxXL C-28 acyltransferase; SXc-1 and SXc-2 carried a transposon insertion in merR (SM0020_29390), encoding the regulatory activator; SXn contained a transposon insertion in omp (SM0020_18792), encoding a hypothetical outer membrane protein. The results of reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that SM0020_05862, encoding an unusual P-type ATPase, was regulated by the MerR protein. Analysis of the genome sequence showed that this P-type ATPase did not contain an N-terminal metal-binding domain or a CPC motif but rather TPCP compared with CopA from Escherichia coli. Pot experiments were carried out to determine whether growth and copper accumulation of the host plant M. lupulina were affected in the presence of the wild type or the different mutants. Soil samples were subjected to three levels of copper contamination, namely, the uncontaminated control and 47.36 and 142.08 mg/kg, and three replicates were conducted for each treatment. The results showed that the wild-type S. meliloti CCNWSX0020 enabled the host plant to grow better and accumulate copper ions. The plant dry weight and copper content of M. lupulina inoculated with the 5 copper

  13. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.

    2015-04-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation. The treatment process achieved 3.5 logs removal of heterotrophic bacteria and up to 3.5 logs removal of fecal coliforms. The final chlorinated effluent had 1.8×102 MPN/100mL of fecal coliforms and fulfils the required quality for restricted irrigation. 16S rRNA gene-based high-throughput sequencing showed that several genera associated with opportunistic pathogens (e.g. Acinetobacter, Aeromonas, Arcobacter, Legionella, Mycobacterium, Neisseria, Pseudomonas and Streptococcus) were detected at relative abundance ranging from 0.014 to 21 % of the total microbial community in the influent. Among them, Pseudomonas spp. had the highest approximated cell number in the influent but decreased to less than 30 cells/100mL in both types of effluent. A culture-based approach further revealed that Pseudomonas aeruginosa was mainly found in the influent and non-chlorinated effluent but was replaced by other Pseudomonas spp. in the chlorinated effluent. Aeromonas hydrophila could still be recovered in the chlorinated effluent. Quantitative microbial risk assessment (QMRA) determined that only chlorinated effluent should be permitted for use in agricultural irrigation as it achieved an acceptable annual microbial risk lower than 10-4 arising from both P. aeruginosa and A. hydrophila. However, the proportion of bacterial isolates resistant to 6 types of antibiotics increased from 3.8% in the influent to 6.9% in the chlorinated effluent. Examples of these antibiotic-resistant isolates in the chlorinated effluent include Enterococcus and Enterobacter spp. Besides the presence of antibiotic-resistant bacterial isolates, tetracycline resistance genes tetO, tetQ, tetW, tetH, tetZ were also present at an average 2.5×102, 1.6×102, 4.4×102, 1

  14. An observational prospective study of topical acidified nitrite for killing methicillin-resistant Staphylococcus aureus (MRSA in contaminated wounds

    Directory of Open Access Journals (Sweden)

    Ferguson Gail P

    2011-10-01

    Full Text Available Abstract Background Endogenous nitric oxide (NO kills bacteria and other organisms as part of the innate immune response. When nitrite is exposed to low pH, NO is generated and has been used as an NO delivery system to treat skin infections. We demonstrated eradication of MRSA carriage from wounds using a topical formulation of citric acid (4.5% and sodium nitrite (3% creams co-applied for 5 days to 15 wounds in an observational prospective pilot study of 8 patients. Findings Following treatment with topical citric acid and sodium nitrite, 9 of 15 wounds (60% and 3 of 8 patients (37% were cleared of infection. MRSA isolates from these patients were all sensitive to acidified nitrite in vitro compared to methicillin-sensitive S. aureus and a reference strain of MRSA. Conclusions Nitric oxide and acidified nitrite offer a novel therapy for control of MRSA in wounds. Wounds that were not cleared of infection may have been re-contaminated or the bioavailability of acidified nitrite impaired by local factors in the tissue.

  15. Do Offspring of Insects Feeding on Defoliation-Resistant Trees Have Better Biological Performance When Exposed to Nutritionally-Imbalanced Food?

    Science.gov (United States)

    Quezada-Garcia, Roberto; Fuentealba, Alvaro; Nguyen, Ngoc; Bauce, Éric

    2015-01-12

    White spruce (Picea glauca (Moench) Voss) trees that are resistant or susceptible to spruce budworm (Choristoneura fumiferana (Clem.)) attack were identified in a southern Quebec plantation. Due to high mortality-induced selective pressures imposed by resistant trees on spruce budworm larvae, insects that survive on resistant trees exhibited greater biological performance than those on susceptible trees. We tested the hypothesis that this better biological performance is maintained across generations when progeny were subjected to nutritional stress. We collected pupae from resistant and susceptible trees (phenotype). Adults were reared under controlled laboratory conditions. Progeny were subsequently reared on two types of artificial diet (high vs. low quality). Low quality diet simulated food quality deterioration during outbreak conditions. Results confirmed that surviving insects collected from resistant trees have better performance than those from susceptible trees. Offspring performance (pupal mass, developmental time) was affected only by diet quality. These results suggest that adaptive advantages that would be acquired from parents fed on resistant trees are lost when progeny are exposed to nutritionally-imbalanced food, but the effects persist when larvae are fed a balanced diet. Offspring mortality, fecundity and fertility were positively influenced by parental origin (tree phenotype).

  16. Bacterial contamination of orally-consumed crude herbal remedies:A potential source for multi-drug resistant patho-gens in man

    Institute of Scientific and Technical Information of China (English)

    O.G.Oyero; A.O.B.Oyefolu

    2009-01-01

    Objective:The acceptability of herbal remedies for alleviating discomforts and ill-health has become very pop-ular,on the account of the increasing cost of allopathic medicine for personal health maintenance.The observ-able non-adherence of herbalists to the established World Health Organization (WHO)/National Agency for Food and Drug Administration Control (NAFDAC)regulations for the quality control of herbal medicines is an issue for concern.In view of this,34 popular and widely consumed crude herbal remedies in southwestern,Ni-geria were screened for compliance with standard limits for bacterial contamination,bacteria flora and their an-tibiotic susceptibility pattern.Methods:Isolates recovered from samples were identified using the cultural, morphological and biochemical characteristics.They were also tested for drug sensitivity using standard proce-dures.Results:A heavy bacteria load ranging from 3.00 ×103 -9.58 ×105 CFU /ML and 1.20 ×105 -5.41 ×105 CFU /ML was observed for water and spirit extracted preparations respectively.The bacteria flora cum contaminants were:Staphylococcus aureus,Bacillus cereus,Bacillus subtilis,Pseudomonas aeruginosa, Micrococcus luteus,Lactobacillus plantarum,Klebsiella pneumoniae,Escherichia coli,streptococcus,Shigella, Neisseria,Arthrobacter,Kurthia and Clostridium species.All the isolates were multi-drug resistant (MDR) strains.Conclusion:The crude herbal preparations consumed in Nigeria failed to comply with the internation-ally recognized standards regarding bacteria load and flora.The presence of MDR pathogens is of greatest con-cern.It poses a great risk to consumer's health and could be a source of introducing MDR organisms into the human population.There is the need for the enforcement of established guidelines to ensure the safety of these preparations.

  17. 重金属污染场地电阻率法勘探的建模和仿真%Modeling and Simulation of Heavy Metal Contaminated Sites Survey Using DC Resistivity Method

    Institute of Scientific and Technical Information of China (English)

    王玉玲; 王彦文; 能昌信; 董路

    2013-01-01

    In order to improve the detection of the resistivity method for heavy metal contaminated sites, we analyzed the resistivity distribution characteristics of typical heavy metal contaminated sites and then established the geoe-lectric model of them. We simulated the DC resistivity survey with wenner and dipole-dipole arrays of heavy metal contaminated sites using the finite element method, and came to the apparent resistivity profiles. The results show that the two arrays have different abilities to identify contaminated areas. Both arrays reflect the horizontal position of the contaminated areas, and Wenner reflect the depth and shape of the contaminated areas better than dipole-dipole but dipole-dipole reflect the resistivity difference of the anomalous areas superior to the Wenner. The results also show that there are differences between the apparent resistivity profiles and the model of contaminated sites, so further data processing is necessary for accurately determine the scope of pollution.%为了提高对重金属污染场地的探测能力,分析了典型重金属污染场地的电阻率分布特征,建立了重金属污染场地的地电模型.利用有限元方法正演仿真了温纳和偶极对重金属污染场地的探测,得出视电阻率剖面图.结果显示两种装置对于污染区域的识别能力有所不同.温纳和偶极装置都反映出污染区域的水平位置,温纳装置对于污染区域的深度及形状反映优于偶极装置,偶极装置对于异常体差异性的反映优于温纳装置.仿真结果说明,显示电阻率与模型电阻率之间存在差异,对污染范围的精确判断需要做进一步数据处理.

  18. Study of the surface wear resistance and biological properties of the Ti-Zr-Nb-Sn alloy for dental restoration.

    Science.gov (United States)

    Hu, Xin; Wei, Qiang; Li, Chang-Yi; Deng, Jia-Yin; Liu, Shuang; Zhang, Lian-Yun

    2010-10-01

    A new titanium alloy (Ti-12.5Zr-3Nb-2.5Sn) was developed to meet the needs of clinical requirements for medical titanium alloys and improve the properties of existing titanium alloys. The as-prepared alloy was solution treated at 500 °C for 3 h in vacuum followed by water quenching. Tensile, wear and hardness tests were carried out to examine the mechanical properties of the Ti-Zr-Nb-Sn alloy. Oral mucous membrane irritation test was performed to evaluate the surface biological properties of the Ti-Zr-Nb-Sn alloy. The results suggested that the surface hardness and wear-resistant properties of the Ti-12.5Zr-3Nb-2.5Sn alloy were superior to commercially pure Ti. The oral mucous irritation test showed that all samples had no mucous membrane irritation. It indicates that Ti-12.5Zr-3Nb-2.5Sn has large potential to be used as dental restoration material.

  19. Study of the surface wear resistance and biological properties of the Ti-Zr-Nb-Sn alloy for dental restoration

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xin; Li Changyi; Deng Jiayin; Liu Shuang; Zhang Lianyun [School of Dentistry, Tianjin Medical University, Tianjin 300070 (China); Wei Qiang [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2010-10-01

    A new titanium alloy (Ti-12.5Zr-3Nb-2.5Sn) was developed to meet the needs of clinical requirements for medical titanium alloys and improve the properties of existing titanium alloys. The as-prepared alloy was solution treated at 500 {sup 0}C for 3 h in vacuum followed by water quenching. Tensile, wear and hardness tests were carried out to examine the mechanical properties of the Ti-Zr-Nb-Sn alloy. Oral mucous membrane irritation test was performed to evaluate the surface biological properties of the Ti-Zr-Nb-Sn alloy. The results suggested that the surface hardness and wear-resistant properties of the Ti-12.5Zr-3Nb-2.5Sn alloy were superior to commercially pure Ti. The oral mucous irritation test showed that all samples had no mucous membrane irritation. It indicates that Ti-12.5Zr-3Nb-2.5Sn has large potential to be used as dental restoration material.

  20. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China); Liu, Junhong, E-mail: liujh@qust.edu.cn [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China)

    2011-05-15

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  1. Environmental Contaminants Monitoring Plan for Stillwater National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This environmental contaminants monitoring program is designed to assess concentrations, distribution, and biological availability of environmental contaminants on...

  2. Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV): Ability to Control Susceptible and Resistant Pest Populations.

    Science.gov (United States)

    Graillot, Benoit; Bayle, Sandrine; Blachere-Lopez, Christine; Besse, Samantha; Siegwart, Myriam; Lopez-Ferber, Miguel

    2016-05-21

    The detection of resistance in codling moth (Cydia pomonella) populations against the Mexican isolate of its granulovirus (CpGV-M), raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized-among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides.

  3. Isolation and characterization of a cold-resistant PCB209-degrading bacterial strain from river sediment and its application in bioremediation of contaminated soil.

    Science.gov (United States)

    Qiu, Liping; Wang, Hu; Wang, Xuntao

    2016-01-01

    A cold-resistant bacterium (strain QL) that can degrade 2,2',3,3',4,4',5,5',6,6'-decachlorobiphenyl (PCB209) was isolated from Wei-he River sediment. Strain QL was identified as a rod-shaped gram-negative bacterial strain, which was further identified as Comamonas testosteroni. C. testosteroni has never been reported to be capable of degrading PCB209 at low temperatures. In this study, the degradation characteristics showed that strain QL could grow with PCB209 as the sole carbon source at low temperatures (10 ± 0.5 °C). More significantly, strain QL of 40% inoculation volume was able to completely degrade PCB209 in 140 h (initial concentration of PCB209 was 100-500 µg L(-1) at 10 ± 0.5 °C and pH 7-8). The degradation process proceeded with zero-order reaction kinetics. Moreover, both laboratory simulation and real-world field experiments demonstrated that strain QL was effective in practical applications of PCB209 biodegradation in contaminated soil.

  4. [Biological weapons].

    Science.gov (United States)

    Kerwat, K; Becker, S; Wulf, H; Densow, D

    2010-08-01

    Biological weapons are weapons of mass destruction that use pathogens (bacteria, viruses) or the toxins produced by them to target living organisms or to contaminate non-living substances. In the past, biological warfare has been repeatedly used. Anthrax, plague and smallpox are regarded as the most dangerous biological weapons by various institutions. Nowadays it seems quite unlikely that biological warfare will be employed in any military campaigns. However, the possibility remains that biological weapons may be used in acts of bioterrorism. In addition all diseases caused by biological weapons may also occur naturally or as a result of a laboratory accident. Risk assessment with regard to biological danger often proves to be difficult. In this context, an early identification of a potentially dangerous situation through experts is essential to limit the degree of damage.

  5. Wildfire-resistant biological soil crusts and fire-induced loss of soil stability in Palouse prairies, USA

    Science.gov (United States)

    Bowker, M.A.; Belnap, J.; Rosentreter, R.; Graham, B.

    2004-01-01

    Frequent low-intensity fires are a natural component of the ecology of the Palouse prairies of northwestern North America. To study the effects of fire upon biological soil crusts (BSCs) occurring in these grasslands, we sampled three burned (in 2000) sites and three unburned sites in the Hell's Canyon area (OR, USA) ???1 year post-fire. We measured vascular plant and BSC cover, soil microbe pigmentation, texture and chemistry, and soil surface physical properties (stability and rugosity). Festuca idahoensis was two times more abundant in unburned plots (P=0.0006), and vascular plant and litter cover were generally higher in unburned plots. At the community scale, there was no difference in the lichen and moss species composition, suggesting much less drastic effects of fire on BSCs than reported in other systems. Soil surface stability (measured using slake value) was significantly lower in burned sites than unburned sites (median value=5 versus 6, P=0.008), a result which is likely due to the greater density of lichens and mosses encountered in the unburned plots. Soil microbe pigmentation was lower in burned plots (P=0.03), suggesting that the biomass of photosynthetic microbes had decreased; however, the presence of intra- and extracellular pigments in burned soils indicates that microorganisms were not eradicated. Pigments most strongly associated with cyanobacteria were more abundant in unburned sites, suggesting that cyanobacteria may have been more strongly impacted by the fire than other BSC components. Composition of nutrients and surface rugosity did not differ significantly between treatments. We hypothesize that Palouse prairie soil crusts are relatively resistant to wildfire because of low fire intensity and their occupation of space away from the vascular plant fuel load.

  6. Aquatic biota as potential biological indicators of the contamination, bioaccumulation and health risks caused by organochlorine pesticides in a large, shallow Chinese lake (Lake Chaohu)

    DEFF Research Database (Denmark)

    Liu, Wen-Xiu; Wang, Yan; He, Wei

    2016-01-01

    Aquatic biota have long been recognized as bioindicators of the contamination caused by hydrophobic organic contaminants (HOCs) in aquatic environments. The primary purpose of the present study is to identify which species of aquatic biota are the most sensitive to organochlorine pesticides (OCPs...... to OCPs and may serve as the most effective bioindicators for monitoring OCP contamination in the water and suspended solids of Lake Chaohu. Megalobrama amblycephala, which contained the highest wet weight mean OCP concentration, is the most sensitive OCP indicator and can be used to assess the human...

  7. Insects resistance bioassay and insecticide penetration biology%昆虫抗药性测定与杀虫剂穿透生物学

    Institute of Scientific and Technical Information of China (English)

    杨健; 王真; 姚安庆

    2011-01-01

    论文阐明了杀虫剂穿透生物学的基本概念及其对昆虫抗药性测定的指导意义;论述了杀虫剂穿透生物学提出的背景及其与"田间毒理学"的关系,分析了在昆虫抗药性生物测定中存在的问题及其主要原因;提出了杀虫剂穿透生物学在昆虫抗药性测定中的应用原则.%This paper sets out the basic concepts of pesticide penetration biology and the determination of insect resistance. The main problems of resistance in insect bioassays are discussed with reference to the principles of pesticide penetration biology.

  8. Groundwater contamination in the basement-complex area of Ile-Ife, southwestern Nigeria: A case study using the electrical-resistivity geophysical method

    Science.gov (United States)

    Adepelumi, A. A.; Ako, B. D.; Ajayi, T. R.

    2001-11-01

    Hydrogeoenvironmental studies were carried out at the sewage-disposal site of Obafemi Awolowo University campus, Ile-Ife, Nigeria. The objective of the survey was to determine the reliability of the electrical-resistivity method in mapping pollution plumes in a bedrock environment. Fifty stations were occupied with the ABEM SAS 300C Terrameter using the Wenner array. The electrical-resistivity data were interpreted by a computer-iteration technique. Water samples were collected at a depth of 5.0 m in 20 test pits and analyzed for quality. The concentrations of Cr, Cd, Pb, Zn, and Cu are moderately above the World Health Organization recommended guidelines. Plumes of contaminated water issuing from the sewage ponds were delineated. The geoelectric sections reveal four subsurface layers, with increasing depth, lateritic clay, clayey sand/sand, and weathered/fractured bedrock, and fresh bedrock. The deepest layers, 3 and 4, constitute the main aquifer, which has a thickness of 3.1-67.1 m. The distribution of the elements in the sewage effluent confirms a hydrological communication between the disposal ponds and groundwater. The groundwater is contaminated, as shown by sampling and the geophysical results. Thus, the results demonstrate the reliability of the direct-current electrical-resistivity geophysical method in sensing and mapping pollution plumes in a crystalline bedrock environment. Résumé. Des études géo-environnementales ont été réalisées sur le site d'épandages du campus universitaire d'Obafemi Awolowo, à Ile-Ife (Nigeria). L'objectif de ce travail était de déterminer la fiabilité de la méthode des résistivités électriques pour cartographier les panaches de pollution dans un environnement de socle. Cinquante stations ont été soumises à mesures au moyen d'un ABEM SAS 300C Terrameter en utilisant le dispositif de Wenner. Les données de résistivité électrique ont été interprétées au moyen d'une technique de calcul itérative. Des

  9. Development of sample extraction and clean-up strategies for target and non-target analysis of environmental contaminants in biological matrices.

    Science.gov (United States)

    Baduel, Christine; Mueller, Jochen F; Tsai, Henghang; Gomez Ramos, Maria Jose

    2015-12-24

    Recently, there has been an increasing trend towards multi-targeted analysis and non-target screening methods as a means to increase the number of monitored analytes. Previous studies have developed biomonitoring methods which specifically focus on only a small number of analytes with similar physico-chemical properties. In this paper, we present a simple and rapid multi-residue method for simultaneous extraction of polar and non-polar organic chemicals from biological matrices, containing up to 5% lipid content. Our method combines targeted multi-residue analysis using gas chromatography triple quadrupole mass spectrometry (GC-QqQ-MS/MS) and a multi-targeted analysis complemented with non-target screening using liquid chromatography coupled to a quadrupole time of flight mass spectrometry (LC-QTOF-MS/MS). The optimization of the chemical extraction procedure and the effectiveness of different clean-up methods were evaluated for two biological matrices: fish muscle (lipid content ∼2%) and breast milk (∼4%). To extract a wide range of chemicals, the partition/extraction procedure used for the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach was tested as the initial step for the extraction of 77 target compounds covering a broad compound domain. All the target analytes have different physico-chemical properties (log Kow ranges from -0.3 to 10) and cover a broad activity spectrum; from polar pesticides, pharmaceuticals, personal care products (PPCPs) to highly lipophilic chemicals such as polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochloride pesticides (OCPs). A number of options were explored for the clean-up of lipids, proteins and other impurities present in the matrix. Zirconium dioxide-based sorbents as dispersive solid-phase extraction (d-SPE) and protein-lipid removal filter cartridges (Captiva ND Lipids) provided the best results for GC-MS and LC-MS analysis

  10. INVOLVEMENT OF THE INSTITUTE FOR CONTROL OF BIOLOGICAL PRODUCTS AND VETERINARY MEDICINES TO REDUCE THE INCIDENCE AND SPREAD OF ANTIBIOTIC RESISTANCE

    Directory of Open Access Journals (Sweden)

    Alina Draghici

    2016-12-01

    Full Text Available Antibiotics are one of the most important therapeutic discoveries in medical history. They have revolutionized the way we treat patients with bacterial infections and have contributed to reducing the mortality and morbidity from bacterial diseases. Unfortunately, antibiotics have been liable to misuse which leads to the emergence and selection of resistant bacteria. Doctors in Europe and worldwide now are sometimes facing situations where infected patients cannot be treated adequately because the responsible bacterium is totally resistant to available antibiotics. The correct use of antimicrobials is one of the most important tools which could limit the spread of this phenomenon - resistance to antimicrobials. Specialists from Institute for Control of Biological Products and Veterinary Medicines understood to involve in this fight against antibioresistance, by tacking appropriate measures according to the european approches concerning reducing of the antibiotic consumption, correct usage and responsible of them.

  11. Radiotoxicological analyses of {sup 239+240}Pu and {sup 241}Am in biological samples by anion-exchange and extraction chromatography: a preliminary study for internal contamination evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Ridone, S.; Arginelli, D.; Bortoluzzi, S.; Canuto, G.; Montalto, M.; Nocente, M.; Vegro, M. [Italian National Agency for New Technologies, Energy and the Environment (ENEA), Research Centre of Saluggia, Radiation Protection Institute, Saluggia, VC (Italy)

    2006-07-01

    Many biological samples (urines and faeces) have been analysed by means of chromatographic extraction columns, utilising two different resins (AG 1-X2 resin chloride and T.R.U.), in order to detect the possible internal contamination of {sup 239{sup +}}{sup 240}Pu and {sup 241}Am, for some workers of a reprocessing nuclear plant in the decommissioning phase. The results obtained show on one hand the great suitability of the first resin for the determination of plutonium, and on the other the great selectivity of the second one for the determination of americium.

  12. Biological responses of midge (Chironomus riparius) and lamprey (Lampetra fluviatilis) larvae in ecotoxicity assessment of PCDD/F-, PCB- and Hg-contaminated river sediments.

    Science.gov (United States)

    Salmelin, J; Karjalainen, A K; Hämäläinen, H; Leppänen, M T; Kiviranta, H; Kukkonen, J V K; Vuori, K M

    2016-09-01

    We evaluated the utility of chironomid and lamprey larval responses in ecotoxicity assessment of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/F)-, polychlorinated biphenyls (PCB)- and mercury (Hg)-contaminated river sediments. Sediment samples were collected from the River Kymijoki with a known industrial pollution gradient. Sediment for the controls and lamprey larvae were obtained from an uncontaminated river nearby. Contamination levels were verified with sediment and tissue PCDD/F, PCB and Hg analyses. Behaviour of sediment-exposed chironomid and lamprey larvae were measured with Multispecies Freshwater Biomonitor© utilizing quadrupole impedance conversion technique. In addition, mortality, growth and head capsule deformity incidence of chironomids were used as ecotoxicity indicators. WHOPCDD/F+PCB-TEQ in the R. Kymijoki sediments ranged from the highest upstream 22.36 ng g(-1) dw to the lowest 1.50 ng g(-1) near the river mouth. The sum of PCDD/Fs and PCBs correlated strongly with Hg sediment concentrations, which ranged from contaminated sediments and was negatively related to sediment ∑PCDD/Fs, WHOPCDD/F+PCB-TEQ and Hg. There were no significant differences in larval mortality or chironomid mentum deformity incidence between the sediment exposures. The distinct behavioural patterns of both species indicate overall applicability of behavioural MFB measurements of these species in sediment toxicity bioassays. Chironomids spent less and lampreys more time in locomotion in the most contaminated sediment compared to the reference, albeit statistically significant differences were not detected. Lamprey larvae had also a greater activity range in some of the contaminated sediments than in the reference. High pollutant levels in lamprey indicate risks for biomagnification in the food webs, with potential health risks to humans consuming fish.

  13. MOLECULAR BIOLOGICAL EVIDENCES FOR THE GENETIC STABILITY OF DOXORUBICIN RESISTANT CELL LINE S-180R IN VIVO

    Institute of Scientific and Technical Information of China (English)

    Zheng Guoqiang; Han Fusheng; Zhang Tingjun; Zhan Maocheng; Chen Xiangling; Xu Guangwei

    1998-01-01

    Objective: In order to assess the genetic stability of doxorubicin resistance sarcoma S-180R cell line in vivo.Methods: The drug resistant genes and molecules were examined by flow cytometry, Southern blot, Northern blot and RT-PCR. Results: The results showed that drugefflux in S-180R increased nearly 100-folds, as compared with its parent cells, the rate of half peak width resistant cell/peak high decreased from 0.56 to 0.23 measured by flow cytometry after two years. The mdr1 gene amplified and overexpressed significantly in S-180R and the expression of topoisomerase Ⅱα gene decreased remarkably in S-180R. There was no significant different of the MRP expression between S-180R and S-180.Conclusion: These results indicated that drug resistance of S-180R was maintained and also increased. The major mechanism of drug resistance is the amplification and overexpression of mdr1 gene, the decreased expression of topoisomerase Ⅱα also contributed to it. So, S-180R is an ideal experimental model for the study of doxorubicin resistance and its reversion in vivo.

  14. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and beta-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Garcke.

    Science.gov (United States)

    Martínez-Iñigo, M J; Pérez-Sanz, A; Ortiz, I; Alonso, J; Alarcón, R; García, P; Lobo, M C

    2009-06-01

    The biological quality of two heavy metal contaminated soils (soil C: Typic Calcixerept, pH 8.3 and soil H: Typic Haploxeraf, pH 7.3) was investigated after growing the metal-tolerant plant Silene vulgaris (Moench) Garcke for two vegetative periods. The activity of the enzyme beta-galactosidase, which is sensitive to the presence of contaminants in soil, and the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of 16S rRNA gene fragments of culturable bacteria from bulk soil and rhizosphere were determined. The microbial enzymatic activity was higher in planted soils than in bare soils at the contamination level of 600 mg of total heavy metals kg(-1) soil. After growing S. vulgaris, beta-galactosidase activity was almost recovered in the calcareous soil. In this soil new bands appeared in the PCR-DGGE profiles of the rhizosphere bacterial community as a response to the exposure to heavy metals.

  15. 碳化对水泥固化铅污染土的电阻率特性影响规律%EFFECT OF CARBONATION ON ELECTRICAL RESISTIVITY OF CEMENT SOLIDIFIED LEAD-CONTAMINATED SOILS

    Institute of Scientific and Technical Information of China (English)

    章定文; 曹智国; 张涛; 刘松玉

    2014-01-01

    为确保重金属污染场地再开发利用的稳定性和安全性,采用室内加速碳化试验研究碳化对水泥固化铅污染土电阻率特性的影响规律。人工配制不同铅含量的污染土,采用水泥固化后进行室内加速碳化试验,分析碳化作用对固化土电阻率和pH值的影响规律,并讨论固化土的电阻率与无侧限抗压强度的相关关系。试验结果表明,碳化作用下水泥固化铅污染土的电阻率随着碳化时间和水泥掺入量的增加而增大,随着铅含量、孔隙率和饱和度的增加而减小。提出一个能够有效反映碳化时间、水泥掺入量和铅含量等因素对固化土电阻率影响的表征参数,采用该参数替代 Archie 电阻率模型中的土体孔隙率即可将Archie电阻率模型扩展应用到水泥固化重金属污染土领域。固化土的pH值随着铅含量增加而有所降低;碳化后固化土的pH值从11~12降低到8~9。固化土的电阻率与强度具较好的对应关系,电阻率法可作为一种有效的水泥固化铅污染土性能评价方法。%In order to ensure the safety utilization of heavy metal contaminated ground,it is necessary to investigate the effect of carbonation on the performance of cement solidified heavy metal-contaminated soils. Artificial contaminated soils with three different lead contents were solidified using cement,and the electrical resistivity and pH values of the solidified samples before and after carbonation were tested. The carbonation led to an increase of the electrical resistivity of cement solidified lead-contaminated soils,but the electrical resistivity decreased with the increase of lead content,porosity and degree of saturation. A modified Archie′s electrical resistivity model was proposed by replacing the porosity with a parameter which represented the influence of carbonation time , cement content , and lead content on the electrical resistivity of cement solidified

  16. Identification of genomic region controlling resistance to aflatoxin contamination in a peanut recombinant inbred line population (Tifrunner XGT-C20)

    Science.gov (United States)

    In peanut, limited genetic variation for disease resistance is available in breeding programs necessitating the identification of stable resistance sources for use in cultivar development. ‘Tifrunner’ is a runner cultivar while ‘GT-C20’ is a Spanish-type breeding line with resistance to aflatoxin co...

