WorldWideScience

Sample records for biologically relevant molecules

  1. Single Molecule Fluorescence: from Physical Fascination to Biological Relevance

    OpenAIRE

    Segers-Nolten, Gezina M.J.

    2003-01-01

    Confocal fluorescence microscopy is particularly well-known from the beautiful images that have been obtained with this technique from cells. Several cellular components could be nicely visualized simultaneously by staining them with different fluorophores. Not only for ensemble applications but also in single molecule research confocal fluorescence microscopy became a popular technique. In this thesis the possibilities are shown to study a complicated biological process, which is Nucleotide ...

  2. High-temperature Ionization-induced Synthesis of Biologically Relevant Molecules in the Protosolar Nebula

    Science.gov (United States)

    Bekaert, David V.; Derenne, Sylvie; Tissandier, Laurent; Marrocchi, Yves; Charnoz, Sebastien; Anquetil, Christelle; Marty, Bernard

    2018-06-01

    Biologically relevant molecules (hereafter biomolecules) have been commonly observed in extraterrestrial samples, but the mechanisms accounting for their synthesis in space are not well understood. While electron-driven production of organic solids from gas mixtures reminiscent of the photosphere of the protosolar nebula (PSN; i.e., dominated by CO–N2–H2) successfully reproduced key specific features of the chondritic insoluble organic matter (e.g., elementary and isotopic signatures of chondritic noble gases), the molecular diversity of organic materials has never been investigated. Here, we report that a large range of biomolecules detected in meteorites and comets can be synthesized under conditions typical of the irradiated gas phase of the PSN at temperatures = 800 K. Our results suggest that organic materials—including biomolecules—produced within the photosphere would have been widely dispersed in the protoplanetary disk through turbulent diffusion, providing a mechanism for the distribution of organic meteoritic precursors prior to any thermal/photoprocessing and subsequent modification by secondary parent body processes. Using a numerical model of dust transport in a turbulent disk, we propose that organic materials produced in the photosphere of the disk would likely be associated with small dust particles, which are coupled to the motion of gas within the disk and therefore preferentially lofted into the upper layers of the disk where organosynthesis occurs.

  3. Distinguishing Biologically Relevant Hexoses by Water Adduction to the Lithium-Cationized Molecule.

    Science.gov (United States)

    Campbell, Matthew T; Chen, Dazhe; Wallbillich, Nicholas J; Glish, Gary L

    2017-10-03

    A method to distinguish the four most common biologically relevant underivatized hexoses, d-glucose, d-galactose, d-mannose, and d-fructose, using only mass spectrometry with no prior separation/derivatization step has been developed. Electrospray of a solution containing hexose and a lithium salt generates [Hexose+Li] + . The lithium-cationized hexoses adduct water in a quadrupole ion trap. The rate of this water adduction reaction can be used to distinguish the four hexoses. Additionally, for each hexose, multiple lithiation sites are possible, allowing for multiple structures of [Hexose+Li] + . Electrospray produces at least one structure that reacts with water and at least one that does not. The ratio of unreactive lithium-cationized hexose to total lithium-cationized hexose is unique for the four hexoses studied, providing a second method for distinguishing the isomers. Use of the water adduction reaction rate or the unreactive ratio provides two separate methods for confidently (p ≤ 0.02) distinguishing the most common biologically relevant hexoses using only femtomoles of hexose. Additionally, binary mixtures of glucose and fructose were studied. A calibration curve was created by measuring the reaction rate of various samples with different ratios of fructose and glucose. The calibration curve was used to accurately measure the percentage of fructose in three samples of high fructose corn syrup (<4% error).

  4. Messina: a novel analysis tool to identify biologically relevant molecules in disease.

    Directory of Open Access Journals (Sweden)

    Mark Pinese

    Full Text Available BACKGROUND: Morphologically similar cancers display heterogeneous patterns of molecular aberrations and follow substantially different clinical courses. This diversity has become the basis for the definition of molecular phenotypes, with significant implications for therapy. Microarray or proteomic expression profiling is conventionally employed to identify disease-associated genes, however, traditional approaches for the analysis of profiling experiments may miss molecular aberrations which define biologically relevant subtypes. METHODOLOGY/PRINCIPAL FINDINGS: Here we present Messina, a method that can identify those genes that only sometimes show aberrant expression in cancer. We demonstrate with simulated data that Messina is highly sensitive and specific when used to identify genes which are aberrantly expressed in only a proportion of cancers, and compare Messina to contemporary analysis techniques. We illustrate Messina by using it to detect the aberrant expression of a gene that may play an important role in pancreatic cancer. CONCLUSIONS/SIGNIFICANCE: Messina allows the detection of genes with profiles typical of markers of molecular subtype, and complements existing methods to assist the identification of such markers. Messina is applicable to any global expression profiling data, and to allow its easy application has been packaged into a freely-available stand-alone software package.

  5. Other relevant biological papers

    International Nuclear Information System (INIS)

    Shimizu, M.

    1989-01-01

    A considerable number of CRESP-relevant papers concerning deep-sea biology and radioecology have been published. It is the purpose of this study to call attention to them. They fall into three general categories. The first is papers of general interest. They are mentioned only briefly, and include text references to the global bibliography at the end of the volume. The second are papers that are not only mentioned and referenced, but for various reasons are described in abstract form. The last is a list of papers compiled by H.S.J. Roe specifically for this volume. They are listed in bibliographic form, and are also included in the global bibliography at the end of the volume

  6. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1996-01-01

    The biological effects of the radiations to which mankind on earth are exposed are becoming known with an increasing degree of detail. This knowledge is the basis of the estimates of risk that, in turn, fosters a comprehensive and evolving radiation protection system. The substantial body of information has been, and is being, applied to questions about the biological effects of radiation is space and the associated risk estimates. The purpose of this paper is not to recount all the biological effect of radiation but to concentrate on those that may occur as a result from exposure to the radiations encountered in space. In general, the biological effects of radiation in space are the same as those on earth. However, the evidence that the effects on certain tissues by the heaviest-charged particles can be interpreted on the basis of our knowledge about other high-LET radiation is equivocal. This specific question will be discussed in greater detail later. It is important to point out the that there are only limited data about the effects on humans of two components of the radiations in space, namely protons and heavy ions. Thus predictions of effects on space crews are based on experimental systems exposed on earth at rates and fluences that are higher than those in space and one the effects of gamma or x rays with estimates of the equivalent doses using quality factors

  7. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1997-01-01

    There are only very limited data on the health effects to humans from the two major components of the radiations in space, namely protons and heavy ions. As a result, predictions of the accompanying effects must be based either on (1) data generated through studies of experimental systems exposed on earth at rates and fluences higher than those in space, or (2) extrapolations from studies of gamma and x rays. Better information is needed about the doses, dose rates, and the energy and LET spectra of the radiations at the organ level that are anticipated to be encountered during extended space missions. In particular, there is a need for better estimates of the relationship between radiation quality and biological effects. In the case of deterministic effects, it is the threshold that is important. The possibility of the occurrence of a large solar particle event (SPE) requires that such effects be considered during extended space missions. Analyses suggest, however, that it is feasible to provide sufficient shielding so as to reduce such effects to acceptable levels, particularly if the dose rates can be limited. If these analyses prove correct, the primary biological risks will be the stochastic effects (latent cancer induction). The contribution of one large SPE to the risk of stochastic effects while undesirable will not be large in comparison to the potential total dose on a mission of long duration

  8. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  9. Biological mechanisms, one molecule at a time

    Science.gov (United States)

    Tinoco, Ignacio; Gonzalez, Ruben L.

    2011-01-01

    The last 15 years have witnessed the development of tools that allow the observation and manipulation of single molecules. The rapidly expanding application of these technologies for investigating biological systems of ever-increasing complexity is revolutionizing our ability to probe the mechanisms of biological reactions. Here, we compare the mechanistic information available from single-molecule experiments with the information typically obtained from ensemble studies and show how these two experimental approaches interface with each other. We next present a basic overview of the toolkit for observing and manipulating biology one molecule at a time. We close by presenting a case study demonstrating the impact that single-molecule approaches have had on our understanding of one of life's most fundamental biochemical reactions: the translation of a messenger RNA into its encoded protein by the ribosome. PMID:21685361

  10. Electro-induced reactions of biologically important molecules

    International Nuclear Information System (INIS)

    Kocisek, J.

    2010-01-01

    The thesis presents the results of research activities in the field of electron interactions with biologically relevant molecules which was carried out during my PhD studies at the Department of Experimental Physics, Comenius University in Bratislava. Electron induced interactions with biologically relevant molecules were experimentally studied using crossed electron-molecule beams experiment. The obtained results, were presented in four publications in international scientific journals. First study of deals with electron impact ionisation of furanose alcohols [see 1. in list of author publications on page 22]. It has been motivated by most important works in the field of electron induced damages of DNA bases [4]. Studied 3-hydroxytetrahydrofuran and tetrahydrofurfuryl alcohol, are important model molecules for more complex biological systems (e.g. deoxyribose).The influence of hydroxyl group on stabilisation of the positive ions of the molecules, together with the stability of furan ring in ionized form are main themes of the study. The studies of small amides and aminoacids are connected to scientific studies in the field of formation of the aminoacids and other biologically relevant molecules in space and works trying to explain electron induced processes in more complex molecules[12, 13, 24]. The most important results were obtained for aminoacid Serine [see 2. in list of author publications on page 22]. We have showed that additional OH group of Serine considerably lower the reaction enthalpy limit of reactions resulting to formation of neutral water molecules, in comparison to other amino acids. Also the study of (M-H)- reaction channel using the electron beam with FWHM under 100 meV is of high importance in the field. The last part of the thesis is focused on the electron interactions with organosilane compounds. Materials prepared from organosilane molecules in plasmas have wide range of applications in both biology and medicine. We have studied electron

  11. Charge migration induced by attosecond pulses in bio-relevant molecules

    International Nuclear Information System (INIS)

    Calegari, Francesca; Castrovilli, Mattea C; Nisoli, Mauro; Trabattoni, Andrea; Palacios, Alicia; Ayuso, David; Martín, Fernando; Greenwood, Jason B; Decleva, Piero

    2016-01-01

    After sudden ionization of a large molecule, the positive charge can migrate throughout the system on a sub-femtosecond time scale, purely guided by electronic coherences. The possibility to actively explore the role of the electron dynamics in the photo-chemistry of bio-relevant molecules is of fundamental interest for understanding, and perhaps ultimately controlling, the processes leading to damage, mutation and, more generally, to the alteration of the biological functions of the macromolecule. Attosecond laser sources can provide the extreme time resolution required to follow this ultrafast charge flow. In this review we will present recent advances in attosecond molecular science: after a brief description of the results obtained for small molecules, recent experimental and theoretical findings on charge migration in bio-relevant molecules will be discussed. (topical review)

  12. Coinhibitory molecules in cancer biology and therapy.

    Science.gov (United States)

    Mocellin, Simone; Benna, Clara; Pilati, Pierluigi

    2013-04-01

    The adaptive immune response is controlled by checkpoints represented by coinhibitory molecules, which are crucial for maintaining self-tolerance and minimizing collateral tissue damage under physiological conditions. A growing body of preclinical evidence supports the hypothesis that unleashing this immunological break might be therapeutically beneficial in the fight against cancer, as it would elicit an effective antitumor immune response. Remarkably, recent clinical trials have demonstrated that this novel strategy can be highly effective in the treatment of patients with cancer, as shown by the paradigmatic case of ipilimumab (a monoclonal antibody blocking the coinhibitory molecule cytotoxic T lymphocyte associated antigen-4 [CTLA4]) that is opening a new era in the therapeutic approach to a chemoresistant tumor such as cutaneous melanoma. In this review we summarize the biology of coinhibitory molecules, overview the experimental and clinical attempts to interfere with these immune checkpoints to treat cancer and critically discuss the challenges posed by such a promising antitumor modality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The Integrin Receptor in Biologically Relevant Bilayers

    DEFF Research Database (Denmark)

    Kalli, Antreas C.; Róg, Tomasz; Vattulainen, Ilpo

    2017-01-01

    /talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study...... demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin....../talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2–F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction...

  14. Studies Relevent to Catalytic Activation Co & other small Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Peter C

    2005-02-22

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation of small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.

  15. Interactions of electrons with biologically important molecules

    International Nuclear Information System (INIS)

    Pisklova, K.; Papp, P.; Stano, M.

    2012-01-01

    For the study of interactions of low-energy electrons with the molecules in the gas phase, the authors used electron-molecule cross-beam apparatus. The experiment is carried out in high vacuum, where molecules of the tested compound are inducted through a capillary. For purposes of this experiment the sample was electrically heated to 180 Deg C., giving a bundle of GlyGly molecules into the gas phase. The resulting signals can be evaluated in two different modes: mass spectrum - at continuous electron energy (e.g. 100 eV) they obtained the signal of intensity of the ions according to their mass to charge ratio; ionization and resonance spectra - for selected ion mass when the authors received the signal of intensity of the ions, depending on the energy of interacting electron.

  16. High resolution electron attachment to molecules of atmospheric relevance

    International Nuclear Information System (INIS)

    Senn, G.

    2000-10-01

    This Ph.D. thesis is divided into three parts. The first is an introduction into the field of electron attachment. In the second part the experimental apparatus is described, and in the third part the results are presented. In the present thesis molecules were chosen for our investigations that are not only of academic interest but that also play an important role for applications or even the life on this planet. All the molecules studied in this work are of atmospheric relevance. NO, and OClO, are involved in the ozone depletion of the stratosphere. The D-layer of the ionosphere is an upper boundary of the ozone layer, therefore the interaction of the electrons from the D-layer with O 3 might play an important role for the chemistry in that part of the atmosphere. Especially the interaction of slow electrons (that will be present in the D-layer in large numbers) with ozone was emphasized in the present study. The production of O - and O 2 - by dissociative electron attachment to ozone was measured for incident electron energies between 0 and 10eV. A previously unobserved sharp structure was discovered in the formation of O - ions for electrons with zero kinetic energy. This additional cross section peak has important consequences for the role of ozone in the anion formation process in the ionosphere. Since OClO is a night time reservoir for chlorine atoms (Cl) and chlorine monoxide (ClO) both of which play a critical role in the depletion of the stratospheric ozone, we have studied negative ion formation following electron impact (0-10eV) to OClO. Despite its atmospheric relevance the mechanism of dissociative electron attachment (DEA) to NO is still a matter of controversy. DEA was studied at high energy resolution and with a kinetic-energy analysis of the O - fragment in two independent crossed electron-molecular-beam experiments. The DEA cross section exhibits a vertical onset near 7.45eV that corresponds to the energy threshold of the DEA channel O - ( 2 P

  17. Gregory Bateson's relevance to current molecular biology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2008-01-01

    in a developmental pathway. Being a central figure in the development of cybernetic theory he collaborated with a range of researchers from the life sciences who were innovating their own disciplines by introducing cybernetic concepts in their particular fields and disciplines. In the light of this, it should...... not come as a surprise today to realize how the general ideas that he was postulating for the study of communication systems in biology fit so well with the astonishing findings of current molecular biology, for example in the field of cellular signal transduction networks. I guess this is the case due...

  18. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  19. Self-organizing ontology of biochemically relevant small molecules.

    Science.gov (United States)

    Chepelev, Leonid L; Hastings, Janna; Ennis, Marcus; Steinbeck, Christoph; Dumontier, Michel

    2012-01-06

    The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. We conclude that the proposed methodology can ease the burden of chemical data annotators and

  20. Self-organizing ontology of biochemically relevant small molecules

    Science.gov (United States)

    2012-01-01

    Background The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. Results To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. Conclusions We conclude that the proposed methodology can ease the burden of

  1. Self-organizing ontology of biochemically relevant small molecules

    Directory of Open Access Journals (Sweden)

    Chepelev Leonid L

    2012-01-01

    Full Text Available Abstract Background The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. Results To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. Conclusions We conclude that the proposed methodology

  2. Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions

    Science.gov (United States)

    Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle

    Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.

  3. Radical inactivation of a biological sulphydryl molecule

    International Nuclear Information System (INIS)

    Lin, W.S.; Lal, M.; Gaucher, G.M.; Armstrong, D.A.

    1977-01-01

    Reactive species produced from the free radical-induced chain oxidation of low molecular weight sulphydryl-containing molecules in aerated solutions deactivate the sulphydryl-containing enzyme papain, forming both reparable mixed disulphides and non-reparable products. This inactivation is highly efficient for penicillamine and glutathione, but almost negligible with cysteine, which is a protector of papain for [cysteine] / [papain] >= 5 under all conditions used. In the case of glutathione, superoxide dismutase caused only a small reduction in the inactivation and peroxide yields were small, implying that the deactivating species are not .O 2 - but RSOO. radicals or products from them. For penicillamine, however, dimutase was highly effective and the peroxide yields were relatively large, demonstrating that .O 2 - or a radical with similar capabilities for forming H 2 O 2 and being deactivated by dismutase was involved. Although in the presence of dismutase penicillamine is a better protector of non-reparable papain inactivation than glutathione, it suffers from a deficiency in that the papain-penicillamine mixed disulphide, which is always formed, cannot be repaired by spontaneous reaction with RSH molecules. (author)

  4. Single molecule force spectroscopy: methods and applications in biology

    International Nuclear Information System (INIS)

    Shen Yi; Hu Jun

    2012-01-01

    Single molecule measurements have transformed our view of biomolecules. Owing to the ability of monitoring the activity of individual molecules, we now see them as uniquely structured, fluctuating molecules that stochastically transition between frequently many substrates, as two molecules do not follow precisely the same trajectory. Indeed, it is this discovery of critical yet short-lived substrates that were often missed in ensemble measurements that has perhaps contributed most to the better understanding of biomolecular functioning resulting from single molecule experiments. In this paper, we give a review on the three major techniques of single molecule force spectroscopy, and their applications especially in biology. The single molecular study of biotin-streptavidin interactions is introduced as a successful example. The problems and prospects of the single molecule force spectroscopy are discussed, too. (authors)

  5. Perspective: Mechanochemistry of biological and synthetic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Dmitrii E., E-mail: makarov@cm.utexas.edu [Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-01-21

    Coupling of mechanical forces and chemical transformations is central to the biophysics of molecular machines, polymer chemistry, fracture mechanics, tribology, and other disciplines. As a consequence, the same physical principles and theoretical models should be applicable in all of those fields; in fact, similar models have been invoked (and often repeatedly reinvented) to describe, for example, cell adhesion, dry and wet friction, propagation of cracks, and action of molecular motors. This perspective offers a unified view of these phenomena, described in terms of chemical kinetics with rates of elementary steps that are force dependent. The central question is then to describe how the rate of a chemical transformation (and its other measurable properties such as the transition path) depends on the applied force. I will describe physical models used to answer this question and compare them with experimental measurements, which employ single-molecule force spectroscopy and which become increasingly common. Multidimensionality of the underlying molecular energy landscapes and the ensuing frequent misalignment between chemical and mechanical coordinates result in a number of distinct scenarios, each showing a nontrivial force dependence of the reaction rate. I will discuss these scenarios, their commonness (or its lack), and the prospects for their experimental validation. Finally, I will discuss open issues in the field.

  6. Perspective: Mechanochemistry of biological and synthetic molecules

    International Nuclear Information System (INIS)

    Makarov, Dmitrii E.

    2016-01-01

    Coupling of mechanical forces and chemical transformations is central to the biophysics of molecular machines, polymer chemistry, fracture mechanics, tribology, and other disciplines. As a consequence, the same physical principles and theoretical models should be applicable in all of those fields; in fact, similar models have been invoked (and often repeatedly reinvented) to describe, for example, cell adhesion, dry and wet friction, propagation of cracks, and action of molecular motors. This perspective offers a unified view of these phenomena, described in terms of chemical kinetics with rates of elementary steps that are force dependent. The central question is then to describe how the rate of a chemical transformation (and its other measurable properties such as the transition path) depends on the applied force. I will describe physical models used to answer this question and compare them with experimental measurements, which employ single-molecule force spectroscopy and which become increasingly common. Multidimensionality of the underlying molecular energy landscapes and the ensuing frequent misalignment between chemical and mechanical coordinates result in a number of distinct scenarios, each showing a nontrivial force dependence of the reaction rate. I will discuss these scenarios, their commonness (or its lack), and the prospects for their experimental validation. Finally, I will discuss open issues in the field

  7. Value-Relevance of Biological Assets under IFRS

    OpenAIRE

    Rute Gonçalves; Patrícia Lopes

    2015-01-01

    Using 389 firm-year observations of listed firms worldwide in 27 countries that adopted International Financial Reporting Standards (IFRS) until 2010, for the period 2011-2013, the purpose of this paper is to examine the value-relevance of fair value accounting of biological assets. In order to operationalize it as the book value’s ability to explain market equity value, this study adjusts the Ohlson model. The results support that recognized biological assets are value-relevant. After includ...

  8. Biological relevance and synthesis of C-substituted morpholine derivatives

    NARCIS (Netherlands)

    Wijtmans, R.; Vink, M.K.S.; Schoemaker, H.E.; Delft, F.L. van; Blaauw, R.H.; Rutjes, F.P.J.T.

    2004-01-01

    C-Functionalized morpholines are found in a variety of natural products and biologically active compounds, but have also for other reasons been applied in organic synthesis. This review deals with the biological relevance of C-substituted morpholines, their synthesis and important applications in

  9. Single Molecule Fluorescence: from Physical Fascination to Biological Relevance

    NARCIS (Netherlands)

    Segers-Nolten, Gezina M.J.

    2003-01-01

    Confocal fluorescence microscopy is particularly well-known from the beautiful images that have been obtained with this technique from cells. Several cellular components could be nicely visualized simultaneously by staining them with different fluorophores. Not only for ensemble applications but

  10. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Science.gov (United States)

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  11. A semantic web ontology for small molecules and their biological targets.

    Science.gov (United States)

    Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A

    2010-05-24

    A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.

  12. Hands-on-Entropy, Energy Balance with Biological Relevance

    Science.gov (United States)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  13. The asymmetric hetero-Diels-Alder reaction in the syntheses of biologically relevant compounds.

    Science.gov (United States)

    Eschenbrenner-Lux, Vincent; Kumar, Kamal; Waldmann, Herbert

    2014-10-13

    The hetero-Diels-Alder reaction is one of the most powerful transformations in the chemistry toolbox for the synthesis of aza- and oxa-heterocycles embodying multiple stereogenic centers. However, as compared to other cycloadditions, in particular the dipolar cycloadditions and the Diels-Alder reaction, the hetero-Diels-Alder reaction has been much less explored and exploited in organic synthesis. Nevertheless, this powerful transformation has opened up efficient and creative routes to biologically relevant small molecules and different natural products which contain six-membered oxygen or nitrogen ring systems. Recent developments in this field, in particular in the establishment of enantioselectively catalyzed hetero-Diels-Alder cycloadditions steered by a plethora of different catalysts and the application of the resulting small molecules in chemical biology and medicinal chemistry research, are highlighted in this Minireview. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Novel nuclear magnetic resonance techniques for studying biological molecules

    International Nuclear Information System (INIS)

    Laws, David D.

    2000-01-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (φ/ψ) dihedral angles by comparing experimentally determined 13 C a , chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  15. Clinical relevance and biology of circulating tumor cells

    Science.gov (United States)

    2011-01-01

    Most breast cancer patients die due to metastases, and the early onset of this multistep process is usually missed by current tumor staging modalities. Therefore, ultrasensitive techniques have been developed to enable the enrichment, detection, isolation and characterization of disseminated tumor cells in bone marrow and circulating tumor cells in the peripheral blood of cancer patients. There is increasing evidence that the presence of these cells is associated with an unfavorable prognosis related to metastatic progression in the bone and other organs. This review focuses on investigations regarding the biology and clinical relevance of circulating tumor cells in breast cancer. PMID:22114869

  16. The complexity of DNA damage: relevance to biological consequences

    International Nuclear Information System (INIS)

    Ward, J.F.

    1994-01-01

    Ionizing radiation causes both singly and multiply damaged sites in DNA when the range of radical migration is limited by the presence of hydroxyl radical scavengers (e.g. within cells). Multiply damaged sites are considered to be more biologically relevant because of the challenges they present to cellular repair mechanisms. These sites occur in the form of DNA double-strand breaks (dsb) but also as other multiple damages that can be converted to dsb during attempted repair. The presence of a dsb can lead to loss of base sequence information and/or can permit the two ends of a break to separate and rejoin with the wrong partner. (Multiply damaged sites may also be the biologically relevant type of damage caused by other agents, such as UVA, B and/or C light, and some antitumour antibiotics). The quantitative data available from radiation studies of DNA are shown to support the proposed mechanisms for the production of complex damage in cellular DNA, i.e. via scavengable and non-scavengable mechanisms. The yields of complex damages can in turn be used to support the conclusion that cellular mutations are a consequence of the presence of these damages within a gene. (Author)

  17. Single-molecule experiments in biological physics: methods and applications.

    Science.gov (United States)

    Ritort, F

    2006-08-16

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  18. Single-molecule experiments in biological physics: methods and applications

    International Nuclear Information System (INIS)

    Ritort, F

    2006-01-01

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives. (topical review)

  19. Novel nuclear magnetic resonance techniques for studying biological molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laws, David Douglas [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  20. Dilution thermodynamics of the biologically relevant cation mixtures

    International Nuclear Information System (INIS)

    Kaczyński, Marek; Borowik, Tomasz; Przybyło, Magda; Langner, Marek

    2014-01-01

    Graphical abstract: - Highlights: • Dilution energetics of Ca 2+ can be altered by the aqueous phase ionic composition. • Dissipated heat upon Ca 2+ dilution is drastically reduced in the K + presence. • Reduction of the enthalpy change upon Ca 2+ dilution is K + concentration dependent. • The cooperativity of Ca 2+ hydration might be of great biological relevance providing a thermodynamic argument for the specific ionic composition of the intracellular environment. - Abstract: The ionic composition of intracellular space is rigorously controlled by a variety of processes consuming large quantities of energy. Since the energetic efficiency is an important evolutional criterion, therefore the ion fluxes within the cell should be optimized with respect to the accompanying energy consumption. In the paper we present the experimental evidence that the dilution enthalpies of the biologically relevant ions; i.e. calcium and magnesium depend on the presence of monovalent cations; i.e. sodium and potassium. The heat flow generated during the dilution of ionic mixtures was measured with the isothermal titration calorimetry. When calcium was diluted together with potassium the dilution enthalpy was drastically reduced as the function of the potassium concentration present in the solution. No such effect was observed when the potassium ions were substituted with sodium ones. When the dilution of magnesium was investigated the dependence of the dilution enthalpy on the accompanying monovalent cation was much weaker. In order to interpret experimental evidences the ionic cluster formation is postulated. The specific organization of such cluster should depend on ions charges, sizes and organization of the hydration layers

  1. Biclustering methods: biological relevance and application in gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Ali Oghabian

    Full Text Available DNA microarray technologies are used extensively to profile the expression levels of thousands of genes under various conditions, yielding extremely large data-matrices. Thus, analyzing this information and extracting biologically relevant knowledge becomes a considerable challenge. A classical approach for tackling this challenge is to use clustering (also known as one-way clustering methods where genes (or respectively samples are grouped together based on the similarity of their expression profiles across the set of all samples (or respectively genes. An alternative approach is to develop biclustering methods to identify local patterns in the data. These methods extract subgroups of genes that are co-expressed across only a subset of samples and may feature important biological or medical implications. In this study we evaluate 13 biclustering and 2 clustering (k-means and hierarchical methods. We use several approaches to compare their performance on two real gene expression data sets. For this purpose we apply four evaluation measures in our analysis: (1 we examine how well the considered (biclustering methods differentiate various sample types; (2 we evaluate how well the groups of genes discovered by the (biclustering methods are annotated with similar Gene Ontology categories; (3 we evaluate the capability of the methods to differentiate genes that are known to be specific to the particular sample types we study and (4 we compare the running time of the algorithms. In the end, we conclude that as long as the samples are well defined and annotated, the contamination of the samples is limited, and the samples are well replicated, biclustering methods such as Plaid and SAMBA are useful for discovering relevant subsets of genes and samples.

  2. Single cell biology beyond the era of antibodies: relevance, challenges, and promises in biomedical research.

    Science.gov (United States)

    Abraham, Parvin; Maliekal, Tessy Thomas

    2017-04-01

    Research of the past two decades has proved the relevance of single cell biology in basic research and translational medicine. Successful detection and isolation of specific subsets is the key to understand their functional heterogeneity. Antibodies are conventionally used for this purpose, but their relevance in certain contexts is limited. In this review, we discuss some of these contexts, posing bottle neck for different fields of biology including biomedical research. With the advancement of chemistry, several methods have been introduced to overcome these problems. Even though microfluidics and microraft array are newer techniques exploited for single cell biology, fluorescence-activated cell sorting (FACS) remains the gold standard technique for isolation of cells for many biomedical applications, like stem cell therapy. Here, we present a comprehensive and comparative account of some of the probes that are useful in FACS. Further, we illustrate how these techniques could be applied in biomedical research. It is postulated that intracellular molecular markers like nucleostemin (GNL3), alkaline phosphatase (ALPL) and HIRA can be used for improving the outcome of cardiac as well as bone regeneration. Another field that could utilize intracellular markers is diagnostics, and we propose the use of specific peptide nucleic acid probes (PNPs) against certain miRNAs for cancer surgical margin prediction. The newer techniques for single cell biology, based on intracellular molecules, will immensely enhance the repertoire of possible markers for the isolation of cell types useful in biomedical research.

  3. Rethinking the central dogma: noncoding RNAs are biologically relevant.

    Science.gov (United States)

    Robinson, Victoria L

    2009-01-01

    Non-coding RNAs (ncRNAs) are a large class of functional molecules with over 100 unique classes described to date. ncRNAs are diverse in terms of their function and size. A relatively new class of small ncRNA, called microRNAs (miRNA), have received a great deal of attention in the literature in recent years. miRNAs are endogenously encoded gene families that demonstrate striking evolutionary conservation. miRNAs serve essential and diverse physiological functions such as differentiation and development, proliferation, maintaining cell type phenotypes, and many others. The discovery and ongoing investigation of miRNAs is part of a revolution in biology that is changing the basic concepts of gene expression and RNA functionality. A single miRNA can participate in controlling the expression of up to several hundred protein-coding genes by interacting with mRNAs, generally in 3' untranslated regions. Our new and developing understanding of miRNAs, and other ncRNAs, promises to lead to significant contributions to medicine. Specifically, miRNAs are likely to serve as the basis for novel therapies and diagnostic tools.

  4. Modelling low energy electron and positron tracks in biologically relevant media

    International Nuclear Information System (INIS)

    Blanco, F.; Munoz, A.; Almeida, D.; Ferreira da Silva, F.; Limao-Vieira, P.; Fuss, M.C.; Sanz, A.G.; Garcia, G.

    2013-01-01

    This colloquium describes an approach to incorporate into radiation damage models the effect of low and intermediate energy (0-100 eV) electrons and positrons, slowing down in biologically relevant materials (water and representative biomolecules). The core of the modelling procedure is a C++ computing programme named 'Low Energy Particle Track Simulation (LEPTS)', which is compatible with available general purpose Monte Carlo packages. Input parameters are carefully selected from theoretical and experimental cross section data and energy loss distribution functions. Data sources used for this purpose are reviewed showing examples of electron and positron cross section and energy loss data for interactions with different media of increasing complexity: atoms, molecules, clusters and condense matter. Finally, we show how such a model can be used to develop an effective dosimetric tool at the molecular level (i.e. nanodosimetry). Recent experimental developments to study the fragmentation induced in biologically material by charge transfer from neutrals and negative ions are also included. (authors)

  5. Arbitrary protein−protein docking targets biologically relevant interfaces

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2012-05-01

    Full Text Available Abstract Background Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. Results In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking

  6. Arbitrary protein−protein docking targets biologically relevant interfaces

    International Nuclear Information System (INIS)

    Martin, Juliette; Lavery, Richard

    2012-01-01

    Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking using PEBP (Phosphatidylethanolamine binding

  7. Myricetin: A Dietary Molecule with Diverse Biological Activities

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Semwal

    2016-02-01

    Full Text Available Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson’s and Alzheimer’s. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound’s ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities.

  8. Developing powerful tritide technique: Organic and biological molecule labeling

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Complex hydrides are very important reagents in organic synthesis due to the range of reducing powers and selectivities available from different agents. Unfortunately, the availability of these compounds for radiosynthesis has been extremely limited due to the difficulty of making them with adequate levels of tritium. Investigators at the Lawrence Berkeley Laboratory (LBL) National Tritium Labeling Facility have developed a new addition to the repertoire of the tritium-labeling chemist. The new method allows site-specific incorporation of tritium into organic and biological molecules by efficient reduction processes. Exceptionally reactive and selective reducing agents are prepared and used for labeling in a on-pot process. Three new tritide reagents - supertritide (lithium triethyl borotritide), LiAlT 4 (lithium aluminum tritide), and L-Selectride (sterically hindered lithium tri-sec-butyl borotritide) - have been synthesized at carrier-free levels, and have been demonstrated to be fully reactive. The availability of these versatile and reactive reagents gives the tritium radiochemist great control over chemoselectivity and stereoselectivity. The LBL tritide reagents can drive numerous conventional chemical reactions, and have been used to reduce p-toluene sulfonates, amides, lactones, esters, and aldehydes. These reactions produce good yields and result in products with maximum specific activities. The reagents clearly exhibit superior reactivity and may be used in many more synthetic processes than sodium borohydride, which is the currently used reagent. In addition, tritide reagents such as L-selectride have been shown to give greater control over stereochemistry and selectivity than sodium borohydride

  9. Voltammetric detection of biological molecules using chopped carbon fiber.

    Science.gov (United States)

    Sugawara, Kazuharu; Yugami, Asako; Kojima, Akira

    2010-01-01

    Voltammetric detection of biological molecules was carried out using chopped carbon fibers produced from carbon fiber reinforced plastics that are biocompatible and inexpensive. Because chopped carbon fibers normally are covered with a sizing agent, they are difficult to use as an electrode. However, when the surface of a chopped carbon fiber was treated with ethanol and hydrochloric acid, it became conductive. To evaluate the functioning of chopped carbon fibers, voltammetric measurements of [Fe(CN)(6)](3-) were carried out. Redoxes of FAD, ascorbic acid and NADH as biomolecules were recorded using cyclic voltammetry. The sizing agents used to bundle the fibers were epoxy, polyamide and polyurethane resins. The peak currents were the greatest when using the chopped carbon fibers that were created with epoxy resins. When the electrode response of the chopped carbon fibers was compared with that of a glassy carbon electrode, the peak currents and the reversibility of the electrode reaction were sufficient. Therefore, the chopped carbon fibers will be useful as disposable electrodes for the sensing of biomolecules.

  10. Single molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update

    Science.gov (United States)

    Widom, Julia R.; Dhakal, Soma; Heinicke, Laurie A.; Walter, Nils G.

    2015-01-01

    Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution, and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy. PMID:25212907

  11. Sustainable production of biologically active molecules of marine based origin.

    Science.gov (United States)

    Murray, Patrick M; Moane, Siobhan; Collins, Catherine; Beletskaya, Tanya; Thomas, Olivier P; Duarte, Alysson W F; Nobre, Fernando S; Owoyemi, Ifeloju O; Pagnocca, Fernando C; Sette, L D; McHugh, Edward; Causse, Eric; Pérez-López, Paula; Feijoo, Gumersindo; Moreira, Ma T; Rubiolo, Juan; Leirós, Marta; Botana, Luis M; Pinteus, Susete; Alves, Celso; Horta, André; Pedrosa, Rui; Jeffryes, Clayton; Agathos, Spiros N; Allewaert, Celine; Verween, Annick; Vyverman, Wim; Laptev, Ivan; Sineoky, Sergei; Bisio, Angela; Manconi, Renata; Ledda, Fabio; Marchi, Mario; Pronzato, Roberto; Walsh, Daniel J

    2013-09-25

    The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium

    CERN Document Server

    Gräslund, Astrid; Widengren, Jerker

    2010-01-01

    Written by the leading experts in the field, this book describes the development and current state-of-the-art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.

  13. GAS-PHASE REACTIONS OF POLYCYCLIC AROMATIC HYDROCARBON ANIONS WITH MOLECULES OF INTERSTELLAR RELEVANCE

    International Nuclear Information System (INIS)

    Demarais, Nicholas J.; Yang Zhibo; Martinez, Oscar; Wehres, Nadine; Bierbaum, Veronica M.; Snow, Theodore P.

    2012-01-01

    We have studied reactions of small dehydrogenated polycyclic aromatic hydrocarbon anions with neutral species of interstellar relevance. Reaction rate constants are measured at 300 K for the reactions of phenide (C 6 H – 5 ), naphthalenide (C 10 H – 7 ), and anthracenide (C 14 H – 9 ) with atomic H, H 2 , and D 2 using a flowing afterglow-selected ion flow tube instrument. Reaction rate constants of phenide with neutral molecules (CO, O 2 , CO 2 , N 2 O, C 2 H 2 , CH 3 OH, CH 3 CN, (CH 3 ) 2 CO, CH 3 CHO, CH 3 Cl, and (CH 3 CH 2 ) 2 O) are also measured under the same conditions. Experimental measurements are accompanied by ab initio calculations to provide insight into reaction pathways and enthalpies. Our measured reaction rate constants should prove useful in the modeling of astrophysical environments, particularly when applied to dense regions of the interstellar and circumstellar medium.

  14. Gas-phase Reactions of Polycyclic Aromatic Hydrocarbon Anions with Molecules of Interstellar Relevance

    Science.gov (United States)

    Demarais, Nicholas J.; Yang, Zhibo; Martinez, Oscar; Wehres, Nadine; Snow, Theodore P.; Bierbaum, Veronica M.

    2012-02-01

    We have studied reactions of small dehydrogenated polycyclic aromatic hydrocarbon anions with neutral species of interstellar relevance. Reaction rate constants are measured at 300 K for the reactions of phenide (C6H- 5), naphthalenide (C10H- 7), and anthracenide (C14H- 9) with atomic H, H2, and D2 using a flowing afterglow-selected ion flow tube instrument. Reaction rate constants of phenide with neutral molecules (CO, O2, CO2, N2O, C2H2, CH3OH, CH3CN, (CH3)2CO, CH3CHO, CH3Cl, and (CH3CH2)2O) are also measured under the same conditions. Experimental measurements are accompanied by ab initio calculations to provide insight into reaction pathways and enthalpies. Our measured reaction rate constants should prove useful in the modeling of astrophysical environments, particularly when applied to dense regions of the interstellar and circumstellar medium.

  15. The aims of systems biology: between molecules and organisms.

    Science.gov (United States)

    Noble, D

    2011-05-01

    The systems approach to biology has a long history. Its recent rapid resurgence at the turn of the century reflects the problems encountered in interpreting the sequencing of the genome and the failure of that immense achievement to provide rapid and direct solutions to major multi-factorial diseases. This paper argues that systems biology is necessarily multilevel and that there is no privileged level of causality in biological systems. It is an approach rather than a separate discipline. Functionality arises from biological networks that interact with the genome, the environment and the phenotype. This view of biology is very different from the gene-centred views of neo-Darwinism and molecular biology. In neuroscience, the systems approach leads naturally to 2 important conclusions: first, that the idea of 'programs' in the brain is confusing, and second, that the self is better interpreted as a process than as an object. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Dealing with immunogenicity of biologicals: assessment and clinical relevance

    NARCIS (Netherlands)

    Wolbink, Gerrit J.; Aarden, Lucien A.; Dijkmans, B. A. C.

    2009-01-01

    PURPOSE OF REVIEW: In the last decade, biologicals revolutionized rheumatology. An increasing number of patients benefit from biotherapeuticals. However, some patients do not respond to treatment and others lose their response after a certain time. Immunogenicity is one of the factors linked to

  17. Streptococcus pyogenes biofilms – formation, biology,and clinical relevance

    Directory of Open Access Journals (Sweden)

    Tomas eFiedler

    2015-02-01

    Full Text Available Streptococcus pyogenes (group A streptococci, GAS is an exclusive human bacterial pathogen. The virulence potential of this species is tremendous. Interactions with humans range from asymptomatic carriage over mild and superficial infections of skin and mucosal membranes up to systemic purulent toxic-invasive disease manifestations. Particularly the latter are a severe threat for predisposed patients and lead to significant death tolls worldwide. This places GAS among the most important Gram-positive bacterial pathogens. Many recent reviews have highlighted the GAS repertoire of virulence factors, regulators and regulatory circuits/networks that enable GAS to colonize the host and to deal with all levels of the host immune defense. This covers in vitro and in vivo studies, including animal infection studies based on mice and more relevant, macaque monkeys. It is now appreciated that GAS, like many other bacterial species, do not necessarily exclusively live in a planktonic lifestyle. GAS is capable of microcolony and biofilm formation on host cells and tissues. We are now beginning to understand that this feature significantly contributes to GAS pathogenesis. In this review we will discuss the current knowledge on GAS biofilm formation, the biofilm-phenotype associated virulence factors, regulatory aspects of biofilm formation, the clinical relevance, and finally contemporary treatment regimens and future treatment options.

  18. Single Molecule Detection in Living Biological Cells using Carbon Nanotube Optical Probes

    Science.gov (United States)

    Strano, Michael

    2009-03-01

    Nanoscale sensing elements offer promise for single molecule analyte detection in physically or biologically constrained environments. Molecular adsorption can be amplified via modulation of sharp singularities in the electronic density of states that arise from 1D quantum confinement [1]. Single-walled carbon nanotubes (SWNT), as single molecule optical sensors [2-3], offer unique advantages such as photostable near-infrared (n-IR) emission for prolonged detection through biological media, single-molecule sensitivity and, nearly orthogonal optical modes for signal transduction that can be used to identify distinct classes of analytes. Selective binding to the SWNT surface is difficult to engineer [4]. In this lecture, we will briefly review the immerging field of fluorescent diagnostics using band gap emission from SWNT. In recent work, we demonstrate that even a single pair of SWNT provides at least four optical modes that can be modulated to uniquely fingerprint chemical agents by the degree to which they alter either the emission band intensity or wavelength. We validate this identification method in vitro by demonstrating detection and identification of six genotoxic analytes, including chemotherapeutic drugs and reactive oxygen species (ROS), which are spectroscopically differentiated into four distinct classes. We also demonstrate single-molecule sensitivity in detecting hydrogen peroxide, one of the most common genotoxins and an important cellular signal. Finally, we employ our sensing and fingerprinting method of these analytes in real time within live 3T3 cells, demonstrating the first multiplexed optical detection from a nanoscale biosensor and the first label-free tool to optically discriminate between genotoxins. We will also discuss our recent efforts to fabricate biomedical sensors for real time detection of glucose and other important physiologically relevant analytes in-vivo. The response of embedded SWNT in a swellable hydrogel construct to

  19. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Strnad, Miroslav

    2018-01-01

    Roč. 247, č. 5 (2018), s. 1051-1066 ISSN 0032-0935 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Dimethylallyl diphosphate * Isopentenyl diphosphate * Isoprenoids * Phytoecdysteroids * Plant hormones * Terpenoids Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemical research methods Impact factor: 3.361, year: 2016

  20. The synthesis and biological evaluation of integrin receptor targeting molecules as potential radiopharmaceuticals

    Science.gov (United States)

    Pellegrini, Paul

    This thesis reports on the synthesis, characterisation and biological evaluation of a number of metal complexes designed to interact with the alphavbeta3 integrin receptor, an important biological target that is heavily involved in angiogenesis, and thus cancer related processes. Two approaches were used to synthesise the integrin-avid targets. The first was to attach a variety of bifunctional chelators (BFC's) for the incorporation of different metal centres to a known integrin antagonist, L-748,415, developed by Merck. The BFC's used were the hydrazinonicotinamide (HYNIC) and monoamine monoamide dithiol (MAMA) systems for coordination to Tc-99m and rhenium of which was used as a characterization surrogate for the unstable Tc core. The 1,4,7,10-tetraazacyclotridecanetetraacetic acid (TRITA) BFC was attached for the inclusion of copper and lutetium. This 'conjugate' approach was designed to yield information on how the BFC and the linker length would affect the affinity for the integrin receptor. The second approach was an 'integrated' method where the chelation moiety was integral to the biologically relevant part of the molecule, which in the case of the alphavbeta3 integrin receptor, is the arginine-glycine-aspartic acid (RGD) mimicking sequence. Two complexes were created with a modified MAMA derivative placed between a benzimidazole moiety (arginine mimick) and the aspartic acid mimicking terminal carboxylic acid to see how it would affect binding while keeping the molecular weight relatively low. The molecules were tested in vitro against purified human alphavbeta3 integrin receptor protein in a solid phase receptor binding assay to evaluate their inhibition constants against a molecule of known high affinity and selectivity in [I125]L-775,219, the I125 labelled alphavbeta3 integrin antagonist. The radiolabelled analogues were also tested in vivo against the A375 human melanoma cell line transplanted into balb/c nude mice as well as Fischer rats implanted

  1. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    Science.gov (United States)

    Chandra, Subhash

    2008-12-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2+) revealed local secondary ion signal enhancements correlated with the water image signals of 19(H 3O) +. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells

  2. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    International Nuclear Information System (INIS)

    Chandra, Subhash

    2008-01-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2 + ) revealed local secondary ion signal enhancements correlated with the water image signals of 19 (H 3 O) + . A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells

  3. Biology and relevance of human acute myeloid leukemia stem cells.

    Science.gov (United States)

    Thomas, Daniel; Majeti, Ravindra

    2017-03-23

    Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research. © 2017 by The American Society of Hematology.

  4. Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules.

    Science.gov (United States)

    Seghal Kiran, G; Ramasamy, Pasiyappazham; Sekar, Sivasankari; Ramu, Meenatchi; Hassan, Saqib; Ninawe, A S; Selvin, Joseph

    2018-06-01

    The discovery of genes responsible for the production of bioactive metabolites via metabolic pathways combined with the advances in synthetic biology tools, has allowed the establishment of numerous microbial cell factories, for instance the yeast cell factories, for the manufacture of highly useful metabolites from renewable biomass. Genome mining and metagenomics are two platforms provide base-line data for reconstruction of genomes and metabolomes which is based in the development of synthetic/semi-synthetic genomes for marine natural products discovery. Engineered biofilms are being innovated on synthetic biology platform using genetic circuits and cell signalling systems as represillators controlling biofilm formation. Recombineering is a process of homologous recombination mediated genetic engineering, includes insertion, deletion or modification of any sequence specifically. Although this discipline considered new to the scientific domain, this field has now developed as promising endeavor on the accomplishment of sustainable exploitation of marine natural products. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Detection of biological molecules using chemical amplification and optical sensors

    Science.gov (United States)

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  6. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    Energy Technology Data Exchange (ETDEWEB)

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  7. Nano- and micro-fabrication for single-molecule biological studies

    NARCIS (Netherlands)

    Huang, Z.

    2012-01-01

    Heterogeneity is a general feature in biological system. In order to avoid possible misleading effects of ensemble averaging, and to ensure a correct understanding of the biological system, it is very important to look into individuals, such as a single bio-molecule or a single cell, for details.

  8. Biological relevance of human papillomaviruses in vulvar cancer.

    Science.gov (United States)

    Halec, Gordana; Alemany, Laia; Quiros, Beatriz; Clavero, Omar; Höfler, Daniela; Alejo, Maria; Quint, Wim; Pawlita, Michael; Bosch, Francesc X; de Sanjose, Silvia

    2017-04-01

    The carcinogenic role of high-risk human papillomavirus (HR-HPV) types in the increasing subset of vulvar intraepithelial neoplasia and vulvar cancer in young women has been established. However, the actual number of vulvar cancer cases attributed to HPV is still imprecisely defined. In an attempt to provide a more precise definition of HPV-driven vulvar cancer, we performed HPV-type-specific E6*I mRNA analyses available for 20 HR-/possible HR (pHR)-HPV types, on tissue samples from 447 cases of vulvar cancer. HPV DNA genotyping was performed using SPF10-LiPA 25 assay due to its high sensitivity in formalin-fixed paraffin-embedded tissues. Data on p16 INK4a expression was available for comparative analysis via kappa statistics. The use of highly sensitive assays covering the detection of HPV mRNA in a broad spectrum of mucosal HPV types resulted in the detection of viral transcripts in 87% of HPV DNA+ vulvar cancers. Overall concordance between HPV mRNA+ and p16 INK4a upregulation (strong, diffuse immunostaining in >25% of tumor cells) was 92% (K=0.625, 95% confidence interval (CI)=0.531-0.719). Among these cases, 83% were concordant pairs of HPV mRNA+ and p16 INK4a + and 9% were concordant pairs of HPV mRNA- and p16 INK4a -. Our data confirm the biological role of HR-/pHR-HPV types in the great majority of HPV DNA+ vulvar cancers, resulting in an HPV-attributable fraction of at least 21% worldwide. Most HPV DNA+ vulvar cancers were associated with HPV16 (85%), but a causative role for other, less frequently occurring mucosal HPV types (HPV26, 66, 67, 68, 70 and 73) was also confirmed at the mRNA level for the first time. These findings should be taken into consideration for future screening options as HPV-associated vulvar preneoplastic lesions have increased in incidence in younger women and require different treatment than vulvar lesions that develop from rare autoimmune-related mechanisms in older women.

