WorldWideScience

Sample records for biologically inspired sensor

  1. A Biologically Inspired CMOS Image Sensor

    CERN Document Server

    Sarkar, Mukul

    2013-01-01

    Biological systems are a source of inspiration in the development of small autonomous sensor nodes. The two major types of optical vision systems found in nature are the single aperture human eye and the compound eye of insects. The latter are among the most compact and smallest vision sensors. The eye is a compound of individual lenses with their own photoreceptor arrays.  The visual system of insects allows them to fly with a limited intelligence and brain processing power. A CMOS image sensor replicating the perception of vision in insects is discussed and designed in this book for industrial (machine vision) and medical applications. The CMOS metal layer is used to create an embedded micro-polarizer able to sense polarization information. This polarization information is shown to be useful in applications like real time material classification and autonomous agent navigation. Further the sensor is equipped with in pixel analog and digital memories which allow variation of the dynamic range and in-pixel b...

  2. Learning from nature : Biologically-inspired sensors

    NARCIS (Netherlands)

    Wicaksono, D.H.B.

    2008-01-01

    New emerging sensing applications demand novel sensors in micro-/nano-scale to enable integration and embedding into higher level structures or systems. Downsizing the structure will usually decrease the sensitivity of the sensors, since the sensitivity is a function of geometrical parameters, e.g.

  3. Numerical simulations of odorant detection by biologically inspired sensor arrays

    International Nuclear Information System (INIS)

    Schuech, R; Stacey, M T; Barad, M F; Koehl, M A R

    2012-01-01

    The antennules of many marine crustaceans enable them to rapidly locate sources of odorant in turbulent environmental flows and may provide biological inspiration for engineered plume sampling systems. A substantial gap in knowledge concerns how the physical interaction between a sensing device and the chemical filaments forming a turbulent plume affects odorant detection and filters the information content of the plume. We modeled biological arrays of chemosensory hairs as infinite arrays of odorant flux-detecting cylinders and simulated the fluid flow around and odorant flux into the hair-like sensors as they intercepted a single odorant filament. As array geometry and sampling kinematics were varied, we quantified distortion of the flux time series relative to the spatial shape of the original odorant filament as well as flux metrics that may be important to both organisms and engineered systems attempting to measure plume structure and/or identify chemical composition. The most important predictor of signal distortion is the ratio of sensor diameter to odorant filament width. Achieving high peak properties (e.g. sharpness) of the flux time series and maximizing the total number of odorant molecules detected appear to be mutually exclusive design goals. Sensor arrays inspired specifically by the spiny lobster Panulirus argus and mantis shrimp Gonodactylaceus falcatus introduce little signal distortion but these species' neural systems may not be able to resolve plume structure at the level of individual filaments via temporal properties of the odorant flux. Current chemical sensors are similarly constrained. Our results suggest either that the spatial distribution of flux across the aesthetasc array is utilized by P. argus and G. falcatus, or that such high spatiotemporal resolution is unnecessary for effective plume tracking.

  4. Biologically Inspired Target Recognition in Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liang Qilian

    2010-01-01

    Full Text Available One of the great mysteries of the brain is cognitive control. How can the interactions between millions of neurons result in behavior that is coordinated and appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC. Many PFC areas receive converging inputs from at least two sensory modalities. Inspired by human's innate ability to process and integrate information from disparate, network-based sources, we apply human-inspired information integration mechanisms to target detection in cognitive radar sensor network. Humans' information integration mechanisms have been modelled using maximum-likelihood estimation (MLE or soft-max approaches. In this paper, we apply these two algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform (DCT is used to process the integrated data from MLE or soft-max. We apply fuzzy logic system (FLS to automatic target detection based on the AC power values from DCT. Simulation results show that our MLE-DCT-FLS and soft-max-DCT-FLS approaches perform very well in the radar sensor network target detection, whereas the existing 2D construction algorithm does not work in this study.

  5. Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective

    Science.gov (United States)

    Nurzaman, Surya G.

    2016-01-01

    Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perception. PMID:27499843

  6. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  7. Biologically inspired autonomous agent navigation using an integrated polarization analyzing CMOS image sensor

    NARCIS (Netherlands)

    Sarkaer, M.; San Segundo Bello, D.; Van Hoof, C.; Theuwissen, A.

    2010-01-01

    The navigational strategies of insects using skylight polarization are interesting for applications in autonomous agent navigation because they rely on very little information for navigation. A polarization navigation sensor using the Stokes parameters to determine the orientation is presented. The

  8. A Biologically Inspired Energy-Efficient Duty Cycle Design Method for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    2017-01-01

    Full Text Available The recent success of emerging wireless sensor networks technology has encouraged researchers to develop new energy-efficient duty cycle design algorithm in this field. The energy-efficient duty cycle design problem is a typical NP-hard combinatorial optimization problem. In this paper, we investigate an improved elite immune evolutionary algorithm (IEIEA strategy to optimize energy-efficient duty cycle design scheme and monitored area jointly to enhance the network lifetimes. Simulation results show that the network lifetime of the proposed IEIEA method increased compared to the other two methods, which means that the proposed method improves the full coverage constraints.

  9. Paradigms for biologically inspired design

    DEFF Research Database (Denmark)

    Lenau, T. A.; Metzea, A.-L.; Hesselberg, T.

    2018-01-01

    engineering, medical engineering, nanotechnology, photonics,environmental protection and agriculture. However, a major obstacle for the wider use of biologically inspired design isthe knowledge barrier that exist between the application engineers that have insight into how to design suitable productsand......Biologically inspired design is attracting increasing interest since it offers access to a huge biological repository of wellproven design principles that can be used for developing new and innovative products. Biological phenomena can inspireproduct innovation in as diverse areas as mechanical...... the biologists with detailed knowledge and experience in understanding how biological organisms function in theirenvironment. The biologically inspired design process can therefore be approached using different design paradigmsdepending on the dominant opportunities, challenges and knowledge characteristics...

  10. Novel Approaches for Bio-inspired Mechano-Sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Bilberg, Arne

    2011-01-01

    In this paper, we present novel approaches for building tactile- array sensors for use in robotic grippers inspired from biology. We start by describing the sense of touch for humans and we continue by propos- ing dierent methods to build sensors that mimic this behaviour. For the static tactile...

  11. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology

    Science.gov (United States)

    Kornyshev, Alexei A.

    2010-10-01

    massively sponsor this DNA conference at the ICTP. The conference was generously co-sponsored by the Wellcome Trust (UK). It comprised approximately 60 talks on topically focused sessions devoted to: DNA mechanics DNA structure, interactions and aggregation Recognition of homologous genes Conformational dynamics, supercoiling and packing DNA compactization in viruses DNA-protein interaction and recognition DNA in confinement (pores and vesicles) Smart DNA (robotics, nano-architectures, switches, sensors and DNA electronics) The success of the conference was that it was not a meeting of a club of physicists interested in biology, but a meeting of physicists, carrying out important work widely published not only in physical but also biological journals, with the leading biologists who, personally, were keenly interested in learning what novelties physical methods and existing knowledge could offer them. They were equally eager to explain to physicists and mathematicians the most challenging paradigms of molecular biology research. The conference was opened by two inspiring high-impact talks, from a Director of the European Molecular Genetics Center in Trieste, Arturo Falaschi, the Editor of HFSP Journal (who sadly just passed away last month), and from a scientist of the next generation, Lynn Zechiedrich, Professor of Baylor Medical School and former co-worker of the late Nick Cozzarelly. Both showed astounding manifestations of the polymeric behavior of DNA, where physics is eagerly awaited like rain in the desert. However, at the whole conference about 40% of lectures were delivered by biologists. In this short article it is not possible to cover even the most exciting presentations, and I refer interested readers to the website [5] where further information can be found. I will outline below just a couple of issues. The conference revealed big progress in understanding the details of DNA mechanics, including its local sequence-dependent elastic properties. Progress was

  12. Biologically-inspired soft exosuit.

    Science.gov (United States)

    Asbeck, Alan T; Dyer, Robert J; Larusson, Arnar F; Walsh, Conor J

    2013-06-01

    In this paper, we present the design and evaluation of a novel soft cable-driven exosuit that can apply forces to the body to assist walking. Unlike traditional exoskeletons which contain rigid framing elements, the soft exosuit is worn like clothing, yet can generate moments at the ankle and hip with magnitudes of 18% and 30% of those naturally generated by the body during walking, respectively. Our design uses geared motors to pull on Bowden cables connected to the suit near the ankle. The suit has the advantages over a traditional exoskeleton in that the wearer's joints are unconstrained by external rigid structures, and the worn part of the suit is extremely light, which minimizes the suit's unintentional interference with the body's natural biomechanics. However, a soft suit presents challenges related to actuation force transfer and control, since the body is compliant and cannot support large pressures comfortably. We discuss the design of the suit and actuation system, including principles by which soft suits can transfer force to the body effectively and the biological inspiration for the design. For a soft exosuit, an important design parameter is the combined effective stiffness of the suit and its interface to the wearer. We characterize the exosuit's effective stiffness, and present preliminary results from it generating assistive torques to a subject during walking. We envision such an exosuit having broad applicability for assisting healthy individuals as well as those with muscle weakness.

  13. Biologically inspired toys using artificial muscles

    Science.gov (United States)

    Bar-Cohen, Y.

    2001-01-01

    Recent developments in electroactive polymers, so-called artificial muscles, could one day be used to make bionics possible. Meanwhile, as this technology evolves novel mechanisms are expected to emerge that are biologically inspired.

  14. Biologically Inspired Technology Using Electroactive Polymers (EAP)

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    Evolution allowed nature to introduce highly effective biological mechanisms that are incredible inspiration for innovation. Humans have always made efforts to imitate nature's inventions and we are increasingly making advances that it becomes significantly easier to imitate, copy, and adapt biological methods, processes and systems. This brought us to the ability to create technology that is far beyond the simple mimicking of nature. Having better tools to understand and to implement nature's principles we are now equipped like never before to be inspired by nature and to employ our tools in far superior ways. Effectively, by bio-inspiration we can have a better view and value of nature capability while studying its models to learn what can be extracted, copied or adapted. Using electroactive polymers (EAP) as artificial muscles is adding an important element to the development of biologically inspired technologies.

  15. Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-08-31

    insect brain, allow these animals to fly with damaged wings, order of body mass payloads (e.g., foraging bees with a load of pollen , blood satiated...The research focus addressed two broad, complementary research areas : autonomous systems concepts inspired by the behavior and neurobiology...UL 46 19b. TELEPHONE NUMBER (include area code) 850 883-1887 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 iii Table of

  16. Biologically inspired technologies in NASA's morphing project

    Science.gov (United States)

    McGowan, Anna-Maria R.; Cox, David E.; Lazos, Barry S.; Waszak, Martin R.; Raney, David L.; Siochi, Emilie J.; Pao, S. Paul

    2003-07-01

    For centuries, biology has provided fertile ground for hypothesis, discovery, and inspiration. Time-tested methods used in nature are being used as a basis for several research studies conducted at the NASA Langley Research Center as a part of Morphing Project, which develops and assesses breakthrough vehicle technologies. These studies range from low drag airfoil design guided by marine and avian morphologies to soaring techniques inspired by birds and the study of small flexible wing vehicles. Biology often suggests unconventional yet effective approaches such as non-planar wings, dynamic soaring, exploiting aeroelastic effects, collaborative control, flapping, and fibrous active materials. These approaches and other novel technologies for future flight vehicles are being studied in NASA's Morphing Project. This paper will discuss recent findings in the aeronautics-based, biologically-inspired research in the project.