  17. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination.

    Science.gov (United States)

    Weyens, Nele; Beckers, Bram; Schellingen, Kerim; Ceulemans, Reinhart; van der Lelie, Daniel; Newman, Lee; Taghavi, Safiyh; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    To examine the potential of Pseudomonas putida W619-TCE to improve phytoremediation of Ni-TCE co-contamination, the effects of inoculation of a Ni-resistant, TCE-degrading root endophyte on Ni-TCE phytotoxicity, Ni uptake and trichloroethylene (TCE) degradation of Ni-TCE-exposed poplar cuttings are evaluated. After inoculation with P. putida W619-TCE, root weight of non-exposed poplar cuttings significantly increased. Further, inoculation induced a mitigation of the Ni-TCE phytotoxicity, which was illustrated by a diminished exposure-induced increase in activity of antioxidative enzymes. Considering phytoremediation efficiency, inoculation with P. putida W619-TCE resulted in a 45% increased Ni uptake in roots as well as a slightly significant reduction in TCE concentration in leaves and TCE evapotranspiration to the atmosphere. These results indicate that endophytes equipped with the appropriate characteristics can assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation. Furthermore, as poplar is an excellent plant for biomass production as well as for phytoremediation, the obtained results can be exploited to produce biomass for energy and industrial feedstock applications in a highly productive manner on contaminated land that is not suited for normal agriculture. Exploiting this land for biomass production could contribute to diminish the conflict between food and bioenergy production.

  18. Exoenzyme activity in contaminated soils before and after soil washing: ß-glucosidase activity as a biological indicator of soil health.

    Science.gov (United States)

    Chae, Yooeun; Cui, Rongxue; Woong Kim, Shin; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-01-01

    It is essential to remediate or amend soils contaminated with various heavy metals or pollutants so that the soils may be used again safely. Verifying that the remediated or amended soils meet soil quality standards is an important part of the process. We estimated the activity levels of eight soil exoenzymes (acid phosphatase, arylsulfatase, catalase, dehydrogenase, fluorescein diacetate hydrolase, protease, urease, and ß-glucosidase) in contaminated and remediated soils from two sites near a non-ferrous metal smelter, using colorimetric and titrimetric determination methods. Our results provided the levels of activity of soil exoenzymes that indicate soil health. Most enzymes showed lower activity levels in remediated soils than in contaminated soils, with the exception of protease and urease, which showed higher activity after remediation in some soils, perhaps due to the limited nutrients available in remediated soils. Soil exoenzymes showed significantly higher activity in soils from one of the sites than from the other, due to improper conditions at the second site, including high pH, poor nutrient levels, and a high proportion of sand in the latter soil. Principal component analysis revealed that ß-glucosidase was the best indicator of soil ecosystem health, among the enzymes evaluated. We recommend using ß-glucosidase enzyme activity as a prior indicator in estimating soil ecosystem health.

  19. Field-scale electrical geophysics over an olive oil mill waste deposition site: Evaluating the information content of resistivity versus induced polarization (IP) images for delineating the spatial extent of organic contamination

    Science.gov (United States)

    Ntarlagiannis, Dimitrios; Robinson, Judith; Soupios, Pantelis; Slater, Lee

    2016-12-01

    We performed 2D resistivity and IP measurements over a known olive oil mill waste plume at a site in western Crete, Greece. The objectives of the survey were: (1) to determine whether IP is more diagnostic in delineating the spatial extent of the plume relative to resistivity measurements alone; (2) to evaluate whether the additional information content obtained from IP is worth the effort given longer data acquisition times and higher measurement errors that inevitably characterize field IP data acquisition. Complex conductivity inversion of the field IP dataset revealed that the organic plume is characterized as a region of high electrical conductivity (real part of complex conductivity) consistent with the conceptual model for the electrical structure of a biodegraded LNAPL contaminant plume. The plume is also characterized by a region of high polarizability (imaginary part of complex conductivity) that is more localized to the known plume location (based on conventional monitoring) relative to the high conductivity region in the electrical conductivity image. This observation is attributed to the fact that electrical conductivity is more strongly controlled by hydrogeological and geological characteristics of the site that mask the response from the biodegraded plume. This result encourages the use of field IP to improve the spatial delineation of organic contamination in the subsurface. However, more laborious field procedures are required to acquire reliable field IP data and the inversion of field IP data remains more challenging than resistivity data alone.

  20. Antibiotic Exposure in a Low-Income Country: Screening Urine Samples for Presence of Antibiotics and Antibiotic Resistance in Coagulase Negative Staphylococcal Contaminants

    DEFF Research Database (Denmark)

    Lerbeck, Anne Mette; Tersbøl, Britt Pinkowski; Styrishave, Bjarne

    2014-01-01

    Development of antimicrobial resistance has been assigned to excess and misuse of antimicrobial agents. Staphylococci are part of the normal flora but are also potential pathogens that have become essentially resistant to many known antibiotics. Resistances in coagulase negative staphylococci (Co......NS) are suggested to evolve due to positive selective pressure following antibiotic treatment. This study investigated the presence of the nine most commonly used antimicrobial agents in human urine from outpatients in two hospitals in Ghana in relation to CoNS resistance. Urine and CoNS were sampled (n5246 and n...... was the most common isolate (75%), followed by S. epidermidis (13%) and S. hominis (6%). S. haemolyticus was also the species displaying the highest resistance prevalence (82%). 69% of the isolated CoNS were multiple drug resistant (§4 antibiotics) and 45% of the CoNS were methicillin resistant. Antimicrobial...

  1. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2013. Scientific Opinion on Carbapenem resistance in food animal ecosystems

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    Carbapenems are broad-spectrum β-lactam antimicrobials used for the treatment of serious infections in humans. To date only sporadic studies have reported the occurrence of carbapenemase-producing (CP) bacteria in food-producing animals and their environment. The bacteria and enzymes isolated...... and effective option. As genes encoding carbapenemase production are mostly plasmid-mediated, and co-resistance may be an important issue in the spread of such resistance mechanisms, decreasing the frequency of use of antimicrobials in animal production in the EU in accordance with prudent use guidelines...

  2. Characterization of Cu(II) and Cd(II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites.

    Science.gov (United States)

    Chen, Chen; Lei, Wenrui; Lu, Min; Zhang, Jianan; Zhang, Zhou; Luo, Chunling; Chen, Yahua; Hong, Qing; Shen, Zhenguo

    2016-04-01

    Soil that is co-contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) is difficult to bioremediate due to the ability of toxic metals to inhibit PAH degradation by bacteria. We demonstrated the resistance mechanisms to Cu(II) and Cd(II) of two newly isolated strains of Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and further tested their potential application in the bioremediation of HM-phenanthrene (PhA) co-contaminated sites. The PHE-SPH and PHE-OCH strains tolerated 4.63 and 4.34 mM Cu(II) and also showed tolerance to 0.48 and 1.52 mM Cd(II), respectively. Diverse resistance patterns were detected between the two strains. In PHE-OCH cells, the maximum accumulation of Cu(II) occurred in the cell wall, while the maximum accumulation was in the cytoplasm of PHE-SPH cells. This resulted in a sudden suppression of growth in PHE-OCH and a gradual inhibition in PHE-SPH as the concentration of Cu(II) increased. Organic acid production was markedly higher in PHE-OCH than in PHE-SPH, which may also have a role in the resistance mechanisms, and contributes to the higher Cd(II) tolerance of PHE-OCH. The factors involved in the absorption of Cu(II) or Cd(II) in PHE-SPH and PHE-OCH were identified as proteins and carbohydrates by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, both strains showed the ability to efficiently degrade PhA and maintained this high degradation efficiency under HM stress. The high tolerance to HMs and the PhA degradation capacity make Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH excellent candidate organisms for the bioremediation of HM-PhA co-contaminated sites.

  3. Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils%水泥固化铅污染土的电阻率特性与经验公式

    Institute of Scientific and Technical Information of China (English)

    章定文; 曹智国; 刘松玉; 陈蕾

    2015-01-01

    In order to explore the application potential of electrical resistivity method in the field of solidified heavy metal-contaminated soils, the artificial contaminated soils with five different lead contents are solidified using cement, and then their electrical resistivities and unconfined compressive strengths after various curing periods are tested. The relationship between the electrical resistivity and unconfined compressive strength is discussed. The test results show that the cement hydration reaction results in an increase of the electrical resistivity of solidified samples, but the electrical resistivity decreases with the increase of after-curing porosity, degree of saturation and lead content. A key parameter (nt·Pb100ew)/ (aw·T0.5) (e is the Euler's number) is proposed to comprehensively reflect the effects of the lead content, cement hydration reaction and dense state of soils on the electrical resistivity of solidified soils. The Archie's electrical resistivity formula is extended to solidified heavy metal-contaminated soils by replacing the porosity by the key parameter. There is a power function relationship between the strength and the electrical resistivity while the lead content of solidified soils is certain. The electrical resistivity method can be used as a non-destructive, economical and continuous way to evaluate the quality of solidified heavy metal-contaminated soils.%为探讨电阻率法在水泥固化重金属污染土性能评价中的应用潜能,室内配制人工铅污染土,采用水泥固化后测试其电阻率和无侧限抗压强度,分析固化土电阻率的变化规律,建立固化铅污染土的电阻率公式,并探讨电阻率与无侧限抗压强度的相关关系.试验结果表明,固化土电阻率随铅含量增大而减小,随着水泥掺入量和养护龄期的增加而增大,随着孔隙率和饱和度的减小而增大.提出了一个能够综合反映铅含量、水泥掺入量和养护龄期等因素对固化

  4. Synthesis and Biological Activities of a 3'-Azido Analogue of Doxorubicin Against Drug-Resistant Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fengshan Wang

    2012-03-01

    Full Text Available Doxorubicin (DOX, an anthracycline antibiotic, is one of the most active anticancer chemotherapeutic agents. The clinical use of DOX, however, is limited by the dose-dependant P-glycoprotein (P-gp-mediated resistance. Herein, a 3′-azido analogue of DOX (ADOX was prepared from daunorubicin (DNR. ADOX exhibited potent antitumor activities in drug-sensitive (MCF-7 and K562 and drug-resistant cell lines (MCF-7/DNR, K562/DOX, respectively. The drug resistance index (DRI values of ADOX were much lower than that of DOX. The cytotoxicity experiments of ADOX or DOX against K562/DOX, with or without P-gp inhibitor, indicated that ADOX circumvents resistance by abolishing the P-gp recognition. This conclusion was further supported by drug influx/efflux flow cytometry experiments, as well as by molecular docking of ADOX to P-gp. In vivo animal tests, ADOX exhibited higher activity and less toxicity than DOX. The current data warranted ADOX for additional pre-clinical evaluations for new drug development.

  5. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils.

    Science.gov (United States)

    Wang, Wenfeng; Deng, Zujun; Tan, Hongming; Cao, Lixiang

    2013-01-01

    To survey the effects of endophytic Enterobacter sp. CBSB1 and Rhodotorula sp. CBSB79 resistant to Cd2+, Pb2+, Zn2+, and Cu2+ on the growth and phytoextraction of Brassica, the endophytes were isolated by surface- sterilized methods and characterized. The CBSB1 significantly increased 44.2% of the dry weight of Brassica napus in the multimetal contaminated soil (P Enterobacter sp. CBSB1, the yeast Rhodotorula sp CBSB79 showed higher potentials to improve extraction efficacy of Cd, Pb, Zn, and Cu by Brassica seedlings in the field.

  6. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yan; Zhu Yongguan [Department of Soil Environmental Science, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Smith, F. Andrew [Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, Adelaide, SA 5005 (Australia); Wang Youshan [Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry, Beijing 100089 (China); Chen Baodong [Department of Soil Environmental Science, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)], E-mail: bdchen@rcees.ac.cn

    2008-09-15

    In a compartmented cultivation system, white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.), with their roots freely intermingled, or separated by 37 {mu}m nylon mesh or plastic board, were grown together in an arsenic (As) contaminated soil. The influence of AM inoculation on plant growth, As uptake, phosphorus (P) nutrition, and plant competitions were investigated. Results showed that both plant species highly depended on mycorrhizas for surviving the As contamination. Mycorrhizal inoculation substantially improved plant P nutrition, and in contrast markedly decreased root to shoot As translocation and shoot As concentrations. It also showed that mycorrhizas affected the competition between the two co-existing plant species, preferentially benefiting the clover plants in term of nutrient acquisition and biomass production. Based on the present study, the role of AM fungi in plant adaptation to As contamination, and their potential use for ecological restoration of As contaminated soils are discussed. - Both white clover and ryegrass highly depend on the mycorrhizal associations for surviving heavy arsenic contamination.

  7. Effects of Mine Waste Contamination on Fish and Wildlife Habitat at Multiple Levels of Biological Organization in the Methow River, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peplow, Dan; Edmonds, Robert.

    2002-06-01

    A three-year multidisciplinary study was conducted on the relationship between mine waste contamination and the effects on aquatic and terrestrial habitats in the Methow River below abandoned mines near Twisp in Okanogan County, Washington (U.S.A.). Ore deposits in the area were mined for gold, silver, copper and zinc until the early 1950's. An above-and-below-mine approach was used to study potentially impacted sites. Although the dissolved metal content of water in the Methow River was below the limits of detection, eleven chemicals of potential environmental concern were identified in the tailings, mine effluents, groundwater, streamwater and sediments (Al, As, B, Ba, Cd, Cr, Cu, Mn, Pb, Se and Zn). The potential for ecosystem level impacts was reflected in the risk of contamination in the mine waste to communities and populations that are valued for their functional properties related to energy storage and nutrient cycling. Dissolved and sediment metal contamination changed the benthic insect community structure in a tributary of the Methow River below Alder Mine, and at the population level, caddisfly larval development in the Methow River was delayed. Arsenic accumulation in bear hair and Cd in fish liver suggest top predators are effected. In situ exposure of juvenile triploid trout (Oncorhynchus mykiss) to conditions at the downstream site resulted in reduced growth and increased mortality among exposed individuals. Histopathological studies of their tissues revealed extensive glycogen inclusions suggesting food is being converted into glycogen and stored in the liver but the glycogen is not being converted back normally into glucose for distribution to other tissues in the body. Subcellular observations revealed mitochondrial changes including a decrease in the number and increase in the size of electron-dense metrical granules, the presence of glycogen bodies in the cytoplasm, and glycogen nuclei in exposed trout hepatocytes, which are signs that

  8. Draft Genome Sequence of Ochrobactrum pseudogrignonense Strain CDB2, a Highly Efficient Arsenate-Resistant Soil Bacterium from Arsenic-Contaminated Cattle Dip Sites.

    Science.gov (United States)

    Yang, Yiren; Yu, Xuefei; Zhang, Ren

    2013-04-18

    We report the 4.97-Mb draft genome sequence of a highly efficient arsenate-resistant bacterium, Ochrobactrum sp. strain CDB2. It contains a novel arsenic resistance (ars) operon (arsR-arsC1-ACR3-arsC2-arsH-mfs) and two non-operon-associated ars genes, arsC3 and arsB. The genome information will aid in the understanding of the arsenic resistance mechanism of this and other bacterial species.

  9. Draft Genome Sequence of Ochrobactrum pseudogrignonense Strain CDB2, a Highly Efficient Arsenate-Resistant Soil Bacterium from Arsenic-Contaminated Cattle Dip Sites

    OpenAIRE

    Yang, Yiren; Yu, Xuefei; Zhang, Ren

    2013-01-01

    We report the 4.97-Mb draft genome sequence of a highly efficient arsenate-resistant bacterium, Ochrobactrum sp. strain CDB2. It contains a novel arsenic resistance (ars) operon (arsR-arsC1-ACR3-arsC2-arsH-mfs) and two non-operon-associated ars genes, arsC3 and arsB. The genome information will aid in the understanding of the arsenic resistance mechanism of this and other bacterial species.

  10. Metabolomic Profiling of the Effects of Melittin on Cisplatin Resistant and Cisplatin Sensitive Ovarian Cancer Cells Using Mass Spectrometry and Biolog Microarray Technology

    Directory of Open Access Journals (Sweden)

    Sanad Alonezi

    2016-10-01

    Full Text Available In the present study, liquid chromatography-mass spectrometry (LC-MS was employed to characterise the metabolic profiles of two human ovarian cancer cell lines A2780 (cisplatin-sensitive and A2780CR (cisplatin-resistant in response to their exposure to melittin, a cytotoxic peptide from bee venom. In addition, the metabolomics data were supported by application of Biolog microarray technology to examine the utilisation of carbon sources by the two cell lines. Data extraction with MZmine 2.14 and database searching were applied to provide metabolite lists. Principal component analysis (PCA gave clear separation between the cisplatin-sensitive and resistant strains and their respective controls. The cisplatin-resistant cells were slightly more sensitive to melittin than the sensitive cells with IC50 values of 4.5 and 6.8 μg/mL respectively, although the latter cell line exhibited the greatest metabolic perturbation upon treatment. The changes induced by melittin in the cisplatin-sensitive cells led mostly to reduced levels of amino acids in the proline/glutamine/arginine pathway, as well as to decreased levels of carnitines, polyamines, adenosine triphosphate (ATP and nicotinamide adenine dinucleotide (NAD+. The effects on energy metabolism were supported by the data from the Biolog assays. The lipid compositions of the two cell lines were quite different with the A2780 cells having higher levels of several ether lipids than the A2780CR cells. Melittin also had some effect on the lipid composition of the cells. Overall, this study suggests that melittin might have some potential as an adjuvant therapy in cancer treatment.

  11. Using biological and physico-chemical test methods to assess the role of concrete mixture design in resistance to microbially induced corrosion

    Science.gov (United States)

    House, Mitchell Wayne

    Concrete is the most widely used material for construction of wastewater collection, storage, and treatment infrastructure. The chemical and physical characteristics of hydrated portland cement make it susceptible to degradation under highly acidic conditions. As a result, some concrete wastewater infrastructure may be susceptible to a multi-stage degradation process known as microbially induced corrosion, or MIC. MIC begins with the production of aqueous hydrogen sulfide (H2S(aq)) by anaerobic sulfate reducing bacteria present below the waterline. H2S(aq) partitions to the gas phase where it is oxidized to sulfuric acid by the aerobic sulfur oxidizing bacteria Thiobacillus that resides on concrete surfaces above the waterline. Sulfuric acid then attacks the cement paste portion of the concrete matrix through decalcification of calcium hydroxide and calcium silica hydrate coupled with the formation of expansive corrosion products. The attack proceeds inward resulting in reduced service life and potential failure of the concrete structure. There are several challenges associated with assessing a concrete's susceptibility to MIC. First, no standard laboratory tests exist to assess concrete resistance to MIC. Straightforward reproduction of MIC in the laboratory is complicated by the use of microorganisms and hydrogen sulfide gas. Physico-chemical tests simulating MIC by immersing concrete specimens in sulfuric acid offer a convenient alternative, but do not accurately capture the damage mechanisms associated with biological corrosion. Comparison of results between research studies is difficult due to discrepancies that can arise in experimental methods even if current ASTM standards are followed. This thesis presents two experimental methods to evaluate concrete resistance to MIC: one biological and one physico-chemical. Efforts are made to address the critical aspects of each testing method currently absent in the literature. The first method presented is a new test

  12. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System.

    Directory of Open Access Journals (Sweden)

    Jacek Panek

    Full Text Available Spoilage of heat processed food and beverage by heat resistant fungi (HRF is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700, the other from thermal processed strawberry product in 2012 (KC179765, used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods.

  13. Proteome changes in rat serum after a chronic ingestion of enriched uranium: Toward a biological signature of internal contamination and radiological effect.

    Science.gov (United States)

    Petitot, F; Frelon, S; Chambon, C; Paquet, F; Guipaud, O

    2016-08-22

    The civilian and military use of uranium results in an increased risk of human exposure. The toxicity of uranium results from both its chemical and radiological properties that vary with isotopic composition. Validated biomarkers of health effects associated with exposure to uranium are neither sensitive nor specific to uranium radiotoxicity and/or radiological effect. This study aimed at investigating if serum proteins could be useful as biomarkers of both uranium exposure and radiological effect. Male Sprague-Dawley rats were chronically exposed through drinking water to low levels (40mg/L, corresponding to 1mg of uranium per animal per day) of either 4% (235)U-enriched uranium (EU) or 12% EU during 6 weeks. A proteomics approach based on two-dimensional electrophoresis (2D-DIGE) and mass spectrometry (MS) was used to establish protein expression profiles that could be relevant for discriminating between groups, and to identify some differentially expressed proteins following uranium ingestion. It demonstrated that the expressions of 174 protein spots over 1045 quantified spots were altered after uranium exposure (puranium contamination and radiological effect. Finally, using bioinformatics tools, pathway analyses of differentially expressed MS-identified proteins find that acute phase, inflammatory and immune responses as well as oxidative stress are likely involved in the response to contamination, suggesting a physiological perturbation, but that does not necessarily lead to a toxic effect.

  14. Histopathological survey of potential biomarkers for the assessment of contaminant related biological effects in species of fish and shellfish collected from Kuwait Bay, Arabian Gulf.

    Science.gov (United States)

    Stentiford, G D; Massoud, M S; Al-Mudhhi, S; Al-Sarawi, M A; Al-Enezi, M; Lyons, B P

    2014-07-01

    The marine environment in Kuwait is dominated by Kuwait Bay, a shallow, depositional habitat vital for the breeding and propagation of marine organisms. The bay receives effluent inputs from industrial centres, ports, sewage outflows along with discharges from power and desalination plants. The major classes of pollutant discharged into the bay include petroleum hydrocarbons, metals, nutrients, cooling water and hyper-saline water. Further, the bay has been historically impacted by a deliberate release of oil and contamination with ordnance and shipwrecks during the 1991 Gulf war. With an aim to establish an integrated pollution effects monitoring programme in Kuwait, this paper describes the application of a quality assured approach to conduct a histopathology baseline survey in oriental sole (Synaptura orientalis) and the large-toothed flounder (Pseudorhombus arsius), which are two potential sentinel flatfish species present in the Arabian Gulf. Liver and gonadal histopathology revealed a range of pathologies similar to those previously observed in European and American pollution effects surveys that utilise flatfish (including pathology markers indicative of possible carcinogenesis and endocrine disruption). Further, we extended these studies to invertebrates (Jinga prawn, Metapenaeus affinis and the grooved tiger prawn, Penaeus semisulcatus) found within the Arabian Gulf. Such baseline data is essential before attempts are made to develop integrated monitoring programmes that aim to assess the health of fish and shellfish in relation to chemical contamination.

  15. Identification and quantification of a toxigenic and non-toxigenic Aspergillus flavus strain in contaminated maize using quantitative real-time PCR

    Science.gov (United States)

    Aflatoxins, which are produced by the fungus Aspergillus flavus, are toxic to humans, livestock, and pets. The value of maize (Zea mays) grain is markedly reduced when contaminated with aflatoxin. Plant resistance and biological control using non-toxin producing strains are considered effective st...

  16. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites

    Science.gov (United States)

    Kevin, Dion A; Meujo, Damaris AF; Hamann, Mark T

    2016-01-01

    Background As multidrug-resistant (MDR) pathogens continue to emerge, there is a substantial amount of pressure to identify new drug candidates. Carboxyl polyethers, also referred to as polyether antibiotics, are a unique class of compounds with outstanding potency against a variety of critical infectious disease targets including protozoa, bacteria and viruses. The characteristics of these molecules that are of key interest are their selectivity and high potency against several MDR etiological agents. Objective Although many studies have been published about carboxyl polyether antibiotics, there are no recent reviews of this class of drugs. The purpose of this review is to provide the reader with an overview of the spectrum of activity of polyether antibiotics, their mechanism of action, toxicity and potential as drug candidates to combat drug-resistant infectious diseases. Conclusion Polyether ionophores show a high degree of promise for the potential control of drug-resistant bacterial and parasitic infections. Despite the long history of use of this class of drugs, very limited medicinal chemistry and drug optimization studies have been reported, thus leaving the door open to these opportunities in the future. Scifinder and PubMed were the main search engines used to locate articles relevant to the topic presented in the present review. Keywords used in our search were specific names of each of the 88 compounds presented in the review as well as more general terms such as polyethers, ionophores, carboxylic polyethers and polyether antibiotics. PMID:23480512

  17. Possible Influence of Resistance to Malaria in Clinical Presentation of Rheumatoid Arthritis: Biological Significance of Natural Selection

    Directory of Open Access Journals (Sweden)

    Fabio Bonilla-Abadía

    2012-01-01

    Full Text Available Rheumatoid arthritis (RA is a common autoimmune disease that affects all ethnic groups. Genetic factors, mainly HLA alleles, are highly associated with increased risk to develop RA. However, there are few available data about the role of these genetic polymorphisms in the prevalence or severity of RA in the Afrodescendant population, who have evolutionarily and by natural selection developed mutations that allowed them to acquire resistance to infectious diseases like malaria. Some of the mechanisms, by which this resistance was developed as a product of natural selection, are involved in different forms of immunological response, many of them of a well-known importance in the pathophysiology of RA. This paper focuses on presenting the known mechanisms of resistance to malaria and their possible contribution to the pathophysiology of RA, including “loss-of-function” mutations, lack of expression of chemokine receptors, decrease of immune complexes clearance by asplenia, or increase of immune reactivity mediated by B cells, among other mechanisms in this special group of patients.

  18. Biology of Anticarsia gemmatalis on soybean genotypes with different degrees of resistance to insects Biologia de Anticarsia gemmatalis em genótipos de soja com diferentes graus de resistência a insetos

    Directory of Open Access Journals (Sweden)

    Cristina Gomes Quevedo Fugi

    2005-01-01

    Full Text Available A knowledge of the mechanisms of resistance present in genetic materials should help breeding programs in developing cultivars resistant to insects. The biology of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae was studied on leaves of four soybean genotypes with different degrees of resistance to insects. The genotypes evaluated were cultivars IAC 17 and IAC 24, resistant to defoliators and stink bugs, line PI 229358, a source of multiple resistance to insects and used as parent in various lines selected for resistance to A. gemmatalis, and 'IAC PL-1', the susceptible control. The experiments were carried out in the laboratory, under controlled conditions of temperature (25 ± 2ºC, relative humidity (60 ± 10% and photoperiod (14h. First instar larvae were placed in Petri dishes and fed leaves of each genotype, detached from plants at the R1 and R2 stages (beginning and full bloom. Later on, insect couples were maintained in 25 PVC cages to evaluate parameters of the adult stage. 'IAC 17' and 'IAC 24' promoted low viability of the larval, pupal, and egg stages, causing adult deformation and a reduction of the number of eggs per female. PI 229358 prolonged the immature stage and reduced pupal weight, egg viability, and adult longevity. Considering all tests, 'IAC 17' and 'IAC 24' were characterized as having antibiosis-type resistance, and 'IAC PL-1' demonstrated to be a genotype suitable for insect development.O conhecimento do tipo de resistência presente em genótipos pode dinamizar programas de melhoramento que tenham essa finalidade. Assim, estudaram-se aspectos biológicos de Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae em folhas de quatro genótipos de soja, sendo três com diferentes níveis de resistência e um suscetível a insetos. Avaliaram-se os cultivares IAC 17 e IAC 24, portadores de resistência a desfolhadores e sugadores, a linhagem PI 229358, progenitora de diversas linhagens resistentes a A. gemmatalis, e

  19. Use of biological indexes of the common reed (Phragmites australis) seed progeny in the environmental safety of radioactive contaminated water bodies

    Energy Technology Data Exchange (ETDEWEB)

    Yavnyuk, A. [National Aviation University, Kiev (Ukraine); Shevtsova, N.; Gudkov, D. [Institute of Hydrobiology of the National Academy of Sciences, Kiev (Ukraine)

    2014-07-01

    Environmental protection requires effective monitoring system of radionuclide contamination and radiobiological effects as well as development of their prevention and minimizing measures for humans and biota. There is a majority of conventional techniques for living organisms' habitat quality assessment. One of the most widespread, convenient and accessible ones, is the seed progeny analysis, for example of conifers, cereals and wild herbaceous plants. Availability of vitality, growth, mutability indexes and abnormalities of vascular plant germs for environment quality express assessment was discussed in numerous publications. However, this point is studied insufficiently concerning aquatic vascular plants, forming communities playing significant role in radionuclides distribution in contaminated water bodies. Common reed (Phragmites australis (Trin) Ex. Steud) is a widespread species mostly dominating in air-aquatic vascular plant communities of freshwater bodies; it is a first-order {sup 137}Cs and {sup 90}Sr accumulating species. To assess the common reed germs growth indexes availability, seeds were sampled in polygon water bodies of different radionuclide contamination levels and 0.7-22 mcGy h{sup -1} total absorbed dose range, within the Chernobyl Exclusion Zone. In water bodies with background level of radionuclide contamination, for comparison, total absorbed dose varied in range of 0.03-0.3 mcGy h{sup -1}. Series of seeds germination experiments was carried out in laboratory conditions. Complex of germs indexes was investigated, conditionally divided into three groups: (1) Vitality indexes. In course of experiment series, vitality was assessed via germinating energy, germinating ability indexes, germination period (first and last germ appearance) and survivability study; (2) Growth indexes. Root and leaf length, occurrence of plant groups with different vegetative organs length were determined for germs growth speed assessment; (3) Teratological

  20. Status of (137)Cs contamination in marine biota along the Pacific coast of eastern Japan derived from a dynamic biological model two years simulation following the Fukushima accident.

