WorldWideScience

Sample records for biologically resistant contaminants

  1. Biological processes influencing contaminant release from sediments

    International Nuclear Information System (INIS)

    The influence of biological processes, including bioturbation, on the mobility of contaminants in freshwater sediments is described. Effective mass coefficients are estimated for tubificid oligochaetes as a function of worm behavior and biomass density. The mass transfer coefficients were observed to be inversely proportional to water oxygen content and proportional to the square root of biomass density. The sediment reworking and contaminant release are contrasted with those of freshwater amphipods. The implications of these and other biological processes for contaminant release and i n-situ remediation of soils and sediments are summarized. 4 figs., 1 tab

  2. Environmental Contamination by Carbapenem-Resistant Enterobacteriaceae

    OpenAIRE

    Lerner, A; Adler, A.; Abu-Hanna, J.; Meitus, I.; Navon-Venezia, S.; Carmeli, Y

    2013-01-01

    In the last decade, the global emergence of carbapenem resistance in Enterobacteriaceae has posed great concern to public health. Data concerning the role of environmental contamination in the dissemination of carbapenem-resistant Enterobacteriaceae (CRE) are currently lacking. Here, we aimed to examine the extent of CRE contamination in various sites in the immediate surroundings of CRE carriers and to assess the effects of sampling time and cleaning regimens on the recovery rate. We evaluat...

  3. Biological contamination and control in cleanrooms

    Science.gov (United States)

    Debus, Andre; Darbord, Jacques C.; Schmeitzky, Olivier; Pedersen, Flemming; Dubourg, Vincent; Salvan, Bernard

    Requirements for the prevention of forward and backward contamination are handled by the COSPAR. For missions exploring Mars, one of the main requirement for the prevention of forward contamination impose to control the biological cleanliness of space hardware, needing bioburden reduction operations and the assembly of probes inside cleanrooms where their recontamination shall be controlled using swabbing techniques and witnesses. The results of such assays, needing cultures, is known after a delay of 3 days during which integration activities are continuing. A study has been done by CNES, with the participation of agencies, industries and laboratories who kindly provided access to their cleanrooms in different cleanliness classes and different utilization configurations, in order to evaluate with witnesses the biological contamination over time in worst case conditions (without biological control measures in place). The goal of the study is to be able to make recontamination prediction a function of different parameters such as cleanliness class and use or occupancy. In addition, taking also into account that different kind of swabs or witnesses may be used, and knowing that the result of such assessments is linked to the capability of witnesses and swabs to collect, keep and release micro organisms, comparative studies have also be done in order to evaluate the correction factor to consider for the results of bacterial spores enumeration.

  4. Complex Electrical Resistivity for Monitoring DNAPL Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Stephen R. Brown; David Lesmes; John Fourkas

    2003-09-12

    Nearly all Department of Energy (DOE) facilities have landfills and buried waste areas. Of the various contaminants present at these sites, dense non-aqueous phase liquids (DNAPL) are particularly hard to locate and remove. There is an increasing need for external or non-invasive sensing techniques to locate DNAPLs in the subsurface and to track their spread and monitor their breakdown or removal by natural or engineered means. G. Olhoeft and colleagues have published several reports based on laboratory studies using the complex resistivity method which indicate that organic solvents, notably toluene, PCE, and TCE, residing in clay-bearing soils have distinctive electrical signatures. These results have suggested to many researchers the basis of an ideal new measurement technique for geophysical characterization of DNAPL pollution. Encouraged by these results we proposed to bring the field measurement of complex resistivity as a means of pollution characterization from the conceptual stage to practice. We planned to document the detectability of clay-organic solvent interactions with geophysical measurements in the laboratory, develop further understanding of the underlying physical and chemical mechanisms, and then apply these observations to develop field techniques. As with any new research endeavor we note the extreme importance of trying to reproduce the work of previous researchers to ensure that any effects observed are due to the physical phenomena occurring in the specimen and not due to the particular experimental apparatus or method used. To this end, we independently designed and built a laboratory system, including a sample holder, electrodes, electronics, and data analysis software, for the measurement of the complex electrical resistivity properties of soil contaminated with organic solvents. The capabilities and reliability of this technique were documented. Using various standards we performed measurement accuracy, repeatability, and noise immunity

  5. Biological improvement of radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Chun, K. J.; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J

    2000-08-01

    To investigate the mechanisms of gene action related to the radiation resistance in microorganisms could be essentially helpful for the development of radiation protectants and hormeric effects of low dose radiation. This book described isolation of radiation-resistant microorganisms, induction of radiation-resistant and functionally improved mutants by gamma-ray radiation, cloning and analysis of the radiation resistance related genes and analysis of the expressed proteins of the radiation resistant related genes.

  6. Biological improvement of radiation resistance

    International Nuclear Information System (INIS)

    To investigate the mechanisms of gene action related to the radiation resistance in microorganisms could be essentially helpful for the development of radiation protectants and hormeric effects of low dose radiation. This book described isolation of radiation-resistant microorganisms, induction of radiation-resistant and functionally improved mutants by gamma-ray radiation, cloning and analysis of the radiation resistance related genes and analysis of the expressed proteins of the radiation resistant related genes

  7. Biological effects of anthropogenic contaminants in the San Francisco Estuary

    Science.gov (United States)

    Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K.

    2007-01-01

    Concentrations of many anthropogenic contaminants in the San Francisco Estuary exist at levels that have been associated with biological effects elsewhere, so there is a potential for them to cause biological effects in the Estuary. The purpose of this paper is to summarize information about biological effects on the Estuary's plankton, benthos, fish, birds, and mammals, gathered since the early 1990s, focusing on key accomplishments. These studies have been conducted at all levels of biological organization (sub-cellular through communities), but have included only a small fraction of the organisms and contaminants of concern in the region. The studies summarized provide a body of evidence that some contaminants are causing biological impacts in some biological resources in the Estuary. However, no general patterns of effects were apparent in space and time, and no single contaminant was consistently related to effects among the biota considered. These conclusions reflect the difficulty in demonstrating biological effects due specifically to contamination because there is a wide range of sensitivity to contaminants among the Estuary's many organisms. Additionally, the spatial and temporal distribution of contamination in the Estuary is highly variable, and levels of contamination covary with other environmental factors, such as freshwater inflow or sediment-type. Federal and State regulatory agencies desire to develop biological criteria to protect the Estuary's biological resources. Future studies of biological effects in San Francisco Estuary should focus on the development of meaningful indicators of biological effects, and on key organism and contaminants of concern in long-term, multifaceted studies that include laboratory and field experiments to determine cause and effect to adequately inform management and regulatory decisions. ?? 2006 Elsevier Inc. All rights reserved.

  8. Some biological aspects in acoustic contamination

    International Nuclear Information System (INIS)

    For an appropriate diagnosis of the environmental quality of the aquatic ecosystems, the aspects physic chemicals and biotic should be conjugated and to identify the processes of natural origin and anthropogenic. Any study based on a partial vision that excludes a holistic treatment of the problem, limits the possibilities of interpretation of the data and the quality of the results. The aquatic biota acts as a natural monitor, because it responds in an integral form to the changes under the environmental conditions. Among the procedures for investigation of the biological effects of the deterioration of the quality of the natural waters, the toxicity rehearsals have acquired a growing importance in the last years, like base for the formulation of permissible maximum concentrations. In the aquatic toxicology, the tests of sharp toxicity and chronicle are those most broadly diffused ones. One of the most frequent critics to the rehearsals of sharp toxicity is that the high concentrations of toxic substances employees lower laboratory conditions; they are not common in the natural atmospheres. Nevertheless, these tests allow to locate the main contamination sources and to apply factors for the estimate of levels of security. The approach more employee to evaluate the sharp toxic effects of a xeno-biotic, is the concentration lethal stocking (CL50) For the calculation of the CL50 it has intended several forms that include techniques graphic simple or computational model based on the use of transformations. The procedure more applied in Colombia for the computation of the CL50 is the graphic method of Litchfield - Wilcoxon (1949). Starting from statistical considerations the employment of graphic techniques is not recommended and model computational should only be used that allow the estimate of the intervals of trust of the CL50

  9. Biological monitoring of environmental contaminants (plants)

    International Nuclear Information System (INIS)

    Knowledge of contaminant concentrations does not necessarily indicate their significance to plant populations and communities within ecosystems. Accumulation within plants facilitates analysis of contaminants which may be present at very low levels in the environment and may show the spatial distribution and changes in the level of contamination with time. Effects on species distribution within plant communities and visible injury to foliage may also be related to contamination. Species can be selected appropriate to the area and the contaminant to be monitored. Species used to investigate the input of contaminants from atmospheric deposition, for example, may differ from those used to assess transfer through food webs. Mosses and lichens have been particularly widely used in many countries to show distribution of metals and radionuclides on local and regional scales and of pesticide contamination. Visible injury to foliage of higher plant species may reflect atmospheric concentrations of gaseous pollutants and monitoring networks of transplanted sensitive species can provide information on contaminant levels on a regional scale. Changes in species composition, especially of lichens, have also been related to the degree of contamination. (author)

  10. Biologically resistant contaminants, primary treatment with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Echegaray, Diego F. [White Martins Gases Industriais do Nordeste S.A., Salvador, BA (Brazil); Olivieri, Nadja F. [White Martins Gases Industriais S.A., Cordovil, RJ (Brazil)

    1993-12-31

    Organic effluent oxidation tests were conducted in petrochemical companies, in Camacari Petrochemical Complex (Northeast Brazil), to reduce treatment costs and improve the primary treatment efficiency in each industrial process. Ozone achieved 99.96 percent benzene reduction and 100 percent ethyl benzene and toluene reduction. Process efficiency is strongly dependent on the wastewater chemical composition and concentration. For this reason it is necessary to run pilot trials for each specific case. Ozone was obtained feeding commercial oxygen through a corona discharge generator and dissolved in the effluent with a bubble column. Commercial oxygen was used instead of air to increase 250 percent the ozone production, using the same ozone generator. (author). 4 figs., 2 tabs.

  11. Functional Agents to Biologically Control Deoxynivalenol Contamination in Cereal Grains

    Science.gov (United States)

    Tian, Ye; Tan, Yanglan; Liu, Na; Liao, Yucai; Sun, Changpo; Wang, Shuangxia; Wu, Aibo

    2016-01-01

    Mycotoxins, as microbial secondary metabolites, frequently contaminate cereal grains and pose a serious threat to human and animal health around the globe. Deoxynivalenol (DON), a commonly detected Fusarium mycotoxin, has drawn utmost attention due to high exposure levels and contamination frequency in the food chain. Biological control is emerging as a promising technology for the management of DON contamination. Functional biological control agents (BCAs), which include antagonistic microbes, natural fungicides derived from plants and detoxification enzymes, can be used to control DON contamination at different stages of grain production. In this review, studies regarding different biological agents for DON control in recent years are summarized for the first time. Furthermore, this article highlights the significance of BCAs for controlling DON contamination, as well as the need for more practical and efficient BCAs concerning food safety. PMID:27064760

  12. Evaluation models for contaminated sites – biological system at risk

    OpenAIRE

    Golomeova, Mirjana; Krstev, Boris; Golomeov, Blagoj; Zendelska, Afrodita; Krstev, Aleksandar

    2009-01-01

    The paper presents the different methods that can be used correspond to three types of approaches, testing, monitoring, and modeling: experimental models, in situ indicators and mathematical models, and choice of model for contaminated sites – biological system at risk.

  13. The Biology of Allogeneic Hematopoietic Cell Resistance

    Science.gov (United States)

    Shizuru, Judith A.; Bhattacharya, Deepta; Cavazzana-Calvo, Marina

    2016-01-01

    At the most basic level, success of an allogeneic hematopoietic cell transplantation (HCT) procedure relies upon the engraftment of recipients with donor hematopoietic stem cells (HSCs) that will generate blood formation for the life of that individual. The formula to achieve durable HSC engraftment involves multiple factors including the recipient conditioning regimen, the nature of the genetic disparity between donor and recipient, and the content of the hematopoietic graft. Animal and clinical studies have shown that the biology of host resistance is complex, involving both immune and nonimmune elements. In this article, we review the factors that contribute to host resistance, describe emerging concepts on the basic biology of resistance, and discuss hematopoietic resistance as it relates specifically to patients with severe combined immunodeficiencies (SCID)— disorders that bring unique insights into the dynamics of cell replacement by allogeneic HSCs and progenitor cells. PMID:19913629

  14. Biological detoxification of a hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    The soil quality of an industrial site chronically contaminated by 39000 mg/kg of oil was detrimentally affected. Soil treatments by bio-pile and land-farming resulted in a reduction of the level of contamination exceeding 90% of the original values, but without reaching regulatory limits. However, the bio-remediation treatments dramatically reduced the mobility of the contaminants and, accordingly, microbial tests clearly indicate that the soil quality improved to acceptable levels, similar to those typically observed in unaltered soils. Hydrocarbon mobility was estimated by the use of water and mild extractants (methanol and sodium dodecyl sulphate) to leach the contaminants from the soil; soil quality was evaluated by comparing the values of selected microbial and enzymatic parameters of the treated soil samples to reference values determined for natural soils. Microbial assessments included: measurement of the nitrification potential, dehydrogenase activity, measures of respiration and lipase activity, microbial counts (MPN on rich media) and MicrotoxTM assays of the water elutriate. Dermal absorption potential was evaluated using absorption on C18 disks

  15. Biological detoxification of a hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, F.; Lucchese, G.; Nardella, A. [E. Ramarini Eni Technologie, Monterotondo (RM), Roma (Italy)

    2005-07-01

    The soil quality of an industrial site chronically contaminated by 39000 mg/kg of oil was detrimentally affected. Soil treatments by bio-pile and land-farming resulted in a reduction of the level of contamination exceeding 90% of the original values, but without reaching regulatory limits. However, the bio-remediation treatments dramatically reduced the mobility of the contaminants and, accordingly, microbial tests clearly indicate that the soil quality improved to acceptable levels, similar to those typically observed in unaltered soils. Hydrocarbon mobility was estimated by the use of water and mild extractants (methanol and sodium dodecyl sulphate) to leach the contaminants from the soil; soil quality was evaluated by comparing the values of selected microbial and enzymatic parameters of the treated soil samples to reference values determined for natural soils. Microbial assessments included: measurement of the nitrification potential, dehydrogenase activity, measures of respiration and lipase activity, microbial counts (MPN on rich media) and Microtox{sup TM} assays of the water elutriate. Dermal absorption potential was evaluated using absorption on C{sub 18} disks.

  16. Chemical and biological factors affecting bioavailability of contaminants in seawater

    International Nuclear Information System (INIS)

    This paper discusses the influence that salinity has on the bioavailability of the two largest classes of contaminants, trace metals and organic compounds will be discussed. Although data on contaminant toxicity will be used to draw inferences about chemical availability, this discussion will focus on the properties that contaminants are likely to exhibit in waters of varying salinities. In addition, information on physiological changes that are affected by salinity will be used to illustrate how biological effects can alter the apparent availability of contaminants

  17. Radiolabelled substrates for studying biological effects of trace contaminants

    International Nuclear Information System (INIS)

    A programme of coordinated isotopic tracer-aided investigations of the biological side-effects of foreign chemical residues in food and agriculture, initiated in 1973, was reviewed. The current status of representative investigations from the point of view of techniques and priorities was assessed. Such investigations involved radioactive substrates for studying DNA injury and its repair; 14C-labelled acetylcholine as substrate for measuring enzyme inhibition due to the presence of, or exposure to, anticholinesteratic contaminants; radioactive substrates as indication of side-effects in non-target organisms and of their comparative susceptibilities; radioactive substrates as indicators of persistence or biodegradability of trace contaminants of soil or water; and labelled pools for studying the biological side-effects of trace contaminants. Priorities were identified

  18. Biological attributes of rehabilitated soils contaminated with heavy metals.

    Science.gov (United States)

    Valentim Dos Santos, Jessé; Varón-López, Maryeimy; Fonsêca Sousa Soares, Cláudio Roberto; Lopes Leal, Patrícia; Siqueira, José Oswaldo; de Souza Moreira, Fatima Maria

    2016-04-01

    This study aimed to evaluate the effects of two rehabilitation systems in sites contaminated by Zn, Cu, Pb, and Cd on biological soil attributes [microbial biomass carbon (Cmic), basal and induced respiration, enzymatic activities, microorganism plate count, and bacterial and fungal community diversity and structure by denaturing gradient gel electrophoresis (DGGE)]. These systems (S1 and S2) consisted of excavation (trenching) and replacement of contaminated soil by uncontaminated soil in rows with Eucalyptus camaldulensis planting (S1-R and S2-R), free of understory vegetation (S1-BR), or completely covered by Brachiaria decumbens (S2-BR) in between rows. A contaminated, non-rehabilitated (NR) site and two contamination-free sites [Cerrado (C) and pasture (P)] were used as controls. Cmic, densities of bacteria and actinobacteria, and enzymatic activities (β-glucosidase, acid phosphatase, and urease) were significantly higher in the rehabilitated sites of system 2 (S2-R and S2-BR). However, even under high heavy metal contents (S1-R), the rehabilitation with eucalyptus was also effective. DGGE analysis revealed similarity in the diversity and structure of bacteria and fungi communities between rehabilitated sites and C site (uncontaminated). Principal component analysis showed clustering of rehabilitated sites (S2-R and S2-BR) with contamination-free sites, and S1-R was intermediate between the most and least contaminated sites, demonstrating that the soil replacement and revegetation improved the biological condition of the soil. The attributes that most explained these clustering were bacterial density, acid phosphatase, β-glucosidase, fungal and actinobacterial densities, Cmic, and induced respiration. PMID:26662102

  19. Biological treatment of inorganic ion contamination including radionuclides

    International Nuclear Information System (INIS)

    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III)

  20. Factors influencing biological treatment of MTBE contaminated ground water

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  1. Experimental study of contamination by inhalation of radioactive iodine aerosols. Biological balance

    International Nuclear Information System (INIS)

    Several articles have been published concerning research into contamination produced by inhalation of radioactive iodine aerosols in monkeys. Results dealing with the biological balance of this contamination are presented and discussed in this report. (author)

  2. Metal resistant plants and phytoremediation of environmental contamination

    Science.gov (United States)

    Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

    2010-04-20

    The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

  3. Biological activity of soil contaminated with cobalt, tin, and molybdenum.

    Science.gov (United States)

    Zaborowska, Magdalena; Kucharski, Jan; Wyszkowska, Jadwiga

    2016-07-01

    In this age of intensive industrialization and urbanization, mankind's highest concern should be to analyze the effect of all metals accumulating in the environment, both those considered toxic and trace elements. With this aim in mind, a unique study was conducted to determine the potentially negative impact of Sn(2+), Co(2+), and Mo(5+) in optimal and increased doses on soil biological properties. These metals were applied in the form of aqueous solutions of Sn(2+) (SnCl2 (.)2H2O), Co(2+) (CoCl2 · 6H2O), and Mo(5+) (MoCl5), each in the doses of 0, 25, 50, 100, 200, 400, and 800 mg kg(-1) soil DM. The activity of dehydrogenases, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and catalase and the counts of twelve microorganism groups were determined on the 25th and 50th day of experiment duration. Moreover, to present the studied problem comprehensively, changes in the biochemical activity and yield of spring barley were shown using soil and plant resistance indices-RS. The study shows that Sn(2+), Co(2+), and Mo(5+) disturb the state of soil homeostasis. Co(2+) and Mo(5+) proved the greatest soil biological activity inhibitors. The residence of these metals in soil, particularly Co(2+), also generated a drastic decrease in the value of spring barley resistance. Only Sn(2+) did not disrupt its yielding. The studied enzymes can be arranged as follows for their sensitivity to Sn(2+), Co(2+), Mo(5+): Deh > Ure > Aryl > Pal > Pac > Cat. Dehydrogenases and urease may be reliable soil health indicators. PMID:27277093

  4. Improved site contamination through time-lapse complex resistivity imaging

    Science.gov (United States)

    Flores Orozco, Adrian; Kemna, Andreas; Cassiani, Giorgio; Binley, Andrew

    2016-04-01

    In the framework of the EU FP7 project ModelPROBE, time-lapse complex resistivity (CR) measurements were conducted at a test site close to Trecate (NW Italy). The objective was to investigate the capabilities of the CR imaging method to delineate the geometry and dynamics of subsurface hydrocarbon contaminant plume which resulted from a crude oil spill in 1994. To achieve this it is required to discriminate the electrical signal associated to static (i.e., lithology) from dynamic changes in the subsurface, with the latter associated to significant seasonal groundwater fluctuations. Previous studies have demonstrated the benefits of the CR method to gain information which is not accessible with common electrical resistivity tomography. However field applications are still rarely and neither the analysis of the data error for CR time-lapse measurements, nor the inversion itself haven not received enough attention. While the ultimate objective at the site is to characterize, here we address the discrimination of the lithological and hydrological controls on the IP response by considering data collected in an uncontaminated area of the site. In this study we demonstrate that an adequate error description of CR measurements provides images free of artifacts and quantitative superior than previous approaches. Based on this approach, differential images computed for time-lapse data exhibited anomalies well correlated with spatiotemporal changes correlated to seasonal fluctuations in the groundwater level. The proposed analysis may be useful in the characterization of fate and transport of hydrocarbon contaminants relevant for the site, which presents areas contaminated with crude oil.

  5. 9 CFR 105.3 - Notices re: worthless, contaminated, dangerous, or harmful biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Notices re: worthless, contaminated, dangerous, or harmful biological products. 105.3 Section 105.3 Animals and Animal Products ANIMAL AND PLANT... Notices re: worthless, contaminated, dangerous, or harmful biological products. (a) If at any time...

  6. Biological Activity of Autochthonic Bacterial Community in Oil-Contaminated Soil

    OpenAIRE

    Wolińska, Agnieszka; Kuźniar, Agnieszka; Szafranek-Nakonieczna, Anna; Jastrzębska, Natalia; Roguska, Eliza; Stępniewska, Zofia

    2016-01-01

    Soil microbial communities play an important role in the biodegradation of different petroleum derivates, including hydrocarbons. Also other biological factors such as enzyme and respiration activities and microbial abundance are sensitive to contamination with petroleum derivates. The aim of this study was to evaluate the response of autochthonic microbial community and biological parameters (respiration, dehydrogenase and catalase activities, total microorganisms count) on contamination wit...

  7. Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop radiation resistant hybrid Lotus Effect photoelectrocatalytic self-cleaning anti-contamination coatings for application to Lunar...

  8. Method of and apparatus for cleaning garments and soft goods contaminated with nuclear, chemical and/or biological contaminants

    International Nuclear Information System (INIS)

    A method is described for decontaminating garments, soft good or mixtures thereof contaminated with radioactive particulates, toxin, chemical, and biological contaminants comprising the steps of: (a) depositing contaminated garments, soft goods or mixtures thereof in a cleaning drum; (b) charging the drum with a cleaning solvent in which the chemical contaminants are soluble; (c) agitating the drum during a wash cycle to separate radioactive, toxin, biological particulate matter of mixtures thereof from the garments; (d) draining the drum of the dry cleaning solvent which contains suspended particulate contaminants and dissolved chemical contaminants; (e) contacting the drained solvent with both a neutralizing agent and an oxidizing agent, the neutralizing agent being selected from the group consisting of sodium hydroxide, potassium hydroxide and mixtures thereof and having a concentration greater than one (1.0) normal; (f) rinsing the garments, soft goods or mixtures thereof by circulating clean solvent from a solvent tank through the drum thereby effecting additional removal and flushing of particulate and chemical contaminants; (g) filtering the circulated solvent to remove the particulate material suspended in the solvent prior to addition to the drum; and (h) preferentially adsorbing the chemical contaminants dissolved in the circulated solvent prior to addition to the drum

  9. Fall 1998 200 East area biological vector contamination report

    International Nuclear Information System (INIS)

    The purpose of this report is to document the investigation into the cause of the spread of radioactive contamination in September and October 1998 at the Hanford Site's 200 East Area and its subsequent spread to the City of Richland Landfill; identify the source of the contamination; and present corrective actions. The focus and thrust of managing the incident was based on the need to accomplish the following, listed in order of importance: (1) protect the health and safety of the Site workers and the public; (2) contain and control the spread of contamination; (3) identify the source of contamination and the pathways for its spread; and (4) identify the causal factors enabling the contamination

  10. Fall 1998 200 East area biological vector contamination report

    Energy Technology Data Exchange (ETDEWEB)

    CONNELL, D.J.

    1999-03-17

    The purpose of this report is to document the investigation into the cause of the spread of radioactive contamination in September and October 1998 at the Hanford Site's 200 East Area and its subsequent spread to the City of Richland Landfill; identify the source of the contamination; and present corrective actions. The focus and thrust of managing the incident was based on the need to accomplish the following, listed in order of importance: (1) protect the health and safety of the Site workers and the public; (2) contain and control the spread of contamination; (3) identify the source of contamination and the pathways for its spread; and (4) identify the causal factors enabling the contamination.

  11. Biological Treatment of Petroleum in Radiologically Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    BERRY, CHRISTOPHER

    2005-11-14

    This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

  12. Organic contaminants - occurrence and biological effects in the Baltic Sea

    OpenAIRE

    Pikkarainen, Anna-Liisa

    2008-01-01

    The Baltic Sea was studied with respect to selected organic contaminants and their ecotoxicology. The research consisted of analyses of total hydrocarbons, polycyclic aromatic hydrocarbons, bile metabolites, hepatic ethoxyresorufin-O-deethylase (EROD) activity, polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). The contaminants were measured from various matrices, such as seawater, sediment and biota. The methods of analysis were evaluated and refined to comparability of t...

  13. Laboratory test to evaluate the effect of contaminants on road skid resistance

    OpenAIRE

    Do, Minh Tan; Cerezo, Véronique; Zahouani, Hassan

    2014-01-01

    The effect of contaminants has been overlooked and yet plays a significant role in driver safety and road maintenance. A laboratory test method is developed to reproduce the deposit of contaminant particles on the road surface and measure the friction coefficient on dry and wet-contaminated surfaces. It simulates in this way the variation of skid resistance of the road surface due to contaminants during a dry period–precipitation event and the washoff effect of the rain. Protocols are d...

  14. Molecular Characterization of Resistance-Nodulation-Division Transporters from Solvent- and Drug-Resistant Bacteria in Petroleum-Contaminated Soil

    OpenAIRE

    Meguro, Norika; Kodama, Yumiko; Gallegos, Maria-Trinidad; Watanabe, Kazuya

    2005-01-01

    PCR assays for analyzing resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in soil were developed. Sequence analysis of amplicons showed that the PCR successfully retrieved transporter gene fragments from soil. Most of the genes retrieved from petroleum-contaminated soils formed a cluster (cluster PCS) that was distantly related to known transporter genes. Competitive PCR showed that the abundance of PCS genes is increased in petroleum-contaminated soil.

  15. A systems biology approach to understanding impacts of environmental contaminants on fish reproduction

    Science.gov (United States)

    Over the past decade, our research team at the US EPA Mid-Continent Ecology Division has employed systems biology approaches to examine and understand impacts of environmental contaminants on fish reproduction. Our systems biology approach is one in which iterations of model cons...

  16. Biological treatment of oil-contaminated soils in bioreactors

    International Nuclear Information System (INIS)

    In Germany, biological soil treatment is practiced in most cases by using the window technique, where more and more the process takes place inhouse. This paper reports that biological soil treatment in closed reactors is more frequently considered. The reactors are more costly to run and should be used in those cases where the window technique is not satisfactory. Closed reactor treatment is appropriate when; higher standards are needed for the emission control of the volatile components; some organics are difficult to degrade; soil with a higher clay content must be treated; and naturally occurring biological processes must be enhanced. To operate biological soil treatment under optimum conditions and to discover the treatment limits, the specific factors of influence have to be determined in advance by using a series of laboratory-scale experiments

  17. Metal resistance in populations of red maple (Acer rubrum L.) and white birch (Betula papyrifera Marsh.) from a metal-contaminated region and neighbouring non-contaminated regions

    International Nuclear Information System (INIS)

    Metal resistance in populations of Acer rubrum and Betula papyrifera in the industrially contaminated region of Sudbury, Ontario, was compared with resistance in populations from neighbouring uncontaminated regions. In two one-season experiments, seedlings were grown outdoors on contaminated (mainly Cu, Ni) and uncontaminated substrates. Sudbury populations of both species responded less to contamination than populations from uncontaminated regions. In A. rubrum this difference was small. For both species, Sudbury plants were smaller when grown on uncontaminated substrate. B. papyrifera from Sudbury grew better on contaminated substrate than the other populations. There is indication of variation in metal resistance within the populations from the non-contaminated regions. The data shows that trees may develop adaptive resistance to heavy metals, but the low degree of resistance indicates that the development of such resistances are slower than observed for herbaceous species with shorter generation times. - Highlights: ► Metal resistance in trees from an industrially contaminated region was investigated. ► Both red maple and white birch have developed some degree of resistance. ► There is indication of a cost for resistance. ► Populations from non-contaminated regions show variation in response to contamination. - Adaptive metal resistance can also develop in trees with long generation times, but the degree of resistance is lower than for herbaceous species from the same region.

  18. Adaptive resistance to antibiotics in bacteria: a systems biology perspective.

    Science.gov (United States)

    Sandoval-Motta, Santiago; Aldana, Maximino

    2016-05-01

    Despite all the major breakthroughs in antibiotic development and treatment procedures, there is still no long-term solution to the bacterial antibiotic resistance problem. Among all the known types of resistance, adaptive resistance (AdR) is particularly inconvenient. This phenotype is known to emerge as a consequence of concentration gradients, as well as contact with subinhibitory concentrations of antibiotics, both known to occur in human patients and livestock. Moreover, AdR has been repeatedly correlated with the appearance of multidrug resistance, although the biological processes behind its emergence and evolution are not well understood. Epigenetic inheritance, population structure and heterogeneity, high mutation rates, gene amplification, efflux pumps, and biofilm formation have all been reported as possible explanations for its development. Nonetheless, these concepts taken independently have not been sufficient to prevent AdR's fast emergence or to predict its low stability. New strains of resistant pathogens continue to appear, and none of the new approaches used to kill them (mixed antibiotics, sequential treatments, and efflux inhibitors) are completely efficient. With the advent of systems biology and its toolsets, integrative models that combine experimentally known features with computational simulations have significantly improved our understanding of the emergence and evolution of the adaptive-resistant phenotype. Apart from outlining these findings, we propose that one of the main cornerstones of AdR in bacteria, is the conjunction of two types of mechanisms: one rapidly responding to transient environmental challenges but not very efficient, and another much more effective and specific, but developing on longer time scales. WIREs Syst Biol Med 2016, 8:253-267. doi: 10.1002/wsbm.1335 For further resources related to this article, please visit the WIREs website. PMID:27103502

  19. Donor corneoscleral rim contamination by gentamicin-resistant organisms

    OpenAIRE

    Gopinathan Usha; Agrawal Vinay; Sharma Savitri; Rao Gullapalli

    1994-01-01

    Gentamicin is the most widely used antibiotic in the decontamination of donor cornea for penetrating keratoplasty. However, the incidence of resistance to gentamicin is on the rise. Bacterial isolates from 178 donor corneal rims were studied for gentamicin sensitivity. The overall rate of gentamicin resistance was 63.4%. At 86.2% the Pseudomonas. species had the highest rate of resistance, followed by Streptococci at 84.6%. The high rate of gentamicin resistance encounter...

  20. Sediment contaminants and biological effects in southern California: Use of a multivariate statistical approach to assess biological impact

    International Nuclear Information System (INIS)

    This study attempts to predict biological toxicity and benthic community impact in sediments collected from two southern California sites. Contaminant concentrations and grain size were evaluated as predictors using a two-step multivariate approach. The first step used principal component analysis (PCA) to describe contamination type and magnitude present at each site. Four dominant PC vectors, explaining 88% of the total variance, each corresponded to a unique physical and/or chemical signature. The four PC vectors, in decreasing order of importance, were: (1) high molecular weight polynuclear aromatic hydrocarbons (PAH), most likely from combusted or weathered petroleum; (2) low molecular weight alkylated PAH, primarily from weathered fuel product; (3) low molecular weight nonalkylated PAH, indicating a fresh petroleum-related origin; and (4) fine-grained sediments and metals. The second step used stepwise regression analysis to predict individual biological effects (dependent) variables using the four PC vectors as independent variables. Results showed that sediment grain size alone was the best predictor of amphipod mortality. Contaminant vectors showed discrete depositional areas independent of grain size. Neither contaminant concentrations nor PCA vectors were good predictors of biological effects, most likely due to the low concentrations in sediments

  1. Long-term autonomous resistivity monitoring of oil-contaminated sediments from the Deepwater Horizon spill

    Science.gov (United States)

    Heenan, J. W.; Slater, L. D.; Ntarlagiannis, D.; Atekwana, E. A.; Ross, C.; Nolan, J. T.; Atekwana, E. A.; Werkema, D. D.; Fathepure, B.

    2012-12-01

    We conducted a long-term electrical resistivity survey at Grand Terre 1 (GT1) Island off the coast of Louisiana, a site contaminated with crude oil associated with the April 2010 BP Deepwater Horizon oil spill. Electrical resistivity has proven sensitivity to biogeochemical processes associated with the biodegradation of hydrocarbons in the subsurface. However, most of these studies have been in freshwater environments and for aged spills. The BP Deepwater Horizon oil spill therefore provided an unprecedented opportunity to capture the early time biogeophysical signals resulting from the physical, chemical and microbial transformation of crude oil in highly saline environments. We used a multi-channel resistivity system powered by solar panels to obtain continuous measurements twice a day on both a surface array and two shallow borehole arrays. This system operated for approximately 1.5 years and provided a unique long-term dataset of resistivity changes. Temperature and specific conductance values for the shallow groundwater were continuously logged. . Resistivity changes likely associated with biodegradation processes were then isolated from these environmental factors by modeling. In addition, groundwater was sampled for geochemical analyses from wells installed at the study site and soil samples were collected for microbial analyses at several locations, including both contaminated and uncontaminated locations. Microcosms were set up to determine the biodegradation potential of indigenous populations, and microbial diversity analysis was used to determine microbial community composition. Surface and borehole resistivity arrays revealed an initial resistive anomaly co-located with the known contamination. Pixel time series analysis of an inverted time sequence of resistivity sections highlighted differing responses between contaminated and uncontaminated locations. The contaminated locations exhibit persistent resistivity decreases over time, whereas areas

  2. Bridging Physics and Biology Using Resistance and Axons

    Science.gov (United States)

    Dyer, Joshua M.

    2014-11-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics.1 A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite this impression held by students, there have been calls for better physics education for future physicians and life scientists.2,3 Research is being performed to improve physics classes and labs by linking topics in biology and physics.4,5 Described here is a laboratory experiment covering the topics of resistance of materials and circuits/Kirchhoff's laws in a biology context with their direct application to neurons, axons, and electrical impulse transmission within animals. This experiment will also demonstrate the mechanism believed to cause multiple sclerosis. The apparatus was designed with low-cost and readily available materials in mind.

  3. Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil

    Science.gov (United States)

    Liu, Haorui; Yang, Heli; Yi, Fengyan

    2016-08-01

    Heavy metals such as arsenic and chromium often contaminate soils near industrialized areas. Soil samples, made with different water content and chromate pollutant concentrations, are often needed to test soil quality. Because complex resistivity and complex dielectric characteristics of these samples need to be measured, the relationship between these measurement results and chromium concentration as well as water content was studied. Based on soil sample observations, the amplitude of the sample complex resistivity decreased with an increase of contamination concentration and water content. The phase of complex resistivity takes on a tendency of initially decrease, and then increase with the increasing of contamination concentration and water content. For a soil sample with the same resistivity, the higher the amplitude of complex resistivity, the lower the water content and the higher the contamination concentration. The real and imaginary parts of the complex dielectric constant increase with an increase in contamination concentration and water content. Note that resistivity and complex resistivity methods are necessary to adequately evaluate pollution at various sites.

  4. Blade-mixing reactors in the biological treatment of contaminated soils

    International Nuclear Information System (INIS)

    The application of mixing reactors was expected to have a positive effect on the biological turnover of contaminants, especially for cohesive soils. During investigations using blade-mixing reactors, it appeared to be of utmost importance to inhibit or reduce pellet formation during the dynamic treatment of soils. In this connection, a comparison of the degradation kinetics in static and dynamic reactors is of great interest. Contaminants of concern were diesel fuel and lubricating oil

  5. Characterization of PAH-contaminated soils focusing on availability, chemical composition and biological effects

    OpenAIRE

    Bergknut, Magnus

    2006-01-01

    The risks associated with a soil contaminated by polycyclic aromatic hydrocarbons (PAHs) are generally assessed by measuring individual PAHs in the soil and correlating the obtained amounts to known adverse biological effects of the PAHs. The validity of such a risk estimation is dependent on the presence of additional compounds, the availability of the compounds (including the PAHs), and the methods used to correlate the measured chemical data and biological effects. In the work underlying t...

  6. An analysis on the detection of biological contaminants aboard aircraft.

    Directory of Open Access Journals (Sweden)

    Grace M Hwang

    Full Text Available The spread of infectious disease via commercial airliner travel is a significant and realistic threat. To shed some light on the feasibility of detecting airborne pathogens, a sensor integration study has been conducted and computational investigations of contaminant transport in an aircraft cabin have been performed. Our study took into consideration sensor sensitivity as well as the time-to-answer, size, weight and the power of best available commercial off-the-shelf (COTS devices. We conducted computational fluid dynamics simulations to investigate three types of scenarios: (1 nominal breathing (up to 20 breaths per minute and coughing (20 times per hour; (2 nominal breathing and sneezing (4 times per hour; and (3 nominal breathing only. Each scenario was implemented with one or seven infectious passengers expelling air and sneezes or coughs at the stated frequencies. Scenario 2 was implemented with two additional cases in which one infectious passenger expelled 20 and 50 sneezes per hour, respectively. All computations were based on 90 minutes of sampling using specifications from a COTS aerosol collector and biosensor. Only biosensors that could provide an answer in under 20 minutes without any manual preparation steps were included. The principal finding was that the steady-state bacteria concentrations in aircraft would be high enough to be detected in the case where seven infectious passengers are exhaling under scenarios 1 and 2 and where one infectious passenger is actively exhaling in scenario 2. Breathing alone failed to generate sufficient bacterial particles for detection, and none of the scenarios generated sufficient viral particles for detection to be feasible. These results suggest that more sensitive sensors than the COTS devices currently available and/or sampling of individual passengers would be needed for the detection of bacteria and viruses in aircraft.

  7. Donor corneoscleral rim contamination by gentamicin-resistant organisms

    Directory of Open Access Journals (Sweden)

    Gopinathan Usha

    1994-01-01

    Full Text Available Gentamicin is the most widely used antibiotic in the decontamination of donor cornea for penetrating keratoplasty. However, the incidence of resistance to gentamicin is on the rise. Bacterial isolates from 178 donor corneal rims were studied for gentamicin sensitivity. The overall rate of gentamicin resistance was 63.4%. At 86.2% the Pseudomonas. species had the highest rate of resistance, followed by Streptococci at 84.6%. The high rate of gentamicin resistance encountered by us and others suggest that either addition of a second antibiotic to corneal storage media or replacement of gentamicin by an antibiotic with a broader spectrum of activity may help reduce the risk of endophthalmitis following penetrating keratoplasty

  8. Correlation between index properties and electrical resistivity of hydrocarbon contaminated periodic marine clays

    Science.gov (United States)

    Tiwari, P.; Shah, M. V.

    2015-09-01

    Hydrocarbon contamination is a measure issue of concern as it adversely affects the soil inherent properties viz. index properties and strength properties.The main objective of this research work is to determine Electrical resistivity to study and correlate with soil index properties and engineering propertiescontaminated with hydrocarbon at the rate of 3%, 6% and 9% for the period of 15, 30 45 and 60 days and compare it with the results obtained for non-contaminated marine clay. Electrical resistivity of virgin marine clay (bentonite which is expansive in nature) and hydrocarbon contaminated clay for each percent of contamination is obtained in the laboratory for each period and its co-relation with index properties and engineering properties is proposed. CEC, EDAX tests were performed to evaluate the effect of ions of montmorillonite clays and their penetrability into hydrocarbon- clay matrix. The correlations at the end of each period for each percentage of contamination thus enabled to integrate index properties of non-contaminated and hydrocarbon contaminated marine clays with Electrical resistivity.

  9. Joining the club: Conforming to and resisting biology in practice

    Science.gov (United States)

    Buxton, Cory Alexander

    2000-10-01

    This study explores how science and scientists were produced and reproduced within the setting of a university biology department. It builds upon recent work in anthropology of education and feminist science studies. My purpose was to look at both the contextual and constitutive values of science as they were negotiated and played out in the training of scientists in a setting where: (1) women were well represented in leadership positions; and (2) "mainstream" science was being both taught and practiced. Findings included the organization of a status hierarchy within the department, the meanings of science and scientists that students constructed within the social spaces they occupied, examples of individual resistance to certain norms of biology practice, and examples of institutional opposition to that resistance. There was some evidence that the unusually high representation of women in positions of leadership in the biology department did result in changes in both the contextual and constitutive values of how science was conceptualized, practiced and taught in this setting. Contextually, social spaces controlled by women were likely to emphasize: (1) teamwork bringing together participants with varied backgrounds and perspectives; (2) flexible and collaborative use of physical space; and (3) willingness to do work for which they went unacknowledged or to share rewards equally even when the work distribution was not equitable. Constitutively, these social spaces were prone to: (1) interdisciplinary synthesis and comprehensive approaches; (2) the study of topics that reconsidered beliefs about gender roles in plant and animal reproduction; (3) work that would be slower and take longer to produce (and publish) but might make a large contribution (be a high quality product) eventually; and (4) an awareness by women that their practices were different in some ways than the practices of their male colleagues.

  10. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics

    Directory of Open Access Journals (Sweden)

    Björn Berglund

    2015-09-01

    Full Text Available Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs. Horizontal gene transfer (HGT events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment.

  11. Bacterial Contamination and Antibiotic Resistance of Staphylococcus Aureus Isolated from Automated Teller Machine

    OpenAIRE

    Moshtaghi, H. (PhD; Parsa, M. (MSc

    2015-01-01

    Background and Objective: Automated Teller Machine (ATMs) is likely to be contaminated with various microorganisms specially pathogen germs. This may be due to their exposure to dust and their vast dermal contact with multiple users. This study investigated the bacterial contamination on the keyboard of ATMs and drug resistance of the bacteria isolated from them. Material and Methods: the keyboards of 50 ATMs in Shahrekord city, Iran, were examined from October 2012 to February 2013. The ster...

  12. Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis

    International Nuclear Information System (INIS)

    Biological indicators can be used to assess polluted sites but their success depends on the availability of suitable assays. The aim of this study was to investigate the performance of two earthworm biomarkers, lysosomal membrane stability measured using the neutral red retention assay (NRR-T) and the total immune activity (TIA) assay, that have previously been established as responsive to chemical exposure. Responses of the two assays were measured following in situ exposure to complexly contaminated field soils at three industrial sites as well as urban and rural controls. The industrial sites were contaminated with a range of metal (cadmium, copper, lead, zinc, nickel and cobalt) and organic (including polycyclic aromatic hydrocarbons) contaminants, but at concentrations below the 'New Dutch List' Intervention concentrations. Exposed earthworms accumulated both metals and organic compounds at the contaminated sites, indicating that there was significant exposure. No effect on earthworm survival was found at any of the sites. Biomarker measurements, however, indicated significant effects, with lower NRR-T and TIA found in the contaminated soils when compared to the two controls. The results demonstrate that a comparison of soil pollutant concentrations with guideline values would not have unequivocally identified chemical exposure and toxic effect for soil organisms living in these soils. However, the earthworm biomarkers successfully identified significant exposure and biological effects caused by the mixture of chemicals present

  13. Bacterial metal resistance genes and metal bioavailability in contaminated sediments

    International Nuclear Information System (INIS)

    In bacteria a metal may be defined as bioavailable if it crosses the cytoplasmic membrane to reach the cytoplasm. Once inside the cell, specific metal resistance systems may be triggered. In this research, specific metal resistance genes were used to estimate metal bioavailability in sediment microbial communities. Gene levels were measured by quantitative PCR and correlated to metals in sediments using five different protocols to estimate dissolved, particle-adsorbed and occluded metals. The best correlations were obtained with czcA (a Cd/Zn/Co efflux pump) and Cd/Zn adsorbed or occluded in particles. Only adsorbed Co was correlated to czcA levels. We concluded that the measurement of czcA gene levels by quantitative PCR is a promising tool which may complement the classical approaches used to estimate Cd/Zn/Co bioavailability in sediment compartments. - Highlights: • Metal resistance genes were used to estimate metal bioavailability in sediments. • Gene levels were correlated to metals using 5 different metal extraction protocols. • CzcA gene levels determined by quantitative PCR is a promising tool for Cd/Zn/Co. - Capsule Bacterial czcA is a potential biomarker of Cd, Zn and Co bioavailability in aquatic sediments as shown by quantitative PCR and sequential metal extraction

  14. Antimicrobial resistance and biological governance: explanations for policy failure.

    Science.gov (United States)

    Wallinga, D; Rayner, G; Lang, T

    2015-10-01

    The paper reviews the state of policy on antimicrobial use and the growth of antimicrobial resistance (AMR). AMR was anticipated at the time of the first use of antibiotics by their originators. For decades, reports and scientific papers have expressed concern about AMR at global and national policy levels, yet the problem, first exposed a half-century ago, worsened. The paper considers the explanations for this policy failure and the state of arguments about ways forward. These include: a deficit of economic incentivisation; complex interventions in behavioural dynamics; joint and separate shifts in medical and animal health regimes; consumerism; belief in technology; and a narrative that in a 'war on bugs' nature can be beaten by human ingenuity. The paper suggests that these narratives underplay the biological realities of the human-animal-biosphere being in constant flux, an understanding which requires an ecological public health analysis of AMR policy development and failure. The paper suggests that effective policy change requires simultaneous actions across policy levels. No single solution is possible, since AMR is the result of long-term human intervention which has accelerated certain trends in the evolution of a microbial ecosystem shared by humans, animals and other biological organisms inhabiting that ecosystem. Viewing the AMR crisis today through an ecological public health lens has the advantage of reuniting the social-ecological and bio-ecological perspectives which have been separated within public health. PMID:26454427

  15. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    Energy Technology Data Exchange (ETDEWEB)

    Tuckfield, C; J V Mcarthur (NOEMAIL), J

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10 metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect

  16. Estimate of beta and gamma contamination in vegetable and animal biologic samples using GM detectors

    International Nuclear Information System (INIS)

    The paper presents the use of a large area Geiger-Mueller Detector (GMD) with aluminium window of 50 mm thickness (3,4 mg/cm2) in a measuring chain in order to estimate the beta and gamma contamination of biologic samples. The technical data for GMD are: - window area for gamma radiation: 300 cm2; - grid transmission: 80%; - operating voltage: 1100 - 1300 V; - minimum detectable beta energy: 125 keV; - dead time: 250 ms; - background (shielded with 100 mm Pb + 1 mm Cu): 6 pulses/s; - service life: 5 x 108 counts. Using this GMD together with a set of large area beta standard sources and a set of point gamma sources we could estimate beta and gamma contamination in the energy range 125 keV - 2.5 MeV for biologic samples. (authors)

  17. Field demonstration of ex situ biological treatability of contaminated groundwater at the Strachan gas plant

    International Nuclear Information System (INIS)

    A multi-phase study was conducted to deal with the issues of groundwater and soil contamination by sour gas processing plants in Alberta. Phase One consisted of a review of all soil and groundwater monitoring data submitted to Alberta Environment by sour gas plants in accordance with the Canadian Clean Water Act. The current phase involves the development, evaluation and demonstration of selected remediation technologies to address subsurface contamination of sediments and groundwater at sour gas treatment plants with special attention to the presence of natural gas condensate in the subsurface. Results are presented from a pilot-scale biological treatability test that was performed at the Gulf Strachan Natural Gas Processing Plant in Rocky Mountain House, Alberta, where contaminated groundwater from the plant was being pumped to the surface through many recovery wells to control contaminant migration. The recovered groundwater was directed to a pump-and-treat system that consisted of oil-water separation, iron removal, hardness removal, and air stripping, before being reinjected. The pilot-scale biological treatability testing was conducted to evaluate process stability in treating groundwater without pretreatment for iron and hardness reduction and to evaluate the removal of organic contaminants. Results of a groundwater characterization analysis are discussed. Chemical characteristics of the groundwater at the Strachan Gas Plant showed that an ex situ remediation technology would address the dissolved volatile and semi-volatile organic contamination from natural gas condensates, as well as the nitrogenous compounds resulting from the use of amine-based process chemicals. 4 refs., 5 tabs., 4 figs

  18. Prevalence of antibacterial resistant bacterial contaminants from mobile phones of hospital inpatients

    Directory of Open Access Journals (Sweden)

    B. Vinod Kumar

    2014-10-01

    Full Text Available Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9% out of 106 mobile phones were found to be contaminated with bacteria. Fifty-two (49.0% coagulase-negative Staphylococcus, 12 (11.3% Staphylococcus aureus, 7 (6.6% Enterobacter cloacae, 3 (2.83% Pseudomonas stutzeri, 3 (2.83% Sphingomonas paucimobilis, 2 (1.8% Enterococcus faecalis and 10 (9.4% aerobic spore bearers were isolated. All the isolated bacteria were found to be resistant to various antibiotics. Hence, regular disinfection of mobile phones of hospital inpatients is advised.

  19. Biological reference materials in routine analysis: Results from the German Food Contamination Monitoring Programme

    Energy Technology Data Exchange (ETDEWEB)

    Schauenburg, H.; Weigert, P. (Bundesgesundheitsamt, Berlin (Germany, F.R.))

    1990-10-01

    Within the research project 'German Food Contamination Monitoring Programme', selected foodstuffs have to be examined by the official food control laboratories. Contents of pesticides and heavy metals have to be determined by means of routine analysis. Biological reference materials are used in collaborative studies and in parallel investigations for analytical quality assurance. Using lead as an example, results obtained for three reference materials are discussed. (orig.).

  20. Remediation of Pb contaminated soils by phytoextraction and amendment induced immobilization : biological aspects

    OpenAIRE

    GEEBELEN, Wouter

    2002-01-01

    This study examines the biological aspects related to alternative remediation strategies for Pb contaminated soils: EDTA induced Pb phytoextraction and amendment induced immobilization of soil Pb by means of inorganic soil amendments. The physiological effects of Pb-EDTA and EDTA were studied on bean plants (Phaseolus vulgaris L. Limburgse vroege), grown under strictly controlled conditions on a Hoagland nutrient solution. Addition of Pb-EDTA to the growth medium increased the capacity of enz...

  1. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    Directory of Open Access Journals (Sweden)

    Celio I. Chagas

    2014-10-01

    Full Text Available Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in depressions along the tributary network from these lands devoted to cattle production. The aims of this work were: (i to gather a reliable set of data from different monitoring periods and scales, (ii to search for simple and sensible variables to be used as indicators for surface water quality advising purposes and (iii to corroborate previous biological contamination conceptual models for this region. Concentration of pollution indicators in these ponds was related to mean stocking rates from nearby fields and proved to depend significantly on the accumulated water and sediments. Viable mesophiles and total coliforms were found mainly attached to large sediments rather than in the runoff water phase. Seasonal sampling showed that the time period between the last significant runoff event and each sampling date regarding enterococci proved to be a sensible variable for predicting contamination. Enterococci concentration tended to increase gradually until the next extraordinary runoff event washed away contaminants. The mentioned relationship may be useful for designing early warning surface water contamination programs regarding enterococci dynamics and other related microbial pollutants as well.

  2. Systems biology of cisplatin resistance: past, present and future.

    Science.gov (United States)

    Galluzzi, L; Vitale, I; Michels, J; Brenner, C; Szabadkai, G; Harel-Bellan, A; Castedo, M; Kroemer, G

    2014-01-01

    The platinum derivative cis-diamminedichloroplatinum(II), best known as cisplatin, is currently employed for the clinical management of patients affected by testicular, ovarian, head and neck, colorectal, bladder and lung cancers. For a long time, the antineoplastic effects of cisplatin have been fully ascribed to its ability to generate unrepairable DNA lesions, hence inducing either a permanent proliferative arrest known as cellular senescence or the mitochondrial pathway of apoptosis. Accumulating evidence now suggests that the cytostatic and cytotoxic activity of cisplatin involves both a nuclear and a cytoplasmic component. Despite the unresolved issues regarding its mechanism of action, the administration of cisplatin is generally associated with high rates of clinical responses. However, in the vast majority of cases, malignant cells exposed to cisplatin activate a multipronged adaptive response that renders them less susceptible to the antiproliferative and cytotoxic effects of the drug, and eventually resume proliferation. Thus, a large fraction of cisplatin-treated patients is destined to experience therapeutic failure and tumor recurrence. Throughout the last four decades great efforts have been devoted to the characterization of the molecular mechanisms whereby neoplastic cells progressively lose their sensitivity to cisplatin. The advent of high-content and high-throughput screening technologies has accelerated the discovery of cell-intrinsic and cell-extrinsic pathways that may be targeted to prevent or reverse cisplatin resistance in cancer patients. Still, the multifactorial and redundant nature of this phenomenon poses a significant barrier against the identification of effective chemosensitization strategies. Here, we discuss recent systems biology studies aimed at deconvoluting the complex circuitries that underpin cisplatin resistance, and how their findings might drive the development of rational approaches to tackle this clinically relevant

  3. Investigations involving oxidation-reduction (REDOX) pretreatment in conjunction with biological remediation of contaminated soils

    International Nuclear Information System (INIS)

    Oxidation-reduction (REDOX) reactions are among the most important reactions involved in the environmental engineering field. Oxidation is a reaction in which the oxidation state of the treated compound is increased, i.e., the material loses electrons. Reduction involves the addition of a chemical (reducing) agent which lowers the oxidation state of a substance, i.e., the material gains electrons. Both processes of oxidation and reduction occur together. All REDOX reactions are thermodynamically based. There are a number of oxidizing agents which have been reported in the technical literature for treatment of refractory organic compounds. Common oxidizing agents include: hydrogen peroxide, ozone, ultraviolet (UV) irradiation, and combinations thereof, such as UV/ozone and UV/peroxide. A gradient of REDOX reactions is possible, depending on such factors as the oxidation-reduction reaction conditions, the availability of electron donors and acceptors, and the nature of the organic compounds involved. A review of the technical literature revealed that the majority of the oxidation-reduction applications have been in the areas of wastewater treatment and groundwater remediation, with very little attention devoted to the potential of using REDOX technologies for remediation of hydrocarbon contaminated soils. In this particular study, feasibility studies were performed on gasoline- contaminated soil. These studies focused on three major phases: 1) containment of the contamination by addition of tailoring agents to the soil, 2) biological remediation either performed in situ or on-site (using a slurry reactor system), and 3) pretreatment of the contaminated soils using REDOX systems, prior to biological remediation. This particular paper focuses on the third phase of the project, aimed at ''softening'' the refractory organics resulting in the formation of organic compounds which are more amenable to biological degradation. This paper focuses its attention on the use of

  4. Analysis of surface radioactive contamination according to radioisotopic techniques used in biological research centres

    International Nuclear Information System (INIS)

    The radioisotopic techniques carried out in Biological Research imply the manipulation of unsealed radioactive sources in solution, some of them with volatile molecules or that may produce gaseous byproducts or compounds. These sources may be beta or gamma emitters radionuclides, although, the most commonly used are: 3H, 14C, 35S, 33P, 32P, 125I and 131I. The activity per assay used for in vivo techniques can be in the range of MBq (mCi), and for in vitro of KBq (Ci). The radioactive unsealed sources handling may potentially imply a radioactive contamination hazard, during routine work or in accidental or un-predicted situations. During everyday work the risk is low taking into account the small amount of activities used and the protection measures established. However, different factors can increase the risk level. The radiotoxicity of the radionuclide, the physical and chemical properties of the labelled compounds, the release of aerosols generated during the achieved experiment, the complexity of the technique and the radioactive waste produced have to be seriously considered Therefore, surveying for radioisotope contamination must be a common practice to ensure working conditions are correct and there is no workers contamination additional risk. The aim of this work has been to analyze the radioactive contaminations that can occur in Biological Research Centres. First of all, a scope of equipment and instrumentation that may be radioactively contaminated has been done and the magnitude of the spread radioactivity has been evaluated. Then, with the purpose of identifying major risk working scenario, a study of the main surfaces has been full filled taking into account the radionuclides used for in vitro or in vivo labelling. In order to be more accurate, the evaluation attended also to the radioisotopic techniques carried out. The results of this paper will allow having a clear idea about the reasons surface radioactive contaminations occur and the magnitude of

  5. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam.

    Science.gov (United States)

    Hoa, Phan Thi Phuong; Managaki, Satoshi; Nakada, Norihide; Takada, Hideshige; Shimizu, Akiko; Anh, Duong Hong; Viet, Pham Hung; Suzuki, Satoru

    2011-07-01

    The ubiquitous application and release of antibiotics to the environment can result in bacterial antibiotic resistance, which in turn can be a serious risk to humans and other animals. Southeast Asian countries commonly apply an integrated recycling farm system called VAC (Vegetable, Aquaculture and Caged animal). In the VAC environment, antibiotics are released from animal and human origins, which would cause antibiotic-resistant bacteria (ARB). This study evaluated occurrence of ARB in the VAC environment in northern Vietnam, with quantitative analysis of antibiotic pollution. We found that sulfonamides were commonly detected at all sites. In dry season, while sulfamethazine was a major contaminant in pig farm pond (475-6662 ng/l) and less common in city canal and aquaculture sites, sulfamethoxazole was a major one in city canal (612-4330 ng/l). Erythromycin (154-2246 ng/l) and clarithromycin (2.8-778 ng/ml) were the common macrolides in city canal, but very low concentrations in pig farm pond and aquaculture sites. High frequencies of sulfamethoxazole-resistant bacteria (2.14-94.44%) were found whereas the occurrence rates of erythromycin-resistant bacteria were lower (Aeromonas were the major genera. Twenty three of 25 genera contained sul genes. This study showed specific contamination patterns in city and VAC environments and concluded that ARB occurred not only within contaminated sites but also those less contaminated. Various species can obtain resistance in VAC environment, which would be reservoir of drug resistance genes. Occurrence of ARB is suggested to relate with rainfall condition and horizontal gene transfer in diverse microbial community. PMID:21669325

  6. Verification of radioactive contamination surveys for practical use in biological research centres

    International Nuclear Information System (INIS)

    Unsealed sources are commonly used in science research laboratories. Their manipulation may imply a radioactive contamination hazard. Therefore, adequate and sensitive survey meters must be available, and must have an effective and accurate response to intensity and type of radiation emitted by the used radionuclides to identify and quantify the possible contamination and then be able to avoid any associated or unwanted consequences that may arise. Periodic surveys are performed to show control, any time, any place radioactive contamination is suspected, and to ensure radioisotopes are being used safely. The immediate work areas must be often checked with portable survey monitors, including the entire lab and particularly bench tops, personnel protective equipment or solely designated equipment for isotope use (micro-fuges, water baths, incubators). These are carried out with portable survey instruments like Geiger-Muller tubes, proportional counters and scintillation detectors that provide direct or indirect measurements capabilities. The Radiation Safety Office (R.S.O.) as well as the radioactive compounds working laboratories at the Instituto de Inv. Biomedicas 'A. Sols' (Madrid-Spain) are provided with an adequate radiation measurement instrument. But, before a portable survey instrument is used, several quality checks should be made (batteries, calibration sticker), and the instrument response should be tested with a check source. This paper aims at determining, with a R.S.O. procedure, these surveys working parameters -detection efficiency, calibration factors and minimum detectable activities-, using reference checking sources (14C, 36Cl, and 90Sr/90Y) with known radioactivity covering the energy range of beta emitting isotopes used in biological research. No gamma portable monitors have been tested for the R.S.O. has no gamma checking sources. Therefore, 58 beta monitors were tested, obtaining t he efficiency values, the calibration factors (Bq cm-2 s) and

  7. Contamination

    OpenAIRE

    Cundill, A.; J. Bacon; Dale, P; Fordyce, F.M.; Fowler, D; Hedmark, A.; Hern, A.; Skiba, U.