  17. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  18. Biology-inspired AMO physics

    Science.gov (United States)

    Mathur, Deepak

    2015-01-01

    This Topical Review presents an overview of increasingly robust interconnects that are being established between atomic, molecular and optical (AMO) physics and the life sciences. AMO physics, outgrowing its historical role as a facilitator—a provider of optical methodologies, for instance—now seeks to partner biology in its quest to link systems-level descriptions of biological entities to insights based on molecular processes. Of course, perspectives differ when AMO physicists and biologists consider various processes. For instance, while AMO physicists link molecular properties and dynamics to potential energy surfaces, these have to give way to energy landscapes in considerations of protein dynamics. But there are similarities also: tunnelling and non-adiabatic transitions occur both in protein dynamics and in molecular dynamics. We bring to the fore some such differences and similarities; we consider imaging techniques based on AMO concepts, like 4D fluorescence microscopy which allows access to the dynamics of cellular processes, multiphoton microscopy which offers a built-in confocality, and microscopy with femtosecond laser beams to saturate the suppression of fluorescence in spatially controlled fashion so as to circumvent the diffraction limit. Beyond imaging, AMO physics contributes with optical traps that probe the mechanical and dynamical properties of single ‘live’ cells, highlighting differences between healthy and diseased cells. Trap methodologies have also begun to probe the dynamics governing of neural stem cells adhering to each other to form neurospheres and, with squeezed light to probe sub-diffusive motion of yeast cells. Strong field science contributes not only by providing a source of energetic electrons and γ-rays via laser-plasma accelerations schemes, but also via filamentation and supercontinuum generation, enabling mainstream collision physics into play in diverse processes like DNA damage induced by low-energy collisions to

  19. Biology-inspired AMO physics

    International Nuclear Information System (INIS)

    Mathur, Deepak

    2015-01-01

    This Topical Review presents an overview of increasingly robust interconnects that are being established between atomic, molecular and optical (AMO) physics and the life sciences. AMO physics, outgrowing its historical role as a facilitator—a provider of optical methodologies, for instance—now seeks to partner biology in its quest to link systems-level descriptions of biological entities to insights based on molecular processes. Of course, perspectives differ when AMO physicists and biologists consider various processes. For instance, while AMO physicists link molecular properties and dynamics to potential energy surfaces, these have to give way to energy landscapes in considerations of protein dynamics. But there are similarities also: tunnelling and non-adiabatic transitions occur both in protein dynamics and in molecular dynamics. We bring to the fore some such differences and similarities; we consider imaging techniques based on AMO concepts, like 4D fluorescence microscopy which allows access to the dynamics of cellular processes, multiphoton microscopy which offers a built-in confocality, and microscopy with femtosecond laser beams to saturate the suppression of fluorescence in spatially controlled fashion so as to circumvent the diffraction limit. Beyond imaging, AMO physics contributes with optical traps that probe the mechanical and dynamical properties of single ‘live’ cells, highlighting differences between healthy and diseased cells. Trap methodologies have also begun to probe the dynamics governing of neural stem cells adhering to each other to form neurospheres and, with squeezed light to probe sub-diffusive motion of yeast cells. Strong field science contributes not only by providing a source of energetic electrons and γ-rays via laser-plasma accelerations schemes, but also via filamentation and supercontinuum generation, enabling mainstream collision physics into play in diverse processes like DNA damage induced by low-energy collisions to

  20. Biologically Inspired Intercellular Slot Synchronization

    Directory of Open Access Journals (Sweden)

    Alexander Tyrrell

    2009-01-01

    Full Text Available The present article develops a decentralized interbase station slot synchronization algorithm suitable for cellular mobile communication systems. The proposed cellular firefly synchronization (CelFSync algorithm is derived from the theory of pulse-coupled oscillators, common to describe synchronization phenomena in biological systems, such as the spontaneous synchronization of fireflies. In order to maintain synchronization among base stations (BSs, even when there is no direct link between adjacent BSs, some selected user terminals (UTs participate in the network synchronization process. Synchronization emerges by exchanging two distinct synchronization words, one transmitted by BSs and the other by active UTs, without any a priori assumption on the initial timing misalignments of BSs and UTs. In large-scale networks with inter-BS site distances up to a few kilometers, propagation delays severely affect the attainable timing accuracy of CelFSync. We show that by an appropriate combination of CelFSync with the timing advance procedure, which aligns uplink transmission of UTs to arrive simultaneously at the BS, a timing accuracy within a fraction of the inter-BS propagation delay is retained.

  1. Biological Inspiration for Agile Autonomous Air Vehicles

    Science.gov (United States)

    2007-11-01

    half of one wing, bees with legs packed with pollen , butterflies or moths with torn and frayed wings likewise are capable of apparently normal flight...technologies. To appreciate this, consider a not unreasonable extension of a wide area autonomous search (WAAS) munition operational scenario. Here...detect and destroy missile launchers that are operating in the back alleys of an urban areas or search Evers, J.H. (2007) Biological Inspiration for Agile

  2. Biologically inspired coupled antenna beampattern design

    Energy Technology Data Exchange (ETDEWEB)

    Akcakaya, Murat; Nehorai, Arye, E-mail: makcak2@ese.wustl.ed, E-mail: nehorai@ese.wustl.ed [Department of Electrical and Systems Engineering, Washington University in St Louis, St Louis, MO 63130 (United States)

    2010-12-15

    We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, which has been modeled by a pair of differential equations. In this paper, we first solve these differential equations governing the Ormia ochracea's ear response, and convert the response to the pre-specified radio frequencies. We then apply the converted response of the biological coupling in the array factor of a uniform linear array composed of finite-length dipole antennas, and also include the undesired electromagnetic coupling due to the proximity of the elements. Moreover, we propose an algorithm to optimally choose the biologically inspired coupling for maximum array performance. In our numerical examples, we compute the radiation intensity of the designed system for binomial and uniform ordinary end-fire arrays, and demonstrate the improvement in the half-power beamwidth, sidelobe suppression and directivity of the radiation pattern due to the biologically inspired coupling.

  3. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  4. Biologically inspired water purification through selective transport

    International Nuclear Information System (INIS)

    Freeman, E C; Soncini, R M; Weiland, L M

    2013-01-01

    Biologically inspired systems based on cellular mechanics demonstrate the ability to selectively transport ions across a bilayer membrane. These systems may be observed in nature in plant roots, which remove select nutrients from the surrounding soil against significant concentration gradients. Using biomimetic principles in the design of tailored active materials allows for the development of selective membranes for capturing and filtering targeted ions. Combining this biomimetic transport system with a method for reclaiming the captured ions will allow for increased removal potential. To illustrate this concept, a device for removing nutrients from waterways to aid in reducing eutrophication is outlined and discussed. Presented is a feasibility study of various cellular configurations designed for this purpose, focusing on maximizing nutrient uptake. The results enable a better understanding of the benefits and obstacles when developing these cellularly inspired systems. (paper)

  5. Drawing inspiration from biological optical systems

    Science.gov (United States)

    Wolpert, H. D.

    2009-08-01

    Bio-Mimicking/Bio-Inspiration: How can we not be inspired by Nature? Life has evolved on earth over the last 3.5 to 4 billion years. Materials formed during this time were not toxic; they were created at low temperatures and low pressures unlike many of the materials developed today. The natural materials formed are self-assembled, multifunctional, nonlinear, complex, adaptive, self-repairing and biodegradable. The designs that failed are fossils. Those that survived are the success stories. Natural materials are mostly formed from organics, inorganic crystals and amorphous phases. The materials make economic sense by optimizing the design of the structures or systems to meet multiple needs. We constantly "see" many similar strategies in approaches, between man and nature, but we seldom look at the details of natures approaches. The power of image processing, in many of natures creatures, is a detail that is often overlooked. Seldon does the engineer interact with the biologist and learn what nature has to teach us. The variety and complexity of biological materials and the optical systems formed should inspire us.

  6. Biological inspiration used for robots motion synthesis.

    Science.gov (United States)

    Zielińska, Teresa

    2009-01-01

    This work presents a biologically inspired method of gait generation. Bipedal gait pattern (for hip and knee joints) was taken into account giving the reference trajectories in a learning task. The four coupled oscillators were taught to generate the outputs similar to those in a human gait. After applying the correction functions the obtained generation method was validated using ZMP criterion. The formula suitable for real-time motion generation taking into account the positioning errors was also formulated. The small real robot prototype was tested to be able walk successfully following the elaborated motion pattern.

  7. Nature inspires sensors to do more with less.

    Science.gov (United States)

    Mulvaney, Shawn P; Sheehan, Paul E

    2014-10-28

    The world is filled with widely varying chemical, physical, and biological stimuli. Over millennia, organisms have refined their senses to cope with these diverse stimuli, becoming virtuosos in differentiating closely related antigens, handling extremes in concentration, resetting the spent sensing mechanisms, and processing the multiple data streams being generated. Nature successfully deals with both repeating and new stimuli, demonstrating great adaptability when confronted with the latter. Interestingly, nature accomplishes these feats using a fairly simple toolbox. The sensors community continues to draw inspiration from nature's example: just look at the antibodies used as biosensor capture agents or the neural networks that process multivariate data streams. Indeed, many successful sensors have been built by simply mimicking natural systems. However, some of the most exciting breakthroughs occur when the community moves beyond mimicking nature and learns to use nature's tools in innovative ways.

  8. Creative design inspired by biological knowledge: Technologies and methods

    Science.gov (United States)

    Tan, Runhua; Liu, Wei; Cao, Guozhong; Shi, Yuan

    2018-05-01

    Biological knowledge is becoming an important source of inspiration for developing creative solutions to engineering design problems and even has a huge potential in formulating ideas that can help firms compete successfully in a dynamic market. To identify the technologies and methods that can facilitate the development of biologically inspired creative designs, this research briefly reviews the existing biological-knowledge-based theories and methods and examines the application of biological-knowledge-inspired designs in various fields. Afterward, this research thoroughly examines the four dimensions of key technologies that underlie the biologically inspired design (BID) process. This research then discusses the future development trends of the BID process before presenting the conclusions.

  9. Biologically inspired emotion recognition from speech

    Directory of Open Access Journals (Sweden)

    Buscicchio Cosimo

    2011-01-01

    Full Text Available Abstract Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  10. Biomimetic Hair Sensor Arrays: From Inspiration To Implementation

    NARCIS (Netherlands)

    Jaganatharaja, R.K.; Bruinink, C.M.; Kolster, M.L.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.

    2010-01-01

    In this work, we report on the successful implementation of highly sensitive artificial hair-based flow-sensor arrays for sensing low-frequency air flows. Artificial hair sensors are bio-inspired from crickets’ cercal filiform hairs, one of nature’s best in sensing small air flows. The presented

  11. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  12. Bio-inspired optical rotation sensor

    Science.gov (United States)

    O'Carroll, David C.; Shoemaker, Patrick A.; Brinkworth, Russell S. A.

    2007-01-01

    Traditional approaches to calculating self-motion from visual information in artificial devices have generally relied on object identification and/or correlation of image sections between successive frames. Such calculations are computationally expensive and real-time digital implementation requires powerful processors. In contrast flies arrive at essentially the same outcome, the estimation of self-motion, in a much smaller package using vastly less power. Despite the potential advantages and a few notable successes, few neuromorphic analog VLSI devices based on biological vision have been employed in practical applications to date. This paper describes a hardware implementation in aVLSI of our recently developed adaptive model for motion detection. The chip integrates motion over a linear array of local motion processors to give a single voltage output. Although the device lacks on-chip photodetectors, it includes bias circuits to use currents from external photodiodes, and we have integrated it with a ring-array of 40 photodiodes to form a visual rotation sensor. The ring configuration reduces pattern noise and combined with the pixel-wise adaptive characteristic of the underlying circuitry, permits a robust output that is proportional to image rotational velocity over a large range of speeds, and is largely independent of either mean luminance or the spatial structure of the image viewed. In principle, such devices could be used as an element of a velocity-based servo to replace or augment inertial guidance systems in applications such as mUAVs.

  13. Biologically inspired robots as artificial inspectors

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2002-06-01

    Imagine an inspector conducting an NDE on an aircraft where you notice something is different about him - he is not real but rather he is a robot. Your first reaction would probably be to say 'it's unbelievable but he looks real' just as you would react to an artificial flower that is a good imitation. This science fiction scenario could become a reality at the trend in the development of biologically inspired technologies, and terms like artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. For many years, the trend has been to automate processes in order to increase the efficiency of performing redundant tasks where various systems have been developed to deal with specific production line requirements. Realizing that some parts are too complex or delicate to handle in small quantities with a simple automatic system, robotic mechanisms were developed. Aircraft inspection has benefitted from this evolving technology where manipulators and crawlers are developed for rapid and reliable inspection. Advancement in robotics towards making them autonomous and possibly look like human, can potentially address the need to inspect structures that are beyond the capability of today's technology with configuration that are not predetermined. The operation of these robots may take place at harsh or hazardous environments that are too dangerous for human presence. Making such robots is becoming increasingly feasible and in this paper the state of the art will be reviewed.

  14. Bio-Inspired Micromechanical Directional Acoustic Sensor

    Science.gov (United States)

    Swan, William; Alves, Fabio; Karunasiri, Gamani

    Conventional directional sound sensors employ an array of spatially separated microphones and the direction is determined using arrival times and amplitudes. In nature, insects such as the Ormia ochracea fly can determine the direction of sound using a hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are mechanically coupled, only separated by about 1 mm, and have remarkable directional sensitivity. A micromechanical sensor based on the fly's hearing system was designed and fabricated on a silicon on insulator (SOI) substrate using MEMS technology. The sensor consists of two 1 mm2 wings connected using a bridge and to the substrate using two torsional legs. The dimensions of the sensor and material stiffness determine the frequency response of the sensor. The vibration of the wings in response to incident sound at the bending resonance was measured using a laser vibrometer and found to be about 1 μm/Pa. The electronic response of the sensor to sound was measured using integrated comb finger capacitors and found to be about 25 V/Pa. The fabricated sensors showed good directional sensitivity. In this talk, the design, fabrication and characteristics of the directional sound sensor will be described. Supported by ONR and TDSI.

  15. Cricket inspired flow-sensor arrays

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Casas, J.

    2007-01-01

    We report current developments in biomimetic flow-sensors based on mechanoreceptive sensory hairs of crickets. These filiform hairs are highly perceptive to lowfrequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of

  16. Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula

    Science.gov (United States)

    Bora, M.; Kottapalli, A. G. P.; Miao, J. M.; Triantafyllou, M. S.

    2017-10-01

    Flow sensors inspired from lateral line neuromasts of cavefish have been widely investigated over decades to develop artificial sensors. The design and function of these natural sensors have been mimicked using microelectromechanical systems (MEMS) based sensors. However, there is more to the overall function and performance of these natural sensors. Mimicking the morphology and material properties of specialized structures like a cupula would significantly help to improve the existing designs. Toward this goal, the paper reports development of a canal neuromast inspired piezoelectric sensor and investigates the role of a biomimetic cupula in influencing the performance of the sensor. The sensor was developed using microfabrication technology and tested for the detection of the steady-state and oscillatory flows. An artificial cupula was synthesized using a soft hydrogel material and characterized for morphology and mechanical properties. Results show that the artificial cupula had a porous structure and high mechanical strength similar to the biological canal neuromast. Experimental results show the ability of these sensors to measure the steady-state flows accurately, and for oscillatory flows, an increase in the sensor output was detected in the presence of the cupula structure. This is the first time a MEMS based piezoelectric sensor is demonstrated to detect steady-state flows using the principle of vortex-induced vibrations. The bioinspired sensor developed in this work would be investigated further to understand the role of the cupula structure in biological flow sensing mechanisms, thus contributing toward the design of highly sensitive and efficient sensors for various applications such as underwater robotics, microfluidics, and biomedical devices.