  9. Electrochemically etched nanoporous silicon membrane for separation of biological molecules in mixture

    Science.gov (United States)

    Burham, Norhafizah; Azlan Hamzah, Azrul; Yunas, Jumril; Yeop Majlis, Burhanuddin

    2017-07-01

    This paper presents a technique for separating biological molecules in mixture using nanoporous silicon membrane. Nanopores were formed using electrochemical etching process (ECE) by etching a prefabricated silicon membrane in hydrofluoric acid (HF) and ethanol, and then directly bonding it with PDMS to form a complete filtration system for separating biological molecules. Tygon S3™ tubings were used as fluid interconnection between PDMS molds and silicon membrane during testing. Electrochemical etching parameters were manipulated to control pore structure and size. In this work, nanopores with sizes of less than 50 nm, embedded on top of columnar structures have been fabricated using high current densities and variable HF concentrations. Zinc oxide was diluted with deionized (DI) water and mixed with biological molecules and non-biological particles, namely protein standard, serum albumin and sodium chloride. Zinc oxide particles were trapped on the nanoporous silicon surface, while biological molecules of sizes up to 12 nm penetrated the nanoporous silicon membrane. The filtered particles were inspected using a Zetasizer Nano SP for particle size measurement and count. The Zetasizer Nano SP results revealed that more than 95% of the biological molecules in the mixture were filtered out by the nanoporous silicon membrane. The nanoporous silicon membrane fabricated in this work is integratable into bio-MEMS and Lab-on-Chip components to separate two or more types of biomolecules at once. The membrane is especially useful for the development of artificial kidney.

  10. Assessing therapeutic relevance of biologically interesting, ampholytic substances based on their physicochemical and spectral characteristics with chemometric tools

    Science.gov (United States)

    Judycka, U.; Jagiello, K.; Bober, L.; Błażejowski, J.; Puzyn, T.

    2018-06-01

    Chemometric tools were applied to investigate the biological behaviour of ampholytic substances in relation to their physicochemical and spectral properties. Results of the Principal Component Analysis suggest that size of molecules and their electronic and spectral characteristics are the key properties required to predict therapeutic relevance of the compounds examined. These properties were used for developing the structure-activity classification model. The classification model allows assessing the therapeutic behaviour of ampholytic substances on the basis of solely values of descriptors that can be obtained computationally. Thus, the prediction is possible without necessity of carrying out time-consuming and expensive laboratory tests, which is its main advantage.

  11. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    Science.gov (United States)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  12. Beyond arousal and valence: the importance of the biological versus social relevance of emotional stimuli

    OpenAIRE

    Sakaki, Michiko; Niki, N.; Mather, M.

    2012-01-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for bio...

  13. Electron molecule cross sections relevant to negative ion sources and divertor plasmas

    International Nuclear Information System (INIS)

    Celiberto, R.; Capitelli, M.; Lamanna, U.T.; Janev, R.K.

    1996-01-01

    Electron-molecule cross sections for electronic transitions in H 2 and D 2 molecules vibrationally excited are presented, and a scaling law for the vibrational cross sections is discussed for the X 1 summation + g →B 1 summation + u electronic transition. copyright 1996 American Institute of Physics

  14. Use of various ionization modes for the study of molecules of biological interest

    International Nuclear Information System (INIS)

    Forest, E.

    1987-01-01

    For the last ten years a revolutionary advance in mass spectrometry applied to molecules of biological interest occurred, chiefly concerning ionization with the emergence of many new modes allowing non volatile, polar or thermally labile sample analysis. Some examples of spectra obtained on high mass molecules such as vitamins, protein fragments, porphyrins (chlorophyll or hemoglobin active site), polysaccharides, are presented using some of the new modes [fr

  15. 2012 Gordon Research Conference, Single molecule approaches to biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Julio M. [Columbia Univ., New York, NY (United States)

    2012-04-20

    Single molecule techniques are rapidly occupying a central role in biological research at all levels. This transition was made possible by the availability and dissemination of robust techniques that use fluorescence and force probes to track the conformation of molecules one at a time, in vitro as well as in live cells. Single-molecule approaches have changed the way many biological problems are studied. These novel techniques provide previously unobtainable data on fundamental biochemical processes that are essential for all forms of life. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of the molecular systems that underpin the functioning of living cells. Hence, our conference seeks to disseminate the implementation and use of single molecule techniques in the pursuit of new biological knowledge. Topics covered include: Molecular Motors on the Move; Origin And Fate Of Proteins; Physical Principles Of Life; Molecules and Super-resolution Microscopy; Nanoswitches In Action; Active Motion Or Random Diffusion?; Building Blocks Of Living Cells; From Molecular Mechanics To Physiology; Tug-of-war: Force Spectroscopy Of Single Proteins.

  16. Electron ionization of open/closed chain isocarbonic molecules relevant in plasma processing: Theoretical cross sections

    International Nuclear Information System (INIS)

    Patel, Umang R.; Joshipura, K. N.; Pandya, Siddharth H.; Kothari, Harshit N.

    2014-01-01

    In this paper, we report theoretical electron impact ionization cross sections from threshold to 2000 eV for isocarbonic open chain molecules C 4 H 6 , C 4 H 8 , C 4 F 6 including their isomers, and closed chain molecules c-C 4 H 8 and c-C 4 F 8 . Theoretical formalism employed presently, viz., Complex Scattering Potential-ionization contribution method has been used successfully for a variety of polyatomic molecules. The present ionization calculations are very important since results available for the studied targets are either scarce or none. Our work affords comparison of C 4 containing hydrocarbon versus fluorocarbon molecules. Comparisons of the present ionization cross sections are made wherever possible, and new ionization data are also presented

  17. Molecule-surface interaction processes of relevance to gas blanket type fusion device divertor design

    Energy Technology Data Exchange (ETDEWEB)

    Snowdon, K.J. [Newcastle Univ. (United Kingdom). Dept. of Physics; Tawara, H.

    1997-01-01

    The mechanisms which may lead to the departure of molecular species from surfaces exposed to low energy (0.1-100 eV) particle or photon and electron irradiation are reviewed. Where possible, the charge and electronic state, angular, translational and internal energy distributions of the departing molecules are described and the physical origin of the nature of those distributions identified. The consequences, for the departing molecules, of certain material choices become apparent from such an analysis. Such information may help guide the choice of appropriate materials for plasma facing components of gas-blanket type divertors such as that recently proposed for the International Thermonuclear Experimental Reactor (ITER). (author). 71 refs.

  18. Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays

    Directory of Open Access Journals (Sweden)

    Sungsoo Na

    2009-09-01

    Full Text Available Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  19. Assigned and unassigned distance geometry: applications to biological molecules and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Billinge, Simon J. L. [Columbia Univ., New York, NY (United States). Applied Physics and Applied Mathematics; Brookhaven National Lab. (BNL), Upton, NY (United States). X-ray Scattering Group; Duxbury, Phillip M. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Gonçalves, Douglas S. [Univ. Federal de Santa Catarina,; Lavor, Carlile [Univ. of Campinas (UNICAMP), Sao Paulo (Brazil). Dept. of Applied Mathematics (IMECC-UNICAMP); Mucherino, Antonio [Univ. de Rennes, Rennes (France). Institut de Recherche en Informatique et Systemes Aleatoires

    2016-04-04

    Here, considering geometry based on the concept of distance, the results found by Menger and Blumenthal originated a body of knowledge called distance geometry. This survey covers some recent developments for assigned and unassigned distance geometry and focuses on two main applications: determination of three-dimensional conformations of biological molecules and nanostructures.

  20. Experimental and theoretical data on ion-molecule-reactions relevant for plasma modelling

    International Nuclear Information System (INIS)

    Hansel, A.; Praxmarer, C.; Lindinger, W.

    1995-01-01

    Despite the fact that the rate coefficients of hundreds of ion-molecule-reactions have been published in the literature, much more data are required for the purpose of plasma modelling. Many ion molecule reactions have rate coefficients, k, as large as the collisional limiting value, k c , i.e. the rate coefficients k c at which ion-neutral collision complexes are formed are close to the actual rate coefficients observed. In the case of the interaction of an ion with a non polar molecule, k c , is determined by the Langevin limiting value k L being typically 10 -9 cm 3 s -1 . However, when ions react with polar molecules k c is predicted by the average dipole orientation (ADO) theory. These classical theories yield accurate rate coefficients at thermal and elevated temperatures for practically all proton transfer as well as for many charge transfer and hydrogen abstraction reactions. The agreement between experimental and calculated values is usually better than ±20% and in the case of proton transfer reactions the agreement seems to be even better as recent investigations have shown. Even the interaction of the permanent ion dipole with non polar and polar neutrals can be taken into account to predict reaction rate coefficients as has been shown very recently in reactions of the highly polar ion ArH 3 + with various neutrals

  1. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An insight into the biological activities of heterocyclic-fatty acid hybrid molecules.

    Science.gov (United States)

    Venepally, Vijayendar; Reddy Jala, Ram Chandra

    2017-12-01

    Heterocyclic compounds are the interesting core structures for the development of new bioactive compounds. Fatty acids are derived from renewable raw materials and exhibit various biological activities. Several researchers are amalgamating these two bioactive components to yield bioactive hybrid molecules with some desirable features. Heterocyclic-fatty acid hybrid derivatives are a new class of heterocyclic compounds with a broad range of biological activities and significance in the field of medicinal chemistry. Over the last few years, many research articles emphasized the significance of heterocyclic-fatty acid hybrid derivatives. The present review article focuses the developments in designing and biological evaluation of heterocyclic-fatty acid hybrid molecules. Copyright © 2017. Published by Elsevier Masson SAS.

  3. A Pilot Study of Ion - Molecule Reactions at Temperatures Relevant to the Atmosphere of Titan

    Czech Academy of Sciences Publication Activity Database

    Zymak, Illia; Žabka, Ján; Polášek, Miroslav; Španěl, Patrik; Smith, D.

    2016-01-01

    Roč. 46, č. 4 (2016), s. 533-538 ISSN 0169-6149 R&D Projects: GA ČR(CZ) GA14-19693S Grant - others:COST(XE) TD1308 Institutional support: RVO:61388955 Keywords : titan ionosphere * variable temperature selected ions flow tube * ion-molecule reactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.000, year: 2016

  4. A Tryptoline Ring-Distortion Strategy Leads to Complex and Diverse Biologically Active Molecules from the Indole Alkaloid Yohimbine.

    Science.gov (United States)

    Paciaroni, Nicholas G; Ratnayake, Ranjala; Matthews, James H; Norwood, Verrill M; Arnold, Austin C; Dang, Long H; Luesch, Hendrik; Huigens, Robert W

    2017-03-28

    High-throughput screening (HTS) is the primary driver to current drug-discovery efforts. New therapeutic agents that enter the market are a direct reflection of the structurally simple compounds that make up screening libraries. Unlike medically relevant natural products (e.g., morphine), small molecules currently being screened have a low fraction of sp 3 character and few, if any, stereogenic centers. Although simple compounds have been useful in drugging certain biological targets (e.g., protein kinases), more sophisticated targets (e.g., transcription factors) have largely evaded the discovery of new clinical agents from screening collections. Herein, a tryptoline ring-distortion strategy is described that enables the rapid synthesis of 70 complex and diverse compounds from yohimbine (1); an indole alkaloid. The compounds that were synthesized had architecturally complex and unique scaffolds, unlike 1 and other scaffolds. These compounds were subjected to phenotypic screens and reporter gene assays, leading to the identification of new compounds that possessed various biological activities, including antiproliferative activities against cancer cells with functional hypoxia-inducible factors, nitric oxide inhibition, and inhibition and activation of the antioxidant response element. This tryptoline ring-distortion strategy can begin to address diversity problems in screening libraries, while occupying biologically relevant chemical space in areas critical to human health. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Some aspects of radiation-induced free-radical chemistry of biologically important molecules

    International Nuclear Information System (INIS)

    Sonntag, C. von

    1992-01-01

    Biologically relevant material is usually associated with considerable amounts of water. When ionizing radiation interacts with such material one must consider two modes of energy deposition: the direct effect (ionizing radiation is absorbed by the biomolecules) and the indirect effect (ionizing radiation is absorbed by the surrounding water). In the direct effect, radical cations plus electrons, and excited states of the biomolecules are formed. In the indirect effect the water is decomposed resulting in the formation of the water radicals OH,H and e aq - . These reactive intermediates then interact with the biomolecules. When such systems are irradiated oxygen is often present. As a result of this, the radicals formed in the biomolecules by the various routes are converted into the corresponding peroxyl radicals. In certain cases, e.g. with the nucleobases of DNA, radical cations can be produced in dilute aqueous solutions by radiation-generated SO 4 - radicals, and the fate of these nucleobase radical cations studied by pulse radiolysis and product analysis. Attention will be drawn to the fact that frequently some of the reaction products of the radical cations with water are identical to those formed by OH radical attack, but that there are also marked differences. Similarly, protonation of radical anions (formed by the reaction of solvated electrons with the biomolecules) and the reaction of H-atoms with these molecules can lead to radical intermediates with considerably differing characteristics. Our present knowledge of the variety of reactions of the peroxyl radicals occurring in aqueous solutions will be briefly discussed, emphasizing the large variety of HO 2 /O 2 - elimination reactions and pointing to the reversibility of the oxygen addition (RO 2 →R + O 2 ) in some systems recently studied. (author)

  6. Suppression and enhancement of non-native molecules within biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.A. [Surface Analysis Research Centre, CEAS, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)]. E-mail: e.jones@postgrad.manchester.ac.uk; Lockyer, N.P. [Surface Analysis Research Centre, CEAS, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom); Vickerman, J.C. [Surface Analysis Research Centre, CEAS, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)

    2006-07-30

    With the aim of evaluating the potential of SIMS to provide molecular information from small molecules within biological systems, here we investigate the effect of different biological compounds as they act as matrices. The results highlight the fact that the chemical environment of a molecule can have a significant effect on its limit of detection. This has implications for the imaging of drugs and xenobiotics in tissue sections and other biological matrices. A 1:1 mixture of the organic acid 2,4,6-trihydroxyacetophenone and the dipeptide valine-valine demonstrates that almost complete suppression of the [M + H]{sup +} ion of one compound can be caused by the presence of a compound of higher proton affinity. The significance of this is highlighted when two similar drug molecules, atropine (a neutral molecule) and ipratropium bromide (a quaternary nitrogen containing salt) are mixed with brain homogenate. The atropine [M + H]{sup +} ion shows significant suppression whilst the [M - Br]{sup +} of ipratopium bromide is detected at an intensity that can be rationalised by its decreased surface concentration. By investigating the effect of two abundant tissue lipids, cholesterol and dipalmitoylphosphatidyl choline (DPPC), on the atropine [M + H]{sup +} signal detected in mixtures with these lipids we see that the DPPC has a strong suppressing effect, which may be attributed to gas phase proton transfer.

  7. Synthesis of molecules of biological interest labelled with high specific activity tritium

    International Nuclear Information System (INIS)

    Petillot, Yves

    1975-01-01

    Labelled molecules are artificial organic compounds possessing one or several radioactive or steady isotopic atoms. Using tritium to label molecules presents several benefits: a raw material easy to obtain with a high purity and at reasonable cost; synthesised labelled molecules displaying high specific activities very interesting in molecular biology; high resolution of radiographies; relatively simple and quick introduction of tritium atoms in complex molecules. Thus, this report for graduation in organic chemistry addresses the synthesis and study of new labelled molecules which belong to families of organic compounds which have fundamental activities in biology: uridine 3 H-5,6 and thymidine 3 H-methyl which are nucleotides which intervene under the form of phosphates in the synthesis of nucleic acids, oestradiol 3 H-2,4,6,7 which is a powerful estrogenic hormone which naturally secreted by the ovary; and noradrenaline 3 H-1,1' and dopamine 3 H-1,2 which are usually secreted by adrenal medulla and have multiple actions on the nervous system

  8. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    Science.gov (United States)

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    detection of small molecules by means of FA in complex biological samples.

  9. Single molecule optical measurements of orientation and rotations of biological macromolecules.

    Science.gov (United States)

    Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E

    2016-11-22

    Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.

  10. A study of ruthenium complexes of some biologically relevant a-N ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 112; Issue 3. A study of ruthenium complexes of some biologically relevant ∙ -N-heterocyclic ... Author Affiliations. P Sengupta1 S Ghosh1. Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India ...

  11. Fusion rates for hydrogen isotopic molecules of relevance for ''cold fusion''

    International Nuclear Information System (INIS)

    Szalewicz, K.; Morgan, J.D. III; Monkhorst, H.J.

    1989-01-01

    In response to the recent announcements of evidence for room-temperature fusion in the electrolysis of D 2 O, we have analyzed how the fusion rate depends on the reduced mass of the fusing nuclei, the effective mass of a ''heavy'' electron, and the degree of vibrational excitation. Our results have been obtained both by accurately solving the Schroedinger equation for the hydrogen molecule and by using the WKB approximation. We find that in light of the reported d-d fusion rate, the excess heat in the experiment by Fleischmann, Pons, and Hawkins [J. Electroanal. Chem. 261, 301 (1989)] is difficult to explain in terms of conventional nuclear processes

  12. Beyond arousal and valence: the importance of the biological versus social relevance of emotional stimuli.

    Science.gov (United States)

    Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara

    2012-03-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for biologically emotional images was enhanced even with limited cognitive resources, but (3) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images' subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in the visual cortex and greater functional connectivity between the amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in the medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between the amygdala and MPFC than did biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity.

  13. bcl::Cluster : A method for clustering biological molecules coupled with visualization in the Pymol Molecular Graphics System.

    Science.gov (United States)

    Alexander, Nathan; Woetzel, Nils; Meiler, Jens

    2011-02-01

    Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. Clustering has become especially important in protein structure prediction and virtual high throughput screening methods. In protein structure prediction, clustering is used to structure the conformational space of thousands of protein models. In virtual high throughput screening, databases with millions of drug-like molecules are organized by structural similarity, e.g. common scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a qualitative overview of the results, which is important for focusing detailed analysis. However, in practice it is difficult to relate specific components of the dendrogram directly back to the objects of which it is comprised and to display all desired information within the two dimensions of the dendrogram. The current work presents a hierarchical agglomerative clustering method termed bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict dendrograms in three dimensions. This allows simultaneous display of relevant biological molecules as well as additional information about the clusters and the members comprising them.

  14. Reactions of Ground State Nitrogen Atoms N(4S) with Astrochemically-Relevant Molecules on Interstellar Dusts

    Science.gov (United States)

    Krim, Lahouari; Nourry, Sendres

    2015-06-01

    In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step

  15. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy

    International Nuclear Information System (INIS)

    Nair, R. R.; Anissimova, S.; Novoselov, K. S.; Blake, P.; Blake, J. R.; Geim, A. K.; Zan, R.; Bangert, U.; Golovanov, A. P.; Morozov, S. V.; Latychevskaia, T.

    2010-01-01

    We demonstrate the application of graphene as a support for imaging individual biological molecules in transmission electron microscope (TEM). A simple procedure to produce free-standing graphene membranes has been designed. Such membranes are extremely robust and can support practically any submicrometer object. Tobacco mosaic virus has been deposited on graphene samples and observed in a TEM. High contrast has been achieved even though no staining has been applied.

  16. Pragmatic turn in biology: From biological molecules to genetic content operators.

    Science.gov (United States)

    Witzany, Guenther

    2014-08-26

    Erwin Schrödinger's question "What is life?" received the answer for decades of "physics + chemistry". The concepts of Alain Turing and John von Neumann introduced a third term: "information". This led to the understanding of nucleic acid sequences as a natural code. Manfred Eigen adapted the concept of Hammings "sequence space". Similar to Hilbert space, in which every ontological entity could be defined by an unequivocal point in a mathematical axiomatic system, in the abstract "sequence space" concept each point represents a unique syntactic structure and the value of their separation represents their dissimilarity. In this concept molecular features of the genetic code evolve by means of self-organisation of matter. Biological selection determines the fittest types among varieties of replication errors of quasi-species. The quasi-species concept dominated evolution theory for many decades. In contrast to this, recent empirical data on the evolution of DNA and its forerunners, the RNA-world and viruses indicate cooperative agent-based interactions. Group behaviour of quasi-species consortia constitute de novo and arrange available genetic content for adaptational purposes within real-life contexts that determine epigenetic markings. This review focuses on some fundamental changes in biology, discarding its traditional status as a subdiscipline of physics and chemistry.

  17. Electron attachment to molecules and clusters of atmospheric relevance: oxygen and ozone

    International Nuclear Information System (INIS)

    Matejcik, S.; Cicman, P.; Skalny, J.; Kiendler, A.; Stampfli, P.; Maerk, T.D.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    Highly monochromatized electrons are used in a crossed beams experiment to investigate electron attachment to oxygen clusters (O 2 )-n at electron energies from approximately zero eV up to 2 eV. At energies close to zero the attachment cross section for the reaction (O 2 ) n + e → O 2 - varies inversely with the electron energy, indicative of s-wave electron capture to (O 2 ) n . Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition electron attachment to ozone and mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Absolute attachment cross sections for both fragment ions anions, O - and O 2 - , from ozone could be deduced. Moreover, despite the initially large excess of oxygen molecules in the neutral oxygen/ozone clusters the dominant attachment products are un-dissociated cluster ions (O 3 ) m - including the O 3 - monomer while oxygen cluster ions (O 2 ) n appear with comparatively low intensity. (authors)

  18. Acoustic fine structure may encode biologically relevant information for zebra finches.

    Science.gov (United States)

    Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J

    2018-04-18

    The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.

  19. Making developmental biology relevant to undergraduates in an era of economic rationalism in Australia.

    Science.gov (United States)

    Key, Brian; Nurcombe, Victor

    2003-01-01

    This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was "student-oriented," ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experiencefirst-hand work in a research laboratory. Our philosophy is a "cradle-to-grave" approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research.

  20. Stability of Molecules of Biological Importance to Ionizing Radiation: Relevance in Astrobiology

    Science.gov (United States)

    Meléndez-López, A. L.; Negrón-Mendoza, A.; Ramos-Bernal, S.; Colín-García, M.; Heredia, A.

    2017-11-01

    Our aim is to study the stability of amino acids in conditions that probably existed in the primitive environments. We study aspartic acid and glutamic acid, in solid state and aqueous solution, against high doses of gamma radiation at 298 and 77 K.

  1. Engineering Bacteria to Search for Specific Concentrations of Molecules by a Systematic Synthetic Biology Design Method.

    Science.gov (United States)

    Tien, Shin-Ming; Hsu, Chih-Yuan; Chen, Bor-Sen

    2016-01-01

    Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella's rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the "brake component" in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each "brake component" were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the "brake component". Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate "brake component" in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains.

  2. Engineering Bacteria to Search for Specific Concentrations of Molecules by a Systematic Synthetic Biology Design Method.

    Directory of Open Access Journals (Sweden)

    Shin-Ming Tien

    Full Text Available Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella's rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the "brake component" in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each "brake component" were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the "brake component". Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate "brake component" in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains.

  3. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    Science.gov (United States)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  4. Application of terahertz spectroscopy for characterization of biologically active organic molecules in natural environment

    Science.gov (United States)

    Karaliūnas, Mindaugas; Jakštas, Vytautas; Nasser, Kinan E.; Venckevičius, Rimvydas; Urbanowicz, Andrzej; Kašalynas, Irmantas; Valušis, Gintaras

    2016-09-01

    In this work, a comparative research of biologically active organic molecules in its natural environment using the terahertz (THz) time domain spectroscopy (TDS) and Fourier transform spectroscopy (FTS) systems is carried out. Absorption coefficient and refractive index of Nicotiana tabacum L. leaves containing nicotine, Cannabis sativa L. leaves containing tetrahydrocannabinol, and Humulu lupulus L. leaves containing α-acids, active organic molecules that obtain in natural environment, were measured in broad frequency range from 0.1 to 13 THz at room temperature. In the spectra of absorption coefficient the features were found to be unique for N. tabacum, C. sativa and H. lupulus. Moreover, those features can be exploited for identification of C. sativa sex and N. tabacum origin. The refractive index can be also used to characterize different species.

  5. Study of radionuclides speciation with biological molecules of interest by spectrometric techniques

    International Nuclear Information System (INIS)

    Lourenco, V.

    2007-07-01

    Mechanisms of complexation and accumulation of the radionuclides at the cellular and molecular level are complex and poorly known because the studies on these subjects are scarce. Within the framework of this thesis, we studied the interactions of europium (analogue of trivalent actinides) and uranium (VI) (actinide) with biological molecules of interest: phyto-chelatins. Their role is to protect cells against intrusions from nonessential heavy metals (thus toxic). These proteins are likely to be implied in the mechanisms of sequestration of radionuclides in living organisms. However, their structure is complex, this is why, in order to better understand their reactivity, we extended our studies to lower entities which constitute them (amino acids and glutathione). We determined solution speciation (stoichiometry, structure) as well as the complexing constants associated with the formation of these species. These studies were undertaken by Time Resolved Laser induced Fluorescence (TRLIF), Electro-Spray Mass Spectrometry (ES-MS), Nuclear Magnetic Resonance (NMR), Fourier Transform Infra-Rouge spectroscopy (FTIR) and Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS). The determination of the complexation constants enabled us to conclude that the complexing capacity of these molecules with respect to radionuclides was moderate (log 10 K 1 < 3, pH 3 or 6), the formed species are mononuclear with only one ligand molecule (1:1). The interaction is performed via oxygenated (hard) groups. The direct complexation of europium with phyto-chelatins at acidic pH was studied jointly by TRLIF and ES-MS. The complexing capacity of these molecules is much higher than that of GSH from which they result. In addition to studies undertaken on synthetic solutions reproducing the 'biological' conditions (pH close to neutrality, ionic strength 0.1 mol/L, etc), tests of cellular contamination were realized. The quantification of integrated europium showed that those are able to

  6. Study of radionuclides speciation with biological molecules of interest by spectrometric techniques

    International Nuclear Information System (INIS)

    Lourenco, V.

    2007-07-01

    Mechanisms of complexation and accumulation of the radionuclides at the cellular and molecular level are complex and poorly known because the studies on these subjects are scarce. Within the framework of this thesis, we studied the interactions of these cations with biological molecules of interest. We chose to focus on an actinide: uranium (VI) as well as europium as an analogue of trivalent actinides. The selected biological molecules are the phyto-chelatins: their role is to protect cells against intrusions from nonessential heavy metals (thus toxic). These proteins are likely to be implied in the mechanisms of sequestration of radionuclides in living organisms. However, their structure is complex, this is why, in order to better include/understand their reactivity, we extended our studies to lower entities which constitute them (amino acid: glycine, glutamic acid and cysteine; polypeptides: glutathione reduced and oxidized forms). In particular, we determined solution speciation (stoichiometry, structure) as well as the complexing constants associated with the formation with these species. These studies were undertaken by Time Resolved Laser induced Fluorescence (TRLIF), Electro-Spray-Mass Spectrometry (ES-MS), Nuclear Magnetic Resonance (NMR), Fourier Transform Infra-Rouge spectroscopy (FTIR) and Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS).The determination of the complexation constants enabled us to conclude that the complexing capacity of these molecules with respect to radionuclides was moderate (log 10 K 1 ≤ 3, pH 3 or 6), the formed species are mononuclear with only one ligand molecule (1:1). The interaction is performed via oxygenated (hard) groups. The direct complexation of europium with phyto-chelatins at acidic pH was studied jointly by TRLIF and ES-MS. The complexing capacity of these molecules is much higher than that of GSH from which they result. The interaction of europium with metallothioneins is, on the contrary, lower than

  7. Exploring matter through photons and neutrons: from biological molecules to designer materials

    International Nuclear Information System (INIS)

    Chidambaram, R.; Hosur, M.V.; Ramanadham, M.; Godwal, B.K.

    2000-01-01

    Understanding structure-property relationships of naturally occurring materials has been the aim of scientific research for centuries. The discovery of short wavelength x-rays and neutrons in the 20th century provided a means of studying molecular structure. The methodology of x-ray and neutron diffraction has been successfully applied to determine structures of molecules across disciplines of physics, chemistry, biology, biochemistry and medicine. Typical applications in physics include study of phase transformations, elasticity measurements, magnetic structure, surface scattering etc. In chemistry, the applications have ranged from routine structure determinations of reaction intermediates or natural products to refinement of quantum chemical parameters of atomic and molecular charge densities. The science of crystallography has had a profound effect on the disciplines of biology and medicine. A whole new discipline and industry was created when the structure of DNA was discovered through x-ray diffraction

  8. Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules.

    Science.gov (United States)

    Zheng, Ming; Li, Zhigang; Huang, Xueying

    2004-05-11

    The usefulness of the hybrid materials of nanoparticles and biological molecules on many occasions depends on how well one can achieve a rational design based on specific binding and programmable assembly. Nonspecific binding between nanoparticles and biomolecules is one of the major barriers for achieving their utilities in a biological system. In this paper, we demonstrate a new approach to eliminate nonspecific interactions between nanoparticles and biological molecules by shielding the nanoparticle with a monolayer of ethylene glycol. A direct synthesis of di-, tri-, and tetra(ethylene glycol)-protected gold nanoparticles (Au-S-EGn, n = 2, 3, and 4) was achieved under the condition that the water content was optimized in the range of 9-18% in the reaction mixture. With controlled ratio of [HAuCl4]/[EGn-SH] at 2, the synthesized particles have an average diameter of 3.5 nm and a surface plasma resonance band around 510 nm. Their surface structures were confirmed by 1H NMR spectra. These gold nanoparticles are bonded with a uniform monolayer with defined lengths of 0.8, 1.2, and 1.6 nm for Au-S-EG2, Au-S-EG3, and Au-S-EG4, respectively. They have great stabilities in aqueous solutions with a high concentration of electrolytes as well as in organic solvents. Thermogravimetric analysis revealed that the ethylene glycol monolayer coating is ca. 14% of the total nanoparticle weight. Biological binding tests by using ion-exchange chromatography and gel electrophoresis demonstrated that these Au-S-EGn (n = 2, 3, or 4) nanoparticles are free of any nonspecific bindings with various proteins, DNA, and RNA. These types of nanoparticles provide a fundamental starting material for designing hybrid materials composed of metallic nanoparticles and biomolecules.

  9. Single Fluorescent Molecules as Nano-Illuminators for Biological Structure and Function

    Science.gov (United States)

    Moerner, W. E.

    2011-03-01

    Since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. {62}, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. For example, the shape of single filaments in a living cell can be extracted simply by allowing a single molecule to move through the filament (PNAS {103}, 10929 (2006)). The addition of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (super-resolution) and a new array of acronyms (PALM, STORM, F-PALM etc.) and advances have appeared. We have used the native blinking and switching of a common yellow-emitting variant of green fluorescent protein (EYFP) reported more than a decade ago (Nature {388}, 355 (1997)) to achieve sub-40 nm super-resolution imaging of several protein structures in the bacterium Caulobacter crescentus: the quasi-helix of the actin-like protein MreB (Nat. Meth. {5}, 947 (2008)), the cellular distribution of the DNA binding protein HU (submitted), and the recently discovered division spindle composed of ParA filaments (Nat. Cell Biol. {12}, 791 (2010)). Even with these advances, better emitters would provide more photons and improved resolution, and a new photoactivatable small-molecule emitter has recently been synthesized and targeted to specific structures in living cells to provide super-resolution images (JACS {132}, 15099 (2010)). Finally, a new optical method for extracting three-dimensional position information based on

  10. Physical, chemical, and biological properties of radiocerium relevant to radiation protection guidelines

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Present knowledge of the relevant physical, chemical, and biological properties of radiocerium as a basis for establishing radiation protection guidelines is summarized. The first section of the report reviews the chemical and physical properties of radiocerium relative to the biological behavior of internally-deposited cerium and other lanthanides. The second section of the report gives the sources of radiocerium in the environment and the pathways to man. The third section of the report describes the metabolic fate of cerium in several mammalian species as a basis for predicting its metabolic fate in man. The fourth section of the report considers the biomedical effects of radiocerium in light of extensive animal experimentation. The last two sections of the report describe the history of radiation protection guidelines for radiocerium and summarize data required for evaluating the adequacy of current radiation protection guidelines. Each section begins with a summary of the most important findings that follow

  11. Application of Fourier transform infrared ellipsometry to assess the concentration of biological molecules

    Science.gov (United States)

    Garcia-Caurel, Enric; Drevillon, Bernard; De Martino, Antonello; Schwartz, Laurent

    2002-12-01

    Spectroscopic ellipsometry is a noninvasive optical characterization technique mainly used in the semiconductor field to characterize bare substrates and thin films. In particular, it allows the gathering of information concerning the physical structure of the sample, such as roughness and film thickness, as well as its optical response. In the mid-infrared (IR) range each molecule exhibits a characteristic absorption fingerprint, which makes this technique chemically selective. Phase-modulated IR ellipsometry does not require a baseline correction procedure or suppression of atmospheric CO2 and water-vapor absorption bands, thus greatly reducing the subjectivity in data analysis. We have found that ellipsometric measurements of thin films, such as the solid residuals left on a plane surface after evaporation of a liquid drop containing a given compound in solution, are particularly favorable for dosing purposes because the intensity of IR absorptions shows a linear behavior along a wide range of solution concentrations of the given compound. Our aim is to illustrate with a concrete example and to justify theoretically the linearity experimentally found between radiation absorption and molecule concentration. For the example, we prepared aqueous solutions of glycogen, a molecule of huge biological importance currently tested in biochemical analyses, at concentrations ranging from 1 mg/l to 1 g/l, which correspond to those found in physiological conditions. The results of this example are promising for the application of ellipsometry for dosing purposes in biochemistry and biomedicine.

  12. A Synthetic Biology Project - Developing a single-molecule device for screening drug-target interactions.

    Science.gov (United States)

    Firman, Keith; Evans, Luke; Youell, James

    2012-07-16

    This review describes a European-funded project in the area of Synthetic Biology. The project seeks to demonstrate the application of engineering techniques and methodologies to the design and construction of a biosensor for detecting drug-target interactions at the single-molecule level. Production of the proteins required for the system followed the principle of previously described "bioparts" concepts (a system where a database of biological parts - promoters, genes, terminators, linking tags and cleavage sequences - is used to construct novel gene assemblies) and cassette-type assembly of gene expression systems (the concept of linking different "bioparts" to produce functional "cassettes"), but problems were quickly identified with these approaches. DNA substrates for the device were also constructed using a cassette-system. Finally, micro-engineering was used to build a magnetoresistive Magnetic Tweezer device for detection of single molecule DNA modifying enzymes (motors), while the possibility of constructing a Hall Effect version of this device was explored. The device is currently being used to study helicases from Plasmodium as potential targets for anti-malarial drugs, but we also suggest other potential uses for the device. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Studying the molecular mechanisms of radiation damage : low-energy electron interactions with biomolecules and medically relevant molecules

    International Nuclear Information System (INIS)

    Tanzer, K.

    2015-01-01

    Since it was discovered in the year 2000 that secondary electrons with energies below 20 eV, which are the most abundant secondary species produced upon the interaction of ionizing radiation with biological tissue, can induce severe damages in the DNA such as single and double strand breaks, the interest for the study of the interaction of electrons with essential molecules of the human body has grown immensely. Double strand breaks can lead to cancer and are therefore a substantial threat to human health, however, the radiation research community is not sure how these strand breaks are formed upon interaction with ionizing radiation. The fact that even electrons with energies well below the ionization threshold can induce great damage in biological molecules via a resonant process called dissociative electron attachment (DEA), has even furthered the interest in these electron interactions, as it was shown to be a very efficient decomposition mechanism. A variety of studies, such as DEA studies to components of the DNA, for example, have been undertaken so far to shed more light on the role electrons play in the radiation damage of biomolecules. In this thesis two nucleobases, adenine and hypoxanthine, have been studied by observing their response towards low-energy electrons. It has been found that these nucleobases behave in a similar manner upon low-energy electron interaction, as do other nucleobases, that have been studied previously. The loss of hydrogen is suspected to act as a precursor for the decomposition of the DNA and the nucleobases can also undergo ring cleavage, which will induce substantial damage in the DNA. Furthermore, the search for improved and more efficient methods for the treatment of cancer is as important as ever, considering the ever-rising number of cancer deaths. Radiotherapy has proven to be one of the best treatments for tumors, but was found to be ineffective in hypoxic - oxygen deprived - tumors. Compounds called radiosensitizers

  14. TOPICAL REVIEW: Single-molecule experiments in biological physics: methods and applications

    Science.gov (United States)

    Ritort, F.

    2006-08-01

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  15. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds.

    Directory of Open Access Journals (Sweden)

    Geraldine Mulley

    Full Text Available There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells. Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec and Acticoat (Smith & Nephew to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants. We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

  16. Infrared spectra of complex organic molecules in astronomically relevant ice matrices. I. Acetaldehyde, ethanol, and dimethyl ether

    Science.gov (United States)

    Terwisscha van Scheltinga, J.; Ligterink, N. F. W.; Boogert, A. C. A.; van Dishoeck, E. F.; Linnartz, H.

    2018-03-01

    Context. The number of identified complex organic molecules (COMs) in inter- and circumstellar gas-phase environments is steadily increasing. Recent laboratory studies show that many such species form on icy dust grains. At present only smaller molecular species have been directly identified in space in the solid state. Accurate spectroscopic laboratory data of frozen COMs, embedded in ice matrices containing ingredients related to their formation scheme, are still largely lacking. Aim. This work provides infrared reference spectra of acetaldehyde (CH3CHO), ethanol (CH3CH2OH), and dimethyl ether (CH3OCH3) recorded in a variety of ice environments and for astronomically relevant temperatures, as needed to guide or interpret astronomical observations, specifically for upcoming James Webb Space Telescope observations. Methods: Fourier transform transmission spectroscopy (500-4000 cm-1/20-2.5 μm, 1.0 cm-1 resolution) was used to investigate solid acetaldehyde, ethanol and dimethyl ether, pure or mixed with water, CO, methanol, or CO:methanol. These species were deposited on a cryogenically cooled infrared transmissive window at 15 K. A heating ramp was applied, during which IR spectra were recorded until all ice constituents were thermally desorbed. Results: We present a large number of reference spectra that can be compared with astronomical data. Accurate band positions and band widths are provided for the studied ice mixtures and temperatures. Special efforts have been put into those bands of each molecule that are best suited for identification. For acetaldehyde the 7.427 and 5.803 μm bands are recommended, for ethanol the 11.36 and 7.240 μm bands are good candidates, and for dimethyl ether bands at 9.141 and 8.011 μm can be used. All spectra are publicly available in the Leiden Database for Ice.

  17. Comparison of the perceived relevance of oral biology reported by students and interns of a Pakistani dental college.

    Science.gov (United States)

    Farooq, I; Ali, S

    2014-11-01

    The purpose of this study was to analyse and compare the perceived relevance of oral biology with dentistry as reported by dental students and interns and to investigate the most popular teaching approach and learning resource. A questionnaire aiming to ask about the relevance of oral biology to dentistry, most popular teaching method and learning resource was utilised in this study. Study groups encompassed second-year dental students who had completed their course and dental interns. The data were obtained and analysed statistically. The overall response rate for both groups was 60%. Both groups reported high relevance of oral biology to dentistry. Perception of dental interns regarding the relevance of oral biology to dentistry was higher than that of students. Both groups identified student presentations as the most important teaching method. Amongst the most important learning resources, textbooks were considered most imperative by interns, whereas lecture handouts received the highest importance score by students. Dental students and interns considered oral biology to be relevant to dentistry, although greater relevance was reported by interns. Year-wise advancement in dental education and training improves the perception of the students about the relevance of oral biology to dentistry. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Biophysics of DNA-Protein Interactions From Single Molecules to Biological Systems

    CERN Document Server

    Williams, Mark C

    2011-01-01

    This book presents a concise overview of current research on the biophysics of DNA-protein interactions. A wide range of new and classical methods are presented by authors investigating physical mechanisms by which proteins interact with DNA. For example, several chapters address the mechanisms by which proteins search for and recognize specific binding sites on DNA, a process critical for cellular function. Single molecule methods such as force spectroscopy as well as fluorescence imaging and tracking are described in these chapters as well as other parts of the book that address the dynamics of protein-DNA interactions. Other important topics include the mechanisms by which proteins engage DNA sequences and/or alter DNA structure. These simple but important model interactions are then placed in the broader biological context with discussion of larger protein-DNA complexes . Topics include replication forks, recombination complexes, DNA repair interactions, and ultimately, methods to understand the chromatin...

  19. Application of magnetic iron oxide nanoparticles in stabilization process of biological molecules

    Directory of Open Access Journals (Sweden)

    Mohammad Hossien Salmani

    2017-07-01

    Conclusion: Co-precipitation method is an easy way to prepare magnetic nanoparticles of iron with a large surface and small particle size, which increases the ability of these particles to act as a suitable carrier for enzyme stabilization. Adequate modification of the surface of these nanoparticles enhances their ability to bind to biological molecules. The immobilized protein or enzyme on magnetic nanoparticles are more stable against structural changes, temperature and pH in comparison with un-stabilized structures, and it is widely used in various sciences, including protein isolation and purification, pharmaceutical science, and food analysis. Stabilization based on the covalent bonds and physical absorption is nonspecific, which greatly limits their functionality. The process of stabilization through bio-mediums provide a new method to overcome the selectivity problem.

  20. Semiexperimental equilibrium structures for building blocks of organic and biological molecules: the B2PLYP route.

    Science.gov (United States)

    Penocchio, Emanuele; Piccardo, Matteo; Barone, Vincenzo

    2015-10-13

    The B2PLYP double hybrid functional, coupled with the correlation-consistent triple-ζ cc-pVTZ (VTZ) basis set, has been validated in the framework of the semiexperimental (SE) approach for deriving accurate equilibrium structures of molecules containing up to 15 atoms. A systematic comparison between new B2PLYP/VTZ results and several equilibrium SE structures previously determined at other levels, in particular B3LYP/SNSD and CCSD(T) with various basis sets, has put in evidence the accuracy and the remarkable stability of such model chemistry for both equilibrium structures and vibrational corrections. New SE equilibrium structures for phenylacetylene, pyruvic acid, peroxyformic acid, and phenyl radical are discussed and compared with literature data. Particular attention has been devoted to the discussion of systems for which lack of sufficient experimental data prevents a complete SE determination. In order to obtain an accurate equilibrium SE structure for these situations, the so-called templating molecule approach is discussed and generalized with respect to our previous work. Important applications are those involving biological building blocks, like uracil and thiouracil. In addition, for more general situations the linear regression approach has been proposed and validated.

  1. Biological response of HeLa cells to gold nanoparticles coated with organic molecules.

    Science.gov (United States)

    Cardoso Avila, P E; Rangel Mendoza, A; Pichardo Molina, J L; Flores Villavicencio, L L; Castruita Dominguez, J P; Chilakapati, M K; Sabanero Lopez, M

    2017-08-01

    In this work, gold nanospheres functionalized with low weight organic molecules (4-aminothiphenol and cysteamine) were synthesized in a one-step method for their in vitro cytotoxic evaluation on HeLa cells. To enhance the biocompatibility of the cysteamine-capped GNPs, BSA was used due to its broad PH stability and high binding affinity to gold nanoparticles. Besides, the widely reported silica coated gold nanorods were tested here to contrast their toxic response against our nanoparticles coated with organic molecules. Our results shown, the viability measured at 1.9×10 -5 M did not show significant differences against negative controls for all the samples; however, the metabolic activity of HeLa cells dropped when they were exposed to silica gold nanorods in the range of concentrations from 2.9×10 -7 M to 3.0×10 -4 M, while in the cases of gold nanospheres, we found that only at concentrations below 1.9×10 -5 M metabolic activity was normal. Our preliminary results did not indicate any perceivable harmful toxicity to cell membrane, cytoskeleton or nucleus due to our nanospheres at 1.9×10 -5 M. Additional test should be conducted in order to ensure a safe use of them for biological applications, and to determine the extent of possible damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Detection, Characterization, and Biological Effect of Quorum-Sensing Signaling Molecules in Peanut-Nodulating Bradyrhizobia

    Directory of Open Access Journals (Sweden)

    Walter Giordano

    2012-03-01

    Full Text Available Bacteria of the genus Bradyrhizobium are able to establish a symbiotic relationship with peanut (Arachis hypogaea root cells and to fix atmospheric nitrogen by converting it to nitrogenous compounds. Quorum sensing (QS is a cell-cell communication mechanism employed by a variety of bacterial species to coordinate behavior at a community level through regulation of gene expression. The QS process depends on bacterial production of various signaling molecules, among which the N-acylhomoserine lactones (AHLs are most commonly used by Gram-negative bacteria. Some previous reports have shown the production of QS signaling molecules by various rhizobia, but little is known regarding mechanisms of communication among peanut-nodulating strains. The aims of this study were to identify and characterize QS signals produced by peanut-nodulating bradyrhizobial strains and to evaluate their effects on processes related to cell interaction. Detection of AHLs in 53 rhizobial strains was performed using the biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4 and Chromobacterium violaceum CV026 for AHLs with long and short acyl chains, respectively. None of the strains screened were found to produce AHLs with short acyl chains, but 14 strains produced AHLs with long acyl chains. These 14 AHL-producing strains were further studied by quantification of β-galactosidase activity levels (AHL-like inducer activity in NTL4 (pZLR4. Strains displaying moderate to high levels of AHL-like inducer activity were subjected to chemical identification of signaling molecules by high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS. For each AHL-producing strain, we found at least four different AHLs, corresponding to N-hexanoyl-DL-homoserine lactone (C6, N-(3-oxodecanoyl-L-homoserine lactone (3OC10, N-(3-oxododecanoyl-L-homoserine lactone (3OC12, and N-(3-oxotetradecanoyl-L-homoserine lactone (3OC14. Biological roles of 3OC10, 3OC12, and 3OC14 AHLs

  3. 'Fish matters': the relevance of fish skin biology to investigative dermatology.

    Science.gov (United States)

    Rakers, Sebastian; Gebert, Marina; Uppalapati, Sai; Meyer, Wilfried; Maderson, Paul; Sell, Anne F; Kruse, Charli; Paus, Ralf

    2010-04-01

    Fish skin is a multi-purpose tissue that serves numerous vital functions including chemical and physical protection, sensory activity, behavioural purposes or hormone metabolism. Further, it is an important first-line defense system against pathogens, as fish are continuously exposed to multiple microbial challenges in their aquatic habitat. Fish skin excels in highly developed antimicrobial features, many of which have been preserved throughout evolution, and infection defense principles employed by piscine skin are still operative in human skin. This review argues that it is both rewarding and important for investigative dermatologists to revive their interest in fish skin biology, as it provides insights into numerous fundamental issues that are of major relevance to mammalian skin. The basic molecular insights provided by zebrafish in vivo-genomics for genetic, regeneration and melanoma research, the complex antimicrobial defense systems of fish skin and the molecular controls of melanocyte stem cells are just some of the fascinating examples that illustrate the multiple potential uses of fish skin models in investigative dermatology. We synthesize the essentials of fish skin biology and highlight selected aspects that are of particular comparative interest to basic and clinically applied human skin research.

  4. 6,7-dimethoxy-coumarin as a probe of hydration dynamics in biologically relevant systems

    Science.gov (United States)

    Ghose, Avisek; Amaro, Mariana; Kovaricek, Petr; Hof, Martin; Sykora, Jan

    2018-04-01

    Coumarin derivatives are well known fluorescence reporters for investigating biological systems due to their strong micro-environment sensitivity. Despite having wide range of environment sensitive fluorescence probes, the potential of 6,7-dimethoxy-coumarin has not been studied extensively so far. With a perspective of its use in protein studies, namely using the unnatural amino acid technology or as a substrate for hydrolase enzymes, we study acetyloxymethyl-6,7-dimethoxycoumarin (Ac-DMC). We investigate the photophysics and hydration dynamics of this dye in aerosol-OT (AOT) reverse micelles at various water contents using the time dependent fluorescence shift (TDFS) method. The TDFS response in AOT reverse micelles from water/surfactant ratio of 0 to 20 confirms its sensitivity towards the hydration and mobility of its microenvironment. Moreover, we show that the fluorophore can be efficiently quenched by halide ions. Hence, we conclude that the 6,7-dimethoxy-methylcoumarin fluorophore is useful for studying hydration parameters in biologically relevant systems.

  5. The clinical implications and biologic relevance of neurofilament expression in gastroenteropancreatic neuroendocrine neoplasms.