    2011-01-01

    Soil contamination occurs when substances are added to soil, resulting in increases in concentrations above background or reference levels. Pollution may follow from contamination when contaminants are present in amounts that are detrimental to soil quality and become harmful to the environment or human health. Contamination can occur via a range of pathways including direct application to land and indirect application from atmospheric deposition. Contamination was identified b...

  8. Desiccation resistance and contamination as mechanisms of gaia.

    Science.gov (United States)

    Brown, S; Margulis, L; Ibarra, S; Siqueiros, D

    1985-01-01

    The gaia hypothesis, formulated by J.E. Lovelock, asserts the composition of the reactive gases, the oxidation-reduction state and the temperature of the lower atmosphere of the planet Earth are actively regulated by the biota. Lovelock and Watson, using highly simplified mathematical models, have shown that the modulation of atmospheric temperature can be achieved by exponentially growing populations of differently colored organisms ("dark and light daisies"). It is more likely that the modulation of atmospheric gas composition is based on the colligative properties of exponentially growing mixed populations of microorganisms rather than on "daisies". Exponential growth of one population of microorganisms leads to gaseous and other metabolic products released to the environment, which favor the exponential growth of different populations, each with their own unique emissions. Extremely high densities of mixed populations of microorganisms ensue. These populations form structured microbial communities composed of members in varying states of activity. Growth potential of metabolically diverse populations most likely provides the basis for the responsiveness of the biota to changing environments. We have attempted to measure an aspect of the growth potential and diversity of one microbial community, that from a flat laminated microbial mat dominated by the cyanobacterium, Microcoleus. Microbial mat samples collected at yearly intervals between 1977 and 1982 were allowed to dry. Subsamples were revived under laboratory conditions by rewetting, and the resulting complex microbial populations were analyzed. Greater than 10(4) viable organisms per ml were estimated to be present in the desiccated samples. Only a portion of the diverse community could be characterized. There were at least 115 different types of desiccation resistant microorganisms present in these samples, primarily bacteria. However, more than a dozen types of rather uncommon fungi and protoctists were

  9. Bacterial Contamination and Antibiotic Resistance of Staphylococcus Aureus Isolated from Automated Teller Machine

    Directory of Open Access Journals (Sweden)

    Moshtaghi, H. (PhD

    2015-05-01

    Full Text Available Background and Objective: Automated Teller Machine (ATMs is likely to be contaminated with various microorganisms specially pathogen germs. This may be due to their exposure to dust and their vast dermal contact with multiple users. This study investigated the bacterial contamination on the keyboard of ATMs and drug resistance of the bacteria isolated from them. Material and Methods: the keyboards of 50 ATMs in Shahrekord city, Iran, were examined from October 2012 to February 2013. The sterile swab sticks moistened with Triptose soy broth were used for sampling. The bacteriological tests used were culture, biochemical test and agar disk diffusion method for antibiogram. Results: All the samples were found to be contaminated with Coagulase negative staphylococci (57.54%, Bacillus species (21.92%, Staphylococcus aureus (19.18% and coliform bacteria (1.36%. The resistance of Staphylococcus aureus was 92.8% to penicillin, 85.7% to amoxicilin، 71.4% to ampicillin, 57.1% to nytrofuran, 50% to tetracycline, 42.8% to erythromycin, 42.8% to gentamycin, 14.2 % to ciprofloxacin, 7.1% to trimethoprim and sulfamtuksazul. All species were susceptible to, ofloxacine, chloramphenicol, clindamycin, tobramycin, vancomycin and cefotaxime. Conclusion: given the presence of pathogens on ATMs and their role in transferring the contamination, we recommend considering personal hygiene and periodically disinfecting the keyboards to reduce contamination

  10. Biological and chemical tests of contaminated soils to determine bioavailability and environmentally acceptable endpoints (EAE)

    International Nuclear Information System (INIS)

    The understanding of the concept of bioavailability of soil contaminants to receptors and its use in supporting the development of EAE is growing but still incomplete. Nonetheless, there is increased awareness of the importance of such data to determine acceptable cleanup levels and achieve timely site closures. This presentation discusses a framework for biological and chemical testing of contaminated soils developed as part of a Gas Research Institute (GRI) project entitled ''Environmentally Acceptable Endpoints in Soil Using a Risk Based Approach to Contaminated Site Management Based on Bioavailability of Chemicals in Soil.'' The presentation reviews the GRI program, and summarizes the findings of the biological and chemical testing section published in the GRI report. The three primary components of the presentation are: (1) defining the concept of bioavailability within the existing risk assessment paradigm, (2) assessing the usefulness of the existing tests to measure bioavailability and test frameworks used to interpret these measurements, and (3) suggesting how a small selection of relevant tests could be incorporated into a flexible testing scheme for soils to address this issue

  11. Recommendations for sampling for prevention of hazards in civil defense. On analytics of chemical, biological and radioactive contaminations. Brief instruction for the CBRN (chemical, biological, radioactive, nuclear) sampling

    International Nuclear Information System (INIS)

    The recommendation for sampling for prevention of hazards in civil defense is describing the analytics of chemical, biological and radioactive contaminations and includes detail information on the sampling, protocol preparation and documentation procedures. The volume includes a separate brief instruction for the CBRN (chemical, biological, radioactive, nuclear) sampling.

  12. Presence and biological effects of emerging contaminants in Llobregat River basin: A review

    International Nuclear Information System (INIS)

    Llobregat River (North-East Spain) is the most important drinking water source for Barcelona and its surrounding area. As one of the only water sources in the area the river water have been overexploited and effluents from more than 30 urban wastewater treatment plants, industries and agriculture runoffs have been discharged into the river. This article reviews the presence of emerging contaminants published during the last decades, emphasizing on the observed effects on ecosystems caused by the contamination. Pesticides, surfactants, estrogens, pharmaceuticals and personal care products and even abuse drugs are the main groups detected in different studies, reporting alterations in species composition, abundance or biomass and endocrine disruption measured by alterations in enzymatic activity or specific protein production. The information available provides an overview of the river status according to the Water Framework Directive. - The presence of different pollutants (mainly pesticides, pharmaceuticals, surfactants and estrogens) and their biological effects in the Llobregat River are reviewed.

  13. The validation of forensic DNA extraction systems to utilize soil contaminated biological evidence.

    Science.gov (United States)

    Kasu, Mohaimin; Shires, Karen

    2015-07-01

    The production of full DNA profiles from biological evidence found in soil has a high failure rate due largely to the inhibitory substance humic acid (HA). Abundant in various natural soils, HA co-extracts with DNA during extraction and inhibits DNA profiling by binding to the molecular components of the genotyping assay. To successfully utilize traces of soil contaminated evidence, such as that found at many murder and rape crime scenes in South Africa, a reliable HA removal extraction system would often be selected based on previous validation studies. However, for many standard forensic DNA extraction systems, peer-reviewed publications detailing the efficacy on soil evidence is either lacking or is incomplete. Consequently, these sample types are often not collected or fail to yield suitable DNA material due to the use of unsuitable methodology. The aim of this study was to validate the common forensic DNA collection and extraction systems used in South Africa, namely DNA IQ, FTA elute and Nucleosave for processing blood and saliva contaminated with HA. A forensic appropriate volume of biological evidence was spiked with HA (0, 0.5, 1.5 and 2.5 mg/ml) and processed through each extraction protocol for the evaluation of HA removal using QPCR and STR-genotyping. The DNA IQ magnetic bead system effectively removed HA from highly contaminated blood and saliva, and generated consistently acceptable STR profiles from both artificially spiked samples and crude soil samples. This system is highly recommended for use on soil-contaminated evidence over the cellulose card-based systems currently being preferentially used for DNA sample collection. PMID:25690910

  14. Bridging Physics and Biology Using Resistance and Axons

    Science.gov (United States)

    Dyer, Joshua M.

    2014-01-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics. A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology.…

  15. Methicillin-resistant staphylococcal contamination of cellular phones of personnel in a veterinary teaching hospital

    Directory of Open Access Journals (Sweden)

    Julian Timothy

    2012-07-01

    Full Text Available Abstract Background Hospital-associated infections are an increasing cause of morbidity and mortality in veterinary patients. With the emergence of multi-drug resistant bacteria, these infections can be particularly difficult to eradicate. Sources of hospital-associated infections can include the patients own flora, medical staff and inanimate hospital objects. Cellular phones are becoming an invaluable feature of communication within hospitals, and since they are frequently handled by healthcare personnel, there may be a potential for contamination with various pathogens. The objective of this study was to determine the prevalence of contamination of cellular phones (hospital issued and personal carried by personnel at the Ontario Veterinary College Health Sciences Centre with methicillin-resistant Staphylococcus pseudintermedius (MRSP and methicillin-resistant Staphylococcus aureus (MRSA. Results MRSP was isolated from 1.6% (2/123 and MRSA was isolated from 0.8% (1/123 of cellular phones. Only 21.9% (27/123 of participants in the study indicated that they routinely cleaned their cellular phone. Conclusions Cellular phones in a veterinary teaching hospital can harbour MRSP and MRSA, two opportunistic pathogens of significant concern. While the contamination rate was low, cellular phones could represent a potential source for infection of patients as well as infection of veterinary personnel and other people that might have contact with them. Regardless of the low incidence of contamination of cellular phones found in this study, a disinfection protocol for hospital-issued and personal cellular phones used in veterinary teaching hospitals should be in place to reduce the potential of cross-contamination.

  16. Contamination of lettuce with antibiotic resistant E. coli after slurry application

    OpenAIRE

    Jensen, Annette Nygaard; Storm, Christina; Baggesen, Dorte Lau; Forslund, A.; Dalsgaard, A.

    2011-01-01

    Due to disease outbreaks associated with contaminated vegetables it has been speculated to what extent this may be linked with application of animal manure as fertilizer, which is particularly practiced in organic vegetable production where conventional fertilizers are prohibited. A field survey was therefore performed to assess the survival and transfer of antibiotic-resistant E. coli from animal manure to lettuces, with E. coli serving as an indicator of bacterial enteric pathogens. Animal ...

  17. Biological markers in animals can provide information on exposure and bioavailability of environmental contaminants

    International Nuclear Information System (INIS)

    Epidemiologic studies of agents present in the environment seek to identify the extent to which they contribute to the causation of a specific toxic, clinical, or pathological endpoint. The multifactorial nature of disease etiology, long latency periods and the complexity of exposure, all contribute to the difficulty of establishing associations and casual relationships between a specific exposure and an adverse outcome. These barriers to studies of exposures and subsequent risk assessment cannot generally be changed. However, the appropriate use of biological markers in animal species living in a contaminated habitat can provide a measure of potential damage from that exposure and, in some instances, act as a surrogate for human environmental exposures. Quantitative predictivity of the effect of exposure to environmental pollutants is being approached by employing an appropriate array of biological end points. 34 refs., 1 fig., 6 tabs

  18. Biological markers in animals can provide information on exposure and bioavailability of environmental contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L.R.; Adams, S.M.; Jimenez, B.D.; Talmage, S.S.; McCarthy, J.F.

    1987-01-01

    Epidemiologic studies of agents present in the environment seek to identify the extent to which they contribute to the causation of a specific toxic, clinical, or pathological endpoint. The multifactorial nature of disease etiology, long latency periods and the complexity of exposure, all contribute to the difficulty of establishing associations and casual relationships between a specific exposure and an adverse outcome. These barriers to studies of exposures and subsequent risk assessment cannot generally be changed. However, the appropriate use of biological markers in animal species living in a contaminated habitat can provide a measure of potential damage from that exposure and, in some instances, act as a surrogate for human environmental exposures. Quantitative predictivity of the effect of exposure to environmental pollutants is being approached by employing an appropriate array of biological end points. 34 refs., 1 fig., 6 tabs.

  19. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    Science.gov (United States)

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks. PMID:27210560

  20. Equilibrium of radiocesium with stable cesium within the biological cycle of contaminated forest ecosystems

    International Nuclear Information System (INIS)

    Concentrations of 137Cs and stable Cs were determined in plant, mushroom, lichen and soil samples collected at two forest sites with different contamination levels in Belarus in 1998. The concentration of 137Cs in soil was the highest in near-surface organic layers (Of and Oh horizons) and decreased with depth in the mineral layers, whereas the concentrations of stable Cs were almost constant in the soil profile. The levels of 137Cs and stable Cs in biological samples varied depending both on the species and the plant part sampled. Even though different species and parts of the same species were included, the concentration ratios of 137Cs to stable Cs were fairly constant for samples collected at the same forest site, and were in the same order of magnitude as the 137Cs to stable Cs ratios for the organic soil layers. This finding suggests that 137Cs, mainly deposited on the forest ecosystems from the Chernobyl accident in 1986, was well mixed with stable Cs within the biological cycle in the forest ecosystems by 1998. The transfer factor for each biological sample of 137Cs was almost the same as that of stable Cs, if they were calculated based on the concentrations in the Of+Oh layer. This suggests that the stable-Cs-based transfer factor could be used as equilibrium transfer factor of 137Cs for different types of biological samples in the forest

  1. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    International Nuclear Information System (INIS)

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  2. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kefeng [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Ramakrishna, Wusirika, E-mail: wusirika@mtu.edu [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  3. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    Science.gov (United States)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  4. Biological treatment of soils contaminated with hydrophobic organics using slurry and solid phase techniques

    International Nuclear Information System (INIS)

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurry is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bioslurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay load contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the ate and extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies

  5. Bioremediation of oil contaminated soil from service stations. Evaluation of biological treatment

    International Nuclear Information System (INIS)

    Biological treatment of contaminated soil has received much attention during the last decade. Microbes are known to be able to degrade many oil hydrocarbons. However, research is needed to ensure that new technologies are implemented in a safe and reliable way under Finnish climatic conditions. The main points of interest are the rate of the degradation as well as the survival and efficiency of microbial inoculants possibly introduced during the treatment. During 1993 the biotreatability of oil-contaminated soil from service stations was investigated in cooperation with the Finnish Petroleum Federation. The goal of this field-scale study was to test how fast lubrication oil can be composted during one Finnish summer season and to find out whether microbial inoculants would enhance the degradation rate. The soil was excavated from three different service stations in the Helsinki metropolitan area and was transported to a controlled composting area. The soil was sieved and compost piles, also called biopiles, were constructed on the site. Bark chips were used as the bulking agent and nutrients and lime were added to enhance the biological activity. Two different commercial bacterial inoculants were added to two of the piles. The piles were turned by a tractor-drawn screw-type mixer at two to four weeks interval. Between the mixings, the piles were covered with tarpaulins to prevent evaporation and potential excessive wetting. Several microbiological parameters were determined during the test period as well as the temperature and mineral oil content

  6. Biological treatment of PAH-contaminated sediments in a Sequencing Batch Reactor

    International Nuclear Information System (INIS)

    The technical feasibility of a sequential batch process for the biological treatment of sediments contaminated by polycyclic aromatic hydrocarbons (PAHs) was evaluated through an experimental study. A bench-scale Sediment Slurry Sequencing Batch Reactor (SS-SBR) was fed with river sediments contaminated by a PAH mixture made by fluorene, anthracene, pyrene and crysene. The process performance was evaluated under different operating conditions, obtained by modifying the influent organic load, the feed composition and the hydraulic residence time. Measurements of the Oxygen Uptake Rates (OURs) provided useful insights on the biological kinetics occurring in the SS-SBR, suggesting the minimum applied cycle time-length of 7 days could be eventually halved, as also confirmed by the trend observed in the volatile solid and total organic carbon data. The removal efficiencies gradually improved during the SS-SBR operation, achieving at the end of the study rather constant removal rates above 80% for both 3-rings PAHs (fluorene and anthracene) and 4-ring PAHs (pyrene and crysene) for an inlet total PAH concentration of 70 mg/kg as dry weight (dw).

  7. Biological changes in Barley mutants resistant to powdery mildew disease

    International Nuclear Information System (INIS)

    physiological studies showed that all kinds of chlorophyll (a), (b) and (a + b) content in infected plant were decreased while, the carotenes pigment were increased. Infection generally reduced total sugars content of all resistant mutants. Infected resistant mutant showed more phenols content and peroxidase, polyphenoloxidase activities than healthy ones of the mutants. (Author)

  8. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa

    Directory of Open Access Journals (Sweden)

    Evelyn Madoroba

    2016-03-01

    Full Text Available Antimicrobial resistant Salmonella are among the leading causes of foodborne infections. Our aim was to determine Salmonella contamination during cattle slaughter in South African rural abattoirs (n = 23 and environmental samples. Furthermore, antimicrobial resistance patterns of the Salmonella isolates were determined. Samples of cattle faeces (n = 400, carcass sponges (n = 100, intestinal contents (n = 62, hides (n = 67, and water from the abattoirs (n = 75 were investigated for Salmonella species using microbiological techniques and species-specific polymerase chain reaction targeting the invA gene. In total 92 Salmonella species isolates were recovered. The Salmonella mean frequency of occurrence on hides, carcasses, and intestinal contents was 35.37% (n = 81. Eleven faecal samples (2.75% tested positive for Salmonella. The predominant serovar was Salmonella Enteritidis. Diverse serovars that were identified on carcasses were not necessarily found on the hides and intestinal contents. The inconsistent occurrence of the diverse Salmonella serovars on hides, carcasses, and intestinal contents implies that in addition to carriage on hides and in intestinal contents, other external factors also play an important role regarding carcass contamination. The 92 Salmonella were serotyped and tested for susceptibility towards the following antimicrobials: ampicillin, cefotaxime, enrofloxacin, kanamycin, and oxytetracycline using the disk diffusion method. Most Salmonella (n = 66; 71.7% isolates were resistant to at least one antimicrobial with highest resistance observed towards oxytetracycline (51.90%, which highlights the need for strict hygiene during slaughter and prudent antimicrobial use during animal production. In conclusion, cattle slaughtered in South African rural abattoirs harbour diverse Salmonella serovars that are resistant to antimicrobials, which could be a public health risk. The findings should assist policymakers with improving

  9. Ethical Considerations Regarding the Biological Contamination of Climatically Recurrent Special Regions.

    Science.gov (United States)

    Clifford, S. M.

    2014-04-01

    With the dawn of planetary exploration, the international science community expressed concerns regarding the potential contamination of habitable planetary environments by the introduction of terrestrial organisms on robotic spacecraft. The initial concern was that such contamination would confound our efforts to find unambiguous evidence of life elsewhere in the Solar System, although, more recently, this concern has been expanded to include ethical considerations regarding the need to protect alien biospheres from potentially harmful and irreversible contamination. The international agreements which address this concern include the UN Space Treaty of 1967 and the Planetary Protection Policy of the International Council for Science's Committee on Space Research (COSPAR). In the context of Mars exploration, COSPAR calls a potentially habitable environment a 'Special Region', which it defines as: "A region within which terrestrial organisms are likely to propagate, or a region which is interpreted to have a high potential for the existence of extant Martian life forms." Specifically included in this definition are regions where liquid water is present or likely to occur and the Martian polar caps. Over the years, scientists have debated the level of cleanliness required for robotic spacecraft to investigate such environments with the goal of defining international standards that are strict enough to ensure the integrity of life-detection efforts during the period of 'biological exploration', which has been somewhat arbitrarily defined as 50 years from the arrival date of any given mission. More recently, NASA and ESA have adopted a definition of Special Regions as any Martian environment where liquid water is likely to exist within the next 500 years. While this appears to be a more conservative interpretation of the original COSPAR definition, it specifically excludes some environments where there is a high probability of liquid water on timescales greater than 500

  10. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L)

    OpenAIRE

    Li Ling; Chen Xiaoping; Zhang Erhua; Wang Tong; Liang Xuanqiang

    2010-01-01

    Abstract Background Pre-harvest infection of peanuts by Aspergillus flavus and subsequent aflatoxin contamination is one of the food safety factors that most severely impair peanut productivity and human and animal health, especially in arid and semi-arid tropical areas. Some peanut cultivars with natural pre-harvest resistance to aflatoxin contamination have been identified through field screening. However, little is known about the resistance mechanism, which has slowed the incorporation of...

  11. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno

    2006-12-08

    Biological in situ measures can be efficient and cost effective options for the remediation of contaminated sites. However, the accepted application requires a detailed and reliable analysis of potential impacts. An important objective is to quantify the potential of contaminant degradation and metabolite formation. This thesis addresses a quantitative multimedia risk assessment. Methodologies and tools were developed for this objective and applied to evaluate in situ bioremediation of soils contaminated with polychlorinated biphenyls (PCBs). Soil bacteria in conjunction with plant roots were addressed (rhizoremediation) with a focus on the use of genetically modified microorganisms (GMOs). PCBs are known to be harmful compounds that are ubiquitously distributed in the environment. PCB contaminations in soil and groundwater were identified as important problems. 209 different congeners are sterically possible, but not all are of environmental significance. PCB congeners of concern were evaluated with respect to their potential toxicity, environmental occurrence and mobility. For this objective, congener specific data on the toxicity potential and the frequency in environmental matrices were collected. To quantify the mobility potential, multimedia modelling was performed applying deterministic and probabilistic procedures. 56 PCB congeners of concern were evaluated, and multimedia risk assessments of PCB-contaminated soils should concentrate on this group. Kinetics parameters were specified for degradation experiments with individual PCB congeners in solution and different bacterial strains. These laboratory assays were performed with wild-type Burkholderia sp. strain LB400 and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180. The F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere (mesocosm experiments). Therefore, and due to high depletion rates, rhizoremediation with F113L::1180 and willow

  12. Molecular Biology of Drug Resistance in Mycobacterium tuberculosis

    OpenAIRE

    Smith, Tasha; Wolff, Kerstin A; Nguyen, Liem

    2013-01-01

    Tuberculosis (TB) has become a curable disease thanks to the discovery of antibiotics. However, it has remained one of the most difficult infections to treat. Most current TB regimens consist of six to nine months of daily doses of four drugs that are highly toxic to patients. The purpose of these lengthy treatments is to completely eradicate Mycobacterium tuberculosis, notorious for its ability to resist most antibacterial agents, thereby preventing the formation of drug resistant mutants. O...

  13. Biological Limits on Agricultural Intensification: An Example from Resistance Management

    OpenAIRE

    Simpson, R. David; Laxminarayan, Ramanan

    2000-01-01

    When the application of pesticides places selective evolutionary pressure on pest populations, it can be useful to plant refuge areas—crop areas intended to encourage the breeding of pests that are susceptible to the pesticide. Renewed interest in refuge areas has arisen with recent advances in biotechnology and genetically modified (GM) crops. In this paper, we use a simple model of the evolution of pest resistance to characterize the socially optimal refuge strategy for managing pest resist...

  14. Cell biological mechanisms of multidrug resistance in tumors.

    OpenAIRE

    Simon, S. M.; Schindler, M

    1994-01-01

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleiotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional cha...

  15. Public health evolutionary biology of antimicrobial resistance: priorities for intervention

    OpenAIRE

    Baquero, Fernando; Lanza, Val F.; Cantón, Rafael; Coque, Teresa M.

    2014-01-01

    The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stoc...

  16. Leaf Rust of Wheat: Pathogen Biology, Variation and Host Resistance

    Directory of Open Access Journals (Sweden)

    James Kolmer

    2013-01-01

    Full Text Available Rusts are important pathogens of angiosperms and gymnosperms including cereal crops and forest trees. With respect to cereals, rust fungi are among the most important pathogens. Cereal rusts are heteroecious and macrocyclic requiring two taxonomically unrelated hosts to complete a five spore stage life cycle. Cereal rust fungi are highly variable for virulence and molecular polymorphism. Leaf rust, caused by Puccinia triticina is the most common rust of wheat on a worldwide basis. Many different races of P. triticina that vary for virulence to leaf rust resistance genes in wheat differential lines are found annually in the US. Molecular markers have been used to characterize rust populations in the US and worldwide. Highly virulent races of P. triticina are selected by leaf rust resistance genes in the soft red winter wheat, hard red winter wheat and hard red spring wheat cultivars that are grown in different regions of the US. Cultivars that only have race-specific leaf rust resistance genes that are effective in seedling plants lose their effective resistance and become susceptible within a few years of release. Cultivars with combinations of race non-specific resistance genes have remained resistant over a period of years even though races of the leaf rust population have changed constantly.

  17. Effect of Surface Contaminants Remained on the Blasted Surface on Epoxy Coating Performance and Corrosion Resistance

    International Nuclear Information System (INIS)

    One of the critical issues in the coating specification is the allowable limit of surface contaminant(s) - such as soluble salt(s), grit dust, and rust - after grit blasting. Yet, there is no universally accepted data supporting the relationship between the long-term coating performance and the amount of various surface contaminants allowed after grit blasting. In this study, it was attempted to prepare epoxy coatings applied on grit-blasted steel substrate dosed with controlled amount of surface contaminants - such as soluble salt(s), grit dust, and rust. Then, coating samples were subjected to 4,200 hours of cyclic test(NORSOK M-501), which were then evaluated in terms of resistance to rust creepage, blistering, chalking, rusting, cracking and adhesion strength. Additional investigations on the possible damage at the paint/steel interface were carried out using an Electrochemical Impedance Spectroscopy(EIS) and observations of under-film-corrosion. Test results suggested that the current industrial specifications were well matched with the allowable degree of rust, whereas the allowable amount of soluble salt and grit dust after grit blasting showed a certain deviation from the specifications currently employed for fabrication of marine vessels and offshore facilities

  18. The effect of blood contamination on dislocation resistance of different endodontic reparative materials.

    Science.gov (United States)

    Üstün, Yakup; Topçuoğlu, Hüseyin S; Akpek, Firdevs; Aslan, Tuğrul

    2015-09-01

    This study evaluated the retention characteristics of ProRoot mineral trioxide aggregate (MTA), RetroMTA, Supra MTA, and Biodentine biomaterials used to repair furcation perforations contaminated with blood. Furcal perforations measuring 1.3 mm in diameter and 2 mm in height were created in 96 mandibular first molar teeth, which were then randomly divided into the following two groups (n = 48): contaminated (+) or non-contaminated (-) with blood. The groups were subdivided into four groups (n = 12) according to the material used (ProRoot MTA, RetroMTA, Supra MTA, and Biodentine) to seal the perforations. The samples were allowed to set for 14 days and were then subjected to push-out testing. The results were analyzed using ANOVA, and the failure modes were examined using a surgical microscope. ProRoot MTA (+/-) and RetroMTA (+/-) exhibited superior bond strength values; in addition, there were no significant differences among these groups (P > 0.05). Biodentine (+) showed intermediate values that were sometimes statistically similar to the ProRoot MTA (+/-) and RetroMTA (+/-) groups (P > 0.05) and, at other times, the Biodentine (-) and Supra MTA (+/-) groups (P > 0.05). The lowest bond strength values were shown by the Biodentine (-) and Supra MTA groups (P > 0.05). "Adhesive failure mode" was the most frequently observed type for all tested materials. Blood contamination did not affect the dislocation resistance of materials. PMID:26369481

  19. Time-lapse electrical resistivity anomalies due to contaminant transport around landfills

    Directory of Open Access Journals (Sweden)

    J. Yang

    2007-06-01

    Full Text Available The extent of landfill leachate can be delineated by geo-electrical imaging as a response to the varying electrical resistivity in the contaminated area. This research was based on a combination of hydrogeological numerical simulation followed by geophysical forward and inversion modeling performed to evaluate the migration of a contaminant plume from a landfill. As a first step, groundwater flow and contaminant transport was simulated using the finite elements numerical modeling software FEFLOW. The extent of the contaminant plume was acquired through a hydrogeological model depicting the distributions of leachate concentration in the system. Next, based on the empirical relationship between the concentration and electrical conductivity of the leachate in the porous media, the corresponding geo-electrical structure was derived from the hydrogeological model. Finally, forward and inversion computations of geo-electrical anomalies were performed using the finite difference numerical modeling software DCIP2D/DCIP3D. The image obtained by geophysical inversion of the electric data was expected to be consistent with the initial hydrogeological model, as described by the distribution of leachate concentration. Numerical case studies were conducted for various geological conditions, hydraulic parameters and electrode arrays, from which conclusions were drawn regarding the suitability of the methodology to assess simple to more complex geo-electrical models. Thus, optimal mapping and monitoring configurations were determined.

  20. Soil biological attributes in arsenic-contaminated gold mining sites after revegetation.

    Science.gov (United States)

    Dos Santos, Jessé Valentim; de Melo Rangel, Wesley; Azarias Guimarães, Amanda; Duque Jaramillo, Paula Marcela; Rufini, Márcia; Marra, Leandro Marciano; Varón López, Maryeimy; Pereira da Silva, Michele Aparecida; Fonsêca Sousa Soares, Cláudio Roberto; de Souza Moreira, Fatima Maria

    2013-12-01

    Recovery of arsenic contaminated areas is a challenge society faces throughout the world. Revegetation associated with microbial activity can play an essential role in this process. This work investigated biological attributes in a gold mining area with different arsenic contents at different sites under two types of extant revegetation associated with cover layers of the soil: BS, Brachiaria sp. and Stizolobium sp., and LEGS, Acacia crassicarpa, A. holosericea, A. mangium, Sesbania virgata, Albizia lebbeck and Pseudosamanea guachapele. References were also evaluated, comprising the following three sites: B1, weathered sulfide substrate without revegetation; BM, barren material after gold extraction and PRNH (private reserve of natural heritage), an uncontaminated forest site near the mining area. The organic and microbial biomass carbon contents and substrate-induced respiration rates for these sites from highest to lowest were: PRNH > LEGS > BS > B1 and BM. These attributes were negatively correlated with soluble and total arsenic concentration in the soil. The sites that have undergone revegetation (LEGS and BS) had higher densities of bacteria, fungi, phosphate solubilizers and ammonium oxidizers than the sites without vegetation. Principal component analysis showed that the LEGS site grouped with PRNH, indicating that the use of leguminous species associated with an uncontaminated soil cover layer contributed to the improvement of the biological attributes. With the exception of acid phosphatase, all the biological attributes were indicators of soil recovery, particularly the following: microbial carbon, substrate-induced respiration, density of culturable bacteria, fungi and actinobacteria, phosphate solubilizers and metabolic quotient. PMID:24114185

  1. Evaluation of radiation resistance of the bacterial contaminants from femoral heads processed for allogeneic transplantation

    International Nuclear Information System (INIS)

    Femoral heads excised during surgery were obtained from patients who had a fractured neck of the femur and were processed as bone allograft. The bacterial contaminants were isolated from femoral heads at different stages of processing and identified based on morphological characteristics and biochemical tests. Bacterial contaminants on bone were mainly Gram-positive bacilli and cocci (58.3%). Twenty-four isolates from bone samples were screened for resistance to radiation. The D10 values for Gram-negative bacteria isolated from femoral heads ranged from 0.17 to 0.65 kGy. Higher D10 values 0.56-1.04 kGy were observed for Gram-positive bacterial isolates.

  2. Research of resisting of the biological active point for constant and alternative current

    Directory of Open Access Journals (Sweden)

    S. N. Peregudov

    2008-05-01

    Full Text Available Is conducted research of resistance of biologically active point (BAT on a direct and variable current. Research results are presented. The estimation of intercommunication between resistance of skin and by an electromagnetic radiation in BAT is done. Is shown possibility of the use of experimental information for diagnostics of the state of human to the organism.

  3. Detection of Multiple Resistances, Biofilm Formation and Conjugative Transfer of Bacillus cereus from Contaminated Soils.

    Science.gov (United States)

    Anjum, Reshma; Krakat, Niclas

    2016-03-01

    The purpose of this study was to detect microbial resistances to a set of antibiotics/pesticides (multi-resistance) within pesticide and antibiotic-contaminated alluvial soils and to identify the corresponding antibiotic resistance genes (ARGs). To assess whether identified multi-resistant isolates are able to construct biofilms, several biofilm formation and conjugation experiments were conducted. Out of 35 isolates, six strains were used for filter mating experiments. Nine strains were identified by 16S rDNA gene sequence analyses and those were closely related to Pseudomonas sp., Citrobacter sp., Acinetobacter sp., Enterobacter sp., and in addition, Bacillus cereus was chosen for multi-resistant and pesticide-tolerant studies. Antibiotic-resistant and pesticide-tolerant bacterial strains were tested for the presence of ARGs. All nine strains were containing multiple ARGs (ampC, ermB, ermD, ermG, mecA, tetM) in different combinations. Interestingly, only strain WR34 (strongly related to Bacillus cereus) exhibited a high biofilm forming capacity on glass beads. Results obtained by filter mating experiments demonstrated gene transfer frequencies from 10(-5) to 10(-8). This study provides evidence that alluvial soils are hot spots for the accumulation of antibiotics, pesticides and biofilm formation. Particularly high resistances to tetracycline, ampicillin, amoxicillin and methicillin were proved. Apparently, isolate WR34 strongly correlated to a pathogenic organism had high potential to deploy biofilms in alluvial soils. Thus, we assume that loosened and unconsolidated soils investigated pose a high risk of an enhanced ARG prevalence. PMID:26650381

  4. Enhanced Cadmium (Cd) Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    OpenAIRE

    Kunchaya Setkit; Acharaporn Kumsopa; Jaruwan Wongthanate; Benjaphorn Prapagdee

    2014-01-01

    A cadmium (Cd)-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also signifi...

  5. Milk Contamination and Resistance to Processing Conditions Determine the Fate of Lactococcus lactis Bacteriophages in Dairies

    OpenAIRE

    Madera, Carmen; Monjardín, Cristina; Suárez, Juan E.

    2004-01-01

    Milk contamination by phages, the susceptibility of the phages to pasteurization, and the high levels of resistance to phage infection of starter strains condition the evolution dynamics of phage populations in dairy environments. Approximately 10% (83 of 900) of raw milk samples contained phages of the quasi-species c2 (72%), 936 (24%), and P335 (4%). However, 936 phages were isolated from 20 of 24 (85%) whey samples, while c2 was detected in only one (4%) of these samples. This switch may h...

  6. Validation of cross-contamination control in biological safety cabinet for biotech/pharmaceutical manufacturing process.

    Science.gov (United States)

    Hu, Shih-Cheng; Shiue, Angus; Tu, Jin-Xin; Liu, Han-Yang; Chiu, Rong-Ben

    2015-12-01

    For class II, type A2 biological safety cabinets (BSC), NSF/ANSI Standard 49 should be conformed in cabinet airflow velocity derivation, particle contamination, and aerodynamic flow properties. However, there exists a potential problem. It has been built that the cabinet air flow stabilize is influenced by the quantity of downflow of air and the height above the cabinet exhaust opening. Three air downflow quantities were compared as an operating apparatus was placed from 20 to 40 cm above the bench of the cabinet. The results show that the BSC air downflow velocity is a function of increased sampling height, displaying that containment is improvingly permitted over product protection as the sampling height decreases. This study investigated the concentration gradient of particles at various heights and downflow air quantity from the bench of the BSC. Experiment results indicate that performance near the bench was better than in the rest of the BSC. In terms of height, the best cleanliness was measured at a height of 10 cm over the bench; it reduced actually with add in height. The empirical curves accommodate, founded on the concentration gradient of particle created was elaborated for evaluating the particle concentration at different heights and downflow air quantity from the source of the bench of the BSC. The particle image velocimetry system applied for BSC airflow research to fix amount of airflow patterns and air distribution measurement and results of measurements show how obstructions can greatly influence the airflow and contaminant transportation in a BSC. PMID:26257118

  7. Quantitative phenotyping of powdery mildew resistance in grapevine reveals differences in host resistance biology

    Science.gov (United States)

    The recent demonstration of race-specific resistance to Erysiphe necator has encouraged grapevine breeders to identify and introgress quantitative resistance genes exhibiting complementary mechanisms. In 2012, we established a phenotyping center (VitisGenPM) for detailed evaluation of resistance to...

  8. Wear and abrasion resistance selection maps of biological materials.

    Science.gov (United States)

    Amini, Shahrouz; Miserez, Ali

    2013-08-01

    The mechanical design of biological materials has generated widespread interest in recent years, providing many insights into their intriguing structure-property relationships. A critical characteristic of load-bearing materials, which is central to the survival of many species, is their wear and abrasion tolerance. In order to be fully functional, protective armors, dentitious structures and dynamic appendages must be able to tolerate repetitive contact loads without significant loss of materials or internal damage. However, very little is known about this tribological performance. Using a contact mechanics framework, we have constructed materials selection charts that provide general predictions about the wear performance of biological materials as a function of their fundamental mechanical properties. One key assumption in constructing these selection charts is that abrasion tolerance is governed by the first irreversible damage at the contact point. The maps were generated using comprehensive data from the literature and encompass a wide range of materials, from heavily mineralized to fully organic materials. Our analysis shows that the tolerance of biological materials against abrasion depends on contact geometry, which is ultimately correlated to environmental and selective pressures. Comparisons with experimental data from nanoindentation experiments are also drawn in order to verify our predictions. With the increasing amount of data available for biological materials also comes the challenge of selecting relevant model systems for bioinspired materials engineering. We suggest that these maps will be able to guide this selection by providing an overview of biological materials that are predicted to exhibit the best abrasion tolerance, which is of fundamental interest for a wide range of applications, for instance in restorative implants and protective devices. PMID:23643608

  9. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste

    International Nuclear Information System (INIS)

    Uranium biomineralization by a metal-resistant Pseudomonas aeruginosa strain isolated from uranium mine waste was characterized for its potential in bioremediation. Uranium resistance, its cellular localization and chemical nature of uranium-bacteria interaction were elucidated. Survival and uranium biomineralization from mine water were investigated using microcosm experiments. The selected bacterium showed U resistance and accumulation (maximum of 275 mg U g-1 cell dry wt.) following incubation in 100 mg U L-1, pH 4.0, for 6 h. Transmission electron microscopy and X-ray diffraction analyses revealed that bioaccumulated uranium was deposited within the cell envelope as needle shaped U-phosphate compounds that attain crystallinity only at pH 4.0. A synergistic involvement of deprotonated phosphate and carboxyl moieties in facilitating bioprecipitation of uranium was evident from FTIR analysis. Based on these findings we attribute the localized U sequestration by this bacterium as innocuous complex to its possible mechanism of uranium resistance. Microcosm data confirmed that the strain can remove soluble uranium (99%) and sequester it as U oxide and phosphate minerals while maintaining its viability. The study showed that indigenous bacteria from contaminated site that can survive uranium and other heavy metal toxicity and sequester soluble uranium as biominerals could play important role in uranium bioremediation.

  10. Biological activated carbon fluidized-bed system to treat gasoline-contaminated groundwater

    International Nuclear Information System (INIS)

    An integrated biological granular activated carbon fluidized-bed reactor (GAC-FBR) and a biological fluidized-bed reactor (FBR) charged with nonactivated carbon were evaluated for treating groundwater contaminated with the gasoline constituents benzene, toluene, and xylenes (BTX). The systems were studied under several conditions including startup, steady-state, and step-load increase conditions. Development of bioactivity in the GAC-FBR was faster than in the FBR using a nonactivated carbon biomass carrier. Under two steady-state conditions, organic loading rates of 3 and 6 kg-chemical oxygen demand (COD)/m3-day, BTX removal was similar in the two systems with more than 90% of applied BTX removed. The GAC-FBR produced superior effluent quality during step organic load rate (OLR) increases compared to the FBR. The results from an extremely high step OLR increase show the formation of partial oxidization products from the degradation of BTX. Significant adsorption capacity was still observed after the biofilm developed, although capacity gradually decreased over a 6-month period of operation to approximately 50% of its original value

  11. Cell Biological Mechanisms of Multidrug Resistance in Tumors

    Science.gov (United States)

    Simon, Sanford M.; Schindler, Melvin

    1994-04-01

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional changes at the plasma membrane or within the cytoplasm, cellular compartments, or nucleus. Molecular mechanisms of MDR are discussed in terms of modifications in detoxification and DNA repair pathways, changes in cellular sites of drug sequestration, decreases in drug-target affinity, synthesis of specific drug inhibitors within cells, altered or inappropriate targeting of proteins, and accelerated removal or secretion of drugs.

  12. Heavy metal resistance in Arthrobacter ramosus strain G2 isolated from mercuric salt-contaminated soil

    International Nuclear Information System (INIS)

    Present study describes isolation of a multiple metal-resistant Arthrobacter ramosus strain from mercuric salt-contaminated soil. The isolate was found to resist and bioaccumulate several metals, such as cadmium, cobalt, zinc, chromium and mercury. Maximum tolerated concentrations for above metals were found to be 37, 525, 348, 1530 and 369 μM, respectively. The isolate could also reduce and detoxify redox-active metals like chromium and mercury, indicating that it has great potential in bioremediation of heavy metal-contaminated sites. Chromate reductase and mercuric reductase (MerA) activities in protein extract of the culture were found to be 2.3 and 0.17 units mg-1 protein, respectively. MerA enzyme was isolated from the culture by (NH4)2SO4 precipitation followed by dye affinity chromatography and its identity was confirmed by nano-LC-MS/MS. Its monomeric molecular weight, and optimum pH and temperature were 57 kDa, 7.4 and 55 deg. C, respectively. Thus, the enzyme was mildly thermophilic as compared to other MerA enzymes. Km and Vmax of the enzyme were 16.9 μM HgCl2 and 6.2 μmol min-1 mg-1 enzyme, respectively. The enzyme was found to be NADPH-specific. To our knowledge this is the first report on characterization of MerA enzyme from an Arthrobacter sp.

  13. Measurement of radioactive contamination in the high-resistivity silicon CCDs of the DAMIC experiment

    CERN Document Server

    Aguilar-Arevalo, A; Bertou, X; Bole, D; Butner, M; Cancelo, G; Vázquez, A Castañeda; Chavarria, A E; Neto, J R T de Mello; Dixon, S; D'Olivo, J C; Estrada, J; Moroni, G Fernandez; Torres, K P Hernández; Izraelevitch, F; Kavner, A; Kilminster, B; Lawson, I; Liao, J; López, M; Molina, J; Moreno-Granados, G; Pena, J; Privitera, P; Sarkis, Y; Scarpine, V; Schwarz, T; Haro, M Sofo; Tiffenberg, J; Machado, D Torres; Trillaud, F; You, X; Zhou, J

    2015-01-01

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify $\\alpha$ and $\\beta$ particles. Uranium and thorium contamination in the CCD bulk was measured through $\\alpha$ spectroscopy, with an upper limit on the $^{238}$U ($^{232}$Th) decay rate of 5 (15) kg$^{-1}$ d$^{-1}$ at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from $^{32}$Si-$^{32}$P or $^{210}$Pb-$^{210}$Bi sequences of $\\beta$ decays. The decay rate of $^{32}$Si was found to be $80^{+110}_{-65}$ kg$^{-1}$ d$^{-1}$ (95% CI). An upper limit of $\\sim$35 kg$^{-1}$ d$^{-1}$ (95% CL) on the $^{210}$Pb decay rate was obtained independently by $\\alpha$ spectroscopy and the $\\beta$ decay sequence search. These levels of radioactive contamination are su...

  14. Measurement of Radioactive Contamination in the High-Resistivity Silicon CCDs of the DAMIC Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A. [Universidad Nacional Autonoma de Mexico (Mexico). et al.

    2015-08-25

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify α and β particles. Uranium and thorium contamination in the CCD bulk was measured through α spectroscopy, with an upper limit on the 238U (232Th) decay rate of 5 (15) kg-1 d-1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Si –32P or 210Pb –210Bi sequences of b decays. The decay rate of 32Si was found to be 80+110-65 (95% CI). An upper limit of ~35 kg -1 d-1 (95% CL) on the 210Pb decay rate was obtained independently by α spectroscopy and the β decay sequence search. Furthermore, these levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.

  15. Measurement of radioactive contamination in the high-resistivity silicon CCDs of the DAMIC experiment

    International Nuclear Information System (INIS)

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify α and β particles. Uranium and thorium contamination in the CCD bulk was measured through α spectroscopy, with an upper limit on the 238U (232Th) decay rate of 5 (15) kg−1 d−1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Si –32P or 210Pb –210Bi sequences of β decays. The decay rate of 32Si was found to be 80+110−65 kg−1 d−1 (95% CI). An upper limit of ∼35 kg−1 d−1 (95% CL) on the 210Pb decay rate was obtained independently by α spectroscopy and the β decay sequence search. These levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector

  16. Non-target time trend screening: a data reduction strategy for detecting emerging contaminants in biological samples

    OpenAIRE

    Plassmann, Merle M.; Tengstrand, Erik; Åberg, K. Magnus; Benskin, Jonathan P.

    2016-01-01

    Non-targeted mass spectrometry-based approaches for detecting novel xenobiotics in biological samples are hampered by the occurrence of naturally fluctuating endogenous substances, which are difficult to distinguish from environmental contaminants. Here, we investigate a data reduction strategy for datasets derived from a biological time series. The objective is to flag reoccurring peaks in the time series based on increasing peak intensities, thereby reducing peak lists to only those which m...

  17. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L

    Directory of Open Access Journals (Sweden)

    Li Ling

    2010-11-01

    Full Text Available Abstract Background Pre-harvest infection of peanuts by Aspergillus flavus and subsequent aflatoxin contamination is one of the food safety factors that most severely impair peanut productivity and human and animal health, especially in arid and semi-arid tropical areas. Some peanut cultivars with natural pre-harvest resistance to aflatoxin contamination have been identified through field screening. However, little is known about the resistance mechanism, which has slowed the incorporation of resistance into cultivars with commercially acceptable genetic background. Therefore, it is necessary to identify resistance-associated proteins, and then to recognize candidate resistance genes potentially underlying the resistance mechanism. Results The objective of this study was to identify resistance-associated proteins in response to A. flavus infection under drought stress using two-dimensional electrophoresis with mass spectrometry. To identify proteins involved in the resistance to pre-harvest aflatoxin contamination, we compared the differential expression profiles of seed proteins between a resistant cultivar (YJ-1 and a susceptible cultivar (Yueyou 7 under well-watered condition, drought stress, and A. flavus infection with drought stress. A total of 29 spots showed differential expression between resistant and susceptible cultivars in response to A. flavus attack under drought stress. Among these spots, 12 protein spots that consistently exhibited an altered expression were screened by Image Master 5.0 software and successfully identified by MALDI-TOF MS. Five protein spots, including Oso7g0179400, PII protein, CDK1, Oxalate oxidase, SAP domain-containing protein, were uniquely expressed in the resistant cultivar. Six protein spots including low molecular weight heat shock protein precursor, RIO kinase, L-ascorbate peroxidase, iso-Ara h3, 50 S ribosomal protein L22 and putative 30 S ribosomal S9 were significantly up-regulated in the resistant

  18. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeault, A., E-mail: bourgeault@ensil.unilim.fr; Gourlay-Francé, C.

    2013-06-01

    The suitability of biological methods and chemical-based passive samplers to determine exposure to PAHs was tested by deploying zebra mussels and SPMDs along the Seine River over 11 months. The concentration of 13 PAHs was analyzed every month in both water and mussels. The sum of the PAH concentrations in mussels, initially at 299 ng g{sub dry} {sub wt}{sup −1}, reached 2654, 3972 and 3727 ng g{sup −1} at the end of exposure in the three sampling points taken through the river. The respective SPMD-available concentrations of TPAHs reached 9, 52 and 34 ng L{sup −1}. Results showed seasonal variations of total PAH concentrations in the mussels, characterized by a decrease during spawning. The non-achievement of steady state concentration that was observed in mussels may be accounted for by the temporal variation of environmental concentrations. Thus, a bioaccumulation model based on kinetic rather than simple equilibrium partitioning was found to be more appropriate to describe PAH content in mussels. Moreover, biodynamic kinetic modeling proved useful to better understand the uptake and loss processes of pyrene. It clearly shows that these processes are markedly influenced by the biological state of the zebra mussels. The most realistic hypothesis is that the temporal variation of the biodynamic parameters may originate from a decrease of the mussels' metabolization of PAHs during spawning. Since SPMD passive samplers cannot integrate such biological factors, they are poor predictors of PAH bioavailability in mussels. - Highlights: • PAH contamination was monitored by deploying mussels and SPMDs over 11 months along the Seine River. • 5–6 ring PAHs which could not be quantified in spot samples, were measured in SPMDs. • PAH concentrations in the mussels decreased during spawning. • Temporal variation of bioaccumulated PAH may originate from a decrease of the mussels' metabolism during spawning. • Biodynamic model was allowed to explain

  19. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools

    International Nuclear Information System (INIS)

    The suitability of biological methods and chemical-based passive samplers to determine exposure to PAHs was tested by deploying zebra mussels and SPMDs along the Seine River over 11 months. The concentration of 13 PAHs was analyzed every month in both water and mussels. The sum of the PAH concentrations in mussels, initially at 299 ng gdrywt−1, reached 2654, 3972 and 3727 ng g−1 at the end of exposure in the three sampling points taken through the river. The respective SPMD-available concentrations of TPAHs reached 9, 52 and 34 ng L−1. Results showed seasonal variations of total PAH concentrations in the mussels, characterized by a decrease during spawning. The non-achievement of steady state concentration that was observed in mussels may be accounted for by the temporal variation of environmental concentrations. Thus, a bioaccumulation model based on kinetic rather than simple equilibrium partitioning was found to be more appropriate to describe PAH content in mussels. Moreover, biodynamic kinetic modeling proved useful to better understand the uptake and loss processes of pyrene. It clearly shows that these processes are markedly influenced by the biological state of the zebra mussels. The most realistic hypothesis is that the temporal variation of the biodynamic parameters may originate from a decrease of the mussels' metabolization of PAHs during spawning. Since SPMD passive samplers cannot integrate such biological factors, they are poor predictors of PAH bioavailability in mussels. - Highlights: • PAH contamination was monitored by deploying mussels and SPMDs over 11 months along the Seine River. • 5–6 ring PAHs which could not be quantified in spot samples, were measured in SPMDs. • PAH concentrations in the mussels decreased during spawning. • Temporal variation of bioaccumulated PAH may originate from a decrease of the mussels' metabolism during spawning. • Biodynamic model was allowed to explain the bioaccumulation

  20. Aquatic electrical resistivity imaging of rainfall-driven solute transport in contaminated wetlands

    Science.gov (United States)

    Slater, L.; Mansoor, N.

    2007-05-01

    A continuous aquatic electrical resistivity imaging (ERI) technique, using floating electrodes and a shallow-draft paddleboat, was employed to predict spatial and temporal patterns of pore-fluid conductivity in wetland soils of a contaminated, shallow-water wetland. ERI measurements were obtained with marine-acquisition software and a multi-channel resistivity instrument at six times over a four month period, covering a 10 square kilometer grid. A set of 10 simultaneous reception channel measurements were continuously recorded every two seconds yielding an average of 13,000 measurements per survey. Three dimensional inversion was carried out to determine the conductivity distribution of the subsurface using the smoothness-constrained least-squares optimization method. The continuously recorded surface water depth and conductivity were entered as known information in the inversion and measurement error (further constraining the inversion) estimated using a tie point technique. Pore- fluid conductivity estimates were constrained using surface conduction measurements obtained from laboratory experiments on soils extracted from the wetland, as well as a correction for temporal and spatial temperature variations based on direct surface water temperature measurements and existing data on the thermal characteristics of peat soils. The study demonstrated that: (1) continuous aquatic ERI is an ideal method for resolving the resistivity structure of wetland sediments covered by a shallow (less than 1 m) surface water layer, (2) temperature variations must be considered in such shallow monitoring studies as they may otherwise have the most significant influence on the results, and (3) surface conduction is significant in marsh soils and must be accounted for if subsurface conductivity models are to be reliably interpreted in terms of pore-fluid chemistry. In the field example presented here, changes in pore-water conductivity estimated from inverted models suggest that

  1. Effect of lead contamination of maize seed on its biological properties

    Directory of Open Access Journals (Sweden)

    Kastori Rudolf R.

    2012-01-01

    Full Text Available Effect of treatment of seed with various lead concentrations (0, 10-5, 10-4, 10-3, and 10-2 mol/dm3 on accumulation and distribution of lead (Pb in seedling, seed germination, seedling growth, and mobilization of mineral matter during seed germination was investigated. Content of Pb in the root and the shoot indicates that seeds imbibed in solutions of various Pb concentrations took up Pb intensively. Content of Pb in the root and the shoot increased with increase of Pb concentration and it was much larger in the root than in the shoot. Contrary to this, the accumulation coefficient was greater in the shoot than in the root. Treatment of seed with Pb did not significantly affect its biological properties. Increase of Pb concentration decreased germination ability, germination energy, and percentage of typical seedlings, while increasing the number of atypical seedlings and non-germinated seeds. Contamination of seed by Pb did not affect the dry matter mass and the growth of young plants shoots, while the length of the primary root, the mesocotyl root as well as the root mass at the highest Pb concentration, significantly decreased. Translocation of mobilized mineral matter from the seed during germination and growth of young plants into the root and shoot was specific, depending on elements. Only the implementation of the highest implemented Pb concentration affected mobilization and translocation of some elements. Based on the obtained results, it can be concluded that maize is characterized by significant tolerance to Pb contamination during seed germination and growth of seedlings.

  2. Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites.

    Science.gov (United States)

    Denyes, Mackenzie J; Parisien, Michèle A; Rutter, Allison; Zeeb, Barbara A

    2014-01-01

    The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality

  3. Chelating impact assessment of biological ad chemical chelates on metal extraction from contaminated soils

    International Nuclear Information System (INIS)

    Soil contamination is the result of uncontrolled waste dumping and poor practices by humans. Of all the pollutants heavy metals are of particular concern due to their atmospheric deposition, leaching capacity and non-biodegradability. Heavy metal containing effluent is discharged into the agricultural fields and water bodies. This results in the accumulation of heavy metals in soil and the crops grown on that soil. Studies have revealed detrimental impacts on soil fertility and the poor health of animals and humans. Phytoextraction is widely researched for remediation of heavy metal contaminated soil. To enhance the effect of phytoextraction heavy metals have to be available to the plants in soluble form. In this study the potential of different chelating agents was assessed in solubilizing the heavy metals making easy for plants to uptake them. For this purpose efficient chemical and biological chelating agent had to be identified. Along with that an optimum dose and application time for chemical chelating agent was determined. Ethylenediamine tetraacetic acid (EDTA), Diethylene triamine pentaacetic acid (DTPA), Nitriloacetic acid (NTA) were applied to the soil, containing Pb, Cr, Cu and Cd, at different concentrations and application time. Aspergillus niger and Aspergillus flavus were incubated in soil for different time periods. In correspondence with findings of the study, Pb and Cr were best solubilized by 5mM EDTA. For Cd and Cu 5mM DTPA carried out efficient chelation. NTA showed relatively inadequate solubilisation, although for Cr it performed equal to EDTA. A. niger and A. flavus instead of solubilizing adsorbed the metals in their biomass. Adsorption was mainly carried out by A. niger. (author)

  4. Fabrication Effects on Polysilicon-based Micro cantilever Piezo resistivity for Biological Sensing Application

    International Nuclear Information System (INIS)

    In principle, adsorption of biological molecules on a functionalized surface of a micro fabricated cantilever will cause a surface stress and consequently the cantilever bending. In this work, four different type of polysilicon-based piezo resistive micro cantilever sensors were designed to increase the sensitivity of the micro cantilevers sensor because the forces involved is very small. The design and optimization was performed by using finite element analysis to maximize the relative resistance changes of the piezo resistors as a function of the cantilever vertical displacements. The resistivity of the piezo resistivity micro cantilevers was analyzed before and after dicing process. The maximum resistance changes were systematically investigated by varying the piezo resistor length. The results show that although the thickness of piezo resistor was the same at 0.5 μm the resistance value was varied. (author)

  5. Biological treatment processes for PCB contaminated soil at a site in Newfoundland

    International Nuclear Information System (INIS)

    SAIC Canada is conducting a study under the direction of a joint research and development contract between Public Works and Government Services Canada and Environment Canada to examine the biological options for treating PCB contaminated soil found at a containment cell at a former U.S. Military Base near Stephenville, Newfoundland. In particular, the study examines the feasibility of using indigenous microbes for the degradation of PCBs. The first phase of the study involved the testing of the microbes in a bioreactor. The second phase, currently underway, involves a complete evaluation of possible microbes for PCB degradation. It also involves further study into the biological process options for the site. Suitable indigenous and non-indigenous microbes for PCB dechlorination and biphenyl degradation are being identified and evaluated. In addition, the effectiveness and economics of microbial treatment in a conventional bioreactor is being evaluated. The conventional bioreactor used in this study is the two-phase partitioning bioreactor (TPPB) using a biopile process. Results thus far will be used to help Public Works and Government Services Canada to choose the most appropriate remedial technology. Preliminary results suggest that the use of soil classification could reduce the volume of soil requiring treatment. The soil in the containment cell contains microorganisms that could grow in isolation on biphenyl, naphthalene and potentially Aroclor 1254. Isolated native microbes were inoculated in the TPPB for growth. The TPPB was also run successfully under anaerobic conditions. Future work will involve lab-scale evaluation of microbes for PCB dechlorination and biphenyl degradation using both indigenous and non-indigenous microbes. The next phase of study may also involve field-scale demonstration of treatment methods. 2 refs., 3 tabs., 5 figs

  6. Gram-Positive Nickel Resistant Bacteria Isolated from Riparian Sediments Contaminated with Ni and U on the Savannah River Site

    Science.gov (United States)

    Sowder, A. G.; Khijniak, T. V.; van Nostrand, J.; Bertsch, P. M.; Morris, P. J.

    2002-12-01

    The natural attenuation of pollutants in riparian and wetland systems is driven in large part by the services provided by the diverse microbial communities that thrive in these nutritionally and chemically complex environments. For co-contaminated systems, the presence of heavy metals at excessive levels may alter the structure and function of microbial communities that are essential for the immobilization of inorganics and degradation of organic contaminants. We examined riparian sediments heavily contaminated with U and Ni (1000's of mg/kg) from a small stream on the U.S. Department of Energy's Savannah River Site that received metallurgical process effluents wastewater over a thirty-year period associated with the production of nuclear materials. Four gram positive bacteria were isolated that displayed marked resistance (5000 mg/kg) to Ni relative to organisms from uncontaminated control locations: Arthrobacter oxydans, Streptomyces galbus, Streptomyces aureofaciens, and Kitasatospora cystarginea. The metal resistance of S. aureofaciens and K. cystarginea was further characterized in growth experiments for resistance to other metals. Ongoing geochemical characterization of U and Ni in terms of solid phase partitioning and aqueous phase speciation and solubility indicate that Ni is more chemically labile and, by extension, bioavailable than U in these aged-contaminated sediments. Accordingly, the isolation of Ni resistant organisms is consistent with greater selective pressure from Ni as a result of its greater bioavailability. These results are placed in context of environmental management and remediation of co-contaminated, biogeochemically complex environments.