  17. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Hair flow sensors: from bio-inspiration to bio-mimicking—a review

    International Nuclear Information System (INIS)

    Tao, Junliang; Yu, Xiong

    2012-01-01

    A great many living beings, such as aquatics and arthropods, are equipped with highly sensitive flow sensors to help them survive in challenging environments. These sensors are excellent sources of inspiration for developing application-driven artificial flow sensors with high sensitivity and performance. This paper reviews the bio-inspirations on flow sensing in nature and the bio-mimicking efforts to emulate such sensing mechanisms in recent years. The natural flow sensing systems in aquatics and arthropods are reviewed to highlight inspirations at multiple levels such as morphology, sensing mechanism and information processing. Biomimetic hair flow sensors based on different sensing mechanisms and fabrication technologies are also reviewed to capture the recent accomplishments and to point out areas where further progress is necessary. Biomimetic flow sensors are still in their early stages. Further efforts are required to unveil the sensing mechanisms in the natural biological systems and to achieve multi-level bio-mimicking of the natural system to develop their artificial counterparts. (topical review)

  19. Biological and medical sensor technologies

    CERN Document Server

    Iniewski, Krzysztof

    2012-01-01

    Biological and Medical Sensor Technologies presents contributions from top experts who explore the development and implementation of sensors for various applications used in medicine and biology. Edited by a pioneer in the area of advanced semiconductor materials, the book is divided into two sections. The first part covers sensors for biological applications. Topics include: Advanced sensing and communication in the biological world DNA-derivative architectures for long-wavelength bio-sensing Label-free silicon photonics Quartz crystal microbalance-based biosensors Lab-on-chip technologies fo

  20. A Project-Based Biologically-Inspired Robotics Module

    Science.gov (United States)

    Crowder, R. M.; Zauner, K.-P.

    2013-01-01

    The design of any robotic system requires input from engineers from a variety of technical fields. This paper describes a project-based module, "Biologically-Inspired Robotics," that is offered to Electronics and Computer Science students at the University of Southampton, U.K. The overall objective of the module is for student groups to…

  1. Handwritten-word spotting using biologically inspired features

    NARCIS (Netherlands)

    van der Zant, Tijn; Schomaker, Lambert; Haak, Koen

    For quick access to new handwritten collections, current handwriting recognition methods are too cumbersome. They cannot deal with the lack of labeled data and would require extensive laboratory training for each individual script, style, language, and collection. We propose a biologically inspired

  2. Biologically inspired technologies using artificial muscles

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-01-01

    After billions of years of evolution, nature developed inventions that work, which are appropriate for the intended tasks and that last. The evolution of nature led to the introduction of highly effective and power efficient biological mechanisms that are scalable from micron to many meters in size. Imitating these mechanisms offers enormous potentials for the improvement of our life and the tools we use. Humans have always made efforts to imitate nature and we are increasingly reaching levels of advancement where it becomes significantly easier to imitate, copy, and adapt biological methods, processes and systems. Some of the biomimetic technologies that have emerged include artificial muscles, artificial intelligence, and artificial vision to which significant advances in materials science, mechanics, electronics, and computer science have contributed greatly. One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their operation mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the state-of-the-art and challenges to making artificial muscles and their potential biomimetic applications.

  3. Breathable and Stretchable Temperature Sensors Inspired by Skin

    Science.gov (United States)

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-06-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis.

  4. Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.

    Science.gov (United States)

    Lenero-Bardallo, Juan Antonio; Bryn, D H; Hafliger, Philipp

    2014-06-01

    This article investigates the potential of the first ever prototype of a vision sensor that combines tricolor stacked photo diodes with the bio-inspired asynchronous pixel event communication protocol known as Address Event Representation (AER). The stacked photo diodes are implemented in a 22 × 22 pixel array in a standard STM 90 nm CMOS process. Dynamic range is larger than 60 dB and pixels fill factor is 28%. The pixels employ either simple pulse frequency modulation (PFM) or a Time-to-First-Spike (TFS) mode. A heuristic linear combination of the chip's inherent pseudo colors serves to approximate RGB color representation. Furthermore, the sensor outputs can be processed to represent the radiation in the near infrared (NIR) band without employing external filters, and to color-encode direction of motion due to an asymmetry in the update rates of the different diode layers.

  5. Semiconductor Devices Inspired By and Integrated With Biology

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John [University of Illinois

    2012-04-25

    Biology is curved, soft and elastic; silicon wafers are not. Semiconductor technologies that can bridge this gap in form and mechanics will create new opportunities in devices that adopt biologically inspired designs or require intimate integration with the human body. This talk describes the development of ideas for electronics that offer the performance of state-of-the-art, wafer- based systems but with the mechanical properties of a rubber band. We explain the underlying materials science and mechanics of these approaches, and illustrate their use in (1) bio- integrated, ‘tissue-like’ electronics with unique capabilities for mapping cardiac and neural electrophysiology, and (2) bio-inspired, ‘eyeball’ cameras with exceptional imaging properties enabled by curvilinear, Petzval designs.

  6. Bio-inspired ciliary force sensor for robotic platforms

    KAUST Repository

    Ribeiro, Pedro

    2017-01-20

    The detection of small forces is of great interest in any robotic application that involves interaction with the environment (e.g., objects manipulation, physical human-robot interaction, minimally invasive surgery), since it allows the robot to detect the contacts early on and to act accordingly. In this letter, we present a sensor design inspired by the ciliary structure frequently found in nature, consisting of an array of permanently magnetized cylinders (cilia) patterned over a giant magnetoresistance sensor (GMR). When these cylinders are deformed in shape due to applied forces, the stray magnetic field variation will change the GMR sensor resistivity, thus enabling the electrical measurement of the applied force. In this letter, we present two 3 mm × 3 mm prototypes composed of an array of five cilia with 1 mm of height and 120 and 200 μm of diameter for each prototype. A minimum force of 333 μN was measured. A simulation model for determining the magnetized cylinders average stray magnetic field is also presented.

  7. Bio-inspired ciliary force sensor for robotic platforms

    KAUST Repository

    Ribeiro, Pedro; Khan, Mohammed Asadullah; Alfadhel, Ahmed; Kosel, Jü rgen; Franco, Fernando; Cardoso, Susana; Bernardino, Alexandre; Schmitz, Alexander; Santos-Victor, Jose; Jamone, Lorenzo

    2017-01-01

    The detection of small forces is of great interest in any robotic application that involves interaction with the environment (e.g., objects manipulation, physical human-robot interaction, minimally invasive surgery), since it allows the robot to detect the contacts early on and to act accordingly. In this letter, we present a sensor design inspired by the ciliary structure frequently found in nature, consisting of an array of permanently magnetized cylinders (cilia) patterned over a giant magnetoresistance sensor (GMR). When these cylinders are deformed in shape due to applied forces, the stray magnetic field variation will change the GMR sensor resistivity, thus enabling the electrical measurement of the applied force. In this letter, we present two 3 mm × 3 mm prototypes composed of an array of five cilia with 1 mm of height and 120 and 200 μm of diameter for each prototype. A minimum force of 333 μN was measured. A simulation model for determining the magnetized cylinders average stray magnetic field is also presented.

  8. Artificial heartbeat: design and fabrication of a biologically inspired pump

    International Nuclear Information System (INIS)

    Walters, Peter; Stephenson, Robert; Lewis, Amy; Stinchcombe, Andrew; Ieropoulos, Ioannis

    2013-01-01

    We present a biologically inspired actuator exhibiting a novel pumping action. The design of the ‘artificial heartbeat’ actuator is inspired by physical principles derived from the structure and function of the human heart. The actuator employs NiTi artificial muscles and is powered by electrical energy generated by microbial fuel cells (MFCs). We describe the design and fabrication of the actuator and report the results of tests conducted to characterize its performance. This is the first artificial muscle-driven pump to be powered by MFCs fed on human urine. Results are presented in terms of the peak pumping pressure generated by the actuator, as well as for the volume of fluid transferred, when the actuator was powered by energy stored in a capacitor bank, which was charged by 24 MFCs fed on urine. The results demonstrate the potential for the artificial heartbeat actuator to be employed as a fluid circulation pump in future generations of MFC-powered robots (‘EcoBots’) that extract energy from organic waste. We also envisage that the actuator could in the future form part of a bio-robotic artwork or ‘bio-automaton’ that could help increase public awareness of research in robotics, bio-energy and biologically inspired design. (paper)

  9. 7th World Congress on Nature and Biologically Inspired Computing

    CERN Document Server

    Engelbrecht, Andries; Abraham, Ajith; Plessis, Mathys; Snášel, Václav; Muda, Azah

    2016-01-01

    World Congress on Nature and Biologically Inspired Computing (NaBIC) is organized to discuss the state-of-the-art as well as to address various issues with respect to Nurturing Intelligent Computing Towards Advancement of Machine Intelligence. This Volume contains the papers presented in the Seventh World Congress (NaBIC’15) held in Pietermaritzburg, South Africa during December 01-03, 2015. The 39 papers presented in this Volume were carefully reviewed and selected. The Volume would be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  10. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks. We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  11. Bio-inspired approach for intelligent unattended ground sensors

    Science.gov (United States)

    Hueber, Nicolas; Raymond, Pierre; Hennequin, Christophe; Pichler, Alexander; Perrot, Maxime; Voisin, Philippe; Moeglin, Jean-Pierre

    2015-05-01

    Improving the surveillance capacity over wide zones requires a set of smart battery-powered Unattended Ground Sensors capable of issuing an alarm to a decision-making center. Only high-level information has to be sent when a relevant suspicious situation occurs. In this paper we propose an innovative bio-inspired approach that mimics the human bi-modal vision mechanism and the parallel processing ability of the human brain. The designed prototype exploits two levels of analysis: a low-level panoramic motion analysis, the peripheral vision, and a high-level event-focused analysis, the foveal vision. By tracking moving objects and fusing multiple criteria (size, speed, trajectory, etc.), the peripheral vision module acts as a fast relevant event detector. The foveal vision module focuses on the detected events to extract more detailed features (texture, color, shape, etc.) in order to improve the recognition efficiency. The implemented recognition core is able to acquire human knowledge and to classify in real-time a huge amount of heterogeneous data thanks to its natively parallel hardware structure. This UGS prototype validates our system approach under laboratory tests. The peripheral analysis module demonstrates a low false alarm rate whereas the foveal vision correctly focuses on the detected events. A parallel FPGA implementation of the recognition core succeeds in fulfilling the embedded application requirements. These results are paving the way of future reconfigurable virtual field agents. By locally processing the data and sending only high-level information, their energy requirements and electromagnetic signature are optimized. Moreover, the embedded Artificial Intelligence core enables these bio-inspired systems to recognize and learn new significant events. By duplicating human expertise in potentially hazardous places, our miniature visual event detector will allow early warning and contribute to better human decision making.

  12. Biologically-Inspired Control Architecture for Musical Performance Robots

    Directory of Open Access Journals (Sweden)

    Jorge Solis

    2014-10-01

    Full Text Available At Waseda University, since 1990, the authors have been developing anthropomorphic musical performance robots as a means for understanding human control, introducing novel ways of interaction between musical partners and robots, and proposing applications for humanoid robots. In this paper, the design of a biologically-inspired control architecture for both an anthropomorphic flutist robot and a saxophone playing robot are described. As for the flutist robot, the authors have focused on implementing an auditory feedback system to improve the calibration procedure for the robot in order to play all the notes correctly during a performance. In particular, the proposed auditory feedback system is composed of three main modules: an Expressive Music Generator, a Feed Forward Air Pressure Control System and a Pitch Evaluation System. As for the saxophone-playing robot, a pressure-pitch controller (based on the feedback error learning to improve the sound produced by the robot during a musical performance was proposed and implemented. In both cases studied, a set of experiments are described to verify the improvements achieved while considering biologically-inspired control approaches.

  13. Kirigami artificial muscles with complex biologically inspired morphologies

    International Nuclear Information System (INIS)

    Sareh, Sina; Rossiter, Jonathan

    2013-01-01

    In this paper we present bio-inspired smart structures which exploit the actuation of flexible ionic polymer composites and the kirigami design principle. Kirigami design is used to convert planar actuators into active 3D structures capable of large out-of-plane displacement and that replicate biological mechanisms. Here we present the burstbot, a fluid control and propulsion mechanism based on the atrioventricular cuspid valve, and the vortibot, a spiral actuator based on Vorticella campanula, a ciliate protozoa. Models derived from biological counterparts are used as a platform for design optimization and actuator performance measurement. The symmetric and asymmetric fluid interactions of the burstbot are investigated and the effectiveness in fluid transport applications is demonstrated. The vortibot actuator is geometrically optimized as a camera positioner capable of 360° scanning. Experimental results for a one-turn spiral actuator show complex actuation derived from a single degree of freedom control signal. (paper)

  14. Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.

    Science.gov (United States)

    Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C

    2018-06-01

    Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.