    Science.gov (United States)

    Tateda, Yutaka; Tsumune, Daisuke; Tsubono, Takaki; Misumi, Kazuhiro; Yamada, Masatoshi; Kanda, Jota; Ishimaru, Takashi

    2016-01-01

    Radiocesium ((134)Cs and (137)Cs) released into the Fukushima coastal environment was transferred to marine biota inhabiting the Pacific Ocean coastal waters of eastern Japan. Though the levels in most of the edible marine species decreased overtime, radiocesium concentrations in some fishes were still remained higher than the Japanese regulatory limit for seafood products. In this study, a dynamic food chain transfer model was applied to reconstruct (137)Cs levels in olive flounder by adopting the radiocesium concentrations in small demersal fish which constitute an important fraction of the diet of the olive flounder particularly inhabiting area near Fukushima. In addition, (137)Cs levels in slime flounder were also simulated using reported radiocesium concentrations in some prey organisms. The simulated results from Onahama on the southern border of the Fukushima coastline, and at Choshi the southernmost point where the contaminated water mass was transported by the Oyashio current, were assessed in order to identify what can be explained from present information, and what remains to be clarified three years after the Fukushima Dai-ichi nuclear power plant (1FNPP) accident. As a result, the observed (137)Cs concentrations in planktivorous fish and their predator fish could be explained by the theoretically-derived simulated levels. On the other hand, the slow (137)Cs depuration in slime flounder can be attributed to uptake from unknown sources for which the uptake fluxes were of a similar magnitude as the excretion fluxes. Since the reported (137)Cs concentrations in benthic invertebrates off Onahama were higher than the simulated values, radiocesium transfer from these benthic detritivorous invertebrates to slime flounder via ingestion was suggested as a cause for the observed slow depuration of (137)Cs in demersal fish off southern Fukushima. Furthermore, the slower depuration in the demersal fish likely required an additional source of (137)Cs, i

  1. Impacts of off-road vehicles on nitrogen cycles in biological soil crusts: Resistance in different U.S. deserts

    Science.gov (United States)

    Belnap, J.

    2002-01-01

    Biological soil crusts are an important component of desert ecosystems, as they influence soil stability and fertility. This study examined and compared the short-term vehicular impacts on lichen cover and nitrogenase activity (NA) of biological soil crusts. Experimental disturbance was applied to different types of soil in regions throughout the western U.S. (Great Basin, Colorado Plateau, Sonoran, Chihuahuan, and Mojave deserts). Results show that pre-disturbance cover of soil lichens is significantly correlated with the silt content of soils, and negatively correlated with sand and clay. While disturbance appeared to reduce NA at all sites, differences were statistically significant at only 12 of the 26 sites. Cool desert sites showed a greater decline than hot desert sites, which may indicate non-heterocystic cyanobacterial species are more susceptible to disturbance than non-heterocystic species. Sandy soils showed greater reduction of NA as sand content increased, while fine-textured soils showed a greater decline as sand content increased. At all sites, higher NA before the disturbance resulted in less impact to NA post-disturbance. These results may be useful in predicting the impacts of off-road vehicles in different regions and different soils. ?? 2002 Published by Elsevier Science Ltd.

  2. Impact of urban contamination of the La Paz River basin on thermotolerant coliform density and occurrence of multiple antibiotic resistant enteric pathogens in river water, irrigated soil and fresh vegetables.

    Science.gov (United States)

    Poma, Violeta; Mamani, Nataniel; Iñiguez, Volga

    2016-01-01

    La Paz River in Andean highlands is heavily polluted with urban run-off and further contaminates agricultural lowlands and downstream waters at the Amazon watershed. Agricultural produce at this region is the main source of vegetables for the major Andean cities of La Paz and El Alto. We conducted a 1 year study, to evaluate microbial quality parameters and occurrence of multiple enteropathogenic bacteria (Enterohemorrhagic E. coli-EHEC, Enteroinvasive E. coli or Shigella-EIEC/Shigella, Enteroaggregative E. coli-EAEC, Enteropathogenic E. coli-EPEC Enterotoxigenic E. coli-ETEC and Salmonella) and its resistance to 11 antibiotics. Four sampling locations were selected: a fresh mountain water reservoir (un-impacted, site 1) and downstream sites receiving wastewater discharges (impacted, sites 2-4). River water (sites 1-4, N = 48), and soil and vegetable samples (site 3, N = 24) were collected during dry (April-September) and rainy seasons (October-March). Throughout the study, thermotolerant coliform density values at impacted sites greatly exceeded the guidelines for recreational and agricultural water uses. Seasonal differences were found for thermotolerant coliform density during dry season in water samples nearby a populated and hospital compound area. In contrast to the un-impacted site, where none of the tested enteropathogens were found, 100 % of surface water, 83 % of soil and 67 % of vegetable samples at impacted sites, were contaminated with at least one enteropathogen, being ETEC and Salmonella the most frequently found. ETEC isolates displayed different patterns of toxin genes among sites. The occurrence of enteropathogens was associated with the thermotolerant coliform density. At impacted sites, multiple enteropathogens were frequently found during rainy season. Among isolated enteropathogens, 50 % were resistant to at least two antibiotics, with resistance to ampicillin, nalidixic acid, trimethoprim-sulfamethoxazole and tetracycline commonly

  3. Contamination of sulfonamide antibiotics and sulfamethazine-resistant bacteria in the downstream and estuarine areas of Jiulong River in Southeast China.

    Science.gov (United States)

    Ou, Danyun; Chen, Bin; Bai, Renao; Song, Puqing; Lin, Heshan

    2015-08-01

    Surface water samples from downstream and estuarine areas of Jiulong River were collected in August 2011 and May 2012 for detecting sulfonamide antibiotic residues and isolating sulfamethazine-resistant bacteria. Sulfamethazine was detected in all samples in May 2012 at an average concentration of 78.3 ng L(-1), which was the highest among the nine sulfonamide antibiotics determined. Sulfamethazine-resistant bacteria (SRB) were screened using antibiotic-containing agar plates. The SRB average abundance in the samples was 3.69 × 10(4) and 2.17 × 10(3) CFUs mL(-1) in August 2011 and May 2012, respectively, and was positively correlated to sulfamethazine concentration in May 2012. The 16S rRNA gene sequencing of all the 121 SRB isolates revealed high diversity. Furthermore, the SRB isolates exhibited multidrug resistance, with 48.7% showing resistance to at least three antibiotics. The abundance and persistence of highly diverse SRB and their multidrug resistance are likely to demonstrate the transferable pressure from coastal environments on public health.

  4. Comet assay with gill cells of Mytilus galloprovincialis end point tools for biomonitoring of water antibiotic contamination: Biological treatment is a reliable process for detoxification.

    Science.gov (United States)

    Mustapha, Nadia; Zouiten, Amina; Dridi, Dorra; Tahrani, Leyla; Zouiten, Dorra; Mosrati, Ridha; Cherif, Ameur; Chekir-Ghedira, Leila; Mansour, Hedi Ben

    2016-04-01

    This article investigates the ability of Pseudomonas peli to treat industrial pharmaceuticals wastewater (PW). Liquid chromatography-mass spectrometry (MS)/MS analysis revealed the presence, in this PW, of a variety of antibiotics such as sulfathiazole, sulfamoxole, norfloxacine, cloxacilline, doxycycline, and cefquinome.P. peli was very effective to be grown in PW and inducts a remarkable increase in chemical oxygen demand and biochemical oxygen demand (140.31 and 148.51%, respectively). On the other hand, genotoxicity of the studied effluent, before and after 24 h of shaking incubation with P. peli, was evaluated in vivo in the Mediterranean wild mussels Mytilus galloprovincialis using comet assay for quantification of DNA fragmentation. Results show that PW exhibited a statistically significant (pcomet assay genotoxicity end points are useful tools to biomonitor the physicochemical and biological quality of water. Also, it could be concluded that P. peli can treat and detoxify the studied PW.

  5. Genetic Analysis of the Aspergillus flavus Vegetative Compatibility Group to Which a Biological Control Agent That Limits Aflatoxin Contamination in U.S. Crops Belongs.

    Science.gov (United States)

    Grubisha, Lisa C; Cotty, Peter J

    2015-09-01

    Some filamentous fungi in Aspergillus section Flavi produce carcinogenic secondary compounds called aflatoxins. Aflatoxin contamination is routinely managed in commercial agriculture with strains of Aspergillus flavus that do not produce aflatoxins. These non-aflatoxin-producing strains competitively exclude aflatoxin producers and reshape fungal communities so that strains with the aflatoxin-producing phenotype are less frequent. This study evaluated the genetic variation within naturally occurring atoxigenic A. flavus strains from the endemic vegetative compatibility group (VCG) YV36. AF36 is a strain of VCG YV36 and was the first fungus used in agriculture for aflatoxin management. Genetic analyses based on mating-type loci, 21 microsatellite loci, and a single nucleotide polymorphism (SNP) in the aflC gene were applied to a set of 237 YV36 isolates collected from 1990 through 2005 from desert legumes and untreated fields and from fields previously treated with AF36 across the southern United States. One haplotype dominated across time and space. No recombination with strains belonging to VCGs other than YV36 was detected. All YV36 isolates carried the SNP in aflC that prevents aflatoxin biosynthesis and the mat1-2 idiomorph at the mating-type locus. These results suggest that VCG YV36 has a clonal population structure maintained across both time and space. These results demonstrate the genetic stability of atoxigenic strains belonging to a broadly distributed endemic VCG in both untreated populations and populations where the short-term frequency of VCG YV36 has increased due to applications of a strain used to competitively exclude aflatoxin producers. This work supports the hypothesis that strains of this VCG are not involved in routine genetic exchange with aflatoxin-producing strains.

  6. Monitoring personnel-contamination in biology cabinet with air borne microbes instrument%空气微生物检测仪对生物安全柜中人员污染的监测

    Institute of Scientific and Technical Information of China (English)

    魏贤莉; 胡良勇

    2011-01-01

    Currently, traditional sedimentation method widely used in pharmaceuticals industry and construction industry to detect personnel-contamination, one item of three biology cabinet examination indicates, was regarded as complex operation, low detection efficiency, etc. In order to improve the status, the authors employed the new multi-function instrument for air borne microbes (JWL-ⅡC) to collect and monitor the bacterial particles in biology cabinets for different laboratories. The results indicated that the new multi-function instrument for air borne microbes has the features of simple operation, excellent portability, wide application, high rate and high accuracy in comparison to traditional sedimentation method. In addition, the experimental results confirmed that the biology cabinet indeed could effectively ensure the bio-safety of operators by preventing the aerosol leakage.%目前医药行业及建筑行业对生物安全柜有关人员污染保护指标的检测普遍采用沉降法,其操作复杂、效率低,为了改变这种现状,采用新型多功能空气微生物检测仪(JWL-IIC)对各级实验室内生物安全柜关于人员保护项目中细菌进行采集和监测.结果表明:相比于沉降法而言,它不仅操作简便、便于携带,而且使用范围广、捕获率高、结果准确;实验数据还证实,生物安全柜的合理使用确实能有效防止气溶胶的泄漏,保护操作人员的生物安全.

  7. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors.

    Science.gov (United States)

    Wu, Yuxiang; Pan, Miaobo; Dai, Yuxuan; Liu, Baomin; Cui, Jian; Shi, Wei; Qiu, Qianqian; Huang, Wenlong; Qian, Hai

    2016-05-15

    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50>100μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors.

  8. The importance of molecular biology in development, prognosis, treatment and resistance to targeted therapy in gastrointestinal stromal tumors

    Directory of Open Access Journals (Sweden)

    Alessandro Comandone

    2011-12-01

    Full Text Available Gastrointestinal stromal tumors (GISTs are the commonest mesenchymal tumors of the gastroenteric tract, and are generally believed to originate from the neoplastic transformation of the interstitial cells of Cajal, the pacemaker structures of the stomach and intestine. Exon and genetic mutations (point/deletions are fundamental for the development of GISTs: the constitutional characteristic of this neoplasm is the presence of the cell surface Kit receptor. Kit is the product of the proto-oncogene cKit, situated in chromosome 4. Ninety-eight percent of GISTs express mutated isoforms of Kit or of PDGFRA (Platelet growth factor receptor a. Kit mutation is the basic condition for autophosphorylation of tyrosine kinase residues in proteins. Autophosphorylation initiates pathogenetic processes in Cajal cells, toward a neoplastic transformation. Imatinib mesilate and, more recently, sunitinib are tyrosine kinase inhibitors, specific antagonists for Kit and PDGFRA, with good activity against GISTs. Most molecular and clinical data currently available concern imatinib. Exon mutations are strategic as prognostic and as predictive factors. In recent years, much evidence suggests that survival, response to therapy and resistance to imatinib are related to different mutations. In the near future, GIST patients will receive treatment differentiated by expressed Kit and PDGFRA mutations, thus truly individualized therapy.

  9. Contamination rates and antimicrobial resistance in Enterococcus spp., Escherichia coli, and Salmonella isolated from "no antibiotics added"-labeled chicken products.

    Science.gov (United States)

    Zhang, Jiayi; Massow, Amanda; Stanley, Megan; Papariella, Melanie; Chen, Xi; Kraft, Brittany; Ebner, Paul

    2011-11-01

    In the United States, products from chickens that were not administered antimicrobial medications during growout can contain labels stating "no antibiotics added." Here we compared microbial profiles of chicken products labeled as coming from birds raised without antimicrobial medications (N=201; NON) with chicken products carrying conventional labels (N=201; CONV). There were no differences in percentages of samples positive for Enterococcus spp. (CONV: 17.4%; NON: 21.3%) or Escherichia coli (CONV: 25.9%; NON: 22.3%). The number of samples positive for Salmonella was low in both groups, but statistically higher in the NON samples (5.0%) versus CONV samples (1.5%; p<0.05). Conversely, CONV samples contained higher concentrations of coliforms (CONV: 3.0 log(10)CFU/mL; NON: 2.5 log(10)CFU/mL; p<0.05). E. coli (N=190) and Enterococcus spp. isolates (N=113) were tested for resistance to common antimicrobials. E. coli isolates from CONV samples were more frequently resistant to at least one antimicrobial (CONV: 61.3%; NON: 41.2%; p<0.05). Enterococcus spp. isolates from both groups were equally likely to be resistant to at least one antimicrobial, but Enterococcus spp. isolates from CONV samples were more likely to be resistant to erythromycin, kanamycin, and gentamicin (p<0.05). Taken together, these data suggest that NON samples may more frequently carry Salmonella; however, E. coli and Enterococcus spp. found on CONV are more likely to be resistant to some antimicrobials.

  10. Lessons learned from more than two decades of research on emerging contaminants in the environment.

    Science.gov (United States)

    Noguera-Oviedo, Katia; Aga, Diana S

    2016-10-05

    In the last twenty years, thousands of research papers covering different aspects of emerging contaminants have been published, ranging from environmental occurrence to treatment and ecological effects. Emerging contaminants are environmental pollutants that have been investigated widely only in the last two decades and include anthropogenic and naturally occurring chemicals such as pharmaceuticals and personal care products and their metabolites, illicit drugs, engineered nanomaterials, and antibiotic resistance genes. The advancement in our knowledge on emerging contaminants has been the result of the appearance of highly sensitive and powerful analytical instrumentation that rapidly developed, allowing identification and trace quantification of unknown contaminants in complex environmental matrices. High efficiency chromatographic separations coupled to high-resolution mass spectrometers have become more common in environmental laboratories and are the pillars of environmental research, increasing our awareness and understanding of the presence of emerging contaminants in the environment, their transformation and fate, and the complex ecological consequences that they pose on exposed biological systems. This introductory paper for the Virtual Thematic Issue on Emerging Contaminants presents a brief literature overview on key research milestones in the area of emerging contaminants, focusing on pharmaceuticals and personal care products and endocrine disrupting compounds, and highlighting selected research papers previously published in the Journal of Hazardous Materials during the period of January 2012 to December 2015.

  11. Kinetics of gradation process of oil-contaminant with biological activated carbon%生物活性炭降解石油污染物的动力学研究

    Institute of Scientific and Technical Information of China (English)

    冯晋阳; 周孝德

    2012-01-01

    研究了生物活性炭(BAC)工艺去除含油废水中石油污染物的动力学过程。以物质扩散机理和米氏动力学为基础,建立了BAC处理石油污染物的动力学模型,并对BAC工艺中吸附和生物降解石油污染物效果的实验数据和模型预测值进行了比较。研究结果表明BAC工艺处理含油废水是可行的,BAC工艺运行稳定后,去除率可达80%以上,出水效果良好。BAC模型的预测结果和实验结果基本相符,BAC工艺对石油污染物的降解作用不是简单的活性炭的吸附和石油降解菌生物降解的叠加,而是两者共同协作完成的,并实现了活性炭的生物再生。BAC动力学模型为BAC工艺处理含油废水在工程应用中提供了相关的理论基础。%The kinetics process of removing oil-contaminant in oil-bearing wastewater by biological activated carbon (BAC) procedure was investigated. Based on the mechanisms of mass diffusion and Monod kinetics, the kinetic BAC-model was established to describe the oil-contaminant treatment process. The kinetic BAC-model predictions and experimental results for simultaneous adsorption and biodegradation of oil-contaminant were compared. This study demonstrated that oil-bearing wastewater treatment by BAC-process is feasible. The oil removal rate could reach over 80% when the BAC procedure is at a steady-state condition. The BAC-model predictions basically are in agreement with the experimental results. It is shown that the fundamental mechanisms of BAC-process in oil remov- al are not simple addition but the synergetic combination of activated carbon adsorption and biodegradation of oil- degrading strains, and at the same time, active carbon is bioregenerated by the oil-degrading strains. This kinetic BAC-model can provide a theoretical foundation for BAC-process to treat oil-bearing wastewater in engineering ap- plication.

  12. Application of diagnosis and monitoring area contaminated by petroleum derivatives; Aplicacao da tecnica de caminhamento eletrico em area contaminada por derivados de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Cesar Augusto [Pos-graduacao em Geociencias em Meio Ambiente, IGCE - UNESP, Rio Claro, SP (Brazil)], E-mail: cesargeologia@yahoo.com.br; Dourado, Joao Carlos; Braga, Antonio Celso de Oliveira [Dept. de Geologia Aplicada, IGCE - UNESP, Rio Claro, SP (Brazil)], E-mails: jdourado@rc.unesp.br, acobraga@rc.unesp.br

    2006-07-15

    Geophysical methods are useful technic of geological investigation, thoroughly employed to diagnosis and monitoring contaminated areas, in conjunction with direct techniques of investigation such as chemical analyses. Among these, electric resistivity is more usually used in studies of contaminants in soil and groundwater, due to the high contrast of electric properties between the soil and the pollutant types frequently found, essentially constituted of composed organic and inorganic. Geophysical studies in impacted areas by petroleum products may be describe by anomalies of both low resistivity and high resistivities, confirmed as contaminant by chemical analyses. This apparent contradiction can reflect processes of degradation of the contaminants, directly associated with its residence time in the soil, through the generation of by-products that change the physical properties of the soil and groundwater, principally for the mineral dissolution by action of organic acids and by formation of minerals of oxides and hydroxides minerals. Natural attenuation defines a series of physical, chemical and biological processes that allow the degradation, dispersion and dilution of contaminants in a natural form, in other words, free from human intervention. This paper presents the application of electrical profiling technique in a contaminated industrial area for benzene, toluene, xylene, 1,2 dichloroethene and inorganic salts and it discusses the physical alterations of the contaminated soil through the obtained results, under the optics of the Natural Attenuation in course in the area of study. (author)

  13. (Contaminated soil)

    Energy Technology Data Exchange (ETDEWEB)

    Siegrist, R.L.

    1991-01-08

    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  14. Outbreak of drug-resistant Acinetobacter baumannii ST219 caused by oral care using tap water from contaminated hand hygiene sinks as a reservoir.

    Science.gov (United States)

    Umezawa, Kazuo; Asai, Satomi; Ohshima, Toshio; Iwashita, Hideo; Ohashi, Maya; Sasaki, Mika; Kaneko, Akihiro; Inokuchi, Sadaki; Miyachi, Hayato

    2015-11-01

    An outbreak of amikacin- and ciprofloxacin-resistant Acinetobacter baumannii ST219 in Tokai University hospital's emergency intensive care unit was caused by its colonization in water systems and subsequent spread through oral care using tap water. The outbreak was successfully controlled after replacement of the water system and implementation as of daily cleaning of water taps and oral care with a dry method. It is important to strictly manage the water system in critical care areas.

  15. Biological half-life of radioactive cesium in Japanese rockfish Sebastes cheni contaminated by the Fukushima Daiichi nuclear power plant accident.

    Science.gov (United States)

    Matsumoto, Akira; Shigeoka, Yu; Arakawa, Hisayuki; Hirakawa, Naoto; Morioka, Yoshiaki; Mizuno, Takuji

    2015-12-01

    Since the Fukushima accident in March 2011 the concentration of radioactive cesium in Japanese rockfish (Sebastes cheni) has been decreasing slower than other fish species. The aim of this study was therefore to investigate the possibility of slow elimination rate (i.e., relatively longer Tb) as one of the reasons for the slow decrease in (137)Cs concentrations in Japanese rockfish (S. cheni). To do this, we reared twenty-three individuals of this species for a period of about 1 year, during which time we measured the (137)Cs concentrations and γ-ray spectra 14 times by using a high-efficiency NaI(Tl) scintillator. We then examined the relationship between the (137)Cs concentrations and the total length of each individual. We estimated the biological half-life (Tb, day) for each individual using the total number of (137)Cs counts in the energy region, and examined the effects of total length and (137)Cs concentration on Tb by generalized linear model (GLM). We also examined the effect of sex, total length, seawater temperature, and the (137)Cs concentration of seawater on temporal changes in the (137)Cs count reduction rate by GLM. There was no clear relationship between the corrected whole-body (137)Cs concentrations and the total length in females, however there was a significant positive correlation between these two variables in males. The difference between males and females may be attributable to variation in the degree of dilution because of variable growth of individuals, and suggests that the (137)Cs concentrations of small individuals may be greatly diluted because of faster growth. However, there was no significant difference in Tb between sexes. The mean Tb (±SD) in all individuals was 269 (±39) days; this Tb value is 2.7-5.4 times longer than past Tb values (marine fish: 50-100 days), and is thought to be one of the reasons for the slower decrease in (137)Cs concentrations in this species than other fish species on the coast of Fukushima. The GLM

  16. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sarah L Kinnings

    2009-07-01

    Full Text Available The rise of multi-drug resistant (MDR and extensively drug resistant (XDR tuberculosis around the world, including in industrialized nations, poses a great threat to human health and defines a need to develop new, effective and inexpensive anti-tubercular agents. Previously we developed a chemical systems biology approach to identify off-targets of major pharmaceuticals on a proteome-wide scale. In this paper we further demonstrate the value of this approach through the discovery that existing commercially available drugs, prescribed for the treatment of Parkinson's disease, have the potential to treat MDR and XDR tuberculosis. These drugs, entacapone and tolcapone, are predicted to bind to the enzyme InhA and directly inhibit substrate binding. The prediction is validated by in vitro and InhA kinetic assays using tablets of Comtan, whose active component is entacapone. The minimal inhibition concentration (MIC(99 of entacapone for Mycobacterium tuberculosis (M.tuberculosis is approximately 260.0 microM, well below the toxicity concentration determined by an in vitro cytotoxicity model using a human neuroblastoma cell line. Moreover, kinetic assays indicate that Comtan inhibits InhA activity by 47.0% at an entacapone concentration of approximately 80 microM. Thus the active component in Comtan represents a promising lead compound for developing a new class of anti-tubercular therapeutics with excellent safety profiles. More generally, the protocol described in this paper can be included in a drug discovery pipeline in an effort to discover novel drug leads with desired safety profiles, and therefore accelerate the development of new drugs.

  17. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils.

    Science.gov (United States)

    Wu, Song-Lin; Chen, Bao-Dong; Sun, Yu-Qing; Ren, Bai-Hui; Zhang, Xin; Wang, You-Shan

    2014-09-01

    In a greenhouse pot experiment, dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.] Pers.), inoculated with and without arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, were grown in chromium (Cr)-amended soils (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg Cr[VI]) to test whether arbuscular mycorrhizal (AM) symbiosis can improve Cr tolerance in different plant species. The experimental results indicated that the dry weights of both plant species were dramatically increased by AM symbiosis. Mycorrhizal colonization increased plant P concentrations and decreased Cr concentrations and Cr translocation from roots to shoots for dandelion; in contrast, mycorrhizal colonization decreased plant Cr concentrations without improvement of P nutrition in bermudagrass. Chromium speciation analysis revealed that AM symbiosis potentially altered Cr species and bioavailability in the rhizosphere. The study confirmed the protective effects of AMF on host plants under Cr contaminations.

  18. 生物活性炭老化对滤池过滤阻力和处理效果的影响%Effect of aged biological activated carbon on the filtration resistance and performance of biological activated carbon filter

    Institute of Scientific and Technical Information of China (English)

    刘璟言; 卢小燕; 尤作亮; 张金松; 郭建宁

    2016-01-01

    Biological activated carbon (BAC) used for about 10years was collected from drinking water treatment plant. The filtration resistance and performance of the aged BAC filter were investigated. The ageing of BAC produced a lot of small BAC particles. The small particles deposited on the surface of the BAC column after backwash and formed a dense filtration layer. The specific resistance of the dense filtration layer was 22 times higher than that of the deep layer of the aged BAC column. Enhanced backwash only decreased the initial filtration resistance and the removal of the dense filtration layer was the most effective method to reduce the filtration resistance. Enhanced backwash had no significant effect on the performance of the aged BAC column. The removal efficiency of the total organic carbon decreased from 24.71% to 7.04% after the removal of the dense filtration layer. However, the removal efficiencies of UV254 and particle count larger than 2µm did not change greatly and the values were nearly the same as those of the control group. There are several methods to increase the life cycle of the aged BAC, including decreasing the backwashing strength and prolonging the filtration cycle.%利用饮用水厂运行10年的生物活性炭(BAC)装填滤柱,研究活性炭老化对滤柱过滤阻力和处理效果的影响.结果表明,活性炭老化会产生大量小粒径颗粒炭,沉积于活性炭池表层的小粒径颗粒炭产生的过滤阻力是滤柱总阻力的主要来源,其比阻约为底层炭的22倍.强化反冲洗仅可降低初始过滤阻力,移除表层细炭是降低活性炭滤池阻力的有效方法.强化反冲洗对滤柱过滤性能无显著影响.移除表层细炭后,老化活性炭滤柱对总有机碳的去除率由24.71%下降至7.04%,而后恢复至移除前的水平.移除表层炭后老化活性炭对UV254和大于2µm颗粒数的去除率与对照组活性炭相似.降低活性炭滤池的反冲强度、延长过滤

  19. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  20. Optimization of Electrical Methods for Sub -surface Monitoring of Biological Contamination: From Micro-scale to Macroscopic one through Sub-micrometric Topographic and Electrochemical Studies of Oxydation/Reduction Processes Provoked by Bacteria

    Science.gov (United States)

    Dhahri, S.; Marliere, C.