    Science.gov (United States)

    Schimmack, Simon; Lawrence, Ben; Svejda, Bernhard; Alaimo, Daniele; Schmitz-Winnenthal, Hubertus; Fischer, Lars; Büchler, Markus W; Kidd, Mark; Modlin, Irvin

    2012-05-15

    Although gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) exhibit widely divergent behavior, limited biologic information (apart from Ki-67) is available to characterize malignancy. Therefore, the identification of alternative biomarkers is a key unmet need. Given the role of internexin alpha (INA) in neuronal development, the authors assessed its function in neuroendocrine cell systems and the clinical implications of its expression as a GEP-NEN biomarker. Functional assays were undertaken to investigate the mechanistic role of INA in the pancreatic BON cell line. Expression levels of INA were investigated in 50 pancreatic NENs (43 primaries, 7 metastases), 43 small intestinal NENs (25 primaries, 18 metastases), normal pancreas (n = 10), small intestinal mucosa (n = 16), normal enterochromaffin (EC) cells (n = 9), mouse xenografts (n = 4) and NEN cell lines (n = 6) using quantitative polymerase chain reaction, Western blot, and immunostaining analyses. In BON cells, decreased levels of INA messenger RNA and protein were associated with the inhibition of both proliferation and mitogen-activated protein kinase (MAPK) signaling. INA was not expressed in normal neuroendocrine cells but was overexpressed (from 2-fold to 42-fold) in NEN cell lines and murine xenografts. In pancreatic NENs, INA was overexpressed compared with pancreatic adenocarcinomas and normal pancreas (27-fold [P = .0001], and 9-fold [P = .02], respectively). INA transcripts were correlated positively with Ki-67 (correlation coefficient [r] = 0.5; P biologic information relevant to delineation of both pancreatic NEN tumor phenotypes and clinical behavior. Copyright © 2011 American Cancer Society.

  6. A biologically relevant method for considering patterns of oceanic retention in the Southern Ocean

    Science.gov (United States)

    Mori, Mao; Corney, Stuart P.; Melbourne-Thomas, Jessica; Klocker, Andreas; Sumner, Michael; Constable, Andrew

    2017-12-01

    Many marine species have planktonic forms - either during a larval stage or throughout their lifecycle - that move passively or are strongly influenced by ocean currents. Understanding these patterns of movement is important for informing marine ecosystem management and for understanding ecological processes generally. Retention of biological particles in a particular area due to ocean currents has received less attention than transport pathways, particularly for the Southern Ocean. We present a method for modelling retention time, based on the half-life for particles in a particular region, that is relevant for biological processes. This method uses geostrophic velocities at the ocean surface, derived from 23 years of satellite altimetry data (1993-2016), to simulate the advection of passive particles during the Southern Hemisphere summer season (from December to March). We assess spatial patterns in the retention time of passive particles and evaluate the processes affecting these patterns for the Indian sector of the Southern Ocean. Our results indicate that the distribution of retention time is related to bathymetric features and the resulting ocean dynamics. Our analysis also reveals a moderate level of consistency between spatial patterns of retention time and observations of Antarctic krill (Euphausia superba) distribution.

  7. Contextual Hub Analysis Tool (CHAT): A Cytoscape app for identifying contextually relevant hubs in biological networks.

    Science.gov (United States)

    Muetze, Tanja; Goenawan, Ivan H; Wiencko, Heather L; Bernal-Llinares, Manuel; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Highly connected nodes (hubs) in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT), which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene expression or mass spectrometry data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes or proteins that are differentially expressed) than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest. CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store ( http://apps.cytoscape.org/apps/chat).

  8. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  9. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue.

    Science.gov (United States)

    Hein, Sibyll; Müller, Volkmar; Köhler, Nadine; Wikman, Harriet; Krenkel, Sylke; Streichert, Thomas; Schweizer, Michaela; Riethdorf, Sabine; Assmann, Volker; Ihnen, Maike; Beck, Katrin; Issa, Rana; Jänicke, Fritz; Pantel, Klaus; Milde-Langosch, Karin

    2011-09-01

    The activated leukocyte cell adhesion molecule (ALCAM) is overexpressed in many mammary tumors, but controversial results about its role and prognostic impact in breast cancer have been reported. Therefore, we evaluated the biologic effects of ALCAM expression in two breast cancer cell lines and a larger cohort of mammary carcinomas. By stable transfections, MCF7 cells with ALCAM overexpression and MDA-MB231 cells with reduced ALCAM levels were generated and analyzed in functional assays and cDNA microarrays. In addition, an immunohistochemical study on 347 patients with breast cancer with long-term follow-up and analysis of disseminated tumor cells (DTCs) was performed. In both cell lines, high ALCAM expression was associated with reduced cell motility. In addition, ALCAM silencing in MDA-MB231 cells resulted in lower invasive potential, whereas high ALCAM expression was associated with increased apoptosis in both cell lines. Among genes which were differentially expressed in clones with altered ALCAM expression, there was an overlap of 15 genes between both cell lines, among them cathepsin D, keratin 7, gelsolin, and ets2 whose deregulation was validated by western blot analysis. In MDA-MB231 cells, we observed a correlation with VEGF expression which was validated by enzyme-linked immuno sorbent assay (ELISA). Our IHC results on primary breast carcinomas showed that ALCAM expression was associated with an estrogen receptor-positive phenotype. In addition, strong ALCAM immunostaining correlated with nodal involvement and the presence of tumor cells in bone marrow. By Kaplan-Meier analysis, strong ALCAM expression in ductal carcinomas correlated with shorter recurrence-free intervals (P=0.048) and overall survival (OAS, P=0.003). Our results indicate that the biologic role of ALCAM in breast cancer is complex, but overexpression might be relevant for outcome in ductal carcinomas.

  10. X-ray structure analyses of biological molecules and particles in Japan. A brief history and future prospect

    International Nuclear Information System (INIS)

    Nakasako, Masayoshi; Yamamoto, Masaki

    2015-01-01

    In Japan, X-ray structure analyses of molecules and particles from biology started in the 1970s. The structure analysis methods have been developed through the innovation of various techniques in advance, and have contributed for understanding the elementary and microscopic processes in life. Here we summarize briefly the history of X-ray structure analyses for structural biology in Japan and think about the prospect. (author)

  11. Ion and electron swarm studies of relevance to plasma processing: positive ion-molecule and electron-molecule studies of SF6 and derivatives

    International Nuclear Information System (INIS)

    Atterbury, C.; Kennedy, R.A.; Critchley, A.D.J.; Mayhew, C.A.

    2002-01-01

    Many sequential and parallel chemical reactions involving charged species occur in a plasma. Data needed to model plasma's chemical and physical environment includes cross-section, rate coefficients, and product ion distribution of electron-molecule and ion-molecule processes. Such reactions are studied by our group away from the complexity of the plasma environment, with experimental techniques that allow us to concentrate on a single process, where usually only one or two species are involved. A molecule commonly used in plasma etching applications is SF 6 1,2 . We have performed a series of positive ion-molecule and electron attachment studies on SF 6 and related molecules, including SeF 6 , TeF 6 (i.e. XF 6 molecules), SF 5 CF 3 and SF 5 Cl (i.e. SF 5 X molecules) 3- (. The studies of ion reactions with and electron attachment to SF 6 and physically similar molecules are of value when seeking to understand the ion and electron chemistry occurring in SF 6 containing plasma. The result of these studies are presented in this poster. Ion-molecule reactions. Rate coefficients and ion product branching ratios have been determined with the Selected Ion Flow Tube (SIFT) at room temperature (300 K) for reactions of SF 5 X with the following twenty-two cations; Ne + , F + , Ar + , N 2 + , N + , CO + , CO 2 + , O + , N 2 O + , O 2 + , SF 4 + , CF 2 + , SF + , SF 2 + , NO 2 + , SF 5 + , NO + , CF + , CF 3 + , SF 3 + , and H 3 O + (listed in order of decreasing recombination energy). SF 2 + , NO 2 + , NO + , SF 3 + , and H 3 O + are found to be unreacted with both SF 5 CF 3 and SF 5 Cl. The majority of the other reactions proceed with rate coefficients that are close to the capture value. Those found to occur at rates significantly less than the capture mechanism value re the reactions of O 2 + , SF + , SF 5 + , and CF 3 + with SF 5 CF 3 , and SF 4 + and SF 5 + with SF 5 Cl. Several distinction processes are observed among the large number of reactions studied, including

  12. Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions

    Science.gov (United States)

    Valenti, Laura E.; Giacomelli, Carla E.

    2017-05-01

    Silver nanoparticles (Ag-NP) are the most used nanomaterial in consumer products due to the intrinsic antimicrobial capacity of silver. However, Ag-NP may be also harmful to algae, aquatic species, mammalian cells, and higher plants because both Ag+ and nanoparticles are responsible of cell damages. The oxidative dissolution of Ag-NP would proceed to completion under oxic conditions, but the rate and extent of the dissolution depend on several factors. This work correlates the effect of the capping agent (albumin and citrate) with the stability of Ag-NP towards agglomeration in simulated body fluid (SBF) and oxidation in the presence of ROS species (H2O2). Capping provides colloidal stability only through electrostatic means, whereas albumin acts as bulky ligands giving steric and electrostatic repulsion, inhibiting the agglomeration in SBF. However, citrate capping protects Ag-NP from dissolution to a major extent than albumin does because of its reducing power. Moreover, citrate in solution minimizes the oxidation of albumin-coated Ag-NP even after long incubation times. H2O2-induced dissolution proceeds to completion with Ag-NP incubated in SBF, while incubation in citrate leads to an incomplete oxidation. In short, albumin is an excellent capping agent to minimize Ag-NP agglomeration whereas citrate provides a mild-reductive medium that prevents dissolution in biological relevant media as well as in the presence of ROS species. These results provide insight into how the surface properties and media composition affect the release of Ag+ from Ag-NP, related to the cell toxicity and relevant to the storage and lifetime of silver-containing nanomaterials.

  13. Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, Laura E.; Giacomelli, Carla E., E-mail: giacomel@fcq.unc.edu.ar [Universidad Nacional de Córdoba, Ciudad Universitaria, Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas (Argentina)

    2017-05-15

    Silver nanoparticles (Ag-NP) are the most used nanomaterial in consumer products due to the intrinsic antimicrobial capacity of silver. However, Ag-NP may be also harmful to algae, aquatic species, mammalian cells, and higher plants because both Ag{sup +} and nanoparticles are responsible of cell damages. The oxidative dissolution of Ag-NP would proceed to completion under oxic conditions, but the rate and extent of the dissolution depend on several factors. This work correlates the effect of the capping agent (albumin and citrate) with the stability of Ag-NP towards agglomeration in simulated body fluid (SBF) and oxidation in the presence of ROS species (H{sub 2}O{sub 2}). Capping provides colloidal stability only through electrostatic means, whereas albumin acts as bulky ligands giving steric and electrostatic repulsion, inhibiting the agglomeration in SBF. However, citrate capping protects Ag-NP from dissolution to a major extent than albumin does because of its reducing power. Moreover, citrate in solution minimizes the oxidation of albumin-coated Ag-NP even after long incubation times. H{sub 2}O{sub 2}-induced dissolution proceeds to completion with Ag-NP incubated in SBF, while incubation in citrate leads to an incomplete oxidation. In short, albumin is an excellent capping agent to minimize Ag-NP agglomeration whereas citrate provides a mild-reductive medium that prevents dissolution in biological relevant media as well as in the presence of ROS species. These results provide insight into how the surface properties and media composition affect the release of Ag{sup +} from Ag-NP, related to the cell toxicity and relevant to the storage and lifetime of silver-containing nanomaterials.

  14. Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization.

    Science.gov (United States)

    Lu, Mei; Wolff, Chloe; Cui, Weidong; Chen, Hao

    2012-04-01

    Recently we have shown that, as a versatile ionization technique, desorption electrospray ionization (DESI) can serve as a useful interface to combine electrochemistry (EC) with mass spectrometry (MS). In this study, the EC/DESI-MS method has been further applied to investigate some aqueous phase redox reactions of biological significance, including the reduction of peptide disulfide bonds and nitroaromatics as well as the oxidation of phenothiazines. It was found that knotted/enclosed disulfide bonds in the peptides apamin and endothelin could be electrochemically cleaved. Subsequent tandem MS analysis of the resulting reduced peptide ions using collision-induced dissociation (CID) and electron-capture dissociation (ECD) gave rise to extensive fragment ions, providing a fast protocol for sequencing peptides with complicated disulfide bond linkages. Flunitrazepam and clonazepam, a class of nitroaromatic drugs, are known to undergo reduction into amines which was proposed to involve nitroso and N-hydroxyl intermediates. Now in this study, these corresponding intermediate ions were successfully intercepted and their structures were confirmed by CID. This provides mass spectrometric evidence for the mechanism of the nitro to amine conversion process during nitroreduction, an important redox reaction involved in carcinogenesis. In addition, the well-known oxidation reaction of chlorpromazine was also examined. The putative transient one-electron transfer product, the chlorpromazine radical cation (m/z 318), was captured by MS, for the first time, and its structure was also verified by CID. In addition to these observations, some features of the DESI-interfaced electrochemical mass spectrometry were discussed, such as simple instrumentation and the lack of background signal. These results further demonstrate the feasibility of EC/DESI-MS for the study of the biology-relevant redox chemistry and would find applications in proteomics and drug development research.

  15. A small molecule (pluripotin as a tool for studying cancer stem cell biology: proof of concept.

    Directory of Open Access Journals (Sweden)

    Susan D Mertins

    Full Text Available BACKGROUND: Cancer stem cells (CSC are thought to be responsible for tumor maintenance and heterogeneity. Bona fide CSC purified from tumor biopsies are limited in supply and this hampers study of CSC biology. Furthermore, purified stem-like CSC subpopulations from existing tumor lines are unstable in culture. Finding a means to overcome these technical challenges would be a useful goal. In a first effort towards this, we examined whether a chemical probe that promotes survival of murine embryonic stem cells without added exogenous factors can alter functional characteristics in extant tumor lines in a fashion consistent with a CSC phenotype. METHODOLOGY/PRINCIPAL FINDINGS: The seven tumor lines of the NCI60 colon subpanel were exposed to SC-1 (pluripotin, a dual kinase and GTPase inhibitor that promotes self-renewal, and then examined for tumorigenicity under limiting dilution conditions and clonogenic activity in soft agar. A statistically significant increase in tumor formation following SC-1 treatment was observed (p<0.04. Cloning efficiencies and expression of putative CSC surface antigens (CD133 and CD44 were also increased. SC-1 treatment led to sphere formation in some colon tumor lines. Finally, SC-1 inhibited in vitro kinase activity of RSK2, and another RSK2 inhibitor increased colony formation implicating a role for this kinase in eliciting a CSC phenotype. CONCLUSIONS/SIGNIFICANCE: These findings validate a proof of concept study exposure of extant tumor lines to a small molecule may provide a tractable in vitro model for understanding CSC biology.

  16. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions.

    Science.gov (United States)

    Mallick, Pankajini; Taneja, Guncha; Moorthy, Bhagavatula; Ghose, Romi

    2017-06-01

    Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.

  17. From Molecules to Life: Quantifying the Complexity of Chemical and Biological Systems in the Universe.

    Science.gov (United States)

    Böttcher, Thomas

    2018-01-01

    Life is a complex phenomenon and much research has been devoted to both understanding its origins from prebiotic chemistry and discovering life beyond Earth. Yet, it has remained elusive how to quantify this complexity and how to compare chemical and biological units on one common scale. Here, a mathematical description of molecular complexity was applied allowing to quantitatively assess complexity of chemical structures. This in combination with the orthogonal measure of information complexity resulted in a two-dimensional complexity space ranging over the entire spectrum from molecules to organisms. Entities with a certain level of information complexity directly require a functionally complex mechanism for their production or replication and are hence indicative for life-like systems. In order to describe entities combining molecular and information complexity, the term biogenic unit was introduced. Exemplified biogenic unit complexities were calculated for ribozymes, protein enzymes, multimeric protein complexes, and even an entire virus particle. Complexities of prokaryotic and eukaryotic cells, as well as multicellular organisms, were estimated. Thereby distinct evolutionary stages in complexity space were identified. The here developed approach to compare the complexity of biogenic units allows for the first time to address the gradual characteristics of prebiotic and life-like systems without the need for a definition of life. This operational concept may guide our search for life in the Universe, and it may direct the investigations of prebiotic trajectories that lead towards the evolution of complexity at the origins of life.

  18. From Molecules to Living Organisms : an Interplay between Biology and Physics : Lecture Notes of the Les Houches School of Physics

    CERN Document Server

    Nury, Hughes; Parcy, François; Ruigrok, Rob W H; Ziegler, Christine; Cugliandolo, Leticia F; Session CII

    2016-01-01

    The aim of this book is to provide new ideas for studying living matter by a simultaneous understanding of behavior from molecules to the cell, to the whole organism in the light of physical concepts. Indeed, forces guide most biological phenomena. In some cases these forces can be well-described and thus used to model a particular biological phenomenon. This is exemplified here by the study of membranes, where their shapes and curvatures can be modeled using a limited number of parameters that are measured experimentally. The growth of plants is another example where the combination of physics, biology and mathematics leads to a predictive model. The laws of thermodynamics are essential, as they dictate the behavior of proteins, or more generally biological molecules, in an aqueous environment. Integrated studies from the molecule to a larger scale need a combination of cutting-edge approaches, such as the use of new X-ray sources, in-cell NMR, cryo-electron microscopy or single-molecule microscopy. Some are...

  19. Action video game players' visual search advantage extends to biologically relevant stimuli.

    Science.gov (United States)

    Chisholm, Joseph D; Kingstone, Alan

    2015-07-01

    Research investigating the effects of action video game experience on cognition has demonstrated a host of performance improvements on a variety of basic tasks. Given the prevailing evidence that these benefits result from efficient control of attentional processes, there has been growing interest in using action video games as a general tool to enhance everyday attentional control. However, to date, there is little evidence indicating that the benefits of action video game playing scale up to complex settings with socially meaningful stimuli - one of the fundamental components of our natural environment. The present experiment compared action video game player (AVGP) and non-video game player (NVGP) performance on an oculomotor capture task that presented participants with face stimuli. In addition, the expression of a distractor face was manipulated to assess if action video game experience modulated the effect of emotion. Results indicate that AVGPs experience less oculomotor capture than NVGPs; an effect that was not influenced by the emotional content depicted by distractor faces. It is noteworthy that this AVGP advantage emerged despite participants being unaware that the investigation had to do with video game playing, and participants being equivalent in their motivation and treatment of the task as a game. The results align with the notion that action video game experience is associated with superior attentional and oculomotor control, and provides evidence that these benefits can generalize to more complex and biologically relevant stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Extracellular membrane vesicles in blood products-biology and clinical relevance

    Directory of Open Access Journals (Sweden)

    Emilija Krstova Krajnc

    2016-01-01

    Full Text Available Extracellular membrane vesicles are fragments shed from plasma membranes off all cell types that are undergoing apoptosis or are being subjected to various types of stimulation or stress.  Even in the process of programmed cell death (apoptosis, cell fall apart of varying size vesicles. They expose phosphatidylserine (PS on the outer leaflet of their membrane, and bear surface membrane antigens reflecting their cellular origin. Extracellular membrane vesicles have been isolated from many types of biological fluids, including serum, cerebrospinal fluid, urine, saliva, tears and conditioned culture medium. Flow cytometry is one of the many different methodological approaches that have been used to analyze EMVs. The method attempts to characterize the EMVs cellular origin, size, population, number, and structure. EMVs are present and accumulate in blood products (erythrocytes, platelets as well as in fresh frozen plasma during storage. The aim of this review is to highlight the importance of extracellular vesicles as a cell-to-cell communication system and the role in the pathogenesis of different diseases. Special emphasis will be given to the implication of extracellular membrane vesicles in blood products and their clinical relevance. Although our understanding of the role of  EMVs in disease is far from comprehensive, they display promise as biomarkers for different diseases in the future and also as a marker of quality and safety in the quality control of blood products.

  1. Ultrafast relaxation dynamics of a biologically relevant probe dansyl at the micellar surface.

    Science.gov (United States)

    Sarkar, Rupa; Ghosh, Manoranjan; Pal, Samir Kumar

    2005-02-01

    We report picosecond-resolved measurement of the fluorescence of a well-known biologically relevant probe, dansyl chromophore at the surface of a cationic micelle (cetyltrimethylammonium bromide, CTAB). The dansyl chromophore has environmentally sensitive fluorescence quantum yields and emission maxima, along with large Stokes shift. In order to study the solvation dynamics of the micellar environment, we measured the fluorescence of dansyl chromophore attached to the micellar surface. The fluorescence transients were observed to decay (with time constant approximately 350 ps) in the blue end and rise with similar timescale in the red end, indicative of solvation dynamics of the environment. The solvation correlation function is measured to decay with time constant 338 ps, which is much slower than that of ordinary bulk water. Time-resolved anisotropy of the dansyl chromophore shows a bi-exponential decay with time constants 413 ps (23%) and 1.3 ns (77%), which is considerably slower than that in free solvents revealing the rigidity of the dansyl-micelle complex. Time-resolved area-normalized emission spectroscopic (TRANES) analysis of the time dependent emission spectra of the dansyl chromophore in the micellar environment shows an isoemissive point at 21066 cm-1. This indicates the fluorescence of the chromophore contains emission from two kinds of excited states namely locally excited state (prior to charge transfer) and charge transfer state. The nature of the solvation dynamics in the micellar environments is therefore explored from the time-resolved anisotropy measurement coupled with the TRANES analysis of the fluorescence transients. The time scale of the solvation is important for the mechanism of molecular recognition.

  2. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  3. Study about the relevance and the disclosure of biological assets of listed companies in BM&FBOVESPA

    Directory of Open Access Journals (Sweden)

    Luciana Holtz

    2013-08-01

    Full Text Available The main objective this article is to verify that the information content of biological assets disclosed in the financial statements are relevant and, the secondary objective perform content analysis of the notes verifying the compliance of information supplied by entities with CPC 29. The study sample was composed of publicly traded stock companies listed on the BM & FBOVESPA with data for the year 2010 and 2011. The empirical tests were conducted applying relevance models, using observations of 347 active companies characterizing a study model pooled ordinary least squares – POLS, including companies that have reported biological assets into account specific .The companies that had values of biological assets posted have had analyzed explanatory notes referring to this account. The results provide empirical evidence that the information content of biological assets disclosed by companies is not relevant to the sample. In relation the content analysis of the notes was checked a partial compliance of the standard, there is a disparity in the information disclosure practices by the companies analyzed, as well as an omission of items required by the standard. Can be inferred that loss of the relevance has occurred, in part, by the poor quality of the notes, which may make it difficult for outside users in interpreting the information disclosed.

  4. Using novel descriptor accounting for ligand-receptor interactions to define and visually explore biologically relevant chemical space.

    Science.gov (United States)

    Rabal, Obdulia; Oyarzabal, Julen

    2012-05-25

    The definition and pragmatic implementation of biologically relevant chemical space is critical in addressing navigation strategies in the overlapping regions where chemistry and therapeutically relevant targets reside and, therefore, also key to performing an efficient drug discovery project. Here, we describe the development and implementation of a simple and robust method for representing biologically relevant chemical space as a general reference according to current knowledge, independently of any reference space, and analyzing chemical structures accordingly. Underlying our method is the generation of a novel descriptor (LiRIf) that converts structural information into a one-dimensional string accounting for the plausible ligand-receptor interactions as well as for topological information. Capitalizing on ligand-receptor interactions as a descriptor enables the clustering, profiling, and comparison of libraries of compounds from a chemical biology and medicinal chemistry perspective. In addition, as a case study, R-groups analysis is performed to identify the most populated ligand-receptor interactions according to different target families (GPCR, kinases, etc.), as well as to evaluate the coverage of biologically relevant chemical space by structures annotated in different databases (ChEMBL, Glida, etc.).

  5. Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    Science.gov (United States)

    2011-01-01

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

  6. Developmental Testing of Liquid and Gaseous/Vaporous Decontamination on Bacterial Spores and Other Biological Warfare Agents on Military Relevant Surfaces

    Science.gov (United States)

    2016-02-11

    Vaporous Decontamination on Bacterial Spores and Other Biological Warfare Agents on Military-Relevant Surfaces 5a. CONTRACT NUMBER 5b. GRANT... DECONTAMINATION ON BACTERIAL SPORES AND OTHER BIOLOGICAL WARFARE AGENTS ON MILITARY-RELEVANT SURFACES Page Paragraph 1. SCOPE...surfaces before and after decontamination . The protocol in this TOP is based on the developed test methodologies from Edgewood Chemical Biological

  7. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research

    Directory of Open Access Journals (Sweden)

    Toshitsugu Fujita

    2015-09-01

    Full Text Available Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE proteins and the clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated proteins (Cas (CRISPR/Cas system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing.

  8. Self-Relevance Constructions of Biology Concepts: Meaning-Making and Identity-Formation

    Science.gov (United States)

    Davidson, Yonaton Sahar

    2018-01-01

    Recent research supports the benefit of students' construction of relevance through writing about the connection of content to their life. However, most such research defines relevance narrowly as utility value--perceived instrumentality of the content to the student's career goals. Furthermore, the scope of phenomenological and conceptual…

  9. Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows

    NARCIS (Netherlands)

    Stamhuis, Eize J.

    2006-01-01

    Particle image velocimetry (PIV) has proven to be a very useful technique in mapping animal-generated flows or flow patterns relevant to biota. Here, theoretical background is provided and experimental details of 2-dimensional digital PIV are explained for mapping flow produced by or relevant to

  10. Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding.

    Directory of Open Access Journals (Sweden)

    Jonghyun Park

    2010-11-01

    Full Text Available DNA binding by MutL homologs (MLH/PMS during mismatch repair (MMR has been considered based on biochemical and genetic studies. Bulk studies with MutL and its yeast homologs Mlh1-Pms1 have suggested an integral role for a single-stranded DNA (ssDNA binding activity during MMR. We have developed single-molecule Förster resonance energy transfer (smFRET and a single-molecule DNA flow-extension assays to examine MutL interaction with ssDNA in real time. The smFRET assay allowed us to observe MutL-ssDNA association and dissociation. We determined that MutL-ssDNA binding required ATP and was the greatest at ionic strength below 25 mM (K(D = 29 nM while it dramatically decreases above 100 mM (K(D>2 µM. Single-molecule DNA flow-extension analysis suggests that multiple MutL proteins may bind ssDNA at low ionic strength but this activity does not enhance stability at elevated ionic strengths. These studies are consistent with the conclusion that a stable MutL-ssDNA interaction is unlikely to occur at physiological salt eliminating a number of MMR models. However, the activity may infer some related dynamic DNA transaction process during MMR.

  11. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  12. CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources.

    Science.gov (United States)

    Bleda, Marta; Tarraga, Joaquin; de Maria, Alejandro; Salavert, Francisco; Garcia-Alonso, Luz; Celma, Matilde; Martin, Ainoha; Dopazo, Joaquin; Medina, Ignacio

    2012-07-01

    During the past years, the advances in high-throughput technologies have produced an unprecedented growth in the number and size of repositories and databases storing relevant biological data. Today, there is more biological information than ever but, unfortunately, the current status of many of these repositories is far from being optimal. Some of the most common problems are that the information is spread out in many small databases; frequently there are different standards among repositories and some databases are no longer supported or they contain too specific and unconnected information. In addition, data size is increasingly becoming an obstacle when accessing or storing biological data. All these issues make very difficult to extract and integrate information from different sources, to analyze experiments or to access and query this information in a programmatic way. CellBase provides a solution to the growing necessity of integration by easing the access to biological data. CellBase implements a set of RESTful web services that query a centralized database containing the most relevant biological data sources. The database is hosted in our servers and is regularly updated. CellBase documentation can be found at http://docs.bioinfo.cipf.es/projects/cellbase.

  13. The Fortymile caribou herd: novel proposed management and relevant biology, 1992-1997

    Directory of Open Access Journals (Sweden)

    Rodney D. Boertje

    2000-04-01

    Full Text Available A diverse, international Fortymile Planning Team wrote a novel Fortymile caribou herd {Rangifer tarandus granti Management Plan in 1995 (Boertje & Gardner, 1996: 56-77. The primary goal of this plan is to begin restoring the Fortymile herd to its former range; >70% of the herd's former range was abandoned as herd size declined. Specific objectives call for increasing the Fortymile herd by at least 5-10% annually from 1998-2002. We describe demographics of the herd, factors limiting the herd, and condition of the herd and range during 1992-1997. These data were useful in proposing management actions for the herd and should be instrumental in future evaluations of the plan's actions. The following points summarize herd biology relevant to management proposed by the Fortymile Planning Team: 1. Herd numbers remained relatively stable during 1990-1995 (about 22 000-23 000 caribou. On 21 June 1996 we counted about 900 additional caribou in the herd, probably a result of increased pregnancy rates in 1996. On 26 June 1997 we counted about 2500 additional caribou in the herd, probably a result of recruitment of the abundant 1996 calves and excellent early survival of the 1997 calves. The Team deemed that implementing management actions during a period of natural growth would be opportune. 2. Wolf (Canis lupus and grizzly bear (Ursus arctos predation were the most important sources of mortality, despite over a decade of the most liberal regulations in the state for harvesting of wolves and grizzly bears. Wolves were the most important predator. Wolves killed between 2000 and 3000 caribou calves annually during this study and between 1000 and 2300 older caribou; 1200-1900 calves were killed from May through September. No significant differences in annual wolf predation rates on calves or adults were observed between 1994 and early winter 1997. Reducing wolf predation was judged by the Team to be the most manageable way to help hasten or stimulate

  14. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  15. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species

    OpenAIRE

    Matthew P. Adams; Catherine J. Collier; Sven Uthicke; Yan X. Ow; Lucas Langlois; Katherine R. O’Brien

    2017-01-01

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluat...

  16. SASSIE: A program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints

    Science.gov (United States)

    Curtis, Joseph E.; Raghunandan, Sindhu; Nanda, Hirsh; Krueger, Susan

    2012-02-01

    A program to construct ensembles of biomolecular structures that are consistent with experimental scattering data are described. Specifically, we generate an ensemble of biomolecular structures by varying sets of backbone dihedral angles that are then filtered using experimentally determined restraints to rapidly determine structures that have scattering profiles that are consistent with scattering data. We discuss an application of these tools to predict a set of structures for the HIV-1 Gag protein, an intrinsically disordered protein, that are consistent with small-angle neutron scattering experimental data. We have assembled these algorithms into a program called SASSIE for structure generation, visualization, and analysis of intrinsically disordered proteins and other macromolecular ensembles using neutron and X-ray scattering restraints. Program summaryProgram title: SASSIE Catalogue identifier: AEKL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3 No. of lines in distributed program, including test data, etc.: 3 991 624 No. of bytes in distributed program, including test data, etc.: 826 Distribution format: tar.gz Programming language: Python, C/C++, Fortran Computer: PC/Mac Operating system: 32- and 64-bit Linux (Ubuntu 10.04, Centos 5.6) and Mac OS X (10.6.6) RAM: 1 GB Classification: 3 External routines: Python 2.6.5, numpy 1.4.0, swig 1.3.40, scipy 0.8.0, Gnuplot-py-1.8, Tcl 8.5, Tk 8.5, Mac installation requires aquaterm 1.0 (or X window system) and Xcode 3 development tools. Nature of problem: Open source software to generate structures of disordered biological molecules that subsequently allow for the comparison of computational and experimental results is limiting the use of scattering resources. Solution method: Starting with an all atom model of a protein, for example, users can input

  17. Biologically effective dose distribution based on the linear quadratic model and its clinical relevance

    International Nuclear Information System (INIS)

    Lee, Steve P.; Leu, Min Y.; Smathers, James B.; McBride, William H.; Parker, Robert G.; Withers, H. Rodney

    1995-01-01

    Purpose: Radiotherapy plans based on physical dose distributions do not necessarily entirely reflect the biological effects under various fractionation schemes. Over the past decade, the linear-quadratic (LQ) model has emerged as a convenient tool to quantify biological effects for radiotherapy. In this work, we set out to construct a mechanism to display biologically oriented dose distribution based on the LQ model. Methods and Materials: A computer program that converts a physical dose distribution calculated by a commercially available treatment planning system to a biologically effective dose (BED) distribution has been developed and verified against theoretical calculations. This software accepts a user's input of biological parameters for each structure of interest (linear and quadratic dose-response and repopulation kinetic parameters), as well as treatment scheme factors (number of fractions, fractional dose, and treatment time). It then presents a two-dimensional BED display in conjunction with anatomical structures. Furthermore, to facilitate clinicians' intuitive comparison with conventional fractionation regimen, a conversion of BED to normalized isoeffective dose (NID) is also allowed. Results: Two sample cases serve to illustrate the application of our tool in clinical practice. (a) For an orthogonal wedged pair of x-ray beams treating a maxillary sinus tumor, the biological effect at the ipsilateral mandible can be quantified, thus illustrates the so-called 'double-trouble' effects very well. (b) For a typical four-field, evenly weighted prostate treatment using 10 MV x-rays, physical dosimetry predicts a comparable dose at the femoral necks between an alternate two-fields/day and four-fields/day schups. However, our BED display reveals an approximate 21% higher BED for the two-fields/day scheme. This excessive dose to the femoral necks can be eliminated if the treatment is delivered with a 3:2 (anterio-posterior/posterio-anterior (AP

  18. Teleology then and now: the question of Kant's relevance for contemporary controversies over function in biology.

    Science.gov (United States)

    Zammito, John

    2006-12-01

    'Naturalism' is the aspiration of contemporary philosophy of biology, and Kant simply cannot be refashioned into a naturalist. Instead, epistemological 'deflation' was the decisive feature of Kant's treatment of the 'biomedical' science in his day, so it is not surprising that this might attract some philosophers of science to him today. A certain sense of impasse in the contemporary 'function talk' seems to motivate renewed interest in Kant. Kant--drawing on his eighteenth-century predecessors-provided a discerning and powerful characterization of what biologists had to explain in organic form. His difference from the rest is that he opined that it was impossible to explain it. Its 'inscrutability' was intrinsic. The third Critique essentially proposed the reduction of biology to a kind of pre-scientific descriptivism, doomed never to attain authentic scientificity, to have its 'Newton of the blade of grass'. By contrast, for Locke, and a fortiori for Buffon and his followers, 'intrinsic purposiveness' was a fact of the matter about concrete biological phenomena; the features of internal self-regulation were hypotheses arising out of actual research practice. The difference comes most vividly to light once we recognize Kant's distinction of the concept of organism from the concept of life. If biology must conceptualize self-organization as actual in the world, Kant's regulative/constitutive distinction is pointless in practice and the (naturalist) philosophy of biology has urgent work to undertake for which Kant turns out not to be very helpful.

  19. Biological effects of environmentally relevant concentrations of the pharmaceutical Triclosan in the marine mussel Perna perna (Linnaeus, 1758)

    Energy Technology Data Exchange (ETDEWEB)

    Sanzi Cortez, Fernando, E-mail: lecotox@unisanta.br [Instituto de Pesquisas Energeticas e Nucleares IPEN-CNEN/SP, 05508-000 Sao Paulo, SP (Brazil); Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Dias Seabra Pereira, Camilo [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Instituto do Mar, Universidade Federal de Sao Paulo, 11030-400 Santos, SP (Brazil); Ramos Santos, Aldo Ramos [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Cesar, Augusto; Choueri, Rodrigo Brasil [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Instituto do Mar, Universidade Federal de Sao Paulo, 11030-400 Santos, SP (Brazil); Martini, Gisela de Assis [Laboratorio de Ecotoxicologia, Universidade Santa Cecilia, 11045-907 Santos, SP (Brazil); Bohrer-Morel, Maria Beatriz [Instituto de Pesquisas Energeticas e Nucleares IPEN-CNEN/SP, 05508-000 Sao Paulo, SP (Brazil)

    2012-09-15

    Triclosan (5-Chloro-2-(2,4-dichlorophenoxy) phenol) is an antibacterial compound widely employed in pharmaceuticals and personal care products. Although this emerging compound has been detected in aquatic environments, scarce information is found on the effects of Triclosan to marine organisms. The aim of this study was to evaluate the toxicity of a concentration range of Triclosan through fertilization assay (reproductive success), embryo-larval development assay (early life stage) and physiological stress (Neutral Red Retention Time assay - NRRT) (adult stage) in the marine sentinel organism Perna perna. The mean inhibition concentrations for fertilization (IC{sub 50} = 0.490 mg L{sup -1}) and embryo-larval development (IC{sub 50} = 0.135 mg L{sup -1}) tests were above environmental relevant concentrations (ng L{sup -1}) given by previous studies. Differently, significant reduction on NRRT results was found at 12 ng L{sup -1}, demonstrating the current risk of the continuous introduction of Triclosan into aquatic environments, and the need of ecotoxicological studies oriented by the mechanism of action of the compound. - Highlights: Black-Right-Pointing-Pointer Triclosan causes biological adverse effects at environmental relevant concentrations. Black-Right-Pointing-Pointer Mechanisms of action oriented assays were more sensitive to detect biological damages. Black-Right-Pointing-Pointer Currently there is environmental risks concerned Triclosan in aquatic ecosystems. - Triclosan causes biological adverse effects at environmentally relevant concentrations.

  20. Biological effects of environmentally relevant concentrations of the pharmaceutical Triclosan in the marine mussel Perna perna (Linnaeus, 1758)

    International Nuclear Information System (INIS)

    Sanzi Cortez, Fernando; Dias Seabra Pereira, Camilo; Ramos Santos, Aldo Ramos; Cesar, Augusto; Choueri, Rodrigo Brasil; Martini, Gisela de Assis; Bohrer-Morel, Maria Beatriz

    2012-01-01

    Triclosan (5-Chloro-2-(2,4-dichlorophenoxy) phenol) is an antibacterial compound widely employed in pharmaceuticals and personal care products. Although this emerging compound has been detected in aquatic environments, scarce information is found on the effects of Triclosan to marine organisms. The aim of this study was to evaluate the toxicity of a concentration range of Triclosan through fertilization assay (reproductive success), embryo-larval development assay (early life stage) and physiological stress (Neutral Red Retention Time assay - NRRT) (adult stage) in the marine sentinel organism Perna perna. The mean inhibition concentrations for fertilization (IC 50 = 0.490 mg L −1 ) and embryo-larval development (IC 50 = 0.135 mg L −1 ) tests were above environmental relevant concentrations (ng L −1 ) given by previous studies. Differently, significant reduction on NRRT results was found at 12 ng L −1 , demonstrating the current risk of the continuous introduction of Triclosan into aquatic environments, and the need of ecotoxicological studies oriented by the mechanism of action of the compound. - Highlights: ► Triclosan causes biological adverse effects at environmental relevant concentrations. ► Mechanisms of action oriented assays were more sensitive to detect biological damages. ► Currently there is environmental risks concerned Triclosan in aquatic ecosystems. - Triclosan causes biological adverse effects at environmentally relevant concentrations.

  1. Surface-supported Ag islands stabilized by a quantum size effect: Their interaction with small molecules relevant to ethylene epoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Dahai [Iowa State Univ., Ames, IA (United States)

    2013-05-15

    This dissertation focuses on how QSE-stabilized, surface-supported Ag nanoclusters will interact with ethylene or oxygen. Experiments are performed to determine whether the QSE-mediated Ag islands react differently toward adsorption of ethylene or oxygen, or whether the adsorption of these small molecules will affect the QSE-mediated stability of Ag islands. Studies of the interaction of oxygen with Ag/Si(111)-7×7 were previously reported, but these studies were performed at a low Ag coverage where 3D Ag islands were not formed. So the study of such a system at a higher Ag coverage will be a subject of this work. The interaction of ethylene with Ag/Si(111)-7×7, as well as the interaction of oxygen with Ag/NiAl(110) are also important parts of this study.

  2. Expedient construction of small molecule macroarrays via sequential palladium- and copper-mediated reactions and their ex situ biological testing.

    Science.gov (United States)

    Frei, Reto; Breitbach, Anthony S; Blackwell, Helen E

    2012-05-01

    We report the highly efficient syntheses of a series of focused libraries in the small molecule macroarray format using Suzuki-Miyaura and copper-catalyzed azide-alkyne cycloaddition (or "click") reactions. The libraries were based on stilbene and triazole scaffolds, which are known to have a broad range of biological activities, including quorum-sensing (QS) modulation in bacteria. The library products were generated in parallel on the macroarray in extremely short reaction times (~10-20 min) and isolated in excellent purities. Biological testing of one macroarray library post-cleavage (ex situ) revealed several potent agonists of the QS receptor, LuxR, in Vibrio fischeri. These synthetic agonists, in contrast to others that we have reported, were only active in the presence of the native QS signal in V. fischeri, which is suggestive of a different mode of activity. Notably, the results presented herein showcase the ready compatibility of the macroarray platform with chemical reactions that are commonly utilized in small molecule probe and drug discovery today. As such, this work serves to expand the utility of the small molecule macroarray as a rapid and operationally straightforward approach toward the synthesis and screening of bioactive agents.

  3. New basis set for the prediction of the specific rotation in flexible biological molecules

    DEFF Research Database (Denmark)

    Baranowska-Łaczkowska, Angelika; Z. Łaczkowski, Krzysztof Z. Łaczkowski; Henriksen, Christian

    2016-01-01

    are compared to those obtained with the (d-)aug-cc-pVXZ (X = D, T and Q) basis sets of Dunning et al. The ORP values are in good overall agreement with the aug-cc-pVTZ results making the ORP a good basis set for routine TD-DFT optical rotation calculations of conformationally flexible molecules. The results...

  4. Unequal Activities of Enantiomers via Biological Receptors: Examples of Chiral Drug, Pesticide, and Fragrance Molecules

    Science.gov (United States)

    Mannschreck, Albrecht; Kiesswetter, Roland; von Angerer, Erwin

    2007-01-01

    A molecule coming from outside an organism can form a ligand-receptor complex. Upon its formation, a message is transmitted, for example, to certain cells. In this way, two enantiomers can emit messages that differ, either quantitatively or qualitatively. In the present article, these facts are taken as a common basis for the actions of chiral…

  5. Solid-state nanopores for scanning single molecules and mimicking biology

    NARCIS (Netherlands)

    Kowalczyk, S.W.

    2011-01-01

    Solid-state nanopores, nanometer-size holes in a thin synthetic membrane, are a versatile tool for the detection and manipulation of charged biomolecules. This thesis describes mostly experimental work on DNA translocation through solid-state nanopores, which we study at the single-molecule level.

  6. A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces.

    Science.gov (United States)

    Schneider, Julian; Ciacchi, Lucio Colombi

    2011-02-08

    The behavior of titanium implants in physiological environments is governed by the thin oxide layer that forms spontaneously on the metal surface and mediates the interactions with adsorbate molecules. In order to study the adsorption of biomolecules on titanium in a realistic fashion, we first build up a model of an oxidized Ti surface in contact with liquid water by means of extensive first-principles molecular dynamics simulations. Taking the obtained structure as reference, we then develop a classical potential to model the Ti/TiOx/water interface. This is based on the mapping with Coulomb and Lennard-Jones potentials of the adsorption energy landscape of single water and ammonia molecules on the rutile TiO2(110) surface. The interactions with arbitrary organic molecules are obtained via standard combination rules to established biomolecular force fields. The transferability of our potential to the case of organic molecules adsorbing on the oxidized Ti surface is checked by comparing the classical potential energy surfaces of representative systems to quantum mechanical results at the level of density functional theory. Moreover, we calculate the heat of immersion of the TiO2 rutile surface and the detachment force of a single tyrosine residue from steered molecular dynamics simulations, finding good agreement with experimental reference data in both cases. As a first application, we study the adsorption behavior of the Arg-Gly-Asp (RGD) peptide on the oxidized titanium surface, focusing particularly on the calculation of the free energy of desorption.

  7. Rapid localization of carbon 14-labeled molecules in biological samples by ion mass microscopy

    International Nuclear Information System (INIS)

    Hindie, E.; Escaig, F.; Coulomb, B.; Lebreton, C.; Galle, P.

    1989-01-01

    We report here on the ability of secondary ion mass spectrometry (SIMS) to provide rapid imaging of the intracellular distribution of 14 C-labeled molecules. The validity of this method, using mass discrimination of carbon 14 atoms, was assessed by imaging the distribution of two molecules of well-known metabolism, [ 14 C]-thymidine and [ 14 C]-uridine, incorporated by human fibroblasts in culture. As expected, 14 C ion images showed the presence of [ 14 C]-thymidine in the nucleus of dividing cells, whereas [ 14 C]-uridine was present in the cytoplasm as well as the nucleus of all cells, with a large concentration in the nucleoli. The time required to obtain the distribution images with the SMI 300 microscope was less than 6 min, whereas microautoradiography, the classical method for mapping the tissue distribution of 14 C-labeled molecules, usually requires exposure times of several months. Secondary ion mass spectrometry using in situ mass discrimination is proposed here as a very sensitive method which permits rapid imaging of the subcellular distribution of molecules labeled with carbon 14

  8. Genomics and systems biology - How relevant are the developments to veterinary pharmacology, toxicology and therapeutics?

    NARCIS (Netherlands)

    Witkamp, R.F.

    2005-01-01

    This review discusses some of the recent developments in genomics and its current and future relevance for veterinary pharmacology and toxicology. With the rapid progress made in this field several new approaches in pharmacological and toxicological research have developed and drug discovery and

  9. The Relevance of Biological Sciences in the 21st Century | Onyeka ...

    African Journals Online (AJOL)

    Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives ... Biological Sciences, as the name implies, is a group of sciences, rather than a ... knowledge is better assessed by the various problems of modern civilization ... in the improvement of food supply and elimination of hereditary diseases.

  10. Physical interactions among plant MADS-box transcription factors and their biological relevance

    NARCIS (Netherlands)

    Nougalli Tonaco, I.A.

    2008-01-01

    The biological interpretation of the genome starts from transcription, and many different signaling pathways are integrated at this level. Transcription factors play a central role in the transcription process, because they select the down-stream genes and determine their spatial and temporal

  11. Is 'class effect' relevant when assessing the benefit/risk profile of a biologic agent?

    NARCIS (Netherlands)

    Sterry, W.; Kerkhof, P.C.M. van de

    2012-01-01

    Psoriasis is a chronic, genetically predisposed skin disorder, characterised by thickened scaly plaques. Although no therapy is recognised as curative, therapies aimed at symptom control include biologic agents that are generally designed to block molecular activation of cellular pathways of a

  12. Immunological detection of small organic molecules in the presence of perchlorates: relevance to the life marker chip and life detection on Mars.

    Science.gov (United States)

    Rix, Catherine S; Sims, Mark R; Cullen, David C

    2011-11-01

    The proposed ExoMars mission, due to launch in 2018, aims to look for evidence of extant and extinct life in martian rocks and regolith. Previous attempts to detect organic molecules of biological or abiotic origin on Mars have been unsuccessful, which may be attributable to destruction of these molecules by perchlorate salts during pyrolysis sample extraction techniques. Organic molecules can also be extracted and measured with solvent-based systems. The ExoMars payload includes the Life Marker Chip (LMC) instrument, capable of detecting biomarker molecules of extant and extinct Earth-like life in liquid extracts of martian samples with an antibody microarray assay. The aim of the work reported here was to investigate whether the presence of perchlorate salts, at levels similar to those at the NASA Phoenix landing site, would compromise the LMC extraction and detection method. To test this, we implemented an LMC-representative sample extraction process with an LMC-representative antibody assay and used these to extract and analyze a model sample that consisted of a Mars analog sample matrix (JSC Mars-1) spiked with a representative organic molecular target (pyrene, an example of abiotic meteoritic infall targets) in the presence of perchlorate salts. We found no significant change in immunoassay function when using pyrene standards with added perchlorate salts. When model samples spiked with perchlorate salts were subjected to an LMC-representative liquid extraction, immunoassays functioned in a liquid extract and detected extracted pyrene. For the same model sample matrix without perchlorate salts, we observed anomalous assay signals that coincided with yellow coloration of the extracts. This unexpected observation is being studied further. This initial study indicates that the presence of perchlorate salts, at levels similar to those detected at the NASA Phoenix landing site, is unlikely to prevent the LMC from extracting and detecting organic molecules from

  13. Scope and limitations of high energy electron scattering in obtaining relevant structural information about atoms and molecules

    International Nuclear Information System (INIS)

    Ketkar, S.N.

    1984-01-01

    During the course of this work experiments were undertaken to measure the scattering cross-sections for high energy electrons scattering from various target systems. The experiments can be broadly classified into two categories, one dealing with rather small systems and the other dealing with large systems (at least in the view of physicists). Although the experimental aspects, in so much as the experimental measurement of the intensities of the scattered electron is concerned, is the same for both the cases the motivation for performing the experiment is totally different. In the first case, simple atomic and molecular target systems, namely He, H 2 and D 2 , are used. For such systems, good theoretical framework is available and critical comparisons of experimental cross sections are made with theoretical predictions. Attention is focussed mainly at small momentum transfer (up to 10A -1 ), and correlation and binding effects are studied. In the second case, somewhat larger molecular systems, namely naphthalene, anthraquinone, anthracene and dichromium tetraacetate are used. For such systems attention is focused at large momentum transfer (from 10 to 25 A -1 ) to obtain structural information about the molecules

  14. Albumin Homodimers in Patients with Cirrhosis: Clinical and Prognostic Relevance of a Novel Identified Structural Alteration of the Molecule.