  15. Touch at a distance sensing: lateral-line inspired MEMS flow sensors

    International Nuclear Information System (INIS)

    Prakash Kottapalli, Ajay Giri; Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael

    2014-01-01

    Evolution bestowed the blind cavefish with a resourcefully designed lateral-line of sensors that play an essential role in many important tasks including object detection and avoidance, energy-efficient maneuvering, rheotaxis etc. Biologists identified the two types of vital sensors on the fish bodies called the superficial neuromasts and the canal neuromasts that are responsible for flow sensing and pressure-gradient sensing, respectively. In this work, we present the design, fabrication and experimental characterization of biomimetic polymer artificial superficial neuromast micro-sensor arrays. These biomimetic micro-sensors demonstrated a high sensitivity of 0.9 mV/(m s −1 ) and 0.022 V/(m s −1 ) and threshold velocity detection limits of 0.1 m s −1 and 0.015 m s −1 in determining air and water flows respectively. Experimental results demonstrate that the biological canal inspired polymer encapsulation on the array of artificial superficial neuromast sensors is capable of filtering steady-state flows that could otherwise significantly mask the relevant oscillatory flow signals of high importance. (paper)

  16. Design of a dynamic sensor inspired by bat ears

    International Nuclear Information System (INIS)

    Müller, Rolf; Pannala, Mittu; Praveen K Reddy, O; Meymand, Sajjad Z

    2012-01-01

    In bats, the outer ear shapes act as beamforming baffles that create a spatial sensitivity pattern for the reception of the biosonar signals. Whereas technical receivers for wave-based signals usually have rigid geometries, the outer ears of some bat species, such as horseshoe bats, can undergo non-rigid deformations as a result of muscular actuation. It is hypothesized that these deformations provide the animals with a mechanism to adapt their spatial hearing sensitivity on short, sub-second time scales. This biological approach could be of interest to engineering as an inspiration for the design of beamforming devices that combine flexibility with parsimonious implementation. To explore this possibility, a biomimetic dynamic baffle was designed based on a simple shape overall geometry based on an average bat ear. This shape was augmented with three different biomimetic local shape features, a ridge on its exposed surface as well as a flap and an incision along its rim. Dynamic non-rigid deformations of the shape were accomplished through a simple actuation mechanism based on linear actuation inserted at a single point. Despite its simplicity, the prototype device was able to reproduce the dynamic functional characteristics that have been predicted for its biological paragon in a qualitative fashion. (paper)

  17. Recent developments in bio-inspired sensors fabricated by additive manufacturing technologies

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Sanders, Remco G.P.

    2017-01-01

    In our work on micro-fabricated hair-sensors, inspired by the flow-sensitive sensors found on crickets, we have made great progress. Initially delivering mediocre performance compared to their natural counter parts they have evolved into capable sensors with thresholds roughly a factor of 30 larger

  18. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  19. Cupula-Inspired Hyaluronic Acid-Based Hydrogel Encapsulation to Form Biomimetic MEMS Flow Sensors.

    Science.gov (United States)

    Kottapalli, Ajay Giri Prakash; Bora, Meghali; Kanhere, Elgar; Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael S

    2017-07-28

    Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell is monolithically fabricated at the center of a 2 μm thick silicon membrane that is photo-patterned with a full-bridge bias circuit. Ambient flow variations exert a drag force on the hair cell, which causes a displacement of the sensing membrane. This in turn leads to the resistance imbalance in the bridge circuit generating a voltage output. Inspired by the biological neuromast, a biomimetic synthetic hydrogel cupula is incorporated on the hair cell. The morphology, swelling behavior, porosity and mechanical properties of the hyaluronic acid hydrogel are characterized through rheology and nanoindentation techniques. The sensitivity enhancement in the sensor output due to the material and mechanical contributions of the micro-porous hydrogel cupula is investigated through experiments.

  20. Robust, Self-Contained and Bio-Inspired Shear Sensor Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a robust, bio-inspired, and self-contained sensor array for the measurement of shear stress. The proposed system uses commercially...

  1. Biologically inspired multi-layered synthetic skin for tactile feedback in prosthetic limbs.

    Science.gov (United States)

    Osborn, Luke; Nguyen, Harrison; Betthauser, Joseph; Kaliki, Rahul; Thakor, Nitish

    2016-08-01

    The human body offers a template for many state-of-the-art prosthetic devices and sensors. In this work, we present a novel, sensorized synthetic skin that mimics the natural multi-layered nature of mechanoreceptors found in healthy glabrous skin to provide tactile information. The multi-layered sensor is made up of flexible piezoresistive textiles that act as force sensitive resistors (FSRs) to convey tactile information, which are embedded within a silicone rubber to resemble the compliant nature of human skin. The top layer of the synthetic skin is capable of detecting small loads less than 5 N whereas the bottom sensing layer responds reliably to loads over 7 N. Finite element analysis (FEA) of a simplified human fingertip and the synthetic skin was performed. Results suggest similarities in behavior during loading. A natural tactile event is simulated by loading the synthetic skin on a prosthetic limb. Results show the sensors' ability to detect applied loads as well as the ability to simulate neural spiking activity based on the derivative and temporal differences of the sensor response. During the tactile loading, the top sensing layer responded 0.24 s faster than the bottom sensing layer. A synthetic biologically-inspired skin such as this will be useful for enhancing the functionality of prosthetic limbs through tactile feedback.

  2. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    Directory of Open Access Journals (Sweden)

    Dennis eGoldschmidt

    2014-01-01

    Full Text Available Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS and a late, reflex signal (unconditioned stimulus, UCS, both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment.

  3. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics.

    Science.gov (United States)

    Kolle, Mathias; Lee, Seungwoo

    2018-01-01

    Optical components made fully or partially from reconfigurable, stimuli-responsive, soft solids or fluids-collectively referred to as soft photonics-are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano- and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biologically inspired collision avoidance system for unmanned vehicles

    Science.gov (United States)

    Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.

    2009-05-01

    In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.

  5. Biologically Inspired Object Localization for a Modular Mobile Robotic System

    Directory of Open Access Journals (Sweden)

    Zlatogor Minchev

    2005-12-01

    Full Text Available The paper considers a general model of real biological creatures' antennae, which is practically implemented and tested, over a real element of a mobile modular robotic system - the robot MR1. The last could be utilized in solving of the most classical problem in Robotics - Object Localization. The functionality of the represented sensor system is described in a new and original manner by utilizing the tool of Generalized Nets - a new likelihood for description, modelling and simulation of different objects from the Artificial Intelligence area including Robotics.

  6. Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network.

    Science.gov (United States)

    Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun

    2017-03-08

    Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links.

  7. A model of engineering materials inspired by biological tissues

    Directory of Open Access Journals (Sweden)

    Holeček M.

    2009-12-01

    Full Text Available The perfect ability of living tissues to control and adapt their mechanical properties to varying external conditions may be an inspiration for designing engineering materials. An interesting example is the smooth muscle tissue since this "material" is able to change its global mechanical properties considerably by a subtle mechanism within individual muscle cells. Multi-scale continuum models may be useful in designing essentially simpler engineering materials having similar properties. As an illustration we present the model of an incompressible material whose microscopic structure is formed by flexible, soft but incompressible balls connected mutually by linear springs. This simple model, however, shows a nontrivial nonlinear behavior caused by the incompressibility of balls and is very sensitive on some microscopic parameters. It may elucidate the way by which "small" changes in biopolymer networks within individual muscular cells may control the stiffness of the biological tissue, which outlines a way of designing similar engineering materials. The 'balls and springs' material presents also prestress-induced stiffening and allows elucidating a contribution of extracellular fluids into the tissue’s viscous properties.

  8. Biologically inspired EM image alignment and neural reconstruction.

    Science.gov (United States)

    Knowles-Barley, Seymour; Butcher, Nancy J; Meinertzhagen, Ian A; Armstrong, J Douglas

    2011-08-15

    Three-dimensional reconstruction of consecutive serial-section transmission electron microscopy (ssTEM) images of neural tissue currently requires many hours of manual tracing and annotation. Several computational techniques have already been applied to ssTEM images to facilitate 3D reconstruction and ease this burden. Here, we present an alternative computational approach for ssTEM image analysis. We have used biologically inspired receptive fields as a basis for a ridge detection algorithm to identify cell membranes, synaptic contacts and mitochondria. Detected line segments are used to improve alignment between consecutive images and we have joined small segments of membrane into cell surfaces using a dynamic programming algorithm similar to the Needleman-Wunsch and Smith-Waterman DNA sequence alignment procedures. A shortest path-based approach has been used to close edges and achieve image segmentation. Partial reconstructions were automatically generated and used as a basis for semi-automatic reconstruction of neural tissue. The accuracy of partial reconstructions was evaluated and 96% of membrane could be identified at the cost of 13% false positive detections. An open-source reference implementation is available in the Supplementary information. seymour.kb@ed.ac.uk; douglas.armstrong@ed.ac.uk Supplementary data are available at Bioinformatics online.

  9. Nature inspired capacitive sensor with unique and unclonable characteristic

    Science.gov (United States)

    Karuthedath, C. B.; Schwesinger, N.

    2018-02-01

    Background of this paper is the development of sensors showing a nature like characteristic. The sensor is able to detect excitations on inertia bases and operates capacitive. It consists of a miniaturized interdigitated electrode structure on a printed circuit board, a flexible and conductive membrane of PDMS located in a certain distance above and a certain number of steel balls fixed on top of the membrane. The steel ball distribution is random and the conductivity of the membrane is not homogeneous across the membrane. Due to this double random distribution, no sensor equals the other, although the external geometry is equal. The overall size of the sensor is 4.7mm x 4.7mm x 1.7mm. Tilt, acceleration or magnetic fields are capable of causing forces on the steel balls and therefore relative movements between the membrane and the electrode structures. Due to this movement, capacity changes of the arrangement are measurable. This paper describes besides the fabrication of conductive membranes the preparation of regarding sensors. Process technology makes cloning of the sensors impossible. Although all process steps are suited for mass production, no sensor equals the other. Measurements with these sensors prove that each sensor reacts differently to the same excitation. Calculations of the Intra-Concordance-Coefficient show the similarity of the sensors for equal excitations. On the other hand, the maximum Inter-Concordance-Coefficient reveals the differences of such sensors very clearly. Such a characteristic, i.e. equal reaction to equal excitation and an output of significantly different signals allows considering each sensor as a unique device. The sensors obviously behave like receptors in natural organisms. These unusual properties of uniqueness and impossibility to clone make the sensors very interesting for highly secure identification demands. In combination with a very simple measurement procedure, the sensors are an attractive hardware base for

  10. Biologically inspired autonomous structural materials with controlled toughening and healing

    Science.gov (United States)

    Garcia, Michael E.; Sodano, Henry A.

    2010-04-01

    The field of structural health monitoring (SHM) has made significant contributions in the field of prognosis and damage detection in the past decade. The advantageous use of this technology has not been integrated into operational structures to prevent damage from propagating or to heal injured regions under real time loading conditions. Rather, current systems relay this information to a central processor or human operator, who then determines a course of action such as altering the mission or scheduling repair maintenance. Biological systems exhibit advanced sensory and healing traits that can be applied to the design of material systems. For instance, bone is the major structural component in vertebrates; however, unlike modern structural materials, bone has many properties that make it effective for arresting the propagation of cracks and subsequent healing of the fractured area. The foremost goal for the development of future adaptive structures is to mimic biological systems, similar to bone, such that the material system can detect damage and deploy defensive traits to impede damage from propagating, thus preventing catastrophic failure while in operation. After sensing and stalling the propagation of damage, the structure must then be repaired autonomously using self healing mechanisms motivated by biological systems. Here a novel autonomous system is developed using shape memory polymers (SMPs), that employs an optical fiber network as both a damage detection sensor and a network to deliver stimulus to the damage site initiating adaptation and healing. In the presence of damage the fiber optic fractures allowing a high power laser diode to deposit a controlled level of thermal energy at the fractured sight locally reducing the modulus and blunting the crack tip, which significantly slows the crack growth rate. By applying a pre-induced strain field and utilizing the shape memory recovery effect, thermal energy can be deployed to close the crack and return

  11. A bio-inspired hair- based acceleration sensor

    NARCIS (Netherlands)

    Droogendijk, H.

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU- 8 lithography. Measu- rements show

  12. A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks

    Science.gov (United States)

    Datta, A.; Nandakumar, S.

    2017-11-01

    Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.

  13. A bio-inspired apposition compound eye machine vision sensor system

    International Nuclear Information System (INIS)

    Davis, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2009-01-01

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  14. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Science.gov (United States)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  15. Bio-inspired smart sensors for a hexapod robot

    DEFF Research Database (Denmark)

    Bilberg, Arne

    2011-01-01

    EMICAB (Embodied Motion Intelligence for Cognitive, Autonomous Robots) is an EU founded project where a consortium of 4 Universities is working together to integrate smart body mechanics and sensors with intelligent planning and motor behavior in order to make a holistic approach to artificial...

  16. First controlled vertical flight of a biologically inspired microrobot

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Arancibia, Nestor O; Ma, Kevin Y; Greenberg, Jack D; Wood, Robert J [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Galloway, Kevin C, E-mail: nperez@seas.harvard.edu, E-mail: kevinma@seas.harvard.edu, E-mail: kevin.galloway@wyss.harvard.edu, E-mail: jdgreenb@seas.harvard.edu, E-mail: rjwood@eecs.harvard.edu [Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 (United States)

    2011-09-15

    In this paper, we present experimental results on altitude control of a flying microrobot. The problem is approached in two stages. In the first stage, system identification of two relevant subsystems composing the microrobot is performed, using a static flapping experimental setup. In the second stage, the information gathered through the static flapping experiments is employed to design the controller used in vertical flight. The design of the proposed controller relies on the idea of treating an exciting signal as a subsystem of the microrobot. The methods and results presented here are a key step toward achieving total autonomy of bio-inspired flying microrobots.