  7. Frequency of Bacterial Contamination and Antibiotic Resistance Patterns in Devices and in Personnel of Endoscopy and Colonoscopy Units

    Directory of Open Access Journals (Sweden)

    Torabi, P. (BSc

    2014-06-01

    Full Text Available Background and Objective: This study was aimed to determine the extent of bacterial contamination and drug resistance patterns of isolates colonized in colonoscope and endoscope and in relevant personnel. Material and Methods: A total of 107 samples were obtained from staff of endoscopy and colonoscopy units (SEU and SCU and gastroenterological imaging equipment. For isolation and identification of the bacteria, swab culture method and biochemical identification test were used, respectively. Antimicrobial resistance profiles, multi-drug resistance (MDR patterns and phenetic relatedness of these isolates were also analyzed according to standard methods. Results: Most frequent pathogenic bacteria among the SEU and gastroenterological imaging related equipments were included S. aureus (20.8 % and 0 %; Enterococcus spp. (0 % and 5.4%; Pseudomonas spp. (0% and 13.5 %, and Clostridium difficile (0% and 12.5%. Analysis of resistance phenotypes showed a high frequency of MDR phenotypes among the SEU (82.1%, and also in endoscopes, colonoscopes, and other equipments (20%, 50% and 100%, respectively. Phylotyping of S. epidermidis isolates showed the role of staff in transmission of resistance strains to medical equipments and also circulation of strains with identical resistance phenotype among the studied samples. Conclusion: High frequency of pathogenic bacteria in colonoscopes, endoscopes and in the staff of endoscopy & colonoscopy units, and also contamination of these instruments with MDR pathogens emphasize the need for proper disinfection of endoscopes and colonoscopes and also instruction of staff in these units. Key words: Bacterial Contamination; Endoscope; Colonoscope; Antimicrobial Resistance; Gastrointestinal Disease.

  8. Arsenic resistant bacteria isolated from arsenic contaminated river in the Atacama Desert (Chile).

    Science.gov (United States)

    Escalante, G; Campos, V L; Valenzuela, C; Yañez, J; Zaror, C; Mondaca, M A

    2009-11-01

    In this study, arsenic resistant bacteria were isolated from sediments of an arsenic contaminated river. Arsenic tolerance of bacteria isolated was carried out by serial dilution on agar plate. Redox abilities were investigated using KMnO4. arsC and aox genes were detected by PCR and RT-PCR, respectively. Bacterial populations were identified by RapID system. Forty nine bacterial strains were isolated, of these, 55 % corresponded to the reducing bacteria, 4% to oxidizing bacteria, 8% presented both activities and in 33% of the bacteria none activity was detected. arsC gene was detected in 11 strains and aox genes were not detected. The activity of arsenic transforming microorganisms in river sediment has significant implications for the behavior of the metalloid. PMID:19779656

  9. Application of the biological forced air soil treatment (BIOFAST trademark) technology to diesel contaminated soil

    International Nuclear Information System (INIS)

    A subsurface Biological Forced Air Soil Treatment (BIOFAST trademark) system was constructed at the Yellow Freight System, Inc. (Yellow Freight) New Haven facility in Connecticut as a means of expediting the remediation of soils impacted by a diesel fuel release. Prior to beginning construction activities the soils were evaluated for the feasibility of bioremediation based on soil characteristics including contaminant degrading bacteria, moisture content, and pH. Based on results of stimulant tests with oxygen and nutrients, the addition of fertilizer during the construction of the cell was recommended. Following the removal of underground storage tanks, the bioremediation cell was constructed by lining the enlarged excavation with high density polyethylene (HDPE) and backfilling alternating layers of nutrient-laden soil and pea gravel. Passive and active soil vapor extraction (SVE) piping was included in the gravel layers and connected to a blower and vapor treatment unit, operated intermittently to supply oxygen to the subsurface cell. Operating data have indicated that the bacteria are generating elevated levels of CO2, and the SVE unit is evacuating the accumulated CO2 from the soils and replacing it with fresh air. These data suggest that the bioremediation process is active in the soils. Soil samples collected from within the soil pit subsequent to installation and again after 10 months of operation indicate that TPH concentrations have decreased by as much as 50%

  10. PREVALENCE AND ANTIBIOTIC RESISTANCE OF FOOD BORNE BACTERIAL CONTAMINATION IN SOME EGYPTIAN FOOD food

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-09-01

    Full Text Available This study was undertaken to investigate the prevalence and antibiotic resistance of food borne bacterial contamination in some Egyptian food. Total viable bacteria and total coliform bacteriawere isolated from different sources of food; carbohydrates (bread, flour and basbousa, vegetables (outer and inner tissues of potato and outer and inner tissues of cucumber and proteins (mincedmeat, cheese and milk. The study resulted in maximum value of total viable bacteria found in outer tissue of potato 68X104±1.0, while the minimum value found in inner tissues of potato andcucumber. The study resulted in total coliform was maximum value in minced meat 6.4X103±0.3. Basbousa and inner tissue of potato and cucumber were free from coliforms. The ability of isolatesto producing proteolytic enzymes was tested, we found that 326 isolate (63.92% from all isolates had this ability, thus we selected most 2 potent proteolytic isolates. The two isolates were identifiedas Bacillus cereus and Escherichia coli. The identification confirmed by microlog 34.20 system and 16SrRNA for two isolates and the same result was founded. Sensitivity tested for the most potentproteolytic species to 12 of the most commonly used antibiotics in the Egyptian pharmacy. The results showed that all species were sensitive to most of antibiotics, except B. cereus which was strongly susceptible to azteronam and ceftazidim. The data showed that raw meat, cooked food products, and raw milk were most commonly contaminated with foodborne pathogens and many pathogens were resistant to different antibiotics. The study provided useful information for assessment of the possible risk posed to consumers, which has significant public health impact.

  11. Assessment of contamination by intensive cattle activity through electrical resistivity tomography

    Science.gov (United States)

    Sainato, Claudia M.; Losinno, Beatriz N.; Malleville, Horacio J.

    2012-01-01

    The intensive animal production is considered highly risky for groundwater and soil because of high mobility of some contaminants from animal wastes. The aim of this work was to obtain an electrical conductivity image of unsaturated and saturated zones at a feedlot (cattle feeding field) at the surroundings of Buenos Aires city (Argentina) in order to detect the most critical sectors of the field, with regard to contamination by animal wastes. Dipole-dipole electrical soundings (electrical resistivity tomography) were performed at the corral zone and the surroundings. 2D and 3D models of conductivity were obtained. Even if there is a calcareous plate below some parts of the corrals and soil compaction is high, vertical infiltration or subsurface runoff may have occurred since these sites, with high animal charge, show soil conductivities higher than the surroundings. The models showed higher conductivities of saturated zone increasing in the direction of groundwater flow. These results were taken into account for further designs of soil and groundwater sampling. Groundwater conductivity was three times greater downgradient from the corrals with high concentrations of nitrates and phosphorous. A zone of high conductivity was found below a small channel of effluents from the corrals.

  12. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Directory of Open Access Journals (Sweden)

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  13. Sediment properties for assessing the erosion risk of contaminated riverine sites. A comprehensive approach to evaluate sediment properties and their covariance patterns over depth in relation to erosion resistance - first investigations in natural sediments at three contaminated reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Gerbersdorf, S.U.; Jancke, T.; Westrich, B. [Stuttgart Univ. (Germany). Inst. of Hydraulic Engineering

    2007-02-15

    Riverine sediments store large quantities of hazardous contaminants, remaining a 'legacy of the past' world-wide. Natural events such as floods may cause the resuspension of polluted sediments and accordingly, the former immobilized contaminants might become bioavailable and toxic again. Hence, a comprehensive erosion risk assessment of contaminated sites is of crucial importance. The present study aimed to implement 'master-variables' for a reliable, easy-to-manage and economically more viable determination of stability in cohesive sediments. A wide range of physico-chemical (bulk density, water content, particle size, mineral composition, cation exchange capacity / CEC, total organic matter / TOC, liquid and plastic limits of a soil) and biological (macrofauna abundances, microalgal biomass and species composition, bacterial cell numbers, EPS fractions such as carbohydrates and proteins) properties were determined simultaneously over depth spanning the zone between 0-35 cm. The data were related to sediment stability, determined as the 'critical shear stress for mass erosion' in the SETEG (Stroemungskanal zur Ermittlung der tiefenabhaengigen Erosionsstabilitaet von Gewaessersedimenten) - flume. The investigations were done on natural sediments, thereby covering vertical (over depth), spatial (different study sites) and temporal (different seasons) aspects to ensure the transferability of the data. Here, first data originating from three contaminated reservoirs in the lock-regulated River Neckar / Germany are presented. Comparison of the rather low critical shear stress values (resisting force of sediment, determined in SETEG) with the possibly occurring natural bottom shear stresses (attacking force, calculated for different hydraulic scenarios) at the three reservoirs indicated a severe risk of sediment erosion even under moderate hydraulic conditions and was not restricted to the surface. Critical shear stress was characterised by

  14. Trophic-metabolic activity of earthworms (Lumbricidae as a zoogenic factor of maintaining reclaimed soils’ resistance to copper contamination

    Directory of Open Access Journals (Sweden)

    Y. L. Kulbachko

    2014-07-01

    Full Text Available Soil contamination by heavy metals, first of all, influences biological and ecological conditions, and it is able to change the conservative soil features, such as humus content, aggregation, acidity and others, leading to partial or total diminishing of soil fertility and decrease in soil economic value. Zoogenic issues of soil protective capacity formation in conditions of heavy metal content rise under technogenesis have been studied. The article discusses the features of earthworm trophic-metabolic activity in the afforested remediated site (Western Donbass, Ukraine with different options of mixed soil bulk. Western Donbass is the large center of coal mining located in South-Western part of Ukraine. High rates of technical development in this region lead to surface subsidence, rising and outbreak of high-mineralized groundwater, and formation of dump pits of mine wastes. Remediated area is represented by the basement of mine wastes covered by 5 options of artificial mixed soil with different depth of horizons. The following tree species were planted on top of artificial soil: Acer platanoides L., Robinia pseudoacacia L., and Juniperus virginiana L. The main practical tasks were to define on the quantitative basis the buffer capacity of artificial mixed soil and earthworm excreta in relation to copper contamination and to compare its immobilization capacity in conditions of artificial forest plants in the territory of Western Donbass. It was proved that earthworm excreta had a great influence on soil immobilization capacity (particularly, on soil buffering to copper which increased for excreta in the following range: humus-free loess loam – top humus layer of ordinary chernozem. Immobilization efficiency of copper by earthworm excreta from ordinary chernozem bulk compared with baseline (ordinary chernozem was significantly higher. It should be noted that trophic-metabolic activity of earthworms plays very important role as a zoogenic factor

  15. BIOLOGICAL REMOVAL OF LEAD BY BACILLUS SP. OBTAINED FROM METAL CONTAMINATED INDUSTRIAL AREA

    Directory of Open Access Journals (Sweden)

    Rinoy Varghese

    2012-10-01

    Full Text Available In the present study bacterial strains were isolated from soil, sediment and water samples of metal polluted environment. As a result, various 164 heterotrophic bacterial strains were isolated and studied the multiple metal tolerance profile and lead bioaccumulation potentiality. We also analyze the metal contamination of the selected study area. The average abundance order of heavy metal contents in soil, water and sediments were Zn>Cu>Pb>Cd. Zinc concentration ranged from 39.832µg/L to 310.24µg/L in water, 12.81µg/g to 407.53µg/g in soil and 81.06µg/g to 829.54µg/g in sediment; copper concentration from 25.54µg/L to 66.29µg/L in water, 8.22µg/g to 73.11µg/g in soil and 32.28µg/g to 600.61µg/g in sediment; lead concentration from 8.09µg/L to 25.23µg/L in water, 5.31µg/g to 73.11µg/g in soil and 1.02µg/g to 60.14µg/g in sediment and cadmium concentration ranged from 39.832µg/L to 310.24µg/L in water, 12.81µg/g to 407.53µg/g in soil and 81.06µg/g to 829.54µg/g in sediment. Metal resistance studies of the bacterial isolates revealed that out of 164 isolates collected about 45% of the isolates showed very high tolerance (>6000µg/ml to lead. Tolerance to Cd and Zn were relatively low (<500 µg/ml. Resistance to Ni and Cr were in between 1000µg/ml - 1500µg/ml. A total of 18 bacterial genera were recorded from the study area; ten genera from soil and 11 from water, while only 5 bacterial genera were recorded from sediment samples. Bioaccumulation studies revealed that with increase in time, the biomass of the selected bacterial isolates increased. Correspondingly, with increase in biomass, the heavy metal bioaccumulation was also increased. In lead removal studies, around 50% of the lead in the experimental flasks was reduced by Bacillus sp. In control flask, only 5% metal reduction occurs. The obtained results showed that the selected Bacillus sp. is good bioaccumulation medium for lead ions.

  16. Study on contamination of sheep meat in Shahrekord area with Listeria ivanovii and determination its antibiotic resistance pattern

    Directory of Open Access Journals (Sweden)

    Farid Khalili Borujeni

    2013-06-01

    Full Text Available Background and objectives: Listeria monocytogenes and Listeria ivanovii are two pathogenic species of Listeria. The role of Listeria ivanovii is important in abortion, stillbirth, septicemia in animals and this bacterium sometimes is pathogenic in humans. Contamination of ovine carcasses during the slaughter and processing can cause foodborne infections in humans. In this study we examined the contamination of sheep meat in slaughter house of Shahrekord city to Listeria ivanovii and determined its antibiotic resistance pattern.Material and Methods: A total 200 samples of sheep meat were collected from abattoir and processed by use of two enrichment method. After doing specific biochemical tests and PCR, Listeria spp was identified and antibiotic resistance of isolated Listeria were tested by the agar disc diffusion method. Results: The contamination of sheep carcasses with listeria was 2.5% (5 out of 200 samples. All five isolates (2.5% were recognized as Listeria ivanovii and were resistant to four antibiotics, sensitive to six antibiotics and intermediate to other antibiotics.  Conclusion: According to the contamination rate in sheep carcasses with Listeria ivanovii and the relatively high antibiotic resistance specified in this bacteria, the role of red meat in transmission of Listeria spp. and appropriate use of antibiotics against this bacteria should be considered.

  17. Caesium 137: Properties and biological effects resulting of an internal contamination

    International Nuclear Information System (INIS)

    Caesium-137 (137Cs) is a radionuclide present in the environment mainly as the result of the atmospheric nuclear weapons testing and accidents arising in nuclear power plants like the Chernobyl accident in 1986. Nowadays, the health consequences resulting from a chronic exposure to this radionuclide remain unknown. After absorption, the caesium is distributed relatively homogeneously within the body, with a more important load in children than in adults. The toxicity of 137Cs is mainly due to its radiological properties. A high dose of 137Cs is responsible for a medullar dystrophy, disorders of the reproductive function, and effects on liver and renal functions. Disorders of bone mineralization and brain damages were also described in human beings. At lowest dose, 137Cs induces disturbances of wakefulness-sleep cycle, but not accompanied with behavioural disorders. The cardiovascular system was also perturbed. Biological effects of 137Cs on the metabolisms of the vitamin D, cholesterol and steroid hormones were described, but do not lead to clinical symptoms. In human beings, 137Cs leads to an immune deficiency, congenital and foetal deformations, an increased of thyroid cancer, as well as neurological disorders. It seems that children are more sensitive to the toxic effects of caesium than the adults. At present, the only effective treatment for the decorporation of the ingested 137Cs is the Prussian Blue (Radiogardase). The use of pectin to de-corporate the ingested 137Cs, in children notably, is sometimes proposed, but its administration still remains an open question. To conclude, the available scientific data suggest that 137Cs could affect a number of physiological and metabolic functions and consequently, could participate in the health risks associated to the presence of other contaminants in the environment. (authors)

  18. Chemical and biological methods for the analysis and remediation of environmental contaminants frequently identified at superfund sites

    Energy Technology Data Exchange (ETDEWEB)

    Melinda Christine Wiles [Texas A& amp; M University, College Station, TX (United States). Department of Veterinary Anatomy & Public Health

    2004-08-15

    Substantial environmental contamination has occurred from coal tar creosote and pentachlorophenol (C5P) in wood preserving solutions. The present studies focused on the characterization and remediation of these contaminants. The first objective was to delineate a sequence of biological changes caused by chlorinated phenol (CP) exposure. The second study was to develop multi-functional sorbents to remediate CPs and other components of wood preserving waste from groundwater. Following water remediation, the final aim of this work was to explore the safety of the parent clay minerals as potential enterosorbents for contaminants ingested in water and food. Based on evaluations of toxicity and neutron activation analysis of tissues, no significant differences were observed between animals receiving clay supplements and control animals, with the exception of slightly decreased brain Rb in animals ingesting clay. Overall, the results suggest that neither clay mineral, at relatively high dietary concentrations, influences mineral uptake or utilization in the pregnant rat. 420 refs., 28 figs, 15 tabs.

  19. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils. PMID:23784058

  20. Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments

    Science.gov (United States)

    Mao, D.; Revil, A.; Hort, R. D.; Munakata-Marr, J.; Atekwana, E. A.; Kulessa, B.

    2015-11-01

    Geophysical methods can be used to remotely characterize contaminated sites and monitor in situ enhanced remediation processes. We have conducted one sandbox experiment and one contaminated field investigation to show the robustness of electrical resistivity tomography and self-potential (SP) tomography for these applications. In the sandbox experiment, we injected permanganate in a trichloroethylene (TCE)-contaminated environment under a constant hydraulic gradient. Inverted resistivity tomograms are able to track the evolution of the permanganate plume in agreement with visual observations made on the side of the tank. Self-potential measurements were also performed at the surface of the sandbox using non-polarizing Ag-AgCl electrodes. These data were inverted to obtain the source density distribution with and without the resistivity information. A compact horizontal dipole source located at the front of the plume was obtained from the inversion of these self-potential data. This current dipole may be related to the redox reaction occurring between TCE and permanganate and the strong concentration gradient at the front of the plume. We demonstrate that time-lapse self-potential signals can be used to track the kinetics of an advecting oxidizer plume with acceptable accuracy and, if needed, in real time, but are unable to completely resolve the shape of the plume. In the field investigation, a 3D resistivity tomography is used to characterize an organic contaminant plume (resistive domain) and an overlying zone of solid waste materials (conductive domain). After removing the influence of the streaming potential, the identified source current density had a magnitude of 0.5 A m-2. The strong source current density may be attributed to charge movement between the neighboring zones that encourage abiotic and microbially enhanced reduction and oxidation reactions. In both cases, the self-potential source current density is located in the area of strong resistivity

  1. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives

    Directory of Open Access Journals (Sweden)

    Jake C. Fountain

    2015-06-01

    Full Text Available The colonization of maize (Zea mays L. and peanut (Arachis hypogaea L. by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  2. Molecular Biological basis for statin resistance in naturally statin-producing organisms

    DEFF Research Database (Denmark)

    Rems, Ana; Frandsen, Rasmus John Normand

    Secondary metabolites can be toxic to the organism producing them; therefore gene clusters for biosynthesis of secondary metabolites often include genes responsible for the organism’s self-resistance to the toxic compounds. One such gene cluster is the compactin (ML-236B) cluster in Penicillium...... secretion [1]. The mlcD gene encodes a putative ‘HMG-CoA reductase-like protein’, and mlcE encodes a putative efflux pump. However, the function of these two putative proteins has not yet been confirmed. We aim to elucidate the biological basis for compactin resistance in the compactin-producing organism. A...

  3. Toward elucidation of genetic and functional genetic mechanisms in corn host resistance to Aspergillus flavus infection and aflatoxin contamination

    Directory of Open Access Journals (Sweden)

    Xueyan eShan

    2014-07-01

    Full Text Available Aflatoxins are carcinogenic mycotoxins produced by some species in the Aspergillus genus, such as A. flavus and A. parasiticus. Contamination of aflatoxins in corn profusely happens at pre-harvest stage when heat and drought field conditions favor A. flavus colonization. Commercial corn hybrids are generally susceptible to A. flavus infection. An ideal strategy for preventing aflatoxin contamination is through the enhancement of corn host resistance to Aspergillus infection and aflatoxin production. Constant efforts have been made by corn breeders to develop resistant corn genotypes. Significantly low levels of aflatoxin accumulation have been determined in certain resistant corn inbred lines. A number of reports of quantitative trait loci (QTLs have provided compelling evidence supporting the quantitative trait genetic basis of corn host resistance to aflatoxin accumulation. Important findings have also been obtained from the investigation on candidate resistance genes through transcriptomics approach. Elucidation of molecular mechanisms will provide in-depth understanding of the host-pathogen interactions and hence facilitate the breeding of corn with resistance to A. falvus infection and aflatoxin accumulation.

  4. Meticillin-resistant Staphylococcus aureus (MRSA) environmental contamination in a radiology department

    Energy Technology Data Exchange (ETDEWEB)

    Shelly, M.J., E-mail: martinshelly@gmail.com [Department of Radiology, Mater Misericordiae University Hospital, Dublin (Ireland); Scanlon, T.G. [Department of Radiology, Mater Misericordiae University Hospital, Dublin (Ireland); Ruddy, R.; Hannan, M.M. [Department of Clinical Microbiology, Mater Misericordiae University Hospital, Dublin (Ireland); Murray, J.G. [Department of Radiology, Mater Misericordiae University Hospital, Dublin (Ireland)

    2011-09-15

    Aim: To explore the potential risk to patients and healthcare workers of acquiring meticillin-resistant Staphylococcus aureus (MRSA) in clinical and non-clinical areas within a radiology department. Materials and methods: High-risk sites in clinical and non-clinical areas within the Department of Radiology were identified and 125 environmental swabs were obtained by an infection control nurse specialist. Decontamination methods and protocols were reviewed and compared against international decontamination best practice. Results: One of 125 samples was culture positive for MRSA. The positive sample was isolated from the surface of the bore of the magnetic resonance imaging (MRI) unit. A hypochlorite cleaning agent was applied using a long-handled brush to clean the bore of the MRI unit. A repeat environmental screen found the MRI unit to be culture negative for MRSA. Conclusion: This study has demonstrated that standard decontamination measures are adequate to prevent environmental contamination with MRSA in a radiology department. However, the MRI unit requires special attention because of its long bore and difficult access.

  5. Meticillin-resistant Staphylococcus aureus (MRSA) environmental contamination in a radiology department

    International Nuclear Information System (INIS)

    Aim: To explore the potential risk to patients and healthcare workers of acquiring meticillin-resistant Staphylococcus aureus (MRSA) in clinical and non-clinical areas within a radiology department. Materials and methods: High-risk sites in clinical and non-clinical areas within the Department of Radiology were identified and 125 environmental swabs were obtained by an infection control nurse specialist. Decontamination methods and protocols were reviewed and compared against international decontamination best practice. Results: One of 125 samples was culture positive for MRSA. The positive sample was isolated from the surface of the bore of the magnetic resonance imaging (MRI) unit. A hypochlorite cleaning agent was applied using a long-handled brush to clean the bore of the MRI unit. A repeat environmental screen found the MRI unit to be culture negative for MRSA. Conclusion: This study has demonstrated that standard decontamination measures are adequate to prevent environmental contamination with MRSA in a radiology department. However, the MRI unit requires special attention because of its long bore and difficult access.

  6. Non-target time trend screening: a data reduction strategy for detecting emerging contaminants in biological samples.

    Science.gov (United States)

    Plassmann, Merle M; Tengstrand, Erik; Åberg, K Magnus; Benskin, Jonathan P

    2016-06-01

    Non-targeted mass spectrometry-based approaches for detecting novel xenobiotics in biological samples are hampered by the occurrence of naturally fluctuating endogenous substances, which are difficult to distinguish from environmental contaminants. Here, we investigate a data reduction strategy for datasets derived from a biological time series. The objective is to flag reoccurring peaks in the time series based on increasing peak intensities, thereby reducing peak lists to only those which may be associated with emerging bioaccumulative contaminants. As a result, compounds with increasing concentrations are flagged while compounds displaying random, decreasing, or steady-state time trends are removed. As an initial proof of concept, we created artificial time trends by fortifying human whole blood samples with isotopically labelled standards. Different scenarios were investigated: eight model compounds had a continuously increasing trend in the last two to nine time points, and four model compounds had a trend that reached steady state after an initial increase. Each time series was investigated at three fortification levels and one unfortified series. Following extraction, analysis by ultra performance liquid chromatography high-resolution mass spectrometry, and data processing, a total of 21,700 aligned peaks were obtained. Peaks displaying an increasing trend were filtered from randomly fluctuating peaks using time trend ratios and Spearman's rank correlation coefficients. The first approach was successful in flagging model compounds spiked at only two to three time points, while the latter approach resulted in all model compounds ranking in the top 11 % of the peak lists. Compared to initial peak lists, a combination of both approaches reduced the size of datasets by 80-85 %. Overall, non-target time trend screening represents a promising data reduction strategy for identifying emerging bioaccumulative contaminants in biological samples. Graphical abstract

  7. A Contaminant Trap as a Tool for Isolating and Measuring the Desorption Resistant Fraction of Soil Pollutants

    DEFF Research Database (Denmark)

    Mayer, Philipp; L. Olsen, Jannik; Gouliarmou, Varvara; Hasinger, Marion; Kendler, Romana; P. Loipner, Andreas

    2011-01-01

    Bioremediation of contaminated soils often leaves a desorption-resistant pollutant fraction behind in the soil, which in the present study was isolated with a combination of diffusive carrier and infinite diffusive sink. Such a diffusive sink was made by casting a composite of silicone and...... activated carbon into the bottom of a large glass. Field-contaminated soil samples were then suspended in a cyclodextrin solution and incubated in such glasses for the continuous trapping of PAH molecules during their release from the soil matrix. The PAH concentrations remaining in the soil were determined...

  8. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    Science.gov (United States)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was

  9. Prevalence of Nontyphoidal Salmonella and Salmonella Strains with Conjugative Antimicrobial-Resistant Serovars Contaminating Animal Feed in Texas.

    Science.gov (United States)

    Hsieh, Yi-Cheng; Poole, Toni L; Runyon, Mick; Hume, Michael; Herrman, Timothy J

    2016-02-01

    The objective of this study was to characterize 365 nontyphoidal Salmonella enterica isolates from animal feed. Among the 365 isolates, 78 serovars were identified. Twenty-four isolates (7.0%) were recovered from three of six medicated feed types. Three of these isolates derived from the medicated feed, Salmonella Newport, Salmonella Typhimurium var. O 5- (Copenhagen), and Salmonella Lexington var. 15+ (Manila), displayed antimicrobial resistance. Susceptibility testing revealed that only 3.0% (12) of the 365 isolates displayed resistance to any of the antimicrobial agents. These 12 isolates were recovered from unmedicated dry beef feed (n = 3), medicated dry beef feed (n = 3), cabbage culls (n = 2), animal protein products (n = 2), dry dairy cattle feed (n = 1), and fish meal (n = 1). Only Salmonella Newport and Salmonella Typhimurium var. O 5- (Copenhagen) were multidrug resistant. Both isolates possessed the IncA/C replicon and the blaCMY-2 gene associated with cephalosporin resistance. Plasmid replicons were amplified from 4 of 12 resistant isolates. Plasmids (40 kb) were Salmonella Montevideo and Salmonella Kentucky. Conjugation experiments were done using 7 of the 12 resistant isolates as donors. Only Salmonella Montevideo, possessing a plasmid and amplifying IncN, produced transconjugants. Transconjugants displayed the same antimicrobial resistance profile as did the donor isolate. Three isolates that amplified replicons corresponding to IncA/C or IncHI2 did not produce transconjugants at 30 or 37°C. The results of this study suggest that the prevalence of antimicrobial-resistant Salmonella contaminating animal feed is low in Texas. However, Salmonella was more prevalent in feed by-products; fish meal had the highest prevalence (84%) followed by animal protein products (48%). Ten of the 35 feed types had no Salmonella contamination. Further investigation is needed to understand the possible role of specific feed types in the dissemination of antimicrobial

  10. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report

    International Nuclear Information System (INIS)

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.)

  11. A Contaminant Trap as a Tool for Isolating and Measuring the Desorption Resistant Fraction of Soil Pollutants

    DEFF Research Database (Denmark)

    Mayer, Philipp; Lund Olsen, Jannik; Gouliarmou, Varvara;

    2011-01-01

    Bioremediation of contaminated soils often leaves a desorption-resistant pollutant fraction behind in the soil, which in the present study was isolated with a combination of diffusive carrier and infinite diffusive sink. Such a diffusive sink was made by casting a composite of silicone and...... activated carbon into the bottom of a large glass. Field-contaminated soil samples were then suspended in a cyclodextrin solution and incubated in such glasses for the continuous trapping of PAH molecules during their release from the soil matrix. The PAH concentrations remaining in the soil were determined...... by exhaustive extraction and compared with a biodegradation experiment. The concentration decline in the first soil was faster in the contaminant trap than in the biodegradation experiment, but the halting of the biodegradation process before reaching the legal threshold level was well indicated by...

  12. Reduction of Clostridium Difficile and vancomycin-resistant Enterococcus contamination of environmental surfaces after an intervention to improve cleaning methods

    OpenAIRE

    Yadavalli Gopala K; Sethi Ajay K; Rao Agam; Eckstein Elizabeth C; Adams Daniel A; Eckstein Brittany C; Donskey Curtis J

    2007-01-01

    Abstract Background Contaminated environmental surfaces may play an important role in transmission of some healthcare-associated pathogens. In this study, we assessed the adequacy of cleaning practices in rooms of patients with Clostridium difficile-associated diarrhea (CDAD) and vancomycin-resistant Enterococcus (VRE) colonization or infection and examined whether an intervention would result in improved decontamination of surfaces. Methods During a 6-week period, we cultured commonly touche...

  13. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating

    Science.gov (United States)

    Munholland, Jonah L.; Mumford, Kevin G.; Kueper, Bernard H.

    2016-01-01

    A series of intermediate-scale laboratory experiments were completed in a two-dimensional flow cell to investigate gas production and migration during the application of electrical resistance heating (ERH) for the removal of dense non-aqueous phase liquids (DNAPLs). Experiments consisted of heating water in homogeneous silica sand and heating 270 mL of trichloroethene (TCE) and chloroform (CF) DNAPL pools in heterogeneous silica sands, both under flowing groundwater conditions. Spatial and temporal distributions of temperature were measured using thermocouples and observations of gas production and migration were collected using front-face image capture throughout the experiments. Post-treatment soil samples were collected and analyzed to assess DNAPL removal. Results of experiments performed in homogeneous sand subject to different groundwater flow rates showed that high groundwater velocities can limit subsurface heating rates. In the DNAPL pool experiments, temperatures increased to achieve DNAPL-water co-boiling, creating estimated gas volumes of 131 and 114 L that originated from the TCE and CF pools, respectively. Produced gas migrated vertically, entered a coarse sand lens and subsequently migrated laterally beneath an overlying capillary barrier to outside the heated treatment zone where 31-56% of the original DNAPL condensed back into a DNAPL phase. These findings demonstrate that layered heterogeneity can potentially facilitate the transport of contaminants outside the treatment zone by mobilization and condensation of gas phases during ERH applications. This underscores the need for vapor phase recovery and/or control mechanisms below the water table during application of ERH in heterogeneous porous media during the co-boiling stage, which occurs prior to reaching the boiling point of water.

  14. Use of biological meshes for abdominal wall reconstruction in highly contaminated fields

    Institute of Scientific and Technical Information of China (English)

    Andrea; Cavallaro; Emanuele; Lo; Menzo; Maria; Di; Vita; Antonio; Zanghì; Vincenzo; Cavallaro; Pier; Francesco; Veroux; Alessandro; Cappellani

    2010-01-01

    Abdominal wall defects and incisional hernias represent a challenging problem. In particular, when a synthetic mesh is applied to contaminated wounds, its removal is required in 50%-90% of cases. Biosynthetic meshes are the newest tool available to surgeons and they could have a role in ventral hernia repair in a potential-ly contaminated field. We describe the use of a sheet of bovine pericardium graft in the reconstruction of abdominal wall defect in two patients. Bovine pericardium graft was placed in th...

  15. Methods for assessing the environmental risks from the resistant pesticide contamination

    OpenAIRE

    T. Moklyachuk

    2014-01-01

    Methods of assessing environmental risk has been considered in order to identify and then apply an optimal recovery method of remediation of soils contaminated with persistent pesticides. Value of risk from contamination in two different models — the situational risk and CalTOX has been counted and compared. A mathematical model that describes a distribution of the site contamination by persistent pesticides depending on the distance from the depot, and gives an opportunity to assess the si...

  16. Biological half-life and distribution of radiocesium in a contaminated population of green treefrogs Hyla cinerea

    International Nuclear Information System (INIS)

    Radiocesium content of adult male green treefrogs Hyla cinerea from a contaminated habitat is adequately described by a log normal distribution with mean 2.277 log10 pCi g-1 dry wt (189.2 pCi g-1) and variance of 0.031. There was significant negative correlation of body burden with body length and weight (p 2 = 0.10). Biological half-life of radiocesium in unfed, captive frogs held at 20 deg - 30 deg C averaged 30.1 d. (author)

  17. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    Science.gov (United States)

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites. PMID:26860944

  18. Verification of state and progress of a biological remediation of NAPL contaminated soil by the determination of radon concentration in soil air. Final report

    International Nuclear Information System (INIS)

    Some methods for recycling of soil which is contaminated with hydrocarbons like petrol or diesel are based on the admixture of active biological material in order to reduce the contamination. This mixture is stored on a dump for some months and the reduction of the contamination is checked by regular chemical analysis of some samples. Task of the research project is to replace these analysis by an investigation of Radon gas, which is present in the pore volume of the dumped soil. In two series of experiments at dumps with contaminated soil biologically treated, an increase of radon concentration in conjunction with a decrease of contamination was detected. But the recorded change of Radon was much less than expected and shows a significant dependence on environmental parameters like temperature or soil structure. At the present state of development the method is not yet suitable to replace conventional analysis during soil recycling. (orig.)

  19. Effect of soil biochar amendment on grain crop resistance to Fusarium mycotoxin contamination

    Science.gov (United States)

    Mycotoxin contamination of food and feed is among the top food safety concerns. Fusarium spp. cause serious diseases in cereal crops reducing yield and contaminating grain with mycotoxins that can be deleterious to human and animal health. Fusarium graminearum and Fusarium verticillioides infect whe...

  20. Environmental Contaminants Monitoring in Selected Wetlands of Wyoming: Biologically Active Elements Study

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment, water and biota were collected from selected wetlands in Wyoming for the Biologically Active Elements (BAE) Study in 1988, 1989 and 1990 to identify...

  1. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    Science.gov (United States)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  2. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis

    International Nuclear Information System (INIS)

    Natural and synthetic chemicals are essential to our daily lives, food supplies, health care, industries and safe sanitation. At the same time protecting marine ecosystems and seafood resources from the adverse effects of chemical contaminants remains an important issue. Since the 1970s, monitoring of persistent, bioaccumulative and toxic (PBT) chemicals using analytical chemistry has provided important spatial and temporal trend data in three important contexts; relating to human health protection from seafood contamination, addressing threats to marine top predators and finally providing essential evidence to better protect the biodiversity of commercial and non-commercial marine species. A number of regional conventions have led to controls on certain PBT chemicals over several years (termed ‘legacy contaminants’; e.g. cadmium, lindane, polycyclic aromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs]). Analytical chemistry plays a key role in evaluating to what extent such regulatory steps have been effective in leading to reduced emissions of these legacy contaminants into marine environments. In parallel, the application of biomarkers (e.g. DNA adducts, CYP1A-EROD, vitellogenin) and bioassays integrated with analytical chemistry has strengthened the evidence base to support an ecosystem approach to manage marine pollution problems. In recent years, however, the increased sensitivity of analytical chemistry, toxicity alerts and wider environmental awareness has led to a focus on emerging chemical contaminants (defined as chemicals that have been detected in the environment, but which are currently not included in regulatory monitoring programmes and whose fate and biological impacts are poorly understood). It is also known that natural chemicals (e.g. algal biotoxins) may also pose a threat to marine species and seafood quality. Hence complex mixtures of legacy contaminants, emerging chemicals and natural biotoxins in marine ecosystems represent

  3. Presence and biological effects of emerging contaminants in Llobregat River basin: a review.

    Science.gov (United States)

    González, Susana; López-Roldán, Ramón; Cortina, Jose-Luis

    2012-02-01

    Llobregat River (North-East Spain) is the most important drinking water source for Barcelona and its surrounding area. As one of the only water sources in the area the river water have been overexploited and effluents from more than 30 urban wastewater treatment plants, industries and agriculture runoffs have been discharged into the river. This article reviews the presence of emerging contaminants published during the last decades, emphasizing on the observed effects on ecosystems caused by the contamination. Pesticides, surfactants, estrogens, pharmaceuticals and personal care products and even abuse drugs are the main groups detected in different studies, reporting alterations in species composition, abundance or biomass and endocrine disruption measured by alterations in enzymatic activity or specific protein production. The information available provides an overview of the river status according to the Water Framework Directive. PMID:22230072

  4. Corrosion resistance of titanium and some dental implant alloy in biological fluids

    International Nuclear Information System (INIS)

    The main purpose of this paper is the study of the long-term corrosion resistance of the titanium and dental alloy Ti-5Al-4V in physiological serum and artificial saliva of different pH values (acid and neutral) at 37 deg. C, reproducing the various biological environments that can be in contact with dental implants. The potentiostatic, potentiodynamic and linear polarisation measurements have been used to characterise the corrosion resistance of these materials during a period of about 1500 exposure hours. Also, the variation of open circuit potentials in time and with pH has been recorded for the same term. The potential gradients resulted from the pH changes were calculated; also, their variation in time were simulated for extreme, hypothetical conditions. The corrosion rates were determined. (authors)

  5. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    OpenAIRE

    Celio I Chagas; Filipe B. Kraemer; Oscar J. Santanatoglia; Marta Paz; Juan Moretton

    2014-01-01

    Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in ...

  6. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Ren Wanxia, E-mail: ren_laura@163.com [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li Peijun, E-mail: lipeijun@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Geng Yong; Li Xiaojun [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2009-08-15

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  7. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    International Nuclear Information System (INIS)

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  8. AFM₁ in Milk: Physical, Biological, and Prophylactic Methods to Mitigate Contamination.

    Science.gov (United States)

    Giovati, Laura; Magliani, Walter; Ciociola, Tecla; Santinoli, Claudia; Conti, Stefania; Polonelli, Luciano

    2015-10-01

    Aflatoxins (AFs) are toxic, carcinogenic, immunosuppressive secondary metabolites produced by some Aspergillus species which colonize crops, including many dietary staple foods and feed components. AFB₁ is the prevalent and most toxic among AFs. In the liver, it is biotransformed into AFM₁, which is then excreted into the milk of lactating mammals, including dairy animals. AFM₁ has been shown to be cause of both acute and chronic toxicoses. The presence of AFM₁ in milk and dairy products represents a worldwide concern since even small amounts of this metabolite may be of importance as long-term exposure is concerned. Contamination of milk may be mitigated either directly, decreasing the AFM₁ content in contaminated milk, or indirectly, decreasing AFB₁ contamination in the feed of dairy animals. Current strategies for AFM₁ mitigation include good agricultural practices in pre-harvest and post-harvest management of feed crops (including storage) and physical or chemical decontamination of feed and milk. However, no single strategy offers a complete solution to the issue. PMID:26512694

  9. AFM1 in Milk: Physical, Biological, and Prophylactic Methods to Mitigate Contamination

    Directory of Open Access Journals (Sweden)

    Laura Giovati

    2015-10-01

    Full Text Available Aflatoxins (AFs are toxic, carcinogenic, immunosuppressive secondary metabolites produced by some Aspergillus species which colonize crops, including many dietary staple foods and feed components. AFB1 is the prevalent and most toxic among AFs. In the liver, it is biotransformed into AFM1, which is then excreted into the milk of lactating mammals, including dairy animals. AFM1 has been shown to be cause of both acute and chronic toxicoses. The presence of AFM1 in milk and dairy products represents a worldwide concern since even small amounts of this metabolite may be of importance as long-term exposure is concerned. Contamination of milk may be mitigated either directly, decreasing the AFM1 content in contaminated milk, or indirectly, decreasing AFB1 contamination in the feed of dairy animals. Current strategies for AFM1 mitigation include good agricultural practices in pre-harvest and post-harvest management of feed crops (including storage and physical or chemical decontamination of feed and milk. However, no single strategy offers a complete solution to the issue.

  10. A tiered, integrated biological and chemical monitoring framework for contaminants of emerging concern in aquatic ecosystems.

    Science.gov (United States)

    Maruya, Keith A; Dodder, Nathan G; Mehinto, Alvine C; Denslow, Nancy D; Schlenk, Daniel; Snyder, Shane A; Weisberg, Stephen B

    2016-07-01

    The chemical-specific risk-based paradigm that informs monitoring and assessment of environmental contaminants does not apply well to the many thousands of new chemicals that are being introduced into ambient receiving waters. We propose a tiered framework that incorporates bioanalytical screening tools and diagnostic nontargeted chemical analysis to more effectively monitor for contaminants of emerging concern (CECs). The framework is based on a comprehensive battery of in vitro bioassays to first screen for a broad spectrum of CECs and nontargeted analytical methods to identify bioactive contaminants missed by the currently favored targeted analyses. Water quality managers in California have embraced this strategy with plans to further develop and test this framework in regional and statewide pilot studies on waterbodies that receive discharge from municipal wastewater treatment plants and stormwater runoff. In addition to directly informing decisions, the data obtained using this framework can be used to construct and validate models that better predict CEC occurrence and toxicity. The adaptive interplay among screening results, diagnostic assessment and predictive modeling will allow managers to make decisions based on the most current and relevant information, instead of extrapolating from parameters with questionable linkage to CEC impacts. Integr Environ Assess Manag 2016;12:540-547. © 2015 SETAC. PMID:26426153

  11. Biological and productive characteristics of apple cultivars resistant or tolerant to scab [Venturia inaequalis (Cooke) Wint.

    OpenAIRE

    Đorđević Boban S.; Vulić Todor B.; Đurović Dejan B.; Milatović Dragan P.; Zec Gordan N.; Radović Aleksandar R.

    2013-01-01

    Biological and productive characteristics of 11 scab-resistant apple cultivars were studied in the period 2011-2012 on the estate of the monastery Žiča in Central Serbia. Control cultivar for comparison was ‘Idared’, as the most spread apple cultivar in Serbia. The earliest blooming was found in cultivar ‘Topaz’, and the latest in cultivar ‘Rewena’. Based on the time of fruit maturation, three cultivars belong to the summer and autumn group, and five cultiv...

  12. Without the Light of Evolution: A Case Study of Resistance and Avoidance in Learning to Teach High School Biology

    Science.gov (United States)

    Larkin, Douglas B.; Perry-Ryder, Gail M.

    2015-01-01

    We present the case of Michael, a prospective high school biology teacher, to explore the implications of teacher resistance and avoidance to the topic of evolution. This case is drawn from a year-long qualitative research study that examined Michael's process of learning to teach high school biology and describes how his avoidance of evolution in…

  13. Effect of biological contamination on dentine bond strength of adhesive resins.

    Science.gov (United States)

    van Schalkwyk, J H; Botha, F S; van der Vyver, P J; de Wet, F A; Botha, S J

    2003-05-01

    The purpose of this in vitro study was to determine the effect of saliva (S) and blood (B) contamination on the dentine bond strength of two single-component dentine bonding systems. The occlusal thirds of 120 recently extracted, human molars were removed with a low speed saw and subsequently embedded in Bencor rings by means of self-curing, acrylic resin. The occlusal surfaces were ground wet on 600-grit silicone carbide paper in a polishing machine to expose superficial dentine and to create a smear layer. The teeth were randomly divided into 12 groups (n = 10). All the dentine surfaces were etched with 34% phosphoric acid for 15 seconds rinsed with water, air-dried for 3 seconds, leaving the surfaces visibly moist. For the control groups (C) the etched dentine surfaces were treated with either, Scotchbond 1 (SB1, 3M) or Prime & Bond NT (PBNT, Dentsply) according to the manufacturer's instructions. In the contaminated groups, the saliva or blood was applied by means of a disposable brush, left undisturbed for 1 minute, and the excess then thinned by air spray. The dentine bonding systems were then applied, also according to manufacturer's instructions. Composite (Z250 and TPH) and Compomer (F2000 and Dyract AP (D-AP)) stubs were packed and cured incrementally to the corresponding pretreated dentine surfaces. All specimens were stored for 24 hours under water at 37 degrees C. The bonds were then stressed to failure with a Zwick testing machine, operating at a crosshead speed of 0.5 mm/min. Fractured samples were examined in a Scanning Electron Microscope. The data were statistically analysed (Student-t test). The mean SBS (MPa) were. SB1 with Z250: C = 19.1 +/- 4.4; S = 17.3 +/- 3.5; B = 2.6 +/- 0.9; SB1 with F2000: C = 11.8 +/- 3.3; S = 9.7 +/- 1.8; B = 4.7 +/- 1.6. PBNT with TPH: C = 9.2 +/- 3.2; S = 6.5 +/- 3.0; B = 4.3 +/- 1.5; PBNT with D-AP: C = 10.2 +/- 3.6; S = 9.3 +/- 2.9 and B = 7.3 +/- 2.5. There was no statistical significant difference in shear bond

  14. Management options for food production systems affected by a nuclear accident. Task 7: biological treatment of contaminated milk

    International Nuclear Information System (INIS)

    In the event of a nuclear accident affecting the UK, regulation of contamination in the foodchain would involve both the Food Standards Agency (FSA) and the Environment Agency (EA). Restrictions would be based on intervention levels imposed by the Council of the European Communities (often referred to as Council Food Intervention Levels, CFILs). FSA would be responsible for preventing commercial foodstuffs with concentrations of radionuclides above the CFILs from entering the foodchain, while EA would regulate the storage and disposal of the waste food. Milk is particularly important in this respect because it is produced continually in large quantities in many parts of the UK. An evaluation of various options for the management of waste foodstuffs has been carried out by NRPB, with support from FSA and its predecessor, the Ministry of Agriculture, Fisheries and Food, and EA. This report describes an evaluation of the practicability of one of those options, namely the biological treatment of contaminated milk. Whole milk has a high content of organic matter and in consequence a high biochemical oxygen demand (BOD) and chemical oxygen demand (COD). If not disposed of properly, releases of whole milk into the environment can have a substantial detrimental effect because of the high BOD. Biological treatments are therefore potentially an attractive management option because the fermentation by bacteria reduces the BOD in the resultant liquid effluent. The objectives of this study were as follows: a. To compile information about the options available for the biological treatment of milk; b. To establish the legal position; c. To assess practicability in terms of technical feasibility, capacity, cost, environmental and radiological impacts and acceptability; d. To assess the radiation doses that might be received by process operators, contractors, farmers and the general public from the biological treatment of contaminated milk. The radionuclides of interest were 131II

  15. Contaminant Interactions and Biological Effects of Single-walled Carbon Nanotubes in a Benthic Estuarine System

    Science.gov (United States)

    Parks, Ashley Nicole

    The fate, bioavailability, bioaccumulation and toxicity of single-walled carbon nanotubes (SWNT) have not been extensively studied to date. Pristine SWNT are highly hydrophobic and have been shown to strongly associate with natural particulate matter in aquatic environments. In light of this, I have focused my research to examine the influence of sediment and food exposure routes on bioavailability, bioaccumulation, and toxicity of structurally diverse SWNT in several ecologically-important marine invertebrate species. No significant mortality was observed in any organism at concentrations up to 1000 mg/kg. Evidence of biouptake after ingestion was observed for pristine semiconducting SWNT using NIRF spectroscopy and for oxidized 14C-SWNT using liquid scintillation counting. After a 24 hour depuration period, the pristine semiconducting SWNT were eliminated from organisms to below the method detection limit (5 microg/mL), and the 14C-SWNT body burden was decreased by an order of magnitude to a bioaccumulation factor (BAF) of invertebrates. Overall, the SWNT were not bioavailable and appear to associate with the sediment. In addition to investigating the toxicity and bioaccumulation of SWNT as an independent toxicant, it is important to consider how they will interact with other contaminants in the environment (i.e., increase or decrease toxicity and bioaccumulation of co-contaminants, alter the environmental transport of co-contaminants, induce degradation of co-contaminants, etc.). I wanted to investigate the effects of SWNT on a complex mixture of contaminants already present in a natural system. New Bedford Harbor (NBH) sediment, which is contaminated with polychlorinated biphenyls (PCBs), was amended with pristine SWNT to determine if the presence of SWNT would mitigate the toxicity and bioaccumulation of the PCBs in deposit-feeding invertebrates. A dilution series of the NBH sediment was created using uncontaminated Long Island Sound (LIS) sediment to test 25

  16. Radiation resistances and decontamination of common pathogenic bacteria contaminated in white scar oyster (Crassostrea belcheri) in Thailand

    International Nuclear Information System (INIS)

    In Thailand, white scar oyster (Crassostrea belcheri) was ranked for premium quality, being most expensive and of high demand. This oyster is often eaten raw, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. As limited alternative methods are available to sterilize the oyster while preserving the raw characteristic, irradiation may be considered as an effective method for decontamination. In this study, the radiation resistance of pathogenic bacteria commonly contaminating the oyster and the optimum irradiation doses for sterilization of the most radiation resistant bacteria were investigated. The radiation decimal reduction doses (D10) of Salmonella Weltevreden DMST 33380, Vibrio parahaemolyticus ATCC 17802 and Vibrio vulnificus DMST 5852 were determined in broth culture and inoculated oyster homogenate. The D10 values of S. Weltevreden, V. parahaemolyticus and V. vulnificus in broth culture were 0.154, 0.132 and 0.059 kGy, while those of inoculated oyster homogenate were 0.330, 0.159 and 0.140 kGy, respectively. It was found that among the pathogens tested, S. Weltevreden was proved to be the most resistant species. An irradiation dose of 1.5 kGy reduced the counts of 105 CFU/g S. Weltevreden inoculated in oyster meat to an undetectable level. The present study indicated that a low-dose irradiation can improve the microbial quality of oyster and further reduce the risks from the food-borne pathogens without adversely affecting the sensory attributes.

  17. Deliberations on the impact of antibiotic contamination on dissemination of antibiotic resistance genes in aquatic environments

    OpenAIRE

    Berglund, Björn

    2014-01-01

    The great success of antibiotics in treating bacterial infectious diseases has been hampered by the increasing prevalence of antibiotic resistant bacteria. Not only does antibiotic resistance threaten to increase the difficulty in treating bacterial infectious diseases, but it could also make medical procedures such as routine surgery and organ transplantations very dangerous to perform. Traditionally, antibiotic resistance has been regarded as a strictly clinical problem and studies of the p...

  18. Mouse like rodents as objective biological marker of radiation and chemical contamination

    International Nuclear Information System (INIS)

    The focus of the paper is the study of nuclear-fuel enterprises or the combination of nuclear-fuel and chemical enterprises influence on the contents of glucocorticoids in suprarenal of mouse like rodents, as well as the level of serotonin in hypothalamus of the mice inhabiting the territory of such industrial enterprises. It is stated that the counting of glucocorticoids of the mice inhabiting the territory contaminated with radiation increases more than by two times, yet the mice inhabiting the territories effected by the combined impact of radiation and chemical waste suffer the major change of the adaptation hormones. Hypertrophy of the suprarenal of mouse like rodents indicates the effect of low dosage of chronic irradiation on small mammals' adaptation system, as well as the boost of this effect in case of the combination of radiation and chemical waste. The hypothalamus of mice inhabiting the contaminated territories shows convincing decrease of serotonin contents in comparison with that of the mammals inhabiting ecologically clean territories. The deficiency of serotonin in the brain can cause depression, anxiety and depending on individual personality nay cause aggression and submissive behavior. Mouse like rodents are objective signs for observation of the chronic impact of environmental factors

  19. Biopiles - demonstration of cost effective biological remediation of furnace oil contaminated soils

    International Nuclear Information System (INIS)

    Approximately 900 tonnes of soil was contaminated at a rural manufacturing facility near Collingwood, Ontario, when a 9000 litre underground furnace oil storage tank sprang a leak. The contaminated soil was excavated and stockpiled at the site and the leak was repaired. The Ontario Ministry of the Environment ordered that the owner treat the soil to the proper criteria or have the soil removed from the site and properly disposed of at a licensed landfill facility. Barenco was hired to treat the soil. Bioremediation began in December 1994 with the creation of nine above-ground biopiles which were constructed through the addition of nutrients (manure from a local farmer). Piping for air injection and treatment were located throughout the biopiles. The biopiles were then covered with 6 mil black HDPE plastic. The progress of the bioremediation was monitored regularly through measurement of carbon dioxide and oxygen concentrations in the biopiles. By October 1995, the soil was treated to within the appropriate criteria. In 10 months, the total petroleum hydrocarbon concentrations in the polluted soil were reduced from an average of 2690 ppm to 275 ppm. This simple and cost effective approach can also be used to remediate soils impacted with diesel fuels

  20. Use of Trichoderma spp.for biological control of the livestock feed contaminant fungus Fusarium proliferatum

    Institute of Scientific and Technical Information of China (English)

    Ruocco M; Ferraioli S; Scala F; Lorito M; Pane F; Ritieni A; Lanzuise S; Ambrosino P; Marra R; Woo S L; Ciliento R; Soriente I

    2004-01-01

    @@ Fusarium spp. are pathogens of many important agricultural crops, and are often strong mycotoxin producers. Fusarium proliferatum, in particular, causes disease in cereals and secretes the toxin Beauvaricin that contaminates livestock feed and cereals, producing a variety of toxicity symptoms ranging from poor weight gain to mortality. Beauvaricin is a cyclodepsipeptide and acts as a potent mycotoxin known to have insecticidal properties. This compound is highly toxic to human cell lines,where it induces apoptosis and specifically inhibits cholesterol acetyltransferase. Nothing is known about the role of this mycotoxin during the interaction of F. proliferatum with other microorganisms, including the fungal antagonists Trichoderma spp. In vitro tests have demonstrated that the antagonistic and mycoparasitic activity of Trichoderma is not inhibited by the presence of Beauvaricin at concentrations up to 10 mg/kg in the substrate. In vivo biocontrol assays on barley and wheat with Trichoderma against F. proliferatum isolates, producing and non-producing Beauvaricin, confirmed the ability of the antagonist to control this pathogen in all cases. Also Trichoderma culture filtrates obtained in conditions that promote _Cell Wall _Degrading Enzyme (CWDE) secretion, were able to inhibit spore germination of different F. proliferatum isolates.These results suggest the possibility of using Trichoderma and/or its metabolites to control contaminants of livestock feed by mycotoxin-producing Fusarium.

  1. Hazard evaluation of soil contaminants from an abandoned oil refinery site with chemical and biological assays

    International Nuclear Information System (INIS)

    The phytotoxic characteristics of soil and leachates of soil from an abandoned oil refinery site were evaluated with rice (Oryza sativa L.) seed germinations and root elongation assays. Toxicity of soil leachates to aquatic animals was determined with acute and martial chronic toxicity tests with Ceriodaphnia dubia, fathead minnows, and Microtox reg-sign. Soil samples from uncontaminated (control) and selected contaminated areas within the old refinery were extracted with Toxic Characteristics Leachate Procedure (TCLP), an aqueous procedure and a supercritical carbon dioxide method. Aqueous extracts of soil from the oil leaded gasoline storage area exhibited greatest effects in all tests. Aqueous extracts from this site also caused a significant reduction in rice root development. Supercritical carbon dioxide extraction proved to be a quick and non-toxic procedure for isolating non-polar organics for assay with aquatic toxicity tests. Subsequent supercritical extracts collected in solvent can help characterize the class of toxicants through HPLC and Gas Chromatography. The toxic constituents were characterized with a Toxicity Identification/Toxicity Reduction Evaluation protocol to fractionate the contaminants into conventional non-polar organics, weak acids, base-neutrals, or heavy metals for subsequent analysis

  2. Expression of a Magnaporthe grisea Elicitor and Its Biological Function in Activating Resistance in Rice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The expression of a protein elicitor from Magnaporthe griesea and its biological function in activating resistance in rice (Oryza sativa L) were reported. The gene of elicitor was expressed in Escherichia coli cells and produced a His6-fusion protein with 42 kD apparent molecular weight on SDS-PAGE. The purified protein could induce the resistance to blast disease, with the control efficiency of 46.47% and 36.41% at the 14th day and the 21st day after blast inoculation, respectively.After treatment with the expressed protein, the phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities were promoted in rice plants, meanwhile, the transcription levels of STKM, FAD, PBZ1 and PR1 genes were increased in rice plants. Moreover, after comparing the profile of total rice leaf proteins on two-dimensional eiectrophoresis gel, about 14proteins were found to be increased in expression level after the expressed protein treatment. All the results indicated that the expressed protein could act as an elicitor to trigger the resistance in rice.

  3. Surface Contaminant Control Technologies to Improve Laser Damage Resistance of Optics

    Directory of Open Access Journals (Sweden)

    Xiaofeng Cheng

    2014-01-01

    Full Text Available The large high-power solid lasers, such as the National Ignition Facility (NIF of America and the Shenguang-III (SG-III laser facility of China, can output over 2.1 MJ laser pulse for the inertial confinement fusion (ICF experiments. Because of the enhancement of operating flux and the expansion of laser driver scale, the problem of contamination seriously influences their construction period and operation life. During irradiation by intense laser beams, the contaminants on the metallic surface of beam tubes can be transmitted to the optical surfaces and lead to damage of optical components. For the high-power solid-state laser facilities, contamination control focuses on the slab amplifiers, spatial filters, and final-optical assemblies. In this paper, an effective solution to control contaminations including the whole process of the laser driver is put forward to provide the safe operation of laser facilities, and the detailed technical methods of contamination control such as washing, cleanliness metrology, and cleanliness protecting are also introduced to reduce the probability of laser-induced damage of optics. The experimental results show that the cleanliness level of SG-III laser facility is much better to ensure that the laser facility can safely operate at high energy flux.

  4. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    Science.gov (United States)

    Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.

    2016-05-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.

  5. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    Science.gov (United States)

    Williams, Wyatt I.; Friedman, Jonathan M.; Gaskin, John F.; Norton, Andrew P.

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgression between two parent species of the invasive shrub tamarisk (Tamarix spp.) in the western United States, and how differences in plant traits affect interactions with a biological control agent. Introgression varied strongly with latitude of origin and was highly correlated with plant performance. Increased levels of T. ramosissima introgression resulted in both higher investment in roots and tolerance to defoliation and less resistance to insect attack. Because tamarisk hybridization occurs predictably on the western U.S. landscape, managers may be able to exploit this information to maximize control efforts. Genetic differentiation in plant traits in this system underpins the importance of plant hybridization and may explain why some biological control releases are more successful than others.

  6. Electrical Resistivity Imaging for Long-Term Monitoring of Contaminant Degradation

    Science.gov (United States)

    The results from this experiment strongly suggest that the resistivity changes seen are the results of the biodegradation of the oil. This conclusion was further supported by the results of the microcosm experiment. These results demonstrate the utility of the resistivity method ...

  7. Surface Contaminant Control Technologies to Improve Laser Damage Resistance of Optics

    OpenAIRE

    Xiaofeng Cheng; Xinxiang Miao; Hongbin Wang; Lang Qin; Yayun Ye; Qun He; Zhiqiang Ma; Longbiao Zhao; Shaobo He

    2014-01-01

    The large high-power solid lasers, such as the National Ignition Facility (NIF) of America and the Shenguang-III (SG-III) laser facility of China, can output over 2.1 MJ laser pulse for the inertial confinement fusion (ICF) experiments. Because of the enhancement of operating flux and the expansion of laser driver scale, the problem of contamination seriously influences their construction period and operation life. During irradiation by intense laser beams, the contaminants on the metallic su...

  8. Control of the surface radioactive contamination in the field of biological research; Control de la contaminacion radiactiva superficial en el ambito de la investigacion biologica

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, S.; Encina, A. de la; Gaspar, J.; Macias, M. T.; Sanchez, A.; Usera, F.