    Science.gov (United States)

    Baldassarre, Maurizio; Domenicali, Marco; Naldi, Marina; Laggetta, Maristella; Giannone, Ferdinando A; Biselli, Maurizio; Patrono, Daniela; Bertucci, Carlo; Bernardi, Mauro; Caraceni, Paolo

    2016-10-26

    Decompensated cirrhosis is associated to extensive post-transcriptional changes of human albumin (HA). This study aims to characterize the occurrence of HA homodimerization in a large cohort of patients with decompensated cirrhosis and to evaluate its association with clinical features and prognosis. HA monomeric and dimeric isoforms were identified in peripheral blood by using a HPLC-ESI-MS technique in 123 cirrhotic patients hospitalized for acute decompensation and 50 age- and sex-comparable healthy controls. Clinical and biochemical parameters were recorded and patients followed up to one year. Among the monomeric isoforms identified, the N- and C-terminal truncated and the native HA underwent homodimerization. All three homodimers were significantly more abundant in patients with cirrhosis, acute-on-chronic liver failure and correlate with the prognostic scores. The homodimeric N-terminal truncated isoform was independently associated to disease complications and was able to stratify 1-year survival. As a result of all these changes, the monomeric native HA was significantly decreased in patients with cirrhosis, being also associated with a poorer prognosis. In conclusion homodimerization is a novel described structural alteration of the HA molecule in decompensated cirrhosis and contributes to the progressive reduction of the monomeric native HA, the only isoform provided of structural and functional integrity.

  15. The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein.

    Directory of Open Access Journals (Sweden)

    Gabriele Giachin

    Full Text Available Humic substances (HS are the largest constituent of soil organic matter and are considered as a key component of the terrestrial ecosystem. HS may facilitate the transport of organic and inorganic molecules, as well as the sorption interactions with environmentally relevant proteins such as prions. Prions enter the environment through shedding from live hosts, facilitating a sustained incidence of animal prion diseases such as Chronic Wasting Disease and scrapie in cervid and ovine populations, respectively. Changes in prion structure upon environmental exposure may be significant as they can affect prion infectivity and disease pathology. Despite its relevance, the mechanisms of prion interaction with HS are still not completely understood. The goal of this work is to advance a structural-level picture of the encapsulation of recombinant, non-infectious, prion protein (PrP into different natural HS. We observed that PrP precipitation upon addition of HS is mainly driven by a mechanism of "salting-out" whereby PrP molecules are rapidly removed from the solution and aggregate in insoluble adducts with humic molecules. Importantly, this process does not alter the protein folding since insoluble PrP retains its α-helical content when in complex with HS. The observed ability of HS to promote PrP insolubilization without altering its secondary structure may have potential relevance in the context of "prion ecology". These results suggest that soil organic matter interacts with prions possibly without altering the protein structures. This may facilitate prions preservation from biotic and abiotic degradation leading to their accumulation in the environment.

  16. Effects of Latanoprost and Bimatoprost on the Expression of Molecules Relevant to Ocular Inflow and Outflow Pathways.

    Directory of Open Access Journals (Sweden)

    Xiaohong Li

    Full Text Available The intraocular pressure (IOP-lowering and side effects in response to different prostaglandin F2α analogues can be variable, but, the underlying basis for this difference remains unknown. This study investigated the differential changes of cellular proteins relevant to IOP-lowering effects of latanoprost and bimatoprost.The human T lymphoblast (MOLT-3 cell line and immortalized human trabecular meshwork (iHTM cells were studied by quantitative PCR and by immunofluorescence after treatment with either latanoprost or bimatoprost. New Zealand white rabbit eyes were treated topically with each agent and, following euthanasia, anterior segment tissues were studied with immunostaining.In cultured MOLT-3 cells, mRNA expression of both c-fos and matrix metalloproteinase 9 increased significantly in response to each agent. In addition, there was little change in tissue inhibitor of metalloproteinase (TIMP-3 mRNA, but a significant decrease in TIMP-4. Fibronectin mRNA in MOLT-3 cells was down-regulated with bimatoprost, but was up-regulated with latanoprost. Immunofluorescence analysis of iHTM cells showed that intracellular fibronectin was significantly decreased by bimatoprost, but was increased by latanoprost. Both latanoprost and bimatoprost increased mRNA expression of NF-кB p65 and decreased that of IкBα. Aquaporin-1 mRNA expression was significantly down-regulated by bimatoprost. Immunostaining also revealed a significant decrease of aquaporin-1 in the ciliary epithelium of New Zealand white rabbits after bimatoprost treatment.Similarities in protein expression produced by latanoprost and bimatoprost in vitro may be relevant to the mechanism for their IOP-lowering effects in vivo. Differences in fibronectin expression and in aquaporin-1 expression in response to each agent may contribute to variability in the IOP-lowering efficacy in some studies.

  17. Environmental biodosimetry: a biologically relevant tool for ecological risk assessment and biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ulsh, B. E-mail: ulshb@mcmaster.ca; Hinton, T.G.; Congdon, J.D.; Dugan, L.C.; Whicker, F.W.; Bedford, J.S

    2003-07-01

    Biodosimetry, the estimation of received doses by determining the frequency of radiation-induced chromosome aberrations, is widely applied in humans acutely exposed as a result of accidents or for clinical purposes, but biodosimetric techniques have not been utilized in organisms chronically exposed to radionuclides in contaminated environments. The application of biodosimetry to environmental exposure scenarios could greatly improve the accuracy, and reduce the uncertainties, of ecological risk assessments and biomonitoring studies, because no assumptions are required regarding external exposure rates and the movement of organisms into and out of contaminated areas. Furthermore, unlike residue analyses of environmental media environmental biodosimetry provides a genetically relevant biomarker of cumulative lifetime exposure. Symmetrical chromosome translocations can impact reproductive success, and could therefore prove to be ecologically relevant as well. We describe our experience in studying aberrations in the yellow-bellied slider turtle as an example of environmental biodosimetry.

  18. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    D'Imporzano, Giuliana; Crivelli, Fernando; Adani, Fabrizio

    2008-01-01

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O 2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O 2 concentration in the biomass free air space (FAS) was kept optimal (O 2 > 140 ml l -1 , v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O 2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O 2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R 2 = 0.991; R 2 CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  19. Demographic history and biologically relevant genetic variation of Native Mexicans inferred from whole-genome sequencing

    OpenAIRE

    Romero-Hidalgo, Sandra; Ochoa-Leyva, Adrián; Garcíarrubio, Alejandro; Acuña-Alonzo, Victor; Antúnez-Argüelles, Erika; Balcazar-Quintero, Martha; Barquera-Lozano, Rodrigo; Carnevale, Alessandra; Cornejo-Granados, Fernanda; Fernández-López, Juan Carlos; García-Herrera, Rodrigo; García-Ortíz, Humberto; Granados-Silvestre, Ángeles; Granados, Julio; Guerrero-Romero, Fernando

    2017-01-01

    Understanding the genetic structure of Native American populations is important to clarify their diversity, demographic history, and to identify genetic factors relevant for biomedical traits. Here, we show a demographic history reconstruction from 12 Native American whole genomes belonging to six distinct ethnic groups representing the three main described genetic clusters of Mexico (Northern, Southern, and Maya). Effective population size estimates of all Native American groups remained bel...

  20. Single molecule optical measurements of orientation and rotations of biological macromolecules

    OpenAIRE

    Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E

    2016-01-01

    The subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measuring their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here...

  1. Inorganic concepts relevant to metal binding, activity, and toxicity in a biological system

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, J.D. (Warner-Lambert Co., Ann Arbor, MI (USA). Parke-Davis Pharmaceutical Research Div.); Turner, J.E.; England, M.W. (Oak Ridge National Lab., TN (USA))

    1990-01-01

    The purpose of this paper is to review selected physical and inorganic concepts and factors which might be important in assessing and/or understanding the fact and disposition of a metal system in a biological environment. Hopefully, such inquiries will ultimately permit us to understand, rationalize, and predict differences and trends in biological effects as a function of the basic nature of a metal system and, in optimal cases, serve as input to a system of guidelines for the notion of Chemical Dosimetry.'' The plan of this paper is to first review, in general terms, the basic principles of the Crystal Field Theory (CFT), a unifying theory of bonding in metal complexes. This will provide the necessary theoretical background for the subsequent discussion of selected concepts and factors. 21 refs., 7 figs., 6 tabs.

  2. Enhanced Bone Formation in Segmental Defects with BMP2 in a Biologically Relevant Molecular Context

    Science.gov (United States)

    2016-10-16

    interfere with the biological activity of the BMP2, and because radioisotope detection methods are highly sensitive and remain quantitative across a large...PRINCIPAL INVESTIGATOR: Dominik R. Haudenschild CONTRACTING ORGANIZATION: University of California, Davis Davis, CA 95618 REPORT DATE : October 2016...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE October 2016 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2015

  3. Consistent robustness analysis (CRA) identifies biologically relevant properties of regulatory network models.

    Science.gov (United States)

    Saithong, Treenut; Painter, Kevin J; Millar, Andrew J

    2010-12-16

    A number of studies have previously demonstrated that "goodness of fit" is insufficient in reliably classifying the credibility of a biological model. Robustness and/or sensitivity analysis is commonly employed as a secondary method for evaluating the suitability of a particular model. The results of such analyses invariably depend on the particular parameter set tested, yet many parameter values for biological models are uncertain. Here, we propose a novel robustness analysis that aims to determine the "common robustness" of the model with multiple, biologically plausible parameter sets, rather than the local robustness for a particular parameter set. Our method is applied to two published models of the Arabidopsis circadian clock (the one-loop [1] and two-loop [2] models). The results reinforce current findings suggesting the greater reliability of the two-loop model and pinpoint the crucial role of TOC1 in the circadian network. Consistent Robustness Analysis can indicate both the relative plausibility of different models and also the critical components and processes controlling each model.

  4. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species.

    Science.gov (United States)

    Adams, Matthew P; Collier, Catherine J; Uthicke, Sven; Ow, Yan X; Langlois, Lucas; O'Brien, Katherine R

    2017-01-04

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (T opt ) for maximum photosynthetic rate (P max ). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.

  5. Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species

    Science.gov (United States)

    Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O'Brien, Katherine R.

    2017-01-01

    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.

  6. Solid-supported synthesis: From pharmacologically relevant heterocycles to biologically active surfaces

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.

    for solid-phase synthesis, methods for on - and off-bead screening of combinatorial libraries and their applic ation to various biological targets. The first part of the thesis is dedicated to the development of methodology for the synthesis of structurally diverse heterocyclic scaffolds via N...... methods for the controlled organo-functionalization of titanium, one of the most prominent materials in medicinal device industry, have been suggested . Initial acidic and oxidative treatment s of the metal surface genera te reactive hydroxyl moieties , which are subsequently modified with synthetically...... versatile amine -containing reagents. Subsequent applications in antimicrobial peptide synthesis, metal -catalysis, release from the surface, and polymer grafti ng, are also presented....

  7. Molecules of various pharmacologically-relevant sizes can cross the ultrasound-induced blood-brain barrier opening in vivo.

    Science.gov (United States)

    Choi, James J; Wang, Shougang; Tung, Yao-Sheng; Morrison, Barclay; Konofagou, Elisa E

    2010-01-01

    Focused ultrasound (FUS) is hereby shown to noninvasively and selectively deliver compounds at pharmacologically relevant molecular weights through the opened blood-brain barrier (BBB). A complete examination on the size of the FUS-induced BBB opening, the spatial distribution of the delivered agents and its dependence on the agent's molecular weight were imaged and quantified using fluorescence microscopy. BBB opening in mice (n=13) was achieved in vivo after systemic administration of microbubbles and subsequent application of pulsed FUS (frequency: 1.525MHz, peak-rarefactional pressure in situ: 570 kPa) to the left murine hippocampus through the intact skin and skull. BBB-impermeant, fluorescent-tagged dextrans at three distinct molecular weights spanning over several orders of magnitude were systemically administered and acted as model therapeutic compounds. First, dextrans of 3 and 70 kDa were delivered trans-BBB while 2000 kDa dextran was not. Second, compared with 70 kDa dextran, a higher concentration of 3 kDa dextran was delivered through the opened BBB. Third, the 3 and 70 kDa dextrans were both diffusely distributed throughout the targeted brain region. However, high concentrations of 70 kDa dextran appeared more punctated throughout the targeted region. In conclusion, FUS combined with microbubbles opened the BBB sufficiently to allow passage of compounds of at least 70 kDa, but not greater than 2000 kDa into the brain parenchyma. This noninvasive and localized BBB opening technique could, thus, provide a unique means for the delivery of compounds of several magnitudes of kDa that include agents with shown therapeutic promise in vitro but whose in vivo translation has been hampered by their associated BBB impermeability. (E-mail: ek2191@columbia.edu).

  8. The relevance of nanoscale biological fragments for ice nucleation in clouds

    Science.gov (United States)

    O‧Sullivan, D.; Murray, B. J.; Ross, J. F.; Whale, T. F.; Price, H. C.; Atkinson, J. D.; Umo, N. S.; Webb, M. E.

    2015-01-01

    Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometre-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addition, we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biological nano-INPs present in the environment which may, for example, become aerosolised in association with fertile soil dust particles.

  9. Elements determination of clinical relevance in biological tissues Dmdmdx/J dystrophic mice strains investigated by NAA

    International Nuclear Information System (INIS)

    Metairon, Sabrina

    2012-01-01

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMD mdx /J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmd mdx /J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  10. A rapid Q-PCR titration protocol for adenovirus and helper-dependent adenovirus vectors that produces biologically relevant results

    Science.gov (United States)

    Gallaher, Sean D.; Berk, Arnold J.

    2013-01-01

    Adenoviruses are employed in the study of cellular processes and as expression vectors used in gene therapy. The success and reproducibility of these studies is dependent in part on having accurate and meaningful titers of replication competent and helper-dependent adenovirus stocks, which is problematic due to the use of varied and divergent titration protocols. Physical titration methods, which quantify the total number of viral particles, are used by many, but are poor at estimating activity. Biological titration methods, such as plaque assays, are more biologically relevant, but are time consuming and not applicable to helper-dependent gene therapy vectors. To address this, a protocol was developed called “infectious genome titration” in which viral DNA is isolated from the nuclei of cells ~3 h post-infection, and then quantified by Q-PCR. This approach ensures that only biologically active virions are counted as part of the titer determination. This approach is rapid, robust, sensitive, reproducible, and applicable to all forms of adenovirus. Unlike other Q-PCR-based methods, titers determined by this protocol are well correlated with biological activity. PMID:23624118

  11. Altitude training causes haematological fluctuations with relevance for the Athlete Biological Passport

    DEFF Research Database (Denmark)

    Bonne, Thomas Christian; Lundby, Carsten; Lundby, Anne Kristine

    2015-01-01

    The impact of altitude training on haematological parameters and the Athlete Biological Passport (ABP) was evaluated in international-level elite athletes. One group of swimmers lived high and trained high (LHTH, n = 10) for three to four weeks at 2130 m or higher whereas a control group (n = 10......) completed a three-week training camp at sea-level. Haematological parameters were determined weekly three times before and four times after the training camps. ABP thresholds for haemoglobin concentration ([Hb]), reticulocyte percentage (RET%), OFF score and the abnormal blood profile score (ABPS) were...... calculated using the Bayesian model. After altitude training, six swimmers exceeded the 99% ABP thresholds: two swimmers exceeded the OFF score thresholds at day +7; one swimmer exceeded the OFF score threshold at day +28; one swimmer exceeded the threshold for RET% at day +14; and one swimmer surpassed...

  12. Carcinogenesis-relevant biological events in the pathophysiology of the efferocytosis phenomenon

    Directory of Open Access Journals (Sweden)

    Gargi Sachin Sarode

    2017-12-01

    Full Text Available The effective removal of cells undergoing programmed cell death, which is referred to as efferocytosis, prevents the leakage of intracellular contents into the surrounding tissue, which could lead to tissue damage and inflammation. Efferocytosis involves a coordinated orchestration of multiple steps that lead to a swift, coherent and immunologically silent removal of dying cells. The release of wound healing cytokines, which resolve inflammation and enhance tissue repair, is an important feature of efferocytosis. However, in addition to the healing cytokines released during efferocytosis, the immunosuppressive action of cytokines promotes the tumor microenvironment, enhances the motility of cancer cells and promotes the evasion of antitumor immunity. The aim of the present review was to comprehensively discuss the efferocytosis phenomenon, the important players associated with this process and their role in cancer-related biological events.

  13. Detection of biological molecules using boronate-based chemical amplification and optical sensors

    Science.gov (United States)

    Van Antwerp, William Peter; Mastrototaro, John Joseph; Lane, Stephen M.; Satcher, Jr., Joe H.; Darrow, Christopher B.; Peyser, Thomas A.; Harder, Jennifer

    1999-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  14. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan Glargaard

    2003-01-01

    is combined with state-of-the-art physical electrochemistry with emphasis on single-crystal, atomically planar electrode surfaces, in situ scanning tunnelling microscopy (STM) and other surface techniques. These approaches have brought bioelectrochemistry important steps forward towards the nanoscale...... and single-molecule levels.We discuss here these advances with reference to two specific redox metalloproteins, the blue single-copper protein Pseudomonas aeruginosa azurin and the single-haem protein Saccharomyces cerevisiae yeast cytochrome c, and a short oligonucleotide. Both proteins can be immobilized...... electron transfer (ET) function retained. In situ STM can also address the microscopic mechanisms for electron tunnelling through the biomolecules and offers novel notions such as coherent multi-ET between the substrate and tip via the molecular redox levels. This differs in important respects from...

  15. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Science.gov (United States)

    Reyes-Gibby, Cielito C; Melkonian, Stephanie C; Wang, Jian; Yu, Robert K; Shelburne, Samuel A; Lu, Charles; Gunn, Gary Brandon; Chambers, Mark S; Hanna, Ehab Y; Yeung, Sai-Ching J; Shete, Sanjay

    2017-01-01

    Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological

  16. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Directory of Open Access Journals (Sweden)

    Cielito C Reyes-Gibby

    Full Text Available Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA, a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive and thymine degradation pathways (p = 1.06-08 were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis. The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67. In conclusion, gene network analysis identified novel molecules and

  17. Altitude training causes haematological fluctuations with relevance for the Athlete Biological Passport.

    Science.gov (United States)

    Bonne, Thomas Christian; Lundby, Carsten; Lundby, Anne Kristine; Sander, Mikael; Bejder, Jacob; Nordsborg, Nikolai Baastrup

    2015-08-01

    The impact of altitude training on haematological parameters and the Athlete Biological Passport (ABP) was evaluated in international-level elite athletes. One group of swimmers lived high and trained high (LHTH, n = 10) for three to four weeks at 2130 m or higher whereas a control group (n = 10) completed a three-week training camp at sea-level. Haematological parameters were determined weekly three times before and four times after the training camps. ABP thresholds for haemoglobin concentration ([Hb]), reticulocyte percentage (RET%), OFF score and the abnormal blood profile score (ABPS) were calculated using the Bayesian model. After altitude training, six swimmers exceeded the 99% ABP thresholds: two swimmers exceeded the OFF score thresholds at day +7; one swimmer exceeded the OFF score threshold at day +28; one swimmer exceeded the threshold for RET% at day +14; and one swimmer surpassed the ABPS threshold at day +14. In the control group, no values exceeded the individual ABP reference range. In conclusion, LHTH induces haematological changes in Olympic-level elite athletes which can exceed the individually generated references in the ABP. Training at altitude should be considered a confounding factor for ABP interpretation for up to four weeks after altitude exposure but does not consistently cause abnormal values in the ABP. Copyright © 2014 John Wiley & Sons, Ltd.

  18. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance.

    Science.gov (United States)

    Yadav, Vikas; Hemansi; Kim, Nayun; Tuteja, Narendra; Yadav, Puja

    2017-01-01

    G quadruplexes (G4) are higher-order DNA and RNA secondary structures formed by G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential G4 quadruplex sequences have been identified in G-rich eukaryotic non-telomeric and telomeric genomic regions. Upon function, G4 formation is known to involve in chromatin remodeling, gene regulation and has been associated with genomic instability, genetic diseases and cancer progression. The natural role and biological validation of G4 structures is starting to be explored, and is of particular interest for the therapeutic interventions for human diseases. However, the existence and physiological role of G4 DNA and G4 RNA in plants species have not been much investigated yet and therefore, is of great interest for the development of improved crop varieties for sustainable agriculture. In this context, several recent studies suggests that these highly diverse G4 structures in plants can be employed to regulate expression of genes involved in several pathophysiological conditions including stress response to biotic and abiotic stresses as well as DNA damage. In the current review, we summarize the recent findings regarding the emerging functional significance of G4 structures in plants and discuss their potential value in the development of improved crop varieties.

  19. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance

    Directory of Open Access Journals (Sweden)

    Vikas Yadav

    2017-07-01

    Full Text Available G quadruplexes (G4 are higher-order DNA and RNA secondary structures formed by G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential G4 quadruplex sequences have been identified in G-rich eukaryotic non-telomeric and telomeric genomic regions. Upon function, G4 formation is known to involve in chromatin remodeling, gene regulation and has been associated with genomic instability, genetic diseases and cancer progression. The natural role and biological validation of G4 structures is starting to be explored, and is of particular interest for the therapeutic interventions for human diseases. However, the existence and physiological role of G4 DNA and G4 RNA in plants species have not been much investigated yet and therefore, is of great interest for the development of improved crop varieties for sustainable agriculture. In this context, several recent studies suggests that these highly diverse G4 structures in plants can be employed to regulate expression of genes involved in several pathophysiological conditions including stress response to biotic and abiotic stresses as well as DNA damage. In the current review, we summarize the recent findings regarding the emerging functional significance of G4 structures in plants and discuss their potential value in the development of improved crop varieties.

  20. An introduction to radiation induced degradation of biological molecules in aqueous solutions

    International Nuclear Information System (INIS)

    Lal, Manohar

    1991-01-01

    Radiation chemistry of aqueous systems is the chemistry of H, OH, e aq - , H 3 O + and H 2 O * formed when a solute in aqueous solutions is exposed to ionising radiation. The pulse radiolysis technique has helped in the production, the detection and understanding of the reactions of primary species with solutes. A great deal of data on radiation biochemical studies e.g. degradation of DNA, its constituents and their protection, radiation protection and sensitisation, generation of superoxide ion and their reactions has already been reported but a great deal still needs to be done for the understanding of radiation biology. (author). 12 refs

  1. The Design of a Molecular Assembly Line Based on Biological Molecules

    Science.gov (United States)

    2003-06-01

    parenthesis in figure 1.8 is a bi-stable toggle switch. Introduction: Molecular assembly lines O=P-O- O O HOH H0P-0- O -O- 4 Polymerase HO H--- O HHO ...sample. Therefore, the samples are self-consistent. From here on, the calculated temperature based on FAM emission MNSowmm" RF Biology: Results and...irradiation for one hour. Figure 2.11 shows the fluorescence spectra of FAM emission (4 scans averaged over 200 seconds) in a 300MHz field. The increased

  2. TaBoo SeArch Algorithm with a Modified Inverse Histogram for Reproducing Biologically Relevant Rare Events of Proteins.

    Science.gov (United States)

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2016-05-10

    The TaBoo SeArch (TBSA) algorithm [ Harada et al. J. Comput. Chem. 2015 , 36 , 763 - 772 and Harada et al. Chem. Phys. Lett. 2015 , 630 , 68 - 75 ] was recently proposed as an enhanced conformational sampling method for reproducing biologically relevant rare events of a given protein. In TBSA, an inverse histogram of the original distribution, mapped onto a set of reaction coordinates, is constructed from trajectories obtained by multiple short-time molecular dynamics (MD) simulations. Rarely occurring states of a given protein are statistically selected as new initial states based on the inverse histogram, and resampling is performed by restarting the MD simulations from the new initial states to promote the conformational transition. In this process, the definition of the inverse histogram, which characterizes the rarely occurring states, is crucial for the efficiency of TBSA. In this study, we propose a simple modification of the inverse histogram to further accelerate the convergence of TBSA. As demonstrations of the modified TBSA, we applied it to (a) hydrogen bonding rearrangements of Met-enkephalin, (b) large-amplitude domain motions of Glutamine-Binding Protein, and (c) folding processes of the B domain of Staphylococcus aureus Protein A. All demonstrations numerically proved that the modified TBSA reproduced these biologically relevant rare events with nanosecond-order simulation times, although a set of microsecond-order, canonical MD simulations failed to reproduce the rare events, indicating the high efficiency of the modified TBSA.

  3. Prognostic value and in vitro biological relevance of Neuropilin 1 and Neuropilin 2 in osteosarcoma.

    Science.gov (United States)

    Boro, Aleksandar; Arlt, Matthias Je; Lengnick, Harald; Robl, Bernhard; Husmann, Maren; Bertz, Josefine; Born, Walter; Fuchs, Bruno

    2015-01-01

    Neoadjuvant chemotherapy in osteosarcoma increased the long-term survival of patients with localized disease considerably but metastasizing osteosarcoma remained largely treatment resistant. Neuropilins, transmembrane glycoproteins, are important receptors for VEGF dependent hyper-vascularization in tumor angiogenesis and their aberrant expression promotes tumorigenesis and metastasis in many solid tumors. Our analysis of Neuropilin-1 (NRP1) and Neuropilin-2 (NRP2) immunostaining in a tissue microarray of 66 osteosarcoma patients identified NRP2 as an indicator of poor overall, metastasis-free and progression free survival while NRP1 had no predictive value. Patients with tumors that expressed NRP2 in the absence of NRP1 had a significantly worse prognosis than NRP1(-)/NRP2(-), NRP1(+) or NRP1(+)/NRP2(+) tumors. Moreover, patients with overt metastases and with NRP2-positive primary tumors had a significantly shorter survival rate than patients with metastases but NRP2-negative tumors. Furthermore, the expression of both NRP1 and NRP2 in osteosarcoma cell lines correlated to a variable degree with the metastatic potential of the respective cell line. To address the functional relevance of Neuropilins for VEGF signaling we used shRNA mediated down-regulation and blocking antibodies of NRP1 and NRP2 in the metastatic 143B and HuO9-M132 cell lines. In 143B cells, VEGFA signaling monitored by AKT phosphorylation was more inhibited by blocking of NRP1, whereas in HuO9-M132 cells NRP2 blocking was more effective indicating that NRP1 and NRP2 can substitute each other in the functional interaction with VEGFR1. Altogether, these data point to NRP2 as a powerful prognostic marker in osteosarcoma and together with NRP1 as a novel target for tumor-suppressive therapy.

  4. Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology

    Science.gov (United States)

    Fujii, Toshiyuki; Moynier, Frédéric; Abe, Minori; Nemoto, Keisuke; Albarède, Francis

    2013-06-01

    Isotope fractionation between the common Cu species present in solution (Cu+, Cu2+, hydroxide, chloride, sulfide, carbonate, oxalate, and ascorbate) has been investigated using both ab initio methods and experimental solvent extraction techniques. In order to establish unambiguously the existence of equilibrium isotope fractionation (as opposed to kinetic isotope fractionation), we first performed laboratory-scale liquid-liquid distribution experiments. Upon exchange between HCl medium and a macrocyclic complex, the 65Cu/63Cu ratio fractionated by -1.06‰ to -0.39‰. The acidity dependence of the fractionation was appropriately explained by ligand exchange reactions between hydrated H2O and Cl- via intramolecular vibrations. The magnitude of the Cu isotope fractionation among important Cu ligands was also estimated by ab initio methods. The magnitude of the nuclear field shift effect to the Cu isotope fractionation represents only ˜3% of the mass-dependent fractionation. The theoretical estimation was expanded to chlorides, hydroxides, sulfides, sulfates, and carbonates under different conditions of pH. Copper isotope fractionation of up to 2‰ is expected for different forms of Cu present in seawater and for different sediments (carbonates, hydroxides, and sulfides). We found that Cu in dissolved carbonates and sulfates is isotopically much heavier (+0.6‰) than free Cu. Isotope fractionation of Cu in hydroxide is minimal. The relevance of these new results to the understanding of metabolic processes was also discussed. Copper is an essential element used by a large number of proteins for electron transfer. Further theoretical estimates of δ65Cu in hydrated Cu(I) and Cu(II) ions, Cu(II) ascorbates, and Cu(II) oxalate predict Cu isotope fractionation during the breakdown of ascorbate into oxalate and account for the isotopically heavy Cu found in animal kidneys.

  5. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    Science.gov (United States)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  6. The Relevance of Chromosome Aberration Yields for Biological Dosimetry After Low-Level Occupational Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bauchinger, M.; Schmid, E.; Hug, O. [Gesellschaft fuer Strahlenforschung, Institut fuer Biologie, Neuherberg, Federal Republic of Germany (Germany); Strahlenbiologisches Institut der Universitaet Muenchen, Federal Republic of Germany (Germany)

    1971-06-15

    The usefulness of chromosome analysis for biological dosimetry has been tested in two groups of persons occupationally exposed to radiation: (I) in nurses employed in gynaecological radiology, exposed especially when handling radium inserts; and (II) in nuclear industry workers, all of which were exposed to external gamma irradiation and some of them also to internal radiation after incorporation of various radionuclides. The total dose registered with personal dosimeters ranged in Group 1 from 0.1 to 91.1 rem accumulated over working periods of 0.1 to 13 years, and in Group II from 1.0 to 18.2 rem accumulated over 1 to 9 years. Compared with unexposed controls, both groups exhibit a significant increase of cells with chromosome aberrations as well as larger numbers of breaks per cell. Dicentrics and rings could be observed in some cells, providing good evidence for previous radiation exposure, since these types of aberrations are extremely rare events in unexposed individuals. No correlation between the aberration yields and the film badge values could be demonstrated in Group II. Also, in Group I the fluctuations from individual to individual are rather high. Nevertheless, a positive correlation to the ''dose'' was obtained. Even a sub-group of the nurses that had only been exposed to 20 rem showed significantly more aberrations than control persons. From the results obtained, type and frequency of chromosome aberrations may be considered an indicator of radiation exposure even at the low doses. The reasons for lack of correspondence of chromosome aberration yields and the results of personal monitoring procedures are discussed in detail. (author)

  7. A meta-analysis of the abscopal effect in preclinical models: Is the biologically effective dose a relevant physical trigger?

    Directory of Open Access Journals (Sweden)

    Raffaella Marconi

    Full Text Available Preclinical in vivo studies using small animals are considered crucial in translational cancer research and clinical implementation of novel treatments. This is of paramount relevance in radiobiology, especially for any technological developments permitted to deliver high doses in single or oligo-fractionated regimens, such as stereotactic ablative radiotherapy (SABR. In this context, clinical success in cancer treatment needs to be guaranteed, sparing normal tissue and preventing the potential spread of disease or local recurrence. In this work we introduce a new dose-response relationship based on relevant publications concerning preclinical models with regard to delivered dose, fractionation schedule and occurrence of biological effects on non-irradiated tissue, abscopal effects.We reviewed relevant publications on murine models and the abscopal effect in radiation cancer research following PRISMA methodology. In particular, through a log-likelihood method, we evaluated whether the occurrence of abscopal effects may be related to the biologically effective dose (BED. To this aim, studies accomplished with different tumor histotypes were considered in our analysis including breast, colon, lung, fibrosarcoma, pancreas, melanoma and head and neck cancer. For all the tumors, the α / β ratio was assumed to be 10 Gy, as generally adopted for neoplastic cells.Our results support the hypothesis that the occurrence rate of abscopal effects in preclinical models increases with BED. In particular, the probability of revealing abscopal effects is 50% when a BED of 60 Gy is generated.Our study provides evidence that SABR treatments associated with high BEDs could be considered an effective strategy in triggering the abscopal effect, thus shedding light on the promising outcomes revealed in clinical practice.

  8. Phytohormones as Important Biologically Active Molecules – Their Simple Simultaneous Detection

    Directory of Open Access Journals (Sweden)

    Ladislav Havel

    2009-05-01

    Full Text Available Phytohormones, their functions, synthesis and effects, are of great interest. To study them in plant tissues accurate and sensitive methods are required. In the present study we aimed at optimizing experimental conditions to separate and determine not only plant hormones but also their metabolites, by liquid chromatography coupled with a UV-VIS detector. The mixture we analyzed was composed of benzyladenine, kinetin, trans-zeatin, cis-zeatin, dihydrozeatin, meta-topolin, ortho-topolin, α-naphthalene acetic acid, indole-3-acetic acid, trans-zeatin-7-glucoside, trans-zeatin-O-glucoside, trans-zeatin-9-riboside, meta-topolin-9-riboside and ortho-topolin-9-riboside. We measured the calibration dependences and estimated limits of detection and quantification under the optimal chromatographic conditions (column: Polaris C18; mobile phase: gradient starting at 2:98 (methanol:0.001% TFA and was increasing to 55:45 during twenty minutes, and then decreasing for 10 min to 35:65, flow rate: 200 µL·min-1, temperature: 50 °C, wavelength: 210 nm. The detection limits for the target molecules were estimated as tens of ng per mL. We also studied the effect of flax extracts on the phytohormones’ signals. Recovery of aliphatic and aromatic cytokinins, metabolites of cytokinins and auxinswere within the range from 87 to 105 %. The experimental conditions were tested on a mass selective detector. In addition we analysed a commercial product used for stimulation of roots formation in cuttings of poorly rooting plants. The determined content of α-naphthalene acetic acid was in good agreement with that declared by the manufacturer.

  9. Biological functions of hCG and hCG-related molecules

    Directory of Open Access Journals (Sweden)

    Cole Laurence A

    2010-08-01

    Full Text Available Abstract Background hCG is a term referring to 4 independent molecules, each produced by separate cells and each having completely separate functions. These are hCG produced by villous syncytiotrophoblast cells, hyperglycosylated hCG produced by cytotrophoblast cells, free beta-subunit made by multiple primary non-trophoblastic malignancies, and pituitary hCG made by the gonadotrope cells of the anterior pituitary. Results and discussion hCG has numerous functions. hCG promotes progesterone production by corpus luteal cells; promotes angiogenesis in uterine vasculature; promoted the fusion of cytotrophoblast cell and differentiation to make syncytiotrophoblast cells; causes the blockage of any immune or macrophage action by mother on foreign invading placental cells; causes uterine growth parallel to fetal growth; suppresses any myometrial contractions during the course of pregnancy; causes growth and differentiation of the umbilical cord; signals the endometrium about forthcoming implantation; acts on receptor in mother's brain causing hyperemesis gravidarum, and seemingly promotes growth of fetal organs during pregnancy. Hyperglycosylated hCG functions to promote growth of cytotrophoblast cells and invasion by these cells, as occurs in implantation of pregnancy, and growth and invasion by choriocarcinoma cells. hCG free beta-subunit is produced by numerous non-trophoblastic malignancies of different primaries. The detection of free beta-subunit in these malignancies is generally considered a sign of poor prognosis. The free beta-subunit blocks apoptosis in cancer cells and promotes the growth and malignancy of the cancer. Pituitary hCG is a sulfated variant of hCG produced at low levels during the menstrual cycle. Pituitary hCG seems to mimic luteinizing hormone actions during the menstrual cycle.

  10. "Life-bearing molecules" versus "life-embodying systems": Two contrasting views on the what-is-life (WIL) problem persisting from the early days of molecular biology to the post-genomic cell- and organism-level biology.

    Science.gov (United States)

    Sato, Naoki

    2018-05-01

    "What is life?" is an ultimate biological quest for the principle that makes organisms alive. This 'WIL problem' is not, however, a simple one that we have a straightforward strategy to attack. From the beginning, molecular biology tried to identify molecules that bear the essence of life: the double helical DNA represented replication, and enzymes were micro-actuators of biological activities. A dominating idea behind these mainstream biological studies relies on the identification of life-bearing molecules, which themselves are models of life. Another, prevalent idea emphasizes that life resides in the whole system of an organism, but not in some particular molecules. The behavior of a complex system may be considered to embody the essence of life. The thermodynamic view of life system in the early 20th century was remodeled as physics of complex systems and systems biology. The two views contrast with each other, but they are no longer heritage of the historical dualism in biology, such as mechanism/materialism versus vitalism, or reductionism versus holism. These two views are both materialistic and mechanistic, and act as driving forces of modern biology. In reality, molecules function in a context of systems, whereas systems presuppose functional molecules. A key notion to reconcile this conflict is that subjects of biological studies are given before we start to study them. Cell- or organism-level biology is destined to the dialectic of molecules and systems, but this antagonism can be resolved by dynamic thinking involving biological evolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Perspectives on the relevance of the circadian time structure to workplace threshold limit values and employee biological monitoring.

    Science.gov (United States)

    Smolensky, Michael H; Reinberg, Alain E; Sackett-Lundeen, Linda

    2017-01-01

    The circadian time structure (CTS) and its disruption by rotating and nightshift schedules relative to work performance, accident risk, and health/wellbeing have long been areas of occupational medicine research. Yet, there has been little exploration of the relevance of the CTS to setting short-term, time-weighted, and ceiling threshold limit values (TLVs); conducting employee biological monitoring (BM); and establishing normative reference biological exposure indices (BEIs). Numerous publications during the past six decades document the CTS substantially affects the disposition - absorption, distribution, metabolism, and elimination - and effects of medications. Additionally, laboratory animal and human studies verify the tolerance to chemical, biological (contagious), and physical agents can differ extensively according to the circadian time of exposure. Because of slow and usually incomplete CTS adjustment by rotating and permanent nightshift workers, occupational chemical and other contaminant encounters occur during a different circadian stage than for dayshift workers. Thus, the intended protection of some TLVs when working the nightshift compared to dayshift might be insufficient, especially in high-risk settings. The CTS is germane to employee BM in that large-amplitude predictable-in-time 24h variation can occur in the concentration of urine, blood, and saliva of monitored chemical contaminants and their metabolites plus biomarkers indicative of adverse xenobiotic exposure. The concept of biological time-qualified (for rhythms) reference values, currently of interest to clinical laboratory pathology practice, is seemingly applicable to industrial medicine as circadian time and workshift-specific BEIs to improve surveillance of night workers, in particular. Furthermore, BM as serial assessments performed frequently both during and off work, exemplified by employee self-measurement of lung function using a small portable peak expiratory flow meter, can

  12. Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2015-12-01

    The current state of the art in structural biology is led by NMR, X-ray crystallography and TEM investigations. These powerful tools however all rely on averaging over a large ensemble of molecules. Here, we present an alternative concept aiming at structural analysis at the single molecule level. We show that by combining electron holography and coherent diffraction imaging estimations concerning the phase of the scattered wave become needless as the phase information is extracted from the data directly and unambiguously. Performed with low-energy electrons the resolution of this lens-less microscope is just limited by the De Broglie wavelength of the electron wave and the numerical aperture, given by detector geometry. In imaging freestanding graphene, a resolution of 2Å has been achieved revealing the 660.000 unit cells of the graphene sheet from a single data set. Once applied to individual biomolecules the method shall ultimately allow for non-destructive imaging and imports the potential to distinguish between different conformations of proteins with atomic resolution. Copyright © 2015. Published by Elsevier B.V.

  13. How carbo-benzenes fit molecules in their inner core as do biologic ion carriers?

    KAUST Repository

    Turias, Francesc

    2015-09-25

    The present computational study complements experimental efforts to describe and characterize carbo-benzene derivatives as paradigms of aromatic carbo-mers. A long-lasting issue has been the possibility of the π-electron crown of the C18 carbo-benzene ring to fit metals or any chemical agents in its core. A systematic screening of candidate inclusion complexes was carried out by density functional theory calculations. Mayer bond order, aromaticity indices, and energy decomposition analyses complete the understanding of the strength of the host-guest interaction. The change in steric and electronic properties induced by the guest agent is investigated by means of steric maps. Substitution of H atoms at the carbo-benzene periphery by electron-withdrawing or electron-donating groups is shown to have a determining influence on the stability of the inclusion complex ions: while electronegative substituents enhance the recognition of cations, electropositive substituents do the same for anions. The results confirm the experimental failure hitherto to evidence a carbo-benzene complex. Nevertheless, the affinity of carbo-benzene for the potassium cation appears promising for the design of planar hydrocarbon analogues of biologic ion carriers. © 2015 Springer Science+Business Media New York.

  14. How carbo-benzenes fit molecules in their inner core as do biologic ion carriers?

    KAUST Repository

    Turias, Francesc; Poater, Jordi; Chauvin, Remi; Poater, Albert

    2015-01-01

    The present computational study complements experimental efforts to describe and characterize carbo-benzene derivatives as paradigms of aromatic carbo-mers. A long-lasting issue has been the possibility of the π-electron crown of the C18 carbo-benzene ring to fit metals or any chemical agents in its core. A systematic screening of candidate inclusion complexes was carried out by density functional theory calculations. Mayer bond order, aromaticity indices, and energy decomposition analyses complete the understanding of the strength of the host-guest interaction. The change in steric and electronic properties induced by the guest agent is investigated by means of steric maps. Substitution of H atoms at the carbo-benzene periphery by electron-withdrawing or electron-donating groups is shown to have a determining influence on the stability of the inclusion complex ions: while electronegative substituents enhance the recognition of cations, electropositive substituents do the same for anions. The results confirm the experimental failure hitherto to evidence a carbo-benzene complex. Nevertheless, the affinity of carbo-benzene for the potassium cation appears promising for the design of planar hydrocarbon analogues of biologic ion carriers. © 2015 Springer Science+Business Media New York.

  15. Life at extreme conditions: neutron scattering studies of biological molecules suggest that evolution selected dynamics

    International Nuclear Information System (INIS)

    Zaccai, Joseph Giuseppe

    2008-01-01

    The short review concentrates on recent work performed at the neutrons in biology laboratories of the Institut Laue Langevin and Institut de Biologie Structurale in Grenoble. Extremophile organisms have been discovered that require extreme conditions of temperature, pressure or solvent environment for survival. The existence of such organisms poses a significant challenge in understanding the physical chemistry of their proteins, in view of the great sensitivity of protein structure and stability to the aqueous environment and to external conditions in general. Results of neutron scattering measurements on the dynamics of proteins from extremophile organisms, in vitro as well as in vivo, indicated remarkably how adaptation to extreme conditions involves forces and fluctuation amplitudes that have been selected specifically, suggesting that evolutionary macromolecular selection proceeded via dynamics. The experiments were performed on a halophilic protein, and membrane adapted to high salt, a thermophilic enzyme adapted to high temperature and its mesophilic (adapted to 37 degC) homologue; and in vivo for psychrophilic, mesophilic, thermophilic and hyperthermophilic bacteria, adapted respectively to temperatures of 4 degC, 37 degC, 75 degC and 85 degC. Further work demonstrated the existence of a water component of exceptionally low mobility in an extreme halophile from the Dead Sea, which is not present in mesophile bacterial cells. (author)

  16. Detection of base damage in DNA in human blood exposed to ionizing radiation at biologically relevant doses

    International Nuclear Information System (INIS)

    Loon, A.A.W.M. van; Lohman, P.H.M.; Groenendijk, R.H.; Schans, G.P. van der; Baan, R.A.

    1991-01-01

    The alkaline elution technique for the detection of DNA damage has been adapted to allow application on unlabelled blood cells. Both the induction and subsequent repair have been studied of two classes of DNA damage, viz. single-strand breaks and base damage recognized by the γ-endonuclease activity in a cell-free extract of Micrococcus luteus bacteria. The high sensitivity of the assay permitted the measurement of induction and repair of base damage after in vitro exposure of full blood under aerobic conditions to biologically relevant doses of γ-rays (1.5-4.5 Gy). After a radiation dose of 3 Gy about 50% of the base damage was removed within 1.5 h of repair. Base damage could still be detected at 24h after exposure to 15 Gy. (author)

  17. On making nursing undergraduate human reproductive physiology content meaningful and relevant: discussion of human pleasure in its biological context.

    Science.gov (United States)

    McClusky, Leon Mendel

    2012-01-01

    The traditional presentation of the Reproductive Physiology component in an Anatomy and Physiology course to nursing undergraduates focuses on the broad aspects of hormonal regulation of reproduction and gonadal anatomy, with the role of the higher centres of the brain omitted. An introductory discussion is proposed which could precede the lectures on the reproductive organs. The discussion gives an overview of the biological significance of human pleasure, the involvement of the neurotransmitter dopamine, and the role of pleasure in the survival of the individual and even species. Pleasure stimuli (positive and negative) and the biological significance of naturally-induced pleasurable experiences are briefly discussed in the context of reproduction and the preservation of genetic material with an aim to foster relevancy between subject material and human behaviour in any type of society. The tenderness of this aspect of the human existence is well-understood because of its invariable association with soul-revealing human expressions such as love, infatuation, sexual flirtations, all of which are underpinned by arousal, desire and/or pleasure. Assuming that increased knowledge correlates with increased confidence, the proposed approach may provide the nurse with an adequate knowledge base to overcome well-known barriers in communicating with their patients about matters of sexual health and intimacy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Mittal, A.; Mohagheghi, A.; Johnson, D. K.

    2014-04-01

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose, glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.

  19. Identification of Genes Relevant to Pesticides and Biology from Global Transcriptome Data of Monochamus alternatus Hope (Coleoptera: Cerambycidae Larvae.

    Directory of Open Access Journals (Sweden)

    Songqing Wu

    Full Text Available Monochamus alternatus Hope is the main vector in China of the Pine Wilt Disease caused by the pine wood nematode Bursaphelenchus xylophilus. Although chemical control is traditionally used to prevent pine wilt disease, new strategies based in biological control are promising ways for the management of the disease. However, there is no deep sequence analysis of Monochamus alternatus Hope that describes the transcriptome and no information is available about gene function of this insect vector. We used next generation sequencing technology to sequence the whole fourth instar larva transcriptome of Monochamus alternatus Hope and successfully built a Monochamus alternatus Hope transcriptome database. In total, 105,612 unigenes were assigned for Gene Ontology (GO terms, information for 16,730 classified unigenes was obtained in the Clusters of Orthologous Groups (COGs database, and 13,024 unigenes matched with 224 predicted pathways in the Kyoto Encyclopedia of Genes and Genome (KEGG. In addition, genes related to putative insecticide resistance-related genes, RNAi, the Bt receptor, intestinal digestive enzymes, possible future insect control targets and immune-related molecules are described. This study provides valuable basic information that can be used as a gateway to develop new molecular tools for Monochamus alternatus Hope control strategies.

  20. Leaf-specific pathogenesis-related 10 homolog, PgPR-10.3, shows in silico binding affinity with several biologically important molecules

    Directory of Open Access Journals (Sweden)

    Jin Haeng Han

    2015-10-01

    Conclusion: Although ginseng PR-10.3 gene is expressed in all organs of 3-wk-old plantlets, its expression is restricted to leaves in mature 2-yr-old ginseng plants. The putative binding property of PgPR-10.3 with Re is intriguing. Further verification of binding affinity with other biologically important molecules in the large hydrophobic cavity of PgPR-10.3 may provide an insight into the biological features of PR-10 proteins.

  1. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.

    Science.gov (United States)

    Gu, April Z; Saunders, A; Neethling, J B; Stensel, H D; Blackall, L L

    2008-08-01

    The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis.

  2. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand).

  3. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites.

    Science.gov (United States)

    Kevin Ii, Dion A; Meujo, Damaris Af; Hamann, Mark T

    2009-02-01

    As multidrug-resistant (MDR) pathogens continue to emerge, there is a substantial amount of pressure to identify new drug candidates. Carboxyl polyethers, also referred to as polyether antibiotics, are a unique class of compounds with outstanding potency against a variety of critical infectious disease targets including protozoa, bacteria and viruses. The characteristics of these molecules that are of key interest are their selectivity and high potency against several MDR etiological agents. Although many studies have been published about carboxyl polyether antibiotics, there are no recent reviews of this class of drugs. The purpose of this review is to provide the reader with an overview of the spectrum of activity of polyether antibiotics, their mechanism of action, toxicity and potential as drug candidates to combat drug-resistant infectious diseases. Polyether ionophores show a high degree of promise for the potential control of drug-resistant bacterial and parasitic infections. Despite the long history of use of this class of drugs, very limited medicinal chemistry and drug optimization studies have been reported, thus leaving the door open to these opportunities in the future. Scifinder and PubMed were the main search engines used to locate articles relevant to the topic presented in the present review. Keywords used in our search were specific names of each of the 88 compounds presented in the review as well as more general terms such as polyethers, ionophores, carboxylic polyethers and polyether antibiotics.