  17. First controlled vertical flight of a biologically inspired microrobot

    International Nuclear Information System (INIS)

    Perez-Arancibia, Nestor O; Ma, Kevin Y; Greenberg, Jack D; Wood, Robert J; Galloway, Kevin C

    2011-01-01

    In this paper, we present experimental results on altitude control of a flying microrobot. The problem is approached in two stages. In the first stage, system identification of two relevant subsystems composing the microrobot is performed, using a static flapping experimental setup. In the second stage, the information gathered through the static flapping experiments is employed to design the controller used in vertical flight. The design of the proposed controller relies on the idea of treating an exciting signal as a subsystem of the microrobot. The methods and results presented here are a key step toward achieving total autonomy of bio-inspired flying microrobots.

  18. Seeing by touch: evaluation of a soft biologically-inspired artificial fingertip in real-time active touch.

    Science.gov (United States)

    Assaf, Tareq; Roke, Calum; Rossiter, Jonathan; Pipe, Tony; Melhuish, Chris

    2014-02-07

    Effective tactile sensing for artificial platforms remains an open issue in robotics. This study investigates the performance of a soft biologically-inspired artificial fingertip in active exploration tasks. The fingertip sensor replicates the mechanisms within human skin and offers a robust solution that can be used both for tactile sensing and gripping/manipulating objects. The softness of the optical sensor's contact surface also allows safer interactions with objects. High-level tactile features such as edges are extrapolated from the sensor's output and the information is used to generate a tactile image. The work presented in this paper aims to investigate and evaluate this artificial fingertip for 2D shape reconstruction. The sensor was mounted on a robot arm to allow autonomous exploration of different objects. The sensor and a number of human participants were then tested for their abilities to track the raised perimeters of different planar objects and compared. By observing the technique and accuracy of the human subjects, simple but effective parameters were determined in order to evaluate the artificial system's performance. The results prove the capability of the sensor in such active exploration tasks, with a comparable performance to the human subjects despite it using tactile data alone whereas the human participants were also able to use proprioceptive cues.

  19. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    Science.gov (United States)

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  20. A biologically inspired controller to solve the coverage problem in robotics.

    Science.gov (United States)

    Rañó, Iñaki; Santos, José A

    2017-06-05

    The coverage problem consists on computing a path or trajectory for a robot to pass over all the points in some free area and has applications ranging from floor cleaning to demining. Coverage is solved as a planning problem-providing theoretical validation of the solution-or through heuristic techniques which rely on experimental validation. Through a combination of theoretical results and simulations, this paper presents a novel solution to the coverage problem that exploits the chaotic behaviour of a simple biologically inspired motion controller, the Braitenberg vehicle 2b. Although chaos has been used for coverage, our approach has much less restrictive assumptions about the environment and can be implemented using on-board sensors. First, we prove theoretically that this vehicle-a well known model of animal tropotaxis-behaves as a charge in an electro-magnetic field. The motion equations can be reduced to a Hamiltonian system, and, therefore the vehicle follows quasi-periodic or chaotic trajectories, which pass arbitrarily close to any point in the work-space, i.e. it solves the coverage problem. Secondly, through a set of extensive simulations, we show that the trajectories cover regions of bounded workspaces, and full coverage is achieved when the perceptual range of the vehicle is short. We compare the performance of this new approach with different types of random motion controllers in the same bounded environments.

  1. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    Science.gov (United States)

    Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.

    2012-09-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.

  2. Bio-inspired flow sensor from printed PEDOT:PSS micro-hairs

    International Nuclear Information System (INIS)

    Devaraj, Harish; Sharma, Rajnish; Aw, Kean C; Travas-Sejdic, Jadranka; Aydemir, Nihan; Williams, David; Haemmerle, Enrico

    2015-01-01

    This paper reports on the creation of a low-cost, disposable sensor for low flow velocities, constructed from extruded micro-sized ‘hair’ of conducting polymer PEDOT. These microstructures are inspired by hair strands found in many arthropods and chordates, which play a prime role in sensing air flows. The paper describes the fabrication techniques and the initial prototype testing results toward employing this sensing mechanism in applications requiring sensing of low flow rates such as a flow sensor in neonatal resuscitators. The fabricated 1000 μm long, 6 μm diameter micro-hairs mimic the bending movement of tactile hair strands to sense the velocity of air flow. The prototype sensor developed is a four-level direct digital-output sensor and is capable of detecting flow velocities of up to 0.97 m s −1 . (paper)

  3. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity.

    Science.gov (United States)

    Pang, Yu; Zhang, Kunning; Yang, Zhen; Jiang, Song; Ju, Zhenyi; Li, Yuxing; Wang, Xuefeng; Wang, Danyang; Jian, Muqiang; Zhang, Yingying; Liang, Renrong; Tian, He; Yang, Yi; Ren, Tian-Ling

    2018-03-27

    Recently, wearable pressure sensors have attracted tremendous attention because of their potential applications in monitoring physiological signals for human healthcare. Sensitivity and linearity are the two most essential parameters for pressure sensors. Although various designed micro/nanostructure morphologies have been introduced, the trade-off between sensitivity and linearity has not been well balanced. Human skin, which contains force receptors in a reticular layer, has a high sensitivity even for large external stimuli. Herein, inspired by the skin epidermis with high-performance force sensing, we have proposed a special surface morphology with spinosum microstructure of random distribution via the combination of an abrasive paper template and reduced graphene oxide. The sensitivity of the graphene pressure sensor with random distribution spinosum (RDS) microstructure is as high as 25.1 kPa -1 in a wide linearity range of 0-2.6 kPa. Our pressure sensor exhibits superior comprehensive properties compared with previous surface-modified pressure sensors. According to simulation and mechanism analyses, the spinosum microstructure and random distribution contribute to the high sensitivity and large linearity range, respectively. In addition, the pressure sensor shows promising potential in detecting human physiological signals, such as heartbeat, respiration, phonation, and human motions of a pushup, arm bending, and walking. The wearable pressure sensor array was further used to detect gait states of supination, neutral, and pronation. The RDS microstructure provides an alternative strategy to improve the performance of pressure sensors and extend their potential applications in monitoring human activities.

  4. ESAM: Endocrine inspired Sensor Activation Mechanism for multi-target tracking in WSNs

    Science.gov (United States)

    Adil Mahdi, Omar; Wahab, Ainuddin Wahid Abdul; Idris, Mohd Yamani Idna; Znaid, Ammar Abu; Khan, Suleman; Al-Mayouf, Yusor Rafid Bahar

    2016-10-01

    Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.

  5. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    International Nuclear Information System (INIS)

    Maschmann, Matthew R; Ehlert, Gregory J; Baur, Jeffery W; Dickinson, Ben

    2012-01-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0–1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats. (paper)

  6. Design Approach of Biologically-Inspired Musculoskeletal Humanoids

    Directory of Open Access Journals (Sweden)

    Yuto Nakanishi

    2013-04-01

    Full Text Available In order to realize more natural and various motions like humans, humanlike musculoskeletal tendon-driven humanoids have been studied. Especially, it is very challenging to design musculoskeletal body structure which consists of complicated bones, redundant powerful and flexible muscles, and large number of distributed sensors. In addition, it is very challenging to reveal humanlike intelligence to manage these complicated musculoskeletal body structure. This paper sums up life-sized musculoskeletal humanoids Kenta, Kotaro, Kenzoh and Kenshiro which we have developed so far, and describes key technologies to develop and control these robots.

  7. Utilization and viability of biologically-inspired algorithms in a dynamic multiagent camera surveillance system

    Science.gov (United States)

    Mundhenk, Terrell N.; Dhavale, Nitin; Marmol, Salvador; Calleja, Elizabeth; Navalpakkam, Vidhya; Bellman, Kirstie; Landauer, Chris; Arbib, Michael A.; Itti, Laurent

    2003-10-01

    computational resources. The system demonstrates the viability of biologically inspired systems in a real time tracking. In future work we plan on implementing additional biological mechanisms for cooperative management of both the sensor and processing resources in this system that include top down biasing for target specificity as well as novelty and the activity of the tracked object in relation to sensitive features of the environment.

  8. Variable gearing in a biologically inspired pneumatic actuator array

    International Nuclear Information System (INIS)

    Azizi, Emanuel; Roberts, Thomas J

    2013-01-01

    A fundamental feature of pennate muscles is that muscle fibers are oriented at an angle to the line of action and rotate as they shorten, becoming more oblique throughout a contraction. This change in fiber orientation (pennation angle) can amplify the shortening velocity of a fiber and increase output velocity of the muscle. The velocity advantage resulting from dynamic changes in pennation angle can be characterized as a gear ratio (muscle velocity/fiber velocity). A recent study has shown that a pennate muscle's gear ratio varies automatically depending on the load such that a muscle operates with a high gear during rapid contractions and low gear during forceful contractions. We examined whether this variable gearing behavior can be replicated in a pennate array of artificial muscles. We used McKibben type pneumatic actuators, which shorten in tension when filled with compressed gas. Similar to muscle fibers, the actuators expand radially during shortening, a feature thought to be a critical part of the variable gearing mechanism in pennate muscles. We arranged McKibben actuators in an array oriented to mimic a pennate muscle, and quantified the system's gear ratio during contraction against a range of loads. Video was used to measure the gear ratio during each contraction. We find that similar to pennate muscles, the gear ratio decreases significantly with increasing load and that variable gearing results from load-dependent variation in the amount of actuator rotation. These results support the idea that variable gearing in pennate muscles is mediated by difference is fiber rotation and the direction of muscle bulging. The behavior of our artificial muscle array also highlights the potential benefits of bio-inspired architectures in artificial muscle arrays, including the ability to vary force and speed automatically in response to variable loading conditions. (paper)

  9. Variable gearing in a biologically inspired pneumatic actuator array.

    Science.gov (United States)

    Azizi, Emanuel; Roberts, Thomas J

    2013-06-01

    A fundamental feature of pennate muscles is that muscle fibers are oriented at an angle to the line of action and rotate as they shorten, becoming more oblique throughout a contraction. This change in fiber orientation (pennation angle) can amplify the shortening velocity of a fiber and increase output velocity of the muscle. The velocity advantage resulting from dynamic changes in pennation angle can be characterized as a gear ratio (muscle velocity/fiber velocity). A recent study has shown that a pennate muscle's gear ratio varies automatically depending on the load such that a muscle operates with a high gear during rapid contractions and low gear during forceful contractions. We examined whether this variable gearing behavior can be replicated in a pennate array of artificial muscles. We used McKibben type pneumatic actuators, which shorten in tension when filled with compressed gas. Similar to muscle fibers, the actuators expand radially during shortening, a feature thought to be a critical part of the variable gearing mechanism in pennate muscles. We arranged McKibben actuators in an array oriented to mimic a pennate muscle, and quantified the system's gear ratio during contraction against a range of loads. Video was used to measure the gear ratio during each contraction. We find that similar to pennate muscles, the gear ratio decreases significantly with increasing load and that variable gearing results from load-dependent variation in the amount of actuator rotation. These results support the idea that variable gearing in pennate muscles is mediated by difference is fiber rotation and the direction of muscle bulging. The behavior of our artificial muscle array also highlights the potential benefits of bio-inspired architectures in artificial muscle arrays, including the ability to vary force and speed automatically in response to variable loading conditions.

  10. VARIABLE GEARING IN A BIOLOGICALLY-INSPIRED PNEUMATIC ACTUATOR ARRAY

    Science.gov (United States)

    Azizi, Emanuel; Roberts, Thomas J.

    2013-01-01

    A fundamental feature of pennate muscles is that muscle fibers are oriented at an angle to the line of action and rotate as they shorten, becoming more oblique throughout a contraction. This change in fiber orientation (pennation angle) can amplify the shortening velocity of a fiber and increase output velocity of the muscle. The velocity advantage resulting from dynamic changes in pennation angle can be characterized as a gear ratio (muscle velocity/fiber velocity). A recent study has shown that a pennate muscle’s gear ratio varies automatically depending on the load such that a muscle operates with a high gear during rapid contractions and low gear during forceful contractions. We examined whether this variable gearing behavior can be replicated in a pennate array of artificial muscles. We used McKibben type pneumatic actuators, which shorten in tension when filled with compressed gas. Similar to muscle fibers, the actuators expand radially during shortening, a feature thought to be a critical part of the variable gearing mechanism in pennate muscles. We arranged McKibben actuators in an array oriented to mimic a pennate muscle, and quantified the system’s gear ratio during contraction against a range of loads. Video was used to measure the gear ratio during each contraction. We find that similar to pennate muscles, the gear ratio decreases significantly with increasing load and that variable gearing results from load-dependent variation in the amount of actuator rotation. These results support the idea that variable gearing in pennate muscles is mediated by difference is fiber rotation and the direction of muscle bulging. The behavior of our artificial muscle array also highlights the potential benefits of bio-inspired architectures in artificial muscle arrays, including the ability to vary force and speed automatically in response to variable loading conditions. PMID:23462288

  11. A Magnetic Sensor System for Biological Detection

    KAUST Repository

    Li, Fuquan

    2015-05-01

    Magnetic biosensors detect biological targets through sensing the stray field of magnetic beads which label the targets. Commonly, magnetic biosensors employ the “sandwich” method to immobilize biological targets, i.e., the targets are sandwiched between a bio-functionalized sensor surface and bio-functionalized magnetic beads. This method has been used very successfully in different application, but its execution requires a rather elaborate procedure including several washing and incubation steps. This dissertation investigates a new magnetic biosensor concept, which enables a simple and effective detection of biological targets. The biosensor takes advantage of the size difference between bare magnetic beads and compounds of magnetic beads and biological targets. First, the detection of super-paramagnetic beads via magnetic tunnel junction (MTJ) sensors is implemented. Frequency modulation is used to enhance the signal-to-noise ratio, enabling the detection of a single magnetic bead. Second, the concept of the magnetic biosensor is investigated theoretically. The biosensor consists of an MTJ sensor, which detects the stray field of magnetic beads inside of a trap on top of the MTJ. A microwire between the trap and the MTJ is used to attract magnetic beads to the trapping well by applying a current to it. The MTJ sensor’s output depends on the number of beads inside the trap. If biological targets are in the sample solution, the beads will form bead compounds consisting of beads linked to the biological targets. Since bead compounds are larger than bare beads, the number of beads inside the trapping well will depend on the presence of biological targets. Hence, the output of the MTJ sensor will depend on the biological targets. The dependences of sensor signals on the sizes of the MTJ sensor, magnetic beads and biological targets are studied to find the optimum constellations for the detection of specific biological targets. The optimization is demonstrated

  12. Dissecting Redox Biology Using Fluorescent Protein Sensors.

    Science.gov (United States)

    Schwarzländer, Markus; Dick, Tobias P; Meyer, Andreas J; Morgan, Bruce

    2016-05-01

    Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.