    2012-11-01

    The manipulation of unsealed sources in biomedical research involves significant risk of radioactive contamination. the aim of this study has been to analyze the radioactive contamination occurring in the field of biomedical research, assessing its magnitude, identifying the equipment that can be contaminated with higher probability and monitoring the evolution of the contaminations production taking into account the radioisotopes and the activities uses, and the radiation protection control applied. The data used for this study correspond to a very lengthy period of time and it have been collected in the radioactive facility, of the Centro Nacional de Biotecnologia (CSIC), a very large biological research centre that can be used perfectly as a reference for this area. The results obtained show a gradual and significant decrease in the incidence of the radioactive contamination. This is due to the optimization of radiation protection standards applied and the implementation or a systematic operational radiation protection program. (Author) 13 refs.

  9. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools

    OpenAIRE

    Bourgeault, A.; Gourlay Francé, C.

    2013-01-01

    he suitability of biological methods and chemical-based passive samplers to determine exposure to PAHs was tested by deploying zebra mussels and SPMDs along the Seine River over 11 months. The concentration of 13 PAHs was analyzed every month in both water and mussels. The sum of the PAH concentrations in mussels, initially at 299 ng gdry wt− 1, reached 2654, 3972 and 3727 ng g− 1 at the end of exposure in the three sampling points taken through the river. The respective SPMD-avai...

  10. Application of biotechnology towards the enhancement of maize resistance to aflatoxin contamination by Aspergillus flavus

    Science.gov (United States)

    Contamination of maize with aflatoxins by the fungi Aspergillus flavus and A. parasiticus poses serious health hazards to humans and animals worldwide. This important fact and the regulations instituted in many countries to control the occurrence of aflatoxins in foods and feed have stimulated rese...

  11. Caesium 137: Properties and biological effects resulting of an internal contamination;Cesium 137: proprietes et effets biologiques apres contamination interne

    Energy Technology Data Exchange (ETDEWEB)

    Lestaevel, P.; Racine, R.; Bensoussan, H.; Rouas, C.; Gueguen, Y.; Dublineau, I.; Bertho, J.M.; Gourmelon, P.; Jourdain, J.R.; Souidi, M. [Institut de Radioprotection et de Surete Nucleaire, IRSN, laboratoire de radiotoxicologie experimentale, direction de la radioprotection de l' homme, 92 - Fontenay-aux-Roses (France)

    2010-02-15

    Caesium-137 ({sup 137}Cs) is a radionuclide present in the environment mainly as the result of the atmospheric nuclear weapons testing and accidents arising in nuclear power plants like the Chernobyl accident in 1986. Nowadays, the health consequences resulting from a chronic exposure to this radionuclide remain unknown. After absorption, the caesium is distributed relatively homogeneously within the body, with a more important load in children than in adults. The toxicity of {sup 137}Cs is mainly due to its radiological properties. A high dose of {sup 137}Cs is responsible for a medullar dystrophy, disorders of the reproductive function, and effects on liver and renal functions. Disorders of bone mineralization and brain damages were also described in human beings. At lowest dose, {sup 137}Cs induces disturbances of wakefulness-sleep cycle, but not accompanied with behavioural disorders. The cardiovascular system was also perturbed. Biological effects of {sup 137}Cs on the metabolisms of the vitamin D, cholesterol and steroid hormones were described, but do not lead to clinical symptoms. In human beings, {sup 137}Cs leads to an immune deficiency, congenital and foetal deformations, an increased of thyroid cancer, as well as neurological disorders. It seems that children are more sensitive to the toxic effects of caesium than the adults. At present, the only effective treatment for the decorporation of the ingested {sup 137}Cs is the Prussian Blue (Radiogardase). The use of pectin to de-corporate the ingested {sup 137}Cs, in children notably, is sometimes proposed, but its administration still remains an open question. To conclude, the available scientific data suggest that {sup 137}Cs could affect a number of physiological and metabolic functions and consequently, could participate in the health risks associated to the presence of other contaminants in the environment. (authors)

  12. Radiation resistances and decontamination of common pathogenic bacteria contaminated in white scar oyster (Crassostrea belcheri) in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Thupila, Nunticha [Department of Fishery Products, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Rd. Ladyao, Chatuchak, Bangkok (Thailand); Ratana-arporn, Pattama, E-mail: ffispmr@ku.ac.t [Department of Fishery Products, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Rd. Ladyao, Chatuchak, Bangkok (Thailand); Wilaipun, Pongtep [Department of Fishery Products, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Rd. Ladyao, Chatuchak, Bangkok (Thailand)

    2011-07-15

    In Thailand, white scar oyster (Crassostrea belcheri) was ranked for premium quality, being most expensive and of high demand. This oyster is often eaten raw, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. As limited alternative methods are available to sterilize the oyster while preserving the raw characteristic, irradiation may be considered as an effective method for decontamination. In this study, the radiation resistance of pathogenic bacteria commonly contaminating the oyster and the optimum irradiation doses for sterilization of the most radiation resistant bacteria were investigated. The radiation decimal reduction doses (D{sub 10}) of Salmonella Weltevreden DMST 33380, Vibrio parahaemolyticus ATCC 17802 and Vibrio vulnificus DMST 5852 were determined in broth culture and inoculated oyster homogenate. The D{sub 10} values of S. Weltevreden, V. parahaemolyticus and V. vulnificus in broth culture were 0.154, 0.132 and 0.059 kGy, while those of inoculated oyster homogenate were 0.330, 0.159 and 0.140 kGy, respectively. It was found that among the pathogens tested, S. Weltevreden was proved to be the most resistant species. An irradiation dose of 1.5 kGy reduced the counts of 10{sup 5} CFU/g S. Weltevreden inoculated in oyster meat to an undetectable level. The present study indicated that a low-dose irradiation can improve the microbial quality of oyster and further reduce the risks from the food-borne pathogens without adversely affecting the sensory attributes.

  13. Systems Biology Strategy Reveals PKC-delta is Key for Sensitizing TRAIL-Resistant Human Fibrosarcoma

    Directory of Open Access Journals (Sweden)

    Kentaro eHayashi

    2015-01-01

    Full Text Available Cancer cells are highly variable and resistant to therapeutic intervention. Recently, the use of the tumor necrosis factor related apoptosis-inducing ligand (TRAIL induced treatment is gaining momentum, due to TRAIL’s ability to specifically target cancers with limited effect on normal cells. However, several malignant cancer types still remain non-sensitive to TRAIL. Previously, we developed a dynamic computational model, based on perturbation-response approach, and predicted protein kinase C (PKC as the most effective target, with over 95% capacity to kill human fibrosarcoma (HT1080 in TRAIL stimulation (Piras, V. et al. 2011, Scientific Reports. Here, to validate the model prediction, which has significant implications for cancer treatment, we conducted experiments on two TRAIL-resistant cancer cell lines (HT1080 and HT29. Using PKC inhibitor Bisindolylmaleimide I, we first demonstrate, as predicted by our previous model, cell viability is significantly impaired with over 95% death of both cancer types. Next, to identify crucial PKC isoform from 10 known members, we analyzed their mRNA expressions in HT1080 cells and shortlisted 4 isoforms for siRNA knock-down (KD experiments. From these KDs, PKC-delta produced the most cancer cell death in conjunction with TRAIL. Overall, systems biology approach, combining model prediction with experimental validation, holds promise for TRAIL-based cancer therapy.

  14. Carbapenem-Resistant Acinetobacter baumannii: Concomitant Contamination of Air and Environmental Surfaces.

    Science.gov (United States)

    Shimose, Luis A; Masuda, Eriko; Sfeir, Maroun; Berbel Caban, Ana; Bueno, Maria X; dePascale, Dennise; Spychala, Caressa N; Cleary, Timothy; Namias, Nicholas; Kett, Daniel H; Doi, Yohei; Munoz-Price, L Silvia

    2016-07-01

    OBJECTIVE To concomitantly determine the differential degrees of air and environmental contamination by Acinetobacter baumannii based on anatomic source of colonization and type of ICU layout (single-occupancy vs open layout). DESIGN Longitudinal prospective surveillance study of air and environmental surfaces in patient rooms. SETTING A 1,500-bed public teaching hospital in Miami, Florida. PATIENTS Consecutive A. baumannii-colonized patients admitted to our ICUs between October 2013 and February 2014. METHODS Air and environmental surfaces of the rooms of A. baumannii-colonized patients were sampled daily for up to 10 days. Pulsed-field gel electrophoresis (PFGE) was used to type and match the matching air, environmental, and clinical A. baumannii isolates. RESULTS A total of 25 A. baumannii-colonized patients were identified during the study period; 17 were colonized in the respiratory tract and 8 were colonized in the rectum. In rooms with rectally colonized patients, 38.3% of air samples were positive for A. baumannii; in rooms of patients with respiratory colonization, 13.1% of air samples were positive (P=.0001). In rooms with rectally colonized patients, 15.5% of environmental samples were positive for A. baumannii; in rooms of patients with respiratory colonization, 9.5% of environmental samples were positive (P=.02). The rates of air contamination in the open-layout and single-occupancy ICUs were 17.9% and 21.8%, respectively (P=.5). Environmental surfaces were positive in 9.5% of instances in open-layout ICUs versus 13.4% in single-occupancy ICUs (P=.09). CONCLUSIONS Air and environmental surface contaminations were significantly greater among rectally colonized patients; however, ICU layout did not influence the rate of contamination. Infect Control Hosp Epidemiol 2016;37:777-781. PMID:27045768

  15. Toward Nitrogen-Neutral and Contamination-Resistant Biofuels and Chemicals for a Sustainable Future

    OpenAIRE

    Wernick, David Geoffrey

    2015-01-01

    Biofuel and chemical production through microbial catalysts has been heralded as a route for a renewable future; however, several issues must be resolved before microbes become the workhorse of our energy and chemical industries. Chief amongst these problems is the non-renewable use of reduced nitrogen fertilizers and susceptibility to contamination during fermentation. Previously, the use of engineered Escherichia coli has been demonstrated as a means to recycle reduced nitrogen from protein...

  16. Relationship between resist outgassing and EUV witness sample contamination in NXE outgas qualification using electrons and EUV photons

    Science.gov (United States)

    Pollentier, I.; Tirumala Venkata, A.; Gronheid, R.

    2014-04-01

    EUV photoresists are considered as a potential source of optics contamination, since they introduce irradiation-induced outgassing in the EUV vacuum environment. Therefore, before these resists can be used on e.g. ASML NXE:3100 or NXE:3300, they need to be tested in dedicated equipment according to a well-defined procedure, which is based on exposing a witness sample (WS) in the vicinity of a simultaneously exposed resist as it outgasses. Different system infrastructures are used at multiple sites (e.g. NIST, CNSE, Sematech, EIDEC, and imec) and were calibrated to each other by a detailed test plan. Despite this detailed tool qualifications, a first round robin comparison of identical materials showed inconsistent outgas test results, and required further investigation by a second round robin. Since the resist exposure mode is different at the various locations (some sites are using EUV photons while others use E-gun electrons), this difference has always a point of concern for variability of test results. In this work we compare the outgas test results from EUV photon and electron exposure using the resist materials of the second round robin. Since the imec outgas tester allows both exposure methods on the resist, a within-system comparison is possible and showed limited variation between photon and electron exposure mode. Therefore the system-to-system variability amongst the different outgas test sites is expected to be related to other parameters than the electron/photon exposure mode. Initial work showed that the variability might be related to temperature, E-gun emission excursion, and/or residual outgassing scaled by different wafer areas at the different sites.

  17. Evolutionary malignant resistance of cells to damaging factors as common biological defence mechanism in neoplastic development. Review of conception.

    Science.gov (United States)

    Monceviciute-Eringiene, E

    2000-09-01

    Cells have some inborn resistance to harmful factors, which could be called physiological or natural resistance. The mechanisms of multixenobiotic resistance (MXR) and multidrug resistance (MDR) have common features in the formation of acquired resistance in microorganisms, carcinogenesis, tumour metastases and chemotherapy or irradiation. ATP-dependent membrane P-glycoprotein, as an MDR efflux pump, glutathione S-transferases and other products of evolutionary resistance-related genes arised for exportation and detoxification of cytotoxic xenobiotics and drugs are transmitted from bacteria to man. On the one hand, this evolutionary MXR as a common biological defence mechanism is a "driving" power to conserve homeostasis of cells, tissues and organs. On the other hand, mutation, selection and simplification of properties are the causes of functional and morphological changes in tumour cells which regress to a more primitive mode of existence (atavism) for adaptation to survival. In the present work are presented data on the forms of E. coli resistant to antibiotics and of sarcoma 45 resistant to alkylic preparations. They may be helpful in revealing the causes of resistance and acquired accelerated growth of cells. The development of tumours as fibromas 14-15 years following injection of a vital dye trypan blue into human skin supports our conception that neoplastic growth is a particular case of the evolutionary resistance of cells adapted to the damaging factors. So, tumour cells adopting the enhancement mechanisms of general biological persistent resistance, i. e. undergoing repeated cycles of malignancy enhancement, adapt themselves to survive under the changed unfavourable conditions. PMID:11144527

  18. Calcium phytate: A promising lung perfusion agent without risk of biological contamination

    International Nuclear Information System (INIS)

    Full text: Lung ventilation and perfusion imaging has evolved over the years and its routine use has become widespread, where more than 70% of pulmonary thromboembolism can be diagnosed through the ventilation-perfusion scintigraphy. This non-invasive diagnostic tool offers information on the lung functional vascular bed. Historically the human Albumin macroaggregates and/or microspheres have been the selection radiopharmaceuticals to carry out the lung perfusion studies, where different formulations for diagnostic kits have been developed. However, due to the potential danger that represents the use of haemoderivates in the transmission of viral illnesses, specifically the Hepatitis C and the VIH, our country suspended at the beginning of the last decade the import of these kits. As a result of this decision we tried to obtain a reagent kit based on non-derived blood particles that were big enough to be caught by pulmonary capillaries and to allow its use in the lung perfusion imaging. For this purpose was used phytate, because of the Inositol hexaphosphoric acid (phytic acid) forms complex with numerous cations, many of which show a markedly lower solubility to that of the sodium phytate in biological systems, being the chosen cation Ca2+. The experiments were carried out starting from a complete factorial design of the type 22, where the employed variables were: Ca2+ concentration varied ranging from 5 to 15 mg of Ca2+ for a Ca2+:Phytate molar ratio of 4.6:1 and 13.8:1, respectively. Addition order of reagents, pre-supposing that this last influenced in the size of the particles: Variant 1: Ca-Tc/Phytate; Variant 2: Tc-Phytate/Ca. (author)

  19. State of Utah Space Environment & Contamination Study (SUSpECS) MISSE-6 Payload to Investigate Their Effects on Electron Emission and Resistivity of Spacecraft Materials

    OpenAIRE

    Dennison, JR; Pearson, L; Davis, L; Burns, J W; Hyde, R. S.; James S. Dyer; Andrus, Tina; Auman, Andrew Jay; Duce, Jeff; Neilsen, Tim; Leishman, Rob

    2005-01-01

    A study of the effects of prolonged exposure to the space environment and of charge-enhanced contamination on the electron emission and resistivity of spacecraft materials, the State of Utah Space Environment & Contamination Study (SUSpECS), is planned for flight aboard the MISSE-6 payload. The Materials International Space Station Experiment (MISSE-6) program is designed to characterize the performance of candidate new space materials over the course of approximately four to eight month expo...

  20. Biostimulation of metal-resistant microbial consortium to remove zinc from contaminated environments.

    Science.gov (United States)

    Mejias Carpio, Isis E; Franco, Diego Castillo; Zanoli Sato, Maria Inês; Sakata, Solange; Pellizari, Vivian H; Seckler Ferreira Filho, Sidney; Frigi Rodrigues, Debora

    2016-04-15

    Understanding the diversity and metal removal ability of microorganisms associated to contaminated aquatic environments is essential to develop metal remediation technologies in engineered environments. This study investigates through 16S rRNA deep sequencing the composition of a biostimulated microbial consortium obtained from the polluted Tietê River in São Paulo, Brazil. The bacterial diversity of the biostimulated consortium obtained from the contaminated water and sediment was compared to the original sample. The results of the comparative sequencing analyses showed that the biostimulated consortium and the natural environment had γ-Proteobacteria, Firmicutes, and uncultured bacteria as the major classes of microorganisms. The consortium optimum zinc removal capacity, evaluated in batch experiments, was achieved at pH=5 with equilibrium contact time of 120min, and a higher Zn-biomass affinity (KF=1.81) than most pure cultures previously investigated. Analysis of the functional groups found in the consortium demonstrated that amine, carboxyl, hydroxyl, and phosphate groups present in the consortium cells were responsible for zinc uptake. PMID:26849331

  1. Construction of biological control strain of Trichoderma viride and study of their ability to induce plant disease resistance

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-wang; GUO Ze-jian

    2004-01-01

    @@ Plant diseases heavily affct plant growth and crop yield even in modern agriculture. Control its difficult because pathogens mutate frequently, and this leads in frequent breaking of disease resistance in commercial cultivars. The excessive application of chemical pesticides is not only producing pesticideresistant pathogens, but it is harming the environment threatening the health of human beings.Therefore, the use of biological control agents (BCA) may provide an environmental friendly alternative to chemicals for plant disease control. Hypersensitive response (HR) and systemic acquired resistance (SAR) are the typical expressions of plant defense reactions. Once SAR is established,, the plants exhibits a broad-spectrum of disease resistance against pathogen attack. Researchers have identified elicitor proteins, such as elicitins and harpins, which activate plant defense reactions. It would be useful to explore the possibility of using biological control agents to induce a status of SAR in crop plants.

  2. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    International Nuclear Information System (INIS)

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  3. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

    2011-04-01

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  4. GEOPHYSICS AND SITE CHARACTERIZATION AT THE HANFORD SITE THE SUCCESSFUL USE OF ELECTRICAL RESISTIVITY TO POSITION BOREHOLES TO DEFINE DEEP VADOSE ZONE CONTAMINATION - 11509

    Energy Technology Data Exchange (ETDEWEB)

    GANDER MJ; LEARY KD; LEVITT MT; MILLER CW

    2011-01-14

    Historic boreholes confirmed the presence of nitrate and radionuclide contaminants at various intervals throughout a more than 60 m (200 ft) thick vadose zone, and a 2010 electrical resistivity survey mapped the known contamination and indicated areas of similar contaminants, both laterally and at depth; therefore, electrical resistivity mapping can be used to more accurately locate characterization boreholes. At the Hanford Nuclear Reservation in eastern Washington, production of uranium and plutonium resulted in the planned release of large quantities of contaminated wastewater to unlined excavations (cribs). From 1952 until 1960, the 216-U-8 Crib received approximately 379,000,000 L (100,000,000 gal) of wastewater containing 25,500 kg (56,218 lb) uranium; 1,029,000 kg (1,013 tons) of nitrate; 2.7 Ci of technetium-99; and other fission products including strontium-90 and cesium-137. The 216-U-8 Crib reportedly holds the largest inventory of waste uranium of any crib on the Hanford Site. Electrical resistivity is a geophysical technique capable of identifying contrasting physical properties; specifically, electrically conductive material, relative to resistive native soil, can be mapped in the subsurface. At the 216-U-8 Crib, high nitrate concentrations (from the release of nitric acid [HNO{sub 3}] and associated uranium and other fission products) were detected in 1994 and 2004 boreholes at various depths, such as at the base of the Crib at 9 m (30 ft) below ground surface (bgs) and sporadically to depths in excess of 60 m (200 ft) bgs. These contaminant concentrations were directly correlative with the presence of observed low electrical resistivity responses delineated during the summer 2010 geophysical survey. Based on this correlation and the recently completed mapping of the electrically conductive material, additional boreholes are planned for early 2011 to identify nitrate and radionuclide contamination: (a) throughout the entire vertical length of the

  5. Cellular resistance in radio- and chemotherapy: biological basis and strategies for circumvention

    International Nuclear Information System (INIS)

    In this review the author points out that resistance to cytotoxic drugs is a complex, multifactorial phenomenon involving a range of mechanisms. There is accumulating evidence that these are of relevance to both inherent and acquired resistance in the clinic. Demonstration that mechanisms of drug and radiation resistance are closely linked provides a basis for the related patterns of responsiveness observed in clinical practice. Strategies for circumvention of resistance mechanisms will depend for success upon finding ways of improving therapeutic ratio. Optimal clinical trial of resistance circumvention strategies will require the use of quantitative markers of resistance mechanisms in tumour and normal tissues. (author)

  6. STUDY OF COLONIZATION RESISTANCE FOR ENTEROBACTERIACEAE IN MAN BY EXPERIMENTAL CONTAMINATION AND BIOTYPING AS WELL AS THE POSSIBLE ROLE OF ANTIBODIES IN THE CLEARANCE OF THESE BACTERIA FROM THE INTESTINES

    NARCIS (Netherlands)

    APPERLOORENKEMA, HZ; VANDERWAAIJ, D

    1991-01-01

    The colonization resistance (CR) of the digestive tract was determined in 10 healthy volunteers by oral contamination with a neomycin resistant Escherichia coli (NR-E. coli) strain and measurement of the faecal concentration of this strain during 14 days after the contamination. This 'gold standard'

  7. Resistance to Aspergillus flavus in maize and peanut:Molecular biology, breeding, environmental stress,and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Jake; C.Fountain; Pawan; Khera; Liming; Yang; Spurthi; N.Nayak; Brian; T.Scully; Robert; D.Lee; Zhi-Yuan; Chen; Robert; C.Kemerait; Rajeev; K.Varshney; Baozhu; Guo

    2015-01-01

    The colonization of maize(Zea mays L.) and peanut(Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species(ROS) within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A.flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  8. Resistance to Aspergillus flavus in maize and peanut:Molecular biology, breeding, environmental stress, and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Jake C. Fountain; Baozhu Guo; Pawan Khera; Liming Yang; Spurthi N. Nayak; Brian T. Scully; Robert D. Lee; Zhi-Yuan Chen; Robert C. Kemerait; Rajeev K. Varshney

    2015-01-01

    The colonization of maize (Zea mays L.) and peanut (Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS) within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  9. Determining the bioavailability and toxicity of lead contamination to earthworms requires using a combination of physicochemical and biological methods

    International Nuclear Information System (INIS)

    This study aimed at assessing the bioavailability and toxicity of lead to Eisenia andrei in shooting range soils representing different land uses (forest, grassland, bullet plot). Soils contained 47–2398 mg Pb/kg dry weight (dw), but also had different pH-CaCl2 (3.2–6.8) and organic matter contents (3.8–13%). Therefore artificial soils with different pH and organic matter contents and two natural soils were included as control soils. Earthworms were exposed for 28 days and toxicity and uptake of Pb were related to total, water and 0.01 M CaCl2 extractable and porewater Pb concentrations as well as to soil characteristics. Pb uptake in the earthworms linearly increased with increasing soil concentrations. At >2000 mg Pb/kg dw and pH 3.3–3.5, high earthworm mortality with significant weight loss and complete inhibition of reproduction were recorded. At <1000 mg/kg dw, earthworm reproduction was more related to differences in pH and other soil characteristics than to Pb. -- Highlights: • Availability and earthworm toxicity of Pb determined in field-contaminated soils. • Earthworm toxicity of most-polluted soils explained from available Pb levels. • Earthworm response in less polluted soils mainly determined by soil pH. • Earthworm toxicity correlated with Pb uptake from the soil. • Soil properties explained differences in earthworm Pb uptake and effects. -- Combination of physicochemical and biological assays helped explaining Pb toxicity in shooting range soils from available Pb concentrations and soil characteristics

  10. Measuring biological responses at different levels of organisation to assess the effects of diffuse contamination derived from harbour and industrial activities in estuarine areas.

    Science.gov (United States)

    de los Ríos, A; Pérez, L; Echavarri-Erasun, B; Serrano, T; Barbero, M C; Ortiz-Zarragoitia, M; Orbea, A; Juanes, J A; Cajaraville, M P

    2016-02-15

    To evaluate the effects of diffuse contamination, biological measurements were applied in a scrap cargo harbour, a marina and an industrial area. Metal accumulation and biomarkers (survival in air, digestive gland and gonad histopathology, lysosomal membrane stability, intralysosomal metal accumulation, transcription of vitellogenin and MT20, peroxisome proliferation and micronuclei formation) were measured in transplanted mussels, together with metrics of benthic invertebrates. Benthic species were classified into ecological groups and univariate indexes were calculated. The marina showed high richness (16) and percentage of opportunistic species (55.1%) and low metal accumulation. Mussels in the scrap cargo harbour showed high metal accumulation, up-regulation of MT20 transcription, reduced health status (LP<6 min) and increased micronuclei frequencies (up to 11.3‰). At the industrial area, low species richness (4) and badly organised assemblages were detected and chemical analyses indicated significant amounts of bioavailable metals. Overall, selected biological measurements showed potential for the assessment of diffuse contamination. PMID:26707886

  11. Potatoes - A crop resistant against input of heavy metals from the metallicaly contaminated soil.

    Science.gov (United States)

    Musilova, Janette; Bystricka, Judita; Lachman, Jaromir; Harangozo, Lubos; Trebichalsky, Pavol; Volnova, Beata

    2016-06-01

    The objective of our study was to assess the extent of accumulation of cadmium, lead and zinc in potato tubers depending on the concentration of these heavy metals in soil and to evaluate the resistance of 11 cultivars of potato cultivated in 5 localities of the Slovakia against input of these heavy metals into the consumption part of potato. Contents of Cd (Pb, Zn) in soil were 0.94-2.54 (18.03-24.90, 35.71-72.40) mg/kg in soil extract by aqua regia and 0.030-0.188 (0.149-0.356, 0.052-0.238) mg/kg in soil extract by NH4NO3. The contents of Cd, Pb, and Zn were determined in potatoes in extracts of freeze-dried samples and expressed in mg/kg of fresh matter (FM). Determined contents of heavy metals were in the range of ND-0.058 mg Cd/kg FM, 0.020-0.630 mg Pb/kg FM, 1.836-3.457 mg Zn/kg FM, resp. The statistically significant correlation between heavy metal content in soil and its content in potato tubers were confirmed only: cv. Laura - Spissky Stvrtok (Cd), cv. Red Anna - Odorin (Pb) and Marabel, Red Anna - Odorin, cv. Marabel - Belusa, cv. Volumia - Imel (Zn). PMID:26421760

  12. Contamination of lettuce with antibiotic resistant E. coli after slurry application

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Storm, Christina; Baggesen, Dorte Lau;

    2011-01-01

    was therefore performed to assess the survival and transfer of antibiotic-resistant E. coli from animal manure to lettuces, with E. coli serving as an indicator of bacterial enteric pathogens. Animal slurry was applied to 3 Danish fields prior to planting of lettuce seedlings, then 5-8 weeks later at...... the normal time of harvest, inner and outer leafs of 10 lettuce heads were pooled into one sample unit with a total of 50 pools per field. Additionally, in one field, 15 soil samples were collected weekly until the harvest time. E. coli was enumerated by plating 1 mL of 10-fold serial dilutions of 5 g...... of homogenized sample material, i.e. manure, soil and lettuce onto PetrifilmTM Select E. coli count plates (3M) containing 16 mg/L streptomycin or 16 mg/L ampicilin or no antibiotics. Plates were then incubated 24 h at 44°C. Selected isolates of E. coli (n=83) from slurry, soil and lettuce were...

  13. Evaluation of the Human Host Range of Bovine and Porcine Viruses that may Contaminate Bovine Serum and Porcine Trypsin Used in the Manufacture of Biological Products

    OpenAIRE

    Marcus-Sekura, Carol; Richardson, James C.; Rebecca K. Harston; Sane, Nandini; Sheets, Rebecca L.

    2011-01-01

    Current U.S. requirements for testing cell substrates used in production of human biological products for contamination with bovine and porcine viruses are U.S. Department of Agriculture (USDA) 9CFR tests for bovine serum or porcine trypsin. 9CFR requires testing of bovine serum for seven specific viruses in six families (immunofluorescence) and at least 2 additional families non-specifically (cytopathicity and hemadsorption). 9CFR testing of porcine trypsin is for porcine parvovirus. Recent ...

  14. Target and non-target screening strategies for organic contaminants, residues and illicit substances in food , environmental and human biological samples by UHPLC-QTOF-MS

    OpenAIRE

    Hernández Hernández, Félix; Díaz San Pedro, Ramón; Sancho Llopis, Juan Vicente; Ibáñez Martínez, María

    2012-01-01

    In this paper, we illustrate the potential of ultra-high performance liquid chromatography (UHPLC) coupled with hybrid quadrupole time-of-flight mass spectrometry (QTOF MS) for large scale screening of organic contaminants in different types of samples. Thanks to the full-spectrum acquisition at satisfactory sensitivity, it is feasible to apply both (post)-target and non-target approaches for the rapid qualitative screening of organic pollutants in food, biological and environmental samples. ...

  15. Time-lapse resistivity monitoring - two new approaches for imaging the evolution of a conductive contaminant

    Science.gov (United States)

    Hayley, K. H.; Bentley, L. R.; Pidlisecky, A.

    2010-12-01

    Time-lapse electrical resistivity monitoring is a powerful tool for observing dynamic changes in the subsurface. In particular it offers the potential to increase the fidelity of inversion results through the inclusion of complementary information from multiple time-steps. This inclusion of complementary information can reduce the need for spatial smoothing, without adding inversion artifacts to the resulting images. Commonly used time-lapse inversion methods include the ratio method, cascaded time-lapse inversion, difference inversion and differencing independent inversions. With this work, we introduce two additional methods in which two (or more) time-lapse data sets are inverted simultaneously. In the first, called temporally constrained time-lapse inversion, inversion of both datasets is done under a single optimization procedure where constraints are added to the regularization to ensure that the changes from one time to another are smooth. In the second method, called simultaneous time-lapse inversion, the inversions at time-step 1 and time-step 2 are performed simultaneously, with constraints of smoothness and closeness to a reference model applied to the difference image produced at each iteration. Within the simultaneous framework the constraints are effectively updated at each iteration. Through both a numerical and a field example we compare the results of common time-lapse inversion methods as well as the introduced approaches. We found that of the currently used common time-lapse inversion methods the difference inversion method produced the best resolution of time-lapse changes and was the most robust in the presence of noise. However, we found the new alternative approach of simultaneous time-lapse inversion produced the best reconstruction of modeled EC changes in the numerical example and easily interpretable high resolution difference images in the field example. Moreover, there was less tailoring of regularization parameters with our

  16. Assessing the emergence of resistance: the absence of biological cost in vivo may compromise fosfomycin treatments for P. aeruginosa infections.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    Full Text Available BACKGROUND: Fosfomycin is a cell wall inhibitor used efficiently to treat uncomplicated urinary tract and gastrointestinal infections. A very convenient feature of fosfomycin, among others, is that although the expected frequency of resistant mutants is high, the biological cost associated with mutation impedes an effective growth rate, and bacteria cannot offset the obstacles posed by host defenses or compete with sensitive bacteria. Due to the current scarcity of new antibiotics, fosfomycin has been proposed as an alternative treatment for other infections caused by a wide variety of bacteria, particularly Pseudomonas aeruginosa. However, whether fosfomycin resistance in P. aeruginosa provides a fitness cost still remains unknown. PRINCIPAL FINDINGS: We herein present experimental evidence to show that fosfomycin resistance cannot only emerge easily during treatment, but that it is also cost-free for P. aeruginosa. We also tested if, as has been reported for other species such as Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis, fosfomycin resistant strains are somewhat compromised in their virulence. As concerns colonization, persistence, lung damage, and lethality, we found no differences between the fosfomycin resistant mutant and its sensitive parental strain. The probability of acquisition in vitro of resistance to the combination of fosfomycin with other antibiotics (tobramycin and imipenem has also been studied. While the combination of fosfomycin with tobramycin makes improbable the emergence of resistance to both antibiotics when administered together, the combination of fosfomycin plus imipenem does not avoid the appearance of mutants resistant to both antibiotics. CONCLUSIONS: We have reached the conclusion that the use of fosfomycin for P. aeruginosa infections, even in combined therapy, might not be as promising as expected. This study should encourage the scientific community to assess the in vivo cost of resistance

  17. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  18. As-resistance in laboratory-reared F1, F2 and F3 generation offspring of the earthworm Lumbricus rubellus inhabiting an As-contaminated mine soil

    Energy Technology Data Exchange (ETDEWEB)

    Langdon, C.J., E-mail: clangdon1@btinternet.co [C/O The Open University in the North, Baltic Buiness Quarter, Abbots Hill, Gateshead NE8 3DF (United Kingdom); Morgan, A.J., E-mail: morganaj1@cardiff.ac.u [Cardiff School of Biosciences, Cardiff University, P.O. Box 913, Cardiff CF11 3TL, Wales (United Kingdom); Charnock, J.M., E-mail: john.charnock@manchester.ac.u [STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD (United Kingdom); School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Semple, K.T., E-mail: k.semple@lancaster.ac.u [Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Lowe, C.N., E-mail: cnlowe@uclan.ac.u [School of Built and Natural Environment, University of Central Lancashire, Preston PR1 2HE (United Kingdom)

    2009-11-15

    Previous studies provided no unequivocal evidence demonstrating that field populations of Lumbricus rubellus Hoffmeister (1843), exhibit genetically inherited resistance to As-toxicity. In this study F1, F2 and F3 generation offspring derived from adults inhabiting As-contaminated field soil were resistant when exposed to 2000 mg kg{sup -1} sodium arsenate. The offspring of uncontaminated adults were not As-resistant. Cocoon viability was 80% for F1 and 82% for F2 offspring from As-contaminated adults and 59% in the F1 control population. High energy synchrotron analysis was used to determine whether ligand complexation of As differed in samples of: resistant mine-site adults, the resistant F1 and F2 offspring of the mine-site earthworms exposed to the LC{sub 25} sodium arsenate (700 mg kg{sup -1}) of the F1 parental generation; and adult L. rubellus from an uncontaminated site exposed to LC{sub 25} concentrations of sodium arsenate (50 mg kg{sup -1}). XANES and EXAFS indicated that As was present as a sulfur-coordinated species. - As-resistance in F1, F2 and F3 offspring of the earthworm Lumbricus rubellus.

  19. Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy C.; Versteeg, Roelof J.; Rockhold, Mark L.; Slater, Lee D.; Ntarlagiannis, Dimitrios; Greenwood, William J.; Zachara, John M.

    2012-09-17

    Continuing advancements in subsurface electrical resistivity tomography (ERT) are giving the method increasing capability for understanding shallow subsurface properties and processes. The inability of ERT imaging data to uniquely resolve subsurface structure and the corresponding need include constraining information remains one of the greatest limitations, and provides one of the greatest opportunities, for further advancing the utility of the method. In this work we describe and demonstrate a method of incorporating constraining information into an ERT imaging algorithm in the form on discontinuous boundaries, known values, and spatial covariance information. We demonstrate the approach by imaging a uranium-contaminated wellfield at the Hanford Site in southwestern Washington State, USA. We incorporate into the algorithm known boundary information and spatial covariance structure derived from the highly resolved near-borehole regions of a regularized ERT inversion. The resulting inversion provides a solution which fits the ERT data (given the estimated noise level), honors the spatial covariance structure throughout the model, and is consistent with known bulk-conductivity discontinuities. The results are validated with core-scale measurements, and display a significant improvement in accuracy over the standard regularized inversion, revealing important subsurface structure known influence flow and transport at the site.

  20. Reduction of Clostridium Difficile and vancomycin-resistant Enterococcus contamination of environmental surfaces after an intervention to improve cleaning methods

    Directory of Open Access Journals (Sweden)

    Yadavalli Gopala K

    2007-06-01

    Full Text Available Abstract Background Contaminated environmental surfaces may play an important role in transmission of some healthcare-associated pathogens. In this study, we assessed the adequacy of cleaning practices in rooms of patients with Clostridium difficile-associated diarrhea (CDAD and vancomycin-resistant Enterococcus (VRE colonization or infection and examined whether an intervention would result in improved decontamination of surfaces. Methods During a 6-week period, we cultured commonly touched surfaces (i.e. bedrails, telephones, call buttons, door knobs, toilet seats, and bedside tables in rooms of patients with CDAD and VRE colonization or infection before and after housekeeping cleaning, and again after disinfection with 10% bleach performed by the research staff. After the housekeeping staff received education and feedback, additional cultures were collected before and after housekeeping cleaning during a 10-week follow-up period. Results Of the 17 rooms of patients with VRE colonization or infection, 16 (94% had one or more positive environmental cultures before cleaning versus 12 (71% after housekeeping cleaning (p = 0.125, whereas none had positive cultures after bleach disinfection by the research staff (p Conclusion Our findings provide additional evidence that simple educational interventions directed at housekeeping staff can result in improved decontamination of environmental surfaces. Such interventions should include efforts to monitor cleaning and disinfection practices and provide feedback to the housekeeping staff.

  1. Genome Analysis of the First Extensively Drug-Resistant (XDR) Mycobacterium tuberculosis in Malaysia Provides Insights into the Genetic Basis of Its Biology and Drug Resistance.

    Science.gov (United States)

    Kuan, Chee Sian; Chan, Chai Ling; Yew, Su Mei; Toh, Yue Fen; Khoo, Jia-Shiun; Chong, Jennifer; Lee, Kok Wei; Tan, Yung-Chie; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2015-01-01

    The outbreak of extensively drug-resistant tuberculosis (XDR-TB) has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia. PMID:26110649

  2. Limiting the Spread of Resistant Pneumococci: Biological and Epidemiologic Evidence for the Effectiveness of Alternative Interventions

    OpenAIRE

    Schrag, Stephanie J.; Beall, Bernard; Scott F Dowell

    2000-01-01

    Streptococcus pneumoniae infections are a leading cause of respiratory illness in young children, the elderly, and persons with chronic medical conditions. The emergence of multidrug-resistant pneumococci has compromised the effectiveness of antibiotic therapy for pneumococcal infections. As antibiotic-resistant strains increase in prevalence, there is a need for interventions that minimize the spread of resistant pneumococci. In this review we provide a framework for understanding the spread...

  3. Short-Term and Long-Term Biological Effects of Chronic Chemical Contamination on Natural Populations of a Marine Bivalve.

    Directory of Open Access Journals (Sweden)

    Marine Breitwieser

    Full Text Available Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites.

  4. Short-Term and Long-Term Biological Effects of Chronic Chemical Contamination on Natural Populations of a Marine Bivalve.

    Science.gov (United States)

    Breitwieser, Marine; Viricel, Amélia; Graber, Marianne; Murillo, Laurence; Becquet, Vanessa; Churlaud, Carine; Fruitier-Arnaudin, Ingrid; Huet, Valérie; Lacroix, Camille; Pante, Eric; Le Floch, Stéphane; Thomas-Guyon, Hélène

    2016-01-01

    Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia) at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational) responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases) as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides) in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde) were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites) than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites. PMID:26938082

  5. On the multiscale origins of fracture resistance in human bone and its biological degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Barth, Holly D.; Ritchie, Robert O.

    2012-03-09

    Akin to other mineralized tissues, human cortical bone can resist deformation and fracture due to the nature of its hierarchical structure, which spans the molecular to macroscopic length-scales. Deformation at the smallest scales, mainly through the composite action of the mineral and collagen, contributes to bone?s strength or intrinsic fracture resistance, while crack-tip shielding mechanisms active on the microstructural scale contribute to the extrinsic fracture resistance once cracking begins. The efficiency with which these structural features can resist fracture at both small and large length-scales becomes severely degraded with such factors as aging, irradiation and disease. Indeed aging and irradiation can cause changes to the cross-link profile at fibrillar length-scales as well as changes at the three orders of magnitude larger scale of the osteonal structures, both of which combine to inhibit the bone's overall resistance to the initiation and growth of cracks.

  6. As-resistance in laboratory-reared F1, F2 and F3 generation offspring of the earthworm Lumbricus rubellus inhabiting an As-contaminated mine soil.

    Science.gov (United States)

    Langdon, C J; Morgan, A J; Charnock, J M; Semple, K T; Lowe, C N

    2009-11-01

    Previous studies provided no unequivocal evidence demonstrating that field populations of Lumbricus rubellus Hoffmeister (1843), exhibit genetically inherited resistance to As-toxicity. In this study F1, F2 and F3 generation offspring derived from adults inhabiting As-contaminated field soil were resistant when exposed to 2000 mg kg(-1) sodium arsenate. The offspring of uncontaminated adults were not As-resistant. Cocoon viability was 80% for F1 and 82% for F2 offspring from As-contaminated adults and 59% in the F1 control population. High energy synchrotron analysis was used to determine whether ligand complexation of As differed in samples of: resistant mine-site adults, the resistant F1 and F2 offspring of the mine-site earthworms exposed to the LC(25) sodium arsenate (700 mg kg(-1)) of the F1 parental generation; and adult L. rubellus from an uncontaminated site exposed to LC(25) concentrations of sodium arsenate (50 mg kg(-1)). XANES and EXAFS indicated that As was present as a sulfur-coordinated species. PMID:19501438

  7. Chemical and biological contamination of fish products; Contaminazione chimica e biologica dei prodotti della pesca. Corso tenuto presso l`Istituto Superiore di Sanita`, Roma, 1-2 giugno 1994

    Energy Technology Data Exchange (ETDEWEB)

    Stacchini, Angelo [Istituto Superiore di Sanita`, Rome (Italy). Lab. Alimenti

    1997-03-01

    The first contribution deals with chemical contaminants, particularly heavy metals and their acceptable daily intake (ADI). The following contributions deals with sanitary measures concerning biological contamination associated with the consumption of seafood, especially shellfish, taking into consideration the epidemiological relevance of some biological contaminants in Italy and Europe. Particular sanitary aspects concerning the presence of enteric viruses in mussels are presented; new molecular biology methodologies and the different techniques for enteroviruses concentration are discussed. Some questions concerning the detection of algal bio toxins are shown, based on the experience recently acquired by the Istituto Superiore di Sanita` about the biological methods. The current chromatographic methods for PSP and DSP biotoxin determination and the most recent developments in chemical methods based on liquid chromatography and mass spectrometric techniques are presented. The last section is devoted to the parasitic contamination of seafood.

  8. Resident cats in small animal veterinary hospitals carry multi-drug resistant enterococci and are likely involved in cross-contamination of the hospital environment

    OpenAIRE

    LudekZurek; KateKuKanich

    2012-01-01

    In the USA, small animal veterinary hospitals (SAVHs) commonly keep resident cats living permanently as pets within their facilities. Previously, multi-drug resistant (MDR) enterococci were found as a contaminant of multiple surfaces within such veterinary hospitals, and nosocomial infections are a concern. The objectives of this study were to determine whether resident cats carry MDR enterococci and to compare the feline isolates genotypically to those obtained from SAVH surfaces in a previo...

  9. PRELIMINARY STUDY ON ENHANCED PROPERTIES AND BIOLOGICAL RESISTANCE OF CHEMICALLY MODIFIED ACACIA SPP.

    Directory of Open Access Journals (Sweden)

    H. P. S. Abdul Khalil

    2010-11-01

    Full Text Available A preliminary experimental study was carried out to examine the ability of a chemically modified Acacia spp. to resist biodegradation. The modifications of Acacia mangium and Acacia hybrid were carried out by propionic anhydride and succinic anhydride in the presence of sodium formate as a catalyst. The treated samples were found resistant to microbial attack, while the untreated ones were damaged on 12 months exposure to a soil burial. The appearance grading, mass loss, mechanical properties, and scanning electron microscopy results revealed that chemical modification enhances the resistance of Acacia mangium and Acacia hybrid wood species to biodegradation.

  10. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kundi; Li, Fuli [Chinese Academy of Sciences, Qingdao (China). Qingdao Inst. of Bioenergy and Bioprocess Technology

    2011-05-15

    A novel bacterium, Cr-10, was isolated from a chromium-contaminated site and capable of removing toxic chromium species from solution by reducing hexavalent chromium to an insoluble precipitate. Sequence analysis of 16S rRNA gene of strain Cr-10 showed that it was most closely related to Serratia rubidaea JCM 1240{sup T} (97.68%). Physiological and chemotaxonomic data also supported that strain Cr-10 was identified as Serratia sp., a genus which was never specially reported chromate-resistant before. Serratia sp., Cr-10 was tolerant to a concentration of 1,500 mg Cr(VI) L{sup -1}, which was the highest level reported until now. The optimum pH and temperature for reduction of Cr(VI) by Serratia sp. Cr-10 were found to be 7.0 and 37 C, respectively. The Cr(VI) reduction was significantly influenced by additional carbon sources, and among them fructose and lactose offered maximum reduction, with a rate of 0.28 and 0.25 mg Cr(VI) L{sup -1} h{sup -1}, respectively. The cell-free extracts and filtrate of the culture were able to reduce Cr(VI) while concentration of total chromium remained stable in the process, indicating that the enzyme-catalyzed mechanism was applied in Cr(VI) reduction by the isolate. Additionally, it was found that there was hardly any chromium on the cell surface of the strain, further supporting that reduction, rather than bioadsorption, plays a major role in the Cr(VI) removal. (orig.)

  11. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments.

    Science.gov (United States)

    Kim, Min-Suk; Min, Hyun-Gi; Koo, Namin; Park, Jeongsik; Lee, Sang-Hwan; Bak, Gwan-In; Kim, Jeong-Gyu

    2014-12-15

    Spent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp. chinensis Jusl.) was conducted for the biological assessment. When SCG and SCG-char were applied to acid mine drainage, the heavy metal concentrations were decreased and the pH was increased. However, for SCG, the phytotoxicity increased because a massive amount of dissolved organic carbon was released from SCG. In contrast, SCG-char did not exhibit this phenomenon because any easily released organic matter was removed during pyrolysis. While the bioavailable heavy metal content decreased in soils treated with SCG or SCG-char, the phytotoxicity only rose after SCG treatment. According to our statistical methodology, bioavailable Pb, Cu and As, as well as the electrical conductivity representing an increase in organic content, affected the phytotoxicity of soil. Therefore, applying SCG during environment remediation requires careful biological assessments and evaluations of the efficiency of this remediation technology. PMID:25242543

  12. An update on molecular biology and drug resistance mechanisms of multiple myeloma.

    Science.gov (United States)

    Mutlu, Pelin; Kiraz, Yağmur; Gündüz, Ufuk; Baran, Yusuf

    2015-12-01

    Multiple myeloma (MM), a neoplasm of plasma cells, is the second most common hematological malignancy. Incidance rates increase after age 40. MM is most commonly seen in men and African-American population. There are several factors to this, such as obesity, environmental factors, family history, genetic factors and monoclonal gammopathies of undetermined significance (MGUS) that have been implicated as potentially etiologic. Development of MM involves a series of complex molecular events, including chromosomal abnormalities, oncogene activation and growth factor dysregulation. Chemotherapy is the most commonly used treatment strategy in MM. However, MM is a difficult disease to treat because of its marked resistance to chemotherapy. MM has been shown to be commonly multidrug resistance (MDR)-negative at diagnosis and associated with a high incidence of MDR expression at relapse. This review deals with the molecular aspects of MM, drug resistance mechanisms during treatment and also possible new applications for overcoming drug resistance. PMID:26235594

  13. Resident cats in small animal veterinary hospitals carry multi-drug resistant enterococci and are likely involved in cross-contamination of the hospital environment

    Directory of Open Access Journals (Sweden)

    LudekZurek

    2012-02-01

    Full Text Available In the U.S., small animal veterinary hospitals (SAVHs commonly keep resident cats living permanently as pets within their facilities. Previously, multi-drug resistant (MDR enterococci were found as a contaminant of multiple surfaces within such veterinary hospitals, and nosocomial infections are a concern. The objectives of this study were to determine whether resident cats carry MDR enterococci and if they potentially play a role in the contamination of the hospital environment. Enterococcal strains (n=180 were isolated from the feces of six healthy resident cats from different SAVHs. The concentration of enterococci ranged from 1.1 x 105 to 6.0 x 108 CFU g-1 of feces, and the population comprised E. hirae (38.3±18.6%, E. faecium (35.0±14.3%, E. faecalis (23.9±11.0%, and E. avium (2.8±2.2%. Testing of phenotypic resistance to 14 antimicrobial agents revealed multi-drug resistance (≥3 antimicrobials in 48.9% of all enterococcal isolates with most frequent resistance to tetracycline (72.8%, erythromycin (47.8%, and rifampicin (35.6%. Vancomycin resistant E. faecalis (3.9% with vanB not horizontally transferable in in vitro conjugation assays were detected from one cat. Genotyping (pulsed-field gel electrophoresis demonstrated a host-specific clonal population of MDR E. faecalis and E. faecium. Importantly, several feline isolates were genotypically identical or closely related to isolates from surfaces of cage door, thermometer, and stethoscope of the corresponding SAVHs. These data demonstrate that healthy resident cats at SAVHs carry MDR enterococci and likely contribute to contamination of the SAVH environment. Proper disposal and handling of fecal material and restricted movement of resident cats within the ward is recommended.

  14. PRELIMINARY STUDY ON ENHANCED PROPERTIES AND BIOLOGICAL RESISTANCE OF CHEMICALLY MODIFIED ACACIA SPP.

    OpenAIRE

    H. P. S. Abdul Khalil; Irshad ul Haq Bhat,; Khairul B. Awang

    2010-01-01

    A preliminary experimental study was carried out to examine the ability of a chemically modified Acacia spp. to resist biodegradation. The modifications of Acacia mangium and Acacia hybrid were carried out by propionic anhydride and succinic anhydride in the presence of sodium formate as a catalyst. The treated samples were found resistant to microbial attack, while the untreated ones were damaged on 12 months exposure to a soil burial. The appearance grading, mass loss, mechanical properties...

  15. Link between insulin resistance and hypertension: What is the evidence from evolutionary biology?

    OpenAIRE

    Zhou, Ming-Sheng; Wang, Aimei; Hong YU

    2014-01-01

    Insulin resistance and hypertension are considered as prototypical “diseases of civilization” that are manifested in the modern environment as plentiful food and sedentary life. The human propensity for insulin resistance and hypertension is a product, at least in part, of our evolutionary history. Adaptation to ancient lifestyle characterized by a low sodium, low-calorie food supply and physical stress to injury response has driven our evolution to shape and preserve a thrifty genotype, whic...

  16. Fast and Accurate Microplate Method (Biolog MT2) for Detection of Fusarium Fungicides Resistance/Sensitivity

    OpenAIRE

    Frąc, Magdalena; Gryta, Agata; Oszust, Karolina; Kotowicz, Natalia

    2016-01-01

    The need for finding fungicides against Fusarium is a key step in the chemical plant protection and using appropriate chemical agents. Existing, conventional methods of evaluation of Fusarium isolates resistance to fungicides are costly, time-consuming and potentially environmentally harmful due to usage of high amounts of potentially toxic chemicals. Therefore, the development of fast, accurate and effective detection methods for Fusarium resistance to fungicides is urgently required. MT2 mi...

  17. BIOLOGICAL MARKERS FOR SELECTION ON THE FROST RESISTANCE OF WINTER WHEAT AND BARLEY FORM

    Directory of Open Access Journals (Sweden)

    Plotnikov V. K.

    2014-12-01

    Full Text Available We have described the theoretical assumptions and methodological solutions in the present review. They are innovative possibilities in the development of laboratory methods for assessing biological features of grain during the selection process

  18. Advances in Application of Natural Clay and Its Composites in Removal of Biological, Organic, and Inorganic Contaminants from Drinking Water

    Directory of Open Access Journals (Sweden)

    Rajani Srinivasan

    2011-01-01

    Full Text Available Natural clays are abundantly available low-cost natural resource which is nontoxic to ecosystem. Over the recent years, research on the modification of clay to increase their adsorbent capacity to remove other contaminants from drinking water other than metals is in progress. This paper reviews the recent development of natural clays and their modified forms as adsorbing agents for treating drinking water and their sources. This paper describes the versatile nature of natural clay and their ability to adsorb variety of contaminants ranging from inorganic to emerging, which are present in the drinking water. The properties and modification of the natural clay and its significance in removing a specific type of contaminant are described. The adsorbing efficiency of the natural and modified clay in the purification of drinking water, when compared to existing technologies, materials, and methods was found to be significantly higher or comparable.

  19. Radiotoxicological analyses of 239+240Pu and 241Am in biological samples by anion-exchange and extraction chromatography: a preliminary study for internal contamination evaluations

    International Nuclear Information System (INIS)

    Many biological samples (urines and faeces) have been analysed by means of chromatographic extraction columns, utilising two different resins (AG 1-X2 resin chloride and T.R.U.), in order to detect the possible internal contamination of 239+240Pu and 241Am, for some workers of a reprocessing nuclear plant in the decommissioning phase. The results obtained show on one hand the great suitability of the first resin for the determination of plutonium, and on the other the great selectivity of the second one for the determination of americium

  20. Adiposity, Biological Markers of Disease, and Insulin Resistance in Mexican American Adolescents, 2004-2005

    Directory of Open Access Journals (Sweden)

    Anne R. Rentfro, PhD, RN

    2011-03-01

    Full Text Available IntroductionRates of obesity and overweight, which frequently lead to type 2 diabetes, have increased dramatically among US children during the past 30 years. We analyzed associations between insulin resistance and other markers of disease in a sample of Mexican American adolescents from a severely disadvantaged community on the Texas-Mexico border.MethodsWe analyzed results from 325 students from 1 high school in this descriptive study. We measured height, weight, waist circumference, blood pressure, blood glucose, and lipids; calculated body mass index; and estimated insulin resistance.ResultsApproximately 50% of our sample (mean age, 16 y were overweight or obese, and more participants were obese than overweight. More than 40% had high waist circumference, and 66% had elevated high-density lipoprotein cholesterol. These characteristics were already present in the youngest participants (aged 12 y. Although only 1% of participants had elevated fasting blood glucose, 27% exhibited insulin resistance and most of these were also obese. Similarly, participants with high waist circumference were more likely to exhibit insulin resistance than those with normal waist circumference.ConclusionParticipants in this sample had insulin resistance, a potent predictor of diabetes. Two markers, low high-density lipoprotein cholesterol and high waist circumference, were strongly linked to insulin resistance; the surrogate for central adiposity, waist circumference, exhibited strong association. We identified high levels of obesity and markers for future disease in our sample. These findings emphasize the need to address insulin resistance at least as early as adolescence to prevent adverse economic, social, and health consequences.

  1. Biological response signature of oil brine threats, sediment contaminants, and crayfish assemblages in an Indiana watershed, USA.

    Science.gov (United States)

    Simon, Thomas P; Morris, Charles C

    2009-01-01

    The Patoka River watershed contains a divergent landscape of oil and gas exploration, intensive agriculture, and surface mining mixed with National Forest, Wildlife Refuges, and a large recreational reservoir. We evaluated species diversity among different land uses, including, commercial, forested, residential, and agriculture, and determined relationships among disturbance scale, habitat requirements, contaminants, and patterns in species distributions. Primary burrowing species, Cambarus polychromatus, Cambarus cf diogenes (Lacunicambarus A), and Fallicambarus fodiens, were tolerant of higher concentrations of contaminants than aquatic tertiary burrowing species. Cambarus polychromatus was among the last species of crayfish at the most disturbed sites, while it was absent from pasture and agricultural landscapes that allowed cattle access along banks. Four species of Orconectes were found in the reference and agricultural landscapes within the watershed, including O. immunis, O. indianensis, O. inermis inermis, and O. propinquus. Orconectes indianensis distribution was determined by the presence of rock habitat and absence of contaminants. No Orconectes species were found in acid mine leachate-affected streams with high levels of molybdenum. Cambarus laevis was found in the highest-quality reference areas, which were associated with karst habitats and no contaminants. Burrowing crayfish species were associated with the oil derricks in the lower and middle watershed, which contained increased concentrations of strontium, phosphorus, and various organic parameters associated with oil brine PAHs. PMID:18368435

  2. Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part II. Soil biological and biochemical properties in relation to trace element speciation

    Energy Technology Data Exchange (ETDEWEB)

    D' Ascoli, R. [Dipartimento di Scienze Ambientali, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta (Italy)]. E-mail: rosaria.dascoli@unina2.it; Rao, M.A. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: maria.rao@unina.it; Adamo, P. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: adamo@unina.it; Renella, G. [Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Universita degli Studi di Firenze, P.le delle Cascine 28, 50144 Firenze (Italy)]. E-mail: giancarlo.renella@unifi.it; Landi, L. [Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Universita degli Studi di Firenze, P.le delle Cascine 28, 50144 Firenze (Italy)]. E-mail: loretta.landi@unifi.it; Rutigliano, F.A. [Dipartimento di Scienze Ambientali, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta (Italy)]. E-mail: floraa.rutigliano@unina2.it; Terribile, F. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: terribil@unina.it; Gianfreda, L. [Dipartimento di Scienze del Suolo, della Pianta e dell' Ambiente, Universita degli Studi di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)]. E-mail: liliana.gianfreda@unina.it

    2006-11-15

    The effect of heavy metal contamination on biological and biochemical properties of Italian volcanic soils was evaluated in a multidisciplinary study, involving pedoenvironmental, micromorphological, physical, chemical, biological and biochemical analyses. Soils affected by recurring river overflowing, with Cr(III)-contaminated water and sediments, and a non-flooded control soil were analysed for microbial biomass, total and active fungal mycelium, enzyme activities (i.e., FDA hydrolase, dehydrogenase, {beta}-glucosidase, urease, arylsulphatase, acid phosphatase) and bacterial diversity (DGGE characterisation). Biological and biochemical data were related with both total and selected fractions of Cr and Cu (the latter deriving from agricultural chemical products) as well as with total and extractable organic C. The growth and activity of soil microbial community were influenced by soil organic C content rather than Cu or Cr contents. In fact, positive correlations between all studied parameters and organic C content were found. On the contrary, negative correlations were observed only between total fungal mycelium, dehydrogenase, arylsulphatase and acid phosphatase activities and only one Cr fraction (the soluble, exchangeable and carbonate bound). However, total Cr content negatively affected the eubacterial diversity but it did not determine changes in soil activity, probably because of the redundancy of functions within species of soil microbial community. On the other hand, expressing biological and biochemical parameters per unit of total organic C, Cu pollution negatively influenced microbial biomass, fungal mycelium and several enzyme activities, confirming soil organic matter is able to mask the negative effects of Cu on microbial community. - In studied soils organic C content resulted the principal factor influencing growth and activity of microbial community, with Cu and Cr contents having a lower relevance.

  3. Assessment of The Biological Integrity of The Native Vegetative Community In A Surface Flow Constructed Wetland Treating Industrial Park Contaminants

    OpenAIRE

    C. C. Galbrand; A. M. Snow; Abdel E. Ghaly; Côté, R.

    2007-01-01

    A study was conducted to evaluate the biological integrity of a constructed wetland receiving landfill leachate and stormwater runoff from the Burnside Industrial Park, Dartmouth, Nova Scotia. The biological integrity of the constructed wetland was tested in the second growing season using vegetative community monitoring. The metrics analyzed were species diversity, species heterogeneity (dominance) and exotic/invasive species abundance. There was no significant difference in the plant specie...

  4. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Directory of Open Access Journals (Sweden)

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  5. Synthetic and Biological Studies of Sesquiterpene Polygodial: Activity of 9-Epipolygodial against Drug-Resistant Cancer Cells.