  4. Biological and Molecular Effects of Small Molecule Kinase Inhibitors on Low-Passage Human Colorectal Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Falko Lange

    2014-01-01

    Full Text Available Low-passage cancer cell lines are versatile tools to study tumor cell biology. Here, we have employed four such cell lines, established from primary tumors of colorectal cancer (CRC patients, to evaluate effects of the small molecule kinase inhibitors (SMI vemurafenib, trametinib, perifosine, and regorafenib in an in vitro setting. The mutant BRAF (V600E/V600K inhibitor vemurafenib, but also the MEK1/2 inhibitor trametinib efficiently inhibited DNA synthesis, signaling through ERK1/2 and expression of genes downstream of ERK1/2 in BRAF mutant cells only. In case of the AKT inhibitor perifosine, three cell lines showed a high or intermediate responsiveness to the drug while one cell line was resistant. The multikinase inhibitor regorafenib inhibited proliferation of all CRC lines with similar efficiency and independent of the presence or absence of KRAS, BRAF, PIK3CA, and TP53 mutations. Regorafenib action was associated with broad-range inhibitory effects at the level of gene expression but not with a general inhibition of AKT or MEK/ERK signaling. In vemurafenib-sensitive cells, the antiproliferative effect of vemurafenib was enhanced by the other SMI. Together, our results provide insights into the determinants of SMI efficiencies in CRC cells and encourage the further use of low-passage CRC cell lines as preclinical models.

  5. Supramolecular assembly of biological molecules purified from bovine nerve cells: from microtubule bundles and necklaces to neurofilament networks

    International Nuclear Information System (INIS)

    Needleman, Daniel J; Jones, Jayna B; Raviv, Uri; Ojeda-Lopez, Miguel A; Miller, H P; Li, Y; Wilson, L; Safinya, C R

    2005-01-01

    With the completion of the human genome project, the biosciences community is beginning the daunting task of understanding the structures and functions of a large number of interacting biological macromolecules. Examples include the interacting molecules involved in the process of DNA condensation during the cell cycle, and in the formation of bundles and networks of filamentous actin proteins in cell attachment, motility and cytokinesis. In this proceedings paper we present examples of supramolecular assembly based on proteins derived from the vertebrate nerve cell cytoskeleton. The axonal cytoskeleton in vertebrate neurons provides a rich example of bundles and networks of neurofilaments, microtubules (MTs) and filamentous actin, where the nature of the interactions, structures, and structure-function correlations remains poorly understood. We describe synchrotron x-ray diffraction, electron microscopy, and optical imaging data, in reconstituted protein systems purified from bovine central nervous system, which reveal unexpected structures not predicted by current electrostatic theories of polyelectrolyte bundling, including three-dimensional MT bundles and two-dimensional MT necklaces

  6. Periradicular Tissue Responses to Biologically Active Molecules or MTA When Applied in Furcal Perforation of Dogs' Teeth

    Directory of Open Access Journals (Sweden)

    Anna Zairi

    2012-01-01

    Full Text Available The aim of this study was the comparative evaluation of inflammatory reactions and tissue responses to four growth factors, or mineral trioxide aggregate (MTA, or a zinc-oxide-eugenol-based cement (IRM as controls, when used for the repair of furcal perforations in dogs’ teeth. Results showed significantly higher inflammatory cell response in the transforming growth factorβ1 (TGFβ1 and zinc-oxide-eugenol-based cement (IRM groups and higher rates of epithelial proliferation in the TGFβ1, basic fibroblast growth factor (bFGF, and insulin growth factor-I (IGF-I groups compared to the MTA. Significantly higher rates of bone formation were found in the control groups compared to the osteogenic protein-1 (OP-1. Significantly higher rates of cementum formation were observed in the IGF-I and bFGF groups compared to the IRM. None of the biologically active molecules can be suggested for repairing furcal perforations, despite the fact that growth factors exerted a clear stimulatory effect on cementum formation and inhibited collagen capsule formation. MTA exhibited better results than the growth factors.

  7. A mechanistic approach to link biological effects of radioactive substances from molecules to populations in wildlife species - A mechanistic approach to link biological effects of radionuclides from molecules to populations in wildlife species

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo, Frederic; Parisot, Florian; Plaire, Delphine; Adam-Guillermin, Christelle; Garnier- Laplace, Jacqueline [Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul- Lez-Durance, 13115 (France)

    2014-07-01

    Understanding how toxic contaminants affect wildlife species at various levels of biological organisation (sub-cellular, histological, physiological, organism, population levels) is a major research goal in both ecotoxicology and radioecology. A mechanistic understanding of the links between the different observed perturbations is necessary to predict consequences for survival, growth and reproduction which are critical for population dynamics. However, time scales at which such links are established in the laboratory are rarely relevant for natural populations. With a small size and short life cycle, the cladoceran micro-crustacean Daphnia magna is a particularly suitable biological model for studying effects of radioactive contaminants over several generations. Multi-generational exposures are much more representative of the environmental context of field populations for which contaminations can last for durations which largely exceed individual longevity and involve exposure of many successive generations. Over the last decade, multi-generational investigations of toxic effects were conducted under controlled conditions in D. magna exposed to various radionuclides including depleted uranium, americium-241 and cesium-137, representing respectively a dominantly chemo-toxic metal, an alpha internal contamination and a gamma external radiation. Results showed in all cases that toxic effects on physiology and life history (survival, body size, fecundity) increased in severity across generations. These observations demonstrated that measured effects in one generation might not be representative of toxicity in the following offspring generations, and ultimately of the population response. Reduction in somatic growth and reproduction induced by uranium were analysed using the mechanistic modelling approach known as DEBtox (model of dynamic energy budget applied to toxicology). Modelling results suggested that uranium primarily affects assimilation. This metabolic mode

  8. Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation

    NARCIS (Netherlands)

    Stamellou, E.; Storz, D.; Botov, S.; Ntasis, E.; Wedel, J.; Sollazzo, S.; Kraemer, B. K.; van Son, W.; Seelen, M.; Schmalz, H. G.; Schmidt, A.; Hafner, M.; Yard, B. A.

    2014-01-01

    Acyloxydiene-Fe(CO)(3) complexes can act as enzyme-triggered CO-releasing molecules (ET-CORMs). Their biological activity strongly depends on the mother compound from which they are derived, i.e, cyclohexenone or cyclohexanedione, and on the position of the ester functionality they harbour. The

  9. Spatial distribution of osteopontin, CD44v6 and podoplanin in the lining epithelium of odontogenic keratocyst, and their biological relevance.

    Science.gov (United States)

    Kechik, Khamisah Awang; Siar, Chong Huat

    2018-02-01

    The odontogenic keratocyst (OKC) remains the most challenging jaw cyst to treat because of its locally-aggressive behaviour and high recurrence potential. Emerging evidence suggests that osteopontin, its receptors CD44v6 and integrin α v , and podoplanin, have a role in the local invasiveness of this cyst. However the spatial distribution characteristics of these pro-invasive markers in the lining epithelium of OKC, and their association with the clinicopathologic parameters of OKC are largely unexplored. This study sought to address these issues in comparison with dentigerous cysts (DCs) and radicular cysts (RCs) and to evaluate their biological relevance. A sample consisting of 20 OKC cases, 10 DCs and 10 RCs was subjected to immunohistochemical staining for osteopontin, CD44v6 and integrin α v , and podoplanin, and semiquantitative analysis was performed. All factors (except integrin α v ) were detected heterogeneously in the constitutive layers of the lining epithelium in all three cyst types. Key observations were significant upregulation of CD44v6 and podoplanin in OKC compared to DCs and RCs, suggesting that these protein molecules may play crucial roles in promoting local invasiveness in OKC (P<0.05). Osteopontin underexpression and distribution patterns were indistinctive among all three cysts indicating its limited role as pro-invasive factor. Clinical parameters showed no significant correlations with all protein factors investigated. Present findings suggest that an osteopontin low CD44v6 high and podoplanin high immunoprofile most probably represent epithelial signatures of OKC and are markers of local invasiveness in this cyst. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Clinicopathological variables of sporadic schwannomas of peripheral nerve in 291 patients and expression of biologically relevant markers.

    Science.gov (United States)

    Young, Eric D; Ingram, Davis; Metcalf-Doetsch, William; Khan, Dilshad; Al Sannaa, Ghadah; Le Loarer, Francois; Lazar, Alexander J F; Slopis, John; Torres, Keila E; Lev, Dina; Pollock, Raphael E; McCutcheon, Ian E

    2017-09-08

    OBJECTIVE While sporadic peripheral schwannomas (SPSs) are generally well treated with surgery, their biology is not well understood. Consequently, treatment options are limited. The aim of this study was to provide a comprehensive description of SPS. The authors describe clinicopathological features and treatment outcomes of patients harboring these tumors, and they assess expression of biomarkers using a clinically annotated tissue microarray. Together, these data give new insight into the biology and management of SPS. METHODS Patients presenting with a primary SPS between 1993 and 2011 (n = 291) were selected from an institutional registry to construct a clinical database. All patients underwent follow-up, and short- and long-term outcomes were assessed. Expression of relevant biomarkers was assessed using a new tissue microarray (n = 121). RESULTS SPSs were generally large (mean 5.5 cm) and frequently painful at presentation (55%). Most patients were treated with surgery (80%), the majority of whom experienced complete resolution (52%) or improvement (18%) of their symptoms. Tumors that were completely resected (85%) did not recur. Some patients experienced short-term (16%) and long-term (4%) complications postoperatively. Schwannomas expressed higher levels of platelet-derived growth factor receptor-β (2.1) than malignant peripheral nerve sheath tumors (MPNSTs) (1.5, p = 0.004) and neurofibromas (1.33, p = 0.007). Expression of human epidermal growth factor receptor-2 was greater in SPSs (0.91) than in MPNSTs (0.33, p = 0.002) and neurofibromas (0.33, p = 0.026). Epidermal growth factor receptor was expressed in far fewer SPS cells (10%) than in MPNSTs (58%, p SPSs more frequently expressed cytoplasmic survivin (66% of tumor cells) than normal nerve (46% of cells), but SPS expressed nuclear survivin in fewer tumor cells than in MPNSTs (24% and 50%, respectively; p = 0.018). CONCLUSIONS Complete resection is curative for SPS. Left untreated, however, these

  11. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures.

    Science.gov (United States)

    Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa

    2013-02-26

    We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.

  12. Insight into the Local Solvent Environment of Biologically Relevant Iron-nitroysl Systems through Two-Dimensional Infrared Spectroscopy

    Science.gov (United States)

    Brookes, Jennifer Faith

    Iron-nitrosyl systems, particularly in the form of heme proteins, with their iron metal active sites play an important role in biological systems. Heme proteins act as storage, transporters, and receptors for nitric oxide (NO), a signaling molecule that is important in immune, nervous, and cardiovascular systems of mammals. By better understanding the local environment of the active site of NO binding heme proteins we can gain insight into disease in which the NO pathways have been implicated. This is an important step to being able to develop pharmaceuticals targeting NO pathways in humans. Sodium nitroprusside ((SNP, Na2[Fe(CN)5is NO]·2H 2O) investigated as a model system for the active site of nitric oxide binding heme proteins. Using two-dimensional infrared spectroscopy (2D IR) to obtain dephasing dynamics of the nitrosyl stretch (nuNO) in a series of solvents we are able to better understand the local environment of the more complicated metalloproteins. Rigorous line shape analysis is performed by using nonlinear response theory to simulate 2D IR spectra which are then fit to experimental data in an iterative process to extract frequency-frequency correlation functions (FFCFs). The time scales obtained are then correlated to empirical solvent polarity parameters. The analysis of the 2D IR lineshapes reveal that the spectral diffusion timescale of the nuNO in SNP varies from 0.8 -- 4 ps and is negatively correlated with the empirical solvent polarity scales. We continue to investigate NO binding of metalloproteins through 2D IR experiments on nitrophorin 4 (NP4). NP4 is a pH-sensitive NO transporter protein present in the salivary gland of the blood sucking insect Rhodius prolixus which undergoes a pH sensitive structural change between a closed and open conformation allowing for the storage and delivery of NO. The two structures are observed spectroscopically as two distinct pH-dependent nu NO frequencies at ~1904 and ~1917 cm-1. We obtain FFCFs by globally

  13. Self-assembled structures and pKa value of oleic acid in systems of biological relevance.

    Science.gov (United States)

    Salentinig, Stefan; Sagalowicz, Laurent; Glatter, Otto

    2010-07-20

    In the human digestion process, triglycerides are hydrolyzed by lipases to monoglycerides and the corresponding fatty acids. Here we report the self-assembly of structures in biologically relevant, emulsified oleic acid-monoolein mixtures at various pH values and oleic acid concentrations. Small-angle X-ray scattering, cryogenic transmission electron microscopy, and dynamic light scattering were used to investigate the structures formed, and to follow their transitions while these factors were varied. The addition of oleic acid to monoolein-based cubosomes was found to increase the critical packing parameter in the system. Structural transitions from bicontinuous cubosomes through hexosomes and micellar cubosomes (Fd3m symmetry) to emulsified microemulsions occur with increasing oleic acid concentration. At sufficiently high oleic acid concentration, the internal particle structure was also found to strongly depend on the pH of the aqueous phase: transformations from emulsified microemulsion through micellar cubosomes, hexosomes, and bicontinuous cubosomes to vesicles can be observed as a function of increasing pH. The reversible transition from liquid crystals to vesicles occurs at intestinal pH values (between pH 7 and 8). The hydrodynamic radius of the particles decreases from around 120 nm for internally structured particles to around 60 nm for vesicles. All transitions with pH are reversible. Finally, the apparent pK(a) for oleic acid in monoolein could be determined from the change of structure with pH. This value is within the physiological pH range of the intestine and depends somewhat on composition.

  14. Predicting Subtype Selectivity for Adenosine Receptor Ligands with Three-Dimensional Biologically Relevant Spectrum (BRS-3D)

    Science.gov (United States)

    He, Song-Bing; Ben Hu; Kuang, Zheng-Kun; Wang, Dong; Kong, De-Xin

    2016-11-01

    Adenosine receptors (ARs) are potential therapeutic targets for Parkinson’s disease, diabetes, pain, stroke and cancers. Prediction of subtype selectivity is therefore important from both therapeutic and mechanistic perspectives. In this paper, we introduced a shape similarity profile as molecular descriptor, namely three-dimensional biologically relevant spectrum (BRS-3D), for AR selectivity prediction. Pairwise regression and discrimination models were built with the support vector machine methods. The average determination coefficient (r2) of the regression models was 0.664 (for test sets). The 2B-3 (A2B vs A3) model performed best with q2 = 0.769 for training sets (10-fold cross-validation), and r2 = 0.766, RMSE = 0.828 for test sets. The models’ robustness and stability were validated with 100 times resampling and 500 times Y-randomization. We compared the performance of BRS-3D with 3D descriptors calculated by MOE. BRS-3D performed as good as, or better than, MOE 3D descriptors. The performances of the discrimination models were also encouraging, with average accuracy (ACC) 0.912 and MCC 0.792 (test set). The 2A-3 (A2A vs A3) selectivity discrimination model (ACC = 0.882 and MCC = 0.715 for test set) outperformed an earlier reported one (ACC = 0.784). These results demonstrated that, through multiple conformation encoding, BRS-3D can be used as an effective molecular descriptor for AR subtype selectivity prediction.

  15. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology.

    Science.gov (United States)

    Zhou, Jie; Du, Xuewen; Xu, Bing

    2015-01-01

    Formed by non-covalent interactions and not defined at genetic level, the assemblies of small molecules in biology are complicated and less explored. A common morphology of the supramolecular assemblies of small molecules is nanofibrils, which coincidentally resembles the nanofibrils formed by proteins such as prions. So these supramolecular assemblies are termed as prion-like nanofibrils of small molecules (PriSM). Emerging evidence from several unrelated fields over the past decade implies the significance of PriSM in biology and medicine. This perspective aims to highlight some recent advances of the research on PriSM. This paper starts with description of the intriguing similarities between PriSM and prions, discusses the paradoxical features of PriSM, introduces the methods for elucidating the biological functions of PriSM, illustrates several examples of beneficial aspects of PriSM, and finishes with the promises and current challenges in the research of PriSM. We anticipate that the research of PriSM will contribute to the fundamental understanding at the intersection of supramolecular chemistry and cell biology and ultimately lead to a new paradigm of molecular (or supramolecular) therapeutics for biomedicine.

  16. Dose addition models based on biologically-relevant reductions in fetal testosterone accurately predict postnatal reproductive tract alterations by a phthalate mixture in rats

    Science.gov (United States)

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the curren...

  17. Small molecule probes for cellular death machines.

    Science.gov (United States)

    Li, Ying; Qian, Lihui; Yuan, Junying

    2017-08-01

    The past decade has witnessed a significant expansion of our understanding about the regulated cell death mechanisms beyond apoptosis. The application of chemical biological approaches had played a major role in driving these exciting discoveries. The discovery and use of small molecule probes in cell death research has not only revealed significant insights into the regulatory mechanism of cell death but also provided new drug targets and lead drug candidates for developing therapeutics of human diseases with huge unmet need. Here, we provide an overview of small molecule modulators for necroptosis and ferroptosis, two non-apoptotic cell death mechanisms, and discuss the molecular pathways and relevant pathophysiological mechanisms revealed by the judicial applications of such small molecule probes. We suggest that the development and applications of small molecule probes for non-apoptotic cell death mechanisms provide an outstanding example showcasing the power of chemical biology in exploring novel biological mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Tracking problems and possible solutions in the quantitative determination of small molecule drugs and metabolites in biological fluids using liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Bakhtiar, Ray; Majumdar, Tapan K

    2007-01-01

    During the last decade, quantification of low molecular weight molecules using liquid chromatography-tandem mass spectrometry in biological fluids has become a common procedure in many preclinical and clinical laboratories. This overview highlights a number of issues involving "small molecule drugs", bioanalytical liquid chromatography-tandem mass spectrometry, which are frequently encountered during assay development. In addition, possible solutions to these issues are proposed with examples in some of the case studies. Topics such as chromatographic peak shape, carry-over, cross-talk, standard curve non-linearity, internal standard selection, matrix effect, and metabolite interference are presented. Since plasma is one of the most widely adopted biological fluid in drug discovery and development, the focus of this discussion will be limited to plasma analysis. This article is not intended to be a comprehensive overview and readers are encouraged to refer to the citations herein.

  19. Irradiation of biological molecules (DNA and RNA bases) by proton impact in the velocity range of the Bragg peak (20-150 keV/amu)

    International Nuclear Information System (INIS)

    Tabet, J.

    2007-11-01

    The aim of this work was to study the ionization of DNA and RNA base molecules by proton impact at energies between 20 and 150 keV/amu. The experiments developed over the course of this project made it possible not only to study the fragmentation of uracil, thymine, adenine, and cytosine, but also to measure absolute cross sections for different ionization processes initiated by proton interactions with these important biological molecules. Firstly, the experimental system enabled the contributions of two key ionization processes to be separated: direct ionization and electron capture. The corresponding mass spectra were measured and analyzed on an event-by-event basis. For uracil, the branching ratios for these two processes were measured as function of the projectile velocity. Secondly, we have developed a system to measure absolute cross sections for the electron capture process. The production rate of neutral atoms compared to protons was measured for the four biological molecules: uracil, cytosine, thymine, and adenine at different vaporization temperatures. This production rate varies as a function of the thickness of the target jet traversed by the protons. Accordingly, a deposit experiment was developed in order to characterize the density of molecules in the targeted gas jets. Theoretical and experimental study of the total effusion and density-profile of the gaseous molecular beams enabled us to deduce the thickness of the target jets traversed by the protons. Thus it was possible to determine absolute cross sections for the ionization of each of the four isolated biological molecules by 80 keV protons impact. To our knowledge, this work provides the first experimental absolute cross sections for DNA and RNA base ionization processes initiated by proton impact in the velocity range corresponding to the Bragg peak. (author)

  20. Best practices for the use and exchange of invertebrate biological control genetic resources relevant for food and agriculture

    NARCIS (Netherlands)

    Mason, P.G.; Cock, M.J.W.; Barratt, B.I.P.; Klapwijk, J.N.; Lenteren, van J.C.; Brodeur, J.; Hoelmer, K.A.; Heimpel, G.E.

    2018-01-01

    The Nagoya Protocol is a supplementary agreement to the Convention on Biological Diversity that provides a framework for the effective implementation of the fair and equitable sharing of benefits arising out of the utilization of genetic resources, including invertebrate biological control agents.

  1. Study of radionuclides speciation with biological molecules of interest by spectrometric techniques; Etude de la speciation des radionucleides avec les molecules d'interet biologique par approche spectrometrique

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, V

    2007-07-15

    Mechanisms of complexation and accumulation of the radionuclides at the cellular and molecular level are complex and poorly known because the studies on these subjects are scarce. Within the framework of this thesis, we studied the interactions of these cations with biological molecules of interest. We chose to focus on an actinide: uranium (VI) as well as europium as an analogue of trivalent actinides. The selected biological molecules are the phyto-chelatins: their role is to protect cells against intrusions from nonessential heavy metals (thus toxic). These proteins are likely to be implied in the mechanisms of sequestration of radionuclides in living organisms. However, their structure is complex, this is why, in order to better include/understand their reactivity, we extended our studies to lower entities which constitute them (amino acid: glycine, glutamic acid and cysteine; polypeptides: glutathione reduced and oxidized forms). In particular, we determined solution speciation (stoichiometry, structure) as well as the complexing constants associated with the formation with these species. These studies were undertaken by Time Resolved Laser induced Fluorescence (TRLIF), Electro-Spray-Mass Spectrometry (ES-MS), Nuclear Magnetic Resonance (NMR), Fourier Transform Infra-Rouge spectroscopy (FTIR) and Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS).The determination of the complexation constants enabled us to conclude that the complexing capacity of these molecules with respect to radionuclides was moderate (log{sub 10}K{sub 1} {<=} 3, pH 3 or 6), the formed species are mononuclear with only one ligand molecule (1:1). The interaction is performed via oxygenated (hard) groups. The direct complexation of europium with phyto-chelatins at acidic pH was studied jointly by TRLIF and ES-MS. The complexing capacity of these molecules is much higher than that of GSH from which they result. The interaction of europium with metallothioneins is, on the contrary

  2. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  3. Dynamics of initial ionization events in biological molecules: Formation and fate of free radicals. Final technical report, May 1, 1994--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Castleman, A.W. Jr.

    1997-08-01

    Study of early time events following the absorption of electromagnetic radiation in biological systems has potentially significant impact on several areas of importance. In this context, the studies being conducted under this program provided insight into the conformational changes as well as the reactions leading to a variety of transformations that culminate from hydrogen atom and proton transfer events. These studies enabled an investigation of molecular details of structure-function relationships. In a second aspect of the program, investigations were conducted to provide basic underpinning research that contributed to a quantification of the behavior of radionuclides and pollutants associated with advanced energy activities after these materials emanate from their source and become transferred through the environment to the biota and human receptor. The approach to elucidating factors governing the difference between reactions in the gas and condensed phase was to study the initiating steps at progressively higher degrees of cluster aggregation. The author employed ultrafast laser techniques, in combination with selected molecules, carefully prepared in tailored compositions, to investigation the primary mechanisms involved in various molecular functional groups following the absorption of electromagnetic radiation. He also studied various molecules representing chromophores in such biologically important molecules as tyrosine and amines.

  4. Functional analysis of biological matter across dimensions by atomic force microscopy (AFM): from tissues to molecules and, ultimately, atoms

    OpenAIRE

    Stolz, Martin

    2004-01-01

    For a detailed understanding of biological tissues and proteins and their dynamical processes the 3D structures of the components involved must be known. Most of the structural data have been obtained through the combination of three major techniques: X-ray crystallography, NMR and TEM. These three methods enable the determination of the structure of biological macromolecules at near atomic resolution and each of those was developed over many years to perfection. Nevertheless each one has its...

  5. The practicalities and pitfalls of establishing a policy-relevant and cost-effective soil biological monitoring scheme

    NARCIS (Netherlands)

    Faber, J.H.; Creamer, R.E.; Mulder, C.; Römbke, J.; Rutgers, M.; Sousa, J.P.; Stone, D.; Griffiths, B.S.

    2013-01-01

    A large number of biological indicators have been proposed over the years for assessing soil quality. Although many of those have been applied in monitoring schemes across Europe, no consensus exists on the extent to which these indicators might perform best and how monitoring schemes can be further

  6. 1H NMR analysis of complexation of hydrotropic agents nicotinamide and caffeine with aromatic biologically active molecules in aqueous solution

    Science.gov (United States)

    Lantushenko, Anastasia O.; Mukhina, Yulia V.; Veselkov, Kyrill A.; Davies, David B.; Veselkov, Alexei N.

    2004-07-01

    NMR spectroscopy has been used to elucidate the molecular mechanism of solubilization action of hydrotropic agents nicotinamide (NA) and caffeine (CAF). Hetero-association of NA with riboflavine-mononucleotide (FMN) and CAF with low soluble in aqueous solution synthetic analogue of antibiotic actinomycin D, actinocyl-bis-(3-dimethylaminopropyl) amine (Actill), has been investigated by 500 MHz 1H NMR spectroscopy. Concentration and temperature dependences of proton chemical shifts have been analysed in terms of a statistical-thermodynamic model of indefinite self- and heteroassociation of aromatic molecules. The obtained results enable to conclude that NA-FMN and CAF-Actill intermolecular complexes are mainly stabilized by the stacking interactions of the aromatic chromophores. Hetero-association of the investigated molecules plays an important role in solubilization of aromatic drugs by hydrotropic agents nicotinamide and caffeine.

  7. A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology.

    Science.gov (United States)

    Casini, Arturo; Chang, Fang-Yuan; Eluere, Raissa; King, Andrew M; Young, Eric M; Dudley, Quentin M; Karim, Ashty; Pratt, Katelin; Bristol, Cassandra; Forget, Anthony; Ghodasara, Amar; Warden-Rothman, Robert; Gan, Rui; Cristofaro, Alexander; Borujeni, Amin Espah; Ryu, Min-Hyung; Li, Jian; Kwon, Yong-Chan; Wang, He; Tatsis, Evangelos; Rodriguez-Lopez, Carlos; O'Connor, Sarah; Medema, Marnix H; Fischbach, Michael A; Jewett, Michael C; Voigt, Christopher; Gordon, D Benjamin

    2018-03-28

    Centralized facilities for genetic engineering, or "biofoundries", offer the potential to design organisms to address emerging needs in medicine, agriculture, industry, and defense. The field has seen rapid advances in technology, but it is difficult to gauge current capabilities or identify gaps across projects. To this end, our foundry was assessed via a timed "pressure test", in which 3 months were given to build organisms to produce 10 molecules unknown to us in advance. By applying a diversity of new approaches, we produced the desired molecule or a closely related one for six out of 10 targets during the performance period and made advances toward production of the others as well. Specifically, we increased the titers of 1-hexadecanol, pyrrolnitrin, and pacidamycin D, found novel routes to the enediyne warhead underlying powerful antimicrobials, established a cell-free system for monoterpene production, produced an intermediate toward vincristine biosynthesis, and encoded 7802 individually retrievable pathways to 540 bisindoles in a DNA pool. Pathways to tetrahydrofuran and barbamide were designed and constructed, but toxicity or analytical tools inhibited further progress. In sum, we constructed 1.2 Mb DNA, built 215 strains spanning five species ( Saccharomyces cerevisiae, Escherichia coli, Streptomyces albidoflavus, Streptomyces coelicolor, and Streptomyces albovinaceus), established two cell-free systems, and performed 690 assays developed in-house for the molecules.

  8. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    Science.gov (United States)

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  9. Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma.

    Science.gov (United States)

    Wiestler, Benedikt; Capper, David; Sill, Martin; Jones, David T W; Hovestadt, Volker; Sturm, Dominik; Koelsche, Christian; Bertoni, Anna; Schweizer, Leonille; Korshunov, Andrey; Weiß, Elisa K; Schliesser, Maximilian G; Radbruch, Alexander; Herold-Mende, Christel; Roth, Patrick; Unterberg, Andreas; Hartmann, Christian; Pietsch, Torsten; Reifenberger, Guido; Lichter, Peter; Radlwimmer, Bernhard; Platten, Michael; Pfister, Stefan M; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-10-01

    The outcome of patients with anaplastic gliomas varies considerably. Whether a molecular classification of anaplastic gliomas based on large-scale genomic or epigenomic analyses is superior to histopathology for reflecting distinct biological groups, predicting outcomes and guiding therapy decisions has yet to be determined. Epigenome-wide DNA methylation analysis, using a platform which also allows the detection of copy-number aberrations, was performed in a cohort of 228 patients with anaplastic gliomas (astrocytomas, oligoastrocytomas, and oligodendrogliomas), including 115 patients of the NOA-04 trial. We further compared these tumors with a group of 55 glioblastomas. Unsupervised clustering of DNA methylation patterns revealed two main groups correlated with IDH status: CpG island methylator phenotype (CIMP) positive (77.5 %) or negative (22.5 %). CIMP(pos) (IDH mutant) tumors showed a further separation based on copy-number status of chromosome arms 1p and 19q. CIMP(neg) (IDH wild type) tumors showed hallmark copy-number alterations of glioblastomas, and clustered together with CIMP(neg) glioblastomas without forming separate groups based on WHO grade. Notably, there was no molecular evidence for a distinct biological entity representing anaplastic oligoastrocytoma. Tumor classification based on CIMP and 1p/19q status was significantly associated with survival, allowing a better prediction of outcome than the current histopathological classification: patients with CIMP(pos) tumors with 1p/19q codeletion (CIMP-codel) had the best prognosis, followed by patients with CIMP(pos) tumors but intact 1p/19q status (CIMP-non-codel). Patients with CIMP(neg) anaplastic gliomas (GBM-like) had the worst prognosis. Collectively, our data suggest that anaplastic gliomas can be grouped by IDH and 1p/19q status into three molecular groups that show clear links to underlying biology and a significant association with clinical outcome in a prospective trial cohort.

  10. Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling

    Science.gov (United States)

    Wu, Zhengliang L.; Lech, Miroslaw

    2005-01-01

    Chemical modification of biological molecules is a general mechanism for cellular regulation. A quantitative approach has been developed to measure the extent of modification on HS (heparan sulphates). Sulphation on HS by sulphotransferases leads to variable sulphation levels, which allows cells to tune their affinities to various extracellular proteins, including growth factors. With stable isotope labelling and HPLC-coupled MS, modification degrees at various O-sulphation sites could be determined. A bovine kidney HS sample was first saturated in vitro with 34S by an OST (O-sulphotransferase), then digested with nitrous acid and analysed with HPLC-coupled MS. The 34S-labelled oligosaccharides were identified based on their unique isotope clusters. The modification degrees at the sulphotransferase recognition sites were obtained by calculating the intensities of isotopic peaks in the isotope clusters. The modification degrees at 3-OST-1 and 6-OST-1 sites were examined in detail. This approach can also be used to study other types of chemical modifications on biological molecules. PMID:15743272

  11. SysBioCube: A Data Warehouse and Integrative Data Analysis Platform Facilitating Systems Biology Studies of Disorders of Military Relevance.

    Science.gov (United States)

    Chowbina, Sudhir; Hammamieh, Rasha; Kumar, Raina; Chakraborty, Nabarun; Yang, Ruoting; Mudunuri, Uma; Jett, Marti; Palma, Joseph M; Stephens, Robert

    2013-01-01

    SysBioCube is an integrated data warehouse and analysis platform for experimental data relating to diseases of military relevance developed for the US Army Medical Research and Materiel Command Systems Biology Enterprise (SBE). It brings together, under a single database environment, pathophysio-, psychological, molecular and biochemical data from mouse models of post-traumatic stress disorder and (pre-) clinical data from human PTSD patients.. SysBioCube will organize, centralize and normalize this data and provide an access portal for subsequent analysis to the SBE. It provides new or expanded browsing, querying and visualization to provide better understanding of the systems biology of PTSD, all brought about through the integrated environment. We employ Oracle database technology to store the data using an integrated hierarchical database schema design. The web interface provides researchers with systematic information and option to interrogate the profiles of pan-omics component across different data types, experimental designs and other covariates.

  12. Biologic activity of the novel small molecule STAT3 inhibitor LLL12 against canine osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Couto Jason I

    2012-12-01

    Full Text Available Abstract Background STAT3 [1] has been shown to be dysregulated in nearly every major cancer, including osteosarcoma (OS. Constitutive activation of STAT3, via aberrant phosphorylation, leads to proliferation, cell survival and resistance to apoptosis. The present study sought to characterize the biologic activity of a novel allosteric STAT3 inhibitor, LLL12, in canine OS cell lines. Results We evaluated the effects of LLL12 treatment on 4 canine OS cell lines and found that LLL12 inhibited proliferation, induced apoptosis, reduced STAT3 phosphorylation, and decreased the expression of several transcriptional targets of STAT3 in these cells. Lastly, LLL12 exhibited synergistic anti-proliferative activity with the chemotherapeutic doxorubicin in the OS lines. Conclusion LLL12 exhibits biologic activity against canine OS cell lines through inhibition of STAT3 related cellular functions supporting its potential use as a novel therapy for OS.

  13. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    International Nuclear Information System (INIS)

    Berry, D.L.

    1979-01-01

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days

  14. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.L.

    1979-01-01

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days.

  15. Convergence of regenerative medicine and synthetic biology to develop standardized and validated models of human diseases with clinical relevance.

    Science.gov (United States)

    Hutmacher, Dietmar Werner; Holzapfel, Boris Michael; De-Juan-Pardo, Elena Maria; Pereira, Brooke Anne; Ellem, Stuart John; Loessner, Daniela; Risbridger, Gail Petuna

    2015-12-01

    In order to progress beyond currently available medical devices and implants, the concept of tissue engineering has moved into the centre of biomedical research worldwide. The aim of this approach is not to replace damaged tissue with an implant or device but rather to prompt the patient's own tissue to enact a regenerative response by using a tissue-engineered construct to assemble new functional and healthy tissue. More recently, it has been suggested that the combination of Synthetic Biology and translational tissue-engineering techniques could enhance the field of personalized medicine, not only from a regenerative medicine perspective, but also to provide frontier technologies for building and transforming the research landscape in the field of in vitro and in vivo disease models. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming.

    Science.gov (United States)

    Gomiero, A; Bellerby, R G J; Manca Zeichen, M; Babbini, L; Viarengo, A

    2018-05-01

    Recently, there has been a growing concern that climate change may rapidly and extensively alter global ecosystems with unknown consequences for terrestrial and aquatic life. While considerable emphasis has been placed on terrestrial ecology consequences, aquatic environments have received relatively little attention. Limited knowledge is available on the biological effects of increments of seawater temperature and pH decrements on key ecological species, i.e., primary producers and/or organisms representative of the basis of the trophic web. In the present study, we addressed the biological effects of global warming and ocean acidification on two model organisms, the microbenthic marine ciliate Euplotes crassus and the green alga Dunaliella tertiocleta using a suite of high level ecological endpoint tests and sub-lethal stress measures. Organisms were exposed to combinations of pH and temperature (TR1: 7.9 [pH], 25.5 °C and TR2: 7.8 [pH], 27,0 °C) simulating two possible environmental scenarios predicted to occur in the habitats of the selected species before the end of this century. The outcomes of the present study showed that the tested scenarios did not induce a significant increment of mortality on protozoa. Under the most severe exposure conditions, sub-lethal stress indices show that pH homeostatic mechanisms have energetic costs that divert energy from essential cellular processes and functions. The marine protozoan exhibited significant impairment of the lysosomal compartment and early signs of oxidative stress under these conditions. Similarly, significant impairment of photosynthetic efficiency and an increment in lipid peroxidation were observed in the autotroph model organism held under the most extreme exposure condition tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Relevance of the Pharmacokinetic and Pharmacodynamic Profiles of Puerariae lobatae Radix to Aggregation of Multi-Component Molecules in Aqueous Decoctions

    Directory of Open Access Journals (Sweden)

    Bili Su

    2016-06-01

    Full Text Available The complexity of traditional Chinese medicines (TCMs is related to their multi-component system. TCM aqueous decoction is a common clinical oral formulation. Between molecules in solution, there exist intermolecular strong interactions to form chemical bonds or weak non-bonding interactions such as hydrogen bonds and Van der Waals forces, which hold molecules together to form “molecular aggregates”. Taking the TCM Puerariae lobatae Radix (Gegen as an example, we explored four Gegen decoctions of different concentration of 0.019, 0.038, 0.075, and 0.30 g/mL, named G-1, G-2, G-3, and G-4. In order of molecular aggregate size (diameter the four kinds of solution were ranked G-1 < G-2 < G-3 < G-4 by Flow Cell 200S IPAC image analysis. A rabbit vertebrobasilar artery insufficiency (VBI model was set up and they were given Gegen decoction (GGD at a clinical dosage of 0.82 g/kg (achieved by adjusting the gastric perfusion volume depending on the concentration. The HPLC fingerprint of rabbit plasma showed that the chemical component absorption into blood in order of peak area values was G-1 < G-2 > G-3 > G-4. Puerarin and daidzin are the major constituents of Gegen, and the pharmacokinetics of G-1 and G-2 puerarin conformed with the two compartment open model, while for G-3 and G-4, they conformed to a one compartment open model. For all four GGDs the pharmacokinetics of daidzin complied with a one compartment open model. FQ-PCR assays of rabbits’ vertebrobasilar arterial tissue were performed to determine the pharmacodynamic profiles of the four GGDs. GGD markedly lowered the level of AT1R mRNA, while the AT2R mRNA level was increased significantly vs. the VBI model, and G-2 was the most effective. In theory the dosage was equal to the blood drug concentration and should be consistent; however, the formation of molecular aggregates affects drug absorption and metabolism, and therefore influences drugs’ effects. Our data provided references for

  18. Maleimide-activated aryl diazonium salts for electrode surface functionalization with biological and redox-active molecules.

    Science.gov (United States)

    Harper, Jason C; Polsky, Ronen; Wheeler, David R; Brozik, Susan M

    2008-03-04

    A versatile and simple method is introduced for formation of maleimide-functionalized surfaces using maleimide-activated aryl diazonium salts. We show for the first time electrodeposition of N-(4-diazophenyl)maleimide tetrafluoroborate on gold and carbon electrodes which was characterized via voltammetry, grazing angle FTIR, and ellipsometry. Electrodeposition conditions were used to control film thickness and yielded submonolayer-to-multilayer grafting. The resulting phenylmaleimide surfaces served as effective coupling agents for electrode functionalization with ferrocene and the redox-active protein cytochrome c. The utility of phenylmaleimide diazonium toward formation of a diazonium-activated conjugate, followed by direct electrodeposition of the diazonium-modified DNA onto the electrode surface, was also demonstrated. Effective electron transfer was obtained between immobilized molecules and the electrodes. This novel application of N-phenylmaleimide diazonium may facilitate the development of bioelectronic devices including biofuel cells, biosensors, and DNA and protein microarrays.

  19. The use of semiempirical quantum chemical methods in studying the properties of large series of biologically active molecules

    International Nuclear Information System (INIS)

    Koeseoglu, Y.

    2004-01-01

    In this work, the productivity (temporal characteristics) of the so-called Electron Topological Method (ETM) proposed for the structure-activity relationships (SAR) investigation is studied. The method is standing aside the methods proposed for quantitative SAR (QSAR) studies because of the essential difference in the languages chosen for the compound structures description. ETM uses Electron Topological Matrices of Contiguity (ETMC) that include the most comprehensive data on the electronic structure of compounds and their topology. The flexibility of real molecules is taken into account in terms of two parameters, Δ 1 and Δ 2 , that characterise the accuracy allowed for atomic properties (diagonal matrix elements) and for bonds (non-diagonal ones). The dependence of the feature realisation on different values of Δ 1 and Δ 2 is studied and its graphical representation is given

  20. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications

    KAUST Repository

    Onesto, V.; Villani, M.; Coluccio, M. L.; Majewska, R.; Alabastri, A.; Battista, E.; Schirato, A.; Calestani, D.; Coppedé , N.; Cesarelli, M.; Amato, F.; Di Fabrizio, Enzo M.; Gentile, F.

    2018-01-01

    Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin—BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.

  1. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications

    KAUST Repository

    Onesto, V.

    2018-04-19

    Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin—BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.

  2. Why we should use simpler models if the data allow this: relevance for ANOVA designs in experimental biology

    Directory of Open Access Journals (Sweden)

    Lazic Stanley E

    2008-07-01

    Full Text Available Abstract Background Analysis of variance (ANOVA is a common statistical technique in physiological research, and often one or more of the independent/predictor variables such as dose, time, or age, can be treated as a continuous, rather than a categorical variable during analysis – even if subjects were randomly assigned to treatment groups. While this is not common, there are a number of advantages of such an approach, including greater statistical power due to increased precision, a simpler and more informative interpretation of the results, greater parsimony, and transformation of the predictor variable is possible. Results An example is given from an experiment where rats were randomly assigned to receive either 0, 60, 180, or 240 mg/L of fluoxetine in their drinking water, with performance on the forced swim test as the outcome measure. Dose was treated as either a categorical or continuous variable during analysis, with the latter analysis leading to a more powerful test (p = 0.021 vs. p = 0.159. This will be true in general, and the reasons for this are discussed. Conclusion There are many advantages to treating variables as continuous numeric variables if the data allow this, and this should be employed more often in experimental biology. Failure to use the optimal analysis runs the risk of missing significant effects or relationships.

  3. Time-resolved and steady-state studies of biologically and chemically relevant systems using laser, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Charles Ashley [Iowa State Univ., Ames, IA (United States)

    2014-12-20

    In Chapter 2 several experimental and data analysis methods used in this thesis are described. In Chapter 3 steady-state fluorescence spectroscopy was used to determine the concentration of the efflux pump inhibitors (EPIs), pheophorbide a and pyropheophorbide a, in the feces of animals and it was found that their levels far exceed those reported to be inhibitory to efflux pumps. In Chapter 4 the solvation dynamics of 6-Propionyl-2-(N,Ndimethyl) aminonaphthalene (PRODAN) was studied in reverse micelles. The two fluorescent states of PRODAN solvate on different time scales and as such care must be exercised in solvation dynamic studies involving it and its analogs. In Chapter 5 we studied the experimental and theoretical solvation dynamics of coumarin 153 (C153) in wild-type (WT) and modified myoglobins. Based on the nuclear magnetic resonance (NMR) spectroscopy and time-resolved fluorescence studies, we have concluded that it is important to thoroughly characterize the structure of a protein and probe system before comparing the theoretical and experimental results. In Chapter 6 the photophysical and spectral properties of a derivative of the medically relevant compound curcumin called cyclocurcumin was studied. Based on NMR, fluorescence, and absorption studies, the ground- and excited-states of cyclocurcumin are complicated by the existence of multiple structural isomers. In Chapter 7 the hydrolysis of cellulose by a pure form of cellulase in an ionic liquid, HEMA, and its aqueous mixtures at various temperatures were studied with the goal of increasing the cellulose to glucose conversion for biofuel production. It was found that HEMA imparts an additional stability to cellulase and can allow for faster conversion of cellulose to glucose using a pre-treatment step in comparison to only buffer.

  4. Seven-day human biological rhythms: An expedition in search of their origin, synchronization, functional advantage, adaptive value and clinical relevance.

    Science.gov (United States)

    Reinberg, Alain E; Dejardin, Laurence; Smolensky, Michael H; Touitou, Yvan

    2017-01-01

    This fact-finding expedition explores the perspectives and knowledge of the origin and functional relevance of the 7 d domain of the biological time structure, with special reference to human beings. These biological rhythms are displayed at various levels of organization in diverse species - from the unicellular sea algae of Acetabularia and Goniaulax to plants, insects, fish, birds and mammals, including man - under natural as well as artificial, i.e. constant, environmental conditions. Nonetheless, very little is known about their derivation, functional advantage, adaptive value, synchronization and potential clinical relevance. About 7 d cosmic cycles are seemingly too weak, and the 6 d work/1 d rest week commanded from G-d through the Laws of Mosses to the Hebrews is too recent an event to be the origin in humans. Moreover, human and insect studies conducted under controlled constant conditions devoid of environmental, social and other time cues report the persistence of 7 d rhythms, but with a slightly different (free-running) period (τ), indicating their source is endogenous. Yet, a series of human and laboratory rodent studies reveal certain mainly non-cyclic exogenous events can trigger 7 d rhythm-like phenomena. However, it is unknown whether such triggers unmask, amplify and/or synchronize previous non-overtly expressed oscillations. Circadian (~24 h), circa-monthly (~30 d) and circannual (~1 y) rhythms are viewed as genetically based features of life forms that during evolution conferred significant functional advantage to individual organisms and survival value to species. No such advantages are apparent for endogenous 7 d rhythms, raising several questions: What is the significance of the 7 d activity/rest cycle, i.e. week, storied in the Book of Genesis and adopted by the Hebrews and thereafter the residents of nearby Mediterranean countries and ultimately the world? Why do humans require 1 d off per 7 d span? Do 7 d rhythms bestow functional

  5. Computational investigation and synthesis of a sol-gel imprinted material for sensing application of some biologically active molecules

    Energy Technology Data Exchange (ETDEWEB)

    Atta, Nada F., E-mail: Nada_fah1@yahoo.com [Department of Chemistry, Faculty of Science, University of Cairo, Post Code 12613, Giza (Egypt); Hamed, Maher M.; Abdel-Mageed, Ali M. [Department of Chemistry, Faculty of Science, University of Cairo, Post Code 12613, Giza (Egypt)

    2010-05-14

    A hybrid sol-gel material was molecularly imprinted with a group of neurotransmitters. Imprinted material is a sol-gel thin film that is spin coated on the surface of a glassy carbon electrode. Imprinted films were characterized electrochemically using cyclic voltammetry (CV) and the encapsulated molecules were extracted from the films and complementary molecular cavities are formed that enable their rebind. The films were tested in their corresponding template solutions for rebinding using square wave voltammetry (SWV). Computational approach for exploring the primary intermolecular forces between templates and hydrolyzed form of the precursor monomer, tetraethylorthosilicate (TEOS), were carried out using Hartree-Fock method (HF). Interaction energy values were computed for each adduct formed between a monomer and a template. Analysis of the optimized conformations of various adducts could explain the mode of interaction between the templates and the monomer units. We found that interaction via the amino group is the common mode among the studied compounds and the results are in good agreement with the electrochemical measurements.

  6. Search for biochemical fossils on earth and non-biological organic molecules on Jupiter, Saturn and Titan

    Science.gov (United States)

    Nagy, Bartholomew

    1982-07-01

    Recognizable remnants of ancient biochemicals may survive under mild/moderate geological environments. Acyclic isoprenoid hydrocarbons, cyclic hydrocarbons with terpenoid carbon skeletons (e.g. hopanes) and vanadyl and nickel porphyrins have been isolated from organic matter, including petroleum, in Phanerozoic sedimentary rocks. Remnants of lignin have also been found. Usually, carbohydrates do not survive long; they degrade and/or react with other organic substances to form macromolecular matter. Proteins, e.g. apparently those in dinosaur bone collagen, break down relatively rapidly. Life arose during the Precambrian and potential biochemical fossils, e.g. n-alkanes, 2,5-dimethylfuran have been isolated from Precambrian kerogens. Traces of hydrocarbons, NH3, PH3 occur on Jupiter and Saturn. Hydrocarbons, N2 and HCN, the latter a key intermediary in the laboratory abiological syntheses of amino acids and nucleic acid bases, are present on Titan where life could not have evolved. Precursor abiological organic molecules of some complexity may have been synthesized on Titan and the Jovian planets.

  7. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets.

    Science.gov (United States)

    Periwal, Vinita; Rajappan, Jinuraj K; Jaleel, Abdul Uc; Scaria, Vinod

    2011-11-18

    Tuberculosis is a contagious disease caused by Mycobacterium tuberculosis (Mtb), affecting more than two billion people around the globe and is one of the major causes of morbidity and mortality in the developing world. Recent reports suggest that Mtb has been developing resistance to the widely used anti-tubercular drugs resulting in the emergence and spread of multi drug-resistant (MDR) and extensively drug-resistant (XDR) strains throughout the world. In view of this global epidemic, there is an urgent need to facilitate fast and efficient lead identification methodologies. Target based screening of large compound libraries has been widely used as a fast and efficient approach for lead identification, but is restricted by the knowledge about the target structure. Whole organism screens on the other hand are target-agnostic and have been now widely employed as an alternative for lead identification but they are limited by the time and cost involved in running the screens for large compound libraries. This could be possibly be circumvented by using computational approaches to prioritize molecules for screening programmes. We utilized physicochemical properties of compounds to train four supervised classifiers (Naïve Bayes, Random Forest, J48 and SMO) on three publicly available bioassay screens of Mtb inhibitors and validated the robustness of the predictive models using various statistical measures. This study is a comprehensive analysis of high-throughput bioassay data for anti-tubercular activity and the application of machine learning approaches to create target-agnostic predictive models for anti-tubercular agents.