  13. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural...... learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS) and a late, reflex signal...... (unconditioned stimulus, UCS), both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully...

  14. Quantum and classical dynamics in biologically inspired systems

    International Nuclear Information System (INIS)

    Guerreschi, G.

    2012-01-01

    Quantum biology is an emerging field in which traditional believes and paradigms are under examination. Typically, quantum effects are witnessed inside quantum optics or atomic physics laboratories in systems which are kept under control and isolated from any noise source by means of very advanced technology. Biological systems exhibit opposite characteristics: They are usually constituted of macromolecules continuously exposed to a warm and wet environment, well beyond our control; but at the same time, they operate far away from equilibrium. Recently, the experimental observation of excitonic coherence in photosynthetic complexes has con firmed that, in non-equilibrium scenarios, quantum phenomena can survive even in presence of a noisy environment. The challenge faced by the ongoing research is twofold: On one side, considering biological molecules as effective nanomachines, one has to address questions of principle regarding their design and functioning; on the other side, one has to investigate real systems which are experimentally accessible and identify such features in these concrete scenarios. The present thesis contributes to both of these aspects. In Part I, we demonstrate how entanglement can be persistently generated even under unfavorable environmental conditions. The physical mechanism is modeled after the idea of conformational changes, and it relies on the interplay of classical oscillations of large structures with the quantum dynamics of a few interacting degrees of freedom. In a similar context, we show that the transfer of an excitation through a linear chain of sites can be enhanced when the inter-site distances oscillate periodically. This enhancement is present even in comparison with the static con figuration which is optimal in the classical case and, therefore, it constitutes a clear signature of the underlying quantum dynamics. In Part II of this thesis, we study the radical pair mechanism from the perspective of quantum control and

  15. Bio-Inspired PVDF-Based, Mouse Whisker Mimicking, Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Mohsin Islam Tiwana

    2016-10-01

    Full Text Available The design and fabrication of a Polyvinylidene fluoride (PVDF based, mouse (or rodent whisker mimicking, tactile sensor is presented. Unlike previous designs reported in the literature, this sensor mimics the mouse whisker not only mechanically, but it also makes macro movements just like a real mouse whisker in a natural environment. We have developed a mathematical model and performed finite element analysis using COMSOL, in order to optimise the whisker to have the same natural frequency as that of a biological whisker. Similarly, we have developed a control system that enables the whisker mimicking sensor to vibrate at variable frequencies and conducted practical experiments to validate the response of the sensor. The natural frequency of the whisker can be designed anywhere between 35 and 110 Hz, the same as a biological whisker, by choosing different materials and physical dimensions. The control system of this sensor enables the whisker to vibrate between 5 and 236 Hz.

  16. Artificial Roughness Encoding with a Bio-inspired MEMS-based Tactile Sensor Array

    Directory of Open Access Journals (Sweden)

    Calogero Maria Oddo

    2009-04-01

    Full Text Available A compliant 2x2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad.

  17. Biological Sensors for Solar Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    André P. Schuch

    2011-04-01

    Full Text Available Solar ultraviolet (UV radiation is widely known as a genotoxic environmental agent that affects Earth ecosystems and the human population. As a primary consequence of the stratospheric ozone layer depletion observed over the last decades, the increasing UV incidence levels have heightened the concern regarding deleterious consequences affecting both the biosphere and humans, thereby leading to an increase in scientific efforts to understand the role of sunlight in the induction of DNA damage, mutagenesis, and cell death. In fact, the various UV-wavelengths evoke characteristic biological impacts that greatly depend on light absorption of biomolecules, especially DNA, in living organisms, thereby justifying the increasing importance of developing biological sensors for monitoring the harmful impact of solar UV radiation under various environmental conditions. In this review, several types of biosensors proposed for laboratory and field application, that measure the biological effects of the UV component of sunlight, are described. Basically, the applicability of sensors based on DNA, bacteria or even mammalian cells are presented and compared. Data are also presented showing that on using DNA-based sensors, the various types of damage produced differ when this molecule is exposed in either an aqueous buffer or a dry solution. Apart from the data thus generated, the development of novel biosensors could help in evaluating the biological effects of sunlight on the environment. They also emerge as alternative tools for using live animals in the search for protective sunscreen products.

  18. Color encoding in biologically-inspired convolutional neural networks.

    Science.gov (United States)

    Rafegas, Ivet; Vanrell, Maria

    2018-05-11

    Convolutional Neural Networks have been proposed as suitable frameworks to model biological vision. Some of these artificial networks showed representational properties that rival primate performances in object recognition. In this paper we explore how color is encoded in a trained artificial network. It is performed by estimating a color selectivity index for each neuron, which allows us to describe the neuron activity to a color input stimuli. The index allows us to classify whether they are color selective or not and if they are of a single or double color. We have determined that all five convolutional layers of the network have a large number of color selective neurons. Color opponency clearly emerges in the first layer, presenting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and Magenta-Green), but this is reduced and rotated as we go deeper into the network. In layer 2 we find a denser hue sampling of color neurons and opponency is reduced almost to one new main axis, the Bluish-Orangish coinciding with the dataset bias. In layers 3, 4 and 5 color neurons are similar amongst themselves, presenting different type of neurons that detect specific colored objects (e.g., orangish faces), specific surrounds (e.g., blue sky) or specific colored or contrasted object-surround configurations (e.g. blue blob in a green surround). Overall, our work concludes that color and shape representation are successively entangled through all the layers of the studied network, revealing certain parallelisms with the reported evidences in primate brains that can provide useful insight into intermediate hierarchical spatio-chromatic representations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures

    International Nuclear Information System (INIS)

    Kang, Rongjie; Zheng Tianjiang; Guglielmino, Emanuele; Caldwell, Darwin G; Branson, David T

    2013-01-01

    Biological tentacles, such as octopus arms, have entirely flexible structures and virtually infinite degrees of freedom (DOF) that allow for elongation, shortening and bending at any point along the arm length. The amazing dexterity of biological tentacles has driven the growing implementation of continuum manipulators in robotic systems. This paper presents a pneumatic manipulator inspired by biological continuum structures in some of their key features and functions, such as continuum morphology, intrinsic compliance and stereotyped motions with hyper redundant DOF. The kinematics and dynamics of the manipulator are formulated and identified, and a hierarchical controller taking inspiration from the structure of an octopus nervous system is used to relate desired stereotyped motions to individual actuator inputs. Simulations and experiments are carried out to validate the model and prototype where good agreement was found between the two. (paper)

  20. Image sensor system with bio-inspired efficient coding and adaptation.

    Science.gov (United States)

    Okuno, Hirotsugu; Yagi, Tetsuya

    2012-08-01

    We designed and implemented an image sensor system equipped with three bio-inspired coding and adaptation strategies: logarithmic transform, local average subtraction, and feedback gain control. The system comprises a field-programmable gate array (FPGA), a resistive network, and active pixel sensors (APS), whose light intensity-voltage characteristics are controllable. The system employs multiple time-varying reset voltage signals for APS in order to realize multiple logarithmic intensity-voltage characteristics, which are controlled so that the entropy of the output image is maximized. The system also employs local average subtraction and gain control in order to obtain images with an appropriate contrast. The local average is calculated by the resistive network instantaneously. The designed system was successfully used to obtain appropriate images of objects that were subjected to large changes in illumination.

  1. Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.

    Science.gov (United States)

    Knuuttila, Tarja; Loettgers, Andrea

    2013-06-01

    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more "biology inspired." Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Design and Characterization of a Novel Bio-inspired Hair Flow Sensor Based on Resonant Sensing

    Science.gov (United States)

    Guo, X.; Yang, B.; Wang, Q. H.; Lu, C. F.; Hu, D.

    2018-03-01

    Flow sensors inspired by the natural hair sensing mechanism have great prospect in the research of micro-autonomous system and technology (MAST) for the three-dimensional structure characteristics with high spatial and quality utilization. A novel bio-inspired hair flow sensor (BHFS) based on resonant sensing with a unique asymmetric design is presented in this paper. A hair transducer and a signal detector which is constituted of a two-stage micro-leverage mechanism and two symmetrical resonators (double ended tuning fork, DETF) are adopted to realize the high sensitivity to air flow. The sensitivity of the proposed BHFS is improved significantly than the published ones due to the high sensitivity of resonators and the higher amplification factor possessed by the two-stage micro-leverage mechanism. The standard deep dry silicon on glass (DDSOG) process is chosen to fabricate the proposed BHFS. The experiment result demonstrates that the fabricated BHFS has a mechanical sensitivity of 5.26 Hz/(m/s)2 at a resonant frequency of 22 kHz with the hair height of 6 mm.

  3. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  4. Fingerprint-Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture.

    Science.gov (United States)

    Cao, Yudong; Li, Tie; Gu, Yang; Luo, Hui; Wang, Shuqi; Zhang, Ting

    2018-04-01

    Inspired by the epidermal-dermal and outer microstructures of the human fingerprint, a novel flexible sensor device is designed to improve haptic perception and surface texture recognition, which is consisted of single-walled carbon nanotubes, polyethylene, and polydimethylsiloxane with interlocked and outer micropyramid arrays. The sensor shows high pressure sensitivity (-3.26 kPa -1 in the pressure range of 0-300 Pa), and it can detect the shear force changes induced by the dynamic interaction between the outer micropyramid structure on the sensor and the tested material surface, and the minimum dimension of the microstripe that can be discerned is as low as 15 µm × 15 µm (interval × width). To demonstrate the texture discrimination capability, the sensors are tested for accurately discerning various surface textures, such as the textures of different fabrics, Braille characters, the inverted pyramid patterns, which will have great potential in robot skins and haptic perception, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sensors Provide Early Warning of Biological Threats

    Science.gov (United States)

    2009-01-01

    Early Warning Inc. of Troy, New York, licensed powerful biosensor technology from Ames Research Center. Incorporating carbon nanotubes tipped with single strands of nucleic acid from waterborne pathogens, the sensor can detect even minute amounts of targeted, disease causing bacteria, viruses, and parasites. Early Warning features the NASA biosensor in its water analyzer, which can provide advance alert of potential biological hazards in water used for agriculture, food and beverages, showers, and at beaches and lakes -- within hours instead of the days required by conventional laboratory methods.

  6. Sensors and actuators inherent in biological species

    Science.gov (United States)

    Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce

    2007-04-01

    This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.

  7. BiLBIQ A Biologically Inspired Robot with Walking and Rolling Locomotion

    CERN Document Server

    King, Ralf Simon

    2013-01-01

    The book ‘BiLBIQ: A biologically inspired Robot with walking and rolling locomotion’ deals with implementing a locomotion behavior observed in the biological archetype Cebrennus villosus to a robot prototype whose structural design needs to be developed.   The biological sample is investigated as far as possible and compared to other evolutional solutions within the framework of nature’s inventions. Current achievements in robotics are examined and evaluated for their relation and relevance to the robot prototype in question. An overview of what is state of the art in actuation ensures the choice of the hardware available and most suitable for this project. Through a constant consideration of the achievement of two fundamentally different ways of locomotion with one and the same structure, a robot design is developed and constructed taking hardware constraints into account. The development of a special leg structure that needs to resemble and replace body elements of the biological archetype is a speci...

  8. Comparing novelty of designs from biological-inspiration with those from brainstorming

    DEFF Research Database (Denmark)

    Keshwani, Sonal; Lenau, Torben Anker; Ahmed-Kristensen, Saeema

    2017-01-01

    This research aims to understand the significance of biological-analogies in fostering novelty by comparing biological-analogies with other design methods for idea generation. Among other design methods, brainstorming was chosen here as benchmark. Four studies were conducted to compare: (i......) the levels of abstraction at which concepts were ideated using biological inspiration (represented using biocards) with that using traditional brainstorming; and (ii) the novelty of concepts produced by using these two design methods. Concepts produced in these studies were evaluated for levels...... of abstraction at which they were ideated, average novelty, and proportion of high-novelty concepts. Results suggest that concepts generated using biocards were ideated at higher abstraction levels than those using brainstorming, but neither were at the highest abstraction levels. The average novelty of concepts...

  9. Biologically-inspired On-chip Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the "biologically-inspired" approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks, We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  10. Biological and chemical sensors based on graphene materials.