    Science.gov (United States)

    Dasari, Ramesh; De Carvalho, Annelise; Medellin, Derek C; Middleton, Kelsey N; Hague, Frédéric; Volmar, Marie N M; Frolova, Liliya V; Rossato, Mateus F; De La Chapa, Jorge J; Dybdal-Hargreaves, Nicholas F; Pillai, Akshita; Mathieu, Véronique; Rogelj, Snezna; Gonzales, Cara B; Calixto, João B; Evidente, Antonio; Gautier, Mathieu; Munirathinam, Gnanasekar; Glass, Rainer; Burth, Patricia; Pelly, Stephen C; van Otterlo, Willem A L; Kiss, Robert; Kornienko, Alexander

    2015-12-01

    Polygodial, a terpenoid dialdehyde isolated from Polygonum hydropiper L., is a known agonist of the transient receptor potential vanilloid 1 (TRPV1). In this investigation a series of polygodial analogues were prepared and investigated for TRPV1-agonist and anticancer activities. These experiments led to the identification of 9-epipolygodial, which has antiproliferative potency significantly exceeding that of polygodial. 9-Epipolygodial was found to maintain potency against apoptosis-resistant cancer cells as well as those displaying the multidrug-resistant (MDR) phenotype. In addition, the chemical feasibility for the previously proposed mechanism of action of polygodial, involving the formation of a Paal-Knorr pyrrole with a lysine residue on the target protein, was demonstrated by the synthesis of a stable polygodial pyrrole derivative. These studies reveal rich chemical and biological properties associated with polygodial and its direct derivatives. These compounds should inspire further work in this area aimed at the development of new pharmacological agents, or the exploration of novel mechanisms of covalent modification of biological molecules with natural products. PMID:26434977

  6. Laboratory screening evaluation on the utilization of hydrogen peroxide for enhanced biological treatment of petroleum hydrocarbon contaminants in soil

    International Nuclear Information System (INIS)

    The objective of the laboratory study was to evaluate the benefit of hydrogen peroxide (H2O2) addition to soil as a source of molecular oxygen for enhanced removal of petroleum hydrocarbon (PHC) contaminants (JP-5, diesel fuel, and lubricating oil) by the indigenous microflora. Upflow soil columns containing PHC-spiked soil (sand and humus) and previously contaminated sandy soils were used for the study. Changes in bacterial population density and concentration-independent indicators of PHC biodegradation (n-C17/pristane, n-C18/phytane, and resolved alkane/unresolved alkane ratios) between test and control columns were used as the test parameters. Test and control columns received Dworkin-Foster medium which is a basal salts solution for supporting microbial growth; test columns received increasing concentrations of H2O. The benefit of H2O2 addition to soil in test columns was demonstrated which suggested that oxygen was limiting microbial growth on available PHCs

  7. Effects of Tebufenozide on the Biological Characteristics of Beet Armyworm (Spodoptera exigua Hübner) and Its Resistance Selection

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-wei; MU Wei; ZHU Bing-yu; LIU Feng

    2008-01-01

    In this article, the selection of tebufenozide to beet armyworm (Spodoptera exigua Hubner) was studied by the treatments to alternative generations' 3rd-instar larvae with LC50 dose and to continuous generations' larvae with LC10 dose; the effects of tebufenozide on the biological characteristics of current and subsequent generations were examined by the treatments to 3rd-instar larvae and egg pods in different concentrations. After treatments with LC50 dose till F11, the toxicity of tebufenozide to beet armyworm had no significant change, whereas the pupation rate, pupal weight, and fecundity were reduced markedly. After treatments with LC10 dose till F19, the beet armyworm only developed 3.52-fold resistance, and the main biological characteristics were nearly accordant in each generation. The livability was reduced 72 h later after treatments to 3rd-instar larvae, respectively in 2.5-40 (ig mL-', and larval duration, pupation rate, and pupal weight changed considerably with the increase in concentrations. The fecundity, larval livability, larval weight and pupal weight of subsequent generations were reduced as the dose increased over 10 ug mL-1. The hatching rate of egg pods did not differ with that of the controls obviously after treatment in 10-300 ug mL-1. But the larval livability, larval weight and pupal weight were reduced when eggs were exposed to 50 ug mL-1 dose or more. The results indicated that tebufenozide had low resistance risk to the current and subsequent generations of beet armyworm even if tebufenozide had significant effects on the biological characteristics of this insect.

  8. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    OpenAIRE

    Deshmukh, Atul S.

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabe...

  9. Adiposity, Biological Markers of Disease, and Insulin Resistance in Mexican American Adolescents, 2004-2005

    OpenAIRE

    Anne R. Rentfro, PhD, RN; Jeanette C. Nino, MS; Rosa M. Pones, MPH, RN; Wendy Innis-Whitehouse, PhD; Cristina S. Barroso, DrPH; Mohammed H. Rahbar, PhD; Joseph B. McCormick, MD, MS; Susan P. Fisher-Hoch, MD, MBBS, MSc, MRCPath

    2011-01-01

    Introduction Rates of obesity and overweight, which frequently lead to type 2 diabetes, have increased dramatically among US children during the past 30 years. We analyzed associations between insulin resistance and other markers of disease in a sample of Mexican American adolescents from a severely disadvantaged community on the Texas-Mexico border. Methods We analyzed results from 325 students from 1 high school in this descriptive study. We measured height, weight, waist circumference, blo...

  10. Systems Biology Strategy Reveals PKCδ is Key for Sensitizing TRAIL-Resistant Human Fibrosarcoma

    OpenAIRE

    Hayashi, Kentaro; Tabata, Sho; Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar

    2015-01-01

    Cancer cells are highly variable and largely resistant to therapeutic intervention. Recently, the use of the tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced treatment is gaining momentum due to TRAIL’s ability to specifically target cancers with limited effect on normal cells. Nevertheless, several malignant cancer types still remain non-sensitive to TRAIL. Previously, we developed a dynamic computational model, based on perturbation-response differential equations app...

  11. Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories

    OpenAIRE

    Plaza, D. O.; Gallardo, C.; Straub, Y. D.; Bravo, D.; Pérez-Donoso, J. M.

    2016-01-01

    Background Fluorescent nanoparticles or quantum dots (QDs) have been intensely studied for basic and applied research due to their unique size-dependent properties. There is an increasing interest in developing ecofriendly methods to synthesize these nanoparticles since they improve biocompatibility and avoid the generation of toxic byproducts. The use of biological systems, particularly prokaryotes, has emerged as a promising alternative. Recent studies indicate that QDs biosynthesis is rela...

  12. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    Science.gov (United States)

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  13. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    Science.gov (United States)

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  14. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains

    Directory of Open Access Journals (Sweden)

    Sara eScandorieiro

    2016-05-01

    Full Text Available Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare essential oil (OEO and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP, produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all seventeen strains tested, with minimal inhibitory concentrations (MIC ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 µM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min, while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA cells exposed to three different treatments (OEO, bio-AgNP and combination of the two, which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds

  15. Radioecology of natural systems. Three year summary report, May 1, 1974--July 31, 1977. [Biological effects of Pu contamination at Rocky Flats Plant

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, F.W.

    1977-08-01

    This report is intended to provide a general summary of the progress and findings of studies during the period May 1, 1974 through July 31, 1977 on the distribution, transport, characterization and ecological consequences of plutonium in the terrestrial environs of the Rocky Flats nuclear weapons plant near Denver, Colorado. The contamination of a portion of the terrestrial environs of Rocky Flats with substantial quantities of plutonium provided the opportunity to search for possible ecological effects resulting from the presence of the element. Comparisons were made of various biological measurements and pathological data between ecologically similar study areas of widely varying plutonium levels. Soil in the principal study areas ranged from 100 to over 20,000 dpm /sup 239/Pu/g in the upper 3 cm (2 to 400 ..mu..Ci/m/sup 2/). In addition, comparative data were obtained from control areas, containing only world-wide fallout plutonium of the order of 0.1 dpm/g (0.002 ..mu..Ci/m/sup 2/). Biological measurements such as vegetation community structure and biomass; litter mass; arthropod community structure and biomass; and small mammal species occurrence, population density, biomass, reproduction, and physical size of whole carcass and organs were made. In addition, pathological examinations of small mammals, including x-ray for skeletal sarcomas, microscopy for lung tumors, and necropsy for general pathology and parasite occurrence were carried out. While minor differences in certain biological attributes between study areas were observed, none could be related to plutonium levels.

  16. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation.

    Science.gov (United States)

    Pardo, T; Clemente, R; Alvarenga, P; Bernal, M P

    2014-07-01

    The feasibility of two organic materials (pig slurry and compost) in combination with hydrated lime for the remediation of a highly acidic trace elements (TEs) contaminated mine soil was assessed in a mesocosm experiment. The effects of the amendments on soil biochemical and ecotoxicological properties were evaluated and related with the main physicochemical characteristics of soil and soil solution. The original soil showed impaired basic ecological functions due to the high availability of TEs, its acidic pH and high salinity. The three amendments slightly reduced the direct and indirect soil toxicity to plants, invertebrates and microorganisms as a consequence of the TEs' mobility decrease in topsoil, reducing therefore the soil associated risks. The organic amendments, especially compost, thanks to the supply of essential nutrients, were able to improve soil health, as they stimulated plant growth and significantly increased enzyme activities related with the key nutrients in soil. Therefore, the use of compost or pig slurry, in combination with hydrated lime, decreased soil ecotoxicity and seems to be a suitable management strategy for the remediation of highly acidic TEs contaminated soils. PMID:24875876

  17. Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater

    OpenAIRE

    Espejo, Azahara; Aguinaco, Almudena; Amat Payá, Ana María; Fernando J. Beltrán

    2014-01-01

    Removal of nine pharmaceutical compounds¿acetaminophen (AAF), antipyrine (ANT), caffeine (CAF), carbamazepine (CRB), diclofenac (DCF), hydrochlorothiazide (HCT), ketorolac (KET), metoprolol (MET) and sulfamethoxazole (SMX)¿spiked in a primary sedimentation effluent of a municipal wastewater has been studied with sequential aerobic biological and ozone advanced oxidation systems. Combinations of ozone, UVA black light and Fe(III) or Fe3O4 constituted the chemical systems. During the ...

  18. Assessment of The Biological Integrity of The Native Vegetative Community In A Surface Flow Constructed Wetland Treating Industrial Park Contaminants

    Directory of Open Access Journals (Sweden)

    C. C. Galbrand

    2007-01-01

    Full Text Available A study was conducted to evaluate the biological integrity of a constructed wetland receiving landfill leachate and stormwater runoff from the Burnside Industrial Park, Dartmouth, Nova Scotia. The biological integrity of the constructed wetland was tested in the second growing season using vegetative community monitoring. The metrics analyzed were species diversity, species heterogeneity (dominance and exotic/invasive species abundance. There was no significant difference in the plant species diversity between the constructed wetland and the reference site. However, the constructed wetland supported a higher plant species richness than the reference site. The top three species in the constructed wetland were tweedy’s rush (Juncus brevicaudatus, soft rush (Juncus effusus and fowl mannagrass (Glyceria striata. In total, these three species occupied 46.4% of the sampled population. The top three species in the reference site were soft rush (Juncus effusus, sweetgale (Myrica gale and woolgrass (Scirpus cyperinus. In total, these three species occupied a more reasonable 32.6% of the sampled population. The reference site supported greater biological integrity as it had greater heterogeneity and a smaller abundance of exotic and invasive species compared to the constructed wetland (3.8% versus 10.7%. Although poor heterogeneity and the presence of weedy, exotic species can be a sign of degraded biological health and future problems, these are also common indicators of a system simply undergoing early succession. As the constructed wetland matures, its plant biodiversity may actually decrease, but its integrity, as measured by exotic and invasive species abundance as well as heterogeneity, is expected to increase, so long as invasive species present in the constructed wetland remain controlled through weeding during the first few growing seasons.

  19. Isolation of Lead Resistant Bacteria from Lead Contaminated Soil Samples Collected from Sundar Industrial Estate and their Potential Use in Bioremediation

    International Nuclear Information System (INIS)

    Industrial waste water pollution is one of the most controversial problem especially in countries like Pakistan. Human activities and the release of industrial waste have resulted the accumulation of metals in the environment. Noxious chemicals like heavy metals include cadmium, lead, chromium, copper, nickel, etc. that pollute the soils, ground water, sediments and surface waters re present in soluble form. Biosorpotion is a form of bioremediation by which metal ions are adsorbed from polluted site by microorganisms. Samples collected from industrial area were analyzed for lead contamination by Flame Atomic Spectrophotometer. Soil samples of Sundar Industrial Estate were highly resistant to different concentrations (300ppm, 800ppm, and 1600ppm) of Pb+2 whereas, the sample PbFa-458 showed maximum (127.9819mg/L) absorption of Pb+2, so can be used for environmental cleanup. From 24 selected lead resistant strains PbFa-136, PbFa-287, PbFa-960 showed resistance to multimetals, multidrug and high lead concentrations i.e 1800ppm, 2000ppm. Lead resistant strains were predicted as Klebsiella or Eenterobacter, Bacillus, Shigella, Salmonella and Enteroccocus. (author)

  20. Codling Moth, Cydia pomonella (Lepidoptera: Tortricidae – Major Pest in Apple Production: an Overview of its Biology, Resistance, Genetic Structure and Control Strategies

    Directory of Open Access Journals (Sweden)

    Ivana Pajač

    2011-06-01

    Full Text Available The codling moth Cydia pomonella (CM (Linnaeus is a key pest in pome fruit production with a preference for apple. The pest is very adaptable to different climatic conditions and is known for developing resistance to several chemical groups of insecticides. Because of these reasons, the populations of codling moth are differentiated in many ecotypes of various biological and physiological development requirements. The article provides a bibliographic review of investigation about: morphology, biology, dispersal, damages, resistance to insecticides, population genetic structure and genetic control of this pest.

  1. Resistance and susceptibility of alfalfa (Medicago sativa L.) cultivars to the aphid Therioaphis maculata (Homoptera:Aphididae): insect biology and cultivar evaluation

    Institute of Scientific and Technical Information of China (English)

    ALEXANDRE DE ALMEIDA E SILVA; ELENICE MOURO VARANDA; JOS(E) RICARDO BAROSELA

    2006-01-01

    Biology of the aphid Therioaphis maculata was studied on alfalfa (Medicago sativa L.), including four resistant (Mesa-Sirsa, CUF101, Baker and Lahontan) and two susceptible (ARC and Caliverde) alfalfa cultivars, and one of the most cropped Brazilian cultivars, Crioula. Under controlled conditions, antibiosis (i.e., reduced longevity, fecundity and increased mortality of the aphid) was observed mainly on the resistant alfalfa cultivars,except on Lahontan. Crioula seemed to be tolerant to aphids. Present data support geographic limitation usage of cultivars, and we suggest Baker and Mesa-Sirsa as sources of antibiosis,and provide biological information of a tropical T. maculata biotype on alfalfa.

  2. Polychlorinated biphenyls and chlorinated pesticides in king mackerel caught off the coast of Pernambuco, northeastern Brazil: Occurrence, contaminant profile, biological parameters and human intake.

    Science.gov (United States)

    Miranda, Daniele A; Yogui, Gilvan T

    2016-11-01

    Persistent organic pollutants such as PCBs and DDTs are ubiquitous worldwide. Their lipophilic nature facilitates accumulation in fish tissues. This study investigated 182 PCB congeners and 14 organochlorine pesticides (DDTs, HCHs, chlordanes, heptachlor and mirex) in muscle and liver of king mackerel (Scomberomorus cavalla) caught off the northeastern coast of Brazil. Concentration of PCBs, DDTs and chlordanes in muscle averaged 31.5, 4.70 and 0.15ngg(-1) dry weight (dw), respectively. Mean levels of the same contaminants in liver were 145, 18.7 and 1.11ngg(-1) dw, respectively. HCHs, heptachlor and mirex were not detected in the samples. The metabolite p,p'-DDE dominated the composition of DDTs in both muscle and liver. However, a clear shift was observed in the proportions of p,p'-DDT and p,p'-DDD when comparing both tissues, suggesting metabolism in the liver. The PCBs profile revealed a depletion in mono- through tetra-CBs and an enrichment in penta- through deca-CBs. Biological parameters such as sex, maturity stage, age, body weight and total length did not influence contaminant levels in tissues. Dietary risk assessment indicated that S. cavalla from the northeastern coast of Brazil does not pose a health risk for humans. PMID:27392580

  3. Effect of organochlorine contaminants and individual biological traits on blubber retinoid concentrations in bottlenose dolphins (Tursiops truncatus).

    Science.gov (United States)

    Tornero, Victoria; Borrell, Asuncion; Aguilar, Alex; Wells, Randall S; Forcada, Jaume; Rowles, Teri K; Reijnders, Peter J H

    2005-02-01

    Here we assessed retinoids as biomarkers of contaminant exposure by studying whether the sex, age, lipid content and organochlorine concentrations of bottlenose dolphins induced variation in retinoid status and its deposition in blubber. Blubber samples were collected from 47 individuals of known age and gender from Sarasota Bay in June 2000 and 2001. The sample included a representative cross-section of the resident dolphin community, with ages ranging from 2 to 50 years. Organochlorine levels showed the age- and sex-related variation commonly observed in other species, with concentrations increasing in youngsters of both sexes and in adult males, and decreasing in adult females after the onset of maturity. Blubber lipid content was low in the overall population and significantly decreased with age in adult males. Retinoid blubber concentrations were comparable to other odontocete species previously studied, and were strongly determined by lipid content. As a consequence of the latter, retinoid concentration was observed to decrease with age in adult males. This effect could not be statistically dissociated from the negative correlation observed between levels of organochlorines and retinoid blubber concentration. Consequently, we could not clarify whether high organochlorine loads in this population lowered retinoid concentrations or, conversely, whether depleted lipid reserves were indeed responsible for the high organochlorine concentrations and the low retinoid levels detected in blubber. With the current knowledge, both options should be considered and investigated, with initial focus on male dolphins. PMID:15690090

  4. Methicillin-Resistant Staphylococcus aureus (MRSA Contamination in Bedside Surfaces of a Hospital Ward and the Potential Effectiveness of Enhanced Disinfection with an Antimicrobial Polymer Surfactant

    Directory of Open Access Journals (Sweden)

    John W. M. Yuen

    2015-03-01

    Full Text Available The aim in this study was to assess the effectiveness of a quaternary ammonium chloride (QAC surfactant in reducing surface staphylococcal contamination in a routinely operating medical ward occupied by patients who had tested positive for methicillin-resistant Staphylococcus aureus (MRSA. The QAC being tested is an antibacterial film that is sprayed onto a surface and can remain active for up to 8 h. A field experimental study was designed with the QAC plus daily hypochlorite cleaning as the experimental group and hypochlorite cleaning alone as the control group. The method of swabbing on moistened surfaces was used for sampling. It was found that 83% and 77% of the bedside surfaces of MRSA-positive and MRSA-negative patients respectively were contaminated with staphylococci at 08:00 hours, and that the staphylococcal concentrations increased by 80% at 1200 h over a 4-hour period with routine ward and clinical activities. Irrespective of the MRSA status of the patients, high-touch surfaces around the bed-units within the studied medical ward were heavily contaminated (ranged 1 to 276 cfu/cm2 amongst the sites with positive culture with staphylococcal bacteria including MRSA, despite the implementation of daily hypochlorite wiping. However, the contamination rate dropped significantly from 78% to 11% after the application of the QAC polymer. In the experimental group, the mean staphylococcal concentration of bedside surfaces was significantly (p < 0.0001 reduced from 4.4 ± 8.7 cfu/cm2 at 08:00 hours to 0.07 ± 0.26 cfu/cm2 at 12:00 hours by the QAC polymer. The results of this study support the view that, in addition to hypochlorite wiping, the tested QAC surfactant is a potential environmental decontamination strategy for preventing the transmission of clinically important pathogens in medical wards.

  5. Enhanced Biological Trace Organic Contaminant Removal: A Lab-Scale Demonstration with Bisphenol A-Degrading Bacteria Sphingobium sp. BiD32.

    Science.gov (United States)

    Zhou, Nicolette A; Gough, Heidi L

    2016-08-01

    Discharge of trace organic contaminants (TOrCs) from wastewater treatment plants (WWTPs) may contribute to deleterious effects on aquatic life. Release to the environment occurs both through WWTP effluent discharge and runoff following land applications of biosolids. This study introduces Enhanced Biological TOrC Removal (EBTCR), which involves continuous bioaugmentation of TOrC-degrading bacteria for improved removal in WWTPs. Influence of bioaugmentation on enhanced degradation was investigated in two lab-scale sequencing batch reactors (SBRs), using bisphenol A (BPA) as the TOrC. The reactors were operated with 8 cycles per day and at two solids retention times (SRTs). Once each day, the test reactor was bioaugmented with Sphingobium sp. BiD32, a documented BPA-degrading culture. After bioaugmentation, BPA degradation (including both the dissolved and sorbed fractions) was 2-4 times higher in the test reactor than in a control reactor. Improved removal persisted for >5 cycles following bioaugmentation. By the last cycle of the day, enhanced BPA removal was lost, although it returned with the next bioaugmentation. A net loss of Sphingobium sp. BiD32 was observed in the reactors, supporting the original hypothesis that continuous bioaugmentation (rather than single-dose bioaugmentation) would be required to improve TOrCs removal during wastewater treatment. This study represents a first demonstration of a biologically based approach for enhanced TOrCs removal that both reduces concentrations in wastewater effluent and prevents transfer to biosolids. PMID:27338240

  6. Resistance of Solid-Phase U(VI) to Microbial Reduction during In Situ Bioremediation of Uranium-Contaminated Groundwater

    OpenAIRE

    Ortiz-Bernad, Irene; Anderson, Robert T.; Vrionis, Helen A.; Lovley, Derek R.

    2004-01-01

    Speciation of solid-phase uranium in uranium-contaminated subsurface sediments undergoing uranium bioremediation demonstrated that although microbial reduction of soluble U(VI) readily immobilized uranium as U(IV), a substantial portion of the U(VI) in the aquifer was strongly associated with the sediments and was not microbially reducible. These results have important implications for in situ uranium bioremediation strategies.

  7. Compatibility of host plant resistance and biological control of the two-spotted spider mite Tetranychus urticae in the ornamental crop Gerbera

    NARCIS (Netherlands)

    Krips, O.E.; Willems, P.E.L.; Dicke, M.

    1999-01-01

    We investigated the compatibility of host plant resistance to the spider mite Tetranychus urticae Koch in the ornamental crop gerbera with the use of the predatory mite Phytoseiulus persimilis Athias-Henriot for biological control. We used four gerbera cultivars on which the intrinsic rate of popula

  8. Applying electrical resistivity tomography and biological methods to assess the surface-groundwater interaction in two Mediterranean rivers (central Spain)

    Science.gov (United States)

    Iepure, Sanda; Gómez Ortiz, David; Lillo Ramos, Javier; Rasines Ladero, Ruben; Persoiu, Aurel

    2014-05-01

    Delineation of the extent of hyporheic zone (HZ) in river ecosystems is problematic due to the scarcity of spatial information about the structure of riverbed sediments and the magnitude and extent of stream interactions with the parafluvial and riparian zones. The several existing methods vary in both quality and quantity of information and imply the use of hydrogeological and biological methods. In the last decades, various non-invasive geophysical techniques were developed to characterise the streambed architecture and also to provide detailed spatial information on its vertical and horizontal continuity. All classes of techniques have their strengths and limitations; therefore, in order to assess their potential in delineating the lateral and vertical spatial extents of alluvial sediments, we have combined the near-surface images obtained by electrical resistivity tomography (ERT) with biological assessment of invertebrates in two Mediterranean lowland rivers from central Spain. We performed in situ imaging of the thickness and continuity of alluvial sediments under the riverbed and parafluvial zone during base-flow conditions (summer 2013 and winter 2014) at two different sites with distinct lithology along the Tajuña and Henares Rivers. ERT was performed by installing the electrodes (1 m spacing) on a 47 m long transect normal to the river channel using a Wener-Schlumberger array, across both the riparian zones and the river bed. Invertebrates were collected in the streambed from a depth of 20-40 cm, using the Bou-Rouch method, and from boreholes drilled to a depth of 1.5 m in the riparian zone. The ERT images obtained at site 1 (medium and coarse sand dominated lithology) shows resistivity values ranging from ~20 to 80 ohm•m for the in-stream sediments, indicating a permeable zone up to ~ 0.5 m thick and extending laterally for ca. 5 m from the channel. These sediments contribute to active surface/hyporheic water exchanges and to low water retention in

  9. Expression of multidrug resistance proteins P-glycoprotein, multidrug resistance protein 1, breast cancer resistance protein and lung resistance related protein in locally advanced bladder cancer treated with neoadjuvant chemotherapy: biological and clinical implications.

    NARCIS (Netherlands)

    Diestra, JE; Condom, E; Muro, XG Del; Scheffer, G.L.; Perez, J; Zurita, AJ; Munoz-Segui, J; Vigues, F; Scheper, R.J.; Capella, G; Germa-Lluch, JR; Izquierdo, M.A.

    2003-01-01

    PURPOSE: Resistance to chemotherapy is a major obstacle to overcome in the conservative treatment of patients with locally advanced bladder cancer (LABC). We investigated the predictive value of the response to neoadjuvant chemotherapy (NACT) and prognosis of the expression of multidrug resistance (

  10. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the evaluation of the safety and efficacy of ListexTM P100 for the removal of Listeria monocytogenes surface contamination of raw fish

    DEFF Research Database (Denmark)

    Hald, Tine

    . monocytogenes contamination on the final product. The persistence or activity of P100 as well as potential changes in L. monocytogenes counts should be evaluated during fish storage. Tests to investigate potential development of resistance or reduced susceptibility to biocides and key therapeutic antimicrobials...

  11. Integrated Assessment of PAH Contamination in the Czech Rivers Using a Combination of Chemical and Biological Monitoring

    Directory of Open Access Journals (Sweden)

    Jana Blahova

    2014-01-01

    Full Text Available This study investigated polycyclic aromatic hydrocarbons (PAH pollution of selected rivers in the Czech Republic. Integrated evaluation was carried out using combination of chemical and biological monitoring, in which we measured content of 1-hydroxypyrene (1-OHP in chub bile and priority PAH in water samples obtained by exposing the semipermeable membrane devices at each location. The concentrations of 1-OHP in bile samples and sum of priority PAH in water sampler ranged from 6.8 ng mg protein−1 to 106.6 ng mg protein−1 and from 5.2 ng L−1 to 173.9 ng L−1, respectively. The highest levels of biliary metabolite and PAH in water were measured at the Odra River (the Bohumín site, which is located in relatively heavily industrialized and polluted region. Statistically significant positive correlation between biliary 1-OHP and sum of PAH in water was also obtained (P<0.01, rs=0.806.

  12. Cadmium contamination of tissues and organs of delphinids species (Stenella attenuata)--influence of biological and ecological factors

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J.M.; Amiard, J.C.; Amiard-Triquet, C.; Boudou, A.; Ribeyre, F. (Universite de Bordeaux I, (France))

    1990-12-01

    Based on a sample of 27 dolphins (Stenella attenuata) captured in the Eastern tropical zone of the Pacific Ocean, this study was carried out to analyze the cadmium accumulation levels and distribution in 12 organs or tissue samples. The average cadmium concentrations were between 0.2 mg Cd.kg-1 in the brain and muscle and 48 mg Cd.kg-1 in the kidneys. For most of organs and tissues the average values were between 1 and 5 mg Cd.kg-1. Kidneys, liver, muscle, and intestine contained almost 85% of the total cadmium burden of all tissues considered in this study. Most of the biological and ecological factors taken into account (age, sex, total weight, and length of the dolphins, weight of the organs, place and date of capture) interacted with the cadmium concentrations and burdens in the collected organs or tissues. Three factors appear to be of prime importance: age, body weight, and geographical location of the area of capture.

  13. Cadmium contamination of tissues and organs of delphinids species (Stenella attenuata)--influence of biological and ecological factors.

    Science.gov (United States)

    André, J M; Amiard, J C; Amiard-Triquet, C; Boudou, A; Ribeyre, F

    1990-12-01

    Based on a sample of 27 dolphins (Stenella attenuata) captured in the Eastern tropical zone of the Pacific Ocean, this study was carried out to analyze the cadmium accumulation levels and distribution in 12 organs or tissue samples. The average cadmium concentrations were between 0.2 mg Cd.kg-1 in the brain and muscle and 48 mg Cd.kg-1 in the kidneys. For most of organs and tissues the average values were between 1 and 5 mg Cd.kg-1. Kidneys, liver, muscle, and intestine contained almost 85% of the total cadmium burden of all tissues considered in this study. Most of the biological and ecological factors taken into account (age, sex, total weight, and length of the dolphins, weight of the organs, place and date of capture) interacted with the cadmium concentrations and burdens in the collected organs or tissues. Three factors appear to be of prime importance: age, body weight, and geographical location of the area of capture. PMID:2090444

  14. Resistance of fallow deer (dama dama) to chronic wasting disease under natural exposure in a heavily contaminated environment

    Science.gov (United States)

    Chronic wasting disease or CWD is a transmissible spongiform encephalopathy or prion disorder of cervid ruminants in several regions of the US and Canada. The prion disorders are characterized by misfolding of the host cellular prion protein into a relatively protease resistant and potentially neur...

  15. Minimally invasive transcriptome profiling in salmon: Detection of biological response in rainbow trout caudal fin following exposure to environmental chemical contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Veldhoen, Nik; Stevenson, Mitchel R. [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC V7H 1B1 (Canada); Rieberger, Kevin J. [Environmental Sustainability and Strategic Policy Division, Water Protection and Sustainability Branch, British Columbia Ministry of Environment, P.O. Box 9362 Stn Prov Govt, Victoria, BC V8W 9M2 (Canada); Aggelen, Graham van [Pacific and Yukon Laboratory for Environmental Testing, Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC V7H 1B1 (Canada); Meays, Cynthia L. [Environmental Sustainability and Strategic Policy Division, Water Protection and Sustainability Branch, British Columbia Ministry of Environment, P.O. Box 9362 Stn Prov Govt, Victoria, BC V8W 9M2 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada)

    2013-10-15

    Highlights: •A minimally-invasive tail fin biopsy assay was developed for use in fish. •Quantitative real time polymerase reaction provided gene expression readout. •Results were comparable to classical liver tissue responses. •The approach was used on two salmonid species and can be coupled with genomic sex determination using an additional biopsy for maximal information. -- Abstract: An increasing number of anthropogenic chemicals have demonstrated potential for disruption of biological processes critical to normal growth and development of wildlife species. Both anadromous and freshwater salmon species are at risk of exposure to environmental chemical contaminants that may affect migratory behavior, environmental fitness, and reproductive success. A sensitive metric in determination of the presence and impact of such environmental chemical contaminants is through detection of changes in the status of gene transcript levels using a targeted quantitative real-time polymerase chain reaction assay. Ideally, the wildlife assessment strategy would incorporate conservation-centered non-lethal practices. Herein, we describe the development of such an assay for rainbow trout, Oncorhynchus mykiss, following an acute 96 h exposure to increasing concentrations of either 17α-ethinyl estradiol or cadmium. The estrogenic screen included measurement of mRNA encoding estrogen receptor α and β isoforms, vitellogenin, vitelline envelope protein γ, cytochrome p450 family 19 subfamily A, aryl hydrocarbon receptor, and the stress indicator, catalase. The metal exposure screen included evaluation of the latter two mRNA transcripts along with those encoding the metallothionein A and B isoforms. Exposure-dependent transcript abundance profiles were detected in both liver and caudal fin supporting the use of the caudal fin as a non-lethally obtained tissue source. The potential for both transcriptome profiling and genotypic sex determination from fin biopsy was extended, in

  16. Decontamination Strategy for Large Area and/or Equipment Contaminated with Chemical and Biological Agents using a High Energy Arc Lamp (HEAL)

    Energy Technology Data Exchange (ETDEWEB)

    Schoske, Richard [ORNL; Kennedy, Patrick [ORNL; Duty, Chad E [ORNL; Smith, Rob R [ORNL; Huxford, Theodore J [ORNL; Bonavita, Angelo M [ORNL; Engleman, Greg [ORNL; Vass, Arpad Alexander [ORNL; Griest, Wayne H [ORNL; Ilgner, Ralph H [ORNL; Brown, Gilbert M [ORNL

    2009-04-01

    A strategy for the decontamination of large areas and or equipment contaminated with Biological Warfare Agents (BWAs) and Chemical Warfare Agents (CWAs) was demonstrated using a High Energy Arc Lamp (HEAL) photolysis system. This strategy offers an alternative that is potentially quicker, less hazardous, generates far less waste, and is easier to deploy than those currently fielded by the Department of Defense (DoD). For example, for large frame aircraft the United States Air Force still relies on the combination of weathering (stand alone in environment), air washing (fly aircraft) and finally washing the aircraft with Hot Soapy Water (HSW) in an attempt to remove any remaining contamination. This method is laborious, time consuming (upwards of 12+ hours not including decontamination site preparation), and requires large amounts of water (e.g., 1,600+ gallons for a single large frame aircraft), and generates large amounts of hazardous waste requiring disposal. The efficacy of the HEAL system was demonstrated using diisopropyl methyl phosphonate (DIMP) a G series CWA simulant, and Bacillus globigii (BG) a simulant of Bacillus anthracis. Experiments were designed to simulate the energy flux of a field deployable lamp system that could stand-off 17 meters from a 12m2 target area and uniformly expose a surface at 1360 W/m2. The HEAL system in the absence of a catalyst reduced the amount of B. globigii by five orders of magnitude at a starting concentration of 1.63 x 107 spores. In the case of CWA simulants, the HEAL system in the presence of the catalyst TiO2 effectively degraded DIMP sprayed onto a 100mm diameter Petri dish in 5 minutes.

  17. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  18. Minimally invasive transcriptome profiling in salmon: Detection of biological response in rainbow trout caudal fin following exposure to environmental chemical contaminants

    International Nuclear Information System (INIS)

    Highlights: •A minimally-invasive tail fin biopsy assay was developed for use in fish. •Quantitative real time polymerase reaction provided gene expression readout. •Results were comparable to classical liver tissue responses. •The approach was used on two salmonid species and can be coupled with genomic sex determination using an additional biopsy for maximal information. -- Abstract: An increasing number of anthropogenic chemicals have demonstrated potential for disruption of biological processes critical to normal growth and development of wildlife species. Both anadromous and freshwater salmon species are at risk of exposure to environmental chemical contaminants that may affect migratory behavior, environmental fitness, and reproductive success. A sensitive metric in determination of the presence and impact of such environmental chemical contaminants is through detection of changes in the status of gene transcript levels using a targeted quantitative real-time polymerase chain reaction assay. Ideally, the wildlife assessment strategy would incorporate conservation-centered non-lethal practices. Herein, we describe the development of such an assay for rainbow trout, Oncorhynchus mykiss, following an acute 96 h exposure to increasing concentrations of either 17α-ethinyl estradiol or cadmium. The estrogenic screen included measurement of mRNA encoding estrogen receptor α and β isoforms, vitellogenin, vitelline envelope protein γ, cytochrome p450 family 19 subfamily A, aryl hydrocarbon receptor, and the stress indicator, catalase. The metal exposure screen included evaluation of the latter two mRNA transcripts along with those encoding the metallothionein A and B isoforms. Exposure-dependent transcript abundance profiles were detected in both liver and caudal fin supporting the use of the caudal fin as a non-lethally obtained tissue source. The potential for both transcriptome profiling and genotypic sex determination from fin biopsy was extended, in

  19. Do Offspring of Insects Feeding on Defoliation-Resistant Trees Have Better Biological Performance When Exposed to Nutritionally-Imbalanced Food?

    Directory of Open Access Journals (Sweden)

    Roberto Quezada-Garcia

    2015-01-01

    Full Text Available White spruce (Picea glauca (Moench Voss trees that are resistant or susceptible to spruce budworm (Choristoneura fumiferana (Clem. attack were identified in a southern Quebec plantation. Due to high mortality-induced selective pressures imposed by resistant trees on spruce budworm larvae, insects that survive on resistant trees exhibited greater biological performance than those on susceptible trees. We tested the hypothesis that this better biological performance is maintained across generations when progeny were subjected to nutritional stress. We collected pupae from resistant and susceptible trees (phenotype. Adults were reared under controlled laboratory conditions. Progeny were subsequently reared on two types of artificial diet (high vs. low quality. Low quality diet simulated food quality deterioration during outbreak conditions. Results confirmed that surviving insects collected from resistant trees have better performance than those from susceptible trees. Offspring performance (pupal mass, developmental time was affected only by diet quality. These results suggest that adaptive advantages that would be acquired from parents fed on resistant trees are lost when progeny are exposed to nutritionally-imbalanced food, but the effects persist when larvae are fed a balanced diet. Offspring mortality, fecundity and fertility were positively influenced by parental origin (tree phenotype.

  20. Study of the surface wear resistance and biological properties of the Ti-Zr-Nb-Sn alloy for dental restoration

    International Nuclear Information System (INIS)

    A new titanium alloy (Ti-12.5Zr-3Nb-2.5Sn) was developed to meet the needs of clinical requirements for medical titanium alloys and improve the properties of existing titanium alloys. The as-prepared alloy was solution treated at 500 0C for 3 h in vacuum followed by water quenching. Tensile, wear and hardness tests were carried out to examine the mechanical properties of the Ti-Zr-Nb-Sn alloy. Oral mucous membrane irritation test was performed to evaluate the surface biological properties of the Ti-Zr-Nb-Sn alloy. The results suggested that the surface hardness and wear-resistant properties of the Ti-12.5Zr-3Nb-2.5Sn alloy were superior to commercially pure Ti. The oral mucous irritation test showed that all samples had no mucous membrane irritation. It indicates that Ti-12.5Zr-3Nb-2.5Sn has large potential to be used as dental restoration material.

  1. Can phosphate compounds be used to reduce the plant uptake of Pb and resist the Pb stress in Pb-contaminated soils?

    Institute of Scientific and Technical Information of China (English)

    CHEN Shibao; CHEN Li; MA Yibing; HUANG Yizong

    2009-01-01

    The effects of different phosphate-amendments on lead (Pb) uptake, the activities of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) in cauliflower (Brassica oleracea L.) in contaminated soils with 2 500, 5 000 mg P2O5/kg soil of hydroxyapatite (HA), phosphate rock (PR), single-superphosphate (SSP) and the mix of HA/SSP (HASSP) were applied in pot experiments. Results showed that the Pb concentration in the shoots and roots was decreased in 18.3%-51.6% and 16.8%-57.3% among the treatments respectively compared to the control sample. The efficiency order of these phosphate amendments in reducing Pb uptake was followed as: HASSP≈ HA > SSP ≈ PR. With the addition of SSP, HA and the mix of HA/SSP, the SOD activity in the shoots was markedly reduced (P < 0.05) compared with that in control group, for example, the SOD activities in the shoots by the treatments of HASSP, SSP, and HA in 5 000 mg P2O5/kg were found to be only 51.3%, 56.2%, and 56.7%, respectively. The similar effects were also observed on the level of MDA in the shoots with the decrease in 24.5%-56.3%. The results verified the inference that phosphate compounds could be used to reduce the plant uptake of Pb and resist the Pb stress in the plant vegetated in Pb-contaminated soils.

  2. Can phosphate compounds be used to reduce the plant uptake of Pb and resist the Pb stress in Pb-contaminated soils?

    Science.gov (United States)

    Chen, Shibao; Chen, Li; Ma, Yibing; Huang, Yizong

    2009-01-01

    The effects of different phosphate-amendments on lead (Pb) uptake, the activities of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) in cauliflower (Brassica oleracea L.) in contaminated soils with 2500, or 5000 mg P20s/kg soil of hydroxyapatite (HA), phosphate rock (PR), single-superphosphate (SSP) and the mix of HA/SSP (HASSP) were evaluated in pot experiments. Results showed that the Pb concentrations in shoots and roots decreased by 18.3%-51.6% and 16.8%-57.3% among the treatments respectively compared to the control samples. The efficiency order of these phosphate-amendments in reducing Pb uptake was as follows: HASSP approximately equal HA > SSP approximately equal PR. With the addition of SSP, HA and the mix of HA/SSP, the SOD activity in shoot was reduced markedly (P < 0.05) compared with that in the control group. For example, the SOD activities in shoot by the treatments of HASSP, SSP, and HA in 5000 mg P2O5/kg were found to be only 51.3%, 56.2%, and 56.7%, respectively. Similar effects were also observed on the level of MDA in the shoots with a decrease in 24.5%-56.3%. The results verified the inference that phosphate compounds could be used to reduce the plant uptake of Pb and resist the Pb stress in the plant vegetated in Pb-contaminated soils. PMID:19634449

  3. Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil.

    Science.gov (United States)

    Deng, Zujun; Cao, Lixiang; Huang, Haiwei; Jiang, Xinyu; Wang, Wenfeng; Shi, Yang; Zhang, Renduo

    2011-01-30

    To better understand the characteristics of fungal endophytes in the development of effective phytoremediation of heavy metals, the objectives of this study were to isolate a fungal endophyte tolerant Cd and Pb from rape roots grown in a heavy metal-contaminated soil, to characterize the metal-resistant fungal endophyte, and to assess its potential applications in removal of Cd and Pb from contaminated solutions and experimental soil. The isolate CBRF59 was identified as Mucor sp. based on morphological characteristics and phylogenetic analysis. From a Cd solution of 2.0mM, the maximum biosorption capacity of Cd by dead biomass of Mucor sp. CBRF59 was 108 mg g(-1). Under the same conditions, the bioaccumulation capacity of Cd by active biomass of the strain was 173 mg g(-1). The bioaccumulation capacity of Pb by active biomass of the strain was significantly lower than that by dead biomass in the initial Pb concentrations from 1.0 to 2.0mM. The ratio of Pb to Cd and initial pH values in the mixed Cd+Pb solutions affected the bioaccumulation and biosorption capacities of the metals by CBRF59. The addition of the active mycelia of CBRF59 significantly increased the availability of soil Pb and Cd by 77% and 11.5-fold, respectively. The results showed that the endophytic fungus was potentially applicable for the decontamination of metal-polluted media. PMID:20956060

  4. Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India.

    Science.gov (United States)

    Skariyachan, Sinosh; Mahajanakatti, Arpitha Badarinath; Grandhi, Nisha Jayaprakash; Prasanna, Akshatha; Sen, Ballari; Sharma, Narasimha; Vasist, Kiran S; Narayanappa, Rajeswari

    2015-05-01

    The present study focuses prudent elucidation of microbial pollution and antibiotic sensitivity profiling of the fecal coliforms isolated from River Cauvery, a major drinking water source in Karnataka, India. Water samples were collected from ten hotspots during the year 2011-2012. The physiochemical characteristics and microbial count of water samples collected from most of the hotspots exhibited greater biological oxygen demand and bacterial count especially coliforms in comparison with control samples (p ≤ 0.01). The antibiotic sensitivity testing was performed using 48 antibiotics against the bacterial isolates by disk-diffusion assay. The current study showed that out of 848 bacterial isolates, 93.51% (n = 793) of the isolates were found to be multidrug-resistant to most of the current generation antibiotics. Among the major isolates, 96.46% (n = 273) of the isolates were found to be multidrug-resistant to 30 antibiotics and they were identified to be Escherichia coli by 16S rDNA gene sequencing. Similarly, 93.85% (n = 107), 94.49% (n = 103), and 90.22% (n = 157) of the isolates exhibited multiple drug resistance to 32, 40, and 37 antibiotics, and they were identified to be Enterobacter cloacae, Pseudomonas trivialis, and Shigella sonnei, respectively. The molecular studies suggested the prevalence of bla TEM genes in all the four isolates and dhfr gene in Escherichia coli and Sh. sonnei. Analogously, most of the other Gram-negative bacteria were found to be multidrug-resistant and the Gram-positive bacteria, Staphylococcus spp. isolated from the water samples were found to be methicillin and vancomycin-resistant Staphylococcus aureus. This is probably the first study elucidating the bacterial pollution and antibiotic sensitivity profiling of fecal coliforms isolated from River Cauvery, Karnataka, India. PMID:25896199

  5. Evaluation of biological endpoints in crop plants after exposure to non-steroidal anti-inflammatory drugs (NSAIDs): implications for phytotoxicological assessment of novel contaminants.

    Science.gov (United States)

    Schmidt, Wiebke; Redshaw, Clare H

    2015-02-01

    Human pharmaceuticals have been detected in the terrestrial environment at µg to mg kg(-1) concentrations. Repeated application of sewage sludge (biosolids) and increasing reclaimed wastewater use for irrigation could lead to accumulation of these novel contaminants in soil systems. Despite this, potential phytotoxicological effects on higher plants have rarely been evaluated. These studies aimed to test effects upon germination, development, growth and physiology of two crop plants, namely radish (Raphanus sativus Spakler 3) and lettuce (Lactuca sativa All Year Around), after exposure to different, but structurally related non-steroidal anti-inflammatory drugs (NSAIDs) at environmentally relevant concentrations. A range of biological endpoints comprising biomass, length, water content, specific root and shoot length, root to shoot ratio, daily progress of stages of cell elongation and organ emergence (primary root, hypocotyl elongation, cotyledon emergence, cotyledon opening, and no change), as well as photosynthetic measurements were evaluated. Compounds from the fenamic acid class were found to affect R. sativus root endpoints (root length and water content), while ibuprofen affected early root development of L. sativa. In general, phytotoxicological effects on root endpoints demonstrated that impacts upon higher plants are not only compound specific, but also differ between plant species. It was found that the usage of a wide range of biological endpoints (all simple, cost-effective and ecologically relevant) were beneficial in detecting differences in plant responses to NSAID exposure. Due to paucity and discrepancy within the few previously available phytotoxicological studies with pharmaceuticals, it is now essential to allocate time and resources to consider development of suitable chronic toxicity tests, and some suggestions regarding this are presented. PMID:25463873

  6. Chlor-alkali plant contamination of Aussa River sediments induced a large Hg-resistant bacterial community

    Science.gov (United States)

    Baldi, Franco; Marchetto, Davide; Gallo, Michele; Fani, Renato; Maida, Isabel; Covelli, Stefano; Fajon, Vesna; Zizek, Suzana; Hines, Mark; Horvat, Milena

    2012-11-01

    A closed chlor-alkali plant (CAP) discharged Hg for decades into the Aussa River, which flows into Marano Lagoon, resulting in the large-scale pollution of the lagoon. In order to get information on the role of bacteria as mercury detoxifying agents, analyses of anions in the superficial part (0-1 cm) of sediments were conducted at four stations in the Aussa River. In addition, measurements of biopolymeric carbon (BPC) as a sum of the carbon equivalent of proteins (PRT), lipids (LIP), and carbohydrates (CHO) were performed to correlate with bacterial biomass such as the number of aerobic heterotrophic cultivable bacteria and their percentage of Hg-resistant bacteria. All these parameters were used to assess the bioavailable Hg fraction in sediments and the potential detoxification activity of bacteria. In addition, fifteen isolates were characterized by a combination of molecular techniques, which permitted their assignment into six different genera. Four out of fifteen were Gram negative with two strains of Stenotrophomonas maltophilia, one Enterobacter sp., and one strain of Brevibacterium frigoritolerans. The remaining strains (11) were Gram positive belonging to the genera Bacillus and Staphylococcus. We found merA genes in only a few isolates. Mercury volatilization from added HgCl2 and the presence of plasmids with the merA gene were also used to confirm Hg reductase activity. We found the highest number of aerobic heterotrophic Hg-resistant bacteria (one order magnitude higher) and the highest number of Hg-resistant species (11 species out of 15) at the confluence of the River Aussa and Banduzzi's channel, which transport Hg from the CAP, suggesting that Hg is strongly detoxified [reduced to Hg(0)] at this location.

  7. Characterization of the extremely arsenic-resistant Brevibacterium linens strain AE038-8 isolated from contaminated groundwater in Tucumán, Argentina

    Science.gov (United States)

    Maizel, Daniela; Blum, Jodi S.; Ferrero, Marcela A.; Utturkar, Sagar M.; Brown, Steven D.; Rosen, Barry P.; Oremland, Ronald S.

    2015-01-01

    Brevibacterium linens AE038-8, isolated from As-contaminated groundwater in Tucumán (Argentina), is highly resistant to arsenic oxyanions, being able to tolerate up to 1 M As(V) and 75 mM As(III) in a complex medium. Strain AE038-8 was also able to reduce As(V) to As(III) when grown in complex medium but paradoxically it could not do this in a defined minimal medium with sodium acetate and ammonium sulfate as carbon and nitrogen sources, respectively. No oxidation of As(III) to As(V) was observed under any conditions. Three copies of the ars operon comprising arsenic resistance genes were found on B. linens AE038-8 genome. In addition to the well known arsC, ACR3 andarsR, two copies of the arsO gene of unknown function were detected.

  8. Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV: Ability to Control Susceptible and Resistant Pest Populations

    Directory of Open Access Journals (Sweden)

    Benoit Graillot

    2016-05-01

    Full Text Available The detection of resistance in codling moth (Cydia pomonella populations against the Mexican isolate of its granulovirus (CpGV-M, raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized—among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides.

  9. Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV): Ability to Control Susceptible and Resistant Pest Populations.

    Science.gov (United States)

    Graillot, Benoit; Bayle, Sandrine; Blachere-Lopez, Christine; Besse, Samantha; Siegwart, Myriam; Lopez-Ferber, Miguel

    2016-01-01

    The detection of resistance in codling moth (Cydia pomonella) populations against the Mexican isolate of its granulovirus (CpGV-M), raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized-among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides. PMID:27213431

  10. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    KAUST Repository

    Aljassim, Nada I.

    2015-04-01

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation. The treatment process achieved 3.5 logs removal of heterotrophic bacteria and up to 3.5 logs removal of fecal coliforms. The final chlorinated effluent had 1.8×102 MPN/100mL of fecal coliforms and fulfils the required quality for restricted irrigation. 16S rRNA gene-based high-throughput sequencing showed that several genera associated with opportunistic pathogens (e.g. Acinetobacter, Aeromonas, Arcobacter, Legionella, Mycobacterium, Neisseria, Pseudomonas and Streptococcus) were detected at relative abundance ranging from 0.014 to 21 % of the total microbial community in the influent. Among them, Pseudomonas spp. had the highest approximated cell number in the influent but decreased to less than 30 cells/100mL in both types of effluent. A culture-based approach further revealed that Pseudomonas aeruginosa was mainly found in the influent and non-chlorinated effluent but was replaced by other Pseudomonas spp. in the chlorinated effluent. Aeromonas hydrophila could still be recovered in the chlorinated effluent. Quantitative microbial risk assessment (QMRA) determined that only chlorinated effluent should be permitted for use in agricultural irrigation as it achieved an acceptable annual microbial risk lower than 10-4 arising from both P. aeruginosa and A. hydrophila. However, the proportion of bacterial isolates resistant to 6 types of antibiotics increased from 3.8% in the influent to 6.9% in the chlorinated effluent. Examples of these antibiotic-resistant isolates in the chlorinated effluent include Enterococcus and Enterobacter spp. Besides the presence of antibiotic-resistant bacterial isolates, tetracycline resistance genes tetO, tetQ, tetW, tetH, tetZ were also present at an average 2.5×102, 1.6×102, 4.4×102, 1

  11. An observational prospective study of topical acidified nitrite for killing methicillin-resistant Staphylococcus aureus (MRSA in contaminated wounds

    Directory of Open Access Journals (Sweden)

    Ferguson Gail P

    2011-10-01

    Full Text Available Abstract Background Endogenous nitric oxide (NO kills bacteria and other organisms as part of the innate immune response. When nitrite is exposed to low pH, NO is generated and has been used as an NO delivery system to treat skin infections. We demonstrated eradication of MRSA carriage from wounds using a topical formulation of citric acid (4.5% and sodium nitrite (3% creams co-applied for 5 days to 15 wounds in an observational prospective pilot study of 8 patients. Findings Following treatment with topical citric acid and sodium nitrite, 9 of 15 wounds (60% and 3 of 8 patients (37% were cleared of infection. MRSA isolates from these patients were all sensitive to acidified nitrite in vitro compared to methicillin-sensitive S. aureus and a reference strain of MRSA. Conclusions Nitric oxide and acidified nitrite offer a novel therapy for control of MRSA in wounds. Wounds that were not cleared of infection may have been re-contaminated or the bioavailability of acidified nitrite impaired by local factors in the tissue.

  12. Effects of 5-fluorouracil on biological characteristics and drug resistance mechanisms of liver cancer cell line PLC/RAF/5

    Directory of Open Access Journals (Sweden)

    CHENG Kangwen

    2015-09-01

    Full Text Available ObjectiveTo study the changes in biological characteristics of a liver cancer cell line PLC/RAF/5 after repeated exposure to a chemotherapy drug, 5-fluorouraci (5-FU, and to investigate the relationship between drug-resistant liver cancer cells and liver cancer stem cells. MethodsA low concentration of 5-FU (1 μg/ml was used to treat the human liver cancer cell line PLC/RAF/5 repeatedly to establish the PLC/RAF/5/5-FU cell line. Morphological differences between the two types of cells were observed. The inhibitory effects of different concentrations of 5-FU (0, 0.25, 0.5, 1, 1.5, and 2 μg/ml on the proliferation of the two types of cells were determined using the CCK-8 assay. Apoptosis of the two types of cells after exposure to different concentrations of 5-FU (0.5, 1, and 2 μg/ml for 48 h was analyzed using flow cytometry. The proportions of side population cells in both types of cells were measured using flow cytometry. The colony-forming ability was compared between the two types of cells by the plate colony-forming assay. The expression of Bax, Bcl-2, ABCG2, and FoxM1 proteins in both types of cells was examined by Western blot. Between-group comparison was performed by t test. ResultsThe PLC/RAF/5/5-FU cell line was successfully established using the chemotherapy drug 5-FU. Compared with the PLC/RAF/5 cells, the PLC/RAF/5/5-FU cells had a larger volume, fewer protrusions, a changed shape of a long shuttle, and enhanced refractivity. Moreover, compared with the parent cells, the PLC/RAF/5/5-FU cells had a significantly lower sensitivity to the inhibitory effect of 5-FU on proliferation, a significantly lower proportion of cells at the G0/G1 phase of the cell cycle, significantly higher proportions of cells at the S and G2/M phases, significantly higher resistance to apoptosis, a significantly higher proportion of side population cells, and significantly enhanced proliferation (P<0.05. According to the results of Western blot assay, the

  13. Bacterial contamination of orally-consumed crude herbal remedies:A potential source for multi-drug resistant patho-gens in man

    Institute of Scientific and Technical Information of China (English)

    O.G.Oyero; A.O.B.Oyefolu

    2009-01-01

    Objective:The acceptability of herbal remedies for alleviating discomforts and ill-health has become very pop-ular,on the account of the increasing cost of allopathic medicine for personal health maintenance.The observ-able non-adherence of herbalists to the established World Health Organization (WHO)/National Agency for Food and Drug Administration Control (NAFDAC)regulations for the quality control of herbal medicines is an issue for concern.In view of this,34 popular and widely consumed crude herbal remedies in southwestern,Ni-geria were screened for compliance with standard limits for bacterial contamination,bacteria flora and their an-tibiotic susceptibility pattern.Methods:Isolates recovered from samples were identified using the cultural, morphological and biochemical characteristics.They were also tested for drug sensitivity using standard proce-dures.Results:A heavy bacteria load ranging from 3.00 ×103 -9.58 ×105 CFU /ML and 1.20 ×105 -5.41 ×105 CFU /ML was observed for water and spirit extracted preparations respectively.The bacteria flora cum contaminants were:Staphylococcus aureus,Bacillus cereus,Bacillus subtilis,Pseudomonas aeruginosa, Micrococcus luteus,Lactobacillus plantarum,Klebsiella pneumoniae,Escherichia coli,streptococcus,Shigella, Neisseria,Arthrobacter,Kurthia and Clostridium species.All the isolates were multi-drug resistant (MDR) strains.Conclusion:The crude herbal preparations consumed in Nigeria failed to comply with the internation-ally recognized standards regarding bacteria load and flora.The presence of MDR pathogens is of greatest con-cern.It poses a great risk to consumer's health and could be a source of introducing MDR organisms into the human population.There is the need for the enforcement of established guidelines to ensure the safety of these preparations.

  14. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    International Nuclear Information System (INIS)

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  15. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China); Liu, Junhong, E-mail: liujh@qust.edu.cn [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China)

    2011-05-15

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  16. Biological trait analysis and stability of lambda-cyhalothrin resistance in the house fly, Musca domestica L. (Diptera: Muscidae).

    Science.gov (United States)

    Abbas, Naeem; Shah, Rizwan Mustafa; Shad, Sarfraz Ali; Iqbal, Naeem; Razaq, Muhammad

    2016-05-01

    House flies, Musca domestica L., (Diptera: Muscidae), are pests of poultry and have the ability to develop resistance to insecticides. To design a strategy for resistance management, life history traits based on laboratory observations were established for lambda-cyhalothrin-resistant, susceptible and reciprocal crosses of M. domestica strains. Bioassay results showed that the lambda-cyhalothrin-selected strain developed a resistance ratio of 98.34 compared to its susceptible strain. The lambda-cyhalothrin-selected strain had a relative fitness of 0.26 and lower fecundity, hatchability, lower number of next generation larvae, and net reproductive rate compared with its susceptible strain. Mean population growth rates, such as intrinsic rate of population increase, and biotic potential were lower for the lambda-cyhalothrin-selected strain compared to its susceptible strain. Resistance to lambda-cyhalothrin, indoxacarb, and abamectin was unstable while resistance to bifenthrin and methomyl was stable in the lambda-cyhalothrin-selected strain of M. domestica. Development of resistance can cost considerable fitness for the lambda-cyhalothrin-selected strain. The present study provided useful information for making potential management strategies to delay resistance development in M. domestica. PMID:26874957

  17. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    OpenAIRE

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Celso V Nakamura; de Oliveira, Admilton G.; Andrade, Célia G.T. de J.; Duran, Nelson; Nakazato, Gerson; Renata K. T. Kobayashi

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistanc...

  18. Groundwater contamination in the basement-complex area of Ile-Ife, southwestern Nigeria: A case study using the electrical-resistivity geophysical method

    Science.gov (United States)

    Adepelumi, A. A.; Ako, B. D.; Ajayi, T. R.

    2001-11-01

    Hydrogeoenvironmental studies were carried out at the sewage-disposal site of Obafemi Awolowo University campus, Ile-Ife, Nigeria. The objective of the survey was to determine the reliability of the electrical-resistivity method in mapping pollution plumes in a bedrock environment. Fifty stations were occupied with the ABEM SAS 300C Terrameter using the Wenner array. The electrical-resistivity data were interpreted by a computer-iteration technique. Water samples were collected at a depth of 5.0 m in 20 test pits and analyzed for quality. The concentrations of Cr, Cd, Pb, Zn, and Cu are moderately above the World Health Organization recommended guidelines. Plumes of contaminated water issuing from the sewage ponds were delineated. The geoelectric sections reveal four subsurface layers, with increasing depth, lateritic clay, clayey sand/sand, and weathered/fractured bedrock, and fresh bedrock. The deepest layers, 3 and 4, constitute the main aquifer, which has a thickness of 3.1-67.1 m. The distribution of the elements in the sewage effluent confirms a hydrological communication between the disposal ponds and groundwater. The groundwater is contaminated, as shown by sampling and the geophysical results. Thus, the results demonstrate the reliability of the direct-current electrical-resistivity geophysical method in sensing and mapping pollution plumes in a crystalline bedrock environment. Résumé. Des études géo-environnementales ont été réalisées sur le site d'épandages du campus universitaire d'Obafemi Awolowo, à Ile-Ife (Nigeria). L'objectif de ce travail était de déterminer la fiabilité de la méthode des résistivités électriques pour cartographier les panaches de pollution dans un environnement de socle. Cinquante stations ont été soumises à mesures au moyen d'un ABEM SAS 300C Terrameter en utilisant le dispositif de Wenner. Les données de résistivité électrique ont été interprétées au moyen d'une technique de calcul itérative. Des

  19. Groundwater contamination in the basement-complex area of Ile-Ife, southwestern Nigeria: A case study using the electrical-resistivity geophysical method

    Science.gov (United States)

    Adepelumi, A. A.; Ako, B. D.; Ajayi, T. R.