  8. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets

    Directory of Open Access Journals (Sweden)

    Periwal Vinita

    2011-11-01

    Full Text Available Abstract Background Tuberculosis is a contagious disease caused by Mycobacterium tuberculosis (Mtb, affecting more than two billion people around the globe and is one of the major causes of morbidity and mortality in the developing world. Recent reports suggest that Mtb has been developing resistance to the widely used anti-tubercular drugs resulting in the emergence and spread of multi drug-resistant (MDR and extensively drug-resistant (XDR strains throughout the world. In view of this global epidemic, there is an urgent need to facilitate fast and efficient lead identification methodologies. Target based screening of large compound libraries has been widely used as a fast and efficient approach for lead identification, but is restricted by the knowledge about the target structure. Whole organism screens on the other hand are target-agnostic and have been now widely employed as an alternative for lead identification but they are limited by the time and cost involved in running the screens for large compound libraries. This could be possibly be circumvented by using computational approaches to prioritize molecules for screening programmes. Results We utilized physicochemical properties of compounds to train four supervised classifiers (Naïve Bayes, Random Forest, J48 and SMO on three publicly available bioassay screens of Mtb inhibitors and validated the robustness of the predictive models using various statistical measures. Conclusions This study is a comprehensive analysis of high-throughput bioassay data for anti-tubercular activity and the application of machine learning approaches to create target-agnostic predictive models for anti-tubercular agents.

  9. Deciphering the perturbation effect of urea on the supramolecular host-guest interaction of biologically active hydrophobic molecule inside the nanocavity of cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Banibrata; Chatterjee, Aninda; Ahmed, Sayeed Ashique; Seth, Debabrata, E-mail: debabrata@iitp.ac.in

    2017-03-15

    The present work articulates the supramolecular interaction and the formation of host-guest complex between the biologically active hydrophobic coumarin derivative and cyclodextrins by using several spectroscopic, calorimetric and microscopic techniques. All the studies clearly revealed that in presence of cyclodextrins (CDs), coumarin forms 1:1 stoichiometric complex. From all the study, we have found that with gradual increasing the cavity diameter of the hosts, the binding efficiency of the complexes gradually increases. The small population of the non emissive twisted intramolecular charge transfer (TICT) state of coumarin molecule turns into highly emissive in presence of γ-CD owing to its greater cavity diameter. The emissive TICT band is not found in β-CD complex due to its comparative small hydrophilic exterior and less polar environment. The present finding also interpret the perturbation effect of urea on host-guest complexes. In the presence of urea, the TICT emissive band of γ-CD is completely diminished. From, {sup 1}H NMR study it was observed that –NEt{sub 2} moiety of 7-DCCAE molecule is deeply buried inside the hydrophobic cavity of the CDs and forms host-guest complexes. Isothermal titration calorimetry measurement also indicates the formation of 1:1 host-guest complexes.

  10. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Science.gov (United States)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  11. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-08-14

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  12. Contextual Hub Analysis Tool (CHAT: A Cytoscape app for identifying contextually relevant hubs in biological networks [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Tanja Muetze

    2016-08-01

    Full Text Available Highly connected nodes (hubs in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT, which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene expression or mass spectrometry data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes or proteins that are differentially expressed than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest.   Availability: CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store (http://apps.cytoscape.org/apps/chat.

  13. Making Biology Relevant to Undergraduates

    Science.gov (United States)

    Musante, Susan

    2012-01-01

    This article features Science Education for New Civic Engagements and Responsibilities (SENCER; www.sencer.net) Summer Institute. The SENCER program, which began formally in 2001, was the vision of David Burns; Karen Oates, currently Peterson Family Dean of Arts and Sciences at Worcester Polytechnic Institute; and Ric Wiebl, currently director of…

  14. Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: Studies of some biological molecules in the energy range 1 keV-20 MeV

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2008-01-01

    Effective atomic numbers for photon energy absorption, Z(PEA,eff), and for photon interaction, Z(PI,eff), have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for biological molecules, such as fatty acids (lauric, myristic, palmitic, stearic, oleic, linoleic......, linolenic, arachidonic, and arachidic acids), nucleotide bases (adenine, guanine, cytosine, uracil, and thymine), and carbohydrates (glucose, sucrose, raffinose, and starch). The Z(PEA, eff) and Z(PI, eff) values have been found to change with energy and composition of the biological molecules. The energy...

  15. Food words distract the hungry: Evidence of involuntary semantic processing of task-irrelevant but biologically-relevant unexpected auditory words.

    Science.gov (United States)

    Parmentier, Fabrice B R; Pacheco-Unguetti, Antonia P; Valero, Sara

    2018-01-01

    Rare changes in a stream of otherwise repeated task-irrelevant sounds break through selective attention and disrupt performance in an unrelated visual task by triggering shifts of attention to and from the deviant sound (deviance distraction). Evidence indicates that the involuntary orientation of attention to unexpected sounds is followed by their semantic processing. However, past demonstrations relied on tasks in which the meaning of the deviant sounds overlapped with features of the primary task. Here we examine whether such processing is observed when no such overlap is present but sounds carry some relevance to the participants' biological need to eat when hungry. We report the results of an experiment in which hungry and satiated participants partook in a cross-modal oddball task in which they categorized visual digits (odd/even) while ignoring task-irrelevant sounds. On most trials the irrelevant sound was a sinewave tone (standard sound). On the remaining trials, deviant sounds consisted of spoken words related to food (food deviants) or control words (control deviants). Questionnaire data confirmed state (but not trait) differences between the two groups with respect to food craving, as well as a greater desire to eat the food corresponding to the food-related words in the hungry relative to the satiated participants. The results of the oddball task revealed that food deviants produced greater distraction (longer response times) than control deviants in hungry participants while the reverse effect was observed in satiated participants. This effect was observed in the first block of trials but disappeared thereafter, reflecting semantic saturation. Our results suggest that (1) the semantic content of deviant sounds is involuntarily processed even when sharing no feature with the primary task; and that (2) distraction by deviant sounds can be modulated by the participants' biological needs.

  16. Enantio-specific C(sp3)-H activation catalyzed by ruthenium nanoparticles: application to isotopic labeling of molecules of biological interest

    International Nuclear Information System (INIS)

    Taglang, Celine

    2015-01-01

    Isotopic labeling with deuterium and tritium is extensively used in chemistry, biology and pharmaceutical research. Numerous methods of labeling by isotopic exchange allow high isotopic enrichments but generally require harsh conditions (high temperatures, acidity). As a consequence, a general, regioselective and smooth labeling method that might be applicable to a wide diversity of substrates remains to develop. In the first part of this thesis, we demonstrated that the use of ruthenium nanoparticles, synthesized by Pr. Bruno Chaudret's team (INSA Toulouse), allowed the mild (2 bar of deuterium gas at 55 C), effective and selective H/D exchange reaction of a large variety of nitrogen-containing compounds, such as pyridines, indoles and primary, secondary and tertiary alkyl amines. The usefulness and the efficiency of this novel methodology was demonstrated by the deuteration of eight nitrogen-containing molecules of biological interest without altering their chemical and stereochemical properties. However, the conservation of the original stereochemistry of an activated chiral C-H center remains a major issue. We studied the reactivity of RuNP(at)PVP on different categories of nitrogen-containing substrates (amines, aminoacids and peptides) in water or in organic solvents. Our results showed that C-H activation of chiral carbons C(sp3) took place efficiently, selectively and, in all cases, with total retention of configuration. The wide range of applications of this procedure was demonstrated by the labeling of three chiral amines, fourteen aminoacids, three aromatic amino esters and four peptides. Moreover, our collaboration with Pr. Romuald Poteau's team (INSA Toulouse) led to the identification of two mechanisms by ab initio simulation in agreement with our experimental results: the σ-bond metathesis mechanism and the oxidative addition mechanism. These two mechanisms imply two vicinal ruthenium atoms leading to the formation an original

  17. The Androgen-Regulated Calcium-Activated Nucleotidase 1 (CANT1) Is Commonly Overexpressed in Prostate Cancer and Is Tumor-Biologically Relevant in Vitro

    Science.gov (United States)

    Gerhardt, Josefine; Steinbrech, Corinna; Büchi, Oralea; Behnke, Silvia; Bohnert, Annette; Fritzsche, Florian; Liewen, Heike; Stenner, Frank; Wild, Peter; Hermanns, Thomas; Müntener, Michael; Dietel, Manfred; Jung, Klaus; Stephan, Carsten; Kristiansen, Glen

    2011-01-01

    Previously, we identified the calcium-activated nucleotidase 1 (CANT1) transcript as up-regulated in prostate cancer. Now, we studied CANT1 protein expression in a large cohort of nearly 1000 prostatic tissue samples including normal tissue, prostatic intraepithelial neoplasia (PIN), primary carcinomas, metastases, and castrate-resistant carcinomas, and further investigated its functional relevance. CANT1 displayed predominantly a Golgi-type immunoreactivity with additional and variable cytoplasmic staining. In comparison to normal tissues, the staining intensity was significantly increased in PIN lesions and cancer. In cancer, high CANT1 levels were associated with a better prognosis, and castrate-resistant carcinomas commonly showed lower CANT1 levels than primary carcinomas. The functional role of CANT1 was investigated using RNA interference in two prostate cancer cell lines with abundant endogenous CANT1 protein. On CANT1 knockdown, a significantly diminished cell number and DNA synthesis rate, a cell cycle arrest in G1 phase, and a strong decrease of cell transmigration rate and wound healing capacity of CANT1 knockdown cells was found. However, on forced CANT1 overexpression, cell proliferation and migration remained unchanged. In summary, CANT1 is commonly overexpressed in the vast majority of primary prostate carcinomas and in the precursor lesion PIN and may represent a novel prognostic biomarker. Moreover, this is the first study to demonstrate a functional involvement of CANT1 in tumor biology. PMID:21435463

  18. Correlation between γ-ray-induced DNA double-strand breakage and cell killing after biologically relevant doses: analysis by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Murray, D.

    1994-01-01

    We examined the degree of correlation between γ-ray-induced lethality and DNA double-strand breaks (dsbs) after biologically relevant doses of radiation. Radiation lethality was modified by treating 14 C-labelled Chinese hamster ovary cells with either of two aminothiols (WR-1065 or WR-255591) and the associated effect on dsb induction was determined by pulsed-field gel electrophoresis (PFGE). The use of phosphorimaging to analyse the distribution of 14 C-activity in the gel greatly improved the low-dose resolution of the PFGE assay. Both WR-1065 and WR-255591 protected against dsb induction and lethality to a similar extent after low doses of radiation. although this correlation broke down when supralethal doses were used to induce dsbs. Thus, the level of dsbs induced in these cells as measured by PFGE after survival-curve doses of γ-radiation is consistently predictive of the degree of lethality obtained, implying a cause-effect relationship between these two parameters and confirming previous results obtained using the neutral filter elution assay for dsbs. (author)

  19. Effect of Organic Solvents and Biologically Relevant Ions on the Light-Induced DNA Cleavage by Pyrene and Its Amino and Hydroxy Derivatives

    Directory of Open Access Journals (Sweden)

    Hongtao Yu

    2002-09-01

    Full Text Available Abstract: Polycyclic aromatic hydrocarbons (PAHs are a class of carcinogenic compounds that are both naturally and artificially produced. Many PAHs are pro-carcinogens that require metabolic activation. Recently, it has been shown that PAH can induce DNA single strand cleavage and formation of PAH-DNA covalent adduct upon irradiation with UVA light. The light-induced DNA cleavage parallels phototoxicity in one instance. The DNA photocleavage efficiency depends on the structure of the PAHs. This article reports the effect of both organic solvents and the presence of biologically relevant ions, Na+, Mg2+, Ca2+, K+, Fe3+, Cu2+, Zn+2, Mn2+, and I-, on the light-induced DNA cleavage by pyrene, 1-hydroxypyrene and 1-aminopyrene. Since both 1-hydroxypyrene (0.6 μM and 1-aminopyrene (6 μM dissolve well in the minimum organic solvents used (2% methanol, dimethylsulfoxide, and dimethylformamide, increasing the amount of the organic solvent resulted in the decrease of the amount of DNA single strand cleavage caused by the combination effect of 1-hydroxy or 1-aminopyrene and UVA light. The result with the less watersoluble pyrene shows that increase of the amount of the organic solvent can increase the amount of DNA single strand DNA photocleavage cause by the combination of pyrene and UVA light. Therefore, there are two effects by the organic solvents: (i to dissolve PAH and (ii to quench DNA photocleavage. The presence of Fe3+ and Zn2+ enhances, while the presence of Ca2+ and Mn2+ inhibits the DNA photocleavage caused by 1-aminopyrene and UVA light. Other metal ions have minimal effect. This means that the effect of ions on DNA photocleavage by PAHs is complex. The presence of KI enhances DNA photocleavage. This indicates that the triplet-excited state of 1-aminopyrene is involved in causing DNA cleavage

  20. Beta-defensin-2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically relevant concentrations in lesional skin.

    Directory of Open Access Journals (Sweden)

    Patrick A M Jansen

    Full Text Available BACKGROUND: Previous studies have extensively documented antimicrobial and chemotactic activities of beta-defensins. Human beta-defensin-2 (hBD-2 is strongly expressed in lesional psoriatic epidermis, and recently we have shown that high beta-defensin genomic copy number is associated with psoriasis susceptibility. It is not known, however, if biologically and pathophysiologically relevant concentrations of hBD-2 protein are present in vivo, which could support an antimicrobial and proinflammatory role of beta-defensins in lesional psoriatic epidermis. METHODOLOGY/PRINCIPAL FINDINGS: We found that systemic levels of hBD-2 showed a weak but significant correlation with beta defensin copy number in healthy controls but not in psoriasis patients with active disease. In psoriasis patients but not in atopic dermatitis patients, we found high systemic hBD-2 levels that strongly correlated with disease activity as assessed by the PASI score. Our findings suggest that systemic levels in psoriasis are largely determined by secretion from involved skin and not by genomic copy number. Modelling of the in vivo epidermal hBD-2 concentration based on the secretion rate in a reconstructed skin model for psoriatic epidermis provides evidence that epidermal hBD-2 levels in vivo are probably well above the concentrations required for in vitro antimicrobial and chemokine-like effects. CONCLUSIONS/SIGNIFICANCE: Serum hBD-2 appears to be a useful surrogate marker for disease activity in psoriasis. The discrepancy between hBD-2 levels in psoriasis and atopic dermatitis could explain the well known differences in infection rate between these two diseases.

  1. Mesoscopic models of biological membranes

    DEFF Research Database (Denmark)

    Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.

    2006-01-01

    Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...

  2. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst

    2007-01-01

    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  3. Molecule nanoweaver

    Science.gov (United States)

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  4. Salt-stimulation of caesium accumulation in the euryhaline green microalga Chlorella salina: potential relevance to the development of a biological Cs-removal process

    Energy Technology Data Exchange (ETDEWEB)

    Avery, S. V.; Codd, G. A.; Gadd, G. M. [Department of Biological Sciences, University of Dundee, Dundee DD1 4HN (United Kingdom)

    1993-07-01

    Accumulation of Cs{sup +} by Chlorella salina was 28-fold greater in cells incubated in the presence than in the absence of 0.5 M-NaCl. An approximate 70% removal of external Cs{sup +} resulted after 15 h incubation of cells with 50 μ;M-CsCl and 0.5 M-NaCl. LiCl also had a stimulatory effect on Cs{sup +} uptake, although mannitol did not. Cs{sup +} influx increased with increasing external NaCl concentration and was maximal between 25-500 mM-NaCl at approximately 4 nmol Cs{sup +} h−1 (10{sup 6} cells){sup −1}. Little effect on Cs{sup +} uptake resulted from the presence of Mg{sup 2+} or Ca{sup 2+} or from varying the external pH, and Cs{sup +} was relatively non-toxic towards C. salina. At increasing cell densities (from 4 × 10{sup 5} to 1 × 10{sup 7} cells ml{sup +1}), decreasing amounts of Cs{sup +} were accumulated per cell although the rate of Cs{sup +} removal from the external medium was still greatest at the higher cell densities examined. Freely suspended C. salina and cell-loaded alginate microbeads accumulated similar levels of Cs{sup +}, however, 46% of total Cs{sup +} uptake was attributable to the calcium-alginate matrix in the latter case. When Cs{sup +}-loaded cells were subjected to hypoosmotic shock, loss of cellular Cs{sup +} occurred allowing easy Cs{sup +} recovery. This loss exceeded 90% of cellular Cs{sup +} when cells were washed with solutions containing ≤ 50 mM-NaCl between consecutive Cs{sup +} uptake periods; these cells subsequently lost their ability to accumulate large amounts of Cs{sup +}. Maximal Cs{sup +} uptake (approximately 85.1% removal after three 15 h incubations) occurred when cells were washed with a solution containing 500 mM-NaCl and 200 mM-KCl between incubations. The relevance of these results to the possible use of C. salina in a salt-dependent biological Cs-removal process is discussed. (author)

  5. A Brief Introduction to Single-Molecule Fluorescence Methods.

    Science.gov (United States)

    van den Wildenberg, Siet M J L; Prevo, Bram; Peterman, Erwin J G

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

  6. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    study and understand the function of biological systems, particu- larly, the response of such .... understand the organisation and behaviour of prokaryotic sys- tems. ... relationship of the structure of a target molecule to its ability to bind a certain ...

  7. An integrated approach of network-based systems biology, molecular docking, and molecular dynamics approach to unravel the role of existing antiviral molecules against AIDS-associated cancer.

    Science.gov (United States)

    Omer, Ankur; Singh, Poonam

    2017-05-01

    A serious challenge in cancer treatment is to reposition the activity of various already known drug candidates against cancer. There is a need to rewrite and systematically analyze the detailed mechanistic aspect of cellular networks to gain insight into the novel role played by various molecules. Most Human Immunodeficiency Virus infection-associated cancers are caused by oncogenic viruses like Human Papilloma Viruses and Epstein-Bar Virus. As the onset of AIDS-associated cancers marks the severity of AIDS, there might be possible interconnections between the targets and mechanism of both the diseases. We have explored the possibility of certain antiviral compounds to act against major AIDS-associated cancers: Kaposi's Sarcoma, Non-Hodgkin Lymphoma, and Cervical Cancer with the help of systems pharmacology approach that includes screening for targets and molecules through the construction of a series of drug-target and drug-target-diseases network. Two molecules (Calanolide A and Chaetochromin B) and the target "HRAS" were finally screened with the help of molecular docking and molecular dynamics simulation. The results provide novel antiviral molecules against HRAS target to treat AIDS defining cancers and an insight for understanding the pharmacological, therapeutic aspects of similar unexplored molecules against various cancers.

  8. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...

  9. Dynamics of Activated Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, Amy S. [Univ. of Maryland, College Park, MD (United States)

    2016-11-16

    Experimental studies have been performed to investigate the collisional energy transfer processes of gas-phase molecules that contain large amounts of internal energy. Such molecules are prototypes for molecules under high temperature conditions relevant in combustion and information about their energy transfer mechanisms is needed for a detailed understanding and modeling of the chemistry. We use high resolution transient IR absorption spectroscopy to measure the full, nascent product distributions for collisions of small bath molecules that relax highly vibrationally excited pyrazine molecules with E=38000 cm-1 of vibrational energy. To perform these studies, we developed new instrumentation based on modern IR light sources to expand our experimental capabilities to investigate new molecules as collision partners. This final report describes our research in four areas: the characterization of a new transient absorption spectrometer and the results of state-resolved collision studies of pyrazine(E) with HCl, methane and ammonia. Through this research we have gained fundamental new insights into the microscopic details of relatively large complex molecules at high energy as they undergo quenching collisions and redistribute their energy.

  10. Probabilistic biological network alignment.

    Science.gov (United States)

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-01-01

    Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.

  11. Atkins' molecules

    CERN Document Server

    Atkins, Peters

    2003-01-01

    Originally published in 2003, this is the second edition of a title that was called 'the most beautiful chemistry book ever written'. In it, we see the molecules responsible for the experiences of our everyday life - including fabrics, drugs, plastics, explosives, detergents, fragrances, tastes, and sex. With engaging prose Peter Atkins gives a non-technical account of an incredible range of aspects of the world around us, showing unexpected connections, and giving an insight into how this amazing world can be understood in terms of the atoms and molecules from which it is built. The second edition includes dozens of extra molecules, graphical presentation, and an even more accessible and enthralling account of the molecules themselves.

  12. Interstellar Molecules

    Science.gov (United States)

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  13. Immunolocalisation of members of the polypeptide N-acetylgalactosaminyl transferase (ppGalNAc-T) family is consistent with biologically relevant altered cell surface glycosylation in breast cancer

    DEFF Research Database (Denmark)

    Brooks, Susan A; Carter, Tracey M; Bennett, Eric P

    2007-01-01

    understood, may mediate the synthesis of varied glycoforms of cellular proteins with different biological activities. Disruptions in glycosylation are a common feature of cancer and may have functional significance. Immunocytochemistry with confocal scanning laser microscopy was employed to detect members...... of the ppGalNAc-T family, ppGalNAc-T1, -T2, -T3, -T4 and -T6 in a range of breast cell lines. The cells were chosen to represent a range of phenotypes from 'normal'/benign (HMT 3,522), primary, non-metastatic breast cancer (BT 474), to aggressive, metastatic breast cancer (ZR75-1, T47D, MCF-7, DU 4...... tightly restricted ppGalNAc-T's may result in initiation of O-linked glycosylation at normally unoccupied potential glycosylation sites leading to altered glycoforms of proteins with changed biological activity which may contribute to the pathogenesis of cancer....

  14. Measurement of neutrons emitted following the absorption of stopped negative pions in the biologically relevant nuclei 12C, 14N und 16O

    International Nuclear Information System (INIS)

    Klein, U.

    1978-05-01

    A time-of-flight technique has been used to measure the energy spectra of neutrons emitted following the absorption of stopped negative pions in the biologically interesting light out at the biomedical pion channel πE3 of the Swiss Institute of Nuclear Research (SIN). The neutron spectra for all the target nuclei studied are the same within the error bars. The spectra are characterized by a low-energy 'evaporation' part and a high-energy 'direct' component. (orig.) [de

  15. Solid-Phase Synthesis for the Construction of Biologically Interesting Molecules and the Total Synthesis of Trioxacarcin DC-45-A2

    DEFF Research Database (Denmark)

    Mikkelsen, Remi Jacob Thomsen

    . Furthermore a route to another key building block was developed featuring a Stille cross-coupling.Synthesis of Poly-fused Heterocycles. In the search for new biologically active compounds a methodology for the synthesis of polyfused heterocycles was investigated. This led to the development and optimization...

  16. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    Science.gov (United States)

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules

  17. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  18. Discovery of small molecules binding to the normal conformation of prion by combining virtual screening and multiple biological activity evaluation methods

    Science.gov (United States)

    Li, Lanlan; Wei, Wei; Jia, Wen-Juan; Zhu, Yongchang; Zhang, Yan; Chen, Jiang-Huai; Tian, Jiaqi; Liu, Huanxiang; He, Yong-Xing; Yao, Xiaojun

    2017-12-01

    Conformational conversion of the normal cellular prion protein, PrPC, into the misfolded isoform, PrPSc, is considered to be a central event in the development of fatal neurodegenerative diseases. Stabilization of prion protein at the normal cellular form (PrPC) with small molecules is a rational and efficient strategy for treatment of prion related diseases. However, few compounds have been identified as potent prion inhibitors by binding to the normal conformation of prion. In this work, to rational screening of inhibitors capable of stabilizing cellular form of prion protein, multiple approaches combining docking-based virtual screening, steady-state fluorescence quenching, surface plasmon resonance and thioflavin T fluorescence assay were used to discover new compounds interrupting PrPC to PrPSc conversion. Compound 3253-0207 that can bind to PrPC with micromolar affinity and inhibit prion fibrillation was identified from small molecule databases. Molecular dynamics simulation indicated that compound 3253-0207 can bind to the hotspot residues in the binding pocket composed by β1, β2 and α2, which are significant structure moieties in conversion from PrPC to PrPSc.

  19. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule Matters - Dinitrogen. A G Samuelson J Jabadurai. Volume 16 Issue 12 ... Author Affiliations. A G Samuelson1 J Jabadurai1. Department of Inroganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  20. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Molecule Matters - A Chromium Compound with a Quintuple Bond. K C Kumara Swamy. Feature Article Volume 11 Issue 9 September 2006 pp 72-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Elements determination of clinical relevance in biological tissues Dmd{sup mdx}/J dystrophic mice strains investigated by NAA; Determinacao de elementos de relevancia clinica em tecidos biologicos de camundongos distroficos Dmd{sup mdx}/J por AAN

    Energy Technology Data Exchange (ETDEWEB)

    Metairon, Sabrina

    2012-07-01

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMD{sup mdx}/J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmd{sup mdx}/J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  2. A Selective Assay to Detect Chitin and Biologically Active Nano-Machineries for Chitin-Biosynthesis with Their Intrinsic Chitin-Synthase Molecules

    Directory of Open Access Journals (Sweden)

    Hildgund Schrempf

    2010-09-01

    Full Text Available A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein, has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.

  3. The Compact and Biologically Relevant Structure of Inter-α-inhibitor Is Maintained by the Chondroitin Sulfate Chain and Divalent Cations.

    Science.gov (United States)

    Scavenius, Carsten; Nikolajsen, Camilla Lund; Stenvang, Marcel; Thøgersen, Ida B; Wyrożemski, Łukasz; Wisniewski, Hans-Georg; Otzen, Daniel E; Sanggaard, Kristian W; Enghild, Jan J

    2016-02-26

    Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg(2+) or Mn(2+), but not Ca(2+), induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg(2+) found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Anisotropy in highly charged ion induced molecule fragmentation

    International Nuclear Information System (INIS)

    Juhasz, Z.; Sulik, B.; Fremont, F.; Chesnel, J.Y.; Hajaji, A.

    2006-01-01

    Complete text of publication follows. Studying fragmentation processes of biologically relevant molecules due to highly charged ion impact is important to understand radiation damage in biological tissues. Energy spectra of the charged molecule fragments may reveal the different fragmentation patterns meanwhile the angular distributions of the fragments characterize the dependence of fragmentation probability on the initial orientation of the molecule. The research to explore the angular distribution of the molecule fragments has only recently been started[1]. In 2006 we performed measurements at ARIBE facility at GANIL, Caen (France), in order to investigate orientation effects in molecule fragmentation. Fragmentation of H 2 O, C 6 H 6 and CH 4 , which represent different level of symmetry, have been studied by 60 keV N 6+ ion impact. Energy spectra of the charged fragments at different observation angles have been taken. As our example spectra show the different protonic peaks can be attributed to different fragmentation processes. Significant anisotropy can be seen in the different processes. The strongest evidence for the anisotropy can be seen in the spectra of C 6 H 6 , where the spectra appear isotropic in almost the whole observed energy range except one peak, which has a strong angular dependence and is maximal around 90 deg. (author)

  5. Extracting physics of life at the molecular level: A review of single-molecule data analyses.

    Science.gov (United States)

    Colomb, Warren; Sarkar, Susanta K

    2015-06-01

    Studying individual biomolecules at the single-molecule level has proved very insightful recently. Single-molecule experiments allow us to probe both the equilibrium and nonequilibrium properties as well as make quantitative connections with ensemble experiments and equilibrium thermodynamics. However, it is important to be careful about the analysis of single-molecule data because of the noise present and the lack of theoretical framework for processes far away from equilibrium. Biomolecular motion, whether it is free in solution, on a substrate, or under force, involves thermal fluctuations in varying degrees, which makes the motion noisy. In addition, the noise from the experimental setup makes it even more complex. The details of biologically relevant interactions, conformational dynamics, and activities are hidden in the noisy single-molecule data. As such, extracting biological insights from noisy data is still an active area of research. In this review, we will focus on analyzing both fluorescence-based and force-based single-molecule experiments and gaining biological insights at the single-molecule level. Inherently nonequilibrium nature of biological processes will be highlighted. Simulated trajectories of biomolecular diffusion will be used to compare and validate various analysis techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Solar ultraviolet radiation induces biological alterations in human skin in vitro: Relevance of a well-balanced UVA/UVB protection

    Directory of Open Access Journals (Sweden)

    Françoise Bernerd

    2012-01-01

    Full Text Available Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  7. Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection.

    Science.gov (United States)

    Bernerd, Francoise; Marionnet, Claire; Duval, Christine

    2012-06-01

    Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  8. Drug Delivery Through the Skin: Molecular Simulations of Barrier Lipids to Design more Effective Noninvasive Dermal and Transdermal Delivery Systems for Small Molecules Biologics and Cosmetics

    Energy Technology Data Exchange (ETDEWEB)

    J Torin Huzil; S Sivaloganathan; M Kohandel; M Foldvari

    2011-12-31

    The delivery of drugs through the skin provides a convenient route of administration that is often preferable to injection because it is noninvasive and can typically be self-administered. These two factors alone result in a significant reduction of medical complications and improvement in patient compliance. Unfortunately, a significant obstacle to dermal and transdermal drug delivery alike is the resilient barrier that the epidermal layers of the skin, primarily the stratum corneum, presents for the diffusion of exogenous chemical agents. Further advancement of transdermal drug delivery requires the development of novel delivery systems that are suitable for modern, macromolecular protein and nucleotide therapeutic agents. Significant effort has already been devoted to obtain a functional understanding of the physical barrier properties imparted by the epidermis, specifically the membrane structures of the stratum corneum. However, structural observations of membrane systems are often hindered by low resolutions, making it difficult to resolve the molecular mechanisms related to interactions between lipids found within the stratum corneum. Several models describing the molecular diffusion of drug molecules through the stratum corneum have now been postulated, where chemical permeation enhancers are thought to disrupt the underlying lipid structure, resulting in enhanced permeability. Recent investigations using biphasic vesicles also suggested a possibility for novel mechanisms involving the formation of complex polymorphic lipid phases. In this review, we discuss the advantages and limitations of permeation-enhancing strategies and how computational simulations, at the atomic scale, coupled with physical observations can provide insight into the mechanisms of diffusion through the stratum corneum.

  9. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  10. A Starting Point for Fluorescence-Based Single-Molecule Measurements in Biomolecular Research

    Directory of Open Access Journals (Sweden)

    Alexander Gust

    2014-09-01

    Full Text Available Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  11. Clinical Relevance of Adipokines

    Directory of Open Access Journals (Sweden)

    Matthias Blüher

    2012-10-01

    Full Text Available The incidence of obesity has increased dramatically during recent decades. Obesity increases the risk for metabolic and cardiovascular diseases and may therefore contribute to premature death. With increasing fat mass, secretion of adipose tissue derived bioactive molecules (adipokines changes towards a pro-inflammatory, diabetogenic and atherogenic pattern. Adipokines are involved in the regulation of appetite and satiety, energy expenditure, activity, endothelial function, hemostasis, blood pressure, insulin sensitivity, energy metabolism in insulin sensitive tissues, adipogenesis, fat distribution and insulin secretion in pancreatic β-cells. Therefore, adipokines are clinically relevant as biomarkers for fat distribution, adipose tissue function, liver fat content, insulin sensitivity, chronic inflammation and have the potential for future pharmacological treatment strategies for obesity and its related diseases. This review focuses on the clinical relevance of selected adipokines as markers or predictors of obesity related diseases and as potential therapeutic tools or targets in metabolic and cardiovascular diseases.

  12. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2015-04-01

    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Eun Su Kim, Jung Hyun Park, Jin-Hoi Kim Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea Objective: Graphene represents a monolayer or a few layers of sp2-bonded carbon atoms with a honeycomb lattice structure. Unique physical, chemical, and biological properties of graphene have attracted great interest in various fields including electronics, energy, material industry, and medicine, where it is used for tissue engineering and scaffolding, drug delivery, and as an antibacterial and anticancer agent. However, graphene cytotoxicity for ovarian cancer cells is still not fully investigated. The objective of this study was to synthesize graphene using a natural polyphenol compound resveratrol and to investigate its toxicity for ovarian cancer cells.Methods: The successful reduction of graphene oxide (GO to graphene was confirmed by UV-vis and Fourier transform infrared spectroscopy. Dynamic light scattering and scanning electron microscopy were employed to evaluate particle size and surface morphology of GO and resveratrol-reduced GO (RES-rGO. Raman spectroscopy was used to determine the removal of oxygen-containing functional groups from GO surface and to ensure the formation of graphene. We also performed a comprehensive analysis of GO and RES-rGO cytotoxicity by examining the morphology, viability, membrane integrity, activation of caspase-3, apoptosis, and alkaline phosphatase activity of ovarian cancer cells.Results: The results also show that resveratrol effectively reduced GO to graphene and the properties of RES-rGO nanosheets were comparable to those of chemically reduced graphene. Biological experiments showed that GO and RES-rGO caused a dose-dependent membrane leakage and oxidative stress in cancer cells, and reduced their viability via apoptosis confirmed by the upregulation of apoptosis executioner caspase-3.Conclusion: Our data demonstrate a single, simple green

  13. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kim, Eun Su; Park, Jung Hyun; Kim, Jin-Hoi

    2015-01-01

    Objective Graphene represents a monolayer or a few layers of sp2-bonded carbon atoms with a honeycomb lattice structure. Unique physical, chemical, and biological properties of graphene have attracted great interest in various fields including electronics, energy, material industry, and medicine, where it is used for tissue engineering and scaffolding, drug delivery, and as an antibacterial and anticancer agent. However, graphene cytotoxicity for ovarian cancer cells is still not fully investigated. The objective of this study was to synthesize graphene using a natural polyphenol compound resveratrol and to investigate its toxicity for ovarian cancer cells. Methods The successful reduction of graphene oxide (GO) to graphene was confirmed by UV-vis and Fourier transform infrared spectroscopy. Dynamic light scattering and scanning electron microscopy were employed to evaluate particle size and surface morphology of GO and resveratrol-reduced GO (RES-rGO). Raman spectroscopy was used to determine the removal of oxygen-containing functional groups from GO surface and to ensure the formation of graphene. We also performed a comprehensive analysis of GO and RES-rGO cytotoxicity by examining the morphology, viability, membrane integrity, activation of caspase-3, apoptosis, and alkaline phosphatase activity of ovarian cancer cells. Results The results also show that resveratrol effectively reduced GO to graphene and the properties of RES-rGO nanosheets were comparable to those of chemically reduced graphene. Biological experiments showed that GO and RES-rGO caused a dose-dependent membrane leakage and oxidative stress in cancer cells, and reduced their viability via apoptosis confirmed by the upregulation of apoptosis executioner caspase-3. Conclusion Our data demonstrate a single, simple green approach for the synthesis of highly water-dispersible functionalized graphene nanosheets, suggesting a possibility of replacing toxic hydrazine by a natural and safe phenolic

  14. Photo fragmentation dynamics of small argon clusters and biological molecular: new tools by trapping and vectorial correlation; Dynamique de photofragmentation de petits agregats d'argon et de molecules biologiques: nouvel outil par piegeage et correlation vectorielle

    Energy Technology Data Exchange (ETDEWEB)

    Lepere, V

    2006-09-15

    The present work concerns the building up of a complex set-up whose aim being the investigation of the photo fragmentation of ionised clusters and biological molecules. This new tool is based on the association of several techniques. Two ion sources are available: clusters produced in a supersonic beam are ionised by 70 eV electrons while ions of biological interest are produced in an 'electro-spray'. Ro-vibrational cooling is achieved in a 'Zajfman' electrostatic ion trap. The lifetime of ions can also be measured using the trap. Two types of lasers are used to excite the ionised species: the femtosecond laser available at the ELYSE facilities and a nanosecond laser. Both lasers have a repetition rate of 1 kHz. The neutral and ionised fragments are detected in coincidence using a sophisticated detection system allowing time and localisation of the various fragments to be determined. With such a tool, I was able to investigate in details the fragmentation dynamics of ionised clusters and bio-molecules. The first experiments deal with the measurement of the lifetime of the Ar{sup 2+} dimer II(1/2)u metastable state. The relative population of this state was also determined. The Ar{sup 2+} and Ar{sup 3+} photo-fragmentation was then studied and electronic transitions responsible for their dissociation identified. The detailed analysis of our data allowed to distinguish the various fragmentation mechanisms. Finally, a preliminary investigation of the protonated tryptamine fragmentation is presented. (author)

  15. Low pressure tritiation of molecules

    International Nuclear Information System (INIS)

    Moran, T.F.; Powers, J.C.; Lively, M.O.

    1980-01-01

    A method is described of tritiating sensitive biological molecules by depositing molecules of the substance to be tritiated on a supporting substrate in an evacuated vacuum chamber near, but not in the path of, an electron beam which traverses the chamber, admitting tritium gas into the chamber, and subjecting the tritium to the electron beam. Vibrationally excited tritium gas species are generated which collide and react with the substance thus incorporating tritium atoms into the substance. (U.K.)

  16. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  17. Biologics in pediatric psoriasis - efficacy and safety.

    Science.gov (United States)

    Dogra, Sunil; Mahajan, Rahul

    2018-01-01

    Childhood psoriasis is a special situation that is a management challenge for the treating dermatologist. As is the situation with traditional systemic agents, which are commonly used in managing severe psoriasis in children, the biologics are being increasingly used in the recalcitrant disease despite limited data on long term safety. Areas covered: We performed an extensive literature search to collect evidence-based data on the use of biologics in pediatric psoriasis. The relevant literature published from 2000 to September 2017 was obtained from PubMed, using the MeSH words 'biologics', 'biologic response modifiers' and 'treatment of pediatric/childhood psoriasis'. All clinical trials, randomized double-blind or single-blind controlled trials, open-label studies, retrospective studies, reviews, case reports and letters concerning the use of biologics in pediatric psoriasis were screened. Articles covering the use of biologics in pediatric psoriasis were screened and reference lists in the selected articles were scrutinized to identify other relevant articles that had not been found in the initial search. Articles without relevant information about biologics in general (e.g. its mechanism of action, pharmacokinetics and adverse effects) and its use in psoriasis in particular were excluded. We screened 427 articles and finally selected 41 relevant articles. Expert opinion: The available literature on the use of biologics such as anti-tumor necrosis factor (TNF)-α agents, and anti-IL-12/23 agents like ustekinumab suggests that these are effective and safe in managing severe pediatric psoriasis although there is an urgent need to generate more safety data. Dermatologists must be careful about the potential adverse effects of the biologics before administering them to children with psoriasis. It is likely that with rapidly evolving scenario of biologics in psoriasis, these will prove to be very useful molecules particularly in managing severe and recalcitrant

  18. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan. Feature Article Volume 14 Issue 12 December 2009 pp 1210-1222 ...

  19. Validação em métodos cromatográficos para análises de pequenas moléculas em matrizes biológicas Chromatographic methods validation for analysis of small molecules in biological matrices

    OpenAIRE

    Neila Maria Cassiano; Juliana Cristina Barreiro; Lúcia Regina Rocha Martins; Regina Vincenzi Oliveira; Quezia Bezerra Cass

    2009-01-01

    Chromatographic methods are commonly used for analysis of small molecules in different biological matrices. An important step to be considered upon a bioanalytical method's development is the capacity to yield reliable and reproducible results. This review discusses validation procedures adopted by different governmental agencies, such as Food and Drug Administration (USA), European Union (EU) and Agência Nacional de Vigilância Sanitária (BR) for quantification of small molecules by bioanalyt...

  20. CRISPR-Cas: biology, mechanisms and relevance

    Science.gov (United States)

    Hille, Frank

    2016-01-01

    Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes—termed spacers—into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent. This article is part of the themed issue ‘The new bacteriology’. PMID:27672148

  1. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    Wildenberg, S.M.J.L.; Prevo, B.; Peterman, E.J.G.; Peterman, EJG; Wuite, GJL

    2011-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which is the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow

  2. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    van den Wildenberg, Siet M.J.L.; Prevo, Bram; Peterman, Erwin J.G.

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also

  3. Nucleic Acids as Information Molecules.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Presents an activity that aims at enabling students to recognize that DNA and RNA are information molecules whose function is to store, copy, and make available the information in biological systems, without feeling overwhelmed by the specialized vocabulary and the minutia of the central dogma. (JRH)

  4. Cells, targets, and molecules in radiation biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1979-01-01

    Cellular damage and repair are discussed with regard to inactivation models, dose-effect curves and cancer research, repair relative to damage accumulation, potentially lethal damage, repair of potentially lethal vs. sublethal damage, cell killing and DNA damage due to nonionizing radiation, and anisotonicity vs. lethality due to nonionizing radiation. Other topics discussed are DNA damage and repair in cells exposed to ionizing radiation, kinetics of repair of single-strand DNA breaks, effects of actinomycin D on x-ray survival curve of hamster cells, misrepair and lethality, and perspective and prospects

  5. Neutron scattering studies of biological molecules suggest

    Indian Academy of Sciences (India)

    tions of temperature, pressure or solvent environment for survival. ... scale that depends on the scattering vector range and energy resolution of the in- .... the structures) are good indicators of global evolutionary adaptation mechanisms.

  6. Review: Nectar biology: From molecules to ecosystems.

    Science.gov (United States)

    Roy, Rahul; Schmitt, Anthony J; Thomas, Jason B; Carter, Clay J

    2017-09-01

    Plants attract mutualistic animals by offering a reward of nectar. Specifically, floral nectar (FN) is produced to attract pollinators, whereas extrafloral nectar (EFN) mediates indirect defenses through the attraction of mutualist predatory insects to limit herbivory. Nearly 90% of all plant species, including 75% of domesticated crops, benefit from animal-mediated pollination, which is largely facilitated by FN. Moreover, EFN represents one of the few defense mechanisms for which stable effects on plant health and fitness have been demonstrated in multiple systems, and thus plays a crucial role in the resistance phenotype of plants producing it. In spite of its central role in plant-animal interactions, the molecular events involved in the development of both floral and extrafloral nectaries (the glands that produce nectar), as well as the synthesis and secretion of the nectar itself, have been poorly understood until recently. This review will cover major recent developments in the understanding of (1) nectar chemistry and its role in plant-mutualist interactions, (2) the structure and development of nectaries, (3) nectar production, and (4) its regulation by phytohormones. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  8. Inference problems in structural biology

    DEFF Research Database (Denmark)

    Olsson, Simon

    The structure and dynamics of biological molecules are essential for their function. Consequently, a wealth of experimental techniques have been developed to study these features. However, while experiments yield detailed information about geometrical features of molecules, this information is of...

  9. Carbon Monoxide: An Essential Signalling Molecule

    Science.gov (United States)

    Mann, Brian E.

    Carbon monoxide (CO), like nitric oxide (NO), is an essential signalling molecule in humans. It is active in the cardiovascular system as a vasodilator. In addition, CO possesses anti-inflammatory, anti-apoptotic and anti-proliferative properties and protects tissues from hypoxia and reperfusion injury. Some of its applications in animal models include suppression of organ graft rejection and safeguarding the heart during reperfusion after cardiopulmonary bypass surgery. CO also suppresses arteriosclerotic lesions following angioplasty, reverses established pulmonary hypertension and mitigates the development of post-operative ileus in the murine small intestine and the development of cerebral malaria in mice as well as graft-induced intimal hyperplasia in pigs. There have been several clinical trials using air-CO mixtures for the treatment of lung-, heart-, kidney- and abdominal-related diseases. This review examines the research involving the development of classes of compounds (with particular emphasis on metal carbonyls) that release CO, which could be used in clinically relevant conditions. The review is drawn not only from published papers in the chemical literature but also from the extensive biological literature and patents on CO-releasing molecules (CO-RMs).

  10. Small molecules: the missing link in the central dogma.

    Science.gov (United States)

    Schreiber, Stuart L

    2005-07-01

    Small molecules have critical roles at all levels of biological complexity and yet remain orphans of the central dogma. Chemical biologists, working with small molecules, expand our understanding of these central elements of life.

  11. Prediction of small molecule binding property of protein domains with Bayesian classifiers based on Markov chains.

    Science.gov (United States)

    Bulashevska, Alla; Stein, Martin; Jackson, David; Eils, Roland

    2009-12-01

    Accurate computational methods that can help to predict biological function of a protein from its sequence are of great interest to research biologists and pharmaceutical companies. One approach to assume the function of proteins is to predict the interactions between proteins and other molecules. In this work, we propose a machine learning method that uses a primary sequence of a domain to predict its propensity for interaction with small molecules. By curating the Pfam database with respect to the small molecule binding ability of its component domains, we have constructed a dataset of small molecule binding and non-binding domains. This dataset was then used as training set to learn a Bayesian classifier, which should distinguish members of each class. The domain sequences of both classes are modelled with Markov chains. In a Jack-knife test, our classification procedure achieved the predictive accuracies of 77.2% and 66.7% for binding and non-binding classes respectively. We demonstrate the applicability of our classifier by using it to identify previously unknown small molecule binding domains. Our predictions are available as supplementary material and can provide very useful information to drug discovery specialists. Given the ubiquitous and essential role small molecules play in biological processes, our method is important for identifying pharmaceutically relevant components of complete proteomes. The software is available from the author upon request.

  12. Single molecule detection, thermal fluctuation and life

    Science.gov (United States)

    YANAGIDA, Toshio; ISHII, Yoshiharu

    2017-01-01

    Single molecule detection has contributed to our understanding of the unique mechanisms of life. Unlike artificial man-made machines, biological molecular machines integrate thermal noises rather than avoid them. For example, single molecule detection has demonstrated that myosin motors undergo biased Brownian motion for stepwise movement and that single protein molecules spontaneously change their conformation, for switching to interactions with other proteins, in response to thermal fluctuation. Thus, molecular machines have flexibility and efficiency not seen in artificial machines. PMID:28190869

  13. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs

    Science.gov (United States)

    Neves, Fabiana; Abrantes, Joana; Almeida, Tereza; de Matos, Ana Lemos; Costa, Paulo P

    2015-01-01

    ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse. PMID:26395994

  14. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Molecule Matters van der Waals Molecules - Rg•••HF Complexes are Debye Molecules! E Arunan. Feature Article Volume 15 Issue 7 July 2010 pp 667-674. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. A Single-Molecule Barcoding System using Nanoslits for DNA Analysis

    Science.gov (United States)

    Jo, Kyubong; Schramm, Timothy M.; Schwartz, David C.

    Single DNA molecule approaches are playing an increasingly central role in the analytical genomic sciences because single molecule techniques intrinsically provide individualized measurements of selected molecules, free from the constraints of bulk techniques, which blindly average noise and mask the presence of minor analyte components. Accordingly, a principal challenge that must be addressed by all single molecule approaches aimed at genome analysis is how to immobilize and manipulate DNA molecules for measurements that foster construction of large, biologically relevant data sets. For meeting this challenge, this chapter discusses an integrated approach for microfabricated and nanofabricated devices for the manipulation of elongated DNA molecules within nanoscale geometries. Ideally, large DNA coils stretch via nanoconfinement when channel dimensions are within tens of nanometers. Importantly, stretched, often immobilized, DNA molecules spanning hundreds of kilobase pairs are required by all analytical platforms working with large genomic substrates because imaging techniques acquire sequence information from molecules that normally exist in free solution as unrevealing random coils resembling floppy balls of yarn. However, nanoscale devices fabricated with sufficiently small dimensions fostering molecular stretching make these devices impractical because of the requirement of exotic fabrication technologies, costly materials, and poor operational efficiencies. In this chapter, such problems are addressed by discussion of a new approach to DNA presentation and analysis that establishes scaleable nanoconfinement conditions through reduction of ionic strength; stiffening DNA molecules thus enabling their arraying for analysis using easily fabricated devices that can also be mass produced. This new approach to DNA nanoconfinement is complemented by the development of a novel labeling scheme for reliable marking of individual molecules with fluorochrome labels

  16. Transition metal catalyzed synthesis of medicinally relevant molecules

    Indian Academy of Sciences (India)

    Rakeshwar Bandichhor

    by executing contemporary strategies to manufacture the products. ... manufacturing of the goods right from commodity mate- rials to very ... The first one: How to design? The second ... Production of materials can be transformed into highly.

  17. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Purification of drugs from biological fluids by counter-current chromatography.

    Science.gov (United States)

    Hochlowski, Jill E; Pan, Jeffrey Y; Searle, Philip A; Buck, Wayne R; Spanton, Stephen G

    2009-08-21

    Experiments were performed to demonstrate the potential of counter-current chromatography (CCC) for the isolation of drugs and their metabolites from biological matrices relevant to the metabolism studies of pharmaceutical research. Examples of typical drugs are spiked into biological media ex vivo to provide test samples for analysis. A mass spectrometer hyphenated to a CCC allows for the detection of small molecule drugs within the matrix through selected ion monitoring, and fraction collection can provide material for further structural elucidation by NMR.

  19. Validação em métodos cromatográficos para análises de pequenas moléculas em matrizes biológicas Chromatographic methods validation for analysis of small molecules in biological matrices

    Directory of Open Access Journals (Sweden)

    Neila Maria Cassiano

    2009-01-01

    Full Text Available Chromatographic methods are commonly used for analysis of small molecules in different biological matrices. An important step to be considered upon a bioanalytical method's development is the capacity to yield reliable and reproducible results. This review discusses validation procedures adopted by different governmental agencies, such as Food and Drug Administration (USA, European Union (EU and Agência Nacional de Vigilância Sanitária (BR for quantification of small molecules by bioanalytical chromatographic methods. The main parameters addressed in this review are: selectivity, linearity, precision, accuracy, quantification and detection limits, recovery, dilution integrity, stability and robustness. Also, the acceptance criterions are clearly specified.