    2012-12-01

    the observed crossed correlations between physical, chemical and biological processes induced by the studied bacteria and the resulting variations of electrical signals as measured at different length scales. We indeed used variable sizes for the electrodes - from 10cm -square (colonies of around 10000 bacteria) to 0.1-1microns -square (the scale of an individual cell) thanks to newly manufactured AFM -SECM probes (using Focused Ion Beam - FIB method). These experiments were done with several bacterial strains, various medias (inoculated by bacteria versus non -inoculated). Furthermore, these results will shortly be applied to the optimized monitoring of the in -situ activity of bacteria consuming oil pollutants, following this way, in real -time, the bioremediation of an oil -contaminated soil (ANR ECOTECH_BIOPHY program).

  1. Variable pattern contamination control under positive pressure

    Energy Technology Data Exchange (ETDEWEB)

    Philippi, H.M. [Chalk River Labs., Ontario (Canada)

    1997-08-01

    Airborne contamination control in nuclear and biological laboratories is traditionally achieved by directing the space ventilation air at subatmospheric pressures in one fixed flow pattern. However, biological and nuclear contamination flow control in the new Biological Research Facility, to be commissioned at the Chalk River Laboratories in 1996, will have the flexibility to institute a number of contamination control patterns, all achieved at positive (above atmospheric) pressures. This flexibility feature, made possible by means of a digitally controlled ventilation system, changes the facility ventilation system from being a relatively rigid building service operated by plant personnel into a flexible building service which can be operated by the facility research personnel. This paper focuses on and describes the application of these unique contamination control features in the design of the new Biological Research Facility. 3 refs., 7 figs.

  2. Characterization of a symbiotically effective Rhizobium resistant to arsenic: Isolated from the root nodules of Vigna mungo (L.) Hepper grown in an arsenic-contaminated field.

    Science.gov (United States)

    Mandal, Santi M; Pati, Bikas R; Das, Amit K; Ghosh, Ananta K

    2008-04-01

    Bacteria were isolated from the root nodules of Vigna mungo (L.) Hepper, grown in an arsenic-contaminated field and the strain was selected by its nodulation ability as well as better arsenic tolerant capacity compared to others. The selected strain was identified as Rhizobium by 16S rDNA sequencing and designated as VMA301. Phylogenetic analysis of the gene sequences showed its close relatedness with Sinorhizobium fredii. LC(50) value of arsenate for the bacteria as determined by flow cytometry was found to be 2.8 mM and arsenic uptake was measured by atomic absorption spectrometry as 0.048 mg g(-1) biomass. The high amount of arsenic was toxic to the cell, which changed the morphology of the bacteria to an elongated shape. Presence of a transcriptional regulatory gene (ArsR) of the ars genetic system was confirmed by amplification and sequencing. The symbiotic property of the isolate was also confirmed by amplification and sequencing of the NodC gene. These results indicate that the isolated Rhizobium bacteria may exert dual roles in the environment, arsenic bioremediation from the soil as well as increase of soil fertility through nitrogen fixation.

  3. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    Science.gov (United States)

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  4. Study on Pretreatment of Contaminated Raw Water by the Lava-based Biological Aerated Filter%火山岩BAF预处理污染水源的研究

    Institute of Scientific and Technical Information of China (English)

    陈玮; 田孝禾; 邢岚英; 刘宏远

    2016-01-01

    The efficiency of pretreatment of contaminated raw water by biological aerated filter, which based on the lava rock, was studied in this paper. The results indicated that BAF was effectually purged the contaminant in the raw water under the condition of the air/water ratio at 1∶1;the influent flow was 50 L/h, filtering velocity at 6.4 m/h. During the normal temperature period (11.9~32.9℃), the average removal rate of ammonia, nitrite nitrogen and CODMn were 92.76%, 94.46%and 30.69%, respectively. And during the low temperature period (5.1~10.8℃), the average removal rate of ammonia, nitrite nitrogen and CODMn were 85.82%, 48.42%and 24.15%, respectively. In the whole experiment period, the average removal rate of turbidity and UV254 were 45.68%, 45.68%. BAF, as a pretreatment process, can efficiently remove pollutants, such as ammonia, organic matters, etc.%采用火山岩为填料的曝气生物滤池(BAF)进行了预处理污染水源的试验研究。试验结果表明,在气水比为1∶1,流量为50 L/h,滤速6.4 m/h的条件下,火山岩BAF能有效净化水中的污染物质。其中常温期(11.9~32.9℃),氨氮、亚硝氮和CODMn的平均去除率分别为92.76%、94.46%和30.69%;低温期(5.1~10.8℃),氨氮、亚硝氮和CODMn的平均去除率分别为85.82%、48.42%和24.15%;试验期间对UV254和浊度的平均去除率分别为7.29%,45.68%。因此,火山岩BAF作为预处理工艺能有效去除原水中的氨氮和有机物等污染物。

  5. Chemical and Biological Resistant Clothing

    Science.gov (United States)

    2013-04-01

    Dehydration was confirmed by CuSO4 (dry CuSO4 turns light blue upon contacting water). The influence of DMMP adsorption on the zeolite external surface...temperature. Table 16. Saturated Vapor Pressure (PSaturated) at Room Temperature Chemical PSaturated (mm Hg ) Water 4.54 DMMP 0.34 TBP 0.004 MS...to enter the pores of zeolite-A and its adsorption on the zeolite external surface is apparently negligible in the IPA liquid environment. The GC

  6. Source and route of methicillin-resistant Staphylococcus epidermidis transmitted to the surgical wound during cardio-thoracic surgery. Possibility of preventing wound contamination by use of special scrub suits.

    Science.gov (United States)

    Tammelin, A; Hambraeus, A; Ståhle, E

    2001-04-01

    The objective of this study was to trace the source and route of transmission of methicillin-resistant Staphylococcus epidermidis (MRSE) in the surgical wound during cardio-thoracic surgery, and to investigate the possibility of reducing wound contamination by wearing special scrub suits. In total 65 elective operations for coronary artery bypass grafting (CABG) with or without concomitant valve replacement were investigated. All staff present in the operating room wore conventional scrub suits during 33 operations and special scrub suits during 32 operations. Samples were taken from the hands of the scrubbed team after surgical scrub but before putting on sterile gowns and gloves, and from patients' skin (incisional area of sternum and vein harvesting area of legs) after preoperative skin preparation with chlorhexidine gluconate. Air samples were taken during operations. Samples were also taken from the wound just before closure. Total counts of bacteria on sternal skin and from the wound (cfu/cm2) were calculated as well as total counts of bacteria in the air (cfu/m3). Strains of MRSE recovered from the different sampling sites were compared by pulsed field gel electrophoresis (PFGE). It was found that wearing special scrub suits did not reduce the number of air-samples where MRSE was found compared with conventional scrub suits. The risk factor most strongly associated with MRSE in the wound at the end of the operation was preoperative carriage of MRSE on sternal skin; RR 2.42 [95% CI 1.43-4.10], P= 0.021. By use of PFGE, it was possible to identify the probable source for four MRSE isolates recovered from the wound. In three cases the source was the patients own skin. Finding MRSE in air-samples, or on the hands of the scrubbed team, were not risk factors for the recovery of MRSE in the wound at the end of operation. In conclusion, with a total bacterial air count around 20 cfu/m3 and a low proportion of MRSE, the reduction of total air counts by use of tightly

  7. Cellular Signaling Pathways in Insulin Resistance-Systems Biology Analyses of Microarray Dataset Reveals New Drug Target Gene Signatures of Type 2 Diabetes Mellitus

    Science.gov (United States)

    Muhammad, Syed Aun; Raza, Waseem; Nguyen, Thanh; Bai, Baogang; Wu, Xiaogang; Chen, Jake

    2017-01-01

    Purpose: Type 2 diabetes mellitus (T2DM) is a chronic and metabolic disorder affecting large set of population of the world. To widen the scope of understanding of genetic causes of this disease, we performed interactive and toxicogenomic based systems biology study to find potential T2DM related genes after cDNA differential analysis. Methods: From the list of 50-differential expressed genes (p < 0.05), we found 9-T2DM related genes using extensive data mapping. In our constructed gene-network, T2DM-related differentially expressed seeder genes (9-genes) are found to interact with functionally related gene signatures (31-genes). The genetic interaction network of both T2DM-associated seeder as well as signature genes generally relates well with the disease condition based on toxicogenomic and data curation. Results: These networks showed significant enrichment of insulin signaling, insulin secretion and other T2DM-related pathways including JAK-STAT, MAPK, TGF, Toll-like receptor, p53 and mTOR, adipocytokine, FOXO, PPAR, P13-AKT, and triglyceride metabolic pathways. We found some enriched pathways that are common in different conditions. We recognized 11-signaling pathways as a connecting link between gene signatures in insulin resistance and T2DM. Notably, in the drug-gene network, the interacting genes showed significant overlap with 13-FDA approved and few non-approved drugs. This study demonstrates the value of systems genetics for identifying 18 potential genes associated with T2DM that are probable drug targets. Conclusions: This integrative and network based approaches for finding variants in genomic data expect to accelerate identification of new drug target molecules for different diseases and can speed up drug discovery outcomes. PMID:28179884

  8. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function

    Science.gov (United States)

    Jackson, Ben; Mileham, Alan J.; Ait-Ali, Tahar; Whitelaw, C. Bruce A.

    2017-01-01

    Porcine Reproductive and Respiratory Syndrome (PRRS) is a panzootic infectious disease of pigs, causing major economic losses to the world-wide pig industry. PRRS manifests differently in pigs of all ages but primarily causes late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 has been described as a fusion receptor for PRRSV, whereby the scavenger receptor cysteine-rich domain 5 (SRCR5) region was shown to be an interaction site for the virus in vitro. CD163 is expressed at high levels on the surface of macrophages, particularly in the respiratory system. Here we describe the application of CRISPR/Cas9 to pig zygotes, resulting in the generation of pigs with a deletion of Exon 7 of the CD163 gene, encoding SRCR5. Deletion of SRCR5 showed no adverse effects in pigs maintained under standard husbandry conditions with normal growth rates and complete blood counts observed. Pulmonary alveolar macrophages (PAMs) and peripheral blood monocytes (PBMCs) were isolated from the animals and assessed in vitro. Both PAMs and macrophages obtained from PBMCs by CSF1 stimulation (PMMs) show the characteristic differentiation and cell surface marker expression of macrophages of the respective origin. Expression and correct folding of the SRCR5 deletion CD163 on the surface of macrophages and biological activity of the protein as hemoglobin-haptoglobin scavenger was confirmed. Challenge of both PAMs and PMMs with PRRSV genotype 1, subtypes 1, 2, and 3 and PMMs with PRRSV genotype 2 showed complete resistance to viral infections assessed by replication. Confocal microscopy revealed the absence of replication structures in the SRCR5 CD163 deletion macrophages, indicating an inhibition of infection prior to gene expression, i.e. at entry/fusion or unpacking stages. PMID:28231264

  9. Human Mars Mission Contamination Issues

    Science.gov (United States)

    Lupisella, M. L.

    2001-01-01

    A potential challenge for a human Mars mission is that while humans are by most measures the obvious best way to search for life on Mars, we may also be the most problematic in that we could unduly compromise the search for life by contaminating relevant environments and/or possibly adversely and irreversibly affecting indigenous life. Perhaps more problematic is the fundamental epistemic challenge of the "one data point" limitation which could decrease confidence in applying terrestrially based research to extraterrestrial life issues in general. An informal decision tree is presented as one way to begin thinking about contamination issues. There are many sub-questions and distinctions not shown such as biological vs. nonbiological (but biologically relevant) contamination, viable vs. dead organisms, masking indigenous organisms vs. merely making the search more difficult, and independent origin vs. panspermia distinctions. While it may be unlikely that terrestrial microbes could survive on Mars, let alone reproduce and unduly compromise the search for life, the unpredictable potential for microbial life to survive, grow exponentially, evolve and modify (and sometimes destroy) environments, warrants focusing carefully on biologically relevant contamination as we prepare to send humans to the first planet that may have indigenous life-forms.

  10. In vitro study of biofilm growth on biologic prosthetics.

    Science.gov (United States)

    Bellows, Charles; Smith, Alison

    2014-01-01

    Biologic prosthetics are increasingly used for the repair of abdominal wall hernia defects but can become infected as a result of peri- or early post-operative bacterial contamination. Data evaluating biofilm formation on biologic prosthetics is lacking. The aim of this study was to investigate the influence of different biologic prosthetics on the growth behavior of two different bacterial species and their ability to form biofilms. Methicillin resistant Staphylococcus aureus (MRSA) or Pseudomrnonas aeruginosa were incubated on disks of two biologic prosthetics-human acellular dermis (ADM), and porcine small intestinal submucosa (SIS). The bacteria were allowed to attach to the prosthetics and propagate into mature biofilms for 24 hours at 370C. Images of biofilms were obtained using confocal microscopy and scanning electron microscopy (SEM). The number of viable cells and the biofilm biomass were quantified by colony forming units (CFUs) and crystal violet staining respectively. Analysis of variance was performed to compare the mean values for the different prosthetics. Each biologic matrix had a distinct surface characteristic. SEM visualized mature biofilms characterized by highly organized multi-cellular structures on surface of both biologic prosthetics. Quantification of bacterial growth over time showed that ADM had the lowest CFUs and biofilm biomass at 24 hours post-inoculation compared to SIS for both bacterial strains. MRSA and P. aeruginosa can form mature biofilms on biologic prosthetics but the relative abundance of the biofilm varies on different prosthetic constructs. Biologic material composition and manufacturing methods may influence bacterial adherence.

  11. Market study: Biological isolation garment

    Science.gov (United States)

    1975-01-01

    The biological isolation garment was originally designed for Apollo astronauts to wear upon their return to earth from the moon to avoid the possibility of their contaminating the environment. The concept has been adapted for medical use to protect certain patients from environmental contamination and the risk of infection. The nature and size of the anticipated market are examined with certain findings and conclusions relative to clinical acceptability and potential commercial viability of the biological isolation garment.

  12. Enterococcus spp. in a single blood culture: bacteremia or contamination?

    Science.gov (United States)

    Khatib, R; Labalo, V; Sharma, M; Johnson, L B; Riederer, K

    2017-03-01

    We retrospectively evaluated adult cases with Enterococcus spp. in 1 blood culture (BC) (1/1/2010-12/31/2015; n=294) and stratified them into bacteremia or contamination. Contamination frequency was similar in community versus hospital-onset, E. faecalis versus E. faecium, and number of BC drawn per day. Contamination predictors were vancomycin-resistance, ampicillin-resistance, commensal organism copresence, and nonurinary/abdominal sources.

  13. Prevalence of methicillin-resistant staphylococci isolated from different biological samples at Policlinico Umberto I of Rome: correlation with vancomycin susceptibility

    Directory of Open Access Journals (Sweden)

    Maria Teresa Mascellino

    2011-03-01

    Full Text Available The methicillin-resistance is increasing all over the world in the last decade. It is more frequent among coagulase-negative staphylococci (MRCoNS; infact the 52% of S. epidermidis strains results to be resistant to methicillin.The methicillin-resistant strains also show a reduced sensitivity towards the first-line agents such as glycopeptides and other antibiotics commonly used in therapy such as trimethoprim-sulphamethoxazole, imipenem, gentamycin, fosfomycin and chlarytromicin. Unlike MRSA (Methicillin-resistant S. aureus, MRCoNS resistance to glycopeptides generally concerns teicoplanin. Although vancomycin resistance is rare in Staphylococcus isolates, the detected shift towards higher values of MICs might affect patient’s clinical outcome.

  14. Resistência de união à dentina: efeito da umidade e da contaminação com saliva Effects of moist and saliva contamination on bond strength to dentin

    Directory of Open Access Journals (Sweden)

    Míriam Lacalle TURBINO

    1997-01-01

    Full Text Available Este estudo analisou, por meio de teste de tração in vitro, a resistência de união à dentina de 2 sistemas adesivos (SBMP-Plus/3M e Prime & Bond 2.0/Dentsply, que foram utilizados de 3 formas diferentes: 1 secando com ar após a lavagem do condicionamento ácido; 2 re-umedecendo com água destilada após a secagem, e 3 contaminando com saliva fresca após a secagem. Sessenta dentes molares humanos extraídos foram incluídos em resina acrílica incolor, desgastados com lixa de papel até exposição de dentina no sentido longitudinal e divididos em 6 grupos. Sobre esses dentes foram confeccionados cones de resina composta Z-100 (3M aderidos com os 2 diferentes sistemas adesivos nas 3 condições descritas anteriormente. Os corpos-de-prova foram submetidos a testes de tração numa máquina de ensaios Universal Wolpert a uma velocidade de 0,5mm/min. Os resultados obtidos foram transformados em MPa de acordo com a área de adesão e submetidos a análise estatística pela ANOVA e teste de Tukey. Os resultados mostraram que os 2 sistemas adesivos não apresentaram diferença estatisticamente significante entre si (p>0,05; os dentes que foram secos (7,31±2,91 apresentaram a menor resistência à tração e aqueles que foram umedecidos com água destilada (12,74±6,59 apresentaram a maior resistência, sendo a diferença entre eles estatisticamente significante no nível de 1%. Os dentes que foram contaminados com saliva fresca (10,62±4,75 apresentaram um valor intermediário entre os dois anteriores, não sendo este estatisticamente diferente de nenhum dos outros dois tratamentos realizadosThis in vitro study examined dentin bond strength to dentin of two adhesive systems (SBMP-Plus/3M and Prime & Bond2.0/Dentsply that were used in three different ways: 1 drying with compressed air after washing the etching solution used; 2 moistening with distilled water after drying; and 3 contaminating the dentin surface with fresh saliva after drying

  15. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  16. EFFECT ON BIOLOGICAL BEHAVIOR OF CHEMOTHERAPY-RESISTANT TUMOR CELLS BY HUMAN WILD-TYPE P53, GM-CSF AND B7-1 GENES VIA RECOMBINANT ADENOVIRUS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To explore the effect on biological behavior of chemotherapy-resistant tumor cells by human wild-type p53, GM-CSF and B7-1 genes mediated via recombinant adenovirus. Methods: p53-abnormal KB-v200 (VCR resistant) and KB-s (VCR sensitive) cell lines were used as model tumor cells, which are resistant and sensitive to chemotherapeutic drugs respectively. After infected with recombinant adenovirus carrying human wild-type p53, GM-CSF and B7-1 genes, changes in biological behavior (including drug sensitivity) of these two kinds of gene-transduced cancer cells were observed. Results: Both of the cell lines were susceptible to adenovirus, all of three exogenous genes (p53, GM-CSF and B7-1) could be effectively expressed in these cell lines, their growth was suppressed, and apoptosis was induced. The drug-pumping-out function of Pgp glycoprotein on the cytomembrane of drug-resistant KB-v200 cells was markedly affected 48h after transfection of the recombinant adenovirus, revealed by increase of the amount of rhodamine 123 accumulation in the cells. The MTT assay also indicated the reversal of their sensitivity to VCR drugs. In vivo experiment in nude mice it was demonstrated reduction of tumorigenicity of the KB-v200 cells or KB-s cells infected with the recombinant adenovirus, and increase of their sensitivity to VCR. Conclusion: The clinical application of this recombinant adenovirus carrying agents might be more effective in treatment of tumors with multidrug resistance (MDR).

  17. Investigation of impacts to federally endangered freshwater mussels of the Lower Ohio River: Chemical and biological survey for environmental contaminants adjacent to the Republic Creosoting Hazardous Waste Site near Joppa, Illinois

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A survey for contaminants in bed sediments and freshwater mussels was conducted in the region of the Lower Ohio River adjacent to the Republic Creosoting hazardous...

  18. Bioremediation of Creosote - contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    Bioremediation of creosote-contaminated soil was studied employing the methods of soil microbial biology and using new gas chromatography-mass spectrometry-mass spectrometry analytical approach. The changes of the soil microbial community under the polycyclic aromatic hydrocarbons (PAH) pollution impact were analyzed and described, as well as the changes during the bioremediation experiments. Laboratory-scale bioremediation experiments using the soil microbial community (consisted of bacteria...

  19. Fungal contaminants in cytopathology specimens

    Directory of Open Access Journals (Sweden)

    Prashant Sharma

    2014-02-01

    Full Text Available A pseudo-epidemic of environmental fungi, most likely by Fusarium spp., leading to inappropriate investigations for disseminated systemic mycosis is described. Subtle diagnostic clues, including the specimens affected, the nature of the host response, and the type of fungal elements noted helped to determine the nature of contaminants. The potential pitfall can be avoided by the knowledge of pertinent disease biology, prompt consultation for infectious diseases, and investigations of the potential environmental sources followed by source control.

  20. Survey of contamination status of slaughtered pigs with Salmonella and drug resistance in Mianyang City%绵阳市屠宰生猪沙门菌的污染状况及耐药性分析

    Institute of Scientific and Technical Information of China (English)

    周良君; 陈果; 王乐; 王学军

    2013-01-01

    Objective To understand the contamination status,serotype and drug resistance of Salmonella in slaughtered pigs in Mianyang City. Methods Carcass surface,lymph nodes and anal swabs were collected from slaughtered pigs and Salmonella strains were isolated. API20E was used for biochemical identification, Salmonella diagnostic serum for serotyping, and K-B method for drug sensitivity test. Results The total contamination rate of Salmonella in slaughtered pigs was24. 67% (37/1500 in Mianyang City,The positive rates of ketone body surface,lymph nodes and anal swabs were 28.33% (17/60),18.33(11/60) and 30.00(9/30)respectively. The predominant serotype was Salmonella typhimurium and Salmonella agona belonged to Group B; These Salmonella strains were 100% sensitive to cefotaxime and cefoxitin, and the tolerance to tetracycline and chloromycetin was the highest with 81.1% and 73.0%,respectively. 75.7%(28/37)were multiple resistant to TET-CHL-W-NAL-GNE. Conclusions The contamination of Salmonella in slaughtered pigs. Was serious. Hygienic management of slaughtered pigs be emphasized involved in ante-mortem inspection, cross contamination avoidance during slaughtering and supervision of antibiotic use for livestock breeding. Cephalosporins and ciprofloxacin re the drugs of first choice for treatment of Salmonella infection.%目的 了解绵阳市屠宰生猪中沙门菌的污染状况、血清分型及耐药性,为食品微生物风险评估提供基础数据,为合理使用抗生素提供科学依据. 方法 对屠宰生猪的酮体表面、回肠淋巴结和肛拭子进行采集和分离培养获得分离株;用API 20E进行菌株生化鉴定,沙门菌诊断血清进行血清分型;用K-B法进行药敏实验. 结果 绵阳市屠宰生猪沙门菌总体污染率为24.67%(37/150),猪酮体表面、猪回肠淋巴结和猪肛拭子的污染率分别为28.33%(17/60)、18.33%(11/60)、30.00%(9/30);沙门菌分离株以B群的鼠伤寒

  1. Androgen resistance.

    Science.gov (United States)

    Hughes, Ieuan A; Deeb, Asma

    2006-12-01

    Androgen resistance causes the androgen insensitivity syndrome in its variant forms and is a paradigm of clinical syndromes associated with hormone resistance. In its complete form, the syndrome causes XY sex reversal and a female phenotype. Partial resistance to androgens is a common cause of ambiguous genitalia of the newborn, but a similar phenotype may result from several other conditions, including defects in testis determination and androgen biosynthesis. The biological actions of androgens are mediated by a single intracellular androgen receptor encoded by a gene on the long arm of the X chromosome. Mutations in this gene result in varying degrees of androgen receptor dysfunction and phenotypes that often show poor concordance with the genotype. Functional characterization and three-dimensional modelling of novel mutant receptors has been informative in understanding the mechanism of androgen action. Management issues in syndromes of androgen insensitivity include decisions on sex assignment, timing of gonadectomy in relation to tumour risk, and genetic and psychological counselling.

  2. Remediation technologies for oil-contaminated sediments.

    Science.gov (United States)

    Agarwal, Ashutosh; Liu, Yu

    2015-12-30

    Oil-contaminated sediments pose serious environmental hazards for both aquatic and terrestrial ecosystems. Innovative and environmentally compatible technologies are urgently required to remove oil-contaminated sediments. In this paper, various physical, chemical and biological technologies are investigated for the remediation of oil-contaminated sediments such as flotation and washing, coal agglomeration, thermal desorption, ultrasonic desorption, bioremediation, chemical oxidation and extraction using ionic liquids. The basic principles of these technologies as well as their advantages and disadvantages for practical application have been discussed. A combination of two or more technologies is expected to provide an innovative solution that is economical, eco-friendly and adaptable.

  3. Present status in {sup 137}Cs contamination in the marine biota along the Pacific coast of eastern Japan derived from a dynamic biological model simulation following the Fukushima accident - A state and problem in {sup 137}Cs contamination in the marine biota along the Pacific coast of eastern Japan derived from the dynamic biological model simulation after the Fukushima accident - A state and problem in {sup 137}Cs contamination in the marine biota along the Pacific coast of eastern Japan derived from the dynamic biological model simulation after the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Tateda, Y.; Tsumune, D.; Tsubono, K.; Misumi, K. [Environmental Science Research Laboratory, CRIEPI, 1646, Abiko, Chiba, 270-1194 (Japan); Yamada, M. [Institute of radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Bunkyo, Hirosaki, Aomori, 036-8564 (Japan); Kanda, J.; Ishimaru, T. [Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato, Tokyo, 108-8477 (Japan)

    2014-07-01

    To understand the radioactive matter contamination of coastal biota in case of accidental release to the environment, the {sup 137}Cs levels in coastal biota around the Fukushima were reconstructed by dynamic model simulating non-equilibrated radioactive Cs transfer between seawater and organisms. Since, there is a disagreement between simulated radioactive Cs levels and observed concentrations in benthic organisms, being possibly attributable to the additional contamination source from sediment environment (Tateda et al. 2013), the {sup 137}Cs levels in organisms habituated not close to the sediment are calculated. Using the reconstructed {sup 137}Cs levels in seawater including atmospheric input and direct leakage after 1/March/2011 till 31/December/2012, {sup 137}Cs levels in sedentary organisms such as macro algae, bivalve and surface swimming plankton feeding fish e.g. as white bait were calculated along the Pacific Ocean coastal area of the Eastern Japan. The simulated temporal space distribution of the {sup 137}Cs levels in macro algae, algae feeding invertebrates, coastal bivalves, were generally agreed in the observed temporal profiles corresponding to the same food habitat organisms collected, while the magnitude of the {sup 137}Cs levels were several times lower than observed concentrations. Since the simulated reconstructed seawater levels are only verified by measured values after direct leakage, thus initial levels before the liquid release may be expected to be higher reconstructed level by simulation. The organisms are continuously exposed to initial contaminated seawater, reflecting actual seawater level increase in seawater, thus there may be possible deficit of initial source estimation in coastal surface water e.g. contribution from fine debris deposition to seaward from hydrogen explosion. In other word as shown in overall pushing up measured level compared to reconstructed level in organism, it also suggests the re-distributed {sup 137}Cs

  4. Assessing the bioavailability and risk from metal-contaminated soils and dusts

    Science.gov (United States)

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

  5. Is altered expression of hepatic insulin-related genes in growth hormone receptor knockout mice due to GH resistance or a difference in biological life spans?

    Science.gov (United States)

    Panici, Jacob A; Wang, Feiya; Bonkowski, Michael S; Spong, Adam; Bartke, Andrzej; Pawlikowska, Ludmila; Kwok, Pui-Yan; Masternak, Michal M

    2009-11-01

    Growth hormone receptor knockout (GHRKO) mice live about 40%-55% longer than their normal (N) littermates. Previous studies of 21-month-old GHRKO and N mice showed major alterations of the hepatic expression of genes involved in insulin signaling. Differences detected at this age may have been caused by the knockout of the growth hormone receptor (GHR) or by differences in biological age between GHRKO and N mice. To address this question, we compared GHRKO and N mice at ages corresponding to the same percentage of median life span to see if the differences of gene expression persisted. Comparison of GHRKO and N mice at approximately 50% of biological life span showed significant differences in hepatic expression of all 14 analyzed genes. We conclude that these changes are due to disruption of GHR gene and the consequent suppression of growth hormone signaling rather than to differences in "biological age" between mutant and normal animals sampled at the same chronological age.