    2001-11-01

    Hydrogeoenvironmental studies were carried out at the sewage-disposal site of Obafemi Awolowo University campus, Ile-Ife, Nigeria. The objective of the survey was to determine the reliability of the electrical-resistivity method in mapping pollution plumes in a bedrock environment. Fifty stations were occupied with the ABEM SAS 300C Terrameter using the Wenner array. The electrical-resistivity data were interpreted by a computer-iteration technique. Water samples were collected at a depth of 5.0 m in 20 test pits and analyzed for quality. The concentrations of Cr, Cd, Pb, Zn, and Cu are moderately above the World Health Organization recommended guidelines. Plumes of contaminated water issuing from the sewage ponds were delineated. The geoelectric sections reveal four subsurface layers, with increasing depth, lateritic clay, clayey sand/sand, and weathered/fractured bedrock, and fresh bedrock. The deepest layers, 3 and 4, constitute the main aquifer, which has a thickness of 3.1-67.1 m. The distribution of the elements in the sewage effluent confirms a hydrological communication between the disposal ponds and groundwater. The groundwater is contaminated, as shown by sampling and the geophysical results. Thus, the results demonstrate the reliability of the direct-current electrical-resistivity geophysical method in sensing and mapping pollution plumes in a crystalline bedrock environment. Résumé. Des études géo-environnementales ont été réalisées sur le site d'épandages du campus universitaire d'Obafemi Awolowo, à Ile-Ife (Nigeria). L'objectif de ce travail était de déterminer la fiabilité de la méthode des résistivités électriques pour cartographier les panaches de pollution dans un environnement de socle. Cinquante stations ont été soumises à mesures au moyen d'un ABEM SAS 300C Terrameter en utilisant le dispositif de Wenner. Les données de résistivité électrique ont été interprétées au moyen d'une technique de calcul itérative. Des

  20. Integrated Biological Control

    International Nuclear Information System (INIS)

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  1. Electromagnetic Induction and Electrical Resistivity Tomography Applied to evaluate contamination at a site of disposal of animal wastes from a feedlot

    Science.gov (United States)

    Sainato, C. M.; Marquez Molina, J.; Losinno, B.; Urricariet, A. S.

    2012-12-01

    In Argentina, the systems of animal feeding in pens (feedlots) are expanding the production, generating a great quantity of solids and liquid residuals, being a highly risky source of soil and groundwater contamination. The aim of this work was to evaluate the relation between soil bulk conductivity and the distribution of concentrations of nitrates and other potential contaminants of groundwater from animal manure. Shallow electromagnetic induction (EMI) and electrical resistivity tomography (ERT) surveys were carried out at a pen of a feedlot at San Pedro , Bs. As. Province , Argentina, where large quantities of manure (3.5 m height) had been placed at the center of them, for a few months of activity. Soil sampling up to 2 m depth was performed for physical and chemical analysis. Wells were drilled for monitoring groundwater level (12 m depth) and water quality. Soil texture was defined as loamy clayey silty. Distribution of electrical conductivity obtained from the two exploration methods was similar, being higher the values at the pen than at the background site, coinciding with laboratory measurements of electrical conductivity of the saturation paste extract. At the center of the pen, bellow the manure accumulation, the highest values of conductivity were found (greater than 120mS/m), decreasing to the surroundings. However, values of N-NO3 in soil were lower at the center of the pen than at the surroundings. Concentration decreases with depth at sites of the pen with high soil compaction. Water content showed a strong influence on values of conductivity. Groundwater values of NO3 concentration do not exceed the level for human consumption although SO4 concentration increases respect to background deeper well.Values of conductivity and N-NO3 were still lower compared with the ones found at another pen with 10 years of use. An EMI survey carried out two years later showed an increase of twice the values of electrical conductivity. We conclude that higher

  2. Development of sample extraction and clean-up strategies for target and non-target analysis of environmental contaminants in biological matrices.

    Science.gov (United States)

    Baduel, Christine; Mueller, Jochen F; Tsai, Henghang; Gomez Ramos, Maria Jose

    2015-12-24

    Recently, there has been an increasing trend towards multi-targeted analysis and non-target screening methods as a means to increase the number of monitored analytes. Previous studies have developed biomonitoring methods which specifically focus on only a small number of analytes with similar physico-chemical properties. In this paper, we present a simple and rapid multi-residue method for simultaneous extraction of polar and non-polar organic chemicals from biological matrices, containing up to 5% lipid content. Our method combines targeted multi-residue analysis using gas chromatography triple quadrupole mass spectrometry (GC-QqQ-MS/MS) and a multi-targeted analysis complemented with non-target screening using liquid chromatography coupled to a quadrupole time of flight mass spectrometry (LC-QTOF-MS/MS). The optimization of the chemical extraction procedure and the effectiveness of different clean-up methods were evaluated for two biological matrices: fish muscle (lipid content ∼2%) and breast milk (∼4%). To extract a wide range of chemicals, the partition/extraction procedure used for the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach was tested as the initial step for the extraction of 77 target compounds covering a broad compound domain. All the target analytes have different physico-chemical properties (log Kow ranges from -0.3 to 10) and cover a broad activity spectrum; from polar pesticides, pharmaceuticals, personal care products (PPCPs) to highly lipophilic chemicals such as polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochloride pesticides (OCPs). A number of options were explored for the clean-up of lipids, proteins and other impurities present in the matrix. Zirconium dioxide-based sorbents as dispersive solid-phase extraction (d-SPE) and protein-lipid removal filter cartridges (Captiva ND Lipids) provided the best results for GC-MS and LC-MS analysis

  3. Patterns of metal composition and biological condition and their association in male common carp across an environmental contaminant gradient in Lake Mead National Recreation Area, Nevada and Arizona, USA.

    Science.gov (United States)

    Patiño, Reynaldo; Rosen, Michael R; Orsak, Erik L; Goodbred, Steven L; May, Thomas W; Alvarez, David; Echols, Kathy R; Wieser, Carla M; Ruessler, Shane; Torres, Leticia

    2012-02-01

    There is a contaminant gradient in Lake Mead National Recreation Area (LMNRA) that is partly driven by municipal and industrial runoff and wastewater inputs via Las Vegas Wash (LVW). Adult male common carp (Cyprinus carpio; 10 fish/site) were collected from LVW, Las Vegas Bay (receiving LVW flow), Overton Arm (OA, upstream reference), and Willow Beach (WB, downstream) in March 2008. Discriminant function analysis was used to describe differences in metal concentrations and biological condition of fish collected from the four study sites, and canonical correlation analysis was used to evaluate the association between metal and biological traits. Metal concentrations were determined in whole-body extracts. Of 63 metals screened, those initially used in the statistical analysis were Ag, As, Ba, Cd, Co, Fe, Hg, Pb, Se, Zn. Biological variables analyzed included total length (TL), Fulton's condition factor, gonadosomatic index (GSI), hematocrit (Hct), and plasma estradiol-17β and 11-ketotestosterone (11kt) concentrations. Analysis of metal composition and biological condition both yielded strong discrimination of fish by site (respective canonical model, p<0.0001). Compared to OA, pairwise Mahalanobis distances between group means were WBbiological traits. Respective primary drivers for these separations were Ag, As, Ba, Hg, Pb, Se and Zn; and TL, GSI, 11kt, and Hct. Canonical correlation analysis using the latter variable sets showed they are significantly associated (p<0.0003); with As, Ba, Hg, and Zn, and TL, 11kt, and Hct being the primary contributors to the association. In conclusion, male carp collected along a contaminant gradient in LMNRA have distinct, collection site-dependent metal and morpho-physiological profiles that are significantly associated with each other. These associations suggest that fish health and reproductive condition (as measured by the biological variables evaluated in this study) are

  4. Environmental Contaminants Monitoring Plan for Stillwater National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This environmental contaminants monitoring program is designed to assess concentrations, distribution, and biological availability of environmental contaminants on...

  5. Atmospheric contamination

    International Nuclear Information System (INIS)

    It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination

  6. Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B.

    Science.gov (United States)

    Naik, Milind Mohan; Pandey, Anju; Dubey, Santosh Kumar

    2012-09-01

    A lead resistant bacterial strain isolated from effluent of lead battery manufacturing company of Goa, India has been identified as Enterobacter cloacae strain P2B based on morphological, biochemical characters, FAME profile and 16S rDNA sequence data. This bacterial strain could resist lead nitrate up to 1.6 mM. Significant increase in exopolysaccharide (EPS) production was observed as the production increased from 28 to 108 mg/L dry weight when exposed to 1.6 mM lead nitrate in Tris buffered minimal medium. Fourier-transformed infrared spectroscopy of this EPS revealed presence of several functional groups involved in metal binding viz. carboxyl, hydroxyl and amide groups along with glucuronic acid. Gas chromatography coupled with mass spectrometry analysis of alditol-acetate derivatives of acid hydrolysed EPS produced in presence of 1.6 mM lead nitrate demonstrated presence of several neutral sugars such as rhamnose, arabinose, xylose, mannose, galactose and glucose, which contribute to lead binding hydroxyl groups. Scanning electron microscope coupled with energy dispersive X-ray spectrometric analysis of this lead resistant strain exposed to 1.6 mM lead nitrate interestingly revealed mucous EPS surrounding bacterial cells which sequestered 17 % lead (as weight %) extracellularly and protected the bacterial cells from toxic effects of lead. This lead resistant strain also showed multidrug resistance. Thus these results significantly contribute to better understanding of structure, function and environmental application of lead-enhanced EPSs produced by bacteria. This lead-enhanced biopolymer can play a very important role in bioremediation of several heavy metals including lead. PMID:22544353

  7. Antibiotic Resistance

    Science.gov (United States)

    ... Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products For Consumers Home For Consumers Consumer Information by Audience For Women Antibiotic Resistance Share Tweet Linkedin Pin it More ...

  8. Using biological and physico-chemical test methods to assess the role of concrete mixture design in resistance to microbially induced corrosion

    Science.gov (United States)

    House, Mitchell Wayne

    Concrete is the most widely used material for construction of wastewater collection, storage, and treatment infrastructure. The chemical and physical characteristics of hydrated portland cement make it susceptible to degradation under highly acidic conditions. As a result, some concrete wastewater infrastructure may be susceptible to a multi-stage degradation process known as microbially induced corrosion, or MIC. MIC begins with the production of aqueous hydrogen sulfide (H2S(aq)) by anaerobic sulfate reducing bacteria present below the waterline. H2S(aq) partitions to the gas phase where it is oxidized to sulfuric acid by the aerobic sulfur oxidizing bacteria Thiobacillus that resides on concrete surfaces above the waterline. Sulfuric acid then attacks the cement paste portion of the concrete matrix through decalcification of calcium hydroxide and calcium silica hydrate coupled with the formation of expansive corrosion products. The attack proceeds inward resulting in reduced service life and potential failure of the concrete structure. There are several challenges associated with assessing a concrete's susceptibility to MIC. First, no standard laboratory tests exist to assess concrete resistance to MIC. Straightforward reproduction of MIC in the laboratory is complicated by the use of microorganisms and hydrogen sulfide gas. Physico-chemical tests simulating MIC by immersing concrete specimens in sulfuric acid offer a convenient alternative, but do not accurately capture the damage mechanisms associated with biological corrosion. Comparison of results between research studies is difficult due to discrepancies that can arise in experimental methods even if current ASTM standards are followed. This thesis presents two experimental methods to evaluate concrete resistance to MIC: one biological and one physico-chemical. Efforts are made to address the critical aspects of each testing method currently absent in the literature. The first method presented is a new test

  9. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System.

    Directory of Open Access Journals (Sweden)

    Jacek Panek

    Full Text Available Spoilage of heat processed food and beverage by heat resistant fungi (HRF is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700, the other from thermal processed strawberry product in 2012 (KC179765, used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods.

  10. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System.

    Science.gov (United States)

    Panek, Jacek; Frąc, Magdalena; Bilińska-Wielgus, Nina

    2016-01-01

    Spoilage of heat processed food and beverage by heat resistant fungi (HRF) is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700), the other from thermal processed strawberry product in 2012 (KC179765), used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I) acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods. PMID:26815302

  11. Biology of Anticarsia gemmatalis on soybean genotypes with different degrees of resistance to insects Biologia de Anticarsia gemmatalis em genótipos de soja com diferentes graus de resistência a insetos

    Directory of Open Access Journals (Sweden)

    Cristina Gomes Quevedo Fugi

    2005-01-01

    Full Text Available A knowledge of the mechanisms of resistance present in genetic materials should help breeding programs in developing cultivars resistant to insects. The biology of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae was studied on leaves of four soybean genotypes with different degrees of resistance to insects. The genotypes evaluated were cultivars IAC 17 and IAC 24, resistant to defoliators and stink bugs, line PI 229358, a source of multiple resistance to insects and used as parent in various lines selected for resistance to A. gemmatalis, and 'IAC PL-1', the susceptible control. The experiments were carried out in the laboratory, under controlled conditions of temperature (25 ± 2ºC, relative humidity (60 ± 10% and photoperiod (14h. First instar larvae were placed in Petri dishes and fed leaves of each genotype, detached from plants at the R1 and R2 stages (beginning and full bloom. Later on, insect couples were maintained in 25 PVC cages to evaluate parameters of the adult stage. 'IAC 17' and 'IAC 24' promoted low viability of the larval, pupal, and egg stages, causing adult deformation and a reduction of the number of eggs per female. PI 229358 prolonged the immature stage and reduced pupal weight, egg viability, and adult longevity. Considering all tests, 'IAC 17' and 'IAC 24' were characterized as having antibiosis-type resistance, and 'IAC PL-1' demonstrated to be a genotype suitable for insect development.O conhecimento do tipo de resistência presente em genótipos pode dinamizar programas de melhoramento que tenham essa finalidade. Assim, estudaram-se aspectos biológicos de Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae em folhas de quatro genótipos de soja, sendo três com diferentes níveis de resistência e um suscetível a insetos. Avaliaram-se os cultivares IAC 17 e IAC 24, portadores de resistência a desfolhadores e sugadores, a linhagem PI 229358, progenitora de diversas linhagens resistentes a A. gemmatalis, e

  12. Antibiotic Exposure in a Low-Income Country: Screening Urine Samples for Presence of Antibiotics and Antibiotic Resistance in Coagulase Negative Staphylococcal Contaminants

    DEFF Research Database (Denmark)

    Lerbeck, Anne Mette; Tersbøl, Britt Pinkowski; Styrishave, Bjarne

    2014-01-01

    Development of antimicrobial resistance has been assigned to excess and misuse of antimicrobial agents. Staphylococci are part of the normal flora but are also potential pathogens that have become essentially resistant to many known antibiotics. Resistances in coagulase negative staphylococci (Co......NS) are suggested to evolve due to positive selective pressure following antibiotic treatment. This study investigated the presence of the nine most commonly used antimicrobial agents in human urine from outpatients in two hospitals in Ghana in relation to CoNS resistance. Urine and CoNS were sampled (n...... was the most common isolate (75%), followed by S. epidermidis (13%) and S. hominis (6%). S. haemolyticus was also the species displaying the highest resistance prevalence (82%). 69% of the isolated CoNS were multiple drug resistant (§4 antibiotics) and 45% of the CoNS were methicillin resistant...

  13. Antibacterial Activity within Degradation Products of Biological Scaffolds Composed of Extracellular Matrix

    OpenAIRE

    BRENNAN, ELLEN P.; Reing, Janet; CHEW, DOUGLAS; MYERS-IRVIN, JULIE M.; YOUNG, E.J.; Badylak, Stephen F.

    2006-01-01

    Biological scaffolds composed of extracellular matrix (ECM) have been shown to be resistant to deliberate bacterial contamination in preclinical in vivo studies. The present study evaluated the degradation products resulting from the acid digestion of ECM scaffolds for antibacterial effects against clinical strains of Staphylococcus aureus and Escherichia coli. The ECM scaffolds were derived from porcine urinary bladder (UBM-ECM) and liver (L-ECM). These biological scaffolds were digested wit...

  14. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2013. Scientific Opinion on Carbapenem resistance in food animal ecosystems

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    to be experimentally evaluated and validated. Biochemical and phenotypic tests for the confirmatory identification of CP bacteria are available. For CP bacteria in animals and food, active/passive monitoring and/or targeted surveys should cover key zoonotic agents, animal pathogens and indicator......-1-encoding genes were located on IncHI2 plasmids. A methodology including selective culture is proposed for the detection of CP strains of Enterobacteriaceae and Acinetobacter spp. The choice of selective media for the surveillance of carbapenem resistance for testing animal and food samples needs......Carbapenems are broad-spectrum β-lactam antimicrobials used for the treatment of serious infections in humans. To date only sporadic studies have reported the occurrence of carbapenemase-producing (CP) bacteria in food-producing animals and their environment. The bacteria and enzymes isolated...

  15. Radiocomplexation and biological evaluation of nemonoxacin in mice infected with multiresistant Staphylococcus aureus and penicillin-resistant Streptococci

    International Nuclear Information System (INIS)

    In the current investigation nemonoxacin (NMX) was radiolabeled with 99mTc in the presence of stannous chloride dihydrate as reducing agent. Factors affecting the percent labeling yield of 99mTc-Nemonoxacin (99mTc-NMX) complex were studied in details. The labeled compound was radiochemically characterized and was stable for a time up to 4 h. The complex showed in vitro saturated binding with living multiresistant Staphylococcus aureus (MRSA) and penicillin-resistant Streptococci (PRSC). Biodistribution and imaging studies were performed. All results showed that 99mTc-NMX complex is a promising agent for MRSA and PRSC infection imaging and can differentiate between infected and sterile inflammations. (author)

  16. Radiolabeling, biological evaluation and molecular docking of delafloxacin. A novel methicillin-resistant Staphylococcus aureus infection radiotracer

    International Nuclear Information System (INIS)

    Labeling of delafloxacin with technetium-99m (99mTc) and its characterization in terms of in vitro stability and in vitro binding with methicillin-resistant Staphylococcus aureus (MRSA) were explored. Optimum amounts of reactants were 2.5 mg delafloxacin, 125 µg stannous chloride dihydrate and ∼125 MBq pertechnetate. The 99mTc-delafloxacin was stable up to 6 h. Molecular modeling and docking studies showed that the complex will stabilize the DNA-topoisomerase IIA cleavage complex and inhibit strands separation. The in vivo evaluation showed highest specific accumulation in the live MRSA model (8 %) compared to other models. All gathered data supported the usefulness of 99mTc-delafloxacin as a MRSA radiotracer. (author)

  17. The Evolving Biology of Castration-Resistant Prostate Cancer: Review of Recommendations From the Prostate Cancer Clinical Trials Working Group 3.

    Science.gov (United States)

    Geethakumari, Praveen Ramakrishnan; Cookson, Michael S; Kelly, William Kevin

    2016-02-01

    In 2008, the Prostate Cancer Clinical Trials Working Group 2 (PCWG2) developed consensus guidelines for clinical trial design and conduct that redefined trial endpoints, with a dual-objective paradigm: to (1) controlling, relieving, or eliminating disease manifestations at the start of treatment; and (2) preventing or delaying further disease manifestations. Clinical and translational research in prostate cancer has expanded our current-day understanding of the mechanisms of its pathogenesis, as well as the different clinicopathologic and molecular subtypes of the disease, and has improved the therapeutic armamentarium for the management of metastatic castration-resistant prostate cancer (CRPC). These new advances led to the development of the updated PCWG3 guidelines in 2015. In this review, we analyze our evolving understanding of the biology of CRPC, acquired resistance mechanisms, and emerging therapeutic targets in light of the updated PCWG3 guidelines. We present a joint perspective from the medical oncology and urologic disciplines on the ongoing efforts to advance clinical trial performance in order to discover new therapies for this fatal disease. PMID:26888794

  18. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yan; Zhu Yongguan [Department of Soil Environmental Science, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Smith, F. Andrew [Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, Adelaide, SA 5005 (Australia); Wang Youshan [Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry, Beijing 100089 (China); Chen Baodong [Department of Soil Environmental Science, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)], E-mail: bdchen@rcees.ac.cn

    2008-09-15

    In a compartmented cultivation system, white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.), with their roots freely intermingled, or separated by 37 {mu}m nylon mesh or plastic board, were grown together in an arsenic (As) contaminated soil. The influence of AM inoculation on plant growth, As uptake, phosphorus (P) nutrition, and plant competitions were investigated. Results showed that both plant species highly depended on mycorrhizas for surviving the As contamination. Mycorrhizal inoculation substantially improved plant P nutrition, and in contrast markedly decreased root to shoot As translocation and shoot As concentrations. It also showed that mycorrhizas affected the competition between the two co-existing plant species, preferentially benefiting the clover plants in term of nutrient acquisition and biomass production. Based on the present study, the role of AM fungi in plant adaptation to As contamination, and their potential use for ecological restoration of As contaminated soils are discussed. - Both white clover and ryegrass highly depend on the mycorrhizal associations for surviving heavy arsenic contamination.

  19. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil

    International Nuclear Information System (INIS)

    In a compartmented cultivation system, white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.), with their roots freely intermingled, or separated by 37 μm nylon mesh or plastic board, were grown together in an arsenic (As) contaminated soil. The influence of AM inoculation on plant growth, As uptake, phosphorus (P) nutrition, and plant competitions were investigated. Results showed that both plant species highly depended on mycorrhizas for surviving the As contamination. Mycorrhizal inoculation substantially improved plant P nutrition, and in contrast markedly decreased root to shoot As translocation and shoot As concentrations. It also showed that mycorrhizas affected the competition between the two co-existing plant species, preferentially benefiting the clover plants in term of nutrient acquisition and biomass production. Based on the present study, the role of AM fungi in plant adaptation to As contamination, and their potential use for ecological restoration of As contaminated soils are discussed. - Both white clover and ryegrass highly depend on the mycorrhizal associations for surviving heavy arsenic contamination

  20. MgF2-coated porous magnesium/alumina scaffolds with improved strength, corrosion resistance, and biological performance for biomedical applications.

    Science.gov (United States)

    Kang, Min-Ho; Jang, Tae-Sik; Kim, Sung Won; Park, Hui-Sun; Song, Juha; Kim, Hyoun-Ee; Jung, Kyung-Hwan; Jung, Hyun-Do

    2016-05-01

    Porous magnesium (Mg) has recently emerged as a promising biodegradable alternative to biometal for bone ingrowth; however, its low mechanical properties and high corrosion rate in biological environments remain problematic. In this study, porous magnesium was implemented in a scaffold that closely mimics the mechanical properties of human bones with a controlled degradation rate and shows good biocompatibility to match the regeneration rate of bone tissue at the affected site. The alumina-reinforced Mg scaffold was produced by spark plasma sintering and coated with magnesium fluoride (MgF2) using a hydrofluoric acid solution to regulate the corrosion rate under physiological conditions. Sodium chloride granules (NaCl), acting as space holders, were leached out to achieve porous samples (60%) presenting an average pore size of 240μm with complete pore interconnectivity. When the alumina content increased from 0 to 5vol%, compressive strength and stiffness rose considerably from 9.5 to 13.8MPa and from 0.24 to 0.40GPa, respectively. Moreover, the biological response evaluated by in vitro cell test and blood test of the MgF2-coated porous Mg composite was enhanced with better corrosion resistance compared with that of uncoated counterparts. Consequently, MgF2-coated porous Mg/alumina composites may be applied in load-bearing biodegradable implants. PMID:26952467

  1. 99mTc(CO)3-Garenoxacin dithiocarbamate synthesis and biological evolution in rats infected with multiresistant Staphylococcus aureus and penicillin-resistant Streptococci

    International Nuclear Information System (INIS)

    99mTc(CO)3-Garenoxacin dithiocarbamate (99mTc(CO)3-GXND) complex was synthesized and biologically characterized in rats artificially infected with multiresistant Staphylococcus aureus (MDRSA) and penicillin-resistant Streptococci (PRSC). The characteristics of the 99mTc(CO)3-GXND complex was assessed in terms of radiochemical stability in saline, serum, in vitro binding with live and heat killed MDRSA and PRSC and biodistribution in rats artificially infected with MDRSA and PRSC. The complex showed maximum radiochemical stability at 30 min and remained more than 90% stable up to 240 min in normal saline after reconstitution. The complex was found stable in serum at 37 deg C up to 16 h. The complex showed in vitro saturated binding with living MDRSA and PRSC. In rats infected with living MDRSA and PRSC the complex showed five higher up take in the infected muscle as compared to the inflamed and normal muscle. No significant difference in uptake of the complex in rats infected with heat killed MDRSA and PRSC was observed. The disappearance of the complex from the blood and appearance in the urinary system confirm the normal biological route of biodistribution and excretion. The high values of the radiochemical stability in normal saline, serum, saturated in vitro binding with living MDRSA and PRSC and significant infected to normal muscles ratios, the 99mTc(CO)3-GXND complex is recommended for the localization of soft tissue infection caused by living MDRSA and PRSC. (author)

  2. Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4-diazabutanal (NDAB) in RDX-contaminated aquifer material.

    Science.gov (United States)

    Kwon, Man Jae; Finneran, Kevin T

    2010-11-01

    The potential for extracellular electron shuttles to stimulate RDX biodegradation was investigated with RDX-contaminated aquifer material. Electron shuttling compounds including anthraquinone-2,6-disulfonate (AQDS) and soluble humic substances stimulated RDX mineralization in aquifer sediment. RDX mass-loss was similar in electron shuttle amended and donor-alone treatments; however, the concentrations of nitroso metabolites, in particular TNX, and ring cleavage products (e.g., HCHO, MEDINA, NDAB, and NH(4) (+)) were different in shuttle-amended incubations. Nitroso metabolites accumulated in the absence of electron shuttles (i.e., acetate alone). Most notably, 40-50% of [(14)C]-RDX was mineralized to (14)CO(2) in shuttle-amended incubations. Mineralization in acetate amended or unamended incubations was less than 12% within the same time frame. The primary differences in the presence of electron shuttles were the increased production of NDAB and formaldehyde. NDAB did not further degrade, but formaldehyde was not present at final time points, suggesting that it was the mineralization precursor for Fe(III)-reducing microorganisms. RDX was reduced concurrently with Fe(III) reduction rather than nitrate or sulfate reduction. Amplified 16S rDNA restriction analysis (ARDRA) indicated that unique Fe(III)-reducing microbial communities (β- and γ-proteobacteria) predominated in shuttle-amended incubations. These results demonstrate that indigenous Fe(III)-reducing microorganisms in RDX-contaminated environments utilize extracellular electron shuttles to enhance RDX mineralization. Electron shuttle-mediated RDX mineralization may become an effective in situ option for contaminated environments. PMID:20424887

  3. Chemical and biological profiles of sediments as indicators of sources of contamination in Hamilton Harbour. Part II: bioassay-directed fractionation using the Ames Salmonella/microsome assay

    Energy Technology Data Exchange (ETDEWEB)

    Marvin, C.H.; McCarry, B.E.; Villella, J.; Allan, L.W.; Bryant, D.W. [McMaster University, Hamilton, ON (Canada). Dept. of Chemistry

    2000-07-01

    Bottom sediment and suspended sediment samples from Hamilton Harbour (western Lake Ontario) and from a major tributary were profiled using a bioassay-directed fractionation approach. Fractions which exhibited mutagenic activity contained PAH with molecular masses of 252, 276 and 278 amu; these fractions contained over 80% of the genotoxicity attributable to PAH. Suspended sediments collected near areas known to contain high levels of coal tar-contamination in the bottom sediments contained higher levels of genotoxic PAH than suspended sediments collected from other areas of the harbour.

  4. Effects of Mine Waste Contamination on Fish and Wildlife Habitat at Multiple Levels of Biological Organization in the Methow River, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peplow, Dan; Edmonds, Robert.

    2002-06-01

    A three-year multidisciplinary study was conducted on the relationship between mine waste contamination and the effects on aquatic and terrestrial habitats in the Methow River below abandoned mines near Twisp in Okanogan County, Washington (U.S.A.). Ore deposits in the area were mined for gold, silver, copper and zinc until the early 1950's. An above-and-below-mine approach was used to study potentially impacted sites. Although the dissolved metal content of water in the Methow River was below the limits of detection, eleven chemicals of potential environmental concern were identified in the tailings, mine effluents, groundwater, streamwater and sediments (Al, As, B, Ba, Cd, Cr, Cu, Mn, Pb, Se and Zn). The potential for ecosystem level impacts was reflected in the risk of contamination in the mine waste to communities and populations that are valued for their functional properties related to energy storage and nutrient cycling. Dissolved and sediment metal contamination changed the benthic insect community structure in a tributary of the Methow River below Alder Mine, and at the population level, caddisfly larval development in the Methow River was delayed. Arsenic accumulation in bear hair and Cd in fish liver suggest top predators are effected. In situ exposure of juvenile triploid trout (Oncorhynchus mykiss) to conditions at the downstream site resulted in reduced growth and increased mortality among exposed individuals. Histopathological studies of their tissues revealed extensive glycogen inclusions suggesting food is being converted into glycogen and stored in the liver but the glycogen is not being converted back normally into glucose for distribution to other tissues in the body. Subcellular observations revealed mitochondrial changes including a decrease in the number and increase in the size of electron-dense metrical granules, the presence of glycogen bodies in the cytoplasm, and glycogen nuclei in exposed trout hepatocytes, which are signs that

  5. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease.

    Science.gov (United States)

    Talbot, Jared; Maves, Lisa

    2016-07-01

    Skeletal muscle fibers are classified into fiber types, in particular, slow twitch versus fast twitch. Muscle fiber types are generally defined by the particular myosin heavy chain isoforms that they express, but many other components contribute to a fiber's physiological characteristics. Skeletal muscle fiber type can have a profound impact on muscle diseases, including certain muscular dystrophies and sarcopenia, the aging-induced loss of muscle mass and strength. These findings suggest that some muscle diseases may be treated by shifting fiber type characteristics either from slow to fast, or fast to slow phenotypes, depending on the disease. Recent studies have begun to address which components of muscle fiber types mediate their susceptibility or resistance to muscle disease. However, for many diseases it remains largely unclear why certain fiber types are affected. A substantial body of work has revealed molecular pathways that regulate muscle fiber type plasticity and early developmental muscle fiber identity. For instance, recent studies have revealed many factors that regulate muscle fiber type through modulating the activity of the muscle regulatory transcription factor MYOD1. Future studies of muscle fiber type development in animal models will continue to enhance our understanding of factors and pathways that may provide therapeutic targets to treat muscle diseases. WIREs Dev Biol 2016, 5:518-534. doi: 10.1002/wdev.230 For further resources related to this article, please visit the WIREs website. PMID:27199166

  6. Design, Synthesis, and Biological and Structural Evaluations of Novel HIV-1 Protease Inhibitors To Combat Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Parai, Maloy Kumar; Huggins, David J.; Cao, Hong; Nalam, Madhavi N.L.; Ali, Akbar; Schiffer, Celia A.; Tidor, Bruce; Rana, Tariq M. (MIT); (UMASS, MED); (Sanford-Burnham)

    2012-09-11

    A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants. In particular, inhibitors containing the 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with Ki values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and C and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies.

  7. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors.

    Science.gov (United States)

    Wu, Yuxiang; Pan, Miaobo; Dai, Yuxuan; Liu, Baomin; Cui, Jian; Shi, Wei; Qiu, Qianqian; Huang, Wenlong; Qian, Hai

    2016-05-15

    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50>100μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors. PMID:27073052

  8. Proteome changes in rat serum after a chronic ingestion of enriched uranium: Toward a biological signature of internal contamination and radiological effect.

    Science.gov (United States)

    Petitot, F; Frelon, S; Chambon, C; Paquet, F; Guipaud, O

    2016-08-22

    The civilian and military use of uranium results in an increased risk of human exposure. The toxicity of uranium results from both its chemical and radiological properties that vary with isotopic composition. Validated biomarkers of health effects associated with exposure to uranium are neither sensitive nor specific to uranium radiotoxicity and/or radiological effect. This study aimed at investigating if serum proteins could be useful as biomarkers of both uranium exposure and radiological effect. Male Sprague-Dawley rats were chronically exposed through drinking water to low levels (40mg/L, corresponding to 1mg of uranium per animal per day) of either 4% (235)U-enriched uranium (EU) or 12% EU during 6 weeks. A proteomics approach based on two-dimensional electrophoresis (2D-DIGE) and mass spectrometry (MS) was used to establish protein expression profiles that could be relevant for discriminating between groups, and to identify some differentially expressed proteins following uranium ingestion. It demonstrated that the expressions of 174 protein spots over 1045 quantified spots were altered after uranium exposure (puranium contamination and radiological effect. Finally, using bioinformatics tools, pathway analyses of differentially expressed MS-identified proteins find that acute phase, inflammatory and immune responses as well as oxidative stress are likely involved in the response to contamination, suggesting a physiological perturbation, but that does not necessarily lead to a toxic effect. PMID:27267564

  9. Biological dosimetric studies in the Chernobyl radiation accident, on populations living in the contaminated areas (Gomel regions) and in Estonian clean-up workers, using FISH technique

    International Nuclear Information System (INIS)

    In order to perform retrospective estimations of radiation doses seven years after the nuclear accident in Chernobyl, the frequencies of chromosomal aberrations in the peripheral blood lymphocytes of individuals living in contaminated areas around Chernobyl and the Estonian clean-up workers were determined. The first study group composed of 45 individuals living in four areas (i.e. Rechitsa, Komsomolski, Choiniki and Zaspa) in the vicinity (80-125 km) of Chernobyl and 20 individuals living in Minsk (control group - 340 km from Chernobyl). The second study group (Estonian clean-up workers) composed of 26 individuals involved in cleaning up the Chernobyl for a different period of time (up to 7 months) and a matched control group consisting of 9 probands. Unstable aberrations (dicentrics and rings) were scored in Giemsa stained preparations and stable aberrations (translocations) were analyzed using chromosome specific DNA libraries and fluorescence in situ hybridization (FISH) technique. For both study groups the estimated average dose is between 0,1-0,4 Gy. Among the people living in the contaminated areas in the vicinity of Chernobyl, a higher frequency of numerical aberrations (i.e. trisomy, hyper diploidy) was evident

  10. Use of biological indexes of the common reed (Phragmites australis) seed progeny in the environmental safety of radioactive contaminated water bodies

    International Nuclear Information System (INIS)

    Environmental protection requires effective monitoring system of radionuclide contamination and radiobiological effects as well as development of their prevention and minimizing measures for humans and biota. There is a majority of conventional techniques for living organisms' habitat quality assessment. One of the most widespread, convenient and accessible ones, is the seed progeny analysis, for example of conifers, cereals and wild herbaceous plants. Availability of vitality, growth, mutability indexes and abnormalities of vascular plant germs for environment quality express assessment was discussed in numerous publications. However, this point is studied insufficiently concerning aquatic vascular plants, forming communities playing significant role in radionuclides distribution in contaminated water bodies. Common reed (Phragmites australis (Trin) Ex. Steud) is a widespread species mostly dominating in air-aquatic vascular plant communities of freshwater bodies; it is a first-order 137Cs and 90Sr accumulating species. To assess the common reed germs growth indexes availability, seeds were sampled in polygon water bodies of different radionuclide contamination levels and 0.7-22 mcGy h-1 total absorbed dose range, within the Chernobyl Exclusion Zone. In water bodies with background level of radionuclide contamination, for comparison, total absorbed dose varied in range of 0.03-0.3 mcGy h-1. Series of seeds germination experiments was carried out in laboratory conditions. Complex of germs indexes was investigated, conditionally divided into three groups: (1) Vitality indexes. In course of experiment series, vitality was assessed via germinating energy, germinating ability indexes, germination period (first and last germ appearance) and survivability study; (2) Growth indexes. Root and leaf length, occurrence of plant groups with different vegetative organs length were determined for germs growth speed assessment; (3) Teratological effects were investigated via

  11. Use of biological indexes of the common reed (Phragmites australis) seed progeny in the environmental safety of radioactive contaminated water bodies

    Energy Technology Data Exchange (ETDEWEB)

    Yavnyuk, A. [National Aviation University, Kiev (Ukraine); Shevtsova, N.; Gudkov, D. [Institute of Hydrobiology of the National Academy of Sciences, Kiev (Ukraine)

    2014-07-01

    Environmental protection requires effective monitoring system of radionuclide contamination and radiobiological effects as well as development of their prevention and minimizing measures for humans and biota. There is a majority of conventional techniques for living organisms' habitat quality assessment. One of the most widespread, convenient and accessible ones, is the seed progeny analysis, for example of conifers, cereals and wild herbaceous plants. Availability of vitality, growth, mutability indexes and abnormalities of vascular plant germs for environment quality express assessment was discussed in numerous publications. However, this point is studied insufficiently concerning aquatic vascular plants, forming communities playing significant role in radionuclides distribution in contaminated water bodies. Common reed (Phragmites australis (Trin) Ex. Steud) is a widespread species mostly dominating in air-aquatic vascular plant communities of freshwater bodies; it is a first-order {sup 137}Cs and {sup 90}Sr accumulating species. To assess the common reed germs growth indexes availability, seeds were sampled in polygon water bodies of different radionuclide contamination levels and 0.7-22 mcGy h{sup -1} total absorbed dose range, within the Chernobyl Exclusion Zone. In water bodies with background level of radionuclide contamination, for comparison, total absorbed dose varied in range of 0.03-0.3 mcGy h{sup -1}. Series of seeds germination experiments was carried out in laboratory conditions. Complex of germs indexes was investigated, conditionally divided into three groups: (1) Vitality indexes. In course of experiment series, vitality was assessed via germinating energy, germinating ability indexes, germination period (first and last germ appearance) and survivability study; (2) Growth indexes. Root and leaf length, occurrence of plant groups with different vegetative organs length were determined for germs growth speed assessment; (3) Teratological

  12. Status of (137)Cs contamination in marine biota along the Pacific coast of eastern Japan derived from a dynamic biological model two years simulation following the Fukushima accident.

    Science.gov (United States)

    Tateda, Yutaka; Tsumune, Daisuke; Tsubono, Takaki; Misumi, Kazuhiro; Yamada, Masatoshi; Kanda, Jota; Ishimaru, Takashi

    2016-01-01

    Radiocesium ((134)Cs and (137)Cs) released into the Fukushima coastal environment was transferred to marine biota inhabiting the Pacific Ocean coastal waters of eastern Japan. Though the levels in most of the edible marine species decreased overtime, radiocesium concentrations in some fishes were still remained higher than the Japanese regulatory limit for seafood products. In this study, a dynamic food chain transfer model was applied to reconstruct (137)Cs levels in olive flounder by adopting the radiocesium concentrations in small demersal fish which constitute an important fraction of the diet of the olive flounder particularly inhabiting area near Fukushima. In addition, (137)Cs levels in slime flounder were also simulated using reported radiocesium concentrations in some prey organisms. The simulated results from Onahama on the southern border of the Fukushima coastline, and at Choshi the southernmost point where the contaminated water mass was transported by the Oyashio current, were assessed in order to identify what can be explained from present information, and what remains to be clarified three years after the Fukushima Dai-ichi nuclear power plant (1FNPP) accident. As a result, the observed (137)Cs concentrations in planktivorous fish and their predator fish could be explained by the theoretically-derived simulated levels. On the other hand, the slow (137)Cs depuration in slime flounder can be attributed to uptake from unknown sources for which the uptake fluxes were of a similar magnitude as the excretion fluxes. Since the reported (137)Cs concentrations in benthic invertebrates off Onahama were higher than the simulated values, radiocesium transfer from these benthic detritivorous invertebrates to slime flounder via ingestion was suggested as a cause for the observed slow depuration of (137)Cs in demersal fish off southern Fukushima. Furthermore, the slower depuration in the demersal fish likely required an additional source of (137)Cs, i

  13. EFSA Panels on Biological Hazards (BIOHAZ), on Contaminants in the Food Chain (CONTAM), and on Animal Health and Welfare (AHAW); Scientific Opinion on the public health hazards to be covered by inspection of meat (poultry)

    DEFF Research Database (Denmark)

    Hald, Tine

    2012-01-01

    A qualitative risk assessment identified Campylobacter spp., Salmonella spp. and ESBL/AmpC gene-carrying bacteria as the most relevant biological hazards in the context of meat inspection of poultry. As none of these are detected by traditional visual meat inspection, establishing an integrated...... being of high potential concern. Chemical substances in poultry, however, are unlikely to pose an immediate or acute health risk for consumers. Sampling for chemical residues and contaminants should be based on the available FCI. Moreover, control programmes should be better integrated with feed...... controls and regularly updated to include new and emerging substances. Meat inspection is recognised as a valuable tool for surveillance and monitoring of specific animal health and welfare conditions. If visual post-mortem inspection is removed, other approaches should be applied to compensate for the...

  14. A new possible biological interface model useful to narrate the artificial negative events by the radioactive contaminations and heavy-metals pollution of the soil and the atmosphere in different areas of Europe

    International Nuclear Information System (INIS)

    A lot of environmental negative effects are associated to the pollution and radioactive contaminations of the soil and the atmosphere. Actually the C.I.S.A.M. (Interforces Centre for Studies and Military Applications) receives increasing commitments to control and to knowledge about the risks of the population and soldiers employed as stabilization or keeping peace force in large areas of different territories of Europe and other sites of the Planet. The aim of this work is focused to compare the contents of radionuclides on specific natural interfaces in different areas as residual radioactive contamination in addition to the other possible heavy-metals pollution. We used barks, lichens and symbiontic microalgae as interfaces with the atmospheric events of the Chernobyl, Balkan, and the Italian areas. The qualitative analysis of these biological matters showed the constant presence of Radiocesium, along with other radionuclides, of which we report the concentrations. Even if these observations are not completely new, nevertheless we can suppose that this approach could be a new possible interface model useful to narrate the sequence of the the artificial negative events due to the human activities and contemporarely an indirect valuation of different risks pointed to the protection of the exposed population

  15. Impact of urban contamination of the La Paz River basin on thermotolerant coliform density and occurrence of multiple antibiotic resistant enteric pathogens in river water, irrigated soil and fresh vegetables.

    Science.gov (United States)

    Poma, Violeta; Mamani, Nataniel; Iñiguez, Volga

    2016-01-01

    La Paz River in Andean highlands is heavily polluted with urban run-off and further contaminates agricultural lowlands and downstream waters at the Amazon watershed. Agricultural produce at this region is the main source of vegetables for the major Andean cities of La Paz and El Alto. We conducted a 1 year study, to evaluate microbial quality parameters and occurrence of multiple enteropathogenic bacteria (Enterohemorrhagic E. coli-EHEC, Enteroinvasive E. coli or Shigella-EIEC/Shigella, Enteroaggregative E. coli-EAEC, Enteropathogenic E. coli-EPEC Enterotoxigenic E. coli-ETEC and Salmonella) and its resistance to 11 antibiotics. Four sampling locations were selected: a fresh mountain water reservoir (un-impacted, site 1) and downstream sites receiving wastewater discharges (impacted, sites 2-4). River water (sites 1-4, N = 48), and soil and vegetable samples (site 3, N = 24) were collected during dry (April-September) and rainy seasons (October-March). Throughout the study, thermotolerant coliform density values at impacted sites greatly exceeded the guidelines for recreational and agricultural water uses. Seasonal differences were found for thermotolerant coliform density during dry season in water samples nearby a populated and hospital compound area. In contrast to the un-impacted site, where none of the tested enteropathogens were found, 100 % of surface water, 83 % of soil and 67 % of vegetable samples at impacted sites, were contaminated with at least one enteropathogen, being ETEC and Salmonella the most frequently found. ETEC isolates displayed different patterns of toxin genes among sites. The occurrence of enteropathogens was associated with the thermotolerant coliform density. At impacted sites, multiple enteropathogens were frequently found during rainy season. Among isolated enteropathogens, 50 % were resistant to at least two antibiotics, with resistance to ampicillin, nalidixic acid, trimethoprim-sulfamethoxazole and tetracycline commonly

  16. The Use of Seaweed and Sugarcane Bagasse for the Biological Treatment of Metal-contaminated Waters Under Sulfate-reducing Conditions

    Science.gov (United States)

    Gonçalves, Márcia Monteiro Machado; de Mello, Luiz Antonio Oliveira; da Costa, Antonio Carlos Augusto

    When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests.

  17. Radiocomplexation and biological characterization of the 99mTcN-trovafloxacin dithiocarbamate. A novel methicillin-resistant Staphylococcus aureus infection imaging agent

    International Nuclear Information System (INIS)

    The radiolabeling of trovafloxacin dithiocarbamate (TVND) with technetium-99m using [99mTc-N]2+ core was investigated and biologically assessed as prospective infection imaging agent. The achievability of the 99mTcN-TVND complex as a future MRSA infection radiotracer was investigated in artificially methicillin-resistant Staphylococcus aureus (MRSA) infected male Sprague-Dawley rats (MSDR). Radiochemically the 99mTcN-TVND complex was characterized in terms of radiochemical purity (RCP) in saline, in vitro permanence in serum, in vitro binding with MRSA and biodistribution in living and heat killed MRSA infected MSDR. Radiochemically the complex showed stability in saline with a 97.90 ± 0.22% yield and serum at 37 deg C up to 4 h. The 99mTcN-TVND complex showed saturated in vitro binding with MRSA. Normal in vivo uptake in the MRSA infected MDRS was observed with a five fold uptake in the infected muscle as compared to inflamed and normal muscles. The high RCP values, in vitro permanence in serum, better in vitro binding with MRSA, biodistribution behavior and the target to non-target (infected to inflamed muscle) ratios posed the 99mTcN-TVND complex as a promising MRSA infection radiotracer. (author)

  18. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  19. Resilience and resistance of a pristine aquifer towards toluene contamination – impact assessment using microbes and elucidation of factors limiting natural attenuation

    OpenAIRE

    Herzyk, Agnieszka Monika

    2013-01-01

    The resistance and recovery potential of an oligotrophic groundwater ecosystem towards organic impact is still unknown. In this thesis, the response of a pristine groundwater model system to toluene input and its recovery was studied. The system revealed a spontaneous aerobic degradation within 63 hours, being limited by transport processes on later stages. After depletion of toluene and the fast recovery of redox conditions, the microbial community composition remained altered. We conclude t...

  20. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals

    OpenAIRE

    Rajkumar, Mani; Freitas, Helena

    2008-01-01

    The metal resistant-plant growth-promoting bacterial (PGPB) strains PsM6 and PjM15 isolated from a serpentine soil were characterized as Pseudomonas sp. and Pseudomonas jessenii, respectively, on the basis of their morphological, physiological, biochemical characteristics and 16S rDNA sequences. Assessment of plant growth-promoting parameters revealed the intrinsic ability of the strains for the utilization of 1-aminocyclopropane-1-carboxylic acid as the sole N source, solubilization of insol...

  1. An Air-Stripping Packed Bed Combined with a Biofilm-Type Biological Process for Treating BTEX and Total Petroleum Hydrocarbon Contaminated Groudwater

    Science.gov (United States)

    Hong, U.; Park, S.; Lim, J.; Lee, W.; Kwon, S.; Kim, Y.

    2009-12-01

    In this study, we examined the removal efficiency of a volatile compound (e.g. toluene) and a less volatile compound [e.g. total petroleum hydrocarbon (TPH)] using an air stripping packed bed combined with a biofilm-type biological process. We hypothesized that this system might be effective and economical to simultaneously remove both volatile and less volatile compounds. The gas-tight reactor has 5.9-inch-diameter and 48.8-inch-height. A spray nozzle was installed at the top cover to distribute the liquid evenly through reactor. The reactor was filled with polypropylene packing media for the increase of volatilization surface area and the growth of TPH degrading facultative aerobic bacteria on the surface of the packing media. In air stripping experiments, 45.6%, 71.7%, 72.0%, and 75.4% of toluene was removed at air injection rates of 0 L/min, 2.5 L/min, 4 L/min, and 6 L/min, respectively. Through the result, we confirmed that toluene removal efficiency increased by injecting higher amounts of air. TPH removal by stripping was minimal. To remove a less volatile TPH by commercial TPH degrading culture (BIO-ZYME B-52), 15-times diluted culture was circulated through the reactor for 2-3 days to build up a biofilm on the surface of packing media with 1 mg-soluble nitrogen source /L-water per 1 ppm of TPH. Experiments evaluating the degree of TPH biodegradation in this system are carrying out.

  2. Contaminated sites

    International Nuclear Information System (INIS)

    The term 'Contaminated sites' refers to soil and groundwater contamination caused by local sources such as landfills or industrial sites. As of July 2002, there were in Austria 2,372 sites registered as potentially contaminated sites, from them: 165 sites required remediation, for 55 sites non remedial measures were necessary and to date 65 sites were remediated with a cost of 700,000 M Euro. An overview about funding of remedial measures, estimation of the extent of the problem (remediation requirements, chlorinated hydrocarbons accidents), deficits (lack of legal harmonization, slow implementation of remedial measures, etc.) is presented. Table 1. (nevyjel)

  3. Remediation of contaminated soils

    International Nuclear Information System (INIS)

    At least three types of zones of contamination exist whenever there is a chemical release. The impact of Non-Aqueous-Phase Liquids (NAPL) on soils and groundwater, together with the ultimate transport and migration of constituent chemicals in their dissolved or sorbed states, had led environmentalists to develop several techniques for cleaning a contaminated soil. Zone 1 represents the unsaturated zone which could be contaminated to retention capacity by both Dense Non-Aqueous-Phase Liquids (DNAPL) and Light Non-Aqueous-Phase Liquids (LNAPL). Zone 2 represents residual DNAPL or LNAPL contamination found below the groundwater table in the saturated zone. Zone 3 is represented by either the presence of NAPL dissolved in the aqueous phase, volatilized in the unsaturated zone or sorbed to either saturated or unsaturated soils. Cleanup of petroleum contaminated soils is presented in this paper. Among several techniques developed for this purpose, in-situ biological remediation is discussed in detail as a technique that does not involve excavation, thus, the costs and disruption of excavating soil are eliminated

  4. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils.

    Science.gov (United States)

    Wu, Song-Lin; Chen, Bao-Dong; Sun, Yu-Qing; Ren, Bai-Hui; Zhang, Xin; Wang, You-Shan

    2014-09-01

    In a greenhouse pot experiment, dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.] Pers.), inoculated with and without arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, were grown in chromium (Cr)-amended soils (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg Cr[VI]) to test whether arbuscular mycorrhizal (AM) symbiosis can improve Cr tolerance in different plant species. The experimental results indicated that the dry weights of both plant species were dramatically increased by AM symbiosis. Mycorrhizal colonization increased plant P concentrations and decreased Cr concentrations and Cr translocation from roots to shoots for dandelion; in contrast, mycorrhizal colonization decreased plant Cr concentrations without improvement of P nutrition in bermudagrass. Chromium speciation analysis revealed that AM symbiosis potentially altered Cr species and bioavailability in the rhizosphere. The study confirmed the protective effects of AMF on host plants under Cr contaminations. PMID:24920536

  5. Lessons learned from more than two decades of research on emerging contaminants in the environment.

    Science.gov (United States)

    Noguera-Oviedo, Katia; Aga, Diana S

    2016-10-01

    In the last twenty years, thousands of research papers covering different aspects of emerging contaminants have been published, ranging from environmental occurrence to treatment and ecological effects. Emerging contaminants are environmental pollutants that have been investigated widely only in the last two decades and include anthropogenic and naturally occurring chemicals such as pharmaceuticals and personal care products and their metabolites, illicit drugs, engineered nanomaterials, and antibiotic resistance genes. The advancement in our knowledge on emerging contaminants has been the result of the appearance of highly sensitive and powerful analytical instrumentation that rapidly developed, allowing identification and trace quantification of unknown contaminants in complex environmental matrices. High efficiency chromatographic separations coupled to high-resolution mass spectrometers have become more common in environmental laboratories and are the pillars of environmental research, increasing our awareness and understanding of the presence of emerging contaminants in the environment, their transformation and fate, and the complex ecological consequences that they pose on exposed biological systems. This introductory paper for the Virtual Thematic Issue on Emerging Contaminants presents a brief literature overview on key research milestones in the area of emerging contaminants, focusing on pharmaceuticals and personal care products and endocrine disrupting compounds, and highlighting selected research papers previously published in the Journal of Hazardous Materials during the period of January 2012 to December 2015. PMID:27241399

  6. Microbial source tracking(MST) and quantitative tracking of biological fecal contamination in water environment%MST与水环境生物源污染定量化溯源

    Institute of Scientific and Technical Information of China (English)

    郭萍; 李红娜; 李峰

    2016-01-01

    微生物溯源技术(Microbial source tracking,MST)通过靶标生物标记定位污染来源,为难以确定污染来源的非点源生物源污染监测提供了技术手段。基于微生物溯源技术从定性到定量化的发展历程,介绍了MST技术的产生、发展与特点以及MST在水环境污染监测与管理中的应用;重点论述了拟杆菌(Bacteroides spp.)基因标记水环境定量化溯源的研究进展,集中分析了温度、光照、盐度等环境因子对拟杆菌基因标记环境衰变的影响以及环境因子与定量化溯源结果准确性的相关关系,并据此判定环境生物因子可能对基因标记环境衰变结果存在一定的影响。依据目前定量溯源研究与应用现状,提出了提高拟杆菌定量溯源准确性和广泛性的研究重点和应用前景。%Microbial source tracking(MST)provides an accessible method for tracking the non-point contamination from biological sources, for it allows practitioners to discriminate among many possible sources of fecal contamination in the environmental waters by identifying the target biomarkers. In this paper, the origin, development process from qualitative to quantitative, characteristics and environmental applica-tions of MST technology were briefly reviewed. The screening criteria of microbes as indicators were developed. Bacteroides spp. as one of the accepted indicators showed some advantages in quantitative MST because this microbe couldn′t reproduce in vitro environment accord-ing to the criteria. The research on quantitative source tracking with Bacteroides spp. gene marker under different conditions has made a great progress. The research has been focused on the development of Bacteroides spp. gene-markers and their application to contamination source tracking at a quantitative level in water environment. The effects of environmental factors such as light, dark, temperature etc. on the decay of gene marks, and the

  7. Prevalence of methicillin-resistant staphylococci isolated from different biological samples at Policlinico Umberto I of Rome: correlation with vancomycin susceptibility

    Directory of Open Access Journals (Sweden)

    Maria Teresa Mascellino

    2011-03-01

    Full Text Available The methicillin-resistance is increasing all over the world in the last decade. It is more frequent among coagulase-negative staphylococci (MRCoNS; infact the 52% of S. epidermidis strains results to be resistant to methicillin.The methicillin-resistant strains also show a reduced sensitivity towards the first-line agents such as glycopeptides and other antibiotics commonly used in therapy such as trimethoprim-sulphamethoxazole, imipenem, gentamycin, fosfomycin and chlarytromicin. Unlike MRSA (Methicillin-resistant S. aureus, MRCoNS resistance to glycopeptides generally concerns teicoplanin. Although vancomycin resistance is rare in Staphylococcus isolates, the detected shift towards higher values of MICs might affect patient’s clinical outcome.

  8. Plutonium and transplutonian biology

    International Nuclear Information System (INIS)

    The present state of knowledge in the field of plutonium and transplutonian biology is reviewed. The physico-chemical properties of these substances, the conditions in which they can contaminate human beings, their behaviour on mammals, their toxic effects and the correlative contamination treatment technique are analyzed successively. Plutonium and transplutonians, although relatively toxic, have as yet never caused severe injuries to humans. They cannot be transmitted to man through alimentary chains and constitute a hazard only for those who handle them. In this last case, the existing protection techniques offer such a high degree of efficiency that virtually all risk of contamination is eliminated

  9. Variable pattern contamination control under positive pressure

    Energy Technology Data Exchange (ETDEWEB)

    Philippi, H.M. [Chalk River Labs., Ontario (Canada)

    1997-08-01

    Airborne contamination control in nuclear and biological laboratories is traditionally achieved by directing the space ventilation air at subatmospheric pressures in one fixed flow pattern. However, biological and nuclear contamination flow control in the new Biological Research Facility, to be commissioned at the Chalk River Laboratories in 1996, will have the flexibility to institute a number of contamination control patterns, all achieved at positive (above atmospheric) pressures. This flexibility feature, made possible by means of a digitally controlled ventilation system, changes the facility ventilation system from being a relatively rigid building service operated by plant personnel into a flexible building service which can be operated by the facility research personnel. This paper focuses on and describes the application of these unique contamination control features in the design of the new Biological Research Facility. 3 refs., 7 figs.

  10. Biological and Epidemiological Features of Antibiotic-Resistant Streptococcus pneumoniae in Pre- and Post-Conjugate Vaccine Eras: a United States Perspective.

    Science.gov (United States)

    Kim, Lindsay; McGee, Lesley; Tomczyk, Sara; Beall, Bernard

    2016-07-01

    Streptococcus pneumoniae inflicts a huge disease burden as the leading cause of community-acquired pneumonia and meningitis. Soon after mainstream antibiotic usage, multiresistant pneumococcal clones emerged and disseminated worldwide. Resistant clones are generated through adaptation to antibiotic pressures imposed while naturally residing within the human upper respiratory tract. Here, a huge array of related commensal streptococcal strains transfers core genomic and accessory resistance determinants to the highly transformable pneumococcus. β-Lactam resistance is the hallmark of pneumococcal adaptability, requiring multiple independent recombination events that are traceable to nonpneumococcal origins and stably perpetuated in multiresistant clonal complexes. Pneumococcal strains with elevated MICs of β-lactams are most often resistant to additional antibiotics. Basic underlying mechanisms of most pneumococcal resistances have been identified, although new insights that increase our understanding are continually provided. Although all pneumococcal infections can be successfully treated with antibiotics, the available choices are limited for some strains. Invasive pneumococcal disease data compiled during 1998 to 2013 through the population-based Active Bacterial Core surveillance program (U.S. population base of 30,600,000) demonstrate that targeting prevalent capsular serotypes with conjugate vaccines (7-valent and 13-valent vaccines implemented in 2000 and 2010, respectively) is extremely effective in reducing resistant infections. Nonetheless, resistant non-vaccine-serotype clones continue to emerge and expand. PMID:27076637

  11. Biological indicators and sterilization processes

    International Nuclear Information System (INIS)

    A review is given of biological indicators, e.g. bacterial spores, used for monitoring the efficiency of sterilization processes. The choice of a suitable biological indicator depending on its resistance to heat sterilization, ionizing radiation and gaseous sterilization is discussed. Factors affecting the reliability of biological indicators are also discussed including genotypically determined resistance, environmental influences during growth and sporulation, the influence of the environment during storage and sterilization and the influence of recovery conditions. (U.K.)