    Science.gov (United States)

    Liu, Yuxin; Dong, Xiaochen; Chen, Peng

    2012-03-21

    Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).

  11. Soft Robotics: Biological Inspiration, State of the Art, and Future Research

    Directory of Open Access Journals (Sweden)

    Deepak Trivedi

    2008-01-01

    Full Text Available Traditional robots have rigid underlying structures that limit their ability to interact with their environment. For example, conventional robot manipulators have rigid links and can manipulate objects using only their specialised end effectors. These robots often encounter difficulties operating in unstructured and highly congested environments. A variety of animals and plants exhibit complex movement with soft structures devoid of rigid components. Muscular hydrostats (e.g. octopus arms and elephant trunks are almost entirely composed of muscle and connective tissue and plant cells can change shape when pressurised by osmosis. Researchers have been inspired by biology to design and build soft robots. With a soft structure and redundant degrees of freedom, these robots can be used for delicate tasks in cluttered and/or unstructured environments. This paper discusses the novel capabilities of soft robots, describes examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.

  12. Biology and Architecture: Two Buildings Inspired by the Anatomy of the Visual System.

    Science.gov (United States)

    Maro Kiris, Irem

    2018-05-04

    Architectural production has been influenced by a variety of sources. Forms derived from nature, biology and live organisms, had often been utilised in art and architecture. Certain features of the human anatomy had been reflected in design process in various ways, as imitations, abstractions, interpretations of the reality. The correlation of ideal proportions had been investigated throughout centuries. Scholars, art historians starting with Vitruvius from the world of ancient Roman architecture, described the human figure as being the principal source of proportion among the classical orders of architecture. This study aims to investigate two contemporary buildings, namely Kiasma Museum in Helsinki and Eye Museum in Amsterdam, inspired directly from the anatomy of visual system. Morover the author discussed the relationship of biology and architecture through these two special buildings by viewing the eye and chiasma as metaphors for elements of architecture.

  13. Development and testing of bio-inspired microelectromechanical pressure sensor arrays for increased situational awareness for marine vehicles

    International Nuclear Information System (INIS)

    Dusek, J; Triantafyllou, M S; Kottapalli, A G P; Asadnia, M; Miao, J; Woo, M E; Lang, J H

    2013-01-01

    The lateral line found on most species of fish is a sensory organ without analog in humans. Using sensory feedback from the lateral line, fish are able to track prey, school, avoid obstacles, and detect vortical flow structures. Composed of both a superficial component, and a component contained within canals beneath the fish’s skin, the lateral line acts in a similar fashion to an array of differential pressure sensors. In an effort to enhance the situational and environmental awareness of marine vehicles, lateral-line-inspired pressure sensor arrays were developed to mimic the enhanced sensory capabilities observed in fish. Three flexible and waterproof pressure sensor arrays were fabricated for use as a surface-mounted ‘smart skin’ on marine vehicles. Two of the sensor arrays were based around the use of commercially available piezoresistive sensor dies, with innovative packaging schemes to allow for flexibility and underwater operation. The sensor arrays employed liquid crystal polymer and flexible printed circuit board substrates with metallic circuits and silicone encapsulation. The third sensor array employed a novel nanocomposite material set that allowed for the fabrication of a completely flexible sensor array. All three sensors were surface mounted on the curved hull of an autonomous kayak vehicle, and tested in both pool and reservoir environments. Results demonstrated that all three sensors were operational while deployed on the autonomous vehicle, and provided an accurate means for monitoring the vehicle dynamics. (paper)

  14. Seeding-inspired chemotaxis genetic algorithm for the inference of biological systems.

    Science.gov (United States)

    Wu, Shinq-Jen; Wu, Cheng-Tao

    2014-09-18

    A large challenge in the post-genomic era is to obtain the quantitatively dynamic interactive information of the important constitutes of underlying systems. The S-system is a dynamic and structurally rich model that determines the net strength of interactions between genes and/or proteins. Good generation characteristics without the need for prior information have allowed S-systems to become one of the most promising canonical models. Various evolutionary computation technologies have recently been developed for the identification of system parameters and skeletal-network structures. However, the gaps between the truncated and preserved terms remain too small. Additionally, current research methods fail to identify the structures of high dimensional systems (e.g., 30 genes with 1800 connections). Optimization technologies should converge fast and have the ability to adaptively adjust the search. In this study, we propose a seeding-inspired chemotaxis genetic algorithm (SCGA) that can force evolution to adjust the population movement to identify a favorable location. The seeding-inspired training strategy is a method to achieve optimal results with limited resources. SCGA introduces seeding-inspired genetic operations to allow a population to possess competitive power (exploitation and exploration) and a winner-chemotaxis-induced population migration to force a population to repeatedly tumble away from an attractor and swim toward another attractor. SCGA was tested on several canonical biological systems. SCGA not only learned the correct structure within only one to three pruning steps but also ensures pruning safety. The values of the truncated terms were all smaller than 10 -14 , even for a thirty-gene system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  16. Biologically inspired control and modeling of (biorobotic systems and some applications of fractional calculus in mechanics

    Directory of Open Access Journals (Sweden)

    Lazarević Mihailo P.

    2013-01-01

    Full Text Available In this paper, the applications of biologically inspired modeling and control of (biomechanical (nonredundant mechanisms are presented, as well as newly obtained results of author in mechanics which are based on using fractional calculus. First, it is proposed to use biological analog-synergy due to existence of invariant features in the execution of functional motion. Second, the model of (biomechanical system may be obtained using another biological concept called distributed positioning (DP, which is based on the inertial properties and actuation of joints of considered mechanical system. In addition, it is proposed to use other biological principles such as: principle of minimum interaction, which takes a main role in hierarchical structure of control and self-adjusting principle (introduce local positive/negative feedback on control with great amplifying, which allows efficiently realization of control based on iterative natural learning. Also, new, recently obtained results of the author in the fields of stability, electroviscoelasticity, and control theory are presented which are based on using fractional calculus (FC. [Projekat Ministarstva nauke Republike Srbije, br. 35006

  17. A new landing impact attenuation seat in manned spacecraft biologically-inspired by felids

    Directory of Open Access Journals (Sweden)

    Yu Hui

    2015-04-01

    Full Text Available When manned spacecraft comes back to the earth, it relies on the impact attenuation seat to protect astronauts from injuries during landing phase. Hence, the seat needs to transfer impact load, as small as possible, to the crew. However, there is little room left for traditional seat to improve further. Herein, a new seat system biologically-inspired by felids’ landing is proposed. Firstly, a series of experiments was carried out on cats and tigers, in which they were trained to jump down voluntarily from different heights. Based on the ground reaction forces combined with kinematics, the experiment indicated that felids’ landing after self-initial jump was a multi-step impact attenuation process and the new seat was inspired by this. Then the construction and work process of new seat were redesigned to realize the multi-step impact attenuation. The dynamic response of traditional and new seat is analyzed under the identical conditions and the results show that the new concept seat can significantly weaken the occupant overload in two directions compared with that of traditional seat. As a consequence, the risk of injury evaluated for spinal and head is also lowered, meaning a higher level of protection which is especially beneficial to the debilitated astronaut.

  18. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft

    Science.gov (United States)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  19. A biologically inspired meta-control navigation system for the Psikharpax rat robot

    International Nuclear Information System (INIS)

    Caluwaerts, K; Staffa, M; N’Guyen, S; Grand, C; Dollé, L; Favre-Félix, A; Girard, B; Khamassi, M

    2012-01-01

    A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is presented, allowing for self-localization and autonomous navigation in an initially unknown environment. The ability of parts of the model (e.g. the strategy selection mechanism) to reproduce rat behavioral data in various maze tasks has been validated before in simulations. But the capacity of the model to work on a real robot platform had not been tested. This paper presents our work on the implementation on the Psikharpax robot of two independent navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a strategy selection meta-controller. We show how our robot can memorize which was the optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover, a context detector enables the controller to quickly adapt to changes in the environment—recognized as new contexts—and to restore previously acquired strategy preferences when a previously experienced context is recognized. This produces adaptivity closer to rat behavioral performance and constitutes a computational proposition of the role of the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller may provide an advancement for learning architectures in robotics. (paper)

  20. Actions, Observations, and Decision-Making: Biologically Inspired Strategies for Autonomous Aerial Vehicles

    Science.gov (United States)

    Pisanich, Greg; Ippolito, Corey; Plice, Laura; Young, Larry A.; Lau, Benton

    2003-01-01

    This paper details the development and demonstration of an autonomous aerial vehicle embodying search and find mission planning and execution srrategies inspired by foraging behaviors found in biology. It begins by describing key characteristics required by an aeria! explorer to support science and planetary exploration goals, and illustrates these through a hypothetical mission profile. It next outlines a conceptual bio- inspired search and find autonomy architecture that implements observations, decisions, and actions through an "ecology" of producer, consumer, and decomposer agents. Moving from concepts to development activities, it then presents the results of mission representative UAV aerial surveys at a Mars analog site. It next describes hardware and software enhancements made to a commercial small fixed-wing UAV system, which inc!nde a ncw dpvelopnent architecture that also provides hardware in the loop simulation capability. After presenting the results of simulated and actual flights of bioinspired flight algorithms, it concludes with a discussion of future development to include an expansion of system capabilities and field science support.

  1. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements

    International Nuclear Information System (INIS)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-01-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s −1 and a longitudinal stiffening rate as high as 2 N (mm s) −1 . Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm. (paper)

  2. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements.

    Science.gov (United States)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-06-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s(-1) and a longitudinal stiffening rate as high as 2 N (mm s)(-1). Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm.

  3. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    International Nuclear Information System (INIS)

    Palagi, Stefano; Mazzolai, Barbara; Beccai, Lucia; Jager, Edwin WH

    2013-01-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion. (paper)

  4. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications.

    Science.gov (United States)

    Palagi, Stefano; Jager, Edwin W H; Mazzolai, Barbara; Beccai, Lucia

    2013-12-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion.

  5. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    International Nuclear Information System (INIS)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-01-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human–robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as α f + ξ f and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, α f + ξ f has a non-linear dependence on temperature and varies from 6.0 × 10 −6  °C −1 (20 °C) to 10.6 × 10 −6  °C −1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C. (paper)

  6. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    Science.gov (United States)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-07-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human-robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10-6 °C-1 (20 °C) to 10.6 × 10-6 °C-1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C.

  7. Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms

    Science.gov (United States)

    Kaluza, Pablo; Urdapilleta, Eugenio

    2014-10-01

    Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron's computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.

  8. Biologically-Inspired Concepts for Autonomic Self-Protection in Multiagent Systems

    Science.gov (United States)

    Sterritt, Roy; Hinchey, Mike

    2006-01-01

    Biologically-inspired autonomous and autonomic systems (AAS) are essentially concerned with creating self-directed and self-managing systems based on metaphors &om nature and the human body, such as the autonomic nervous system. Agent technologies have been identified as a key enabler for engineering autonomy and autonomicity in systems, both in terms of retrofitting into legacy systems and in designing new systems. Handing over responsibility to systems themselves raises concerns for humans with regard to safety and security. This paper reports on the continued investigation into a strand of research on how to engineer self-protection mechanisms into systems to assist in encouraging confidence regarding security when utilizing autonomy and autonomicity. This includes utilizing the apoptosis and quiescence metaphors to potentially provide a self-destruct or self-sleep signal between autonomic agents when needed, and an ALice signal to facilitate self-identification and self-certification between anonymous autonomous agents and systems.

  9. Energy-based control for a biologically inspired hexapod robot with rolling locomotion

    Directory of Open Access Journals (Sweden)

    Takuma Nemoto

    2015-04-01

    Full Text Available This paper presents an approach to control rolling locomotion on the level ground with a biologically inspired hexapod robot. For controlling rolling locomotion, a controller which can compensate energy loss with rolling locomotion of the hexapod robot is designed based on its dynamic model. The dynamic model describes the rolling locomotion which is limited to planar one by an assumption that the hexapod robot does not fall down while rolling and influences due to collision and contact with the ground, and it is applied for computing the mechanical energy of the hexapod robot and a plant for a numerical simulation. The numerical simulation of the rolling locomotion on the level ground verifies the effectiveness of the proposed controller. The simulation results show that the hexapod robot can perform the rolling locomotion with the proposed controller. In conclusion, it is shown that the proposed control approach is effective in achieving the rolling locomotion on the level ground.

  10. Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach.

    Science.gov (United States)

    Irshad, Humayun; Jalali, Sepehr; Roux, Ludovic; Racoceanu, Daniel; Hwee, Lim Joo; Naour, Gilles Le; Capron, Frédérique

    2013-01-01

    According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. The aim is to investigate the various texture features and Hierarchical Model and X (HMAX) biologically inspired approach for mitosis detection using machine-learning techniques. We propose an approach that assists pathologists in automated mitosis detection and counting. The proposed method, which is based on the most favorable texture features combination, examines the separability between different channels of color space. Blue-ratio channel provides more discriminative information for mitosis detection in histopathological images. Co-occurrence features, run-length features, and Scale-invariant feature transform (SIFT) features were extracted and used in the classification of mitosis. Finally, a classification is performed to put the candidate patch either in the mitosis class or in the non-mitosis class. Three different classifiers have been evaluated: Decision tree, linear kernel Support Vector Machine (SVM), and non-linear kernel SVM. We also evaluate the performance of the proposed framework using the modified biologically inspired model of HMAX and compare the results with other feature extraction methods such as dense SIFT. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for an International Conference on Pattern Recognition (ICPR) 2012 contest. The proposed framework achieved 76% recall, 75% precision and 76% F-measure. Different frameworks for classification have been evaluated for mitosis detection. In future work, instead of regions, we intend to compute features on the results of mitosis contour segmentation and use them to improve detection and classification rate.