  6. Harvesting contaminants from liquid

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, John T.; Hunter, Scott R.

    2016-05-31

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a vessel for storing the contaminated fluid. The vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus allowing the contaminants to be harvested.

  7. Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain

    NARCIS (Netherlands)

    Brul, S.; van Beilen, J.; Caspers, M.; O'Brien, A.; de Koster, C.; Oomes, S.; Smelt, J.; Kort, R.; ter Beek, A.

    2011-01-01

    Bacterial spore formers are prime organisms of concern in the food industry. Spores from the genus Bacillus are extremely stress resistant, most notably exemplified by high thermotolerance. This sometimes allows surviving spores to germinate and grow out to vegetative cells causing food spoilage and

  8. Time-lapse simulations of contaminant groundwater monitoring using magnetometric resistivity and frequency domain electromagnetic methods%基于磁电阻率法和频率域电磁法的地下水污染动态监测仿真

    Institute of Scientific and Technical Information of China (English)

    朱凯光; 杨建文

    2008-01-01

    We present the theoretical investigations of magnetometric resistivity and frequency domain electromagnetic methods in monitoring and mapping contaminant transport in groundwater systems. Taking the uniform media conceptualized model with a contaminant source in the ground surface as an example, numerical geo-electrical models are constructed based on the hydrological simulation results of contaminant concentration evolutions. The time-lapse 2-D forward modeling of MMR and the 1-D inversion results of FEM prove that these two geophysical methods are effective in contaminant plume monitoring. Based on geophysical simulations, the instructions for instrument design are given.%本文对磁电阻率法与频率域电磁法在地下水污染监测中的应用进行了理论研究.以污染物位于地表的均匀介质模型为例,根据污染物扩散的水文地质动态仿真结果,计算出与各监测时刻对应的地下水污染地电模型.通过各地电模型的二维磁电阻率法正演模拟结果以及一维频率域电磁法的反演结果,验证了这两种地球物理方法在地下水污染物运移监测中的有效性.

  9. Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community

    Directory of Open Access Journals (Sweden)

    Christopher L. Hemme

    2016-04-01

    Full Text Available Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe2+/Pb2+ permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co2+/Zn2+/Cd2+ efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome.

  10. Degradation of recalcitrant organic contaminants by solar photocatalysis.

    Science.gov (United States)

    Mansouri, L; Bousselmi, L; Ghrabi, A

    2007-01-01

    Biological pre-treated landfill leachates of Djebel Chakir contains some macromolecular organic substances that are resistant to biological degradation. The aim of the present work is to assess the feasibility of removing refractory organic pollutants in biological pre-treated landfill leachate by solar photocatalyse process. Leachate pollutant contents are studied to assess their contribution to leachate pollution and their treatability by solar photocatalyse process. Phenol is chosen as model of pollutants, to evaluate its removal and the efficiency of the photocatalytic system. The experiments were carried out in suspended photocatalytic reactor, using TiO2 Degussa P25, under sunlight illumination (UV-A: 15-31 W/cm2). Under optimum operational conditions, applied to single reactant (phenol), the system presents a TOC removal of 90% (the degradation follows a first-order kinetic). Based on the TOC removal, the results shows that the degradation of biological pre-treated leachate follows a zero-order kinetic. After 5 h of sunlight exposure, 74% of COT is removed. The TOC removal is the best without any correction of the pH and at the TiO2 concentration of 2.5 g/L. The photocatalytic degradation of organic contaminants as well as the formation and disappearance of the by-products were followed by GC/MS. The solar photocatalysis processes induce several modifications of the matrix leading to more biodegradable forms: all the remaining and new compounds generated after the biological pre-treatment of leachate are degraded and other types of organics appear, mainly carboxylic acid, aliphatic hydrocarbons and phtalic acids.

  11. 基于水文-地球物理模型的地下水污染磁电阻率异常动态监测仿真%Time-dependent magnetometric resistivity anomalies of groundwater contamination: Synthetic results from computational hydro-geophysical modeling

    Institute of Scientific and Technical Information of China (English)

    朱凯光; 扬建文

    2008-01-01

    We present a forward-modeling investigation of time-dependent ground magnetometric resistivity (MMR) anomalies associated with transient leachate transport in groundwater systems. Numerical geo-electrical models are constructed based on the hydrological simulation results of leachate plumes from a highly conceptualized landfill system and the resultant MMR responses are computed using a modified finite difference software MMR2DFD. Three transmitter configurations (i.e., single source, MMR-TE, and MMR-TM modes) and two hydrological models (i.e., uniform and faulted porous media) are considered. Our forward modeling results for the uniform porous medium indicates that the magnetic field components perpendicular to the dominant current flow contain the most information of the underground targets and the MMR-TE mode is an appropriate configuration for detecting contaminant plumes. The modeling experiments for the faulted porous medium also confirm that the MMR method is capable of mapping and monitoring the extent of contaminant plumes in groundwater systems.

  12. Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain.

    Science.gov (United States)

    Brul, Stanley; van Beilen, Johan; Caspers, Martien; O'Brien, Andrea; de Koster, Chris; Oomes, Suus; Smelt, Jan; Kort, Remco; Ter Beek, Alex

    2011-04-01

    Bacterial spore formers are prime organisms of concern in the food industry. Spores from the genus Bacillus are extremely stress resistant, most notably exemplified by high thermotolerance. This sometimes allows surviving spores to germinate and grow out to vegetative cells causing food spoilage and possible intoxication. Similar issues though more pending toward spore toxigenicity are observed for the anaerobic Clostridia. The paper indicates the nature of stress resistance and highlights contemporary molecular approaches to analyze the mechanistic basis of it in Bacilli. A molecular comparison between a laboratory strain and a food borne isolate, very similar at the genomic level to the laboratory strain but generating extremely heat resistant spores, is discussed. The approaches cover genome-wide genotyping, proteomics and genome-wide expression analyses studies. The analyses aim at gathering sufficient molecular information to be able to put together an initial framework for dynamic modelling of spore germination and outgrowth behaviour. Such emerging models should be developed both at the population and at the single spore level. Tools and challenges in achieving the latter are succinctly discussed.

  13. Cellular Signaling Pathways in Insulin Resistance-Systems Biology Analyses of Microarray Dataset Reveals New Drug Target Gene Signatures of Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Muhammad, Syed Aun; Raza, Waseem; Nguyen, Thanh; Bai, Baogang; Wu, Xiaogang; Chen, Jake

    2017-01-01

    Purpose: Type 2 diabetes mellitus (T2DM) is a chronic and metabolic disorder affecting large set of population of the world. To widen the scope of understanding of genetic causes of this disease, we performed interactive and toxicogenomic based systems biology study to find potential T2DM related genes after cDNA differential analysis. Methods: From the list of 50-differential expressed genes (p new drug target molecules for different diseases and can speed up drug discovery outcomes.

  14. Research Progress and Prospect on Biological technology research Sugar beet for disease resistance and pest resistance%甜菜抗病虫生物技术研究现状与展望

    Institute of Scientific and Technical Information of China (English)

    马靖靖; 孙亚卿; 邵科; 张少英

    2012-01-01

    病虫害是制约甜菜生长的重要因素,通过生物技术改良作物抗病虫性是一条有效的新途径.本文分别从甜菜抗丛根病、根腐病、褐斑病,抗线虫、夜蛾方面综述了国内外对甜菜抗病虫生物技术所开展的研究工作,取得的进展,并展望了基因工程改良甜菜抗病虫的前景,为同类研究提供参考.%Pests and diseases are the important factors to restrict the growth of sugar beet, take biotechnology to improve crop resistance to disease and insect is a new effective way. This article respectively summarize the research work and consequence of resistance to Rhizomania,black root.cercospora leaf spot and nematodes,leaf-feeding insects on sugar beet in domestic and overseas on sugar beet, the Progress it has got, and the prospect the future of genetic engineering in the improvement of Sugarbeet on the resistance to the disease and insect, provide a reference for the similar research.

  15. 番茄灰霉病菌对咯菌腈的抗性诱变及抗药突变体的生物学特性%Induced mutation of Botrytis cinerea resistant to fludioxonil and biological characteristics of resistant mutants

    Institute of Scientific and Technical Information of China (English)

    纪军建; 张小风; 王文桥

    2012-01-01

    为评估番茄灰霉病菌Botrytis cinerea对咯菌腈的抗性风险,就室内经紫外照射获得抗药突变体的方法及抗性突变体的生物学性状进行了研究.结果表明:番茄灰霉病菌分生孢子的紫外照射亚致死时间为90 ~120 s;经亚致死时间紫外照射后,4个亲本菌株中有2个菌株共产生了6个抗咯菌腈的突变体,其EC50值是亲本菌株的310倍以上,抗性突变频率为3.13×10-7;经紫外照射诱变获得的所有抗性突变体在菌丝生长速率、产孢量、产菌核能力及其在番茄果实上的致病性方面均比其亲本菌株明显降低.相关分析显示,所得抗咯菌腈突变体对氟啶胺、啶菌(噁)唑、啶酰菌胺和嘧霉胺无交互抗性.表明番茄灰霉病菌对咯菌腈的抗药性风险较低.%To assess the resistance risk of Botrytis cinerea to fludioxonil, the method for fludioxonil resistance mutagenesis and the biological characteristics of resistant mutants were studied. The results showed that the sub-lethal UV irradiation time for the conidia of B. Cinerea was 90-120 seconds. Four wild sensitive parental isolates were irradiated for sub-lethal time by UV, and six resistant mutants were obtained from two parental isolates. The ratio of EC50 value of resistant mutants comparing with that of its parental strain was more than 310 times,the frequency of resistance mutation was 3. 13×10-7. The mycelial growth rate, sporulation, sclerotia production and pathogenicity of resistant mutants decreased significantly as compared with their parental isolates. The analysis showed that the mutants had no cross resistance to other fungicides that have different mechanisms. The above results indicated that B. Cinerea on tomato had low risk of resistance to fludioxonil.

  16. Antimicrobial peptides against contaminating bacteria in fuel ethanol production

    Science.gov (United States)

    Lactic acid bacteria (LAB) are commonly found as contaminants of fuel ethanol production, resulting in reduced ethanol yields (1). Recent reports suggest that LAB can develop resistance to antibiotics such as virginiamycin and penicillin that are commonly used to control bacterial contamination (2)...

  17. Biochemical and Metabolic Changes in Arsenic Contaminated Boehmeria nivea L.

    Directory of Open Access Journals (Sweden)

    Hussani Mubarak

    2016-01-01

    Full Text Available Arsenic (As is identified by the EPA as the third highest toxic inorganic contaminant. Almost every 9th or 10th human in more than 70 countries including mainland China is affected by As. Arsenic along with other toxins not only affects human life but also creates alarming situations such as the deterioration of farm lands and desertion of industrial/mining lands. Researchers and administrators have agreed to opt for phytoremediation of As over costly cleanups. Boehmeria nivea L. can soak up various heavy metals, such as Sb, Cd, Pb, and Zn. But the effect of As pollution on the biology and metabolism of B. nivea has been somewhat overlooked. This study attempts to evaluate the extent of As resistance, chlorophyll content, and metabolic changes in As-polluted (5, 10, 15, and 20 mg L−1 As B. nivea in hydroponics. Toxic effects of As in the form of inhibited growth were apparent at the highest level of added As. The significant changes in the chlorophyll, electrolyte leakage, and H2O2, significant increases in As in plant parts, catalase (CAT, and malondialdehyde (MDA, with applied As revealed the potential of B. nivea for As decontamination. By employing the metabolic machinery of B. nivea, As was sustainably removed from the contaminated areas.

  18. Center for Contaminated Sediments

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers Center for Contaminated Sediments serves as a clearinghouse for technology and expertise concerned with contaminated sediments. The...

  19. Contaminated Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Sites contaminated by hazardous materials or wastes. These sites are those administered by the Contaminated Sites Section of Iowa DNR. Many are sites which are...

  20. INFECUNDITY AND CONSUMPTION OF PCB-CONTAMINATED SPORT FISH

    Science.gov (United States)

    Biologic capacity for reproduction, or fecundity, may be threatened by environmental contaminants, especially compounds capable of disrupting endocrine pathways. Telephone interviews that focused on reproductive events were conducted with female members of the New York State Angl...

  1. Detection of contamination of municipal water distribution systems

    Science.gov (United States)

    Cooper, John F.

    2012-01-17

    A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

  2. All biology is computational biology

    Science.gov (United States)

    2017-01-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science. PMID:28278152

  3. Effect of the biofilm detachment pattern on biological phosphorus removal in the biological contact oxidation remediation system purifying contaminated source water%生物膜脱除方式对受污染源水生物接触氧化修复系统除磷性能的影响

    Institute of Scientific and Technical Information of China (English)

    徐向阳; 徐京; 朱亮; 丁炜; 冯丽娟

    2011-01-01

    toxicants (e.g. SeO2-4 and H2AsO-4). Therefore, Ca alleviates the toxicity of Al3+, Cu2+ and Ni2+ but increases the toxicity of SeO2-4 and H2AsO-4. The values of ψ0 can be calculated with a Gouy-Chapman-Stern model in response to Ca concentrations in solutions. Based on the activity of heavy metal ions at the organism body surface, the biological effect of heavy metals can be well predicted. This study provides a novel avenue into understanding the mechanisms of plant-ion interactions and biological responses of plant.ocusing on the deterioration of phosphorus removal caused by biofilm phosphorus accumulation in biological contact oxidation process, the effect of two biofilm detachment patterns on pollutant removal in the system purifying contaminated source water was investigated in this study. The phosphorus removal efficiency reached 46.9% on the 7th day, then declined quickly. After full biofilm detachment (FBD) pattern was applied, the phosphorus removal was effectively improved and higher dissolved phosphate (DP) removal efficiency (>30%) was maintained over 30 days, and the saturated adsorption capacity of phosphate in the biofilm reached (318.5±21.5) mgTP m-2. While the phosphorus removal performance was not improved obviously in the system applying surface biofilm detachment (SBD) pattern, and the saturated adsorption capacity of phosphate was only 0.68 times of that applying FBD. It's speculated that the microbial community of biofilm in the re-growing period and pollutant removal performance of the system were significantly affected by different patterns. Results demonstrated that the heterotrophic denitrifying bacteria tended to be suppressed by dissolved oxygen during the beginning of biofilm re-growth after FBD pattern was applied, which benefited the colonization and enrichment of phosphate accumulating organisms. Compared to new filler, higher surface porosity and biocompatibility caused by residual microorganism and its extracellular polymeric substances

  4. A microbial fuel cell in contaminated ground delineated by electrical self-potential and normalized induced polarization data

    Science.gov (United States)

    Doherty, R.; Kulessa, B.; Ferguson, A. S.; Larkin, M. J.; Kulakov, L. A.; Kalin, R. M.

    2010-09-01

    There is a growing interest in the use of geophysical methods to aid investigation and monitoring of complex biogeochemical environments, for example delineation of contaminants and microbial activity related to land contamination. We combined geophysical monitoring with chemical and microbiological analysis to create a conceptual biogeochemical model of processes around a contaminant plume within a manufactured gas plant site. Self-potential, induced polarization and electrical resistivity techniques were used to monitor the plume. We propose that an exceptionally strong (>800 mV peak to peak) dipolar SP anomaly represents a microbial fuel cell operating in the subsurface. The electromagnetic and electrical geophysical data delineated a shallow aerobic perched water body containing conductive gasworks waste which acts as the abiotic cathode of microbial fuel cell. This is separated from the plume below by a thin clay layer across the site. Microbiological evidence suggests that degradation of organic contaminants in the plume is dominated by the presence of ammonium and its subsequent degradation. We propose that the degradation of contaminants by microbial communities at the edge of the plume provides a source of electrons and acts as the anode of the fuel cell. We hypothesize that ions and electrons are transferred through the clay layer that was punctured during the trial pitting phase of the investigation. This is inferred to act as an electronic conductor connecting the biologically mediated anode to the abiotic cathode. Integrated electrical geophysical techniques appear well suited to act as rapid, low cost sustainable tools to monitor biodegradation.

  5. Isolation and Characterization of Pb Resistant Bacteria from Cilalay Lake, Indonesia

    Directory of Open Access Journals (Sweden)

    Kesi Kurnia

    2015-12-01

    Full Text Available Pollution of water environment with heavy metals is becoming one of the most severe environmental and human health hazards. Lead (Pb is a major pollutant and highly toxic to human, animals, plants, and microbes. Toxic metals are difficult to remove from the environment, since they cannot be chemically or biologically degraded and are ultimately indestructible. Biological approaches based on metal-resistant microorganisms have received a great deal of attention as alternative remediation processes. This study aim to isolate and characterize Pb resistant of heterotrophic bacteria in Cilalay Lake, West Java, Indonesia. The water samples were collected along three points around Cilalay Lake. Water physical and chemical determination was performed using the Water Quality Checker. The bacterial isolates were screened on Triptone Glucose Yeast (TGY agar plates. Afterwards selected isolates were grown on Nutrient Agar media 50% with supplemented Pb 100 ppm by the standard disk. Population of resistant bacteria was counted. The result from metal resistant bacteria indicated that all isolates were resistant. The most abundant type of resistant bacteria to lead was Gram negative more than Gram positive. Identified have metal resistant bacteria could be useful for the bioremediation of heavy metal contaminated sewage and waste water

  6. Synthesis of new steroidal inhibitors of P-glycoprotein-mediated multidrug resistance and biological evaluation on K562/R7 erythroleukemia cells.

    Science.gov (United States)

    de Ravel, Marc Rolland; Alameh, Ghina; Melikian, Maxime; Mahiout, Zahia; Emptoz-Bonneton, Agnès; Matera, Eva-Laure; Lomberget, Thierry; Barret, Roland; Rocheblave, Luc; Walchshofer, Nadia; Beltran, Sonia; El Jawad, Lucienne; Mappus, Elisabeth; Grenot, Catherine; Pugeat, Michel; Dumontet, Charles; Le Borgne, Marc; Cuilleron, Claude Yves

    2015-02-26

    A simple route for improving the potency of progesterone as a modulator of P-gp-mediated multidrug resistance was established by esterification or etherification of hydroxylated 5α/β-pregnane-3,20-dione or 5β-cholan-3-one precursors. X-ray crystallography of representative 7α-, 11α-, and 17α-(2'R/S)-O-tetrahydropyranyl ether diastereoisomers revealed different combinations of axial-equatorial configurations of the anomeric oxygen. Substantial stimulation of accumulation and chemosensitization was observed on K562/R7 erythroleukemia cells resistant to doxorubicin, especially using 7α,11α-O-disubstituted derivatives of 5α/β-pregnane-3,20-dione, among which the 5β-H-7α-benzoyloxy-11α-(2'R)-O-tetrahydropyranyl ether 22a revealed promising properties (accumulation index 2.9, IC50 0.5 μM versus 1.2 and 10.6 μM for progesterone), slightly overcoming those of verapamil and cyclosporin A. Several 7α,12α-O-disubstituted derivatives of 5β-cholan-3-one proved even more active, especially the 7α-O-methoxymethyl-12α-benzoate 56 (accumulation index 3.8, IC50 0.2 μM). The panel of modulating effects from different O-substitutions at a same position suggests a structural influence of the substituent completing a simple protection against stimulating effects of hydroxyl groups on P-gp-mediated transport.

  7. Tomografía de resistividad eléctrica aplicada a la caracterización de sitios contaminados en tambos Electrical resistivity tomography applied to the characterization of contaminated sites at dairies

    Directory of Open Access Journals (Sweden)

    Beatriz N Losinno

    2008-12-01

    Full Text Available La calidad del agua subterránea en los tambos, utilizada para consumo animal, puede tener incidencia en la calidad de la leche, por lo cual es importante conocer el efecto de los lixiviados sobre el suelo y el agua subterránea. El objetivo fue detectar anomalías de conductividad eléctrica (CE en zona no saturada y saturada por medio de la tomografía de resistividad eléctrica, en sitios potencialmente contaminados en dos tambos, uno en Venado Tuerto y otro en Carmen de Areco y su relación con las propiedades físico-químicas del suelo y agua subterránea. En Carmen de Areco, en un suelo franco limoso con la presencia de un horizonte arcilloso (Bt el sitio más comprometido resultó el corral de encierre cercano a la zona de ordeñe, con anomalía de conductividad eléctrica del 60% en la zona no saturada respecto a sondeos testigos, mientras que la zona de alimentación, que periódicamente se traslada de lote, no se vió afectada. En Venado Tuerto, en un suelo franco arenoso de textura más gruesa, la zona de alimentación, con una anomalía del 84% y con una carga animal prolongada en el tiempo y las inmediaciones de la laguna de efluentes, presentaron un alto contenido de sales. En ambos casos la salinidad estuvo asociada con alto contenido de nitratos, fósforo y sulfatos provenientes de los efluentes ganaderos.Groundwater quality at dairies, used for animal consumption, may have incidence on milk quality, for which it is important to know the effect of wastes lixiviation on soil and groundwater. The aim was to detect anomalies of electrical conductivity at non saturated and saturated zone, by means of electrical resistivity tomography, at potentially contaminated sites at two dairies at Venado Tuerto (Santa Fe Province, Argentina and at Carmen de Areco (Buenos Aires Province, Argentina, and its relationship with physico-chemical properties of soil and groundwater. In Carmen de Areco, a silty laomy soil with clay horizon (Bt, the most

  8. Movimiento superficial de contaminantes biológicos de origen ganadero en la red de drenaje de una cuenca de Pampa Ondulada Surface movement of cattle-borne biological contaminants in the drainage network of a basin of the Rolling Pampas

    Directory of Open Access Journals (Sweden)

    Celio I Chagas

    2010-07-01

    Full Text Available Se estudió la concentración de indicadores de contaminación biológica en pequeñas depresiones ubicadas en vías de escurrimiento que atraviesan tierras dedicadas a la ganadería donde se acumulan aguas y sedimentos generados por la actividad agropecuaria de la Pampa Ondulada argentina. La carga animal de los lotes ubicados en la cuenca del Tala donde se encontraban las depresiones, se relacionó estrechamente con su carga de microorganismos. La intensidad de las lluvias previas al muestreo (en el caso de los coliformes totales y el lapso de tiempo entre el último escurrimiento significativo y el muestreo (para enterococos y estreptococos fecales resultaron variables sensibles para predecir la dinámica de la concentración de dichos grupos de microorganismos en los sitios de acumulación. Los resultados obtenidos corroboran la estrecha asociación que existe entre los procesos de escurrimiento y erosión hídrica y la contaminación biológica de las aguas acumuladas en las depresiones estudiadas. Estos elementos, sumados a los resultados de trabajos previos realizados en la región, permitieron elaborar un modelo conceptual sencillo de entradas y salidas de potenciales contaminantes físicos y biológicos en las depresiones estudiadas que podrá servir de base para el diseño de alertas tempranas de contaminación de los cursos de agua a nivel regional.Runoff water and sediments from crop and cattle production fields of the Rolling Pampas accumulate in small depressions along the drainage network. We studied the concentration of biological contamination indicators in these small sinks located in bottomlands devoted to cattle production of the Tala River basin. The stocking rate was closely related to the concentration of microorganisms in the depressions. The intensity of rainfall events previous to each sampling date and the time between the last significant runoff event and each sampling date proved to be sensible variables for

  9. EFSA Panels on Biological Hazards (BIOHAZ), on Contaminants in the Food Chain (CONTAM), and on Animal Health and Welfare (AHAW); Scientific Opinion on the public health hazards to be covered by inspection of meat (poultry)

    DEFF Research Database (Denmark)

    Hald, Tine

    2012-01-01

    A qualitative risk assessment identified Campylobacter spp., Salmonella spp. and ESBL/AmpC gene-carrying bacteria as the most relevant biological hazards in the context of meat inspection of poultry. As none of these are detected by traditional visual meat inspection, establishing an integrated...

  10. EFSA Panels on Biological Hazards (BIOHAZ), on Contaminants in the Food Chain (CONTAM), and on Animal Health and Welfare (AHAW); Scientific Opinion on the public health hazards to be covered by inspection of meat (swine)

    DEFF Research Database (Denmark)

    Hald, Tine

    2011-01-01

    A qualitative risk assessment identified Salmonella spp., Yersinia enterocolitica, Toxoplasma gondii and Trichinella spp. as the most relevant biological hazards in the context of meat inspection of swine. A comprehensive pork carcass safety assurance is the only way to ensure their effective...

  11. Expression of a crown gall biological control phenotype in an avirulent strain of Agrobacterium vitis by addition of the trifolitoxin production and resistance genes

    Directory of Open Access Journals (Sweden)

    Triplett Eric W

    2002-03-01

    Full Text Available Abstract Background Agrobacterium vitis is a causal agent of crown-gall disease. Trifolitoxin (TFX is a peptide antibiotic active only against members of a specific group of α-proteobacteria that includes Agrobacterium and its close relatives. The ability of TFX production by an avirulent strain of Agrobacterium to reduce crown gall disease is examined here. Results TFX was shown to be inhibitory in vitro against several A. vitis strains. TFX production, expressed from the stable plasmid pT2TFXK, conferred biological control activity to an avirulent strain of A. vitis. F2/5, against three virulent, TFX-sensitive strains of A. vitis tested on Nicotiana glauca. F2/5(pT2TFXK is significantly reduces number and size of galls when co-inoculated with tumorigenic strain CG78 at a 10:1 ratio, but is ineffective at 1:1 or 1:10 ratios. F2/5(pT2TFXK is effective when co-inoculated with tumorigenic strain CG435 at 10:1 and 1:1 ratios, but not at a 1:10 ratio. When F2/5(pT2TFXK is co-inoculated with CG49 at a 10:1 ratio, the incidence of gall formation does not decline but gall size decreases by more than 70%. A 24 h pre-inoculation with F2/5(pT2TFXK does not improve biological control at the 1:10 ratio. Conclusions TFX production by an avirulent strain of Agrobacterium does confer in that strain the ability to control crown gall disease on Nicotiana glauca. This is the first demonstration that the production of a ribosomally synthesized, post-translationally modified peptide antibiotic can confer reduction in plant disease incidence from a bacterial pathogen.

  12. Application of Molecular Biology in Investigation of Resistance in Enterococci%分子生物学方法在肠球菌耐药性研究中的应用

    Institute of Scientific and Technical Information of China (English)

    王珊; 吕媛

    2015-01-01

    Objective This article aims to provide mechanisms and recent developments of molecular biology pertaining to re-sistance of Enterococci,providing rapid approaches for detecting resistant strains.Methods This article reviewed recent lit-eratures on resistance of Enterococci and a systemic analysis was conducted.Results Common detecting methods include polymerase chain reaction (PCR),pulsed field gel electrophoresis (PFGE),multilocus sequence typing (MLST)and South-ern blot.There also exist less widely-used methods such as pyrosequencing and genechip technique,which may prove effi-cient in some aspects.Conclusion Every method has its advantages and disadvantages.This article discussed how to utilize these methods to achieve their maximum capabilities.%目的:为了及时准确地检测细菌的耐药性,该文将肠球菌耐药性研究中的分子生物学方法进行综述。方法对近年来肠球菌耐药性研究的相关文献进行整理、分析与归纳。结果一些方法比较常见,如 PCR,PFGE,MSLT和 Southern杂交等,而一些方法如焦磷酸测序和基因芯片技术,目前在细菌耐药机制研究中的应用并不广泛,属于交叉学科,但是稍加利用会有一定的发展前景。结论任何一个方法都有优点,也存在一些局限性,应取长补短,发挥每种方法的最大优势。

  13. Bioavailability of sediment-bound contaminants to marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Colby Coll., Waterville, ME (United States); Neff, J. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Battelle Ocean Sciences, Duxbury, MA (United States)

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  14. Diagnosis and control of anthelmintic-resistant Parascaris equorum

    Directory of Open Access Journals (Sweden)

    Reinemeyer Craig R

    2009-09-01

    Full Text Available Abstract Since 2002, macrocyclic lactone resistance has been reported in populations of Parascaris equorum from several countries. It is apparent that macrocyclic lactone resistance developed in response to exclusive and/or excessively frequent use of ivermectin or moxidectin in foals during the first year of life. The development of anthelmintic resistance was virtually inevitable, given certain biological features of Parascaris and unique pharmacologic characteristics of the macrocyclic lactones. Practitioners can utilize the Fecal Egg Count Reduction Test to detect anthelmintic resistance in Parascaris, and the same technique can be applied regularly to confirm the continued efficacy of those drugs currently in use. In the face of macrocyclic lactone resistance, piperazine or anthelmintics of the benzimidazole or pyrimidine classes can be used to control ascarid infections, but Parascaris populations that are concurrently resistant to macrocyclic lactones and pyrimidine drugs have been reported recently from Texas and Kentucky. Compared to traditional practices, future recommendations for ascarid control should feature: 1 use of only those anthelmintics known to be effective against indigenous populations, 2 initiation of anthelmintic treatment no earlier than 60 days of age, and 3 repetition of treatments at the longest intervals which prevent serious environmental contamination with Parascaris eggs. In the interest of decreasing selection pressure for anthelmintic resistance, horse owners and veterinarians must become more tolerant of the passage of modest numbers of ascarid eggs by some foals. Anthelmintic resistance is only one of several potential responses to genetic selection. Although still only theoretical, changes in the immunogenicity of ascarid isolates or reduction of their prepatent or egg reappearance periods could pose far greater challenges to effective control than resistance to a single class of anthelmintics.