  12. Investigation and analysis on biological contamination of cooked food in Jiangyin city%江阴市熟食卤菜微生物污染状况调查分析

    Institute of Scientific and Technical Information of China (English)

    蒋建章

    2011-01-01

    Objective To understand the hygienic quality of cooked food in Jiangyin city, in order to provide basis for foodborne diseases investigation and food contamination monitoring. Method Monitoring the biological contamination of cooked food in 20 catering service units and delicatessens and 5 supermarkets. Results The total biological eligible rate of cooked food was 52.49% and exceeded rate was 70.51% in 2010, the exceeded rate of total plate count and conform bacteria and detection rate of bacteria increased significantly. Coliform bacterium exceeded rate in the first quarter was 25.29% , pathogenic bacteria detection rate in the fourth quarter was 10. 81%. The exceeded rate of cooked food which made and sold in catering service units was 21.48% , the total exceeded rate of coliform bacteria and plate count of cooked food in delicatessens was 31.41% , and the detection rate -of pathogenic bacteria was 8.36%. We detection 41 strains of foodborne pathogens, including Vibrio parahaemolyticus, Proteus, Vibrio alginolyticus, Escberichia coli, Aeromonas monocytogenes and so on, Vibrio parahaemolyticus, Proteus, Vibrio alginolyticus pollution serious. Conclusions Cooked food in our city was microorganism pollution serious. Exceeded rate in 2010 was the highest The foodbome pathogens of Vibrio Parahaemolyticus, Proteus, Vibrio alginolyticus were serious pollution. We must further clarify responsibilities and strengthen supervision and monitoring of food hygiene, effective prevention of foodbome diseases and strengthened opportunistic bacteriathe detection when carried out foodborne diseases investigation and food contamination monitoring.%目的 了解江阴市制售的熟食卤菜卫生质量,为食源性疾病调查和食品污染物监测提供依据.方法 对5个乡镇的熟食卤菜店及餐饮服务单位各20家、5家超市制售的熟食卤菜进行微生物污染监测.结果 熟食卤菜中微生物总合格率为52.49%.2010年超标率达70.51%,

  13. Contamination weeping

    International Nuclear Information System (INIS)

    This paper discusses experiments conducted to determined the applicability of a chemical ion-exchange model to characterize the problem of nuclear fuel transportation cask contamination and release (weeping). Surface charge characteristics of Cr2O3 and stainless steel powders have been measured to determined the potential for ion exchange at metal oxide aqueous interfaces. The solubility of pool contaminant Co and Cs electrolytes at varying pH and the adsorption characteristics of these ions on Cr2O3 and stainless steel powders in aqueous slurries have been studied. Experiments show that Co ions do reversibly adsorb on these powder surfaces and, more specifically, that adsorption occurs in the nominal pH range (pH-4-6) of a boric acid-moderated spent fuel pool. Desorption has been demonstrated to occur at pH ≤ 3. Cs ions also have been shown to have an affinity for these surfaces although the reversibility of Cs+ bonding by H+ ion exchange has not been fully demonstrated. These results have significant implications for effective decontamination and coating processes used on nuclear fuel transportation casks

  14. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  15. Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant Bacterium from Low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov.

    Science.gov (United States)

    Shelobolina, Evgenya S; Sullivan, Sara A; O'Neill, Kathleen R; Nevin, Kelly P; Lovley, Derek R

    2004-05-01

    A facultatively anaerobic, acid-resistant bacterium, designated strain FRCl, was isolated from a low-pH, nitrate- and U(VI)-contaminated subsurface sediment at site FW-024 at the Natural and Accelerated Bioremediation Research Field Research Center in Oak Ridge, Tenn. Strain FRCl was enriched at pH 4.5 in minimal medium with nitrate as the electron acceptor, hydrogen as the electron donor, and acetate as the carbon source. Clones with 16S ribosomal DNA (rDNA) sequences identical to the sequence of strain FRCl were also detected in a U(VI)-reducing enrichment culture derived from the same sediment. Cells of strain FRCl were gram-negative motile regular rods 2.0 to 3.4 micro m long and 0.7 to 0.9 microm in diameter. Strain FRCl was positive for indole production, by the methyl red test, and for ornithine decarboxylase; it was negative by the Voges-Proskauer test (for acetylmethylcarbinol production), for urea hydrolysis, for arginine dihydrolase, for lysine decarboxylase, for phenylalanine deaminase, for H(2)S production, and for gelatin hydrolysis. Strain FRCl was capable of using O(2), NO(3)(-), S(2)O(3)(2-), fumarate, and malate as terminal electron acceptors and of reducing U(VI) in the cell suspension. Analysis of the 16S rDNA sequence of the isolate indicated that this strain was 96.4% similar to Salmonella bongori and 96.3% similar to Enterobacter cloacae. Physiological and phylogenetic analyses suggested that strain FRCl belongs to the genus Salmonella and represents a new species, Salmonella subterranea sp. nov. PMID:15128557

  16. Genesis of Azole Antifungal Resistance from Agriculture to Clinical Settings.

    Science.gov (United States)

    Azevedo, Maria-Manuel; Faria-Ramos, Isabel; Cruz, Luísa Costa; Pina-Vaz, Cidália; Rodrigues, Acácio Gonçalves

    2015-09-01

    Azole fungal resistance is becoming a major public health problem in medicine in recent years. However, it was known in agriculture since several decades; the extensive use of these compounds results in contamination of air, plants, and soil. The increasing frequency of life-threatening fungal infections and the increase of prophylactical use of azoles in high-risk patients, taken together with the evolutionary biology evidence that drug selection pressure is an important factor for the emergence and spread of drug resistance, can result in a dramatic scenario. This study reviews the azole use in agricultural and medical contexts and discusses the hypothetical link between its extensive use and the emergence of azole resistance among human fungal pathogens. PMID:26289797

  17. Synthetic Biology for Therapeutic Applications

    OpenAIRE

    Abil, Zhanar; Xiong, Xiong; Zhao, Huimin

    2014-01-01

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug d...

  18. Triglycidylamine Crosslinking of Porcine Aortic Valve Cusps or Bovine Pericardium Results in Improved Biocompatibility, Biomechanics, and Calcification Resistance : Chemical and Biological Mechanisms

    OpenAIRE

    Connolly, Jeanne M.; Alferiev, Ivan; Clark-Gruel, Jocelyn N.; Eidelman, Naomi; Sacks, Michael; Palmatory, Elizabeth; Kronsteiner, Allyson; DeFelice, Suzanne; Xu, Jie; Ohri, Rachit; Narula, Navneet; Vyavahare, Narendra; Levy, Robert J.

    2005-01-01

    We investigated a novel polyepoxide crosslinker that was hypothesized to confer both material stabilization and calcification resistance when used to prepare bioprosthetic heart valves. Triglycidylamine (TGA) was synthesized via reacting epichlorhydrin and NH3. TGA was used to crosslink porcine aortic cusps, bovine pericardium, and type I collagen. Control materials were crosslinked with glutaraldehyde (Glut). TGA-pretreated materials had shrink temperatures comparable to Glut fixation. Howev...

  19. Nonspecific stabilization of stress-susceptible proteins by stress-resistant proteins: a model for the biological role of heat shock proteins.

    OpenAIRE

    Minton, K W; Karmin, P; Hahn, G. M.; Minton, A P

    1982-01-01

    It is demonstrated experimentally that addition of proteins that are themselves resistant to denaturation by heat or ethanol can nonspecifically stabilize other proteins that are ordinarily highly susceptible to inactivation. It is proposed that the diffusion-limited rate with which unfolded protein molecules encounter each other and become irreversibly crosslinked is reduced in the presence of substantial concentrations of an unreactive globular protein. We suggest that one of the functions ...

  20. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) Chinese Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) ... by Product Area Product Areas back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ...

  1. Bioremediation of Creosote - contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    Bioremediation of creosote-contaminated soil was studied employing the methods of soil microbial biology and using new gas chromatography-mass spectrometry-mass spectrometry analytical approach. The changes of the soil microbial community under the polycyclic aromatic hydrocarbons (PAH) pollution impact were analyzed and described, as well as the changes during the bioremediation experiments. Laboratory-scale bioremediation experiments using the soil microbial community (consisted of bacteria...

  2. Biological and Clinical Study of 6-Deoxy-6-Iodo-D-Glucose: a iodinated tracer of glucose transport and of insulin-resistance in human

    International Nuclear Information System (INIS)

    Insulin resistance (IR), characterized by a depressed cellular sensitivity to insulin in insulin-sensitive organs, is a central feature to obesity, the metabolic syndrome, and diabetes mellitus and leads to increase cardiovascular diseases, particularly heart failure. All these events are today serious public health problems. But actually, there is no simple tool to measure insulin resistance. The gold standard technique remains the hyperinsulinemic euglycemic clamp. However, the complexity and length of this technique render it unsuitable for routine clinical use. Many methods or index have been proposed to assess insulin resistance in human, but none have shown enough relevance to be used in clinical use. The U1039 INSERM unit previously has validated a new tracer of glucose transport, radiolabelled with 123 iodine and has developed a fast and simple imaging protocol with a small animal gamma camera, which allows the obtaining of an IR index for each organ, showing more discriminating for the heart. The project of my thesis was the human transfer of this measurement technique, perfectly validated in animal. The first part of this thesis evaluated to tolerance, in vivo kinetics, distribution and dosimetry of novel tracer of glucose transport, the [123I]-6DIG. The safeties of new tracer and measurement technique were adequate. There were no adverse effects with excellent tolerance of the whole protocol. 6DIG eliminating was fast, primarily in the urine and complete within 72 h. The effective whole-body absorbed dose for a complete scan with injection of 92.5 * 2 MBq was between 3 to 4 mSv. The second part of this thesis evaluated in human feasibility and reproducibility of the measurement technique validated in animal. The third part showed techniques used to allow human transfer of this method. The study protocol was applied on 12 subjects (healthy volunteers (n=6) and type 2 diabetic patients (n=6)). With a method adapted to measure in humans, we determined an IR

  3. Present status in 137Cs contamination in the marine biota along the Pacific coast of eastern Japan derived from a dynamic biological model simulation following the Fukushima accident - A state and problem in 137Cs contamination in the marine biota along the Pacific coast of eastern Japan derived from the dynamic biological model simulation after the Fukushima accident - A state and problem in 137Cs contamination in the marine biota along the Pacific coast of eastern Japan derived from the dynamic biological model simulation after the Fukushima accident

    International Nuclear Information System (INIS)

    To understand the radioactive matter contamination of coastal biota in case of accidental release to the environment, the 137Cs levels in coastal biota around the Fukushima were reconstructed by dynamic model simulating non-equilibrated radioactive Cs transfer between seawater and organisms. Since, there is a disagreement between simulated radioactive Cs levels and observed concentrations in benthic organisms, being possibly attributable to the additional contamination source from sediment environment (Tateda et al. 2013), the 137Cs levels in organisms habituated not close to the sediment are calculated. Using the reconstructed 137Cs levels in seawater including atmospheric input and direct leakage after 1/March/2011 till 31/December/2012, 137Cs levels in sedentary organisms such as macro algae, bivalve and surface swimming plankton feeding fish e.g. as white bait were calculated along the Pacific Ocean coastal area of the Eastern Japan. The simulated temporal space distribution of the 137Cs levels in macro algae, algae feeding invertebrates, coastal bivalves, were generally agreed in the observed temporal profiles corresponding to the same food habitat organisms collected, while the magnitude of the 137Cs levels were several times lower than observed concentrations. Since the simulated reconstructed seawater levels are only verified by measured values after direct leakage, thus initial levels before the liquid release may be expected to be higher reconstructed level by simulation. The organisms are continuously exposed to initial contaminated seawater, reflecting actual seawater level increase in seawater, thus there may be possible deficit of initial source estimation in coastal surface water e.g. contribution from fine debris deposition to seaward from hydrogen explosion. In other word as shown in overall pushing up measured level compared to reconstructed level in organism, it also suggests the re-distributed 137Cs input to coastal area probably originated from

  4. Present status in {sup 137}Cs contamination in the marine biota along the Pacific coast of eastern Japan derived from a dynamic biological model simulation following the Fukushima accident - A state and problem in {sup 137}Cs contamination in the marine biota along the Pacific coast of eastern Japan derived from the dynamic biological model simulation after the Fukushima accident - A state and problem in {sup 137}Cs contamination in the marine biota along the Pacific coast of eastern Japan derived from the dynamic biological model simulation after the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Tateda, Y.; Tsumune, D.; Tsubono, K.; Misumi, K. [Environmental Science Research Laboratory, CRIEPI, 1646, Abiko, Chiba, 270-1194 (Japan); Yamada, M. [Institute of radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Bunkyo, Hirosaki, Aomori, 036-8564 (Japan); Kanda, J.; Ishimaru, T. [Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato, Tokyo, 108-8477 (Japan)

    2014-07-01

    To understand the radioactive matter contamination of coastal biota in case of accidental release to the environment, the {sup 137}Cs levels in coastal biota around the Fukushima were reconstructed by dynamic model simulating non-equilibrated radioactive Cs transfer between seawater and organisms. Since, there is a disagreement between simulated radioactive Cs levels and observed concentrations in benthic organisms, being possibly attributable to the additional contamination source from sediment environment (Tateda et al. 2013), the {sup 137}Cs levels in organisms habituated not close to the sediment are calculated. Using the reconstructed {sup 137}Cs levels in seawater including atmospheric input and direct leakage after 1/March/2011 till 31/December/2012, {sup 137}Cs levels in sedentary organisms such as macro algae, bivalve and surface swimming plankton feeding fish e.g. as white bait were calculated along the Pacific Ocean coastal area of the Eastern Japan. The simulated temporal space distribution of the {sup 137}Cs levels in macro algae, algae feeding invertebrates, coastal bivalves, were generally agreed in the observed temporal profiles corresponding to the same food habitat organisms collected, while the magnitude of the {sup 137}Cs levels were several times lower than observed concentrations. Since the simulated reconstructed seawater levels are only verified by measured values after direct leakage, thus initial levels before the liquid release may be expected to be higher reconstructed level by simulation. The organisms are continuously exposed to initial contaminated seawater, reflecting actual seawater level increase in seawater, thus there may be possible deficit of initial source estimation in coastal surface water e.g. contribution from fine debris deposition to seaward from hydrogen explosion. In other word as shown in overall pushing up measured level compared to reconstructed level in organism, it also suggests the re-distributed {sup 137}Cs

  5. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing micro-organisms. Eradi cation techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation-based sterilization processes. Due to their resistance to a variety of perturbations, the nonspore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-sporeforming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/m2), and desiccation (years). These resistive phenotypes of Deinococcus enhance the

  6. Influence of radioactive contaminants on absorbed dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Several popular radiopharmaceutical products contain low levels of radioactive contaminants. These contaminants increase the radiation absorbed dose to the patient without any increased benefit and, in some cases, with a decrease in image quality. The importance of a contaminant to the radiation dosimetry picture is a function of 1) the contaminant level, 2) the physical half-life of the contaminant, 3) the organ uptake and the biological half-time of the contaminant in the various body systems, and 4) the decay mode, energy, etc. of the contaminant. The general influence of these parameters is discussed in this paper; families of curves are included that reflect the changing importance of contaminant dosimetry with respect to the primary radionuclide as a function of these variables. Several specific examples are also given of currently used radiopharmaceutical products which can contain radioactive contaminants (I-123, In-111, Tl-201, Ir-191m, Rb-82, Au-195m). 7 references, 8 figures, 4 tables

  7. Variations in grain lipophilic phytochemicals, proteins and resistance to Fusarium spp. growth during grain storage as affected by biological plant protection with Aureobasidium pullulans (de Bary).

    Science.gov (United States)

    Wachowska, Urszula; Tańska, Małgorzata; Konopka, Iwona

    2016-06-16

    Modern agriculture relies on an integrated approach, where chemical treatment is reduced to a minimum and replaced by biological control that involves the use of active microorganisms. The effect of the antagonistic yeast-like fungus Aureobasidium pullulans on proteins and bioactive compounds (alkylresorcinols, sterols, tocols and carotenoids) in winter wheat grain and on the colonization of wheat kernels by fungal microbiota, mainly Fusarium spp. pathogens, was investigated. Biological treatment contributed to a slight increase contents of tocols, alkylresorcinols and sterols in grain. At the same time, the variation of wheat grain proteins was low and not significant. Application of A. pullulans enhanced the natural yeast colonization after six months of grain storage and inhibited growth of F. culmorum pathogens penetrating wheat kernel. This study demonstrated that an integrated approach of wheat grain protection with the use of the yeast-like fungus A. pullulans reduced kernel colonization by Fusarium spp. pathogens and increased the content of nutritionally beneficial phytochemicals in wheat grain without a loss of gluten proteins responsible for baking value. PMID:27055191

  8. Radiation biology for environment

    International Nuclear Information System (INIS)

    Environmental pollution problems such as the green-house effect by increase of CO2, acid rain caused by flue gases, and contamination of chemicals and pesticides in foods and water, have become serious in the world with the rapid development of industry and agriculture. To solve some of these problems, radiation treatment has being applied for the removal of the contaminants from flue gases and waste water from industrial plants. On the other hand, the contribution of radiation biology for these environmental pollution problems is not direct but it has contributed indirectly in many fields. This paper describes the contributions of radiation biology for environment in the following two topics: 1) control of insects and microorganisms, and 2) application of radiation for agricultural wastes

  9. Bioremediation of Contaminated Soil Containing Crude Oil

    OpenAIRE

    Casimiro, Rodolfo

    2015-01-01

    Bioremediation of contaminated soil containing crude oil is a technique process whereby biological systems are harnessed to affect the clean-up of environmental pollutants. Microbial systems are most widely employed in bioremediation programs, generally in the treatment of soil and water contaminants with organic pollutants. This thesis reports the experiment of treating the soil without use of any chemicals. Four treatments were used for this experiment. All of the treatments were containing...

  10. Synthesis of new steroidal inhibitors of P-glycoprotein-mediated multidrug resistance and biological evaluation on K562/R7 erythroleukemia cells.

    Science.gov (United States)

    de Ravel, Marc Rolland; Alameh, Ghina; Melikian, Maxime; Mahiout, Zahia; Emptoz-Bonneton, Agnès; Matera, Eva-Laure; Lomberget, Thierry; Barret, Roland; Rocheblave, Luc; Walchshofer, Nadia; Beltran, Sonia; El Jawad, Lucienne; Mappus, Elisabeth; Grenot, Catherine; Pugeat, Michel; Dumontet, Charles; Le Borgne, Marc; Cuilleron, Claude Yves

    2015-02-26

    A simple route for improving the potency of progesterone as a modulator of P-gp-mediated multidrug resistance was established by esterification or etherification of hydroxylated 5α/β-pregnane-3,20-dione or 5β-cholan-3-one precursors. X-ray crystallography of representative 7α-, 11α-, and 17α-(2'R/S)-O-tetrahydropyranyl ether diastereoisomers revealed different combinations of axial-equatorial configurations of the anomeric oxygen. Substantial stimulation of accumulation and chemosensitization was observed on K562/R7 erythroleukemia cells resistant to doxorubicin, especially using 7α,11α-O-disubstituted derivatives of 5α/β-pregnane-3,20-dione, among which the 5β-H-7α-benzoyloxy-11α-(2'R)-O-tetrahydropyranyl ether 22a revealed promising properties (accumulation index 2.9, IC50 0.5 μM versus 1.2 and 10.6 μM for progesterone), slightly overcoming those of verapamil and cyclosporin A. Several 7α,12α-O-disubstituted derivatives of 5β-cholan-3-one proved even more active, especially the 7α-O-methoxymethyl-12α-benzoate 56 (accumulation index 3.8, IC50 0.2 μM). The panel of modulating effects from different O-substitutions at a same position suggests a structural influence of the substituent completing a simple protection against stimulating effects of hydroxyl groups on P-gp-mediated transport. PMID:25634041

  11. Isolation and Characterization of Pb Resistant Bacteria from Cilalay Lake, Indonesia

    Directory of Open Access Journals (Sweden)

    Kesi Kurnia

    2015-12-01

    Full Text Available Pollution of water environment with heavy metals is becoming one of the most severe environmental and human health hazards. Lead (Pb is a major pollutant and highly toxic to human, animals, plants, and microbes. Toxic metals are difficult to remove from the environment, since they cannot be chemically or biologically degraded and are ultimately indestructible. Biological approaches based on metal-resistant microorganisms have received a great deal of attention as alternative remediation processes. This study aim to isolate and characterize Pb resistant of heterotrophic bacteria in Cilalay Lake, West Java, Indonesia. The water samples were collected along three points around Cilalay Lake. Water physical and chemical determination was performed using the Water Quality Checker. The bacterial isolates were screened on Triptone Glucose Yeast (TGY agar plates. Afterwards selected isolates were grown on Nutrient Agar media 50% with supplemented Pb 100 ppm by the standard disk. Population of resistant bacteria was counted. The result from metal resistant bacteria indicated that all isolates were resistant. The most abundant type of resistant bacteria to lead was Gram negative more than Gram positive. Identified have metal resistant bacteria could be useful for the bioremediation of heavy metal contaminated sewage and waste water

  12. 基于水文-地球物理模型的地下水污染磁电阻率异常动态监测仿真%Time-dependent magnetometric resistivity anomalies of groundwater contamination: Synthetic results from computational hydro-geophysical modeling

    Institute of Scientific and Technical Information of China (English)

    朱凯光; 扬建文

    2008-01-01

    We present a forward-modeling investigation of time-dependent ground magnetometric resistivity (MMR) anomalies associated with transient leachate transport in groundwater systems. Numerical geo-electrical models are constructed based on the hydrological simulation results of leachate plumes from a highly conceptualized landfill system and the resultant MMR responses are computed using a modified finite difference software MMR2DFD. Three transmitter configurations (i.e., single source, MMR-TE, and MMR-TM modes) and two hydrological models (i.e., uniform and faulted porous media) are considered. Our forward modeling results for the uniform porous medium indicates that the magnetic field components perpendicular to the dominant current flow contain the most information of the underground targets and the MMR-TE mode is an appropriate configuration for detecting contaminant plumes. The modeling experiments for the faulted porous medium also confirm that the MMR method is capable of mapping and monitoring the extent of contaminant plumes in groundwater systems.

  13. Effectively Managing Risks of Contaminated Sediments

    International Nuclear Information System (INIS)

    Various research undertaken over the past decade has improved our ability to assess and effectively manage contaminated sediments. Key to this improvement is a better understanding of the risks, both in time and space. Sediments can pose risks if contaminants are present in the biologically active zone of a water body or if transport processes can move contaminants into that zone. Conversely, effective management of contaminants can be accomplished by physically separating contaminants from the biologically active zone or hindering the transport processes that can result in contaminant migration. Both of these are accomplished by sediment capping, either conventional capping with a passive barrier such as sand, or, when greater control over mobile contaminants is required, by active capping in which amendments are used to retard any applicable transport processes. In this paper, the key transport and exposure processes are assessed and the ability to manage these risks with both passive and active capping evaluated. In summary, conventional sand capping can be effective in reducing exposures, while active capping can provide greater control; options include activated carbon/coke (to sequester organic compounds), organo-clays (to control nonaqueous phase and dissolved liquids), and clay polymers (to control permeability). Field demonstrations are underway on both coasts (including Portland, Oregon, and the Anacostia) to assess the effectiveness of various in-situ options, including organo-clay mats and other active caps. In addition, a unique in-situ sampling approach is demonstrating that pore water concentrations can be determined and employed to assess baseline or post-remedial risks due to contaminated sediments. Additional capping research is addressing issues such as gas release, treatment for other contaminants, and geotechnical tests to evaluate mobility of nonaqueous phase liquids due to cap loading and consolidation. Science and technology are combining to

  14. Synthesis of the 99mTc(CO)3-trovafloxacin dithiocarbamate complex and biological characterization in artificially methicillin-resistant Staphylococcus aureus infected rats model

    International Nuclear Information System (INIS)

    Synthesis of the 99mTc(CO)3-trovafloxacin dithiocarbamate (99mTc(CO)3-TVND) complex and biological characterization in artificially Staphylococcus aureus (S. aureus) infected rats model was assessed. The suitability of the complex was evaluated and compared with 99mTcN-TVND, in terms of radiochemical immovability in saline, in vitro permanence in serum, in vitro binding with S. aureus and biodistribution in Male Sprague-Dawley rats (MSDR). After 30 min of the reconstitution both the complexes showed maximum radiochemical stabilities in saline and remain more than 90% stable up to 120 min. However the 99mTc(CO)3-TVND showed to some extent higher stability than 99mTcN-TVND complex. In serum 1.75% less de-tagging was observed than 99mTcN-TVND complex. Both the complexes showed saturated in vitro binding with S. aureus and no significant difference were observed between the uptakes. Six fold uptakes were noted in the infected muscle as compared to the inflamed and normal muscles of the MDSR. The uptake of the 99mTc(CO)3-TVND in infected muscle of the MSDR was 2.25% high as compared to the 99mTcN-TVND complex. Based on radiochemical stabilities in saline, serum, in vitro binding with MRSA and significantly higher uptake in the infected muscle, we recommend both the complexes for in vivo investigation of the MRSA infection in human. (author)

  15. Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community

    Science.gov (United States)

    Hemme, Christopher L.; Green, Stefan J.; Rishishwar, Lavanya; Prakash, Om; Pettenato, Angelica; Chakraborty, Romy; Deutschbauer, Adam M.; Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Jordan, I. King; Arkin, Adam P.; Kostka, Joel E.

    2016-01-01

    ABSTRACT Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe2+/Pb2+ permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co2+/Zn2+/Cd2+ efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome. PMID:27048805

  16. Harvesting contaminants from liquid

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, John T.; Hunter, Scott R.

    2016-05-31

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a vessel for storing the contaminated fluid. The vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus allowing the contaminants to be harvested.

  17. Genetic differentiation among Maruca vitrata F. (Lepidoptera: Crambidae populations on cultivated cowpea and wild host plants: implications for insect resistance management and biological control strategies.

    Directory of Open Access Journals (Sweden)

    Tolulope A Agunbiade

    Full Text Available Maruca vitrata Fabricius (Lepidoptera: Crambidae is a polyphagous insect pest that feeds on a variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis of mitochondrial cytochrome oxidase 1 (cox1 sequence and microsatellite marker data from M. vitrata collected from cultivated cowpea (Vigna unguiculata L. Walp., and alternative host plants Pueraria phaseoloides (Roxb. Benth. var. javanica (Benth. Baker, Loncocarpus sericeus (Poir, and Tephrosia candida (Roxb.. Analyses of microsatellite data revealed a significant global FST estimate of 0.05 (P≤0.001. The program STRUCTURE estimated 2 genotypic clusters (co-ancestries on the four host plants across 3 geographic locations, but little geographic variation was predicted among genotypes from different geographic locations using analysis of molecular variance (AMOVA; among group variation -0.68% or F-statistics (FSTLoc = -0.01; P = 0.62. These results were corroborated by mitochondrial haplotype data (φSTLoc = 0.05; P = 0.92. In contrast, genotypes obtained from different host plants showed low but significant levels of genetic variation (FSTHost = 0.04; P = 0.01, which accounted for 4.08% of the total genetic variation, but was not congruent with mitochondrial haplotype analyses (φSTHost = 0.06; P = 0.27. Variation among host plants at a location and host plants among locations showed no consistent evidence for M. vitrata population subdivision. These results suggest that host plants do not significantly influence the genetic structure of M. vitrata, and this has implications for biocontrol agent releases as well as insecticide resistance management (IRM for M. vitrata in West Africa.

  18. Enhancing growth, phytochemical constituents and aphid resistance capacity in cabbage with foliar application of eckol--a biologically active phenolic molecule from brown seaweed.

    Science.gov (United States)

    Rengasamy, Kannan R R; Kulkarni, Manoj G; Pendota, Srinivasa C; Van Staden, Johannes

    2016-03-25

    Although foliar application of seaweed extracts on plant growth and development has and is extensively studied, reliable knowledge and understanding of the mode of action of particular compound(s) responsible for enhancing plant growth is lacking. A brown seaweed Ecklonia maxima is widely used commercially as a biostimulant to improve plant growth and crop protection. Eckol, a phenolic compound isolated from E. maxima has recently shown stimulatory effects in maize, indicating its potential use as a plant biostimulant. Cabbage is a widely cultivated vegetable crop throughout the world, which requires high input of fertilizers and is susceptible to several aphid borne diseases. This study was conducted to evaluate the effect of foliar application of eckol on the growth, phytochemical constituents and myrosinase activity (aphid resistance capacity) of commercially cultivated cabbage. Foliar application of eckol (10(-6) M) significantly enhanced shoot and root length, shoot and root fresh and dry weight, leaf area and leaf number. This treatment also showed a significant increase in photosynthetic pigments (chlorophyll 'a', chlorophyll 'b', total chlorophyll and carotenoid) compared to the untreated plants. The levels of protein, proline and iridoid glycosides were significantly higher in cabbage leaves with eckol treatment. All the control plants were severely infested with cabbage aphid (Brevicoryne brassicae) but no infestation was observed on the eckol-sprayed plants, which can be attributed to an increase in myrosinase activity. This study reveals dual effects (plant growth promoting and insect repelling) of eckol on cabbage plants that need further investigations both under field conditions and in other brassicaceous species. PMID:26585339

  19. Tomografía de resistividad eléctrica aplicada a la caracterización de sitios contaminados en tambos Electrical resistivity tomography applied to the characterization of contaminated sites at dairies

    Directory of Open Access Journals (Sweden)

    Beatriz N Losinno

    2008-12-01

    Full Text Available La calidad del agua subterránea en los tambos, utilizada para consumo animal, puede tener incidencia en la calidad de la leche, por lo cual es importante conocer el efecto de los lixiviados sobre el suelo y el agua subterránea. El objetivo fue detectar anomalías de conductividad eléctrica (CE en zona no saturada y saturada por medio de la tomografía de resistividad eléctrica, en sitios potencialmente contaminados en dos tambos, uno en Venado Tuerto y otro en Carmen de Areco y su relación con las propiedades físico-químicas del suelo y agua subterránea. En Carmen de Areco, en un suelo franco limoso con la presencia de un horizonte arcilloso (Bt el sitio más comprometido resultó el corral de encierre cercano a la zona de ordeñe, con anomalía de conductividad eléctrica del 60% en la zona no saturada respecto a sondeos testigos, mientras que la zona de alimentación, que periódicamente se traslada de lote, no se vió afectada. En Venado Tuerto, en un suelo franco arenoso de textura más gruesa, la zona de alimentación, con una anomalía del 84% y con una carga animal prolongada en el tiempo y las inmediaciones de la laguna de efluentes, presentaron un alto contenido de sales. En ambos casos la salinidad estuvo asociada con alto contenido de nitratos, fósforo y sulfatos provenientes de los efluentes ganaderos.Groundwater quality at dairies, used for animal consumption, may have incidence on milk quality, for which it is important to know the effect of wastes lixiviation on soil and groundwater. The aim was to detect anomalies of electrical conductivity at non saturated and saturated zone, by means of electrical resistivity tomography, at potentially contaminated sites at two dairies at Venado Tuerto (Santa Fe Province, Argentina and at Carmen de Areco (Buenos Aires Province, Argentina, and its relationship with physico-chemical properties of soil and groundwater. In Carmen de Areco, a silty laomy soil with clay horizon (Bt, the most

  20. Diagnosis and control of anthelmintic-resistant Parascaris equorum

    Directory of Open Access Journals (Sweden)

    Reinemeyer Craig R

    2009-09-01

    Full Text Available Abstract Since 2002, macrocyclic lactone resistance has been reported in populations of Parascaris equorum from several countries. It is apparent that macrocyclic lactone resistance developed in response to exclusive and/or excessively frequent use of ivermectin or moxidectin in foals during the first year of life. The development of anthelmintic resistance was virtually inevitable, given certain biological features of Parascaris and unique pharmacologic characteristics of the macrocyclic lactones. Practitioners can utilize the Fecal Egg Count Reduction Test to detect anthelmintic resistance in Parascaris, and the same technique can be applied regularly to confirm the continued efficacy of those drugs currently in use. In the face of macrocyclic lactone resistance, piperazine or anthelmintics of the benzimidazole or pyrimidine classes can be used to control ascarid infections, but Parascaris populations that are concurrently resistant to macrocyclic lactones and pyrimidine drugs have been reported recently from Texas and Kentucky. Compared to traditional practices, future recommendations for ascarid control should feature: 1 use of only those anthelmintics known to be effective against indigenous populations, 2 initiation of anthelmintic treatment no earlier than 60 days of age, and 3 repetition of treatments at the longest intervals which prevent serious environmental contamination with Parascaris eggs. In the interest of decreasing selection pressure for anthelmintic resistance, horse owners and veterinarians must become more tolerant of the passage of modest numbers of ascarid eggs by some foals. Anthelmintic resistance is only one of several potential responses to genetic selection. Although still only theoretical, changes in the immunogenicity of ascarid isolates or reduction of their prepatent or egg reappearance periods could pose far greater challenges to effective control than resistance to a single class of anthelmintics.

  1. Investigations into the transfer of 134+137cesium from Chernobyl fall-out-contaminated grasscobs in the bodies of fallow deer and angora rabbits and on the biological half-life of radio-cesium by means of whole-body gamma spectroscopy

    International Nuclear Information System (INIS)

    The present work concerns a feeding experiment to establish the transfer-factors of 134+137cesium from Chernobyl fall-out-contaminated grasscobs in the bodies of fallow deer (Dama-dama) and angora rabbits (Oryctolagus cuniculus). The transfer factor from the feed-stuff in the fallow deer body amounted to 0.0311 d/kg independent of the proportion of the contaminated grasscobs in the overall daily ration of food. The 137Cs activity/kg in the flesh of two killed deer averaged about the factor 1.35, in the joint muscles about the factor 1.44 higher. An increase in the transfer factor for the fallow deers flesh to 0.0448 d/kg is assumed. The transfer factor (whole body) for the angora rabbits amounted to 0.285 d/kg. Two animals killed in balanced condition displayed around the factor 1.35 higher cesium values in the muscles. On this base the TF(meat) could be given as at 0.385 d/kg. The biological half-life of the radio-cesium in the body of fallow deer comprised a fast component of 0.3 d and a proportion of about 37% in overall activity and a slower one of 13 d with a 63% proportion. On an average it amounted to 8.3 d for excretion of the first half of the initial burden. At 5.5 d, a fallow deer burdened by only one i.v. injection excreted 50% of the initial activity markedly more quickly. Two proportionally equal phases of 1.2 and 10 days of biological half-time were recognised. As regards the angora rabbits, the biological half-life amounted to 1.2 d for the faster component, and for a slower one about 8 d. The first half of the initial activity was excreted after about 5.5 d. (orig./MG)

  2. Radioactive contamination monitor

    International Nuclear Information System (INIS)

    At nuclear power plants, in order to prevent radioactive materials from spreading contamination outside the radiation control area, the surface contamination of all material transferred outside the control area is monitored. This paper presents an overview and describes features of: (1) personnel surface contamination monitoring assemblies for measuring the surface contamination on workers, (2) articles surface contamination monitoring assemblies for measuring the surface contamination on articles of all sizes, (3) laundry monitors for measuring the surface contamination on worker clothes worn inside the control area, (4) whole-body counters for measuring the worker's internal exposure, and (5) hand-foot-clothing contamination monitors for measuring the surface contamination on hands, feet and clothing. (author)

  3. Biochemical and Metabolic Changes in Arsenic Contaminated Boehmeria nivea L.

    Directory of Open Access Journals (Sweden)

    Hussani Mubarak

    2016-01-01

    Full Text Available Arsenic (As is identified by the EPA as the third highest toxic inorganic contaminant. Almost every 9th or 10th human in more than 70 countries including mainland China is affected by As. Arsenic along with other toxins not only affects human life but also creates alarming situations such as the deterioration of farm lands and desertion of industrial/mining lands. Researchers and administrators have agreed to opt for phytoremediation of As over costly cleanups. Boehmeria nivea L. can soak up various heavy metals, such as Sb, Cd, Pb, and Zn. But the effect of As pollution on the biology and metabolism of B. nivea has been somewhat overlooked. This study attempts to evaluate the extent of As resistance, chlorophyll content, and metabolic changes in As-polluted (5, 10, 15, and 20 mg L−1 As B. nivea in hydroponics. Toxic effects of As in the form of inhibited growth were apparent at the highest level of added As. The significant changes in the chlorophyll, electrolyte leakage, and H2O2, significant increases in As in plant parts, catalase (CAT, and malondialdehyde (MDA, with applied As revealed the potential of B. nivea for As decontamination. By employing the metabolic machinery of B. nivea, As was sustainably removed from the contaminated areas.

  4. Biochemical and Metabolic Changes in Arsenic Contaminated Boehmeria nivea L.

    Science.gov (United States)

    Mubarak, Hussani; Mirza, Nosheen; Chai, Li-Yuan; Yang, Zhi-Hui; Yong, Wang; Tang, Chong-Jian; Mahmood, Qaisar; Pervez, Arshid; Farooq, Umar; Fahad, Shah; Nasim, Wajid; Siddique, Kadambot H M

    2016-01-01

    Arsenic (As) is identified by the EPA as the third highest toxic inorganic contaminant. Almost every 9th or 10th human in more than 70 countries including mainland China is affected by As. Arsenic along with other toxins not only affects human life but also creates alarming situations such as the deterioration of farm lands and desertion of industrial/mining lands. Researchers and administrators have agreed to opt for phytoremediation of As over costly cleanups. Boehmeria nivea L. can soak up various heavy metals, such as Sb, Cd, Pb, and Zn. But the effect of As pollution on the biology and metabolism of B. nivea has been somewhat overlooked. This study attempts to evaluate the extent of As resistance, chlorophyll content, and metabolic changes in As-polluted (5, 10, 15, and 20 mg L(-1) As) B. nivea in hydroponics. Toxic effects of As in the form of inhibited growth were apparent at the highest level of added As. The significant changes in the chlorophyll, electrolyte leakage, and H2O2, significant increases in As in plant parts, catalase (CAT), and malondialdehyde (MDA), with applied As revealed the potential of B. nivea for As decontamination. By employing the metabolic machinery of B. nivea, As was sustainably removed from the contaminated areas. PMID:27022603

  5. PEMFC contamination model: Foreign cation exchange with ionomer protons

    Science.gov (United States)

    St-Pierre, Jean

    2011-08-01

    A generic, transient fuel cell ohmic loss mathematical model was developed for the case of contaminants that ion exchange with ionomer protons. The model was derived using step changes in contaminant concentration, constant operating conditions and foreign cation transport via liquid water droplets. In addition, the effect of ionomer cations redistribution within the ionomer on thermodynamic, kinetic and mass transport losses and migration were neglected. Thus, a simpler, ideal, ohmic loss case is defined and is applicable to uncharged contaminant species and gas phase contaminants. The closed form solutions were validated using contamination data from a membrane exposed to NH3. The model needs to be validated against contamination and recovery data sets including an NH4+ contaminated membrane exposed to a water stream. A method is proposed to determine model parameters and relies on the prior knowledge of the initial ionomer resistivity. The model expands the number of previously derived cases. Most models in this inventory, derived with the assumption that the reactant is absent, lead to different dimensionless current vs. time behaviors similar to a fingerprint. These model characteristics facilitate contaminant mechanism identification. Separation between membrane and catalyst (electroinactive contaminant) contamination is conceivably possible using additional indicative cell resistance measurements. Contamination is predicted to be significantly more severe under low relative humidity conditions.

  6. Perplexities of treatment resistence in eating disorders

    OpenAIRE

    Halmi, Katherine A.

    2013-01-01

    Background Treatment resistance is an omnipresent frustration in eating disorders. Attempts to identify the features of this resistance and subsequently develop novel treatments have had modest effects. This selective review examines treatment resistant features expressed in core eating disorder psychopathology, comorbidities and biological features. Novel treatments addressing resistance are discussed. Description The core eating disorder psychopathology of anorexia nervosa becomes a coping ...

  7. Data-Mining and Informatics Approaches for Environmental Contaminants

    Science.gov (United States)

    New and emerging environmental contaminants are chemicals that have not been previously detected or that are being detected at levels significantly different from those expected in both biological and ecological arenas (that is, human, wildlife, and environment). Many chemicals c...

  8. INFECUNDITY AND CONSUMPTION OF PCB-CONTAMINATED SPORT FISH

    Science.gov (United States)

    Biologic capacity for reproduction, or fecundity, may be threatened by environmental contaminants, especially compounds capable of disrupting endocrine pathways. Telephone interviews that focused on reproductive events were conducted with female members of the New York State Angl...

  9. Movimiento superficial de contaminantes biológicos de origen ganadero en la red de drenaje de una cuenca de Pampa Ondulada Surface movement of cattle-borne biological contaminants in the drainage network of a basin of the Rolling Pampas

    Directory of Open Access Journals (Sweden)

    Celio I Chagas

    2010-07-01

    Full Text Available Se estudió la concentración de indicadores de contaminación biológica en pequeñas depresiones ubicadas en vías de escurrimiento que atraviesan tierras dedicadas a la ganadería donde se acumulan aguas y sedimentos generados por la actividad agropecuaria de la Pampa Ondulada argentina. La carga animal de los lotes ubicados en la cuenca del Tala donde se encontraban las depresiones, se relacionó estrechamente con su carga de microorganismos. La intensidad de las lluvias previas al muestreo (en el caso de los coliformes totales y el lapso de tiempo entre el último escurrimiento significativo y el muestreo (para enterococos y estreptococos fecales resultaron variables sensibles para predecir la dinámica de la concentración de dichos grupos de microorganismos en los sitios de acumulación. Los resultados obtenidos corroboran la estrecha asociación que existe entre los procesos de escurrimiento y erosión hídrica y la contaminación biológica de las aguas acumuladas en las depresiones estudiadas. Estos elementos, sumados a los resultados de trabajos previos realizados en la región, permitieron elaborar un modelo conceptual sencillo de entradas y salidas de potenciales contaminantes físicos y biológicos en las depresiones estudiadas que podrá servir de base para el diseño de alertas tempranas de contaminación de los cursos de agua a nivel regional.Runoff water and sediments from crop and cattle production fields of the Rolling Pampas accumulate in small depressions along the drainage network. We studied the concentration of biological contamination indicators in these small sinks located in bottomlands devoted to cattle production of the Tala River basin. The stocking rate was closely related to the concentration of microorganisms in the depressions. The intensity of rainfall events previous to each sampling date and the time between the last significant runoff event and each sampling date proved to be sensible variables for

  10. Chernobyl and its effects in terms of food contamination

    International Nuclear Information System (INIS)

    The contamination of plant surfaces and roots is gone into. There is a continuous decrease in contamination as a result of washout and dilution from plant growth. In animals, contamination decreases as a result of biological secretion. The isotopes I-131, Cs-137, and Sr-90 were investigated. To avoid high radiation, the author recommends to banish mushrooms, game, goat's meat, and mutton from the table. (PW)

  11. Center for Contaminated Sediments

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers Center for Contaminated Sediments serves as a clearinghouse for technology and expertise concerned with contaminated sediments. The...

  12. Contaminated Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Sites contaminated by hazardous materials or wastes. These sites are those administered by the Contaminated Sites Section of Iowa DNR. Many are sites which are...

  13. Alteração das características biológicas dos biótipos de azevém (Lolium multiflorum ocasionada pela resistência ao herbicida glyphosate Change in the biological characteristics of ryegrass (Lolium multiflorum biotypes caused by resistance to the herbicide glyphosate

    Directory of Open Access Journals (Sweden)

    L. Vargas

    2005-03-01

    accumulation by the biotype were assessed. In the second experiment different rates of glyphosate and grass herbicides were tested: glyphosate, haloxyfop-r, diclofop, fluazifop-p, fenoxaprop-p and paraquat. A third experiments was carried out under glasshouse conditions to determine the curve of dry matter accumulation. The results showed GR50 of 287.5 and 4,833.5 g e. a. ha-1 of glyphosate for the sensitive and resistant biotypes, respectively. The results showed that the resistant factor (RF was 16.8 and that the resistance mechanism alters the biological characteristics of the resistant biotype affecting its sensitivity to grass herbicides.

  14. Guide to treatment technology for contaminated soils

    International Nuclear Information System (INIS)

    This document is a guide for the screening of alternative treatment technologies for contaminated soils. The contents of this guide are organized into: 1. Introduction, II. Utilizing the table, III. Tables: Contamination Versus Technology, TV. Contaminant Waste Groups, and V. References. The four Contaminations Versus Technology tables are designed to identify the effectiveness and/or potential applicability of technologies to some or all compounds within specific waste groups. The tables also present limitations and special use considerations for the particular treatment technology. The phase of development of the technology is also included in the table. The phases are: Available, Innovative, and Emerging technologies. The technologies presented in this guide are organized according to the method of treatment. The four (4) treatment methods are Biological, Solidification/Stabilization, Thermal, and Chemical/Physical Treatment. There are several processing methods; some are well developed and proven, and others are in the development stage

  15. Restoration of contaminated soils

    International Nuclear Information System (INIS)

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author)

  16. Urban atmospheric contamination

    International Nuclear Information System (INIS)

    The problems of contamination are not only limited to this century, pale pathology evidences of the effects of the contamination of the air exist in interiors in the health of the old ones; the article mention the elements that configure the problem of the atmospheric contamination, atmospheric pollutants and emission sources, orography condition and effects induced by the urbanization process

  17. Indicadores de contaminación biológica asociados a la erosión hídrica en una cuenca de Pampa Ondulada Argentina Indicators of biological contamination associated with water erosion in basin belonging the rolling pampa, Argentina

    Directory of Open Access Journals (Sweden)

    Celio I. Chagas

    2006-07-01

    í a nivel de la cuenca bajo estudio.Agriculture activities use 70% of the world water resources, partly for animal production and particularly cattle feeding. There is an outstanding risk of biological contamination associated with this kind of production because animal feces and urine containing pathogens can be transported to surface waterways through runoff. The present investigation was carried out in the Tala basin belonging to the Rolling Pampa region in which intense runoff and erosion processes are widespread. In this basin there are extensive cattle feeding farms which are located close to the natural waterways, in bottomlands with hydrohalomorphic soils. There is also an increasing surface devoted to feedlots and intensive swine and poultry productions. The main use of the surface waters from the river and tributaries is direct cattle drinking. The aim of the present work was to analyze through biological indicators, the potential contamination of runoff water and sediments accumulated in lowlands devoted to cattle production and to determinate their human or animal origin. The waters showed concentration of biological indicators belonging to faecal streptococci and enterococci which can be related to animal but no to human contamination processes. A close relationship was observed between total coliforms and erosion borne sediment concentration in the studied area. Thus, the capacity of these sediments for carrying bacteria potentially harmful for animal health like Salmonella spp. was confirmed. The runoff, erosion and biological contamination processes proved to be related in the studied basin.

  18. BIO-DIAGNOSTICS OF RESISTANCE OF GREY FOREST SOILS OF ADYGEA TO POLLUTION WITH Zn, Cd, Mo, Se

    Directory of Open Access Journals (Sweden)

    Tatlok D. R.

    2015-04-01

    Full Text Available The essential part of a soil cover of the Republic of Adygea is occupied by gray forest soils. Thus they still remain a little studied, including concerning their resistance to chemical pollution. Contamination of gray forest soils of Adygea with Zn, Cd, Mo, Se causes deterioration of their biological properties. In most cases, the degree of reduction of the values of biological indicators is directly dependent on the concentration of pollutant in the soil. According to the degree of toxicity to the biological properties of the investigated elements form the following sequence: Se > Zn > = Cd > Mo. Biological parameters investigated in research (activity of catalase and dehydrogenase, cellulolytic ability, abundance of bacteria of the genus Azotobacter, radish root length may be used for purposes of monitoring, diagnosis and regulation of chemical pollution of gray forest soils Zn, Cd, Mo, Se

  19. Surfactants treatment of crude oil contaminated soils.

    Science.gov (United States)

    Urum, Kingsley; Pekdemir, Turgay; Copur, Mehmet

    2004-08-15

    This study reports experimental measurements investigating the ability of a biological (rhamnolipid) and a synthetic (sodium dodecyl sulfate, SDS) surfactant to remove the North Sea Ekofisk crude oil from various soils with different particle size fractions under varying washing conditions. The washing parameters and ranges tested were as follows: temperature (5 to 50 degrees C), time (5 to 20 min), shaking speed (80 to 200 strokes/min), volume (5 to 20 cm3), and surfactant concentration (0.004 to 5 mass%). The contaminated soils were prepared in the laboratory by mixing crude oil and soils using a rotating cylindrical mixer. Two contamination cases were considered: (1) weathered contamination was simulated by keeping freshly contaminated soils in a fan assisted oven at 50 degrees C for 14 days, mimicking the weathering effect in a natural hot environment, and (2) nonweathered contamination which was not subjected to the oven treatment. The surfactants were found to have considerable potential in removing crude oil from different contaminated soils and the results were comparable with those reported in literature for petroleum hydrocarbons. The removal of crude oil with either rhamnolipid or SDS was within the repeatability range of +/-6%. The most influential parameters on oil removal were surfactant concentration and washing temperature. The soil cation exchange capacity and pH also influenced the removal of crude oil from the individual soils. However, due to the binding of crude oil to soil during weathering, low crude oil removal was achieved with the weathered contaminated soil samples. PMID:15271574

  20. EFSA Panels on Biological Hazards (BIOHAZ), on Contaminants in the Food Chain (CONTAM), and on Animal Health and Welfare (AHAW); Scientific Opinion on the public health hazards to be covered by inspection of meat (swine)

    DEFF Research Database (Denmark)

    Hald, Tine

    2011-01-01

    A qualitative risk assessment identified Salmonella spp., Yersinia enterocolitica, Toxoplasma gondii and Trichinella spp. as the most relevant biological hazards in the context of meat inspection of swine. A comprehensive pork carcass safety assurance is the only way to ensure their effective...... control. This requires setting targets to be achieved in/on chilled carcasses, which also informs what has to be achieved earlier in the food chain. Improved Food Chain Information (FCI) enables risk-differentiation of pig batches (hazard-related) and abattoirs (process hygiene-related). Risk reduction...

  1. Contamination monitoring: problems and solutions

    International Nuclear Information System (INIS)

    Contamination monitoring is discussed under the following headings: case for contamination monitoring; regulations, rules, and permissible levels; the new xenon filled detector probe; types of monitors fitted with this probe; assessment of alpha contamination; and assessment of tritium contamination

  2. Modeling biologically reactive transport in porous media

    International Nuclear Information System (INIS)

    A one-dimensional biofilm-based reactive transport model is developed to simulate biologically mediated substrate metabolism and contaminant destruction in saturated porous media. The resulting equations are solved by a finite-difference based, three-level, operator-split approach. The numerical solution procedure is stable, easy-to-code, and computationally efficient. As an example problem, biological denitrification and fortuitous CT destruction processes in one-dimensional porous media is studied. The simulation results of the example problem show that the present model can be successfully used to predict biological processes and nutrient/contaminant transport in saturated porous media

  3. Bioavailability of sediment-bound contaminants to marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Colby Coll., Waterville, ME (United States); Neff, J. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Battelle Ocean Sciences, Duxbury, MA (United States)

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  4. Isolation and biological characteristics of phages of carbapenem-resistant Acinetobacter baumannii%耐碳青霉烯类鲍曼不动杆菌噬菌体的分离鉴定及其生物学特性

    Institute of Scientific and Technical Information of China (English)

    张劼; 罗永艾

    2012-01-01

    Objective To investigate the biological characteristics of phages of carbapenem-resistant Acinetobacter baumannii ( CRAB), and provide new strategy for controlling CRAB infection. Methods Phages of CRAB isolated from raw sewage of a hospital were identified using the plaque method. The morphology of phages was observed by electron microscopy. The genome of phages was extracted for electrophoresis. The structural proteins of phages were analysed by SDS-PAGE. The optimal multiplicity of infection, resistant mutation rate and one-step growth curve of phages were determined. Results One CRAB-specific and tailless phage with double-stranded DNA was isolated, and was named as phage AB3. The size of phage AB3 genome was about 35 kb, and the relative molecular mass of major coat protein was 35 x 10 . The incubation and burst periods of phage AB3 were 20 min and 60 min respectively, the burst size was 350, and the mutation rate of phage resistance was 2.5 × 10-10 . The phage AB3 was stable to a wide range of pH and temperature. Conclusion Phage AB3 has relatively broad host range, shorter incubation period, apparent burst size, lower resistant mutation rate and good stability to physical and chemical factors, which leads to its promising prospect in clinical application.%目的 通过分离耐碳青霉烯类鲍曼小动杆菌(CRAB)噬菌体,研究其生物学特性,为噬菌体治疗CRAB感染提供实验依据.方法 利用噬菌斑法从医院污水中分离CRAB噬菌体,电子显微镜观察噬菌体的形态特征,提取其基因组行酶切电泳,SDSPAGE分析噬菌体表面衣壳蛋白,测定噬菌体感染复数和耐受突变率,并观察其一步生长曲线.结果 筛选出1株具有较宽裂解谱的无尾双链DNA的CRAB噬菌体,命名为噬菌体AB3.其基因组大小约35 kb,表面主要衣壳蛋白相对分子质量约为35×103.该噬菌体感染宿主菌的潜伏期为20 min,爆发期为60 min,裂解量为350,耐受突变率为2.5×10-10,对pH值耐受

  5. Bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    This paper reports on bioremediation, which offers a cost-competitive, effective remediation alternative for soil contaminated with petroleum products. These technologies involve using microorganisms to biologically degrade organic constituents in contaminated soil. All bioremediation applications must mitigate various environmental rate limiting factors so that the biodegradation rates for petroleum hydrocarbons are optimized in field-relevant situations. Traditional bioremediation applications include landfarming, bioreactors, and composting. A more recent bioremediation application that has proven successful involves excavation of contaminated soil. The process involves the placement of the soils into a powerscreen, where it is screened to remove rocks and larger debris. The screened soil is then conveyed to a ribbon blender, where it is mixed in batch with nutrient solution containing nitrogen, phosphorus, water, and surfactants. Each mixed soil batch is then placed in a curing pile, where it remains undisturbed for the remainder of the treatment process, during which time biodegradation by naturally occurring microorganisms, utilizing biochemical pathways mediated by enzymes, will occur

  6. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... En Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, ... Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of ...

  7. Biological Threats Detection Technologies

    International Nuclear Information System (INIS)

    Among many decisive factors, which can have the influence on the possibility of decreases the results of use biological agents should be mentioned obligatory: rapid detection and identification of biological factor used, the proper preventive treatment and the medical management. The aims of identification: to identify the factor used, to estimate the area of contamination, to evaluate the possible countermeasure efforts (antibiotics, disinfectants) and to assess the effectiveness of the decontamination efforts (decontamination of the persons, equipment, buildings, environment etc.). The objects of identification are: bacteria and bacteria's spores, viruses, toxins and genetically modified factors. The present technologies are divided into: based on PCR techniques (ABI PRISM, APSIS, BIOVERIS, RAPID), immuno (BADD, RAMP, SMART) PCR and immuno techniques (APDS, LUMINEX) and others (BDS2, LUNASCAN, MALDI). The selected technologies assigned to field conditions, mobile and stationary laboratories will be presented.(author)

  8. Soil sampling for environmental contaminants

    International Nuclear Information System (INIS)

    The Consultants Meeting on Sampling Strategies, Sampling and Storage of Soil for Environmental Monitoring of Contaminants was organized by the International Atomic Energy Agency to evaluate methods for soil sampling in radionuclide monitoring and heavy metal surveys for identification of punctual contamination (hot particles) in large area surveys and screening experiments. A group of experts was invited by the IAEA to discuss and recommend methods for representative soil sampling for different kinds of environmental issues. The ultimate sinks for all kinds of contaminants dispersed within the natural environment through human activities are sediment and soil. Soil is a particularly difficult matrix for environmental pollution studies as it is generally composed of a multitude of geological and biological materials resulting from weathering and degradation, including particles of different sizes with varying surface and chemical properties. There are so many different soil types categorized according to their content of biological matter, from sandy soils to loam and peat soils, which make analytical characterization even more complicated. Soil sampling for environmental monitoring of pollutants, therefore, is still a matter of debate in the community of soil, environmental and analytical sciences. The scope of the consultants meeting included evaluating existing techniques with regard to their practicability, reliability and applicability to different purposes, developing strategies of representative soil sampling for cases not yet considered by current techniques and recommending validated techniques applicable to laboratories in developing Member States. This TECDOC includes a critical survey of existing approaches and their feasibility to be applied in developing countries. The report is valuable for radioanalytical laboratories in Member States. It would assist them in quality control and accreditation process

  9. Microbial assessment and prevalence of antibiotic resistance in polluted Oluwa River, Nigeria

    Directory of Open Access Journals (Sweden)

    T.A. Ayandiran

    2014-01-01

    Full Text Available Antibiotics are emerging environmental contaminants, causing both short-term and long-term alterations of natural microbial communities due to their high biological activities. The antibiotic resistance pattern of bacteria from anthropogenic polluted Oluwa River, Nigeria was carried out. Microbial profiling and antibiotic sensitivity tests were carried out on water and sediment samples using 13 different antibiotics. Microorganisms isolated include those in the genera Bacillus, Micrococcus, Pseudomonas, Streptococcus, Proteus and Staphylococcus. The microbial count of isolates from water samples ranged between 94.10 × 102 Cfu/100 ml and 156.20 × 102 Cfu/100 ml while that of sediment samples ranged from 2.55 × 104 Cfu g−1 to 14.30 × 104 Cfu g−1. From the water isolates, 100% resistance to antibiotics was found in Micrococcus spp. and Pseudomonas spp. while another Micrococcus, Streptococcus, Staphylococcus and Bacillus spp. showed between 40% and 90% resistances. From the sediment isolates, 100% resistance to antibiotics was found in a Bacillus spp. and Pseudomonas spp. while another Bacillus, Micrococcus, Staphylococcus, Streptococcus and Proteus spp. showed between 70% and 90% resistances. Multiple antibiotic resistance (MAR was shown by all the isolates and Bacillus, Micrococcus and Pseudomonas spp. showed the highest resistances (100% to all antibiotics. Thus, Oluwa River is not safe for public consumption.

  10. Drug Resistance

    Science.gov (United States)

    HIV Treatment Drug Resistance (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  11. Using Geophysical Signatures to Investigate Temporal Changes Due to Source Reduction in the Subsurface Contaminated with Hydrocarbons

    Science.gov (United States)

    We investigated the geophysical response to subsurface hydrocarbon contamination source removal. Source removal by natural attenuation or by engineered bioremediation is expected to change the biological, chemical, and physical environment associated with the contaminated matrix....

  12. Multidrug-Resistant Staphylococcus aureus in US Meat and Poultry

    OpenAIRE

    Waters, Andrew E.; Contente-Cuomo, Tania; Buchhagen, Jordan; Liu, Cindy M.; Watson, Lindsey; Pearce, Kimberly; Foster, Jeffrey T.; Bowers, Jolene; Driebe, Elizabeth M; Engelthaler, David M.; Keim, Paul S; Lance B Price

    2011-01-01

    We characterized the prevalence, antibiotic susceptibility profiles, and genotypes of Staphylococcus aureus among US meat and poultry samples (n = 136). S. aureus contaminated 47% of samples, and multidrug resistance was common among isolates (52%). S. aureus genotypes and resistance profiles differed significantly among sample types, suggesting food animal–specific contamination.

  13. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  14. Priority Environmental Chemical Contaminants in Meat

    Science.gov (United States)

    Brambilla, Gianfranco; Iamiceli, Annalaura; di Domenico, Alessandro

    Generally, foods of animal origin play an important role in determining the exposure of human beings to contaminants of both biological and chemical origins (Ropkins & Beck, 2002; Lievaart et al., 2005). A potentially large number of chemicals could be considered, several of them deserving a particular attention due to their occurrence (contaminations levels and frequencies) and intake scenarios reflecting the differences existing in the economical, environmental, social and ecological contexts in which the “from-farm-to-fork” activities related to meat production are carried out (FAO - Food and Agriculture Organization, 2008).

  15. Space Hardware Microbial Contamination

    Science.gov (United States)

    Baker, A.; Kern, R.; Wainwright, N.

    Planetary Protection (PP) requirements imposed on unmanned planetary missions require that the spacecraft undergo rigorous bioload reduction prior to launch. The ability to quantitate bioburden on such spacecraft is dependent on developing new analytical methodologies that can be used to identify and trace biological contamination on flight hardware. The focus of new method development is to move forward and to augment the current spore analysis method which was first used on Viking. The ultimate goal of the new techniques is not to increase the cleanliness requirement currently levied on various missions, but instead to better understand the nature of the bioburden through the use of well-characterized standard methods. Subsequently an array of standard techniques is needed to provide various analytical methodologies that can be used to access bioburden, depending upon mission specifications. Since the Viking mission no new methods have been certified for inclusion in the NASA Standard Procedure NPG 5340. The process of transferring a new method from the research and development phase to a standardized laboratory technique suitable for use on space craft will be discussed. A historical overview of the process used to develop and certify the standard assay methods for the Viking mission will be provided. Ongoing challenges to certify new methods include: 1) development of surrogate sampling matrices when spacecraft hardware is not available, 2) a comprehensive laboratory process for standardizing a new method for routine use, and 3) the development of critical pass fail benchmarks for spacecraft using new biomarkers. In addition a proposed process that has been used to develop analytical methods using Limulus Amebocyte Lysate, and Adenosine Triphosphate will be presented.