  20. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  1. Preface: Special Topic on Single-Molecule Biophysics.

    Science.gov (United States)

    Makarov, Dmitrii E; Schuler, Benjamin

    2018-03-28

    Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics.

  2. Why relevance theory is relevant for lexicography

    DEFF Research Database (Denmark)

    Bothma, Theo; Tarp, Sven

    2014-01-01

    This article starts by providing a brief summary of relevance theory in information science in relation to the function theory of lexicography, explaining the different types of relevance, viz. objective system relevance and the subjective types of relevance, i.e. topical, cognitive, situational...... that is very important for lexicography as well as for information science, viz. functional relevance. Since all lexicographic work is ultimately aimed at satisfying users’ information needs, the article then discusses why the lexicographer should take note of all these types of relevance when planning a new...... dictionary project, identifying new tasks and responsibilities of the modern lexicographer. The article furthermore discusses how relevance theory impacts on teaching dictionary culture and reference skills. By integrating insights from lexicography and information science, the article contributes to new...

  3. Some nonlinear challenges in biology

    International Nuclear Information System (INIS)

    Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-François; Croquette, Vincent; Bensimon, David

    2008-01-01

    Driven by a deluge of data, biology is undergoing a transition to a more quantitative science. Making sense of the data, building new models, asking the right questions and designing smart experiments to answer them are becoming ever more relevant. In this endeavour, nonlinear approaches can play a fundamental role. The biochemical reactions that underlie life are very often nonlinear. The functional features exhibited by biological systems at all levels (from the activity of an enzyme to the organization of a colony of ants, via the development of an organism or a functional module like the one responsible for chemotaxis in bacteria) are dynamically robust. They are often unaffected by order of magnitude variations in the dynamical parameters, in the number or concentrations of actors (molecules, cells, organisms) or external inputs (food, temperature, pH, etc). This type of structural robustness is also a common feature of nonlinear systems, exemplified by the fundamental role played by dynamical fixed points and attractors and by the use of generic equations (logistic map, Fisher–Kolmogorov equation, the Stefan problem, etc.) in the study of a plethora of nonlinear phenomena. However, biological systems differ from these examples in two important ways: the intrinsic stochasticity arising from the often very small number of actors and the role played by evolution. On an evolutionary time scale, nothing in biology is frozen. The systems observed today have evolved from solutions adopted in the past and they will have to adapt in response to future conditions. The evolvability of biological system uniquely characterizes them and is central to biology. As the great biologist T Dobzhansky once wrote: 'nothing in biology makes sense except in the light of evolution'. (open problem)

  4. Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents

    Science.gov (United States)

    Guo, Min; Gamby, Sonja; Zheng, Yue; Sintim, Herman O.

    2013-01-01

    Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules. PMID:23994835

  5. Deep learning relevance

    DEFF Research Database (Denmark)

    Lioma, Christina; Larsen, Birger; Petersen, Casper

    2016-01-01

    train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared...... to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all....

  6. Radiation biology. Chapter 20

    Energy Technology Data Exchange (ETDEWEB)

    Wondergem, J. [International Atomic Energy Agency, Vienna (Austria)

    2014-09-15

    Radiation biology (radiobiology) is the study of the action of ionizing radiations on living matter. This chapter gives an overview of the biological effects of ionizing radiation and discusses the physical, chemical and biological variables that affect dose response at the cellular, tissue and whole body levels at doses and dose rates relevant to diagnostic radiology.

  7. The Molecule Cloud - compact visualization of large collections of molecules

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2012-07-01

    Full Text Available Abstract Background Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold frequency analysis. In any case, however, viewing and analyzing large tables with molecular structures is necessary. We present a new visualization technique, providing basic information about the composition of molecular data sets at a single glance. Summary A method is presented here allowing visual representation of the most common structural features of chemical databases in a form of a cloud diagram. The frequency of molecules containing particular substructure is indicated by the size of respective structural image. The method is useful to quickly perceive the most prominent structural features present in the data set. This approach was inspired by popular word cloud diagrams that are used to visualize textual information in a compact form. Therefore we call this approach “Molecule Cloud”. The method also supports visualization of additional information, for example biological activity of molecules containing this scaffold or the protein target class typical for particular scaffolds, by color coding. Detailed description of the algorithm is provided, allowing easy implementation of the method by any cheminformatics toolkit. The layout algorithm is available as open source Java code. Conclusions Visualization of large molecular data sets using the Molecule Cloud approach allows scientists to get information about the composition of molecular databases and their most frequent structural features easily. The method may be used in the areas where analysis of large molecular collections is needed, for example processing of high throughput screening results, virtual screening or compound purchasing. Several example visualizations of large

  8. Models for synthetic biology.

    Science.gov (United States)

    Kaznessis, Yiannis N

    2007-11-06

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  9. Torque Measurement at the Single Molecule Level

    Science.gov (United States)

    Forth, Scott; Sheinin, Maxim Y.; Inman, James; Wang, Michelle D.

    2017-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single molecule field have led to the development of techniques which add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study which would be well suited for analysis with torsional measurement techniques. PMID:23541162

  10. A review of biological processes within oceanic water columns relevant to the assessment of the safety of disposal of waste, notably radioactive isotopes on or within the sea bed

    International Nuclear Information System (INIS)

    Angel, M.V.

    1985-01-01

    Pelagic biological processes and their connotations in the assessment of possible dispersal mechanisms of contaminants released on the deep oceanic seabed are reviewed. Biological gradients tend to be from the surface down so the search is for processes which run counter to these general gradients. Observed profiles of standing crop of both plankton and micronekton show that below 2000 m biological activity would have to be exceptionally dynamic to have an influence that will even approach within an order of magnitude of the dispersive effect of physical mixing. Examination of all forms of known migration mechanisms fails to reveal such dynamic activity. Nor have any critical pathways been identified within the present or foreseeable pattern of exploitation of the oceans. However, a major gap in knowledge is whether the pattern of these biological processes changes substantially in the region of continental slopes. (author)

  11. Tunneling Ionization of Diatomic Molecules

    DEFF Research Database (Denmark)

    Svensmark, Jens Søren Sieg

    2016-01-01

    When a molecule is subject to a strong laser field, there is a probability that an electron can escape, even though the electrons are bound by a large potential barrier. This is possible because electrons are quantum mechanical in nature, and they are therefore able to tunnel through potential...... barriers, an ability classical particles do not possess. Tunnelling is a fundamental quantum mechanical process, a process that is distinctly non-classical, so solving this tunnelling problem is not only relevant for molecular physics, but also for quantum theory in general. In this dissertation the theory...... of tunneling ionizaion of molecules is presented and the results of numerical calculations are shown. One perhaps surprising result is, that the frequently used Born-Oppenheimer approximation breaks down for weak fields when describing tunneling ionization. An analytic theory applicable in the weak-field limit...

  12. Single Molecule Biophysics Experiments and Theory

    CERN Document Server

    Komatsuzaki, Tamiki; Takahashi, Satoshi; Yang, Haw; Silbey, Robert J; Rice, Stuart A; Dinner, Aaron R

    2011-01-01

    Discover the experimental and theoretical developments in optical single-molecule spectroscopy that are changing the ways we think about molecules and atoms The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This latest volume explores the advent of optical single-molecule spectroscopy, and how atomic force microscopy has empowered novel experiments on individual biomolecules, opening up new frontiers in molecular and cell biology and leading to new theoretical approaches

  13. Finding optimal interaction interface alignments between biological complexes

    KAUST Repository

    Cui, Xuefeng; Naveed, Hammad; Gao, Xin

    2015-01-01

    Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which

  14. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments.

    Science.gov (United States)

    Landry, Markita P; McCall, Patrick M; Qi, Zhi; Chemla, Yann R

    2009-10-21

    Optical traps or "tweezers" use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments-the most common biological application of optical tweezers-and may guide the development of more robust experimental protocols.

  15. Bioactive Molecule-loaded Drug Delivery Systems to Optimize Bone Tissue Repair.

    Science.gov (United States)

    Oshiro, Joao Augusto; Sato, Mariana Rillo; Scardueli, Cassio Rocha; Lopes de Oliveira, Guilherme Jose Pimentel; Abucafy, Marina Paiva; Chorilli, Marlus

    2017-01-01

    Bioactive molecules such as peptides and proteins can optimize the repair of bone tissue; however, the results are often unpredictable when administered alone, owing to their short biological half-life and instability. Thus, the development of bioactive molecule-loaded drug delivery systems (DDS) to repair bone tissue has been the subject of intense research. DDS can optimize the repair of bone tissue owing to their physicochemical properties, which improve cellular interactions and enable the incorporation and prolonged release of bioactive molecules. These characteristics are fundamental to favor bone tissue homeostasis, since the biological activity of these factors depends on how accessible they are to the cell. Considering the importance of these DDS, this review aims to present relevant information on DDS when loaded with osteogenic growth peptide and bone morphogenetic protein. These are bioactive molecules that are capable of modulating the differentiation and proliferation of mesenchymal cells in bone tissue cells. Moreover, we will present different approaches using these peptide and protein-loaded DDS, such as synthetic membranes and scaffolds for bone regeneration, synthetic grafts, bone cements, liposomes, and micelles, which aim at improving the therapeutic effectiveness, and we will compare their advantages with commercial systems. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Formation of Ultracold Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cote, Robin [Univ. of Connecticut, Storrs, CT (United States)

    2016-01-28

    Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate laser excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.

  17. Small molecules, big players: the National Cancer Institute's Initiative for Chemical Genetics.

    Science.gov (United States)

    Tolliday, Nicola; Clemons, Paul A; Ferraiolo, Paul; Koehler, Angela N; Lewis, Timothy A; Li, Xiaohua; Schreiber, Stuart L; Gerhard, Daniela S; Eliasof, Scott

    2006-09-15

    In 2002, the National Cancer Institute created the Initiative for Chemical Genetics (ICG), to enable public research using small molecules to accelerate the discovery of cancer-relevant small-molecule probes. The ICG is a public-access research facility consisting of a tightly integrated team of synthetic and analytical chemists, assay developers, high-throughput screening and automation engineers, computational scientists, and software developers. The ICG seeks to facilitate the cross-fertilization of synthetic chemistry and cancer biology by creating a research environment in which new scientific collaborations are possible. To date, the ICG has interacted with 76 biology laboratories from 39 institutions and more than a dozen organic synthetic chemistry laboratories around the country and in Canada. All chemistry and screening data are deposited into the ChemBank web site (http://chembank.broad.harvard.edu/) and are available to the entire research community within a year of generation. ChemBank is both a data repository and a data analysis environment, facilitating the exploration of chemical and biological information across many different assays and small molecules. This report outlines how the ICG functions, how researchers can take advantage of its screening, chemistry and informatic capabilities, and provides a brief summary of some of the many important research findings.

  18. The status of molecules

    International Nuclear Information System (INIS)

    Barnes, T.; Oak Ridge National Lab., TN; Tennessee Univ., Knoxville, TN

    1994-06-01

    This report summarizes the experimental and theoretical status of hadronic molecules, which are weakly-bound states of two or more hadrons. We begin with a brief history of the subject and discuss a few good candidates, and then abstract some signatures for molecules which may be of interest in the classification of possible molecule states. Next we argue that a more general understanding of 2 → 2 hadron-hadron scattering amplitudes will be crucial for molecule searches, and discuss some of our recent work in this area. We conclude with a discussion of a few more recent molecule candidates (notably the f o (1710)) which are not well established as molecules but satisfy some of the expected signatures. (Author)

  19. Marine Carotenoids: Biological Functions and Commercial Applications

    Science.gov (United States)

    Vílchez, Carlos; Forján, Eduardo; Cuaresma, María; Bédmar, Francisco; Garbayo, Inés; Vega, José M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for a wide range of commercial applications. Indeed, recent interest in the carotenoids has been mainly for their nutraceutical properties. A large number of scientific studies have confirmed the benefits of carotenoids to health and their use for this purpose is growing rapidly. In addition, carotenoids have traditionally been used in food and animal feed for their color properties. Carotenoids are also known to improve consumer perception of quality; an example is the addition of carotenoids to fish feed to impart color to farmed salmon. PMID:21556162

  20. Facts on the fragmentation of antigens in presenting cells, on the association of antigen fragments with MHC molecules in cell-free systems, and speculation on the cell biology of antigen processing

    DEFF Research Database (Denmark)

    Werdelin, O; Mouritsen, S; Petersen, B L

    1988-01-01

    The processing of a protein antigen is a multi-step event taking place in antigen-presenting cells. Processing is a prerequisite for the recognition of most antigens by T lymphocytes. The antigen is ingested by endocytosis, transported to an acid cellular compartment and subjected to proteolytic...... fragmentation. Some of the antigen fragments bind to MHC class II molecules and are transported to the surface of the antigen-presenting cell where the actual presentation to T lymphocytes occurs. The nature of the processed antigen, how and where it is derived and subsequently becomes associated with MHC...... molecules are the questions discussed in this review. To us, the entire concept of processing has appeal not only because it explains some hitherto well-established, but poorly understood, phenomena such as the fact that T lymphocytes focus their attention entirely upon antigens on other cells. It has...

  1. Cold Rydberg molecules

    Science.gov (United States)

    Raithel, Georg; Zhao, Jianming

    2017-04-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).

  2. Electric moments in molecule interferometry

    International Nuclear Information System (INIS)

    Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Tuexen, Jens; Mayor, Marcel

    2011-01-01

    We investigate the influence of different electric moments on the shift and dephasing of molecules in a matter wave interferometer. Firstly, we provide a quantitative comparison of two molecules that are non-polar yet polarizable in their thermal ground state and that differ in their stiffness and response to thermal excitations. While C 25 H 20 is rather rigid, its larger derivative C 49 H 16 F 52 is additionally equipped with floppy side chains and vibrationally activated dipole moment variations. Secondly, we elucidate the role of a permanent electric dipole momentby contrasting the quantum interference pattern of a (nearly) non-polar and a polar porphyrin derivative. We find that a high molecular polarizability and even sizeable dipole moment fluctuations are still well compatible with high-contrast quantum interference fringes. The presence of permanent electric dipole moments, however, can lead to a dephasing and rapid degradation of the quantum fringe pattern already at moderate electric fields. This finding is of high relevance for coherence experiments with large organic molecules, which are generally equipped with strong electric moments.

  3. WE-H-BRA-09: Application of a Modified Microdosimetric-Kinetic Model to Analyze Relative Biological Effectiveness of Ions Relevant to Light Ion Therapy Using the Particle Heavy Ion Transport System

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, M [Yale-New Haven Hospital, New Haven, CT (United States); Palmer, T [Oregon State University, Corvallis, OR (United States)

    2016-06-15

    Purpose: To evaluate the dose and biological effectiveness of various ions that could potentially be used for actively scanned particle therapy. Methods: The PHITS Monte Carlo code paired with a microscopic analytical function was used to determine probability distribution functions of the lineal energy in 0.3µm diameter spheres throughout a water phantom. Twenty million primary particles for 1H beams and ten million particles for 4He, 7Li, 10B, 12C, 14N, 16O, and 20Ne were simulated for 0.6cm diameter pencil beams. Beam energies corresponding to Bragg peak depths of 50, 100, 150, 200, 250, and 300mm were used and evaluated transversely every millimeter and radially in annuli with outer radius of 1.0, 2.0, 3.0, 3.2, 3.4, 3.6, 4.0, 5.0, 10.0, 15.0, 20.0 and 25.0mm. The acquired probability distributions were reduced to dose-mean lineal energies and applied to the modified microdosimetric kinetic model for five different cell types to calculate relative biological effectiveness (RBE) compared to 60Co beams at the 10% survival threshold. The product of the calculated RBEs and the simulated physical dose was taken to create biological dose and comparisons were then made between the various ions. Results: Transversely, the 10B beam was seen to minimize relative biological dose in both the constant and accelerated dose change regions, proximal to the Bragg Peak, for all beams traveling greater than 50mm. For the 50mm beam, 7Li was seen to provide the most optimal biological dose profile. Radially small fluctuations (<4.2%) were seen in RBE while physical dose was greater than 1% for all beams. Conclusion: Even with the growing usage of 12C, it may not be the most optimal ion in all clinical situations. Boron was calculated to have slightly enhanced RBE characteristics, leading to lower relative biological doses.

  4. Photoinduced electron transfer in some photosensitive molecules ...

    Indian Academy of Sciences (India)

    Unknown

    redox reactions of substrates like biological molecules,11,12 dyes,13,14 alcohols15,16 etc. Colloidal ... state which is characterised by a phenomenon of dual fluorescence. In the present ... The dried solid was transferred to quartz cell under vacuum ... Recently Grätzel et al34 have developed the dye-sensitized meso-.

  5. Molecule of the Month

    Indian Academy of Sciences (India)

    Atoms in a molecule generally prefer, particularly among the neighbouring ones, certain optimmn geometrical relationships. These are manifested in specific ranges of bond lengths, bond angles, torsion angles etc. As it always happens, chemists are interested in making molecules where these 'standard relationships' are ...

  6. Molecule of the Month

    Indian Academy of Sciences (India)

    Cyclo bu tadiene (1) has been one of the most popular molecules for experimentalists and theoreticians. This molecule is unstable as . it is antiaromatic ( 4,n electrons in a cyclic array). Even though some highly substituted cyclobutadienes, for example, compound 2 and the Fe(CO)3 complex of cyclobutadiene (3) are ...

  7. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Single molecule conductance

    NARCIS (Netherlands)

    Willems, R.

    2008-01-01

    This thesis represents an excursion into the world of molecular electronics, i.e. the field of research trying to use individual (organic) molecules as electronic components; in this work various experimental methods have been explored to connect individual molecules to metallic contacts and

  9. Molecules in stars

    International Nuclear Information System (INIS)

    Tsuji, T.

    1986-01-01

    Recently, research related to molecules in stars has rapidly expanded because of progress in related fields. For this reason, it is almost impossible to cover all the topics related to molecules in stars. Thus, here the authors focus their attention on molecules in the atmospheres of cool stars and do not cover in any detail topics related to circumstellar molecules originating from expanding envelopes located far from the stellar surface. However, the authors do discuss molecules in quasi-static circumstellar envelopes (a recently discovered new component of circumstellar envelopes) located near the stellar surface, since molecular lines originating from such envelopes show little velocity shift relative to photospheric lines, and hence they directly affect the interpretation and analysis of stellar spectra

  10. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  11. Intersystem crossing in complex molecules

    International Nuclear Information System (INIS)

    Pappalardo, R.G.

    1980-01-01

    The general question of singlet-triplet intersystem crossing is addressed in the context of large organic molecules, i.e., ''complex'' molecules capable of self-relaxation in the absence of collisions. Examples of spectral properties of such molecules in the vapor phase are discussed, relying on extensive Russian literature in this area. Formal expressions for the relaxation rate in the electronic excited states are derived on the basis of the formalism of collision theory, and are applied to the specific case of intersystem crossing. The derivation of the ''energy-gap'' law for triplet-singlet conversion in aromatic hydrocarbons is briefly outlined. The steep rise of internal conversion rates as a function of excess excitation energy, and its competition with the intersystem crossing process, are reviewed for the case of naphthalene vapor. A general expression for the spin-orbit interaction Hamiltonian in molecular systems is outlined. Experimental observations on singlet-triplet conversion rates and the factors that can drastically affect such rates are discussed, with emphasis on the ''in- ternal'' and ''external'' heavy-atom effects. Basic relations of ESR spectroscopy and magnetophotoselection are reviewed. Technological implications of the singlet-triplet crossing in complex molecules are discussed in the context of chelate lasers, dye lasers and luminescent displays. Effects related to singlet-triplet crossing, and generally to excited-state energy-transfer in biological systems, are exemplified by the role of aromatic amino-acids in the phosphorescence of proteins, by some recent studies of energy-transfer in models of biomembranes, and by the clustering of triplet-energy donor-acceptor pairs in micelles

  12. Combining supramolecular chemistry with biology

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Petkau - Milroy, K.; Brunsveld, L.

    2010-01-01

    Supramolecular chemistry has primarily found its inspiration in biological molecules, such as proteins and lipids, and their interactions. Currently the supramolecular assembly of designed compounds can be controlled to great extent. This provides the opportunity to combine these synthetic

  13. Single Molecule Analysis Research Tool (SMART: an integrated approach for analyzing single molecule data.

    Directory of Open Access Journals (Sweden)

    Max Greenfeld

    Full Text Available Single molecule studies have expanded rapidly over the past decade and have the ability to provide an unprecedented level of understanding of biological systems. A common challenge upon introduction of novel, data-rich approaches is the management, processing, and analysis of the complex data sets that are generated. We provide a standardized approach for analyzing these data in the freely available software package SMART: Single Molecule Analysis Research Tool. SMART provides a format for organizing and easily accessing single molecule data, a general hidden Markov modeling algorithm for fitting an array of possible models specified by the user, a standardized data structure and graphical user interfaces to streamline the analysis and visualization of data. This approach guides experimental design, facilitating acquisition of the maximal information from single molecule experiments. SMART also provides a standardized format to allow dissemination of single molecule data and transparency in the analysis of reported data.

  14. PHOSPHORUS-BEARING MOLECULES IN MASSIVE DENSE CORES

    Energy Technology Data Exchange (ETDEWEB)

    Fontani, F.; Rivilla, V. M. [INAF-Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, I-50125 Firenze (Italy); Caselli, P.; Vasyunin, A. [Max-Planck-Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching (Germany); Palau, A. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090 Morelia, Michoacán, México (Mexico)

    2016-05-10

    Phosphorus is a crucial element for the development of life, but so far P-bearing molecules have been detected only in a few astrophysical objects; hence, its interstellar chemistry is almost totally unknown. Here, we show new detections of phosphorus nitride (PN) in a sample of dense cores in different evolutionary stages of the intermediate- and high-mass star formation process: starless, with protostellar objects, and with ultracompact H ii regions. All detected PN line widths are smaller than ≃5 km s{sup −1}, and they arise from regions associated with kinetic temperatures smaller than 100 K. Because the few previous detections reported in the literature are associated with warmer and more turbulent sources, the results of this work show that PN can arise from relatively quiescent and cold gas. This information is challenging for theoretical models that invoke either high desorption temperatures or grain sputtering from shocks to release phosphorus into the gas phase. Derived column densities are of the order of 10{sup 11–12} cm{sup −2}, marginally lower than the values derived in the few high-mass star-forming regions detected so far. New constraints on the abundance of phosphorus monoxide, the fundamental unit of biologically relevant molecules, are also given.

  15. Dissociation in small molecules

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1982-01-01

    The study of molecular dissociation processes is one of the most interesting areas of modern spectroscopy owing to the challenges presented bt even the simplest of diatomic molecules. This paper reviews the commonly used descriptions of molecular dissociation processes for diatomic molecules, the selection rules for predissociation, and a few of the principles to be remembered when one is forced to speculate about dissociation mechanisms in a new molecule. Some of these points will be illustrated by the example of dissociative ionization in O 2

  16. Making Deferred Taxes Relevant

    NARCIS (Netherlands)

    Brouwer, Arjan; Naarding, Ewout

    2018-01-01

    We analyse the conceptual problems in current accounting for deferred taxes and provide solutions derived from the literature in order to make International Financial Reporting Standards (IFRS) deferred tax numbers value-relevant. In our view, the empirical results concerning the value relevance of

  17. Parsimonious relevance models

    NARCIS (Netherlands)

    Meij, E.; Weerkamp, W.; Balog, K.; de Rijke, M.; Myang, S.-H.; Oard, D.W.; Sebastiani, F.; Chua, T.-S.; Leong, M.-K.

    2008-01-01

    We describe a method for applying parsimonious language models to re-estimate the term probabilities assigned by relevance models. We apply our method to six topic sets from test collections in five different genres. Our parsimonious relevance models (i) improve retrieval effectiveness in terms of

  18. Application of dried-droplets deposited on pre-cut filter paper disks for quantitative LA-ICP-MS imaging of biologically relevant minor and trace elements in tissue samples.

    Science.gov (United States)

    Bonta, Maximilian; Hegedus, Balazs; Limbeck, Andreas

    2016-02-18

    In this work, a novel calibration approach for minor and trace element quantification in LA-ICP-MS imaging of biological tissues is presented. Droplets of aqueous standard solutions are deposited onto pre-cut pieces of filter paper, allowed to dry, and sputtered with a thin gold layer for use as pseudo-internal standard. Analysis of the standards using LA-ICP-MS is performed using radial line-scans across the filters. In contrast to conventionally used preparation of matrix-matched tissue standards, the dried-droplet approach offers a variety of advantages: The standards are easy to prepare, no characterization of the standards using acid digestion is required, no handling of biological materials is necessary, and the concentration range, as well the number of investigated analytes is almost unlimited. The proposed quantification method has been verified using homogenized tissue standards with known analyte concentrations before being applied to a human malignant mesothelioma biopsy from a patient who had not received any chemotherapeutic treatment. Elemental distribution images were acquired at a lateral resolution of 40 μm per pixel, limits of detection ranging from 0.1 μg g(-1) (Mn, Ni, Cu, Zn) to 13.2 μg g(-1) (K) were reached. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo

    1984-01-01

    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  20. Molecules to Materials

    Indian Academy of Sciences (India)

    evolved as a new line of thinking wherein a single molecule or perhaps a collection .... In photonic communication processes, laser light has to be modulated and .... The author wishes to thank G Rajaram for a critical reading of the manuscript.

  1. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    overall absorption spectrum of a molecule is a superposition of many such sharp lines .... dilute solution of the enzyme and the substrate over few drops of silicone oil placed ..... Near-field Scanning Optical Microscopy (NSOM): Development.

  2. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  3. Molecule of the Month

    Indian Academy of Sciences (India)

    Molecule of the Month - Adamantane - A Plastic Piece of Diamond. J Chandrasekhar. Volume 16 Issue 12 ... Keywords. Adamantane; diamondoid systems; plastic crystals. ... Resonance – Journal of Science Education | News. © 2017 Indian ...

  4. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  5. Single molecule image formation, reconstruction and processing: introduction.

    Science.gov (United States)

    Ashok, Amit; Piestun, Rafael; Stallinga, Sjoerd

    2016-07-01

    The ability to image at the single molecule scale has revolutionized research in molecular biology. This feature issue presents a collection of articles that provides new insights into the fundamental limits of single molecule imaging and reports novel techniques for image formation and analysis.

  6. Single molecule microscopy and spectroscopy: concluding remarks.

    Science.gov (United States)

    van Hulst, Niek F

    2015-01-01

    Chemistry is all about molecules: control, synthesis, interaction and reaction of molecules. All too easily on a blackboard, one draws molecules, their structures and dynamics, to create an insightful picture. The dream is to see these molecules in reality. This is exactly what "Single Molecule Detection" provides: a look at molecules in action at ambient conditions; a breakthrough technology in chemistry, physics and biology. Within the realms of the Royal Society of Chemistry, the Faraday Discussion on "Single Molecule Microscopy and Spectroscopy" was a very appropriate topic for presentation, deliberation and debate. Undoubtedly, the Faraday Discussions have a splendid reputation in stimulating scientific debates along the traditions set by Michael Faraday. Interestingly, back in the 1830's, Faraday himself pursued an experiment that led to the idea that atoms in a compound were joined by an electrical component. He placed two opposite electrodes in a solution of water containing a dissolved compound, and observed that one of the elements of the compound accumulated on one electrode, while the other was deposited on the opposite electrode. Although Faraday was deeply opposed to atomism, he had to recognize that electrical forces were responsible for the joining of atoms. Probably a direct view on the atoms or molecules in his experiment would have convinced him. As such, Michael Faraday might have liked the gathering at Burlington House in September 2015 (). Surely, with the questioning eyes of his bust on the 1st floor corridor, the non-believer Michael Faraday has incited each passer-by to enter into discussion and search for deeper answers at the level of single molecules. In these concluding remarks, highlights of the presented papers and discussions are summarized, complemented by a conclusion on future perspectives.

  7. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    Science.gov (United States)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  8. Optoelectronics of Molecules and Polymers

    CERN Document Server

    Moliton, André

    2006-01-01

    Optoelectronic devices are being developed at an extraordinary rate. Organic light emitting diodes, photovoltaic devices and electro-optical modulators are pivotal to the future of displays, photosensors and solar cells, and communication technologies. This book details the theories underlying the relevant mechanisms in organic materials and covers, at a basic level, how the organic components are made. The first part of this book introduces the fundamental theories used to detail ordered solids and localised energy levels. The methods used to determine energy levels in perfectly ordered molecular and macromolecular systems are discussed, making sure that the effects of quasi-particles are not missed. The function of excitons and their transfer between two molecules are studied, and the problems associated with interfaces and charge injection into resistive media are presented. The second part details technological aspects such as the fabrication of devices based on organic materials by dry etching. The princ...

  9. Computational structural biology: methods and applications

    National Research Council Canada - National Science Library

    Schwede, Torsten; Peitsch, Manuel Claude

    2008-01-01

    ... sequencing reinforced the observation that structural information is needed to understand the detailed function and mechanism of biological molecules such as enzyme reactions and molecular recognition events. Furthermore, structures are obviously key to the design of molecules with new or improved functions. In this context, computational structural biology...

  10. Doppler Broadening Calculations of Compton Scattering for Molecules, Plastics, Tissues, and Few Biological Materials in the X-Ray Region: An Analysis in Terms of Compton Broadening and Geometrical Energy Broadening

    Science.gov (United States)

    Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Akatsuka, T.; Takeda, T.; Itai, Y.

    2004-09-01

    Relativistic and nonrelativistic Compton profile cross sections for H, C, N, O, P, and Ca and for a few important biological materials such as water, polyethylene, lucite, polystyrene, nylon, polycarbonate, bakelite, fat, bone and calcium hydroxyapatite are estimated for a number of Kα x-ray energies and for 59.54 keV (Am-241) γ photons. Energy broadening and geometrical broadening (ΔG) is estimated by assuming θmin and θmax are symmetrically situated around θ=90°. FWHM of J(PZ) and FWHM of Compton energy broadening are evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 and 1.0 keV for 59.54 keV photons. Total Compton, individual shell, and Compton energy-absorption scattering cross sections are evaluated in the energy region from 0.005 to 0.5 MeV. It is an attempt to know the effect of Doppler broadening for single atoms, many of which constitute the biological materials.

  11. Culturally Relevant Cyberbullying Prevention

    OpenAIRE

    Phillips, Gregory John

    2017-01-01

    In this action research study, I, along with a student intervention committee of 14 members, developed a cyberbullying intervention for a large urban high school on the west coast. This high school contained a predominantly African American student population. I aimed to discover culturally relevant cyberbullying prevention strategies for African American students. The intervention committee selected video safety messages featuring African American actors as the most culturally relevant cyber...

  12. Electron-molecule collisions

    International Nuclear Information System (INIS)

    Shimamura, I.; Takayanagi, K.

    1984-01-01

    The study of collision processes plays an important research role in modern physics. Many significant discoveries have been made by means of collision experiments. Based on theoretical, experimental, and computational studies, this volume presents an overview detailing the basic processes of electron-molecule collisions. The editors have collected papers-written by a group of international experts-that consider a diverse range of phenomena occurring in electronmolecule collisions. The volume discusses first the basic formulation for scattering problems and then gives an outline of the physics of electron-molecule collisions. The main topics covered are rotational transitions, vibrational transitions, dissociation of molecules in slow collisions, the electron-molecule collision as a spectroscopic tool for studying molecular electronic structures, and experimental and computational techniques for determining the cross sections. These well-referenced chapters are self-contained and can be read independently or consecutively. Authoritative and up-to-date, Electron-Molecule Collisions is a useful addition to the libraries of students and researchers in the fields of atomic, molecular, and chemical physics, and physical chemistry

  13. What precision-protein-tuning and nano-resolved single molecule sciences can do for each other.

    Science.gov (United States)

    Milles, Sigrid; Lemke, Edward A

    2013-01-01

    While innovations in modern microscopy, spectroscopy, and nanoscopy techniques have made single molecule observation a standard in many laboratories, the actual design of meaningful fluorescence reporter systems now hinders major scientific breakthroughs. Even though the field of chemical biology is supercharging the fluorescence toolbox, surprisingly few strategies exist that make the transition from model systems to biologically relevant applications. At the same time, the number of microscopy techniques is growing dramatically. We explain our view on how the impact of modern technologies is influenced not only by further hard- and software developments, but also by the availability and suitability of protein-engineering tools. We identify how the largely independent research fields of chemical biology and fluorescence nanoscopy can influence each other to synergistically drive future technology that can visualize the localization, structure, and dynamics of molecular function without constraints. Copyright © 2013 WILEY Periodicals, Inc.

  14. Synthesis, Physical Characterization and Biological Activity of Some Schiff Base Complexes

    Directory of Open Access Journals (Sweden)

    R. Rajavel

    2008-01-01

    Full Text Available Structural modification of organic molecule has considerable biological relevance. Further, coordination of a biomolecules to the metal ions significantly alters the effectiveness of the biomolecules. In view of the antimicrobial activity ligand [bis-(2-aminobenzaldehyde] malonoyl dihydrazone], metal complexes with Cu(II, Ni(II, Zn(II and oxovanadium(IV have been synthesized and found to be potential antimicrobial agents. An attempt is also made to correlate the biological activities with geometry of the complexes. The complexes have been characterized by elemental analysis, molar conductance, spectra and cyclicvoltammetric measurements. The structural assessment of the complexes has been carried out based on electronic, infrared and molar conductivity values.

  15. Synthetic biology of polyketide synthases

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Backman, Tyler W.H.; Keasling, Jay D.

    2018-01-01

    ). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we...... realize the potential that synthetic biology approaches bring to this class of molecules....

  16. MOLECULES IN η CARINAE

    International Nuclear Information System (INIS)

    Loinard, Laurent; Menten, Karl M.; Güsten, Rolf; Zapata, Luis A.; Rodríguez, Luis F.

    2012-01-01

    We report the detection toward η Carinae of six new molecules, CO, CN, HCO + , HCN, HNC, and N 2 H + , and of two of their less abundant isotopic counterparts, 13 CO and H 13 CN. The line profiles are moderately broad (∼100 km s –1 ), indicating that the emission originates in the dense, possibly clumpy, central arcsecond of the Homunculus Nebula. Contrary to previous claims, CO and HCO + do not appear to be underabundant in η Carinae. On the other hand, molecules containing nitrogen or the 13 C isotope of carbon are overabundant by about one order of magnitude. This demonstrates that, together with the dust responsible for the dimming of η Carinae following the Great Eruption, the molecules detected here must have formed in situ out of CNO-processed stellar material.

  17. Collision data involving hydro-carbon molecules

    International Nuclear Information System (INIS)

    Tawara, H.; Itikawa, Y.; Nishimura, H.; Tanaka, H.; Nakamura, Y.

    1990-07-01

    Hydro-carbon molecules are abundantly produced when graphites are used as internal wall materials of hydrogen plasmas and strongly influence properties of low temperature plasmas near the edges as well as those of high temperature plasmas at the center. In this report, following simple description of the production mechanisms of hydro-carbon molecules under the interactions between graphite and hydrogen plasma, the present status of collision data for hydro-carbon molecules by electron impact is discussed and the relevant data are summarized in a series of figures and tables. It should also be noted that, in addition to fusion plasmas, these hydrocarbon data compiled here are quite useful in other applications such as plasma chemistry and material processing. (author)

  18. Electron Accumulative Molecules.

    Science.gov (United States)

    Buades, Ana B; Sanchez Arderiu, Víctor; Olid-Britos, David; Viñas, Clara; Sillanpää, Reijo; Haukka, Matti; Fontrodona, Xavier; Paradinas, Markos; Ocal, Carmen; Teixidor, Francesc

    2018-02-28

    With the goal to produce molecules with high electron accepting capacity and low reorganization energy upon gaining one or more electrons, a synthesis procedure leading to the formation of a B-N(aromatic) bond in a cluster has been developed. The research was focused on the development of a molecular structure able to accept and release a specific number of electrons without decomposing or change in its structural arrangement. The synthetic procedure consists of a parallel decomposition reaction to generate a reactive electrophile and a synthesis reaction to generate the B-N(aromatic) bond. This procedure has paved the way to produce the metallacarboranylviologen [M(C 2 B 9 H 11 )(C 2 B 9 H 10 )-NC 5 H 4 -C 5 H 4 N-M'(C 2 B 9 H 11 )(C 2 B 9 H 10 )] (M = M' = Co, Fe and M = Co and M' = Fe) and semi(metallacarboranyl)viologen [3,3'-M(8-(NC 5 H 4 -C 5 H 4 N-1,2-C 2 B 9 H 10 )(1',2'-C 2 B 9 H 11 )] (M = Co, Fe) electron cumulative molecules. These molecules are able to accept up to five electrons and to donate one in single electron steps at accessible potentials and in a reversible way. By targeted synthesis and corresponding electrochemical tests each electron transfer (ET) step has been assigned to specific fragments of the molecules. The molecules have been carefully characterized, and the electronic communication between both metal centers (when this situation applies) has been definitely observed through the coplanarity of both pyridine fragments. The structural characteristics of these molecules imply a low reorganization energy that is a necessary requirement for low energy ET processes. This makes them electronically comparable to fullerenes, but on their side, they have a wide range of possible solvents. The ET from one molecule to another has been clearly demonstrated as well as their self-organizing capacity. We consider that these molecules, thanks to their easy synthesis, ET, self-organizing capacity, wide range of solubility, and easy processability, can

  19. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  20. Functionalization of carbon nanotubes with a pH-responsive molecule to produce a pH sensor

    International Nuclear Information System (INIS)

    Zhao Liping; Nakayama, Tomonobu; Tomimoto, Hiroyuki; Shingaya, Yoshitaka; Huang Qing

    2009-01-01

    Carbon nanotubes were functionalized with the ratiometric pH-responsive dye molecule 6,8-dihydroxy-1,3-pyrenedisulfonic acid disodium salt, which enabled them to indicate pH values over the range of pH 5.6-8.3. The nanotubes were coated with a layer of electron-donating ZnPc, which strengthened the CNT-dye interaction. The range of pH response is relevant for biological systems, which makes the nanotubes suitable for a wide range of applications within nanobiotechnology.

  1. The Limits to Relevance

    Science.gov (United States)

    Averill, M.; Briggle, A.

    2006-12-01

    Science policy and knowledge production lately have taken a pragmatic turn. Funding agencies increasingly are requiring scientists to explain the relevance of their work to society. This stems in part from mounting critiques of the "linear model" of knowledge production in which scientists operating according to their own interests or disciplinary standards are presumed to automatically produce knowledge that is of relevance outside of their narrow communities. Many contend that funded scientific research should be linked more directly to societal goals, which implies a shift in the kind of research that will be funded. While both authors support the concept of useful science, we question the exact meaning of "relevance" and the wisdom of allowing it to control research agendas. We hope to contribute to the conversation by thinking more critically about the meaning and limits of the term "relevance" and the trade-offs implicit in a narrow utilitarian approach. The paper will consider which interests tend to be privileged by an emphasis on relevance and address issues such as whose goals ought to be pursued and why, and who gets to decide. We will consider how relevance, narrowly construed, may actually limit the ultimate utility of scientific research. The paper also will reflect on the worthiness of research goals themselves and their relationship to a broader view of what it means to be human and to live in society. Just as there is more to being human than the pragmatic demands of daily life, there is more at issue with knowledge production than finding the most efficient ways to satisfy consumer preferences or fix near-term policy problems. We will conclude by calling for a balanced approach to funding research that addresses society's most pressing needs but also supports innovative research with less immediately apparent application.

  2. Novel approaches for single molecule activation and detection

    CERN Document Server

    Benfenati, Fabio; Torre, Vincent

    2014-01-01

    How can we obtain tools able to process and exchange information at the molecular scale In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, a

  3. Relevant Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  4. Isatin, a versatile molecule: studies in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Barbara, E-mail: barbara.iq@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-05-15

    Isatin is a small, versatile and widely applicable pharmacological molecule. These characteristics make isatin and its derivatives attractive to many research groups as resources for chemical and pharmacological studies. Although it has a relatively simple structure, isatin is a useful chemical scaffold for a variety of chemical transformations. This article discusses several studies performed by Brazilian groups, including investigations of its structural changes, biological assay designs and new methods for the synthesis of isatin. (author)

  5. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Molecule of the Month Isomers of Benzene - Still Pursuing Dreams. J Chandrasekhar. Feature Article Volume 1 Issue 2 February 1996 pp 80-83. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  7. Electrons in Molecules

    Indian Academy of Sciences (India)

    structure and properties (includingreactivt'ty) - both static (independent of time) and ... Furthermore, since the energy of H2 + in the ground state must be lower than that of .... (Figure 2b); note also that dp is positive in parts of the antibinding regions behind the two ... But, now both the sizes and shapes of molecules enter into.

  8. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule of the Month - A Stable Dibismuthene - A Compound with a Bi-Bi Double Bond. V Chandrasekhar. Volume 16 ... Author Affiliations. V Chandrasekhar1. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India.

  9. OMG: Open molecule generator

    NARCIS (Netherlands)

    Peironcely, J.E.; Rojas-Chertó, M.; Fichera, D.; Reijmers, T.; Coulier, L.; Faulon, J.-L.; Hankemeier, T.

    2012-01-01

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical

  10. Molecule-based magnets

    Indian Academy of Sciences (India)

    Administrator

    Employing self-assembly methods, it is possible to engineer a bulk molecular material ... synthesis of molecular magnets in 1986, a large variety of them have been synthesized, which can be catego- ... maintained stably per organic molecule, stabilization of a ..... rotating freely under an applied field because it is a magne-.

  11. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 5. Molecule of the Month Molecular–Chameleon: Solvatochromism at its Iridescent Best! Photon Rao. Feature Article Volume 2 Issue 5 May 1997 pp 69-72. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Quantum biological gravitational wave detectors

    International Nuclear Information System (INIS)

    Kopvillem, U.Kh.

    1985-01-01

    A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow

  13. Exotic helium molecules

    International Nuclear Information System (INIS)

    Portier, M.

    2007-12-01

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range 4 He 2 (2 3 S 1 -2 3 P 0 ) molecule, or a 4 He 2 (2 3 S 1 -2 3 S 1 ) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 ± 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range 4 He 2 (2 3 S 1 -2 3 S 1 ) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime τ = (1.4 ± 0.3) μs is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  14. OMG: Open Molecule Generator.

    Science.gov (United States)

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-09-17

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  15. OMG: Open Molecule Generator

    Directory of Open Access Journals (Sweden)

    Peironcely Julio E

    2012-09-01

    Full Text Available Abstract Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG, which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  16. An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer.

    Science.gov (United States)

    Hamadani, Kambiz M; Howe, Jesse; Jensen, Madeleine K; Wu, Peng; Cate, Jamie H D; Marqusee, Susan

    2017-09-22

    Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted in vitro translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an in vitro parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the in vitro directed evolution of proteins with designer single-molecule conformational

  17. Is Information Still Relevant?

    Science.gov (United States)

    Ma, Lia

    2013-01-01

    Introduction: The term "information" in information science does not share the characteristics of those of a nomenclature: it does not bear a generally accepted definition and it does not serve as the bases and assumptions for research studies. As the data deluge has arrived, is the concept of information still relevant for information…

  18. Use of bovine catalase and manganese dioxide for elimination of hydrogen peroxide from partly oxidized aqueous solutions of aromatic molecules - Unexpected complications

    Science.gov (United States)

    Kovács, Krisztina; Sági, Gyuri; Takács, Erzsébet; Wojnárovits, László

    2017-10-01

    Being a toxic substance, hydrogen peroxide (H2O2) formed during application of advanced oxidation processes disturbs the biological assessment of the treated solutions. Therefore, its removal is necessary when the concentration exceeds the critical level relevant to the biological tests. In this study, H2O2 removal was tested using catalase enzyme or MnO2 as catalysts and the concentration changes were measured by the Cu(II)/phenanthroline method. MnO2 and Cu(II) were found to react not only with H2O2 but also with the partly oxidized intermediates formed in the hydroxyl radical induced degradation of aromatic antibiotic and pesticide compounds. Catalase proved to be a milder oxidant, it did not show significant effects on the composition of organic molecules. The Cu(II)/phenanthroline method gives the correct H2O2 concentration only in the absence of easily oxidizable compounds, e.g. certain phenol type molecules.

  19. Toward Generalization of Iterative Small Molecule Synthesis.

    Science.gov (United States)

    Lehmann, Jonathan W; Blair, Daniel J; Burke, Martin D

    2018-02-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the "building block approach", i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach.

  20. Toward Generalization of Iterative Small Molecule Synthesis

    Science.gov (United States)

    Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D.

    2018-01-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. PMID:29696152

  1. Synthetic Biology: Putting Synthesis into Biology

    Science.gov (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  2. Single-Molecule Nanomagnets

    Science.gov (United States)

    Friedman, Jonathan R.; Sarachik, Myriam P.

    2010-04-01

    Single-molecule magnets straddle the classical and quantum mechanical worlds, displaying many fascinating phenomena. They may have important technological applications in information storage and quantum computation. We review the physical properties of two prototypical molecular nanomagnets, Mn12-acetate and Fe8: Each behaves as a rigid, spin-10 object and exhibits tunneling between up and down directions. As temperature is lowered, the spin-reversal process evolves from thermal activation to pure quantum tunneling. At low temperatures, magnetic avalanches occur in which the magnetization of an entire sample rapidly reverses. We discuss the important role that symmetry-breaking fields play in driving tunneling and in producing Berry-phase interference. Recent experimental advances indicate that quantum coherence can be maintained on timescales sufficient to allow a meaningful number of quantum computing operations to be performed. Efforts are under way to create monolayers and to address and manipulate individual molecules.

  3. Superexcited states of molecules

    International Nuclear Information System (INIS)

    Nakamura, Hiroki; Takagi, Hidekazu.

    1990-01-01

    The report addresses the nature and major features of molecule's superexcited states, focusing on their involvement in dynamic processes. It also outlines the quantum defect theory which allows various processes involving these states to be treated in a unified way. The Rydberg state has close relation with an ionized state with a positive energy. The quantum defect theory interprets such relation. Specifically, the report first describes the quantum defect theory focusing on its basic principle. The multi-channel quantum defect theory is then outlined centering on how to describe a Rydberg-type superexcited state. Description of a dissociative double-electron excited state is also discussed. The quantum defect theory is based on the fact that the physics of the motion of a Rydberg electron vary with the region in the electron's coordinate space. Finally, various molecular processes that involve a superexcited state are addressed focusing on autoionization, photoionization, dissociative recombination and bonding ionization of diatomic molecules. (N.K.)

  4. Information Needs/Relevance

    OpenAIRE

    Wildemuth, Barbara M.

    2009-01-01

    A user's interaction with a DL is often initiated as the result of the user experiencing an information need of some kind. Aspects of that experience and how it might affect the user's interactions with the DL are discussed in this module. In addition, users continuously make decisions about and evaluations of the materials retrieved from a DL, relative to their information needs. Relevance judgments, and their relationship to the user's information needs, are discussed in this module. Draft

  5. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  6. Photonic Molecule Lasers Revisited

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  7. Interstellar molecules and masers

    International Nuclear Information System (INIS)

    Nguyen-Q-Rieu; Guibert, J.

    1978-01-01

    The study of dense and dark clouds, in which hydrogen is mostly in molecular form, became possible since the discovery of interstellar molecules, emitting in the centimeter and millimeter wavelengths. The molecular lines are generally not in local thermal equilibrium (LTE). Their intensity can often be explained by invoking a population inversion mechanism. Maser emission lines due to OH, H 2 O and SiO molecules are among the most intense molecular lines. The H 2 CO molecule, detected in absorption in front of the cold cosmic background radiation of 2.7 K, illustrates the inverse phenomenon, the antimaser absorption. For a radio transition of frequency v, the inversion rate Δn (relative population difference between the upper and lower level) as well as the maser gain can be determined from the radio observations. In the case of the OH lines in the 2 PIsub(3/2), J=3/2 state, the inversion rates approximately 1 to 2% derived from the observations, are comparable with those obtained in the laboratory. The determination of the excitation mechanisms of the masers, through the statistical equilibrium and radiative transfer equations, implies the knowledge of collisional and radiative transition probabilities. A pumping model, which can satisfactorily explain the radio observations of some interstellar OH clouds, will be discussed [fr

  8. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  9. Applications of thermal neutron scattering in biology, biochemistry and biophysics

    International Nuclear Information System (INIS)

    Worcester, D.L.