  15. Study on the biological resistance of Lactobacillus acidophilus%嗜酸乳杆菌生物抗性的研究

    Institute of Scientific and Technical Information of China (English)

    程秀云; 罗玉芳

    2011-01-01

    A fine strain of Lactobacillus acidophilus was selected as the research object. It measured the method of plate culture count to confirm the survival of Lactobacillus acidophilus under different factors to study its acidresistant, osmotic pressure tolerance, salt and bile tolerance and to study the comprehensive influences of gastric acid, salt and bile on Lactobacillus acidophilus by simulating of human gastrointestinal environment. Finally it concluded that Lactobacillus acidophilus had a certain resistance capacity.%选择一株嗜酸乳杆菌优良菌株为研究对象,用平板菌落计数法测定嗜酸乳杆菌在各因素的作用下的存活率来研究其耐酸、耐渗透压、耐胆盐能力以及模拟人体肠胃环境研究胃酸、食盐、胆盐对嗜酸乳杆菌的综合影响;从实验结果得出嗜酸乳杆菌具有一定的抗性能力.

  16. Using Geophysical Signatures to Investigate Temporal Changes Due to Source Reduction in the Subsurface Contaminated with Hydrocarbons

    Science.gov (United States)

    We investigated the geophysical response to subsurface hydrocarbon contamination source removal. Source removal by natural attenuation or by engineered bioremediation is expected to change the biological, chemical, and physical environment associated with the contaminated matrix....

  17. Indicadores de contaminación biológica asociados a la erosión hídrica en una cuenca de Pampa Ondulada Argentina Indicators of biological contamination associated with water erosion in basin belonging the rolling pampa, Argentina

    Directory of Open Access Journals (Sweden)

    Celio I. Chagas

    2006-07-01

    í a nivel de la cuenca bajo estudio.Agriculture activities use 70% of the world water resources, partly for animal production and particularly cattle feeding. There is an outstanding risk of biological contamination associated with this kind of production because animal feces and urine containing pathogens can be transported to surface waterways through runoff. The present investigation was carried out in the Tala basin belonging to the Rolling Pampa region in which intense runoff and erosion processes are widespread. In this basin there are extensive cattle feeding farms which are located close to the natural waterways, in bottomlands with hydrohalomorphic soils. There is also an increasing surface devoted to feedlots and intensive swine and poultry productions. The main use of the surface waters from the river and tributaries is direct cattle drinking. The aim of the present work was to analyze through biological indicators, the potential contamination of runoff water and sediments accumulated in lowlands devoted to cattle production and to determinate their human or animal origin. The waters showed concentration of biological indicators belonging to faecal streptococci and enterococci which can be related to animal but no to human contamination processes. A close relationship was observed between total coliforms and erosion borne sediment concentration in the studied area. Thus, the capacity of these sediments for carrying bacteria potentially harmful for animal health like Salmonella spp. was confirmed. The runoff, erosion and biological contamination processes proved to be related in the studied basin.

  18. Survival of resistance structures in Macrophomina phaseolina and Sclerotium rolfsii in a biologically treated soil =Sobrevivência de estrutura de resistência de Macrophomina phaseolina e Sclerotium rolfsii em solo tratado biologicamente

    Directory of Open Access Journals (Sweden)

    Selma Rogéria Carvalho Nascimento

    2016-06-01

    Full Text Available This aim of this study was to evaluate the effect in vitro of the fungus Trichoderma and of the product Compost Aid®, and on the survival of the fungi phaseolina Macrophomina and Sclerotium rolfsii in the soil. The treatments were Tricobiol® with a T. harzianum base, Triconemate® with a base of T. longibrachiatum from Biofungi Control Biológico®, Trichoderma viride (TR2; T. harzianum (T25; T. koningii (T15; T. Polysporum (SN11 and Compost Aid®. An evaluation of antagonism was determined from the score allotted to the percentage of growth of isolates of Trichoderma spp. in relation to the phyto-pathogenic fungi, as well as the percentage inhibition in pathogen growth in relation to the Compost Aid® product. The survival of resistance structures in the pathogenic fungi was evaluated 40 days after application of the treatments by plating onto a semiselective culture medium and BDA. For the experiment in vitro, all the treatments with Trichoderma produced a percentage inhibition greater than 50% for both phyto-pathogenic fungi. The commercial products Tricobiol® and Triconemate® gave the greatest percentage inhibition for the fungus S. rolfsii (62.5%. The Compost Aid® product gave 100% and 98.57% inhibition in the growth of the fungi M. phaseolin and S. rolfsii respectively. The treatments in the form of a mixture of Trichoderma and Tricobiol® had a median value of 100%, while Triconemate® resulted in a 96% inhibition in the growth of the microsclerotia of M. phaseolina recovered from the soil; however none of these treatments inhibited sclerotial germination in S. rolfsii. The product Compost Aid® resulted in a median of 100% and 0% growth in resistance structures for the M. phaseolina and S. rolfsii fungi respectively. = O presente estudo teve como objetivo avaliar o efeito do fungo Trichoderma e do produto Compost Aid® in vitro e na sobrevivência dos fungos Macrophomina phaseolina e Sclerotium rolfsii no solo. Os tratamentos foram

  19. Effects of past copper contamination and soil structure on copper leaching from soil

    DEFF Research Database (Denmark)

    Paradelo, M; Møldrup, Per; Arthur, Emmanuel

    2013-01-01

    Copper contamination affects biological, chemical, and physical soil properties and associated ecological functions. Changes in soil pore organization as a result of Cu contamination can dramatically affect flow and contaminant transport in polluted soils. This study assessed the influence of soil...

  20. Bioremediation of contaminated groundwater

    Science.gov (United States)

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  1. Resistance-resistant antibiotics.

    Science.gov (United States)

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.

  2. [Contamination of solid-cast rubber tires by microscopic fungi].

    Science.gov (United States)

    Chuienko, A I; Subbota, A H; Olishevs'ka, S V; Zaslavs'kyĭ, V A; Zhdanova, N M

    2010-01-01

    The main peculiarities of fungal resistance of two types of unit cast rubber tires of domestic manufacture have been investigated. Rubber tires which contained synthetic plasticizer were non-resistant to fungal contamination in contrast to ones with natural plasticizer. Using the method of confocal laser-scanning microscopy, it was shown that inner layers of two types of rubber tires were contaminated with fungal mycelium. Our findings indicate that the investigation of microscopic fungi resistance of new materials is necessary for general mechanical rubber goods, especially exported to tropical climate countries.

  3. Genetic differentiation among Maruca vitrata F. (Lepidoptera: Crambidae populations on cultivated cowpea and wild host plants: implications for insect resistance management and biological control strategies.

    Directory of Open Access Journals (Sweden)

    Tolulope A Agunbiade

    Full Text Available Maruca vitrata Fabricius (Lepidoptera: Crambidae is a polyphagous insect pest that feeds on a variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis of mitochondrial cytochrome oxidase 1 (cox1 sequence and microsatellite marker data from M. vitrata collected from cultivated cowpea (Vigna unguiculata L. Walp., and alternative host plants Pueraria phaseoloides (Roxb. Benth. var. javanica (Benth. Baker, Loncocarpus sericeus (Poir, and Tephrosia candida (Roxb.. Analyses of microsatellite data revealed a significant global FST estimate of 0.05 (P≤0.001. The program STRUCTURE estimated 2 genotypic clusters (co-ancestries on the four host plants across 3 geographic locations, but little geographic variation was predicted among genotypes from different geographic locations using analysis of molecular variance (AMOVA; among group variation -0.68% or F-statistics (FSTLoc = -0.01; P = 0.62. These results were corroborated by mitochondrial haplotype data (φSTLoc = 0.05; P = 0.92. In contrast, genotypes obtained from different host plants showed low but significant levels of genetic variation (FSTHost = 0.04; P = 0.01, which accounted for 4.08% of the total genetic variation, but was not congruent with mitochondrial haplotype analyses (φSTHost = 0.06; P = 0.27. Variation among host plants at a location and host plants among locations showed no consistent evidence for M. vitrata population subdivision. These results suggest that host plants do not significantly influence the genetic structure of M. vitrata, and this has implications for biocontrol agent releases as well as insecticide resistance management (IRM for M. vitrata in West Africa.

  4. Genetic differentiation among Maruca vitrata F. (Lepidoptera: Crambidae) populations on cultivated cowpea and wild host plants: implications for insect resistance management and biological control strategies.

    Science.gov (United States)

    Agunbiade, Tolulope A; Coates, Brad S; Datinon, Benjamin; Djouaka, Rousseau; Sun, Weilin; Tamò, Manuele; Pittendrigh, Barry R

    2014-01-01

    Maruca vitrata Fabricius (Lepidoptera: Crambidae) is a polyphagous insect pest that feeds on a variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis of mitochondrial cytochrome oxidase 1 (cox1) sequence and microsatellite marker data from M. vitrata collected from cultivated cowpea (Vigna unguiculata L. Walp.), and alternative host plants Pueraria phaseoloides (Roxb.) Benth. var. javanica (Benth.) Baker, Loncocarpus sericeus (Poir), and Tephrosia candida (Roxb.). Analyses of microsatellite data revealed a significant global FST estimate of 0.05 (P≤0.001). The program STRUCTURE estimated 2 genotypic clusters (co-ancestries) on the four host plants across 3 geographic locations, but little geographic variation was predicted among genotypes from different geographic locations using analysis of molecular variance (AMOVA; among group variation -0.68%) or F-statistics (FSTLoc = -0.01; P = 0.62). These results were corroborated by mitochondrial haplotype data (φSTLoc = 0.05; P = 0.92). In contrast, genotypes obtained from different host plants showed low but significant levels of genetic variation (FSTHost = 0.04; P = 0.01), which accounted for 4.08% of the total genetic variation, but was not congruent with mitochondrial haplotype analyses (φSTHost = 0.06; P = 0.27). Variation among host plants at a location and host plants among locations showed no consistent evidence for M. vitrata population subdivision. These results suggest that host plants do not significantly influence the genetic structure of M. vitrata, and this has implications for biocontrol agent releases as well as insecticide resistance management (IRM) for M. vitrata in West Africa.

  5. Enhancing growth, phytochemical constituents and aphid resistance capacity in cabbage with foliar application of eckol--a biologically active phenolic molecule from brown seaweed.

    Science.gov (United States)

    Rengasamy, Kannan R R; Kulkarni, Manoj G; Pendota, Srinivasa C; Van Staden, Johannes

    2016-03-25

    Although foliar application of seaweed extracts on plant growth and development has and is extensively studied, reliable knowledge and understanding of the mode of action of particular compound(s) responsible for enhancing plant growth is lacking. A brown seaweed Ecklonia maxima is widely used commercially as a biostimulant to improve plant growth and crop protection. Eckol, a phenolic compound isolated from E. maxima has recently shown stimulatory effects in maize, indicating its potential use as a plant biostimulant. Cabbage is a widely cultivated vegetable crop throughout the world, which requires high input of fertilizers and is susceptible to several aphid borne diseases. This study was conducted to evaluate the effect of foliar application of eckol on the growth, phytochemical constituents and myrosinase activity (aphid resistance capacity) of commercially cultivated cabbage. Foliar application of eckol (10(-6) M) significantly enhanced shoot and root length, shoot and root fresh and dry weight, leaf area and leaf number. This treatment also showed a significant increase in photosynthetic pigments (chlorophyll 'a', chlorophyll 'b', total chlorophyll and carotenoid) compared to the untreated plants. The levels of protein, proline and iridoid glycosides were significantly higher in cabbage leaves with eckol treatment. All the control plants were severely infested with cabbage aphid (Brevicoryne brassicae) but no infestation was observed on the eckol-sprayed plants, which can be attributed to an increase in myrosinase activity. This study reveals dual effects (plant growth promoting and insect repelling) of eckol on cabbage plants that need further investigations both under field conditions and in other brassicaceous species.

  6. 防御素的生物学特性及其抗病基因工程%Biological characteristics of defensin and its disease-resistance genetic engineering

    Institute of Scientific and Technical Information of China (English)

    付蓝宝; 于嘉林; 刘伟华

    2011-01-01

    防御素是一种富含半胱氨酸的小分子多肽,对细菌等微生物具有广谱抗性,且作用机制特殊.迄今为止,国内外在防御素方面进行了大量的研究,已经从各类生物体中分离出不同种类的防御素.并在基因工程和医药领域呈现广泛的应用前景.文章对防御素的分类、生物学特性,包括哺乳动物α-、β-、θ-防御素、昆虫以及植物防御素的分子结构及抗菌活性进行了综述,阐述了防御素的膜作用及与细胞内复合物结合的作用机制.总结和归纳了防御素基因的分离、表达研究进展及动、植物防御素基因在抗病基因工程领域的应用,并对防御素在未来的生物制药和植物抗病基因工程方面的应用前景进行了展望.%Defensin is a kind of cysteine-rich small peptide, which has a broad spectrum of resistance to bacteria with a special resistance mechanism.So far, a large number of studies on defensins have been reported, and the different types of defensins have been isolated from various organisms.A broad prospect of application on defensins has been displayed both in genetic engineering and medicine field.This article reviewed the classification and the biological characteristics of defensins, including mammalian α-, β-, θ-defensins, insect defensins, and plant defensins.The molecular structures,antibacterial activities, and antibacterial mechanisms of these definsins were summarized.The two mechanisms of defensin, including independent membrane mechanism and targeting of intracellular compounds by defensins, are expounded.This paper also summarized the researches on isolation and expression of defensin genes and disease resistance genetic engineering of mammal and plant defensins.A prospect of the future applications of defensin both in biopharmaceutical sciences and plant disease resistance genetic engineering was discussed.

  7. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  8. Contaminação da pastagem com larvas infectantes de nematoides gastrintestinais após o pastejo de ovelhas resistentes ou susceptíveis à verminose Pasture contamination with infective larvae of gastrointestinal nematodes after grazing by sheep resistant or susceptible to parasitic infection

    Directory of Open Access Journals (Sweden)

    César Cristiano Bassetto

    2009-12-01

    Full Text Available O grau de contaminação da pastagem por larvas de terceiro estágio (L3 de nematoides gastrintestinais foi avaliado em piquetes pastejados por ovelhas resistentes ou susceptíveis à verminose. O experimento foi realizado de 23 de novembro de 2007 a 22 de julho de 2008. Inicialmente, realizou-se a contagem de ovos por grama de fezes (OPG de amostras individuais de 130 ovelhas adultas da raça Bergamácia. Dessas, foram selecionadas as nove ovelhas com contagens mais elevadas de OPG (susceptíveis e as 10 com as menores contagens (resistentes. As ovelhas resistentes apresentaram menor contagem de OPG, maiores valores de volume globular, de proteína plasmática total e de eosinófilos sanguíneos, do que as ovelhas susceptíveis. O peso também foi maior no grupo resistente. Na pastagem, foram identificadas larvas de Haemonchus spp., Trichostrongylus spp. e Oesophagostomum spp. Em média, as quantidades de L3 de Haemonchus spp. e de Trichostrongylus spp., na pastagem, foram 2,19 e 2,31 vezes, respectivamente, maiores nos piquetes pastejados pelo grupo susceptível do que nos do grupo resistente. Portanto, os animais susceptíveis devem ser eliminados do rebanho a fim de reduzir a contaminação da pastagem e otimizar a profilaxia das infecções por nematoides gastrintestinais.The degree of contamination of herbage with third stage larvae of gastrointestinal nematodes was evaluated in paddocks grazed by resistant or susceptible ewes. The trial occurred from November 23, 2007 to July 22, 2008. Initially, fecal egg counts (FEC were performed with individual samples of 130 adult ewes of the Bergamacia breed. Of those animals, nine ewes with the highest FEC (susceptible group and 10 with the lowest counts (resistant group were selected and moved to separate paddocks. The resistant ewes presented lower FEC, higher values of packed cell volume, total plasma protein and blood eosinophils than the susceptible ewes. The weight was also higher in the

  9. 人肺腺癌紫杉醇耐药细胞系的建立及生物学特性研究%Establishment and biological characteristics of Taxol-induced drug resistant human lung adenocarcinoma cell line

    Institute of Scientific and Technical Information of China (English)

    张广亮; 钱晓萍; 刘宝瑞; 胡静; 刘芹; 张一凡; 禹立霞

    2013-01-01

    目的 探讨紫杉醇(Taxol)诱导的人肺腺癌细胞A549耐药细胞系A549/Taxol生物学特性和耐药机制.方法 采用Taxol浓度递增间歇诱导法,建立A549/Taxol细胞系,MTT法测定耐药性,流式细胞术检测细胞周期,Transwell小室法检测细胞侵袭力,荧光定量RTPCR检测乳腺癌易感基因1(BRCA1)、受体相关蛋白80(RAP80)、微管相关蛋白T(Tau)、多药耐药基因1(MDR1)mRNA表达水平.结果 A549/Taxol细胞对Taxol及多西紫杉醇均有耐药性,对前者耐药性更强(RI=48.36 vs.27.21)(P<0.01).与A549细胞相比,A549/Taxol细胞G1期的细胞比例增加[(50.56±0.25)% vs.(57.75±0.16)%],而S期细胞比例减少[(37.85±1.48)% vs.(30.21±1.87)%],细胞凋亡率增加幅度减小[(56.43±1.12)% vs.(9.23±1.18)%],细胞侵袭力增强[(38.6±9.97)个vs.(116.8±21.73)个],BRCA1、RAP80 mRNA表达降低,而MDR1、Tau mRNA表达显著升高(P<0.01).结论 成功建立Taxol耐药细胞系A549/Taxol,有助于进一步研究肺癌耐药机制.%Objective To explore the biological characteristics and mechanisms of drug resistance in Taxol-induced drug resistant human lung adenocarcinoma cell line (A549/Taxol). Methods The cell line A549/Taxol was established by intermittent-inducing method of gradually increasing the concentration of Taxol in vitro. Its drug resistance, cell cycle and cell invasion were detected by MTT assay, flow cytometry and transwell chamber, respectively. The expressions of BRCAl,RAP80,Tau and MDR1 mRNA were measured by quantitative RT-PCR. Results The cell line A549/Taxol was resistant to both Taxol and Docetaxel, which was more resistant to Taxol than that to Docetaxel(RI=48. 36 vs. 27. 21)(P<0. 01). Compared with cell line A549,in cell line A549/ Taxol,G1 phase cell fraction increased [(50. 56±0. 25)% vs. (57. 75 ± 0. 16)%],S phase cell fraction decreased[(37. 85 ± 1. 48)% vs. (30. 21 ± 1. 87)%],the increase in apoptosis rate was smaller[(56. 43 ± 1. 12)% vs. (9. 23 ± 1

  10. Accumulation of heavy metals in oil-contaminated peat soils

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Savichev, A. T.; Trofimov, S. Ya.; Shishkonakova, E. A.

    2012-10-01

    X-ray fluorescence and X-ray radiometry represent easy and simple methods to determine concentrations of heavy metals in the ash of peat soils contaminated with oil and can be applied for soil monitoring purposes. Oil spills on peat bogs produce two contamination zones differing in the composition of heavy metals. In the zone of primary contamination, the peat surface is covered by a bitumen crust with V, Ni, Sr, Ba, Ce, and La accumulating there. This zone adjoins the zone of secondary peat contamination, where heavy alkaline-earth metals (Sr, Ba) and lanthanides (Ce and La) are accumulated to a lesser extent. Biological preparations recommended for remediation of oil-contaminated peat soils should be tolerant to high concentrations of heavy metals, particularly, V, Ni, and Ba that are present in the oil contaminated soils in relatively high amounts.

  11. Biological Agents

    Science.gov (United States)

    ... Workers can file a complaint with OSHA by calling 1-800-321-OSHA (6742), online via eComplaint ... to Ensure an Appropriate Response to Anthrax Contamination . Government Accountability Office (GAO) Report GAO-04-239, (September ...

  12. Complexity of Groundwater Contaminants at DOE Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base

  13. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In ord

  14. Some aspects of the rehabilitation of agricultural lands contaminated with radionuclides and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Oulianenko, L.N.; Filipas, A.S.; Diachenko, I.V.; Stepanchikova, N.S.

    1995-12-31

    In increasing anthropogenous impacts on the environment, the problem of obtaining plant products with minimal content of toxicants becomes more and more challenging. This problem is particularly relevant in the farming regions of Russia subjected to the effects of the accidents in the south Urals and Chernobyl, since reduction of radionuclide content in agricultural products is still among the main ways of decreasing the dose burdens for population. The situation is aggravated by the fact that to date, implementation of traditional methods connected first of all with the introduction as special agrotechnical methods and justified in the early post-accidental period is not as efficient as it was before. At the same time, it is just now that particular attention is given to the problems of plant production ecologization, which is especially important for lands subjected to technogenous contamination. From this point of view, biologically active substances (BAS) are of interest beyond any doubt. These substances are applied as regulators of plant growth, for increase of crop productivity and resistance to abiotic or biotic factors, and having potential ability of regulating the transfer of mineral substances into plants. The data available on the BAS application on radioactively contaminated lands confirm their effect on the processes of radionuclide transport in the chain: soil-plant-harvest. All these considerations give grounds for using this approach to minimize chemical toxicants in plant products, and to rehabilitate lands under conditions of their technogenous contamination.

  15. BIO-DIAGNOSTICS OF RESISTANCE OF GREY FOREST SOILS OF ADYGEA TO POLLUTION WITH Zn, Cd, Mo, Se

    Directory of Open Access Journals (Sweden)

    Tatlok D. R.

    2015-04-01

    Full Text Available The essential part of a soil cover of the Republic of Adygea is occupied by gray forest soils. Thus they still remain a little studied, including concerning their resistance to chemical pollution. Contamination of gray forest soils of Adygea with Zn, Cd, Mo, Se causes deterioration of their biological properties. In most cases, the degree of reduction of the values of biological indicators is directly dependent on the concentration of pollutant in the soil. According to the degree of toxicity to the biological properties of the investigated elements form the following sequence: Se > Zn > = Cd > Mo. Biological parameters investigated in research (activity of catalase and dehydrogenase, cellulolytic ability, abundance of bacteria of the genus Azotobacter, radish root length may be used for purposes of monitoring, diagnosis and regulation of chemical pollution of gray forest soils Zn, Cd, Mo, Se

  16. Contaminated water treatment

    Science.gov (United States)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  17. Anthelmintic resistance.

    Science.gov (United States)

    Waller, P J

    1997-11-01

    simple commercial fact that by far the greatest anthelmintic sales are associated with the cattle industry. However, this market is specific and sectoral, with by far the greatest sales in North America and Western Europe, where the prevalence of resistance is likely to be low and remain so, more-or-less indefinitely. So the chances of the above scenario occurring must be considered low. Remarkable developments have recently occurred in non-chemotherapeutic parasite control options, for example worm vaccines, host selection and biological control. Also, there seems to be greater acceptance of various grazing management practices designed to reduce the frequency of anthelmintic treatment. However, they collectively cannot be expected to offer immediate salvation to farmers now faced with chemotherapeutic failure to control nematode parasites in their flocks. The future for these farmers must be considered bleak, because compounded with these problems are the poor commodity prices for sheep and goat meat and fibre, resulting in relentless reductions in funding for research to support these industries. Perhaps the major social issues associated with re-structuring and possibly abandonment of sheep and goat farming in affected areas may precipitate action? As veterinary parasitologists, who in general have an interest and expertise in parasite control, we must promote the importance of the problem of anthelmintic resistance and ways to tackle it.

  18. Co-occurrence of antibiotic drugs, resistant bacteria and resistance genes in runoff from cattle feedlots

    Science.gov (United States)

    Agricultural uses of antibiotics raises concerns about the development of antibiotic resistance in food animals, and the potential to transmit resistance to human clinical settings via fecal contamination of surface and ground water. Although there is broad agreement that agricultural resistance can...

  19. Synthetic biology for therapeutic applications.

    Science.gov (United States)

    Abil, Zhanar; Xiong, Xiong; Zhao, Huimin

    2015-02-02

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders.

  20. Alteração das características biológicas dos biótipos de azevém (Lolium multiflorum ocasionada pela resistência ao herbicida glyphosate Change in the biological characteristics of ryegrass (Lolium multiflorum biotypes caused by resistance to the herbicide glyphosate

    Directory of Open Access Journals (Sweden)

    L. Vargas

    2005-03-01

    accumulation by the biotype were assessed. In the second experiment different rates of glyphosate and grass herbicides were tested: glyphosate, haloxyfop-r, diclofop, fluazifop-p, fenoxaprop-p and paraquat. A third experiments was carried out under glasshouse conditions to determine the curve of dry matter accumulation. The results showed GR50 of 287.5 and 4,833.5 g e. a. ha-1 of glyphosate for the sensitive and resistant biotypes, respectively. The results showed that the resistant factor (RF was 16.8 and that the resistance mechanism alters the biological characteristics of the resistant biotype affecting its sensitivity to grass herbicides.

  1. Integrating Individual-Based Indices of Contaminant Effects

    Directory of Open Access Journals (Sweden)

    Christopher L. Rowe

    2001-01-01

    Full Text Available Habitat contamination can alter numerous biological processes in individual organisms. Examining multiple individual-level responses in an integrative fashion is necessary to understand how individual health or fitness reflects environmental contamination. Here we provide an example of such an integrated perspective based upon recent studies of an amphibian (the bullfrog, Rana catesbeiana that experiences several, disparate changes when larval development occurs in a trace element�contaminated habitat. First, we present an overview of studies focused on specific responses of individuals collected from, or transplanted into, a habitat contaminated by coal combustion residues (CCR. These studies have reported morphological, behavioral, and physiological modifications to individuals chronically interacting with sediments in the CCR-contaminated site. Morphological abnormalities in the oral and tail regions in contaminant-exposed individuals influenced other properties such as grazing, growth, and swimming performance. Behavioral changes in swimming activities and responses to stimuli appear to influence predation risk in the contaminant-exposed population. Significant changes in bioenergetics in the contaminated habitat, evident as abnormally high energetic expenditures for survival (maintenance costs, may ultimately influence production pathways (growth, energy storage in individuals. We then present a conceptual model to examine how interactions among the affected systems (morphological, behavioral, physiological may ultimately bring about more severe effects than would be predicted if the responses were considered in isolation. A complex interplay among simultaneously occurring biological changes emerges in which multiple, sublethal effects ultimately can translate into reductions in larval or juvenile survival, and thus reduced recruitment of juveniles into the population. In systems where individuals are exposed to low concentrations of

  2. Subsurface contaminants focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  3. Trace-element contamination of the environment

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D.

    1985-01-01

    In treating the problems of metal contamination of the environmental pollution involving metals and the problem of exhaustion of finite reserves of ores of metals, such as cadmium, copper, lead, mercury, nickel and zinc, as aspects of a single global problem. A broad picture is presented of the overall process of dispersal of trace elements in the environment and the biological consequences of this process are documented.

  4. Microbiological contamination in counterfeit and unapproved drugs

    OpenAIRE

    Pullirsch, Dieter; Bellemare, Julie; Hackl, Andreas; Trottier, Yvon-Louis; Mayrhofer, Andreas; Schindl, Heidemarie; Taillon, Christine; Gartner, Christian; Hottowy, Brigitte; Beck, Gerhard; Gagnon, Jacques

    2014-01-01

    Background Counterfeit and unapproved medicines are inherently dangerous and can cause patient injury due to ineffectiveness, chemical or biological contamination, or wrong dosage. Growth of the counterfeit medical market in developed countries is mainly attributable to life-style drugs, which are used in the treatment of non-life-threatening and non-painful conditions, such as slimming pills, cosmetic-related pharmaceuticals, and drugs for sexual enhancement. One of the main tasks of health ...