  16. Radioactive contamination incidents involving protective clothing

    International Nuclear Information System (INIS)

    The study focuses on incidents at Department of Energy (DOE) facilities involving the migration of radioactive contaminants through protective clothing. The authors analyzed 68 occurrence reports for the following factors: (1) type of work; (2) working conditions; (3) type of anti-contamination (anti-C) material; (4) area of body or clothing contaminated; and (5) nature of spread of contamination. A majority of reports identified strenuous work activities such as maintenance, construction, or decontamination and decommissioning (D ampersand D) projects. The reports also indicated adverse working conditions that included hot and humid or cramped work environments. The type of anti-C clothing most often identified was cotton or water-resistant, disposable clothing. Most of the reports also indicated contaminants migrating through perspiration-soaked areas, typically in the knees and forearms. On the basis of their survey, the authors recommend the use of improved engineering controls and resilient, breathable, waterproof protective clothing for work in hot, humid, or damp areas where the possibility of prolonged contact with contamination cannot be easily avoided or controlled

  17. Some aspects of the rehabilitation of agricultural lands contaminated with radionuclides and heavy metals

    International Nuclear Information System (INIS)

    In increasing anthropogenous impacts on the environment, the problem of obtaining plant products with minimal content of toxicants becomes more and more challenging. This problem is particularly relevant in the farming regions of Russia subjected to the effects of the accidents in the south Urals and Chernobyl, since reduction of radionuclide content in agricultural products is still among the main ways of decreasing the dose burdens for population. The situation is aggravated by the fact that to date, implementation of traditional methods connected first of all with the introduction as special agrotechnical methods and justified in the early post-accidental period is not as efficient as it was before. At the same time, it is just now that particular attention is given to the problems of plant production ecologization, which is especially important for lands subjected to technogenous contamination. From this point of view, biologically active substances (BAS) are of interest beyond any doubt. These substances are applied as regulators of plant growth, for increase of crop productivity and resistance to abiotic or biotic factors, and having potential ability of regulating the transfer of mineral substances into plants. The data available on the BAS application on radioactively contaminated lands confirm their effect on the processes of radionuclide transport in the chain: soil-plant-harvest. All these considerations give grounds for using this approach to minimize chemical toxicants in plant products, and to rehabilitate lands under conditions of their technogenous contamination

  18. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  19. Th biodistribution in internal contamination of animals

    International Nuclear Information System (INIS)

    Fissionable elements (U,Th) internal contamination have been studied using the fission track method as analysis method of the U and/or Th contaminant elements and Wistar-London breed rats as experiment animals. Different ways to obtain internal contaminations have been investigated: ingestion, inhalation, absorption by skin and through wounds. After the U internal contamination study was carried out, in this stage the Th internal contamination by ingestion is in progress. Using the identical aliquot parts of a solution calibrated in Th, corresponding to an Annual Limit Intake, three Wistar-London breed rats were contaminated. They were kept in normal life conditions and under permanent medical surveillance up to their sacrification. The animals were sacrificed at different time intervals after their contamination: 2 days, 7 days and 14 days, respectively. After the sacrification, their vital organs were sampled, weighed, calcined, re-weighed and finally analysed by track detection using the fission track micro-mappings technique. Also, their evacuations were sampled every 24 hours weighed, calcined and analysed in the same way as the vital organs. The Th fission track micro-mappings technique was used in the following conditions: - mica-muscovite as track detector pre-etched for fossil tracks 18 h in HF-40 per cent at room temperature; - the neutron irradiations were performed in the nuclear reactor VVR-S Bucharest at the neutron fluences of 3.1015 - 2.1016 fast neutrons/c m2; - the visualization of the Th induced fission tracks were obtained by chemical etching in HF-40 per cent, 3 h at room temperature; - the Th track micro-mappings obtained in track detectors were studied by optical microscopy using a stereo microscope WILD M7S for ensemble study (X6-X31) and a binocular ZEISS JENA microscope for qualitative and quantitative studies (X150). The biological reference materials calibrated in Th were prepared in our laboratory using the calcined organs and the body

  20. Ecological Compatibility of GM Crops and Biological Control

    Science.gov (United States)

    Insect-resistant and herbicide-tolerant genetically modified (GM) crops pervade many modern cropping systems, and present challenges and opportunities for developing biologically-based pest management programs. Interactions between biological control agents (insect predators, parasitoids, and pathog...

  1. Effect of cardiovascular interventional treatment on clearance of biological load on contaminated catheter%心血管介入诊疗中污染导管的生物负载清除效果研究

    Institute of Scientific and Technical Information of China (English)

    张永栋; 柳茵; 刘维军; 李琳

    2012-01-01

    目的 研究通过规范的清洗和灭菌方法对污染的心脏电生理导管微生物负载清除效果.方法 将心脏电生理导管使用HBV血液进行污染,分为5组,每组40根导管,A组采用多酶清洗,B组采用加去污剂清洗,C组采用多酶加去污剂清洗,D组采用去污剂和多酶清洗后环氧乙烷低温灭菌,E组术进行任何处理,作为阳性对照组;再将每段分为各5 mm的两节,其中一节采用PCR检测各组HIV核酸阳性数;另一节与人肝细胞共同培养收集培养上清液检测HBsAg和HBeAg;观察人肝细胞的存活情况.结果 A组检出HBV-DNA阳性39根,阳性率为97.5%,人肝细胞大量死亡;B组检出HBV-DNA阳性37 根,阳性率92.5%,人肝细胞生长状况不良;C组检出HBV-DNA阳性37根,阳性率92.5%,人肝细胞大量死亡;D组未检出 HBV-DNA,入肝细胞生长状况良好;E组检出HBV-DNA阳性40根,阳性率100.0%,人肝细胞大量死亡.结论 清洗(去污剂+酶液)+环氧乙烷低温灭菌法可有效清除心脏电生理导管的HBV污染,从消除导管生物负载的角度为今后探索导管复用、为取得相关政策的支持提供了科学依据.%OBJECTIVE To study the effect of the standardized cleaning and sterilization methods on the clearance of the bacterial load on the contaminated cardiac eiectrophysiology catheter. METHODS The cardiac electrophysiology catheters with HBV blood pollution were divided into five groups with 40 in each, the group A was treated with multiple enzymes, the group B with detergents for cleaning, the group C with detergent plus multi-enzyme, the group D with ethylene oxide for low temperature sterilization after using multiple enzymes and detergent, the group E without any trealmeni as the positive control group; then each section were divided into two 5 mm-segments, one was detected the positive HBV nucleic acid with PCR; the other was measured for the HBsAg and HbeAg with the combined culture with human liver

  2. Quantum Biology

    CERN Document Server

    Sergi, Alessandro

    2009-01-01

    A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledge...

  3. Complexity of Groundwater Contaminants at DOE Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base

  4. Contamination Control Techniques

    International Nuclear Information System (INIS)

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics

  5. Contamination Control Techniques

    Energy Technology Data Exchange (ETDEWEB)

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  6. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In ord

  7. Contaminated water treatment

    Science.gov (United States)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  8. Biological treatment of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, G.A.; Filippi, L.J. de [eds.

    1998-12-01

    This reference book is intended for individuals interested in or involved with the treatment of hazardous wastes using biological/biochemical processes. Composed of 13 chapters, it covers a wide variety of topics ranging from engineering design to hydrogeologic factors. The first four chapters are devoted to a description of several different types of bioreactors. Chapter 5 discusses the biofiltration of volatile organic compounds. Chapters 6 through 9 discuss specific biological, biochemical, physical, and engineering factors that affect bioremediation of hazardous wastes. Chapter 10 is a very good discussion of successful bioremediation of pentachlorophenol contamination under laboratory and field conditions, and excellent references are provided. The next chapter discusses the natural biodegradation of PCB-contaminated sediments in the Hudson River in New York state. Chapter 12 takes an excellent look at the bioremediation capability of anaerobic organisms. The final chapter discusses composting of hazardous waste.

  9. study on trace contaminants control assembly for sealed environment chamber

    Science.gov (United States)

    Pang, L. P.; Wang, J.; Liu, L. K.; Liu, H.

    The biological and Physicochemical P C life support technologies are all important parts to establish a human Closed Ecological Life Support System CELSS for long-duration mission The latter has the advantages of lower power consumption lower mass and higher efficiency therefore researchers often incorporate the use of biological systems with P C life support technologies to continuously recycle air water and part of the solid waste stream generated such as the Russian BLSS and the NASA-sponsored Lunar-Mars Life Support Test Project LMLSTP In short these tests were very successful in integrating biological and P C life support technologies for long-duration life support Therefore we should use a combination of integrated biological with P C life support technologies in a human CELSS Human construction materials plants animals and soils release much trace toxic gases in a CELSS and they will inhibit plant growth and badly affect human health when their concentrations rise over their threshold levels The effect of biological trace contaminant control technologies is slower especially for a human sealed chamber because human produce much more methane and other contaminants A regenerative Trace Contaminant Control Subsystem TCCS with P C technology is a more important part in this case to control quickly the airborne contaminants levels and assure human in good condition in a sealed chamber This paper describes a trace contaminant control test facility incorporated a 8 m3 sealed environment chamber a regenerative TCCS with P C

  10. Microbiological contamination in counterfeit and unapproved drugs

    OpenAIRE

    Pullirsch, Dieter; Bellemare, Julie; Hackl, Andreas; Trottier, Yvon-Louis; Mayrhofer, Andreas; Schindl, Heidemarie; Taillon, Christine; Gartner, Christian; Hottowy, Brigitte; Beck, Gerhard; Gagnon, Jacques

    2014-01-01

    Background Counterfeit and unapproved medicines are inherently dangerous and can cause patient injury due to ineffectiveness, chemical or biological contamination, or wrong dosage. Growth of the counterfeit medical market in developed countries is mainly attributable to life-style drugs, which are used in the treatment of non-life-threatening and non-painful conditions, such as slimming pills, cosmetic-related pharmaceuticals, and drugs for sexual enhancement. One of the main tasks of health ...

  11. Methylmercury Contamination of Laboratory Animal Diets

    OpenAIRE

    Weiss, Bernard; Stern, Sander; Cernichiari, Elsa; Gelein, Robert

    2005-01-01

    In the midst of research focusing on the neurodevelopmental effects of mercury vapor in rats, we detected significant levels of mercury (30–60 ng/g) in the blood of nonexposed control subjects. We determined that the dominant form of the mercury was organic and that the standard laboratory chow we used in our vivarium was the source of the contamination. The dietary levels were deemed of potential biologic significance, even though they might have fallen below the limits of measurement specif...

  12. Pilot bioremediation of petroleum-contaminated soil

    International Nuclear Information System (INIS)

    This paper discusses bioremediation of various petroleum hydrocarbons accomplished during a 4-month period at the Carlow Road, Port Stanley site. Intensive biological and physical operations results in a decrease of all contaminants which were monitored including BTEX compounds, oil and grease, and polycyclic aromatic hydrocarbon compounds. Percentage reduction of 2- and 3-ring, and 4- and 5-ring PAHs decreased as molecular weight increased

  13. Biological wastewater treatment in brewhouses

    OpenAIRE

    Voronov Yuriy Viktorovich; Bertsun Svetlana Petrovna

    2014-01-01

    In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste wate...

  14. Integrating Individual-Based Indices of Contaminant Effects

    Directory of Open Access Journals (Sweden)

    Christopher L. Rowe

    2001-01-01

    Full Text Available Habitat contamination can alter numerous biological processes in individual organisms. Examining multiple individual-level responses in an integrative fashion is necessary to understand how individual health or fitness reflects environmental contamination. Here we provide an example of such an integrated perspective based upon recent studies of an amphibian (the bullfrog, Rana catesbeiana that experiences several, disparate changes when larval development occurs in a trace element�contaminated habitat. First, we present an overview of studies focused on specific responses of individuals collected from, or transplanted into, a habitat contaminated by coal combustion residues (CCR. These studies have reported morphological, behavioral, and physiological modifications to individuals chronically interacting with sediments in the CCR-contaminated site. Morphological abnormalities in the oral and tail regions in contaminant-exposed individuals influenced other properties such as grazing, growth, and swimming performance. Behavioral changes in swimming activities and responses to stimuli appear to influence predation risk in the contaminant-exposed population. Significant changes in bioenergetics in the contaminated habitat, evident as abnormally high energetic expenditures for survival (maintenance costs, may ultimately influence production pathways (growth, energy storage in individuals. We then present a conceptual model to examine how interactions among the affected systems (morphological, behavioral, physiological may ultimately bring about more severe effects than would be predicted if the responses were considered in isolation. A complex interplay among simultaneously occurring biological changes emerges in which multiple, sublethal effects ultimately can translate into reductions in larval or juvenile survival, and thus reduced recruitment of juveniles into the population. In systems where individuals are exposed to low concentrations of

  15. Forensic recovery within contaminated environments

    International Nuclear Information System (INIS)

    The Exhibit Handling System, operated by the Anti-Terrorist Branch, has evolved from experiences whilst dealing with long term domestic terrorism and the subsequent prosecution of the offenders. Stringent U.K. criminal law in regard to exhibits and forensic evidence required a strict system in order to provide continuity and integrity to every item that came into possession of the Police. The system relies on each item being supplied with a documented trail of all persons who have had possession of it and who have opened the security packaging for examination purposes. In contaminated environments the initial process within the system has to be adapted in order that strict monitoring of the items can be carried out during the packaging process. It is also recognized that access to many exhibits will be heavily restricted and therefore protocols are in place to interrogate the evidence at the packaging stage in order to avoid unnecessary spread of contamination. The protocols are similar for both radiological and nuclear incidents as well as chemical and biological. Regardless of the type of incident the system can be adapted on the advice of the relevant scientific authority. In the U.K. for radiological and nuclear incidents that authority would be the A.W.E. Aldermaston. The integrity and continuity regime should be continued within laboratories which are conducting examinations of exhibits recovered. It is also important that Nuclear Forensic Laboratories do not overlook possibilities of traditional evidence, such as DNA, Fingerprints and fibre traces. Good record photography of items which are unlikely to be released by the laboratory is essential. Finally, cross-contamination has in the past been a major issue in terrorist trials

  16. Subsurface contaminants focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  17. Subsurface contaminants focus area

    International Nuclear Information System (INIS)

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites

  18. Fungi and mycotoxins: Food contaminants

    Directory of Open Access Journals (Sweden)

    Kocić-Tanackov Sunčica D.

    2013-01-01

    Full Text Available The growth of fungi on food causes physical and chemical changes which, further affect negatively the sensory and nutritive quality of food. Species from genera: Aspergillus, Penicillium, Fusarium, Alternariа, Cladosporium, Mucor, Rhizopus, Eurotium and Emericella are usually found. Some of them are potentially dangerous for humans and animals, due to possible synthesis and excretion of toxic secondary metabolites - mycotoxins into the food. Their toxic syndroms in animals and humans are known as mycotoxicoses. The pathologic changes can be observed in parenhimatic organs, and in bones and central nervous system also. Specific conditions are necessary for mycotoxin producing fungi to synthetize sufficient quantities of these compounds for demonstration of biologic effects. The main biochemical paths in the formation of mycotoxins include the polyketide (aflatoxins, sterigmatocystin, zearalenone, citrinine, patulin, terpenic (trichothecenes, aminoacid (glicotoxins, ergotamines, sporidesmin, malformin C, and carbonic acids path (rubratoxins. Aflatoxins are the most toxigenic metabolites of fungi, produced mostly by Aspergillus flavus and A. parasiticus species. Aflatoxins appear more frequently in food in the tropic and subtropic regions, while the food in Europe is more exposed to also very toxic ochratoxin A producing fungi (A. ochraceus and some Penicillium species. The agricultural products can be contaminated by fungi both before and after the harvest. The primary mycotoxicoses in humans are the result of direct intake of vegetable products contaminated by mycotoxins, while the secondary mycotoxicoses are caused by products of animal origin. The risk of the presence of fungi and mycotoxin in food is increasing, having in mind that some of them are highly thermoresistent, and the temperatures of usual food sterilization is not sufficient for their termination. The paper presents the review of most important mycotoxins, their biologic effects

  19. Some bioindicators of radioactive contamination

    International Nuclear Information System (INIS)

    The lessons that could be learned from the Chernobyl accident were numerous and encompassed all areas. One of those lead to the discovery of new monitoring methods which also supply to cost-effective solutions to control contaminant radioactive discharges in the environment. Through the measurements performed, we discovered that some samples, because of their radioactive content restrained also for long periods of time, can be used as bioindicators. Hen eggs between May 1-30 1986 were analysed (identification of radionuclides with a Ge(Li) detector and measuring of total gamma activity with NaI(T1)). Various aspects pursued revealed that eggs are precious witness of vegetable food contamination with fission products, especially Ba-140 and I-131, behaving as radionuclide separators (Ba-140 in egg shell -301 Bq/egg and I-131 in the content - 182 Bq/egg). Some of the most important pharmaceutical plants from Transylvania measured during 1986-1994 period presents high cesium radioactivity. The perennial plants (as Lichen Islandicus) for the same period accumulated a greater activity that the annual ones. Especially the lichen, because of the their slow decreasing activity are suitable as biological detectors also in retrospective measurements. Measuring the activity of some pollen samples was rediscovered. The pollen grains, during their transport in air by the bees, are acting like a filter for radionuclides so that we could use they to monitor the deliverance of these substances in air. (author)

  20. Contamination and UV lasers: lessons learned

    Science.gov (United States)

    Daly, John G.

    2015-09-01

    Laser induced damage to optical elements has been a subject of significant research, development, and improvement, since the first lasers were built over the last 50 years. Better materials, with less absorption, impurities, and defects are available, as well as surface coatings with higher laser damage resistance. However, the presence of contamination (particles, surface deposition films, or airborne) can reduce the threshold for damage by several orders of magnitude. A brief review of the anticipated laser energy levels for damage free operation is presented as a lead into the problems associated with contamination for ultraviolet (UV) laser systems. As UV lasers become more common in applications especially in areas such as lithography, these problems have limited reliability and added to costs. This has been characterized as Airborne Molecular Contamination (AMC) in many published reports. Normal engineering guidelines such as screening materials within the optical compartment for low outgassing levels is the first step. The use of the NASA outgassing database (or similar test methods) with low Total Mass Loss (TML) and Condensed Collected Volatiles Collected Mass (CVCM) is a good baseline. Energetic UV photons are capable of chemical bond scission and interaction with surface contaminant or airborne materials results in deposition of obscuring film laser footprints that continue to degrade laser system performance. Laser systems with average powers less than 5 mW have been shown to exhibit aggressive degradation. Lessons learned over the past 15 years with UV laser contamination and steps to reduce risk will be presented.

  1. Biological Oceanography

    Science.gov (United States)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  2. Radiographic solution contamination.

    Science.gov (United States)

    Hardman, P K; Tilmon, M F; Taylor, T S

    1987-06-01

    Contamination of processor solutions adversely affects the image quality of radiographic films. The purpose of this study was to determine the amount of developer or fixer contaminant that was necessary to produce a significant densitometric change in the base plus fog, speed, or contrast optical density readings for panoramic film. Significant differences in base plus fog (after 16 mL of fixer contaminant was added to developer), speed index (after 4 mL), and contrast index (after 8 mL) were observed in comparison with control values. PMID:3473399

  3. Transmission of hazardous diseases via nanobacterial contamination of medical and dental equipment

    Directory of Open Access Journals (Sweden)

    Jafar Kolahi

    2013-01-01

    Full Text Available Introduction: Nanobacteria (calcifying nanoparticles, nanobes are one of the most controversial issues in contemporary biology. Studies show accumulating evidence on association of nanobacteria with pathologic calcifications such as kidney stone, arterial plaque, calcification of coronary arteries, and cardiac valves calculus. The Hypothesis: Nanobacteria can tolerate harsh conditions extremely well. The apatite mineral layer around the organism and slow metabolism is likely to be the reason for the resistance of nanobacteria. They showed a wide resistance to the several disinfecting and sterilizating chemicals as well as autoclaving, ultraviolet light, microwaves, heating and drying treatments. Hence, it seems logic to postulate that hazardous diseases can be easily transmitted via nanobacterial contamination of medical and dental equipment. Evaluation of the Hypothesis: It is not enough to claim an agent not living according to the standard view on living creatures, as irrelevant to biological safety of cell cultures, or to human and animal health. Although the nature of prions is still under debate and prions are classified as nonliving, they exist and cause diseases, and thus form a serious risk for animal and human health. The risk was recognized only after enormous economical losses. It appears that nanobacteria situation is rather similar, except the fact that nanobacteria appear to cause or contribute to common hazardous diseases of the mankind. Hence, world-widely well-known organizations such as the Centers for Disease Control and Prevention, the Occupational Safety and Health Administration, and the World Health Organization should pay more attention to transmission of hazardous diseases via nanobacterial contamination of medical and dental equipment.

  4. Electrode contamination effects of retarding potential analyzer.

    Science.gov (United States)

    Fang, H K; Oyama, K-I; Cheng, C Z

    2014-01-01

    The electrode contamination in electrostatic analyzers such as Langmuir probes and retarding potential analyzers (RPA) is a serious problem for space measurements. The contamination layer acts as extra capacitance and resistance and leads to distortion in the measured I-V curve, which leads to erroneous measurement results. There are two main effects of the contamination layer: one is the impedance effect and the other is the charge attachment and accumulation due to the capacitance. The impedance effect can be reduced or eliminated by choosing the proper sweeping frequency. However, for RPA the charge accumulation effect becomes serious because the capacitance of the contamination layer is much larger than that of the Langmuir probe of similar dimension. The charge accumulation on the retarding potential grid causes the effective potential, that ions experience, to be changed from the applied voltage. Then, the number of ions that can pass through the retarding potential grid to reach the collector and, thus, the measured ion current are changed. This effect causes the measured ion drift velocity and ion temperature to be changed from the actual values. The error caused by the RPA electrode contamination is expected to be significant for sounding rocket measurements with low rocket velocity (1-2 km/s) and low ion temperature of 200-300 K in the height range of 100-300 km. In this paper we discuss the effects associated with the RPA contaminated electrodes based on theoretical analysis and experiments performed in a space plasma operation chamber. Finally, the development of a contamination-free RPA for sounding rocket missions is presented. PMID:24517809

  5. RESPONSE MICROORGANISMS TO SOIL CONTAMINATION WITH HEAVY METALS

    OpenAIRE

    Grazyna Kaczynska; Aneta Lipinska; Jadwiga Wyszkowska; Jan Kucharski

    2014-01-01

    The main aim of our work was to evaluate the effect that the soil contamination with zinc, copper and cadmium has on the number of (CFU)Azotobacter, organotrophic bacteria and Streptomyces. The results of the experiment revealed their role in the CFU modification and the impact on the level of soil contamination with heavy metals. Organotrophic bacteria have a similar tolerance to the heavy metals as Streptomyces, since the lowest resistance characterizes the Azotobacter. The toxicity of the ...

  6. Antibiotic, Pesticide, and Microbial Contaminants of Honey: Human Health Hazards

    OpenAIRE

    Noori Al-Waili; Khelod Salom; Ahmed Al-Ghamdi; Mohammad Javed Ansari

    2012-01-01

    Agricultural contamination with pesticides and antibiotics is a challenging problem that needs to be fully addressed. Bee products, such as honey, are widely consumed as food and medicine and their contamination may carry serious health hazards. Honey and other bee products are polluted by pesticides, heavy metals, bacteria and radioactive materials. Pesticide residues cause genetic mutations and cellular degradation and presence of antibiotics might increase resistant human or animal's patho...

  7. Scale-up of biological purification methods. A contribution of planning and optimization of bio-remediation of mineral hydrocarbon contaminated soils. Final report; Scale-up biologischer Reinigungsverfahren. Ein Beitrag zur Sanierungsplanung und -optimierung mineraloelkohlenwasserstoff-kontaminierter Boeden. Projekt-Abschlussbericht und Datenanhang

    Energy Technology Data Exchange (ETDEWEB)

    Krass, J.; Mathes, K.; Breckling, B.; Loenker, O.; Schulz-Berendt, V.

    2000-06-01

    Contamination with mineral oils are dangerous for soil and groundwater. Regularly, they require a remediation procedure. Biological purification methods are very suitable for this purpose. An important aspect of their application is a sound prognosis of the expected decontamination. The Cooperation Project of the University of Bremen and the Company Umweltschutz Nord GmbH and Co. contributed to this purpose. The University partner elaborated statistical models as well as numerical simulation models of different complexity. New developments in remedation planning as well as methods and rules for process optimization were specified. In this respect the project improves the methods in handling oil spills. (orig.) [German] Kontaminationen mit Mineraloelprodukten sind eine Gefahrenquelle fuer Boden und Grundwasser und erfordern in der Regel die Sanierung der genannten Medien. Besonders geeignete Reinigungsverfahren fuer solche Bodenverunreinigungen sind biologische Verfahren. Wichtiger Baustein fuer ihre Anwendung ist jedoch eine solide Sanierungsprognose. Zu deren Verbesserung traegt das Verbundprojekt der Universitaet Bremen und der Firma Umweltschutz Nord GmbH and Co. bei. Hierzu wurden von dem universitaeren Verbundpartner sowohl statistische als auch numerische Simulationsmodelle verschiedener Komplexitaet entwickelt. Neben dieser Weiterentwicklung der Sanierungsplanung wurden Methoden und Regeln zur Optimierung der biologischen Sanierung mit Mineraloelkohlenwasserstoffen kontaminierter Boeden erarbeitet. (orig.)

  8. Antibiotic Resistance

    Science.gov (United States)

    Antibiotics are medicines that fight bacterial infections. Used properly, they can save lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able to resist the effects of an antibiotic. Using antibiotics can lead to resistance. ...

  9. Contaminant Candidate List 1

    Data.gov (United States)

    U.S. Environmental Protection Agency — CCL 1 is a list of contaminants that are currently not subject to any proposed or promulgated national primary drinking water regulations, that are known or...

  10. Contaminant Candidate List 2

    Data.gov (United States)

    U.S. Environmental Protection Agency — CCL 2 is a list of contaminants that are currently not subject to any proposed or promulgated national primary drinking water regulations, that are known or...

  11. Etiology of contaminated wounds

    International Nuclear Information System (INIS)

    The US Department of Energy reports of events that occurred in the chemical processing 200 Areas of the Hanford Site during the period from 1972 through 1986 were reviewed to identify the causes of contaminated wounds. Contaminated wounds were reported in 19 events involving 20 workers. The causal agents (high risk operations) and the root causes were characterized. Emergency actions taken and their efficacy were noted. The 19 wound events were compared with 17 events with the potential for inhalation. It was found that the wound events involve a single worker and frequently result in an internal contamination and its resulting dose. Inhalation events involve groups of workers and rarely resulted in detectable internal contamination. The difference is attributed to anticipation of an inhalation event and use of respiratory protection and continuous air monitors to mitigate its effects

  12. Cleanup of contaminated areas

    International Nuclear Information System (INIS)

    The paper deals with the problem of contaminated areas cleanup, in order to eliminate every possible damage for man safety and environment and to site recovery for some utilization, The first step of cleanup operation is site characterization, that is followed by a pianificazion activity for a better definition of staff qualification, technology to be used, protection and prevention instruments for the risks due to contaminants handling. The second section describes the different remedial technologies for contaminated sites. Remedial technologies may be divided into on-site/off-site and in-situ treatments, according to whether materials (waste, soil, water) are moved to another location or not, respectively. Finally, it is outlined that contaminated areas cleanup is a typical multidisciplinary activity because very different competences are required. (author)

  13. Contaminant Candidate List 3

    Data.gov (United States)

    U.S. Environmental Protection Agency — CCL 3 is a list of contaminants that are currently not subject to any proposed or promulgated national primary drinking water regulations, that are known or...

  14. 呼吸道嗜血杆菌属的生物学分型及耐药性分析%Biological typing and drug resistance analysis of Haemophilus strains from respiratory tract

    Institute of Scientific and Technical Information of China (English)

    江秀爱; 赵自云; 姜蓓; 乔显森

    2015-01-01

    目的:了解该院临床分离嗜血杆菌属的季节分布、生物学分型及耐药性。方法收集呼吸道感染患者的痰液和咽拭子,采用手工法、MicSCAN4全自动细菌鉴定分析仪、HNID 鉴定板对分离培养的221株嗜血杆菌进行菌种鉴定,并进行生物学分型。用纸片扩散(K-B)法进行药物敏感试验,采用头孢硝噻吩纸片法进行β-内酰胺酶检测。结果临床分离流感嗜血杆菌96株(占1.6%),生物Ⅰ型10株(10.4%),生物Ⅱ型31株(32.3%),生物Ⅲ型40株(41.7%),其他生物型15株(15.6%)。副流感嗜血杆菌125株(占2.1%),生物Ⅰ型15株(12.0%),生物Ⅱ型23株(18.4%),生物Ⅲ型69株(55.2%),生物Ⅳ型18株(14.4%),未检出其他生物型。冬季感染率最高。流感嗜血杆菌和副流感嗜血杆菌对氨苄西林耐药率分别为40.6%%和44.8%,对复方磺胺甲噁唑的耐药率分别为51.0%和66.4%。流感嗜血杆菌和副流感嗜血杆菌β-内酰胺酶株产酶率分别为40.6%和44.8%,对头孢呋辛、头孢噻肟、美罗培南、氯霉素的敏感率都在90.0%以上。结论呼吸道流感嗜血杆菌和副流感嗜血杆菌感染好发于冬季,感染的生物型均以生物Ⅱ型、Ⅲ型为主,对氨苄西林和复方磺胺甲噁唑的耐药率较高,已不宜用于嗜血杆菌引起感染的经验治疗。对该菌所致呼吸道感染可选用头孢呋辛、头孢噻肟、美罗培南作为治疗的首选药物。%Objective To investigate season distribution,biological typing and drug resistant of Haemophitus in Qingdao Central Hospital.Methods The sputum and throat swab were collected from patients with respiratory tract infection,221 Haemophilus strains were identified and typed by the manual method and MicSCAN4 automatic analyzer,HNID identification plate.Antimicrobial susceptibility was tested by Kirby-Bauer method,and cephalosporins nitrate thiophene paper method was used to detect β-lacta-mase.Results A total of 96

  15. Modeling for Airborne Contamination

    International Nuclear Information System (INIS)

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  16. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  17. Biology Notes.

    Science.gov (United States)

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including water relation exercise on auxin-treated artichoke tuber tissue; aerobic respiration in yeast; an improved potometer; use of mobiles in biological classification, and experiments on powdery mildews and banana polyphenol oxidase. Includes reading lists…

  18. Monitoring of transport contamination

    International Nuclear Information System (INIS)

    Organization of monitoring of transport contamination is considered. A particularly thorough monitoring is recommended to be carried out in loading-unloading operations. The monitoring is performed when leaving loading-unloading site and zone under control and prior to preventive examination, technical service or repair. The method of monitoring of auto transport contamination with high-energy β-emitters by means of a special stand permitting the automation of the monitoring process is described

  19. Emerging contaminants in groundwater

    OpenAIRE

    Stuart, M.E.; Manamsa, K.; J. C. Talbot; Crane, E.J.

    2011-01-01

    The term ‘emerging contaminants’ is generally used to refer to compounds previously not considered or known to be significant to groundwater (in terms of distribution and/or concentration) which are now being more widely detected. As analytical techniques improve, previously undetected organic micropollutants are being observed in the aqueous environment. Many emerging contaminants remain unregulated, but the number of regulated contaminants will continue to grow slowly over th...

  20. Tritium contamination and decontamination

    International Nuclear Information System (INIS)

    Establishment of tritium safe handling technology is required with the development of fusion reactor research. Tritium is contained by multiple-barriers containment due to the difficulty in perfect containment of hydrogen isotopes. Tritium contamination of materials and subsequent desorption are one of the critical issues in tritium containment. And the development of tritium decontamination technology is also a critical issue in tritium safe handling. The status of tritium contamination study and tritium decontamination technology are reviewed. (author)

  1. Soil contamination by radionuclides

    International Nuclear Information System (INIS)

    The soil is the first link in the food chain. Soil contamination by individual radionuclides significantly affects the level of terrestrial radiation in the locality. The authors mapped situation of post-Chernobyl 137Cs soil contamination in Slovakia and European countries. Samples were collected in three layers of agriculturally cultivated area. Even a few years after the Chernobyl accident authors can say that elevated 137Cs values were recorded in the samples from Austria and Germany, in all layers of collection. (authors)

  2. Innovative biological approaches for monitoring and improving water quality

    Directory of Open Access Journals (Sweden)

    Sanja eAracic

    2015-08-01

    Full Text Available Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages.

  3. Comparison of multiple ecogenomics methods for determiningecosystem function in uranium-contaminated environments

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Dehal, P.; Arkin, A.P.; Fields, M.W.; Keller, M.; Zhou, J.; Andersen, G.L.; Brodie, E.L.; Wyborski, D.L.; Abulencia, C.B.; Hemme, ChrisL.; Gentry, T.; Watson, D.B.; Richardson, P.

    2007-01-10

    Background: Bioremediation may offer the only feasiblestrategy for the nearly intractable problem of metal and radionuclidecontamination of soil and groundwater. To understand bioremediation incontaminated environments, it is critical to determine the organismspresent in these environments, analyze their responses to stressconditions, and elucidate functional position in the environment.Methods: We used multiple molecular techniques on both sediment andgroundwater to develop a better understanding of the functionalcapability and stress level within the microbial community inrelationship to over one hundred geochemical parameters. Due to the lowpH (3.5-4.5) and high contaminant levels (e.g., uranium) microbialdensities and activities were low. We used a phage polymeraseamplification system to construct large and small insert DNA libraries,performed metagenome sequencing, constructed clonal libraries of selectfunctional genes (SSU rRNA gene, nirK, nirS, amoA, pmoA, and dsrAB), useda SSU rDNA Phylochip microarray (9,000 taxa), and a functional gene array(23K genes). A complete comparison for community differences andsimilarities between the different techniques was assessed using severalbioinformatics techniques. Results: SSU rDNA analysis revealed thepresence of distinct bacterial phyla, including proteobacteria,acidobacteria, and planctomycetes along the contaminant gradient.Metagenome analysis identified many of the same organisms, and diversitywas lower in water than sediment. Analysis with functional gene arrays,phylochip, and specific probes for genes and organisms involved inbiogeochemical cycling of C, N, and S, metal resistance, stress response,and contaminant degradation suggested that the dominant species could bebiostimulated during in situ uranium reduction. Several other findings ofdifference and similarities between methods are presented. Conclusion:These systems biology field studies could be enabling for strategies toattenuate nletal and radionuclide

  4. Reconditioning contaminated gravel

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL) has developed a portable screening system that will recondition radioactively contaminated gravel in the field. The separation technique employed by this system removes dirt, contaminated debris, and other fine particles from gravel. At LLNL, gravel is used in conjunction with the experimental testing of explosives to reduce shock wave propagation. The gravel surrounds the experimental device and buffers the energy generated from the explosion. During an explosion, some of the gravel is broken down into small particles and mixed with contaminants. Contaminants in the used gravel originate from metal sheathing and other parts comprising, the experimental device. These contaminants may consist of radionuclides and metals that are considered hazardous by the State of California when disposed. This paper describes the process that conveys contaminated material into the screener system, sprays the material with recycled water or other mild cleaning chemicals, and separates particles based on size. Particles greater than a specified size are discharged out of the screener separator and recycled back into use, thereby reducing the amount of mixed waste generated and minimizing the need for new gravel. The fines or silt are flushed out of the separator with the water and are removed from the water and consolidated into a drum with the use of a hydrocyclone separator and drum decant system. Because the water in the spray system is recycled, minimal makeup water is needed. The system monitors pH and total dissolved solids

  5. Network systems biology for targeted cancer therapies

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Zhou

    2012-01-01

    The era of targeted cancer therapies has arrived.However,due to the complexity of biological systems,the current progress is far from enough.From biological network modeling to structural/dynamic network analysis,network systems biology provides unique insight into the potential mechanisms underlying the growth and progression of cancer cells.It has also introduced great changes into the research paradigm of cancer-associated drug discovery and drug resistance.

  6. Biological radiation effects

    International Nuclear Information System (INIS)

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man

  7. Detection and characterization of mupirocin resistance in Staphylococcus aureus.

    OpenAIRE

    Janssen, D A; Zarins, L T; Schaberg, D R; Bradley, S. F.; Terpenning, M S; Kauffman, C A

    1993-01-01

    Fourteen mupirocin-resistant Staphylococcus aureus strains were isolated over 18 months; 12 exhibited low-level resistance, while two showed high-level resistance. Highly mupirocin-resistant strains contained a large plasmid which transferred mupirocin resistance to other S. aureus strains and to Staphylococcus epidermidis. This plasmid and pAM899-1, a self-transferable gentamicin resistance plasmid, have molecular and biologic similarities.

  8. Engineering property test of kaolin clay contaminated by diesel oil

    Institute of Scientific and Technical Information of China (English)

    刘志彬; 刘松玉; 蔡奕

    2015-01-01

    Engineering property of kaolin clay contaminated by diesel oil was studied through a series of laboratory experiments. Oil contents (mass fraction) of 4%, 8%, 12%, 16% and 20% were selected to represent different contamination degrees, and the soil specimens were manually prepared through mixing and static compaction method. Initial water content and dry density of the test kaolin clay were controlled at 10% and 1.58 g/cm3, respectively. Test results indicate that since part of the diesel oil will be released from soil by evaporation, the real water content should be derived through calibration of the quasi water content obtained by traditional test method. As contamination degree of the kaolin clay increases, both liquid limit and plastic limit decrease, but there’s only a slight increase for plasticity index. Swelling pressure of contaminated kaolin clay under confined condition will be lowered when oil-content gets higher. Unconfined compressive strength (UCS) of the oil-contaminated kaolin clay is influenced by not only oil content but also curing period. Increase of contamination degree will continually lower UCS of the kaolin clay specimen. In addition, electrical resistivity of the contaminated kaolin clay with given water content decreases with the increase of oil content. However, soil resistivity is in good relationship with oil content and UCS. Finally, oil content of 8% is found to be a critical value for engineering property of kaolin clay to transit from water-dominated towards oil-dominated characteristics.

  9. Biomonitoring and assessment of environmental contaminants in fish-eating birds of the upper Niagara River: A contribution to the Niagara River Environmental Contaminants Study

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Niagara River Environmental Contaminants Study is an ongoing effort by the U.S. Fish and Wildlife Service (Service) emphasizing the use of biological indicators...

  10. Resistance management in Vf apple scab resistant organic apple orchards

    OpenAIRE

    Trapman, Marc

    2006-01-01

    Modern Vf scab resistant apple varieties open the way for organic growers to lower fungicide input, higher yields, better skin quality, more biological control for mites and insect pests and better consumer acceptance of their management practices. Manny examples in the past years have shown however that the Vf resis-tance can be easily overcome by local scab populations in north-western Europe. Discussions during the meetings of the IOBC working group Diseases in Orchards in 2000 in Fontevr...

  11. Remediation of uranium contaminated water and soil by PIMS approach

    International Nuclear Information System (INIS)

    Contamination of soil by uranium (U) represents a permanent threat for food and water resources. For this reason, remediation is a very important measure for protection of the health of the population living in the vicinity of these contaminated sites. Phosphate- Induced Metal Stabilization (PIMS) represents one of the powerful methods for remediation of soil and water contaminated by U, including depleted uranium (DU). By this approach it is possible to stabilize metals in the form of phosphate phases and other low soluble phases that are stable over geological time. PIMS is based on application of a special form of apatite of biological origin, Apatite II, to clean up metal and radionuclide contamination, in situ or ex situ. This biogenic apatite can be emplaced as a down-gradient permeable reactive barrier, mixed into contaminated soil or waste or used as a disposal liner. Here we will briefly describe the PIMS remediation protocol. (author)

  12. Standard Practice for Preparation of Aerospace Contamination Control Plans

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice is intended to assist in the preparation of formal plans for contamination control, especially of aerospace critical surfaces. Requirements may be established at the systems level, either by the customer or the systems integrator, or at the subsystem level. Subsystem requirements may be imposed by the responsible subsystem supplier or they may be flowed down from the systems organization (4.7). The extent of detail and level of cleanliness required can vary with the particular application and type of hardware being built, but all aspects of contamination control must be included in a final plan. Therefore, each of the following elements must be considered for inclusion in a contamination control plan (CCP): 1.1.1 Cleanliness requirements for deliverable hardware addressing particulate, molecular, or biological contaminants or combination thereof. Specify contamination limits and any budget allocations. 1.1.2 Implementation plans to achieve, verify, and maintain the specified cleanliness re...

  13. Biological decomposition of aqueous solutions from soil cleaning

    International Nuclear Information System (INIS)

    The biological cleaning of process water from soil cleaning and from contaminated groundwater required the development of new types of reaction systems. With the introduced membrane biofilm reactor, even substances difficult to decompose can be removed from contaminated water. Previous investigations of the elimination of pyrene in the presence of n-hexadecane show an optimum temperature at 30 C. An increase of scale is possible based on the invesstigations carried out on the aerobic biological decomposition of polycyclic aromatic hydrocarbons. (orig.)

  14. An overview of the bioremediation of inorganic contaminants

    International Nuclear Information System (INIS)

    Bioremediation, or the biological treatment of wastes, usually is associated with the remediation of organic contaminants. Similarly, there is an increasing body of literature and expertise in applying biological systems to assist in the bioremediation of soils, sediments, and water contaminated with inorganic compounds including metals, radionuclides, nitrates, and cyanides. Inorganic compounds can be toxic both to humans and to organisms used to remediate these contaminants. However, in contrast to organic contaminants, most inorganic contaminants cannot be degraded, but must be remediated by altering their transport properties. Immobilization, mobilization, or transformation of inorganic contaminants via bioaccumulation, biosorption, oxidation, reduction, methylation, demethylation, metal-organic complexation, ligand degradation, and phytoremediation are the various processes applied in the bioremediation of inorganic compounds. This paper briefly describes these processes, referring to other contributors in this book as examples when possible, and summarize the factors that must be considered when choosing bioremediation as a cleanup technology for inorganics. Understanding the current state of knowledge as well as the limitations for bioremediation of inorganic compounds will assist in identifying and implementing successful remediation strategies at sites containing inorganic contaminants. 79 refs

  15. Mesoscopic biology

    Indian Academy of Sciences (India)

    G V Shivashankar

    2002-02-01

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological systems. In recent years advances in technology have led to the study of some of the design principles of these machines; in particular at the level of an individual molecule. For example, the forces that operate in molecular interactions, the stochasticity involved in these interactions and their spatio-temporal dynamics are beginning to be explored. Understanding such design principles is opening new possibilities in mesoscopic physics with potential applications.

  16. Biological programming

    OpenAIRE

    Ramsden, Jeremy J.; Bándi, Gergely

    2010-01-01

    Biology offers a tremendous set of concepts that are potentially very powerfully usable for the software engineer, but they have been barely exploited hitherto. In this position paper we propose a fresh attempt to create the building blocks of a programming technology that could be as successful as life. A key guiding principle is to develop and make use of unambiguous definitions of the essential features of life.

  17. Biological radioprotector

    International Nuclear Information System (INIS)

    According to the patent description, the biological radioprotector is deuterium depleted water, DDW, produced by vacuum distillation with an isotopic content lower than natural value. It appears as such or in a mixture with natural water and carbon dioxide. It can be used for preventing and reducing the ionizing radiation effects upon humans or animal organisms, exposed therapeutically, professionally or accidentally to radiation. The most significant advantage of using DDW as biological radioprotector results from its way of administration. Indeed no one of the radioprotectors currently used today can be orally administrated, what reduces the patients' compliance to prophylactic administrations. The biological radioprotector is an unnoxious product obtained from natural water, which can be administrated as food additive instead of drinking water. Dose modification factor is according to initial estimates around 1.9, what is a remarkable feature when one takes into account that the product is toxicity-free and side effect-free and can be administrated prophylactically as a food additive. A net radioprotective action of the deuterium depletion was evidenced experimentally in laboratory animals (rats) hydrated with DDW of 30 ppm D/(D+H) concentration as compared with normally hydrated control animals. Knowing the effects of irradiation and mechanisms of the acute radiation disease as well as the effects of administration of radiomimetic chemicals upon cellular lines of fast cell division, it appears that the effects of administrating DDW result from stimulation of the immunity system. In conclusion, the biological radioprotector DDW presents the following advantages: - it is obtained from natural products without toxicity; - it is easy to be administrated as a food additive, replacing the drinking water; - besides radioprotective effects, the product has also immunostimulative and antitumoral effects

  18. Marine biology

    International Nuclear Information System (INIS)

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  19. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  20. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  1. Inducing Effects and Its Biological Mechanisms of ABA on the Chilling Resistance of Sweet Pepper Seedlings%脱落酸对甜椒幼苗抗寒性的诱导效应及其机理研究

    Institute of Scientific and Technical Information of China (English)

    罗立津; 徐福乐; 翁华钦; 洪淑珠; 段留生; 李召虎

    2011-01-01

    以砂培甜椒幼苗为材料,先用不同浓度脱落酸(ABA)进行灌根处理,再分两组分别于常温(25℃~30℃)生长7 d(常温苗)或低温驯化(10℃~15℃)30 d(驯化苗)之后进行低温胁迫(5℃)处理,分析幼苗的生长状况及其细胞质膜伤害、渗透调节物质、活性氧清除系统、内源激素的变化特征,以探讨脱落酸对甜椒抗寒性的诱导效应及机理.结果显示,(1)各浓度ABA对甜椒常温苗和驯化苗的株高、茎重均无显著影响,但显著促进驯化苗的侧根生长,在低温胁迫下,显著降低驯化苗叶片的呼吸速率;(2)常温苗的相对电导率仅在10 mg/L ABA处理中比对照显著降低,而驯化苗在各处理浓度下均显著降低, MDA含量表现出与此类似的变化;(3)叶片脯氨酸、可溶性糖、可溶性蛋白、钾离子等渗透调节物质含量在各浓度ABA处理常温苗和驯化苗中均有所增加,但仅脯氨酸含量的增加达到显著水平.(4)各浓度ABA处理都一定程度上提高了常温苗的SOD活性,显著降低了常温苗的CAT和POD活性,H2O2积累量均显著降低,但对于驯化苗,1.0 mg/L和10 mg/L ABA处理却显著降低其SOD活性,POD和CAT活性无显著差异,H2O2积累量也无显著变化.(5)茎尖的ZR、JA-Me含量及IAA/ZR、均与对照无显著差异,但IAA、ABA含量、ABA/ZR比值明显提高,其中1.0和10 mg/L处理的内源ABA含量以及10 mg/L处理的ABA/ZR比值显著高于对照.研究表明,脱落酸能通过降低甜椒幼苗呼吸速率,提高叶片脯氨酸、可溶性糖、钾离子等渗透调节物质以及ABA的积累来诱导增强甜椒幼苗的抗寒性,减少活性氧自由基的产生和累积量,从而减轻低温胁迫造成的伤害,且低温驯化条件下比常温下效果更加明显.%To study the inducing effects and biological mechanisms of abscisic acid (ABA) on the chilling resistance of plant,sandy culture method was conducted to examine the effects of ABA on the lipid

  2. Tritium contamination of hematopoietic stem cells alters long-term hematopoietic reconstitution

    International Nuclear Information System (INIS)

    Purpose: In vivo effects of tritium contamination are poorly documented. Here, we study the effects of tritiated Thymidine ([3H] Thymidine) or tritiated water (HTO) contamination on the biological properties of hematopoietic stem cells (HSC). Materials and methods: Mouse HSC were contaminated with concentrations of [3H] Thymidine ranging from 0.37-37.03 kBq/ml or of HTO ranging from 5-50 kBq/ml. The biological properties of contaminated HSC were studied in vitro after HTO contamination and in vitro and in vivo after [3H] Thymidine contamination. Results: Proliferation, viability and double-strand breaks were dependent on [3H] Thymidine or HTO concentrations used for contamination but in vitro myeloid differentiation of HSC was not affected by [3H] Thymidine contamination. [3H] Thymidine contaminated HSC showed a compromised long-term capacity of hematopoietic reconstitution and competition experiments showed an up to two-fold decreased capacity of contaminated HSC to reconstitute hematopoiesis. These defects were not due to impaired homing in bone marrow but to an initial decreased proliferation rate of HSC. Conclusion: These results indicate that contaminations of HSC with doses of tritium that do not result in cell death, induce short-term effects on proliferation and cell cycle and long-term effects on hematopoietic reconstitution capacity of contaminated HSC. (authors)

  3. Costs of groundwater contamination

    International Nuclear Information System (INIS)

    Two factors determine the cost of groundwater contamination: (1) the ways in which water was being used or was expected to be used in the future and (2) the physical characteristics of the setting that constrain the responses available to regain lost uses or to prevent related damages to human health and the environment. Most contamination incidents can be managed at a low enough cost that uses will not be foreclosed. It is important to take into account the following when considering costs: (1) natural cleansing through recharge and dilution can take many years; (2) it is difficult and costly to identify the exact area and expected path of a contamination plume; and (3) treatment or replacement of contaminated water often may represent the cost-effective strategy for managing the event. The costs of contamination include adverse health effects, containment and remediation, treatment and replacement costs. In comparing the costs and benefits of prevention programs with those of remediation, replacement or treatment, it is essential to adjust the cost/benefit numbers by the probability of their actual occurrence. Better forecasts of water demand are needed to predict more accurately the scarcity of new supply and the associated cost of replacement. This research should include estimates of the price elasticity of water demand and the possible effect on demand of more rational cost-based pricing structures. Research and development of techniques for in situ remediation should be encouraged

  4. Separation of contaminated concrete

    International Nuclear Information System (INIS)

    Separating the contaminated parts from the non-contaminated parts from decommissioned nuclear facilities may strongly reduce the amount of contaminated concrete. The reduction in volume of the radioactive contaminated concrete is dependent on how much cementstone is in the concrete. This research program shows that the radioactive contamination is mostly in the cementstone. However the choice that the cementstone parts, (or better said the radioactive parts) are smaller than 1 mm may not always be true. Normally the cementstone takes about 30% of the total concrete volume. A separation procedure composed by a combination of milling and thermal shock has been assessed. Both the cold and hot thermal shock in combination with milling are not able to separate the cementstone from the larger aggregates completely. However, the cementstone from the concrete with a low nominal grain size seems to be almost completely removed by the combination cold thermal shock/milling, while the cementstone from the concrete with a high nominal grain size seems to be almost completely removed by the combination hot thermal shock/milling. After both methods a layer of cementstone was still visible on the aggregates. Washing followed by a nitric acid treatment removed each 2 wt% of cementstone

  5. Emerging organic contaminants in sludges. Analysis, fate and biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vicent, Teresa [Univ. Autonoma de Barcelona, Bellaterra (Spain). Chemical Engineering Dept.; Eljarrat, Ethel [IDAEA-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry; Caminal, Gloria [IQAC-CSIC, Barcelona (Spain). Grupo de biocatalisis Aplicada y biodegradacion; Barcelo, Damia (eds.) [IDAEA-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry; Girona Univ. (Spain). Catalan Inst. for Water Research

    2013-07-01

    A comprehensive review. Written by experts. Richly illustrated. There are a growing number of new chemicals in the environment that represent an ascertained or potential risk. Many of them can be found in sewage sludge and are the subject of this volume. Experts in the field highlight their occurrence and fate, risks of biosolid use, advanced chemical analysis methods, and degradation techniques with a special focus on biodegradation using fungi. In the final chapter conclusions and trends are offered as a point of departure for future studies. The double-disciplinary approach combining environmental analysis and engineering makes the book a valuable and comprehensive source of information for a broad audience, such as environmental chemists and engineers, biotechnologists, ecotoxicologists and professionals responsible for waste and water management.

  6. Different Strategies for Biological Remediation of Perchlorate Contaminated Groundwater

    OpenAIRE

    Wang, Yue

    2012-01-01

    Perchlorate (ClO4-) has gained attention recently due to its interference with thyroid gland function. In infants and unborn children, inadequate thyroid hormone production can cause mental retardation and thyroid tumors. Since new perchlorate standards will be proposed in 2013, and if a stricter standard is imposed, cost effective technologies will be in high demand. The overall objective of this research was to evaluate two perchlorate bioremediation strategies using indigenous soil bact...

  7. Environmental Contaminants in Foodstuffs

    Directory of Open Access Journals (Sweden)

    Mária Túri-Szerletics

    2008-06-01

    Full Text Available Consumers have specific concerns about food contaminants but often lack themeans to make appropriate judgements on what is high risk and what is not. Contaminantsin foods can be grouped according to their origin and nature. Environmental contaminantsof food-safety concern includes toxic metals and elements, organometallic compounds,agricultural chemicals and persistent organic pollutants such as halogenated hydrocarbonpesticides, polychlorinated biphenyls, dioxins, polycyclic aromatic hydrocarbons,phthalates, nirates, nitrites. These contaminants may present a potential hazard for humanhealth if exposure exceeds tolerable levels. This article shows the characteristics and thedietary intake of these elements and compounds. Further works need to concentrate onmechanism of different contaminants toxicity and metabolism, reevaluation of acceptablelimits, and their control in foods and in the environment.

  8. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A., E-mail: stanciu@physics.pub.ro

    2015-08-15

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed.

  9. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed

  10. The Influence of Polychlorinated Biphenyls Contamination on Soil Protein Expression

    OpenAIRE

    Xi Zhang; Feng Li; Tingting Liu; Cheng Peng; Dechao Duan; Chen Xu; Shenhai Zhu; Jiyan Shi

    2013-01-01

    Polychlorinated biphenyls (PCBs) are typical representative of chlorinated organic pollutants. Given the toxicity of PCBs, there is an urgent need to select an appropriate indicator to monitor their biological effects on soil ecosystems. For this purpose, we investigated the impacts of PCBs on soil protein and the potential of using protein as a biological indicator to assess soil contamination due to PCBs. This study demonstrated that soil protein concentration and expression were negatively...

  11. Electrostatic Return of Contaminants

    Science.gov (United States)

    Rantanen, R.; Gordon, T.

    2003-01-01

    A Model has been developed capable of calculating the electrostatic return of spacecraft-emitted molecules that are ionized and attracted back to the spacecraft by the spacecraft electric potential on its surfaces. The return of ionized contaminant molecules to charged spacecraft surfaces is very important to all altitudes. It is especially important at geosynchronous and interplanetary environments, since it may be the only mechanism by which contaminants can degrade a surface. This model is applicable to all altitudes and spacecraft geometries. In addition to results of the model will be completed to cover a wide range of potential space systems.

  12. Particulate contamination in ampoules.

    Science.gov (United States)

    Alexander, D M; Veltman, A M

    1985-01-01

    The particulate contamination in 19 formulations of solutions in ampoules supplied by eight South African manufacturers, thirty-three batches in all, was analysed using a HIAC PC 320 light blockage particle analyser linked to a CMB 60 sensor. Results showed that the level of contamination was generally low and that, where comparisons could be made, manufacturers both of the ampoules and the solutions maintained similarly high standards. Problems in this field appeared to be related to the formulation or the quality of the raw material. PMID:2858528

  13. Groundwater contamination in Japan

    Science.gov (United States)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  14. Biological Databases

    Directory of Open Access Journals (Sweden)

    Kaviena Baskaran

    2013-12-01

    Full Text Available Biology has entered a new era in distributing information based on database and this collection of database become primary in publishing information. This data publishing is done through Internet Gopher where information resources easy and affordable offered by powerful research tools. The more important thing now is the development of high quality and professionally operated electronic data publishing sites. To enhance the service and appropriate editorial and policies for electronic data publishing has been established and editors of article shoulder the responsibility.

  15. IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS - ACTIVE CAPPING TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-09-02

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  16. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    International Nuclear Information System (INIS)

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the 75Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations

  17. Risk based treatment selection and optimization of contaminated site remediation

    International Nuclear Information System (INIS)

    During the past few years numerous remediation technologies for the cleanup of contaminated sites have been developed. Because of the associated uncertainties concerning treatment reliability it is important to develop strategies to characterize their risks to achieve the cleanup requirements. For this purpose it is necessary to integrate existing knowledge on treatment efficacy and efficiency into the planning process for the management of contaminated sites. Based on field-scale experience data for the remediation of soils contaminated with petroleum hydrocarbons, two treatment technologies, biological land treatment and phyisco-chemical soil washing, were analyzed with respect to their general performance risks to achieve given cleanup standards. For a specific contamination scenario, efficient application ranges were identified using the method of linear optimization in combination with sensitivity analysis. Various constraints including cleanup standards, available financial budget, amount of contamination and others were taken into account. While land treatment was found to be most efficient at higher cleanup standards and less contaminated soils, soil washing exhibited better efficiency at lower cleanup standards and higher contaminated soils. These results compare favorably with practical experiences and indicate the utility of this approach to support decision making and planning processes for the general management of contaminated sites. In addition, the method allows for the simultaneous integration of various aspects such as risk based characteristics of treatment technologies, cleanup standards and more general ecological and economical remedial action objectives

  18. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  19. Bioremediation of diesel fuel contaminated soils

    International Nuclear Information System (INIS)

    Bioremediation techniques were successfully employed in the cost-effective cleanup of approximately 8400 gallons of diesel fuel which had been accidentally discharged at a warehouse in New Jersey. Surrounding soils were contaminated with the diesel fuel at concentrations exceeding 1,470 mg/kg total petroleum hydrocarbons as measured by infrared spectroscopy (TPH-IR, EPA method 418.1, modified for soils). This paper reports on treatment of the contaminated soils through enhanced biological land treatment which was chosen for the soil remediation pursuant to a New Jersey Pollutant Discharge Elimination System - Discharge to Ground Water (NJPDES-DGW) permit. Biological land treatment of diesel fuel focuses on the breakdown of the hydrocarbon fractions by indigenous aerobic microorganisms in the layers of soil where oxygen is made available. Metabolism by these microorganisms can ultimately reduce the hydrocarbons to innocuous end products. The purpose of biological land treatment was to reduce the concentration of the petroleum hydrocarbon constituents of the diesel fuel in the soil to 100 ppm total petroleum hydrocarbons (TPH)

  20. Forensic recovery within contaminated environment

    International Nuclear Information System (INIS)

    Full text: The Exhibit Handling System, operated by the Anti-Terrorist Branch, has evolved from experiences whilst dealing with long term domestic terrorism and the subsequent prosecution of the offenders. Stringent U.K. criminal law in regard to exhibits and forensic evidence required a strict system in order to provide continuity and integrity to every item that came into possession of the Police. This system also applies to items that are eventually deemed 'unused', as nearly all evidence is disclosed to the defence. I believe that if a system can withstand the close examination that British Criminal Law provides, it will probably be suitable in most countries. The system relies on each item being supplied with a documented trail of all persons who have had possession of it and who have opened the security packaging for examination purposes. In contaminated environments the initial process within the system has to be adapted in order that strict monitoring of the items can be carried out during the packaging process. It is also recognized that access to many exhibits will be heavily restricted and therefore protocols are in place to interrogate the evidence at the packaging stage in order to avoid unnecessary spread of contamination. The protocols are similar for both radiological and nuclear incidents as well as chemical and biological. Regardless of the type of incident the system can be adapted on the advice of the relevant scientific authority. In the U.K. for radiological and nuclear incidents that authority would be the A.W.E. Aldermaston. The integrity and continuity regime should be continued within laboratories which are conducting examinations of exhibits recovered. It is also important that Nuclear Forensic Laboratories do not overlook possibilities of traditional evidence, such as DNA, Fingerprints and fibre traces. Good record photography of items which are unlikely to be released by the laboratory is essential. Finally, cross-contamination has in