    1977-01-01

    Biological applications of thermal neutron scattering have increased rapidly in recent years. The following categories of biological research with thermal neutron scattering are presently identified: crystallography of biological molecules; neutron small-angle scattering of biological molecules in solution (these studies have already included numerous measurements of proteins, lippoproteins, viruses, ribosomal subunits and chromatin subunit particles); neutron small-angle diffraction and scattering from biological membranes and membrane components; and neutron quasielastic and inelastic scattering studies of the dynamic properties of biological molecules and materials. (author)

  10. Biological Agents

    Science.gov (United States)

    ... E-Tools Safety and Health Topics / Biological Agents Biological Agents This page requires that javascript be enabled ... 202) 693-2300 if additional assistance is required. Biological Agents Menu Overview In Focus: Ebola Frederick A. ...

  11. Biology, Bionomics and Molecular Biology of Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), Main Malaria Vector in China.

    Science.gov (United States)

    Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen

    2017-01-01

    China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis . The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies.

  12. Small molecule annotation for the Protein Data Bank.

    Science.gov (United States)

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M; Chen, Minyu; Conroy, Matthew J; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100,000 structures contain more than 20,000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. © The Author(s) 2014. Published by Oxford University Press.

  13. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  14. The Biology of Cancer Health Disparities

    Science.gov (United States)

    These examples show how biology contributes to health disparities (differences in disease incidence and outcomes among distinct racial and ethnic groups, ), and how biological factors interact with other relevant factors, such as diet and the environment.

  15. Spatial Modeling Tools for Cell Biology

    National Research Council Canada - National Science Library

    Przekwas, Andrzej; Friend, Tom; Teixeira, Rodrigo; Chen, Z. J; Wilkerson, Patrick

    2006-01-01

    .... Scientific potentials and military relevance of computational biology and bioinformatics have inspired DARPA/IPTO's visionary BioSPICE project to develop computational framework and modeling tools for cell biology...

  16. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform

    Directory of Open Access Journals (Sweden)

    Ramasamy S

    2014-12-01

    Full Text Available Sakthivel Ramasamy,1 Devasier Bennet,1 Sanghyo Kim1,2 1Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea; 2Graduate Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea Abstract: This review will present a brief discussion on the recent advancements of bioelectrical impedance cell-based biosensors, especially the electric cell-substrate impedance sensing (ECIS system for screening of various bioactive molecules. The different technical integrations of various chip types, working principles, measurement systems, and applications for drug targeting of molecules in cells are highlighted in this paper. Screening of bioactive molecules based on electric cell-substrate impedance sensing is a trial-and-error process toward the development of therapeutically active agents for drug discovery and therapeutics. In general, bioactive molecule screening can be used to identify active molecular targets for various diseases and toxicity at the cellular level with nanoscale resolution. In the innovation and screening of new drugs or bioactive molecules, the activeness, the efficacy of the compound, and safety in biological systems are the main concerns on which determination of drug candidates is based. Further, drug discovery and screening of compounds are often performed in cell-based test systems in order to reduce costs and save time. Moreover, this system can provide more relevant results in in vivo studies, as well as high-throughput drug screening for various diseases during the early stages of drug discovery. Recently, MEMS technologies and integration with image detection techniques have been employed successfully. These new technologies and their possible ongoing transformations are addressed. Select reports are outlined, and not all the work that has been performed in the field of drug screening and development is covered. Keywords: screening of bioactive agents, impedance-based cell

  17. Cross-sections for inelastic collisions of fast charged particles with atoms and molecules

    International Nuclear Information System (INIS)

    Inokuti, M.

    1987-01-01

    Despite the long history of research, the current experimental data of the cross-sections, required for solving problems of radiological physics and dosimetry, are far from being complete or even satisfactory for tentative applications. Calculations are, in general, difficult and only in exceptional situations lead to reliable results. Thus, one practical approach to the cross-section determination is to test experimental data with general criteria. This is possible because cross-sections for various processes are related among themselves and with many other properties of atoms and molecules. For example, the Bethe theory indicates a close connection between photoabsorption and energy absorption by glancing collisions and puts many other useful constraints on the cross-section data. Development and use of these data constraints, first advanced by Platzman, can now be demonstrated in many examples. More recent studies concern the determination of the analytic expression most suitable for fitting the data on the oscillator strength distribution or the energy distribution of secondary electrons from ionizing collisions of charged particles. There are three areas to which major efforts should be directed: (1) Methods of absolute cross-section measurements, both for electron and ionic collisions, must be thoroughly reviewed so that sources of systematic errors may be identified and corrected. (2) Efforts should be devoted to the understanding of the data systematics, viz. the trends of cross-sections for a series of molecules. This is especially important because the variety of molecules relevant to radiological physics and radiation biology is so enormous that even the data presentation for each molecule will be impractical. (3) Electron and ionic collisions with molecules in condensed phases will be an important topic of study for years to come. Initial reports on efforts in this direction are encouraging. 49 refs

  18. Neutron structural biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1999-01-01

    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  19. Tailor-Made Fluorescent Trilobolide To Study Its Biological Relevance

    Czech Academy of Sciences Publication Activity Database

    Jurášek, M.; Rimpelová, S.; Kmoníčková, Eva; Drašar, P.; Ruml, T.

    2014-01-01

    Roč. 57, č. 19 (2014), s. 7947-7954 ISSN 0022-2623 Grant - others:GA ČR(CZ) GA14-28334S; GA MŠMT(CZ) 20/2014 Program:GA Institutional support: RVO:68378041 Keywords : trilobolide * nitric oxide * endoplasmic reticulum Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 5.447, year: 2014

  20. Colloidal stability of silver nanoparticles in biologically relevant conditions

    International Nuclear Information System (INIS)

    MacCuspie, Robert I.

    2011-01-01

    Understanding the colloidal stability of nanoparticles (NPs) plays a key role in phenomenological interpretation of toxicological experiments, particularly if single NPs or their aggregates or agglomerates determine the dominant experimental result. This report examines a variety of instrumental techniques for surveying the colloidal stability of aqueous suspensions of silver nanoparticles (AgNPs), including atomic force microscopy, dynamic light scattering, and colorimetry. It was found that colorimetry can adequately determine the concentration of single AgNPs that remained in solution if morphological information about agglomerates is not required. The colloidal stability of AgNPs with various surface capping agents and in various solvents ranging from cell culture media to different electrolytes of several concentrations, and in different pH conditions was determined. It was found that biocompatible bulky capping agents, such as bovine serum albumin or starch, that provided steric colloidal stabilization, as opposed to purely electrostatic stabilization such as with citrate AgNPs, provided better retention of single AgNPs in solution over a variety of conditions for up to 64 h of observation.

  1. Towards a barrier height benchmark set for biologically relevant systems.

    Science.gov (United States)

    Kromann, Jimmy C; Christensen, Anders S; Cui, Qiang; Jensen, Jan H

    2016-01-01

    We have collected computed barrier heights and reaction energies (and associated model structures) for five enzymes from studies published by Himo and co-workers. Using this data, obtained at the B3LYP/6- 311+G(2d,2p)[LANL2DZ]//B3LYP/6-31G(d,p) level of theory, we then benchmark PM6, PM7, PM7-TS, and DFTB3 and discuss the influence of system size, bulk solvation, and geometry re-optimization on the error. The mean absolute differences (MADs) observed for these five enzyme model systems are similar to those observed for PM6 and PM7 for smaller systems (10-15 kcal/mol), while DFTB results in a MAD that is significantly lower (6 kcal/mol). The MADs for PMx and DFTB3 are each dominated by large errors for a single system and if the system is disregarded the MADs fall to 4-5 kcal/mol. Overall, results for the condensed phase are neither more or less accurate relative to B3LYP than those in the gas phase. With the exception of PM7-TS, the MAD for small and large structural models are very similar, with a maximum deviation of 3 kcal/mol for PM6. Geometry optimization with PM6 shows that for one system this method predicts a different mechanism compared to B3LYP/6-31G(d,p). For the remaining systems, geometry optimization of the large structural model increases the MAD relative to single points, by 2.5 and 1.8 kcal/mol for barriers and reaction energies. For the small structural model, the corresponding MADs decrease by 0.4 and 1.2 kcal/mol, respectively. However, despite these small changes, significant changes in the structures are observed for some systems, such as proton transfer and hydrogen bonding rearrangements. The paper represents the first step in the process of creating a benchmark set of barriers computed for systems that are relatively large and representative of enzymatic reactions, a considerable challenge for any one research group but possible through a concerted effort by the community. We end by outlining steps needed to expand and improve the data set and how other researchers can contribute to the process.

  2. Towards a barrier height benchmark set for biologically relevant systems

    Directory of Open Access Journals (Sweden)

    Jimmy C. Kromann

    2016-05-01

    Full Text Available We have collected computed barrier heights and reaction energies (and associated model structures for five enzymes from studies published by Himo and co-workers. Using this data, obtained at the B3LYP/6- 311+G(2d,2p[LANL2DZ]//B3LYP/6-31G(d,p level of theory, we then benchmark PM6, PM7, PM7-TS, and DFTB3 and discuss the influence of system size, bulk solvation, and geometry re-optimization on the error. The mean absolute differences (MADs observed for these five enzyme model systems are similar to those observed for PM6 and PM7 for smaller systems (10–15 kcal/mol, while DFTB results in a MAD that is significantly lower (6 kcal/mol. The MADs for PMx and DFTB3 are each dominated by large errors for a single system and if the system is disregarded the MADs fall to 4–5 kcal/mol. Overall, results for the condensed phase are neither more or less accurate relative to B3LYP than those in the gas phase. With the exception of PM7-TS, the MAD for small and large structural models are very similar, with a maximum deviation of 3 kcal/mol for PM6. Geometry optimization with PM6 shows that for one system this method predicts a different mechanism compared to B3LYP/6-31G(d,p. For the remaining systems, geometry optimization of the large structural model increases the MAD relative to single points, by 2.5 and 1.8 kcal/mol for barriers and reaction energies. For the small structural model, the corresponding MADs decrease by 0.4 and 1.2 kcal/mol, respectively. However, despite these small changes, significant changes in the structures are observed for some systems, such as proton transfer and hydrogen bonding rearrangements. The paper represents the first step in the process of creating a benchmark set of barriers computed for systems that are relatively large and representative of enzymatic reactions, a considerable challenge for any one research group but possible through a concerted effort by the community. We end by outlining steps needed to expand and improve the data set and how other researchers can contribute to the process.

  3. Epigenetics in prostate cancer: biologic and clinical relevance.

    Science.gov (United States)

    Jerónimo, Carmen; Bastian, Patrick J; Bjartell, Anders; Carbone, Giuseppina M; Catto, James W F; Clark, Susan J; Henrique, Rui; Nelson, William G; Shariat, Shahrokh F

    2011-10-01

    Prostate cancer (PCa) is one of the most common human malignancies and arises through genetic and epigenetic alterations. Epigenetic modifications include DNA methylation, histone modifications, and microRNAs (miRNA) and produce heritable changes in gene expression without altering the DNA coding sequence. To review progress in the understanding of PCa epigenetics and to focus upon translational applications of this knowledge. PubMed was searched for publications regarding PCa and DNA methylation, histone modifications, and miRNAs. Reports were selected based on the detail of analysis, mechanistic support of data, novelty, and potential clinical applications. Aberrant DNA methylation (hypo- and hypermethylation) is the best-characterized alteration in PCa and leads to genomic instability and inappropriate gene expression. Global and locus-specific changes in chromatin remodeling are implicated in PCa, with evidence suggesting a causative dysfunction of histone-modifying enzymes. MicroRNA deregulation also contributes to prostate carcinogenesis, including interference with androgen receptor signaling and apoptosis. There are important connections between common genetic alterations (eg, E twenty-six fusion genes) and the altered epigenetic landscape. Owing to the ubiquitous nature of epigenetic alterations, they provide potential biomarkers for PCa detection, diagnosis, assessment of prognosis, and post-treatment surveillance. Altered epigenetic gene regulation is involved in the genesis and progression of PCa. Epigenetic alterations may provide valuable tools for the management of PCa patients and be targeted by pharmacologic compounds that reverse their nature. The potential for epigenetic changes in PCa requires further exploration and validation to enable translation to the clinic. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  4. Relevant Features of Science: Values in Conservation Biology

    Science.gov (United States)

    van Dijk, Esther M.

    2013-01-01

    The development of an understanding of the nature of science is generally assumed to be an important aspect of science communication with respect to the enhancement of scientific literacy. At present, a general characterization of the nature of science is still lacking and probably such a characterization will not be achievable. The overall aim of…

  5. Quark chemistry: charmonium molecules

    International Nuclear Information System (INIS)

    De Rujula, A.; Jaffe, R.L.

    1977-01-01

    The theoretical and experimental evidence for two quark-two antiquark hadrons is reviewed. Concentration is placed on predictions for S-wave ''charmonium molecules,'' built of a c anti c charmonium pair and a light quark-antiquark pair. Their spectrum and quantum numbers are predicted and an estimate of their decay couplings and their prediction in monochromatic pion decays from charmonium resonances produced in e + e - -annihilation is given. Some S-wave charmonium resonances should be detectable in these decays, but typical branching ratios are only at the 1% level. 19 references

  6. [Relevant public health enteropathogens].

    Science.gov (United States)

    Riveros, Maribel; Ochoa, Theresa J

    2015-01-01

    Diarrhea remains the third leading cause of death in children under five years, despite recent advances in the management and prevention of this disease. It is caused by multiple pathogens, however, the prevalence of each varies by age group, geographical area and the scenario where cases (community vs hospital) are recorded. The most relevant pathogens in public health are those associated with the highest burden of disease, severity, complications and mortality. In our country, norovirus, Campylobacter and diarrheagenic E. coli are the most prevalent pathogens at the community level in children. In this paper we review the local epidemiology and potential areas of development in five selected pathogens: rotavirus, norovirus, Shiga toxin-producing E. coli (STEC), Shigella and Salmonella. Of these, rotavirus is the most important in the pediatric population and the main agent responsible for child mortality from diarrhea. The introduction of rotavirus vaccination in Peru will have a significant impact on disease burden and mortality from diarrhea. However, surveillance studies are needed to determine the impact of vaccination and changes in the epidemiology of diarrhea in Peru following the introduction of new vaccines, as well as antibiotic resistance surveillance of clinical relevant bacteria.

  7. Ultra-cold molecule production

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-01-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled

  8. Laser spectroscopy on organic molecules.

    Science.gov (United States)

    Imasaka, T

    1996-06-01

    Various laser spectrometric methods have been developed until now. Especially, laser fluorometry is most sensitive and is frequently combined with a separation technique such as capillary electrophoresis. For non-fluorescent compounds, photothermal spectrometry may be used instead. A diode laser is potentially useful for practical trace analysis, because of its low cost and long-term trouble-free operation. On the other hand, monochromaticity of the laser is essential in high-resolution spectrometry, e.g. in low temperature spectrometry providing a very sharp spectral feature. Closely-related compounds such as isomers can easily be differentiated, and information for assignment is obtained from the spectrum. Multiphoton ionization mass spectrometry is useful for soft ionization, providing additional information concerned with molecular weight and chemical structure. A short laser pulse with a sufficient energy is suitable for rapid heating of the solid surface. A matrix-assisted laser desorption/ion-ization technique is recently employed for introduction of a large biological molecule into a vacuum for mass analysis. In the future, laser spectrometry will be developed by a combination with state-of-the-art laser technology. In the 21st century, new laser spectrometry will be developed, which may be based on revolutionary ideas or unexpected discoveries. Such studies will open new frontiers in analytical laser spectroscopy.

  9. The formation of molecules in protostellar winds

    International Nuclear Information System (INIS)

    Glassgold, A.E.; Mamon, G.A.; Huggins, P.J.

    1991-01-01

    The production and destruction processes for molecules in very fast protostellar winds are analyzed and modeled with a one-dimensional chemical kinetics code. Radial density and temperature distributions suggested by protostellar theory are explored as are a range of mass-loss rates. The efficiency of in situ formation of heavy molecules is found to be high if the wind temperature falls sufficiently rapidly, as indicated by theory. The degree of molecular conversion is a strong function of the mass-loss rate and of density gradients associated with the acceleration and collimation of the wind. Even in cases where essentially all of the heavy atoms are processed into molecules, a significant fraction of atomic hydrogen remains so that hghly molecular, protostellar winds are able to emit the 21-cm line. Although CO has a substantial abundance in most models relevant to very young protostars, high abundances of other molecules such as SiO and H2O signify more complete association characteristic of winds containing regions of very high density. Although the models apply only to regions close to the protostar, they are in qualitative accord with recent observations at much larger distances of both atomic and molecular emission from extremely high-velocity flow. 57 refs

  10. Comprehensive Map of Molecules Implicated in Obesity.

    Directory of Open Access Journals (Sweden)

    Jaisri Jagannadham

    Full Text Available Obesity is a global epidemic affecting over 1.5 billion people and is one of the risk factors for several diseases such as type 2 diabetes mellitus and hypertension. We have constructed a comprehensive map of the molecules reported to be implicated in obesity. A deep curation strategy was complemented by a novel semi-automated text mining system in order to screen 1,000 full-length research articles and over 90,000 abstracts that are relevant to obesity. We obtain a scale free network of 804 nodes and 971 edges, composed of 510 proteins, 115 genes, 62 complexes, 23 RNA molecules, 83 simple molecules, 3 phenotype and 3 drugs in "bow-tie" architecture. We classify this network into 5 modules and identify new links between the recently discovered fat mass and obesity associated FTO gene with well studied examples such as insulin and leptin. We further built an automated docking pipeline to dock orlistat as well as other drugs against the 24,000 proteins in the human structural proteome to explain the therapeutics and side effects at a network level. Based upon our experiments, we propose that therapeutic effect comes through the binding of one drug with several molecules in target network, and the binding propensity is both statistically significant and different in comparison with any other part of human structural proteome.

  11. Passing Current through Touching Molecules

    DEFF Research Database (Denmark)

    Schull, G.; Frederiksen, Thomas; Brandbyge, Mads

    2009-01-01

    The charge flow from a single C-60 molecule to another one has been probed. The conformation and electronic states of both molecules on the contacting electrodes have been characterized using a cryogenic scanning tunneling microscope. While the contact conductance of a single molecule between two...

  12. Single molecule insights on conformational selection and induced fit mechanism

    DEFF Research Database (Denmark)

    Hatzakis, Nikos

    2014-01-01

    . To describe the molecular basis of this behavior, two main mechanisms have been advanced: 'induced fit' and 'conformational selection'. Our understanding of these models relies primarily on NMR, computational studies and kinetic measurements. These techniques report the average behavior of a large ensemble...... of unsynchronized molecules, often masking intrinsic dynamic behavior of proteins and biologically significant transient intermediates. Single molecule measurements are emerging as a powerful tool for characterizing protein function. They offer the direct observation and quantification of the activity, abundance...

  13. Chemical reactivities of some interstellar molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M S

    1980-01-01

    Work in the area of chemical evolution during the last 25 years has revealed the formation of a large number of biologically important molecules produced from simple starting materials under relatively simple experimental conditions. Much of this work has resulted from studies under atmospheres simulating that of the primitive earth or other planets. During the last decade, progress has also been made in the identification of chemical constituents of interstellar medium. A number of these molecules are the same as those identified in laboratory experiments. Even though the conditions of the laboratory experiments are vastly different from those of the cool, low-density interstellar medium, some of the similarities in composition are too obvious to go unnoticed. The present paper highlights some of the similarities in the composition of prebiotic molecules and those discovered in the interstellar medium. Also the chemical reactions which some of the common molecules e.g., NH3, HCN, H2CO, HC(triple bond)-C-CN etc. can undergo are surveyed.

  14. Molecules as nanomagnets

    International Nuclear Information System (INIS)

    Caneschi, A.; Gatteschi, D.; Sessoli, R.

    1998-01-01

    The design and the synthesis of molecular clusters which give rise to slow relaxation of the magnetization at low temperature are the focus of a great interdisciplinary interest, because they provide unique materials to test the theories of quantum tunneling of the magnetization. A short review is provided here of the best systems so far discovered, outlining the possible relevance of this new class of materials to future applications [it

  15. Vygotsky's Crisis: Argument, context, relevance.

    Science.gov (United States)

    Hyman, Ludmila

    2012-06-01

    Vygotsky's The Historical Significance of the Crisis in Psychology (1926-1927) is an important text in the history and philosophy of psychology that has only become available to scholars in 1982 in Russian, and in 1997 in English. The goal of this paper is to introduce Vygotsky's conception of psychology to a wider audience. I argue that Vygotsky's argument about the "crisis" in psychology and its resolution can be fully understood only in the context of his social and political thinking. Vygotsky shared the enthusiasm, widespread among Russian leftist intelligentsia in the 1920s, that Soviet society had launched an unprecedented social experiment: The socialist revolution opened the way for establishing social conditions that would let the individual flourish. For Vygotsky, this meant that "a new man" of the future would become "the first and only species in biology that would create itself." He envisioned psychology as a science that would serve this humanist teleology. I propose that The Crisis is relevant today insofar as it helps us define a fundamental problem: How can we systematically account for the development of knowledge in psychology? I evaluate how Vygotsky addresses this problem as a historian of the crisis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Regularities in positronium formation for atoms and molecules

    International Nuclear Information System (INIS)

    Machacek, J R; Buckman, S J; Sullivan, J P; Blanco, F; Garcia, G

    2016-01-01

    In an effort to aid the modelling of positron and positronium (Ps) transport in biological media we have compiled recent experimental results for the total Ps formation in positron scattering from atoms and molecules. A simple function was found to adequately describe the total Ps formation cross section for both atoms and molecules. The parameters of this function describe the magnitude and shape of the Ps formation cross section and are compared to physical characteristics of the target atoms and molecules. A general trend in the magnitude of the total Ps formation cross section is observed as a function of the target atom/molecule dipole polarisability. The functional form may enable quick estimation of the Ps cross section for molecules for which experimental measurements or theoretical estimates do not exist. (paper)

  17. The importance of correct tautomeric structures for biological molecules

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Mortensen, John; Kamounah, Fadhil S.

    2015-01-01

    The structures of usnic acid and tetracycline are determined using deuterium isotope effects on 13C chemical shifts in a water environment. In case of usnic acid this is achieved by synthesizing a more water soluble usnic acid with a PEG linker. In the usnic acid case an enolic b-triketone (C-1, ...

  18. Synthesis of hydroxyapatite in the presence of biologically significant molecules

    International Nuclear Information System (INIS)

    Alvarez, R.; Evans, L.A.

    2000-01-01

    In bone mineralization non-collagenous phosphoproteins containing polycarboxylate sequences are thought to control crystal nucleation and to subsequently modify crystal growth. Invertebrate calcified tissues may also contain significant amounts of phosphoserine and/or acidic amino acid residues together with chitin (a polysaccharide). The present study investigated the effect of synthetic phosphorylated compounds as well as monomeric/polymeric carboxylic acid compounds on the formation of hydroxyapatite (HAp) under conditions of physiological pH, temperature and ionic strength. Poly-L-sodium aspartate was found to have the greatest inhibitory effect; only octacalcium phosphate (a known precursor of hydroxyapatite) could be detected in the presence of this polymer. Resultant minerals showed a variety of aggregation states. The biomimetically formed calcium phosphate minerals were identified and characterised by a variety of analytical thechniques, including laser Raman, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy and x-ray diffraction analysis. In addition, a series of experiments were performed to induce the formation of HAp on biogenic substrates, such as chitin and its derivatives, chitosan, reconstituted chitin and phosphorylated chitin. Granular aggregates of hydroxyapatite could be induced to form directly on phosphorylated chitin surfaces, but not on other biogenically-derived substrates. Copyright (2000) The Australian Ceramic Society

  19. Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter

    CERN Document Server

    Whelan, Colm T

    2005-01-01

    Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.

  20. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  1. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  2. Molecules in the Spotlight

    Energy Technology Data Exchange (ETDEWEB)

    Cryan, James

    2010-01-26

    SLAC has just unveiled the world's first X-ray laser, the LCLS. This machine produces pulses of X-rays that are ten billion times brighter than those from conventional sources. One of the goals of this machine is to make movies of chemical reactions, including reactions necessary for life and reactions that might power new energy technologies. This public lecture will show the first results from the LCLS. As a first target, we have chosen nitrogen gas, the main component of the air we breathe. Using the unprecedented power of the LCLS X-rays as a blasting torch, we have created new forms of this molecule and with unique electronic arrangements. Please share with us the first insights from this new technology.

  3. Magnetic field modification of ultracold molecule-molecule collisions

    International Nuclear Information System (INIS)

    Tscherbul, T V; Suleimanov, Yu V; Aquilanti, V; Krems, R V

    2009-01-01

    We present an accurate quantum mechanical study of molecule-molecule collisions in the presence of a magnetic field. The work focuses on the analysis of elastic scattering and spin relaxation in collisions of O 2 ( 3 Σ g - ) molecules at cold (∼0.1 K) and ultracold (∼10 -6 K) temperatures. Our calculations show that magnetic spin relaxation in molecule-molecule collisions is extremely efficient except at magnetic fields below 1 mT. The rate constant for spin relaxation at T=0.1 K and a magnetic field of 0.1 T is found to be as large as 6.1x10 -11 cm -3 s -1 . The magnetic field dependence of elastic and inelastic scattering cross sections at ultracold temperatures is dominated by a manifold of Feshbach resonances with the density of ∼100 resonances per Tesla for collisions of molecules in the absolute ground state. This suggests that the scattering length of ultracold molecules in the absolute ground state can be effectively tuned in a very wide range of magnetic fields. Our calculations demonstrate that the number and properties of the magnetic Feshbach resonances are dramatically different for molecules in the absolute ground and excited spin states. The density of Feshbach resonances for molecule-molecule scattering in the low-field-seeking Zeeman state is reduced by a factor of 10.

  4. Report on achievements in fiscal 1999 on research and development of the glycocluster controlled biological molecule synthesizing under the industrial and scientific technology research and development theme [university collaborated type]. Bio-fiber manufacturing technology of glycocluster utilizing type; 1999 nendo glycocluster seigyo seitai bunshi gosei gijutsu seika hokokusho (glycocluster riyogata bio sen'i seizo gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper describes the achievements in fiscal 1999 on development of the technology to manufacture glycocluster controlled biological molecules, particularly bio-fibers. It was made clear for the first time that the method for synthesizing glycoside and sugar chain using solid ultra-strong acid can be a new method for polysaccharide synthesis (polycondensation reaction) which is extremely simple and versatile as a result of using the solid ultra-strong acid. It can also be applied to general glycoside synthesis. In glycopeptide synthesis of the regular sequence type using high-functional condensation reaction, such a condensation agent as diphenyl phosphoryl azide was found effective in polymerization reaction without protection of glycopeptide, which has been impossible conventionally, and was found to have high versatility as a method for synthesizing mucin glycoproteins widely distributed naturally. In simplified synthesis of physiologically active glycopeptide, notice was given to tyrosine which is not glycosylated in the natural world, even though having hydroxyl groups in side chains as in serine and threonine. A method was established to introduce sugar chains into this hydroxyl group. This method exhibits power also in the synthesis of physiologically active glycopeptide of non-natural type. The paper describes also the comprehensive survey. (NEDO)

  5. STITCH 2: an interaction network database for small molecules and proteins

    DEFF Research Database (Denmark)

    Kuhn, Michael; Szklarczyk, Damian; Franceschini, Andrea

    2010-01-01

    Over the last years, the publicly available knowledge on interactions between small molecules and proteins has been steadily increasing. To create a network of interactions, STITCH aims to integrate the data dispersed over the literature and various databases of biological pathways, drug......-target relationships and binding affinities. In STITCH 2, the number of relevant interactions is increased by incorporation of BindingDB, PharmGKB and the Comparative Toxicogenomics Database. The resulting network can be explored interactively or used as the basis for large-scale analyses. To facilitate links to other...... chemical databases, we adopt InChIKeys that allow identification of chemicals with a short, checksum-like string. STITCH 2.0 connects proteins from 630 organisms to over 74,000 different chemicals, including 2200 drugs. STITCH can be accessed at http://stitch.embl.de/....

  6. Single molecule photodynamics by means of one- and two-photon approach

    International Nuclear Information System (INIS)

    Chirico, Giuseppe; Cannone, Fabio; Diaspro, Alberto

    2003-01-01

    Single molecule spectroscopy allows to investigate heterogeneous behaviours on photochemical and structural grounds. We report on studies of the effect of the excitation intensity on the internal photodynamics of simple dyes immobilized on chemically etched glass slides. The use of the excitation intensity needed for two-photon excitation induces local heating, structural changes and transitions to dark states. Similar behaviour is found on single green fluorescent proteins immobilized on glass slides or embedded in silica gels upon single-photon excitation. However, by sampling the images with sufficiently low frequency, we are able to follow relevant biological events, such as the unfolding kinetics. We find that the glass slides are preferable in terms of the signal-to-noise ratio but the protein is not preserved in its native state, while evidence for the native conformation of the single proteins in the silica gels is found in the uniformity of the fluorescence emission

  7. Marine Carotenoids: Biological Functions and Commercial Applications

    NARCIS (Netherlands)

    Vilchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological

  8. User perspectives on relevance criteria

    DEFF Research Database (Denmark)

    Maglaughlin, Kelly L.; Sonnenwald, Diane H.

    2002-01-01

    , partially relevant, or not relevant to their information need; and explained their decisions in an interview. Analysis revealed 29 criteria, discussed positively and negatively, that were used by the participants when selecting passages that contributed or detracted from a document's relevance......This study investigates the use of criteria to assess relevant, partially relevant, and not-relevant documents. Study participants identified passages within 20 document representations that they used to make relevance judgments; judged each document representation as a whole to be relevant...... matter, thought catalyst), full text (e.g., audience, novelty, type, possible content, utility), journal/publisher (e.g., novelty, main focus, perceived quality), and personal (e.g., competition, time requirements). Results further indicate that multiple criteria are used when making relevant, partially...

  9. Electron-excited molecule interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Tennessee Univ., Knoxville, TN

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10 6 to 10 7 times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs

  10. Organic Molecules in Meteorites

    Science.gov (United States)

    Martins, Zita

    2015-08-01

    Carbonaceous meteorites are primitive samples from the asteroid belt, containing 3-5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous meteorites may have contributed to the organic inventory of the early Earth. The majority (>70%) of the meteoritic organic material consist of insoluble organic matter (IOM) [1]. The remaining meteoritic organic material (meteorites contain soluble organic molecules with different abundances and distributions, which may reflect the extension of aqueous alteration or thermal metamorphism on the meteorite parent bodies. Extensive aqueous alteration on the meteorite parent body may result on 1) the decomposition of α-amino acids [5, 6]; 2) synthesis of β- and γ-amino acids [2, 6-9]; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs) [6, 10]; and 4) higher L-enantiomer excess (Lee) value of isovaline [6, 11, 12].The soluble organic content of carbonaceous meteorites may also have a contribution from Fischer-Tropsch/Haber-Bosch type gas-grain reactions after the meteorite parent body cooled to lower temperatures [13, 14].The analysis of the abundances and distribution of the organic molecules present in meteorites helps to determine the physical and chemical conditions of the early solar system, and the prebiotic organic compounds available on the early Earth.[1] Cody and Alexander (2005) GCA 69, 1085. [2] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [3] Martins and Sephton (2009) in: Amino acids, peptides and proteins in organic chemistry. pp. 1-42. [4] Martins (2011) Elements 7, 35. [5] Botta et al. (2007) MAPS 42, 81. [6] Martins et al. (2015) MAPS, in press. [7] Cooper and Cronin (1995) GCA 59, 1003. [8] Glavin et al. (2006) MAPS. 41, 889. [9] Glavin et al. (2011) MAPS 45, 1948. [10] Elsila et al. (2005) GCA 5, 1349. [11] Glavin and Dworkin (2009) PNAS 106, 5487. [12] Pizzarello et al. (2003) GCA 67, 1589. [13] Chan et al. (2012) MAPS. 47, 1502

  11. Evolutionary game theory: molecules as players.

    Science.gov (United States)

    Bohl, Katrin; Hummert, Sabine; Werner, Sarah; Basanta, David; Deutsch, Andreas; Schuster, Stefan; Theissen, Günter; Schroeter, Anja

    2014-12-01

    In this and an accompanying paper we review the use of game theoretical concepts in cell biology and molecular biology. This review focuses on the subcellular level by considering viruses, genes, and molecules as players. We discuss in which way catalytic RNA can be treated by game theory. Moreover, genes can compete for success in replication and can have different strategies in interactions with other genetic elements. Also transposable elements, or "jumping genes", can act as players because they usually bear different traits or strategies. Viruses compete in the case of co-infecting a host cell. Proteins interact in a game theoretical sense when forming heterodimers. Finally, we describe how the Shapley value can be applied to enzymes in metabolic pathways. We show that game theory can be successfully applied to describe and analyse scenarios at the molecular level resulting in counterintuitive conclusions.

  12. Modern Biology

    OpenAIRE

    ALEKSIC, Branko

    2014-01-01

    The purpose of this course is to learn the philosophy, principles, and techniques of modern biology. The course is particularly designed for those who have not learned biology previously or whose major is other than biology, and who may think that they do not need to know any biology at all. The topics are covered in a rather general, overview manner, but certain level of diligence in grasping concepts and memorizing the terminology is expected.

  13. Tunnelling of a molecule

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Bulte, D.P.

    1998-01-01

    A quantum-mechanical description of tunnelling is presented for a one-dimensional system with internal oscillator degrees of freedom. The 'charged diatomic molecule' is frustrated on encountering a barrier potential by its centre of charge not being coincident with its centre of mass, resulting in transitions amongst internal states. In an adiabatic limit, the tunnelling of semiclassical coherent-like oscillator states is shown to exhibit the Hartman and Bueuttiker-Landauer times t H and t BL , with the time dependence of the coherent state parameter for the tunnelled state given by α(t) = α e -iω(t+Δt) , Δt = t H - it BL . A perturbation formalism is developed, whereby the exact transfer matrix can be expanded to any desired accuracy in a suitable limit. An 'intrinsic' time, based on the oscillator transition rate during tunnelling, transmission or reflection, is introduced. In simple situations the resulting intrinsic tunnelling time is shown to vanish to lowest order. In the general case a particular (nonzero) parametrisation is inferred, and its properties discussed in comparison with the literature on tunnelling times for both wavepackets and internal clocks. Copyright (1998) CSIRO Australia

  14. Single molecule tracking

    Science.gov (United States)

    Shera, E. Brooks

    1988-01-01

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photones are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions.

  15. Monochloramine Cometabolism by Nitrifying Biofilm Relevant ...

    Science.gov (United States)

    Recently, biological monochloramine removal (i.e., cometabolism) by a pure culture ammonia–oxidizing bacteria, Nitrosomonas europaea, and a nitrifying mixed–culture have been shown to increase monochloramine demand. Although important, these previous suspended culture batch kinetic experiments were not representative of drinking water distribution systems where bacteria grow predominantly as biofilm attached to pipe walls or sediments and physiological differences may exist between suspension and biofilm growth. Therefore, the current research was an important next step in extending the previous results to investigate monochloramine cometabolism by biofilm grown in annular reactors under drinking water relevant conditions. Estimated monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (25–40% of the observed monochloramine loss). These results demonstrated that monochloramine cometabolism occurred in drinking water relevant nitrifying biofilm; thus, cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in distribution systems. Investigate whether or not nitrifying biofilm can biologically transform monochloramine under drinking water relevant conditions.

  16. Molecules as nanomagnets

    Energy Technology Data Exchange (ETDEWEB)

    Caneschi, A.; Gatteschi, D.; Sessoli, R. [Florence Univ. (Italy). Dep. di Chimica

    1998-12-01

    The design and the synthesis of molecular clusters which give rise to slow relaxation of the magnetization at low temperature are the focus of a great interdisciplinary interest, because they provide unique materials to test the theories of quantum tunneling of the magnetization. A short review is provided here of the best systems so far discovered, outlining the possible relevance of this new class of materials to future applications. [Italiano] La progettazione e la sintesi di cluster molecolari che danno luogo a rilassamento lento della magnetizzazione a bassa temperatura sono oggetto di un grande interesse interdisciplinare, perche` sono materiali unici per mettere alla prova le teorie sugli effetti quantistici che si possono osservare in sintesi macroscopici. In questo articolo vengono brevemente passati in rassegna i migliori sistemi fin qui scoperti e vengono date alcune indicazioni per la possibile importanza di questa nuova classe di materiali per applicazioni future.

  17. Quantum interference experiments with complex organic molecules

    International Nuclear Information System (INIS)

    Eibenberger, S. I.

    2015-01-01

    measure absolute absorption cross sections in very dilute beams without the need of knowing the vapor pressure. In the future this technique can be extended to a variety of biological molecules. The experiments presented in this thesis define the currently most stringent bound of the experimental macroscopicity parameter for quantum superpositions. (author) [de

  18. Theoretical Investigations Regarding Single Molecules

    DEFF Research Database (Denmark)

    Pedersen, Kim Georg Lind

    Neoclassical Valence Bond Theory, Quantum Transport, Quantum Interference, Kondo Effect, and Electron Pumping. Trap a single organic molecule between two electrodes and apply a bias voltage across this "molecular junction". When electrons pass through the molecule, the different electron paths can...... interfere destructively or constructively. Destructive interference effects in electron transport could potentially improve thermo-electrics, organic logic circuits and energy harvesting. We have investigated destructive interference in off-resonant transport through organic molecules, and have found a set...

  19. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  20. Labelled molecules, modern research implements

    International Nuclear Information System (INIS)

    Pichat, L.; Langourieux, Y.

    1974-01-01

    Details of the synthesis of carbon 14- and tritium-labelled molecules are examined. Although the methods used are those of classical organic chemistry the preparation of carbon 14-labelled molecules differs in some respects, most noticeably in the use of 14 CO 2 which requires very special handling techniques. For the tritium labelling of organic molecules the methods are somewhat different, very often involving exchange reactions. The following are described in turn: the so-called Wilzbach exchange method; exchange by catalysis in solution; catalytic hydrogenation with tritium; reductions with borotritides. Some applications of labelled molecules in organic chemistry, biochemistry and pharmacology are listed [fr

  1. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  2. From Molecular Biology to Biomedicine

    International Nuclear Information System (INIS)

    Salas, M.

    2009-01-01

    From Molecular Biology to Biomedicine. The well known molecular biologist Margarita Salas offered an informative conference at the CSN on progress in these areas since the discovery, more than half a century ago, of the structure of the molecule carrying genetic information, DNA, work that is having an enormous impact in areas such as biomedicine and foodstuff production. (Author)

  3. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.

    1981-01-01

    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  4. Improved Dye Stability in Single-Molecule Fluorescence Experiments

    Science.gov (United States)

    EcheverrÍa Aitken, Colin; Marshall, R. Andrew; Pugi, Joseph D.

    Complex biological systems challenge existing single-molecule methods. In particular, dye stability limits observation time in singlemolecule fluorescence applications. Current approaches to improving dye performance involve the addition of enzymatic oxygen scavenging systems and small molecule additives. We present an enzymatic oxygen scavenging system that improves dye stability in single-molecule experiments. Compared to the currently-employed glucose-oxidase/catalase system, the protocatechuate-3,4-dioxygenase system achieves lower dissolved oxygen concentration and stabilizes single Cy3, Cy5, and Alexa488 fluorophores. Moreover, this system possesses none of the limitations associated with the glucose oxidase/catalase system. We also tested the effects of small molecule additives in this system. Biological reducing agents significantly destabilize the Cy5 fluorophore as a function of reducing potential. In contrast, anti-oxidants stabilize the Cy3 and Alexa488 fluorophores. We recommend use of the protocatechuate-3,4,-dioxygenase system with antioxidant additives, and in the absence of biological reducing agents. This system should have wide application to single-molecule fluorescence experiments.

  5. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  6. Growing interstellar molecules with ion-molecule reactions

    International Nuclear Information System (INIS)

    Bohme, D.K.

    1989-01-01

    Laboratory measurements of gas-phase ion-molecule reactions continue to provide important insights into the chemistry of molecular growth in interstellar environments. It is also true that the measurements are becoming more demanding as larger molecules capture our interest. While some of these measurements are motivated by current developments in chemical models of interstellar environments or by new molecular observations by astronomers, others explore novel chemistry which can lead to predictions of new interstellar molecules. Here the author views the results of some recent measurements, taken in the Ion Chemistry Laboratory at York University with the SIFT technique, which address some of the current needs of modellers and observers and which also provide some new fundamental insight into molecular growth, particularly when it occurs in the presence of large molecules such as PAH molecules which are now thought to have a major influence on the chemistry of interstellar environments in which they are present

  7. Investigation of polyelectrolyte desorption by single molecule force spectroscopy

    International Nuclear Information System (INIS)

    Friedsam, C; Seitz, M; Gaub, H E

    2004-01-01

    Single molecule force spectroscopy has evolved into a powerful method for the investigation of intra- and intermolecular interactions at the level of individual molecules. Many examples, including the investigation of the dynamic properties of complex biological systems as well as the properties of covalent bonds or intermolecular transitions within individual polymers, are reported in the literature. The technique has recently been extended to the systematic investigation of desorption processes of individual polyelectrolyte molecules adsorbed on generic surfaces. The stable covalent attachment of polyelectrolyte molecules to the AFM-tip provides the possibility of performing long-term measurements with the same set of molecules and therefore allows the in situ observation of the impact of environmental changes on the adsorption behaviour of individual molecules. Different types of interactions, e.g. electrostatic or hydrophobic interactions, that determine the adsorption process could be identified and characterized. The experiments provided valuable details that help to understand the nature and the properties of non-covalent interactions, which is helpful with regard to biological systems as well as for technical applications. Apart from this, desorption experiments can be utilized to characterize the properties of surfaces or polymer coatings. Therefore they represent a versatile tool that can be further developed in terms of various aspects

  8. Flexibility and conformational change of IgG molecule

    International Nuclear Information System (INIS)

    Alpert, Y.; Ostanevich, Yu.M.

    1982-12-01

    The dynamic behaviour of pig anti-Dnp-immunoglobulin (IgG) investigated by the neutron spin echo technique gave evidence of internal motion of a biological macromolecule. It is suggested that this motion belongs to the wobbling of the Fab parts of the investigated IgG molecule around its so called hinge region. (author)

  9. Small molecule screening identifies targetable zebrafish pigmentation pathways

    DEFF Research Database (Denmark)

    Colanesi, Sarah; Taylor, Kerrie L; Temperley, Nicholas D

    2012-01-01

    Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish and investig......Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish...... and investigate the effects of a few of these compounds in further detail. We identified and confirmed 57 compounds that altered pigment cell patterning, number, survival, or differentiation. Additional tissue targets and toxicity of small molecules are also discussed. Given that the majority of cell types...

  10. Bacteriophage lambda: early pioneer and still relevant

    Science.gov (United States)

    Casjens, Sherwood R.; Hendrix, Roger W.

    2015-01-01

    Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid 1950's to mid 1980's was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives have continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle. PMID:25742714

  11. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  12. Organizing and addressing magnetic molecules.

    Science.gov (United States)

    Gatteschi, Dante; Cornia, Andrea; Mannini, Matteo; Sessoli, Roberta

    2009-04-20

    Magnetic molecules ranging from simple organic radicals to single-molecule magnets (SMMs) are intensively investigated for their potential applications in molecule-based information storage and processing. The goal of this Article is to review recent achievements in the organization of magnetic molecules on surfaces and in their individual probing and manipulation. We stress that the inherent fragility and redox sensitivity of most SMM complexes, combined with the noninnocent role played by the substrate, ask for a careful evaluation of the structural and electronic properties of deposited molecules going beyond routine methods for surface analysis. Detailed magnetic information can be directly obtained using X-ray magnetic circular dichroism or newly emerging scanning probe techniques with magnetic detection capabilities.

  13. Ion-Molecule Reaction Dynamics.

    Science.gov (United States)

    Meyer, Jennifer; Wester, Roland

    2017-05-05

    We review the recent advances in the investigation of the dynamics of ion-molecule reactions. During the past decade, the combination of single-collision experiments in crossed ion and neutral beams with the velocity map ion imaging detection technique has enabled a wealth of studies on ion-molecule reactions. These methods, in combination with chemical dynamics simulations, have uncovered new and unexpected reaction mechanisms, such as the roundabout mechanism and the subtle influence of the leaving group in anion-molecule nucleophilic substitution reactions. For this important class of reactions, as well as for many fundamental cation-molecule reactions, the information obtained with crossed-beam imaging is discussed. The first steps toward understanding micro-solvation of ion-molecule reaction dynamics are presented. We conclude with the presentation of several interesting directions for future research.

  14. Intercellular adhesion molecules (ICAMs) and spermatogenesis

    Science.gov (United States)

    Xiao, Xiang; Mruk, Dolores D.; Cheng, C. Yan

    2013-01-01

    BACKGROUND During the seminiferous epithelial cycle, restructuring takes places at the Sertoli–Sertoli and Sertoli–germ cell interface to accommodate spermatogonia/spermatogonial stem cell renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation since developing germ cells, in particular spermatids, move ‘up and down’ the seminiferous epithelium. Furthermore, preleptotene spermatocytes differentiated from type B spermatogonia residing at the basal compartment must traverse the blood–testis barrier (BTB) to enter the adluminal compartment to prepare for meiosis at Stage VIII of the epithelial cycle, a process also accompanied by the release of sperm at spermiation. These cellular events that take place at the opposite ends of the epithelium are co-ordinated by a functional axis designated the apical ectoplasmic specialization (ES)—BTB—basement membrane. However, the regulatory molecules that co-ordinate cellular events in this axis are not known. METHODS Literature was searched at http://www.pubmed.org and http://scholar.google.com to identify published findings regarding intercellular adhesion molecules (ICAMs) and the regulation of this axis. RESULTS Members of the ICAM family, namely ICAM-1 and ICAM-2, and the biologically active soluble ICAM-1 (sICAM-1) are the likely regulatory molecules that co-ordinate these events. sICAM-1 and ICAM-1 have antagonistic effects on the Sertoli cell tight junction-permeability barrier, involved in Sertoli cell BTB restructuring, whereas ICAM-2 is restricted to the apical ES, regulating spermatid adhesion during the epithelial cycle. Studies in other epithelia/endothelia on the role of the ICAM family in regulating cell movement are discussed and this information has been evaluated and integrated into studies of these proteins in the testis to create a hypothetical model, depicting how ICAMs regulate junction restructuring events during spermatogenesis. CONCLUSIONS ICAMs are crucial

  15. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wilson [Univ. of California, Irvine, CA (United States)

    2018-02-03

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules and TiO2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting

  16. Single-molecule stochastic times in a reversible bimolecular reaction

    Science.gov (United States)

    Keller, Peter; Valleriani, Angelo

    2012-08-01

    In this work, we consider the reversible reaction between reactants of species A and B to form the product C. We consider this reaction as a prototype of many pseudobiomolecular reactions in biology, such as for instance molecular motors. We derive the exact probability density for the stochastic waiting time that a molecule of species A needs until the reaction with a molecule of species B takes place. We perform this computation taking fully into account the stochastic fluctuations in the number of molecules of species B. We show that at low numbers of participating molecules, the exact probability density differs from the exponential density derived by assuming the law of mass action. Finally, we discuss the condition of detailed balance in the exact stochastic and in the approximate treatment.

  17. News: Synthetic biology leading to specialty chemicals

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate productio...

  18. Radiometallating antibodies and biologically active peptides

    International Nuclear Information System (INIS)

    Mercer-Smith, J.A.; Roberts, J.C.; Lewis, D.; Newmyer, S.L.; Schulte, L.D.; Burns, T.P.; Mixon, P.L.; Jeffery, A.L.; Schreyer, S.A.; Cole, D.A.; Figard, S.D.; Lennon, V.A.; Hayashi, M.; Lavallee, D.K.

    1990-01-01

    We have developed methods to radiolabel large molecules, using porphyrins as bifunctional chelating agents for radiometals. The porphyrins are substituted with an N-benzyl group to activate them for radiometallation under mild reaction conditions. Porphyrins that have on functional group for covalent attachment to other molecules cannot cause crosslinking. We have examined the labeling chemistry for antibodies, and we have also developed methods to label smaller biologically active molecules, such as autoantigenic peptides. The autoantigenic peptides, fragments of the acetylcholine receptor, are under investigation for myasthenia gravis research. The methods of covalent attachment of these bifunctional chelating agents to large molecules and the radiometallation chemistry will be discussed

  19. Biology of Bilirubin Photoisomers.

    Science.gov (United States)

    Hansen, Thor Willy Ruud

    2016-06-01

    Phototherapy is the main treatment for neonatal hyperbilirubinemia. In acute treatment of extreme hyperbilirubinemia, intensive phototherapy may have a role in 'detoxifying' the bilirubin molecule to more polar photoisomers, which should be less prone to crossing the blood-brain barrier, providing a 'brain-sparing' effect. This article reviews the biology of bilirubin isomers. Although there is evidence supporting the lower toxicity of bilirubin photoisomers, there are studies showing the opposite. There are methodologic weaknesses in most studies and better-designed experiments are needed. In an infant acutely threatened by bilirubin-induced brain damage, intensified phototherapy should be used expediently and aggressively. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A

    2011-01-01

    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...