  5. Near surface geophysical techniques on subsoil contamination: laboratory experiments

    Science.gov (United States)

    Capozzoli, Luigi; Giampaolo, Valeria; Rizzo, Enzo

    2016-04-01

    Hydrocarbons contamination of soil and groundwater has become a serious environmental problem, because of the increasing number of accidental spills caused by human activities. The starting point of any studies is the reconstruction of the conceptual site model. To make valid predictions about the flow pathways following by hydrocarbons compound is necessary to make a correct reconstruction of their characteristics and the environment in which they move. Near-surface geophysical methods, based on the study of electrical and electromagnetic properties, are proved to be very useful in mapping spatial distribution of the organic contaminants in the subsurface. It is well known, in fact, that electrical properties of the porous media are significantly influenced by hydrocarbons because, when contaminants enter the rock matrix, surface reaction occur between the contaminant and the soil grain surface. The main aim of this work is to investigate the capability of near-surface geophysical methods in mapping and monitoring spatial distribution of contaminants in a controlled setting. A laboratory experiment has been performed at the Hydrogeosite Laboratory of CNR-IMAA (Marsico Nuovo, PZ) where a box-sand has been contaminated by diesel. The used contaminant is a LNAPL, added to the sand through a drilled pipe. Contaminant behaviour and its migration paths have been monitored for one year by Electrical Resistivity measurements. In details, a Cross Borehole Electrical Resistivity Tomography techniques were used to characterize the contamination dynamics after a controlled hydrocarbon spillage occurring in the vadose zone. The approach with cross-borehole resistivity imaging provide a great advantage compared to more conventional surface electrical resistivity tomography, due to the high resolution at high depth (obviously depending on the depth of the well instrumented for the acquisition). This method has been shown to provide good information on the distribution of

  6. Fungi and mycotoxins: Food contaminants

    Directory of Open Access Journals (Sweden)

    Kocić-Tanackov Sunčica D.

    2013-01-01

    Full Text Available The growth of fungi on food causes physical and chemical changes which, further affect negatively the sensory and nutritive quality of food. Species from genera: Aspergillus, Penicillium, Fusarium, Alternariа, Cladosporium, Mucor, Rhizopus, Eurotium and Emericella are usually found. Some of them are potentially dangerous for humans and animals, due to possible synthesis and excretion of toxic secondary metabolites - mycotoxins into the food. Their toxic syndroms in animals and humans are known as mycotoxicoses. The pathologic changes can be observed in parenhimatic organs, and in bones and central nervous system also. Specific conditions are necessary for mycotoxin producing fungi to synthetize sufficient quantities of these compounds for demonstration of biologic effects. The main biochemical paths in the formation of mycotoxins include the polyketide (aflatoxins, sterigmatocystin, zearalenone, citrinine, patulin, terpenic (trichothecenes, aminoacid (glicotoxins, ergotamines, sporidesmin, malformin C, and carbonic acids path (rubratoxins. Aflatoxins are the most toxigenic metabolites of fungi, produced mostly by Aspergillus flavus and A. parasiticus species. Aflatoxins appear more frequently in food in the tropic and subtropic regions, while the food in Europe is more exposed to also very toxic ochratoxin A producing fungi (A. ochraceus and some Penicillium species. The agricultural products can be contaminated by fungi both before and after the harvest. The primary mycotoxicoses in humans are the result of direct intake of vegetable products contaminated by mycotoxins, while the secondary mycotoxicoses are caused by products of animal origin. The risk of the presence of fungi and mycotoxin in food is increasing, having in mind that some of them are highly thermoresistent, and the temperatures of usual food sterilization is not sufficient for their termination. The paper presents the review of most important mycotoxins, their biologic effects

  7. Hydrogeophysical investigations of the former S-3 ponds contaminant plumes

    Energy Technology Data Exchange (ETDEWEB)

    Revil, Andre [ORNL; Skold, Magnus E [ORNL; Karaoulis, Marios [Colorado School of Mines, Golden; Schmutz, Myriam [Institut Polytechnique de Bordeaux; Hubbard, Susan S [Lawrence Berkeley National Laboratory (LBNL); Mehlhorn, Tonia L [ORNL; Watson, David B [ORNL

    2013-01-01

    At the Oak Ridge Integrated Field Research Challenge site, near Oak Ridge, Tennessee, contaminants from the former S-3 ponds have infiltrated the shallow saprolite for over 60 years. Two- and three-dimensional DC-resistivity tomography is used to characterize the number and location of the main contaminant plumes, which include high concentration of nitrate. These contaminant plumes have typically an electrical resistivity in the range 2 20 ohm-m while the background saprolite resistivity is in the range 60 120 ohm-m, so the difference of resistivity can be easily mapped using DC-resistivity tomography to locate the contaminant pathways. We develop a relationship to derive the in situ nitrate concentrations from the 3D resistivity tomograms accounting for the effect of surface conductivity. The footprint of the contamination upon the resistivity is found to be much stronger than the local variations associated with changes in the porosity and the clay content. With this method, we identified a total of five main plumes (termed CP1 to CP5). Plume CP2 corresponds to the main plume in terms of nitrate concentration ( 50,000 ). We also used an active time constrained approach to perform time-lapse resistivity tomography over a section crossing the plumes CP1 and CP2. The sequence of tomograms is used to determine the changes in the nitrate concentrations associated with infiltration of fresh (meteoritic) water from a perched aquifer. This study highlights the importance of accounting for surface conductivity when characterizing plume distributions in clay-rich subsurface systems.

  8. Contaminant Candidate List 3

    Data.gov (United States)

    U.S. Environmental Protection Agency — CCL 3 is a list of contaminants that are currently not subject to any proposed or promulgated national primary drinking water regulations, that are known or...

  9. Contaminant Candidate List 1

    Data.gov (United States)

    U.S. Environmental Protection Agency — CCL 1 is a list of contaminants that are currently not subject to any proposed or promulgated national primary drinking water regulations, that are known or...

  10. Contaminant Candidate List 2

    Data.gov (United States)

    U.S. Environmental Protection Agency — CCL 2 is a list of contaminants that are currently not subject to any proposed or promulgated national primary drinking water regulations, that are known or...

  11. Modeling for Airborne Contamination

    Energy Technology Data Exchange (ETDEWEB)

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of

  12. Effects and Biological Response on Bioremediation of petroleum Contaminated Soil%石油污染土壤的生物修复技术及微生物生态效应

    Institute of Scientific and Technical Information of China (English)

    杨茜; 吴蔓莉; 聂麦茜; 王婷婷; 张明辉

    2015-01-01

    Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number(MPN), polymerase chain reaction(PCR) combined agarose electrophoresis, and PCR- denaturing gradient electrophoresis(DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ- 1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.%利用投菌法和生物刺激法对陕北子长石油污染土壤进行微生物修复研究。通过利用红外分光光度法测定不同处理方法对石油烃的去除效果确定了修复陕北石油污染土壤的最佳方案。修复过程中利用最大可能计数法(MPN)、 PCR-琼脂糖电泳法、 PCR-DGGE 法分别测定了石油烃降解菌数目、催化基因、土壤微生物多样性对土壤微生物生态效应进行研究。结果发现石油污染土壤不同生物处理修复效果为:生物刺激(加入 N、 P 营养物质)﹥生物强化(投加降解菌)﹥其他。土壤中石油烃降解率与可降解石油烃的催化基因含量之间存

  13. Study on the molecular biology of cefoxitin-resistant Klebsiella pneumoniae strains%头孢西丁耐药的肺炎克雷伯菌分子生物学研究

    Institute of Scientific and Technical Information of China (English)

    栾英; 贺飞; 李桂玲; 何昕; 多丽波

    2011-01-01

    Objective To investigate the molecular biology of one cefoxitin-resistant Klebsiela pneumoniae strain. Methods AmpC and AmpR genes of one cefoxitin-resistant Klebsiella pneumoniae were analyzed by PCR, and then the pET22b( + )-AmpR expression plasmid and expression strain were constructed. Results A 1 140 bp segment of AmpC and a 876 bp segment of AmpR were cloned. These sequences showed that recombinant AmpC and AmpR genes were highly identical to those of Morganella morganii. Fusion protein about 34 kD was expressed by E. coli BI21 ( DE3 ) transfected with recombinant plasmid pET22b ( + )-AmpR.Conclusion There are regulator AmpR genes in plasmid of cefoxitin-resistant Klebsiella pneunoniae isolates. AmpR genes express AmpR fusion protein. Induced resistance mechanism is also found in plasmid-mediated AmpC β-lactamase.%目的 检测本院分离的对头孢西丁耐药的肺炎克雷伯菌分子生物学特点.方法 以本院临床分离的一株对头孢西丁耐药的肺炎克雷伯菌为研究对象,采用聚合酶链反应(PCR),分别用特异性引物进行AmpC酶全编码基因及AmpR 调节基因的扩增,并且构建pET-22b(+)-AmpR的表达质粒和表达菌株.结果 PCR分别扩增出约1 140 bp和876 bpDNA片段,经测序证实,1 140 bp的序列与摩根摩根菌染色体上AmpC酶全长编码基因同源性达99.1%,876 bp的序列与摩根摩根菌染色体上AmpR 基因同源性达98%.重组质粒pET-22b(+)-AmpR转化E.coli BL21(DE3)后表达融合蛋白的相对分子量为34 kD,与预期分子量相符.结论 对头孢西丁耐药的肺炎克雷伯菌质粒上存在调控因子AmpR,能够表达AmpR蛋白,诱导性耐药机制同样存在于质粒介导的AmpCβ-内酰胺酶中.

  14. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  15. Utilization of Fenton-like reaction for antibiotics and resistant bacteria elimination in different parts of WWTP.

    Science.gov (United States)

    Mackuľak, Tomáš; Nagyová, Kristína; Faberová, Milota; Grabic, Roman; Koba, Olga; Gál, Miroslav; Birošová, Lucia

    2015-09-01

    Utilization of relatively low-cost modification of Fenton reaction for the elimination of selected antibiotics and resistant coliforms in different part of wastewater treatment plant (WWTP) was studied. The concentration of antibiotics and occurrence of resistant gems in different stages of WWTP in the capital city of Slovakia - Bratislava was analyzed by LC-MS/MS technique. Consequently, Fenton-like reaction was applied for the elimination of chemical and biological contaminants. Comparative study with classical Fenton reaction was also done. Very high concentrations of clarithromycin, ciprofloxacin and azithromycin in influent water were found. Coliform bacteria were predominantly resistant to ampicillin, ciprofloxacin and gentamicin. After the mechanical stage, the concentration of antibiotics in water was significantly decreased because of the sorption during this step. Biological step degraded 12 types of antibiotics. Analyses of effluent water showed very bad elimination of azithromycin (919ng/L) and clarithromycin (684ng/L). Contrary, ciprofloxacin was removed with very high efficiency (95%). The number of resistant bacteria was also significantly decreased in effluent water. In the case of Escherichia coli only ampicillin and gentamicin resistance bacteria were detected. Our results show that antibiotics as well as resistant bacteria were eliminated by the modification of classical Fenton reaction with high efficiency. The modification of the Fenton reaction can decrease the process wages, environmental impact. Moreover, the degradation process was easily controlled, monitored and tuned.

  16. Taking nature into lab: biomineralization by heavy metal resistant streptomycetes in soil

    Science.gov (United States)

    Schütze, E.; Weist, A.; Klose, M.; Wach, T.; Schumann, M.; Nietzsche, S.; Merten, D.; Baumert, J.; Majzlan, J.; Kothe, E.

    2013-02-01

    Biomineralization by heavy metal resistant streptomycetes was tested to evaluate the potential influence on metal mobilities in soil. Thus, we designed an experiment adopting conditions from classical laboratory methods to natural conditions prevailing in metal-rich soils with media spiked with heavy metals, soil agar, and nutrient enriched or unamended soil incubated with the bacteria. As a result, all strains were able to form struvite minerals on tryptic soy broth (TSB) media supplemented with AlCl2, MnCl2 and CuSO4, as well as on soil agar. Some strains additionally formed struvite on nutrient enriched contaminated and control soil, as well as on metal contaminated soil without addition of media components. In contrast, switzerite was exclusively formed on minimal media spiked with MnCl2 by four heavy metal resistant strains, and on nutrient enriched control soil by one strain. Hydrated nickel hydrogen phosphate was only crystallized on complex media supplemented with NiSO4 by most strains. Thus, mineralization is a~dominant property of streptomycetes, with different processes likely to occur under laboratory conditions and sub-natural to natural conditions. This new understanding may be transferred to formation of minerals in rock and sediment evolution, to ore deposit formation, and also might have implications for our understanding of biological metal resistance mechanisms. We assume that biogeochemical cycles, nutrient storage and metal resistance might be affected by formation and re-solubilization of minerals like struvite in soil at microscale.

  17. Transmission of hazardous diseases via nanobacterial contamination of medical and dental equipment

    Directory of Open Access Journals (Sweden)

    Jafar Kolahi

    2013-01-01

    Full Text Available Introduction: Nanobacteria (calcifying nanoparticles, nanobes are one of the most controversial issues in contemporary biology. Studies show accumulating evidence on association of nanobacteria with pathologic calcifications such as kidney stone, arterial plaque, calcification of coronary arteries, and cardiac valves calculus. The Hypothesis: Nanobacteria can tolerate harsh conditions extremely well. The apatite mineral layer around the organism and slow metabolism is likely to be the reason for the resistance of nanobacteria. They showed a wide resistance to the several disinfecting and sterilizating chemicals as well as autoclaving, ultraviolet light, microwaves, heating and drying treatments. Hence, it seems logic to postulate that hazardous diseases can be easily transmitted via nanobacterial contamination of medical and dental equipment. Evaluation of the Hypothesis: It is not enough to claim an agent not living according to the standard view on living creatures, as irrelevant to biological safety of cell cultures, or to human and animal health. Although the nature of prions is still under debate and prions are classified as nonliving, they exist and cause diseases, and thus form a serious risk for animal and human health. The risk was recognized only after enormous economical losses. It appears that nanobacteria situation is rather similar, except the fact that nanobacteria appear to cause or contribute to common hazardous diseases of the mankind. Hence, world-widely well-known organizations such as the Centers for Disease Control and Prevention, the Occupational Safety and Health Administration, and the World Health Organization should pay more attention to transmission of hazardous diseases via nanobacterial contamination of medical and dental equipment.

  18. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  19. Engineering property test of kaolin clay contaminated by diesel oil

    Institute of Scientific and Technical Information of China (English)

    刘志彬; 刘松玉; 蔡奕

    2015-01-01

    Engineering property of kaolin clay contaminated by diesel oil was studied through a series of laboratory experiments. Oil contents (mass fraction) of 4%, 8%, 12%, 16% and 20% were selected to represent different contamination degrees, and the soil specimens were manually prepared through mixing and static compaction method. Initial water content and dry density of the test kaolin clay were controlled at 10% and 1.58 g/cm3, respectively. Test results indicate that since part of the diesel oil will be released from soil by evaporation, the real water content should be derived through calibration of the quasi water content obtained by traditional test method. As contamination degree of the kaolin clay increases, both liquid limit and plastic limit decrease, but there’s only a slight increase for plasticity index. Swelling pressure of contaminated kaolin clay under confined condition will be lowered when oil-content gets higher. Unconfined compressive strength (UCS) of the oil-contaminated kaolin clay is influenced by not only oil content but also curing period. Increase of contamination degree will continually lower UCS of the kaolin clay specimen. In addition, electrical resistivity of the contaminated kaolin clay with given water content decreases with the increase of oil content. However, soil resistivity is in good relationship with oil content and UCS. Finally, oil content of 8% is found to be a critical value for engineering property of kaolin clay to transit from water-dominated towards oil-dominated characteristics.

  20. Standard Practice for Preparation of Aerospace Contamination Control Plans

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice is intended to assist in the preparation of formal plans for contamination control, especially of aerospace critical surfaces. Requirements may be established at the systems level, either by the customer or the systems integrator, or at the subsystem level. Subsystem requirements may be imposed by the responsible subsystem supplier or they may be flowed down from the systems organization (4.7). The extent of detail and level of cleanliness required can vary with the particular application and type of hardware being built, but all aspects of contamination control must be included in a final plan. Therefore, each of the following elements must be considered for inclusion in a contamination control plan (CCP): 1.1.1 Cleanliness requirements for deliverable hardware addressing particulate, molecular, or biological contaminants or combination thereof. Specify contamination limits and any budget allocations. 1.1.2 Implementation plans to achieve, verify, and maintain the specified cleanliness re...

  1. Detection, Occurrence and Fate of Emerging Contaminants in Agricultural Environments.

    Science.gov (United States)

    Snow, Daniel D; Cassada, David A; Bartelt Hunt, Shannon L; Li, Xu; D'Alessio, Matteo; Zhang, Yun; Zhang, Yuping; Sallach, J Brett

    2016-10-01

    A total of 59 papers published in 2015 were reviewed ranging from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, steroids, antibiotic resistance genes in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Steroid Hormones, Pharmaceutical Contaminants, Transformation Products, and "Antibiotic Resistance, Drugs, Bugs and Genes".

  2. Drug Resistance

    Science.gov (United States)

    HIV Treatment Drug Resistance (Last updated 3/2/2017; last reviewed 3/2/2017) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  3. Antibiotic Resistance

    Science.gov (United States)

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  4. Use of tofacitinib in real clinical practice to treat patients with rheumatoid arthritis resistant to synthetic and biological disease-modifying antirheumatic drugs: Results of a multicenter observational study

    Directory of Open Access Journals (Sweden)

    D. E. Karateev

    2016-01-01

    Full Text Available Tofacitinib (TOFA, a member of a new class of targeted synthetic disease-modifying antirheumatic drugs (DMARDs, is a promising medication for the treatment of rheumatoid arthritis (RA and other immunoinflammatory diseases. The paper describes the Russian experi-ence with TOFA used to treat severe RA.Patients and methods. 101 RA patients (18 men and 83 women; mean age, 51.03±11.28 years; mean disease duration, 105.4±81.43 months who were positive for rheumatoid factor (89.1% and anti-cyclic citrullinated peptide antibodies (74.7% and resistant to therapy with synthetic DMARDs (sDMARDs (80.2% and biological agents (19.8% were given TOFA at a dose of 5 mg twice daily, which could be doubled if necessary. TOFA was used alone (n=9 or in combination with methotrexate (MT (n=75 or other sDMARDs (n=17. The achievement of low disease activity (LDA and clinical remission at 3 and 6 months of treatment by DAS28-ESR SDAI, and CDAI scores, and the indices of safety and tolerability were assessed.Results. A total of 93 (92.1% of the 101 patients completed a 24-week period of the investigation. 8 (7.9% patients prematurely discontinued TOFA after an average of 2.75±0.71 months. At the end of the study, the patients achieved the primary endpoint (LDA including remission in terms of DAS28-ESR ≤3.2 (34.7%, SDAI ≤11 (47.5%, and CDAI ≤10 (48.5% and the secondary endpoints (clinical remission in terms of DAS28-ESR ≤2.6 (17.8%, SDAI ≤3.3 (8.9%, and CDAI ≤2.8 (6.9%. When TOFA was combined with MT, the discontinuation rate for the former was significantly lower (2.7% than when TOFA was used in combination with other sDMARDs (29.4% or alone (11.1%; p<0.01. At 3 and 6 months of follow-up, LDA was achieved more frequently when TOFA was combined with MT than when other treatment regimens were used. Fatal outcomes and serious adverse events (AEs, as AEs previously undescribed in the literature, were not seen during a follow-up within

  5. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish.

    Science.gov (United States)

    Letcher, Robert J; Bustnes, Jan Ove; Dietz, Rune; Jenssen, Bjørn M; Jørgensen, Even H; Sonne, Christian; Verreault, Jonathan; Vijayan, Mathilakath M; Gabrielsen, Geir W

    2010-07-01

    Persistent organic pollutants (POPs) encompass an array of anthropogenic organic and elemental substances and their degradation and metabolic byproducts that have been found in the tissues of exposed animals, especially POPs categorized as organohalogen contaminants (OHCs). OHCs have been of concern in the circumpolar arctic for decades. For example, as a consequence of bioaccumulation and in some cases biomagnification of legacy (e.g., chlorinated PCBs, DDTs and CHLs) and emerging (e.g., brominated flame retardants (BFRs) and in particular polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) including perfluorooctane sulfonate (PFOS) and perfluorooctanic acid (PFOA) found in Arctic biota and humans. Of high concern are the potential biological effects of these contaminants in exposed Arctic wildlife and fish. As concluded in the last review in 2004 for the Arctic Monitoring and Assessment Program (AMAP) on the effects of POPs in Arctic wildlife, prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects in relation to OHC exposure, and attempts to assess known tissue/body compartment concentration data in the context of possible threshold levels of effects to evaluate the risks. This review concentrates mainly on post-2002, new OHC effects data in Arctic wildlife and fish, and is largely based on recently available effects data for populations of several top trophic level species, including seabirds (e.g., glaucous gull (Larus hyperboreus)), polar bears (Ursus maritimus), polar (Arctic) fox (Vulpes lagopus), and Arctic charr (Salvelinus alpinus), as well as semi-captive studies on sled dogs (Canis familiaris). Regardless, there remains a dearth of data on true contaminant exposure, cause-effect relationships with respect to these contaminant exposures in Arctic wildlife and fish. Indications of exposure effects are largely

  6. Biomonitoring and assessment of environmental contaminants in fish-eating birds of the upper Niagara River: A contribution to the Niagara River Environmental Contaminants Study

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Niagara River Environmental Contaminants Study is an ongoing effort by the U.S. Fish and Wildlife Service (Service) emphasizing the use of biological indicators...

  7. Biological warfare agents

    Directory of Open Access Journals (Sweden)

    Duraipandian Thavaselvam

    2010-01-01

    Full Text Available The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies.

  8. 紫外光照射纳米钛表面生物抗老化的体外研究%The study of biological aging resistance of nano titanium surface treated with UV irradiation in vitro

    Institute of Scientific and Technical Information of China (English)

    闵曦; 夏荣; 孙磊; 徐基亮; 孙子环

    2015-01-01

    Objective To study the impact of UV radiation on the physicochemical properties and biological activity of aging TiO2 nanotube surface. Methods Titanium plates treated by two-step anodization were stored in dark for eight weeks, sufficient to aging, and irradiated by UV for 48 h. Field emission scanning electron microscopy ( FESEM) , X-ray photoelectron spectroscopy ( XPS) and contact angle measurement were used to analyze the mi-crostructure, chemical elements and the contact angle of the surface of the fresh, aging, UV irradiation groups, re-spectively. Mouse bone marrow mesenchymal stem cells (MSCs) as cell lines were cultured on the treated titanium plates to determine the effect of modified titanium surface on the cell adhesion, proliferation and differentiation, fur-ther to evaluate biological differences among the three groups. Results FESEM displayed UV irradiation did not change the morphology of TiO2 nanotubes on the titanium surface. XPS showed that C elements on the surface of ag-ing group significantly increased after UV irradiation but restored to the level of fresh group by UV irritation. The contact angle analysis showed that the surface of age group was hydrophobic while the surface of UV irradiated group was superhydrophilic. In vitro cell culture showed that UV irritation was conducive to cell adhesion, proliferation and differentiation. Conclusion UV radiation can remove hydrocarbon contamination on surface of titanium, im-prove the surface hydrophilicity, and delay the bioactive decrease of titanium-based TiO2 nanotube surface by time factors.%目的:研究紫外光照射对老化TiO2纳米管表面理化性质和生物活性的影响。方法两步阳极氧化后的钛片避光保存8周,使其充分老化,紫外光照射48 h;利用场发射扫描电镜(FESEM)、X射线光电子能谱(XPS)、接触角测量仪分析新鲜、老化及紫外光照射组钛片表面微观结构、化学元素和接触角变化;以小鼠骨

  9. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT (WACAP): ASSESSING DEPOSITION AND IMPACTS OF PERSISTENT ORGANIC POLLUTANTS AND METALS IN SEVEN NATIONAL PARKS IN THE WESTERN UNITED STATES

    Science.gov (United States)

    Airborne contaminants, especially those that biomagnify in the food chain, can pose serious health threats to wildlife and humans. Biological effects of airborne contaminants include impacts on reproductive success, growth, behavior, disease, and survival. In response to concer...

  10. Biological Oceanography

    Science.gov (United States)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  11. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  12. Lead-210 contamination

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P. [Peter Gray and Associates, Tulsa, OK (United States)

    1997-12-31

    Nearly all scrap dealers, smelters and other recyclers routinely monitor for radioactivity in shipments entering their facility. These sensitive radiation gate monitors easily detect radium-226 and most other radioactive nuclides. However, the type of detector normally used, sodium iodide scintillation crystals, will not detect the low energy gamma radiation emitted by lead-210 and its progeny. Since lead-210 is a common radioactive contaminant in certain industries, contaminated scrap metal from these industries may avoid detection at the recycler. Lead-210 is a decay product of radon-222 which is produced in small concentrations with natural gas. As the natural gas liquids, particularly ethane and propane, are separated from the natural gas, the radon concentrates in the ethane/propane fraction. The natural gas industry, particularly gas processing facilities and industries using ethane and propane as feed stocks can be significantly contaminated with the radon decay products, especially lead-210, bismuth-210 and polonium-210. Unless the scrap metal is decontaminated before sending to the recycler, the lead-210 contaminated scrap may be processed, resulting in some degree of radioactive contamination of the recycling facilities. Methods of detecting the low energy gamma radiation associated with lead-210 include the pancake G-M detector and the thin crystal-thin window scintillation detector.

  13. New composite patches and biologic patches for repair of contaminated abdominal wall defect in dogs: A comparative study%污染环境下新型复合补片和生物补片修补犬腹壁缺损的比较研究

    Institute of Scientific and Technical Information of China (English)

    郑亚杰; 田文; 丁国飞; 姚京; 马冰

    2012-01-01

    Objective To compare the characteristics of two compound patches made of collagen and polypropylene(PP) and the feasibility of their application in repair of contaminated wounds. Methods Twenty-four adult male dogs, weighing 16-20kg, were included in this study. A dog model with 3 contaminated defects at the upper, left and right abdominal wall was established. The 3 abdominal wall defects were repaired by implanting 3 kinds of patches into them. The patches were divided into PP and collagen compound patch group(group A), porcine cross-linked biologic patch group(group B), and cattle cross-linked biologic patch group(group C). A dog abdominal hernia model was established. A segment of small intestine was removed, into which 10ml 0.9% sodium chloride solution was injected and then aspirated to contaminate the abdominal cavity, abdominal wall and patches. The abdominal wall defects were closed with 5cm × 5cm patches. The dogs were killed on day 90 after operation to observe the adhesion of organs in abdominal cavity. The patches and their adjacent tissue were cut into sections for histological study. Results No death occurred while patch and omentum adhesion was observed in different groups 90 days after operation. Histological study showed that the scores of proliferating fibroblasts, inflammatory reaction and formation of new blood vessels were higher in group A than in groups B and C. Conclusion The effect of PP and collagen compound patch and biological patch is similar in preventing adhesion under contaminated environment. However, it leads to severer proliferation of fibroblasts, inflammatory reaction and formation of new blood vessels than biologic patch.%目的 比较胶原蛋白与聚丙烯(polypropylene,PP) 制作的复合补片和两种生物补片的特点及其应用于污染伤口一期修补的可行性.方法 成年雄性普通犬24 只,体质量16-20kg,在同一只动物上、左、右腹部建立三个污染缺损模型,将3 种补

  14. Foldit Biology

    Science.gov (United States)

    2015-07-31

    Report 8/1/2013-7/31/2015 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Foldit Biology NOOO 14-13-C-0221 Sb. GRANT NUMBER N/A Sc. PROGRAM ELEMENT...Include area code) Unclassified Unclassified Unclassified (206) 616-2660 Zoran Popović Foldit Biology (Task 1, 2, 3, 4) Final Report...Period Covered by the Report August 1, 2013 – July 31, 2015 Date of Report: July 31, 2015 Project Title: Foldit Biology Contract Number: N00014-13

  15. Ecological Compatibility of GM Crops and Biological Control

    Science.gov (United States)

    Insect-resistant and herbicide-tolerant genetically modified (GM) crops pervade many modern cropping systems, and present challenges and opportunities for developing biologically-based pest management programs. Interactions between biological control agents (insect predators, parasitoids, and pathog...

  16. Environmental Contaminants in Foodstuffs

    Directory of Open Access Journals (Sweden)

    Mária Túri-Szerletics

    2008-06-01

    Full Text Available Consumers have specific concerns about food contaminants but often lack themeans to make appropriate judgements on what is high risk and what is not. Contaminantsin foods can be grouped according to their origin and nature. Environmental contaminantsof food-safety concern includes toxic metals and elements, organometallic compounds,agricultural chemicals and persistent organic pollutants such as halogenated hydrocarbonpesticides, polychlorinated biphenyls, dioxins, polycyclic aromatic hydrocarbons,phthalates, nirates, nitrites. These contaminants may present a potential hazard for humanhealth if exposure exceeds tolerable levels. This article shows the characteristics and thedietary intake of these elements and compounds. Further works need to concentrate onmechanism of different contaminants toxicity and metabolism, reevaluation of acceptablelimits, and their control in foods and in the environment.

  17. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A., E-mail: stanciu@physics.pub.ro

    2015-08-15

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed.

  18. 湖南省即食食品中食源性致病菌污染状况及耐药性研究%Contamination Status of Food Borne Pathogenic Bacteria in Instant Food in Hunan and Their Antibiotic Resistance

    Institute of Scientific and Technical Information of China (English)

    贾华云; 王岚; 胡旃; 刘建琪; 张林青; 张红

    2013-01-01

    目的 了解湖南地区即食食品中食源性致病菌的污染状况和耐药性,为预防和控制食源性疾病提供科学依据. 方法 从湖南地区的农贸市场、超市和餐饮单位采集即食食品(凉拌菜和熟肉制品),依据GB 4789-2010和GB/T 4789-2008方法,对样品进行沙门菌等4种食源性致病菌检测,分离菌株使用微量肉汤稀释法进行药敏试验. 结果 991份样品共检出食源性致病菌92株,检出率为9.28%,其中检出金黄色葡萄球菌68株,检出率为6.86%,检出沙门菌和单增李斯特菌各12株,检出率为1.21%,未检出大肠埃希菌O157.药敏结果显示金黄色葡萄球菌和沙门菌均具有一定的耐药性,其中金黄色葡萄球菌对苯唑西林的耐药率高达61.76%,而且多重耐药明显. 结论 湖南地区即食食品存在一定的食源性致病菌污染,应加大卫生监督力度,防止食源性疾病的暴发流行;同时应控制动物饲料中抗生素的添加使用,加强抗生素的管理和耐药性监测.%Objective To investigate the contamination status of food borne pathogenic bacteria in instant food in Hunan and to test their antibiotic resistance, so as to provide evidence for the prevention and control of food borne diseases. Methods Salad and cooked meat were collected in food produce markets, supermarkets and catering units in Hunan province. Four food borne pathogenic bacteria including Salmonella in food were identified in accordance with GB 4789 - 2010 and GB/T 4789 -2008. The bacteria were isolated by broth dilution technique to test their drug sensitivity. Results Totally, 92 strains of food borne pathogenic bacteria were identified in 991 food samples, with an incidence of 9.28% . The detection rate of Staphylococcus aureus was 6.86% (68/991). The detection rates of Salmonella and Listeria monocytogenes were both 1.21% (12/991). Es-cherichia coli O157 was not detected. The drug sensitivity test indicated that Staphylococcus aureus and

  19. Groundwater contamination in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tase, Norio [Univ. of Tsukuba, Ibaraki (Japan)

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed. 9 refs., 3 figs., 4 tabs.

  20. Groundwater contamination in Japan

    Science.gov (United States)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  1. Innovative biological approaches for monitoring and improving water quality

    Directory of Open Access Journals (Sweden)

    Sanja eAracic

    2015-08-01

    Full Text Available Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages.

  2. IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS - ACTIVE CAPPING TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-09-02

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  3. Contamination Status and Resistance Surveillance of Listeria Monocytogenes in Food in Mianyang City in 2010%2010年绵阳市食品中单增李斯特菌的污染状况及耐药性监测

    Institute of Scientific and Technical Information of China (English)

    周良君; 陈果; 江智辉; 王学军

    2011-01-01

    [Objective]To know the contamination status and drug resistance of Iisteria monocytogenes (LM) in food in Mianyang city, provide the scientific evidence for prevention and control of food-bome disease caused by Listeria monocytogenes.[Methods]The method of CB 4789.30 -2010 was adopted to isolate LM, API-LISTERIA biochemical identification strips were applied to identify LM, and drug sensitivity test was conducted by K-B method.[Results]Among 144 food samples, 11 strains of LM were detected, and the total detection rate was 9.7%. The raw aquatic products, raw poultry, raw meat and bean products were polluted by LM, which the detection rate was 33.3% , 26.7% , 6.1% and 6.7% respectively. All of 11 LM strains were sensitive to ampicil-lin, amoxicillin/clavulanic acid, compound sinomin, sulfapyrimidine, gentamicin, amikacin, ciprofloxacin, cephalothin and chloramghenicol. No strain was sensitive to cefatriaxone and cephalothin.[Conclusion]Some food was polluted by LM in Mianyang city, contamination status of raw aquatic products was the most serious, followed by raw poultry, and there was a potential risk of food-borne diseases of LM. The drug resistance of LM is low, and it is sensitive to several antibiotics. In order to ensure the food safety and humans health, it is necessary to pay attention to the contamination status of food-bome LM and strengthen the resistance surveillance.%目的 了解绵阳市食品中单增李斯特菌的污染及耐药状况,为预防控制该菌引起的食源性疾病提供科学依据.方法 菌株分离采用GB 4789.30 - 2010方法,菌株鉴定采用API LISTERIA生化鉴定条,菌株药敏试验采用K-B法.结果 114份食品中共检出11株单增李斯特菌,总检出率为9.7%,生食水产品、生禽肉、生畜肉和豆制品4种食品受到该菌的污染,检出率分别为33.3%、26.7%、6.7%、6.7%.分离的11株菌株氨苄西林、阿莫西林/克拉维酸、复方新诺明、磺胺嘧啶、庆大霉素、阿米卡星、

  4. Carbapenems-resistant Acinetobacter baumannii causing environmental contamination in ICU%ICU耐碳青霉烯类鲍氏不动杆菌环境污染调查分析

    Institute of Scientific and Technical Information of China (English)

    沈志君

    2012-01-01

    目的 调查医院ICU环境中耐碳青霉烯类鲍氏不动杆菌(CRAB)污染情况及感染的相关性,为预防和控制ICU患者CRAB医院感染提供环境流行病学依据.方法 对ICU环境进行大面积卫生学采样监测,并随机抽取10株菌与临床分离的23株CRAB进行同源性分析.结果 采集的环境标本共145份,检出CRAB73份,检出率50.3%,其中患者床单位及周围物品,检出率为100.0%;所有检测出的CRAB均为泛耐药菌株;DNA图谱显示与患者医院感染的CRAB为同一克隆菌株.结论 ICU环境中CRAB污染情况严重,加强ICU环境的清洁、消毒和医务人员手卫生工作是防止CRAB在ICU暴发流行的重要举措.%OBJECTIVE To investigate the correlation between the of environment pollution and the nosocomial infections caused by carbapenems-resistant Acinetonacter baumannii (CRAB) in ICU, so as to provide environmental epidemiology basis for the pievention and control of CRAB infections in the patients of ICU. METHODS The sampling and the target surveillance of environmental hygiene of ICU were performed, 10 strains were selected,and the comparative analysis of homology of 23 clinically isolated CRAB strains was performed. RESULTS Of 145 environmental specimens sampled, there were 73 strains of CRAB isolates with the detection rate of 50. 3%, the detection rate of the CRAB strains isolated from the patients' bed and surrounded objects was 100. 0%; all the CRAB strains detected were pandrug-resistant; the map of DNA displayed the same clone strain of CRAB causing nosocomial infections. CONCLUSION The pollution of CRAB in the environment of ICU is serious,it is prone to lead to CRAB infection so that we should strengthen the cleaning and the disinfection of environment in ICU as well as the hand hygiene of the medical staff.

  5. Consequence management, recovery & restoration after a contamination event.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Craig R.; James, Scott Carlton; Roberts, Jesse Daniel

    2005-10-01

    The fate of contaminants after a dispersal event is a major concern, and waterways may be particularly sensitive to such an incident. Contaminants could be introduced directly into a water system (municipal or general) or indirectly (Radiological Dispersal Device) from aerial dispersion, precipitation, or improper clean-up techniques that may wash contamination into storm water drains, sewer systems, rivers, lakes, and reservoirs. Most radiological, chemical, and biological contaminants have an affinity for sediments and organic matter in the water system. If contaminated soils enter waterways, a plume of contaminated sediments could be left behind, subject to remobilization during the next storm event. Or, contaminants could remain in place, thus damaging local ecosystems. Suitable planning and deployment of resources to manage such a scenario could considerably mitigate the severity of the event. First responses must be prearranged so that clean-up efforts do not increase dispersal and exacerbate the problem. Interactions between the sediment, contaminant, and water cycle are exceedingly complex and poorly understood. This research focused on the development of a risk-based model that predicts the fate of introduced contaminants in surface water systems. Achieving this goal requires integrating sediment transport with contaminant chemical reactions (sorption and desorption) and surface water hydrodynamics. Sandia leveraged its existing state-of-the-art capabilities in sediment transport measurement techniques, hydrochemistry, high performance computing, and performance assessment modeling in an effort to accomplish this task. In addition, the basis for the physical hydrodynamics is calculated with the EPA sponsored, public domain model, Environmental Fluid Dynamics Code (EFDC). The results of this effort will enable systems analysis and numerical simulation that allow the user to determine both short term and long-term consequences of contamination of waterways

  6. Mercury contamination extraction

    Science.gov (United States)

    Fuhrmann, Mark; Heiser, John; Kalb, Paul

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  7. INNOVATIVE IN-SITU REMEDIATION OF CONTAMINATED SEDIMENTS FOR SIMULTANEOUS CONTROL OF CONTAMINATION AND EROSION

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A; Michael Paller, M; Danny D. Reible, D; Ioana G. Petrisor, I

    2007-11-28

    organoclays have high potential for controlling organic contaminants. Measured partitioning coefficients were used to model the time required for a contaminant to penetrate sediment caps composed of organoclay. The results showed that a thin layer of highly sorptive organoclay can lead to very long migration times, perhaps longer than the expected lifetime of the contaminant in the sediment environment. A one-dimensional numerical model was used to examine the diffusion of metals through several cap material based on measured and assumed material and transport properties. These studies showed that active caps composed of apatite or organoclay have the potential to delay contaminant breakthrough due to diffusion by hundreds of years or more compared with passive caps composed of sand. Advectively dominated column experiments are currently underway to define effective sorption related retardation factors in promising amendments for various hydrophobic organic compounds. Upon completion of these experiments, advection transient models will be used to estimate the time required for the breakthrough of various contaminants in caps composed of different experimental materials. Biopolymer products for inclusion in active caps were evaluated on the basis of resistance to biodegradation, sorption capacity for organic and inorganic contaminants, and potential for erosion control. More than 20 biopolymer products were evaluated resulting in the selection of chitosan/guar gum cross-linked with borax and xanthan/chitosan cross-linked with calcium chloride for inclusion in active caps to produce a barrier that resists mechanical disturbance. A process was developed for coating sand with cross-linked biopolymers to provide a means for delivery to the sediment surface. Properties of biopolymer coated sand such as carbon fraction (indicating biopolymer coverage), porosity, bulk density, and biodegradability have been evaluated, and experiments are currently underway to assess the resistance

  8. Subsurface Contamination Control

    Energy Technology Data Exchange (ETDEWEB)

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the

  9. Fatty acid composition of muscle tissue measured in amphibians living in radiologically contaminated and non-contaminated environments.

    Science.gov (United States)

    Audette-Stuart, M; Ferreri, C; Festarini, A; Carr, J

    2012-09-01

    Fatty acid composition was identified as a potential biological indicator of the effects of environmental exposure to radiological contaminants. This end point was measured in muscle tissues of Mink frogs ( Rana septentrionalis ) obtained from a radiologically contaminated pond and from a non-contaminated pond. It was also measured after the frogs obtained from both ponds were exposed to a 4 Gy (60)Co γ radiation dose delivered in vivo at a dose rate of approximately 8 Gy/min. Statistically significant differences for the increase of a couple of polyunsaturated omega-3 fatty acid residues and the decrease of a polyunsaturated omega-6 fatty acid residue were observed between radiologically contaminated and non-contaminated frogs, indicating a partial remodeling of muscle lipids in response to a chronic low-dose tritium exposure. The effects of an acute high-dose exposure to (60)Co γ radiation, either for the radiologically contaminated or non-contaminated frogs indicated fast post-irradiation fatty acid changes with an increase of polyunsaturated and decrease of saturated fatty acid contents. Fatty acid composition was found to be a sensitive marker that may be useful to study and monitor biota health in environments that are radiologically contaminated, as well as for understanding the differences between low chronic and high acute stress responses.

  10. Bacterial contaminations of Iraqi Currencies collected from Duhok City, Iraq

    Directory of Open Access Journals (Sweden)

    Siham Noori Jafer

    2015-07-01

    Conclusion: Study revealed that Iraqi currencies circulating in Duhok city was contaminated with different pathogenic and potential pathogenic bacteria including multi drug resistant strains. So the need to improve health consciousness among people while handling currency is an urgent issue. [Int J Res Med Sci 2015; 3(7.000: 1712-1716

  11. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils

    Directory of Open Access Journals (Sweden)

    Ying eTeng

    2015-02-01

    Full Text Available Environmental pollutants have received considerable attention due to their serious effects on human health. There are physical, chemical, and biological means to remediate pollution; among them, bioremediation has become increasingly popular. The nitrogen-fixing rhizobia are widely distributed in the soil and root ecosystems and can increase legume growth and production by supplying nitrogen, resulting in the reduced need for fertilizer applications. Rhizobia also possess the biochemical and ecological capacity to degrade organic pollutants and are resistant to heavy metals, making them useful for rehabilitating contaminated soils. Moreover, rhizobia stimulate the survival and action of other biodegrading bacteria, thereby lowering the concentration of pollutants. The synergistic action of multiple rhizobial strains enhances both plant growth and the availability of pollutants ranging from heavy metals to persistent organic pollutants. Because phytoremediation has some restrictions, the beneficial interaction between plants and rhizobia provides a promising option for remediation. This review describes recent advances in the exploitation of rhizobia for the rehabilitation of contaminated soil and the biochemical and molecular mechanisms involved, thereby promoting further development of this novel bioremediation strategy into a widely accepted technique.

  12. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils.

    Science.gov (United States)

    Teng, Ying; Wang, Xiaomi; Li, Lina; Li, Zhengao; Luo, Yongming

    2015-01-01

    Environmental pollutants have received considerable attention due to their serious effects on human health. There are physical, chemical, and biological means to remediate pollution; among them, bioremediation has become increasingly popular. The nitrogen-fixing rhizobia are widely distributed in the soil and root ecosystems and can increase legume growth and production by supplying nitrogen, resulting in the reduced need for fertilizer applications. Rhizobia also possess the biochemical and ecological capacity to degrade organic pollutants and are resistant to heavy metals, making them useful for rehabilitating contaminated soils. Moreover, rhizobia stimulate the survival and action of other biodegrading bacteria, thereby lowering the concentration of pollutants. The synergistic action of multiple rhizobial strains enhances both plant growth and the availability of pollutants ranging from heavy metals to persistent organic pollutants. Because phytoremediation has some restrictions, the beneficial interaction between plants and rhizobia provides a promising option for remediation. This review describes recent advances in the exploitation of rhizobia for the rehabilitation of contaminated soil and the biochemical and molecular mechanisms involved, thereby promoting further development of this novel bioremediation strategy into a widely accepted technique.

  13. Unregulated Contaminant Monitoring Program Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA uses the Unregulated Contaminant Monitoring (UCM) program to collect data for contaminants suspected to be present in drinking water, but that do not have...

  14. Regenerable Contaminant Removal System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Regenerable Contaminant Removal System (RCRS) is an innovative method to remove sulfur and halide compounds from contaminated gas streams to part-per-billion...

  15. Chemical, Biological, and Radiological (CBR) Contamination Survivability, Large Item Interiors

    Science.gov (United States)

    2016-08-03

    per second (m/s)). Anemometer or similar measuring instrument with digital recording capability. ±0.1 m/s. Photographs. Still color camera...capabilities (both lethal and nonlethal) over time. TOP 08-2-509A 3 August 2016 B-1 APPENDIX B. TEST EQUIPMENT. Thermocouple. Hygrometer. Anemometer

  16. Emerging organic contaminants in sludges. Analysis, fate and biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vicent, Teresa [Univ. Autonoma de Barcelona, Bellaterra (Spain). Chemical Engineering Dept.; Eljarrat, Ethel [IDAEA-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry; Caminal, Gloria [IQAC-CSIC, Barcelona (Spain). Grupo de biocatalisis Aplicada y biodegradacion; Barcelo, Damia (eds.) [IDAEA-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry; Girona Univ. (Spain). Catalan Inst. for Water Research

    2013-07-01

    A comprehensive review. Written by experts. Richly illustrated. There are a growing number of new chemicals in the environment that represent an ascertained or potential risk. Many of them can be found in sewage sludge and are the subject of this volume. Experts in the field highlight their occurrence and fate, risks of biosolid use, advanced chemical analysis methods, and degradation techniques with a special focus on biodegradation using fungi. In the final chapter conclusions and trends are offered as a point of departure for future studies. The double-disciplinary approach combining environmental analysis and engineering makes the book a valuable and comprehensive source of information for a broad audience, such as environmental chemists and engineers, biotechnologists, ecotoxicologists and professionals responsible for waste and water management.

  17. Chemical, Biological, and Radiological Contamination Survivability: Material Effects Testing

    Science.gov (United States)

    2012-06-22

    Description of test specimen (i.e., surface condition (pretest), paint type, paint thickness (number of coats), paint condition, and surface cleanliness ), with...c. The surface condition, surface cleanliness , corrosion, materials of construction, variance from standard painting, and paint condition will be...and surface cleanliness ), with photographs will be TOP 08-2-502 22 June 2012 22 recorded. The test specimen shall be delivered, constructed

  18. Polymeric Materials for Protection Against Chemical and Biological Contaminants

    Science.gov (United States)

    2002-09-30

    the demand for a safe antimicrobial and deodorizing treatment, chemical methods have been proposed using as an antimicrobial component, halamines...in an organic solvent such as carbon disulfide, and a Friedei-Crafts acylation was performed utilizing acetyl chloride and the catalyst aluminum

  19. Chemical, Biological, and Radiological (CBR) Contamination Survivability: Large Item Interiors

    Science.gov (United States)

    2012-06-22

    Sheet titanium, grade 2 Not expected to have any effect. Not expected to have any effect. Foam element no. 1 Cushioning material, packing ...Adhesion (loss of), blistering , spalling X X X X X X 36 Corrosion rate X X X X X Th er ma l Pr op er tie s 37 Thermal conductivity X X X

  20. Biological Treatment of Groundwater Contaminated with Mixtures of Aromatic Compounds

    Science.gov (United States)

    1993-03-01

    aquitard. Localized high points in the Navarro clay topography, sometimes restrict lateral flow of the groundwater and dry zones associated with this...Portier, R.J., Hoover, D.G., Friday, D.O. and Sicard , J.L., "Biodegradation of Chlorinated Hydrocarbons in an Immobilized Bed Reactor," Environ. Progress 9

  1. [Blood culture positivity: is it pathogen or contaminant?].

    Science.gov (United States)

    Balıkçı, Ahmet; Belas, Zeliha; Eren Topkaya, Aynur

    2013-01-01

    Blood culture is the gold standard for diagnosis of bloodstream infections. Many studies have shown that rapid isolation and identification of the microorganisms in blood culture and initiation of early antimicrobial therapy are critically important to reduce the mortality rate. It was found that the rate of contamination in blood cultures is increasing with automated systems developed to facilitate the growth of microorganism and tracking positivity. It is more difficult to interpret a positive blood culture result especially in the case of having only one sample bottle. In this study the effect of growth time observed in the automated blood culture systems was evaluated in terms of interpretation of blood culture results as being pathogens or contaminants. A total of 1201 blood cultures tested in BACTEC 9120 (Becton Dickinson, USA) system in Maltepe University Hospital Medical Microbiology Laboratory, Istanbul, Turkey during one-year period were included in the study and growth times were recorded for positive bottles. The decision about the growth as being a pathogen or contamination was made by considering the clinical condition of the patient, the number of positive blood cultures and the results of inflammation markers (white blood cell counts, procalsitonin and CRP levels). Of the blood cultures 290 (24%) yielded positive results and 73% (212/290) of them were evaluated as pathogens, while 27% (78/290) were identified as contaminants. The mean detection time for clinically significant isolates was 17.87 hours and for contaminants was 40.56 hours. The difference between the growth time of pathogens and contaminants was found statistically significant (ppositive results, it was detected that 66% of the bacteria grew within the first 24 hours. While 29.6% of the pathogens grew within 12 hours, none of the contaminants grew during that time. The evaluation of growth time among staphylococci in terms of methicillin resistance revealed that methicillin- resistant

  2. Biological Control of Nematodes with Bacteria

    Science.gov (United States)

    Biological control of nematodes is receiving increased attention as environmental considerations with the use of nematicides have increased in importance and their high cost prohibits use on many crops. In addition, nematode resistant cultivars are not available for many crops and resistance that i...

  3. Endotoxin contamination: a key element in the interpretation of nanosafety studies.

    Science.gov (United States)

    Li, Yang; Boraschi, Diana

    2016-02-01

    The study of toxicity and potential risks of engineered nanoparticles is of particular importance in nanomedicine. Endotoxin, a common contaminant of bacterial origin, has biological effects that can mask the true biological effects of nanoparticles, if its presence is overlooked. In this review, we report the features of nanoparticle contamination by endotoxin, and the different biological effects of endotoxin-contaminated nanoparticles. We will describe different methods for endotoxin detection applied to nanoparticles, and discuss their pros and cons. Eventually, we describe various methods for eliminating endotoxin contamination in nanoparticles. Although there is no universal technique for efficiently removing endotoxin from nanoparticles, specific solutions can be found case by case, which can allow us to perform nanosafety studies in biologically relevant conditions.

  4. GA - Effects of Environmental Contaminants of Loggerhead Sea Turtles (Caretta caretta)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objectives of this study are to determine the effects contaminants have on the biology of the threatened Loggerhead sea turtle. Recruitment, survivorship as...

  5. Assessing the bioavailability and risk from metal contaminated soils and dusts#

    Science.gov (United States)

    Exposure to contaminated soil and dust is an important pathway in human and ecological risk assessment and often is the "risk-driver" for metal contaminated soil. Site-specific soil physical and chemical characteristics, as well as biological factors, determine the bioavailabilit...

  6. Contamination Control: a systems approach

    NARCIS (Netherlands)

    Donck, J.C.J. van der

    2010-01-01

    Contamination influences a wide variety of industrial processes. For complex systems, contamination control, the collective effort to control contamination to such a level that it guarantees or even improves process or product functionality, offers a way for finding workable solutions. Central in th

  7. Biology Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  8. (Biological dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  9. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  10. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  11. Biology Notes.

    Science.gov (United States)

    School Science Review, 1984

    1984-01-01

    Presents information on the teaching of nutrition (including new information relating to many current O-level syllabi) and part 16 of a reading list for A- and S-level biology. Also includes a note on using earthworms as a source of material for teaching meiosis. (JN)

  12. Contaminant Research in Canada

    Directory of Open Access Journals (Sweden)

    Wren C.

    1987-03-01

    Full Text Available Contaminant Research in CanadaPages 9 - 11 (ReportChristopher WrenAbstract:During the 1983/84 and 1984/85 trapping seasons, carcasses of river otter (Lutra canadensis were collected for contaminant analysis from trappers in Ontario. The studies identified clear differences in tissue levels of Hg, Pb and Cd between different collection areas. There is evidence to support Hg poisoning as the cause of death in at least one otter along this river system. The studies emphasize the potential interactions of toxic chemicals with each other and with natural stresses (e.g. cold, starvation, disease. More research is required along these lines since simultaneous exposure to more than one chemical and other stresses is more typical of conditions in the wild.

  13. Emerging contaminants in groundwater

    OpenAIRE

    Lapworth, Dan; Stuart, Marianne; HART Alwyn; Crane, Emily; Baran, Nicole

    2011-01-01

    The term ‘emerging contaminants’ (ECs) is used to cover not only newly developed compounds but also includes newly discovered compounds in the environment (often due to analytical developments), and compounds that have been recently categorised as contaminants. ECs include a huge array of different compounds (and their metabolites) that are used by society for a range of purposes and include; pharmaceuticals, pesticides, personal care products, veterinary medicines, engineered nano-materials,...

  14. Contain contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, R.D. Jr.; Caputi, J.R. [Eckenfelder, Inc., Mahwah, NJ (United States); Ash, R.E. IV [Eckenfelder Inc., Nashville, TN (United States)

    1997-05-01

    Despite recent progress in innovative treatment technologies, many problems with contaminated groundwater still require the use of barrier walls, typically in combination with extraction and treatment systems. New technologies for subsurface barrier walls, mostly based on geomembranes, advancements in self-hardening slurries and permeation grouts with materials such as colloidal silica gel and montan wax emulsions, are being developed at an unprecedented pace. The paper discusses deep soil mixing, jet grouting, slurry trenches, and permeation grouting.

  15. [Contamination, endocrine disruptors and cancer].

    Science.gov (United States)

    Arvelo, Francisco; Sojo, Felipe; Cotte, Carlos

    2016-03-01

    Since the mid-twentieth century, many species, very different from each other and located in all areas and comers of the planet, began presenting various alterations, many of which suggested to be related to endocrine disorders. Research has shown that such alterations were caused by exposure to various chemical contaminants that could affect the health and cause serious illnesses. Among them stands a diverse and large group of compounds, with very different chemical structures, capable of altering the hormonal balance, act at very low doses and with different mechanisms of action, that are called "endocrine disrupting chemicals". When released into the environment or as part of objects, food or medicines, constitute a major risk to animals and humans, which produces not only endocrine dysfunctions but also different cancers, which include the most common types. Despite the importance and significance of the impact of these compounds, they are not sufficiently known or understood, so the aim of this review is to show their origin and impact in the field of human health, highlighting their role as inducers of cancer, which has led to multiple clinical and biological investigations.

  16. Network systems biology for targeted cancer therapies

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Zhou

    2012-01-01

    The era of targeted cancer therapies has arrived.However,due to the complexity of biological systems,the current progress is far from enough.From biological network modeling to structural/dynamic network analysis,network systems biology provides unique insight into the potential mechanisms underlying the growth and progression of cancer cells.It has also introduced great changes into the research paradigm of cancer-associated drug discovery and drug resistance.

  17. Contaminants in human milk.

    Science.gov (United States)

    Olszyna-Marzys, A E

    1978-09-01

    There is a paucity of information regarding excretion of contaminants in human milk, due to experimental difficulties and until recently a general lack of interest. Because of the high fat content of milk and as its acidity is higher than that of plasma, nearly all liposoluble and basic agents consumed by the mother will be excreted in the milk. Distinction must be made between, on the one hand drugs and social toxicants such as smoking and alcohol, whose intake can be stopped or limited during pregnancy and lactation, and ecological toxicants present in a polluted environment to which the mother is exposed. Cases have occurred of heavy prenatal and postnatal intoxication of infants with hexachlorobenzene in Turkey and methylmercury in Iraq due to consumption of fungicide-treated seed wheat by pregnant and lactating mothers. Recent attention has been concentrated on contamination of milk with organochlorine compounds such as DDT and PCB's, that are found in many parts of the world. The heaviest contamination with DDT has been found in Guatemala, resulting in suckling infants consuming many times the Acceptable Daily Intake of this compound proposed by WHO, with unknown future effects.

  18. Antimicrobial Resistance

    Science.gov (United States)

    ... emergence and spread of antibacterial resistance, including optimal use of antibiotics in both humans and animals. A global action plan on antimicrobial resistance was adopted by Member States at the ...

  19. 呼吸道嗜血杆菌属的生物学分型及耐药性分析%Biological typing and drug resistance analysis of Haemophilus strains from respiratory tract

    Institute of Scientific and Technical Information of China (English)

    江秀爱; 赵自云; 姜蓓; 乔显森

    2015-01-01

    Objective To investigate season distribution,