  11. Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach

    Directory of Open Access Journals (Sweden)

    Humayun Irshad

    2013-01-01

    Full Text Available Context: According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. Aims: The aim is to investigate the various texture features and Hierarchical Model and X (HMAX biologically inspired approach for mitosis detection using machine-learning techniques. Materials and Methods: We propose an approach that assists pathologists in automated mitosis detection and counting. The proposed method, which is based on the most favorable texture features combination, examines the separability between different channels of color space. Blue-ratio channel provides more discriminative information for mitosis detection in histopathological images. Co-occurrence features, run-length features, and Scale-invariant feature transform (SIFT features were extracted and used in the classification of mitosis. Finally, a classification is performed to put the candidate patch either in the mitosis class or in the non-mitosis class. Three different classifiers have been evaluated: Decision tree, linear kernel Support Vector Machine (SVM, and non-linear kernel SVM. We also evaluate the performance of the proposed framework using the modified biologically inspired model of HMAX and compare the results with other feature extraction methods such as dense SIFT. Results: The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS dataset provided for an International Conference on Pattern Recognition (ICPR 2012 contest. The proposed framework achieved 76% recall, 75% precision and 76% F-measure. Conclusions: Different frameworks for classification have been evaluated for mitosis detection. In future work, instead of regions, we intend to compute features on the results of mitosis contour segmentation and use them to improve detection and

  12. Application of surface plasmons to biological and chemical sensors

    International Nuclear Information System (INIS)

    Kajikawa, Kotaro

    2015-01-01

    Surface plasmons (SPs) are a collective normal mode of electrons localized at a metallic surface. It has been used for biological sensors since 1990s. This is because it has the following specific characters: (a) The resonance condition is sensitive to the surrounding dielectric constants (refractive indexes) and (b) Highly enhanced optical-electric-fields are produced adjacent to SPs. A brief introduction is given on the principle of the biological and chemical sensors based on SPs for the readers working in the fields other than SPs, followed by a review on the recent developments of the biological and chemical sensors. (author)

  13. Allothetic and idiothetic sensor fusion in rat-inspired robot localization

    Science.gov (United States)

    Weitzenfeld, Alfredo; Fellous, Jean-Marc; Barrera, Alejandra; Tejera, Gonzalo

    2012-06-01

    We describe a spatial cognition model based on the rat's brain neurophysiology as a basis for new robotic navigation architectures. The model integrates allothetic (external visual landmarks) and idiothetic (internal kinesthetic information) cues to train either rat or robot to learn a path enabling it to reach a goal from multiple starting positions. It stands in contrast to most robotic architectures based on SLAM, where a map of the environment is built to provide probabilistic localization information computed from robot odometry and landmark perception. Allothetic cues suffer in general from perceptual ambiguity when trying to distinguish between places with equivalent visual patterns, while idiothetic cues suffer from imprecise motions and limited memory recalls. We experiment with both types of cues in different maze configurations by training rats and robots to find the goal starting from a fixed location, and then testing them to reach the same target from new starting locations. We show that the robot, after having pre-explored a maze, can find a goal with improved efficiency, and is able to (1) learn the correct route to reach the goal, (2) recognize places already visited, and (3) exploit allothetic and idiothetic cues to improve on its performance. We finally contrast our biologically-inspired approach to more traditional robotic approaches and discuss current work in progress.

  14. Nanotechnologv Enabled Biological and Chemical Sensors

    Science.gov (United States)

    Koehne, Jessica; Meyyappan, M.

    2011-01-01

    Nanotechnology is an enabling technology that will impact almost all economic sectors: one of the most important and with great potential is the health/medical sector. - Nanomaterials for drug delivery - Early warning sensors - Implantable devices - Artificial parts with improved characteristics Carbon nanotubes and nanofibers show promise for use in sensor development, electrodes and other biomedical applications.

  15. Introducing memory and association mechanism into a biologically inspired visual model.

    Science.gov (United States)

    Qiao, Hong; Li, Yinlin; Tang, Tang; Wang, Peng

    2014-09-01

    A famous biologically inspired hierarchical model (HMAX model), which was proposed recently and corresponds to V1 to V4 of the ventral pathway in primate visual cortex, has been successfully applied to multiple visual recognition tasks. The model is able to achieve a set of position- and scale-tolerant recognition, which is a central problem in pattern recognition. In this paper, based on some other biological experimental evidence, we introduce the memory and association mechanism into the HMAX model. The main contributions of the work are: 1) mimicking the active memory and association mechanism and adding the top down adjustment to the HMAX model, which is the first try to add the active adjustment to this famous model and 2) from the perspective of information, algorithms based on the new model can reduce the computation storage and have a good recognition performance. The new model is also applied to object recognition processes. The primary experimental results show that our method is efficient with a much lower memory requirement.

  16. A biologically inspired neural net for trajectory formation and obstacle avoidance.

    Science.gov (United States)

    Glasius, R; Komoda, A; Gielen, S C

    1996-06-01

    In this paper we present a biologically inspired two-layered neural network for trajectory formation and obstacle avoidance. The two topographically ordered neural maps consist of analog neurons having continuous dynamics. The first layer, the sensory map, receives sensory information and builds up an activity pattern which contains the optimal solution (i.e. shortest path without collisions) for any given set of current position, target positions and obstacle positions. Targets and obstacles are allowed to move, in which case the activity pattern in the sensory map will change accordingly. The time evolution of the neural activity in the second layer, the motor map, results in a moving cluster of activity, which can be interpreted as a population vector. Through the feedforward connections between the two layers, input of the sensory map directs the movement of the cluster along the optimal path from the current position of the cluster to the target position. The smooth trajectory is the result of the intrinsic dynamics of the network only. No supervisor is required. The output of the motor map can be used for direct control of an autonomous system in a cluttered environment or for control of the actuators of a biological limb or robot manipulator. The system is able to reach a target even in the presence of an external perturbation. Computer simulations of a point robot and a multi-joint manipulator illustrate the theory.

  17. Biologically-inspired approaches for self-organization, adaptation, and collaboration of heterogeneous autonomous systems

    Science.gov (United States)

    Steinberg, Marc

    2011-06-01

    This paper presents a selective survey of theoretical and experimental progress in the development of biologicallyinspired approaches for complex surveillance and reconnaissance problems with multiple, heterogeneous autonomous systems. The focus is on approaches that may address ISR problems that can quickly become mathematically intractable or otherwise impractical to implement using traditional optimization techniques as the size and complexity of the problem is increased. These problems require dealing with complex spatiotemporal objectives and constraints at a variety of levels from motion planning to task allocation. There is also a need to ensure solutions are reliable and robust to uncertainty and communications limitations. First, the paper will provide a short introduction to the current state of relevant biological research as relates to collective animal behavior. Second, the paper will describe research on largely decentralized, reactive, or swarm approaches that have been inspired by biological phenomena such as schools of fish, flocks of birds, ant colonies, and insect swarms. Next, the paper will discuss approaches towards more complex organizational and cooperative mechanisms in team and coalition behaviors in order to provide mission coverage of large, complex areas. Relevant team behavior may be derived from recent advances in understanding of the social and cooperative behaviors used for collaboration by tens of animals with higher-level cognitive abilities such as mammals and birds. Finally, the paper will briefly discuss challenges involved in user interaction with these types of systems.

  18. A Magnetic Sensor System for Biological Detection

    KAUST Repository

    Li, Fuquan

    2015-01-01

    Magnetic biosensors detect biological targets through sensing the stray field of magnetic beads which label the targets. Commonly, magnetic biosensors employ the “sandwich” method to immobilize biological targets, i.e., the targets are sandwiched

  19. A biologically inspired neural network model to transformation invariant object recognition

    Science.gov (United States)

    Iftekharuddin, Khan M.; Li, Yaqin; Siddiqui, Faraz

    2007-09-01

    Transformation invariant image recognition has been an active research area due to its widespread applications in a variety of fields such as military operations, robotics, medical practices, geographic scene analysis, and many others. The primary goal for this research is detection of objects in the presence of image transformations such as changes in resolution, rotation, translation, scale and occlusion. We investigate a biologically-inspired neural network (NN) model for such transformation-invariant object recognition. In a classical training-testing setup for NN, the performance is largely dependent on the range of transformation or orientation involved in training. However, an even more serious dilemma is that there may not be enough training data available for successful learning or even no training data at all. To alleviate this problem, a biologically inspired reinforcement learning (RL) approach is proposed. In this paper, the RL approach is explored for object recognition with different types of transformations such as changes in scale, size, resolution and rotation. The RL is implemented in an adaptive critic design (ACD) framework, which approximates the neuro-dynamic programming of an action network and a critic network, respectively. Two ACD algorithms such as Heuristic Dynamic Programming (HDP) and Dual Heuristic dynamic Programming (DHP) are investigated to obtain transformation invariant object recognition. The two learning algorithms are evaluated statistically using simulated transformations in images as well as with a large-scale UMIST face database with pose variations. In the face database authentication case, the 90° out-of-plane rotation of faces from 20 different subjects in the UMIST database is used. Our simulations show promising results for both designs for transformation-invariant object recognition and authentication of faces. Comparing the two algorithms, DHP outperforms HDP in learning capability, as DHP takes fewer steps to

  20. Biologically inspired robotic inspectors: the engineering reality and future outlook (Keynote address)

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-04-01

    Human errors have long been recognized as a major factor in the reliability of nondestructive evaluation results. To minimize such errors, there is an increasing reliance on automatic inspection tools that allow faster and consistent tests. Crawlers and various manipulation devices are commonly used to perform variety of inspection procedures that include C-scan with contour following capability to rapidly inspect complex structures. The emergence of robots has been the result of the need to deal with parts that are too complex to handle by a simple automatic system. Economical factors are continuing to hamper the wide use of robotics for inspection applications however technology advances are increasingly changing this paradigm. Autonomous robots, which may look like human, can potentially address the need to inspect structures with configuration that are not predetermined. The operation of such robots that mimic biology may take place at harsh or hazardous environments that are too dangerous for human presence. Biomimetic technologies such as artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. Inspired by science fiction, making biomimetic robots is increasingly becoming an engineering reality and in this paper the state-of-the-art will be reviewed and the outlook for the future will be discussed.

  1. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study.

    Science.gov (United States)

    Thompson-Bean, E; Das, R; McDaid, A

    2016-10-31

    We present a novel methodology for the design and manufacture of complex biologically inspired soft robotic fluidic actuators. The methodology is applied to the design and manufacture of a prosthetic for the hand. Real human hands are scanned to produce a 3D model of a finger, and pneumatic networks are implemented within it to produce a biomimetic bending motion. The finger is then partitioned into material sections, and a genetic algorithm based optimization, using finite element analysis, is employed to discover the optimal material for each section. This is based on two biomimetic performance criteria. Two sets of optimizations using two material sets are performed. Promising optimized material arrangements are fabricated using two techniques to validate the optimization routine, and the fabricated and simulated results are compared. We find that the optimization is successful in producing biomimetic soft robotic fingers and that fabrication of the fingers is possible. Limitations and paths for development are discussed. This methodology can be applied for other fluidic soft robotic devices.

  2. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Science.gov (United States)

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.

  3. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes.

    Science.gov (United States)

    Xue, Shuai; Yin, Jianli; Shao, Jiawei; Yu, Yuanhuan; Yang, Linfeng; Wang, Yidan; Xie, Mingqi; Fussenegger, Martin; Ye, Haifeng

    2017-02-01

    Hepatogenous diabetes is a complex disease that is typified by the simultaneous presence of type 2 diabetes and many forms of liver disease. The chief pathogenic determinant in this pathophysiological network is insulin resistance (IR), an asymptomatic disease state in which impaired insulin signaling in target tissues initiates a variety of organ dysfunctions. However, pharmacotherapies targeting IR remain limited and are generally inapplicable for liver disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment in many liver disorders. Here, we utilized the congruent pharmacological activities of OA and glucagon-like-peptide 1 (GLP-1) in relieving IR and improving liver and pancreas functions and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs. In particular, OA-triggered short human GLP-1 (shGLP-1) expression in hepatogenous diabetic mice rapidly and simultaneously attenuated many disease-specific metabolic failures, whereas OA or shGLP-1 monotherapy failed to achieve corresponding therapeutic effects. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficacies of single therapeutics. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  4. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.

    Science.gov (United States)

    Lyu, Mingxing; Chen, Weihai; Ding, Xilun; Wang, Jianhua; Bai, Shaoping; Ren, Huichao

    2016-10-01

    This paper proposes a novel bionic model of the human leg according to the theory of physiology. Based on this model, we present a biologically inspired 3-degree of freedom (DOF) lower limb exoskeleton for human gait rehabilitation, showing that the lower limb exoskeleton is fully compatible with the human knee joint. The exoskeleton has a hybrid serial-parallel kinematic structure consisting of a 1-DOF hip joint module and a 2-DOF knee joint module in the sagittal plane. A planar 2-DOF parallel mechanism is introduced in the design to fully accommodate the motion of the human knee joint, which features not only rotation but also relative sliding. Therefore, the design is consistent with the requirements of bionics. The forward and inverse kinematic analysis is studied and the workspace of the exoskeleton is analyzed. The structural parameters are optimized to obtain a larger workspace. The results using MATLAB-ADAMS co-simulation are shown in this paper to demonstrate the feasibility of our design. A prototype of the exoskeleton is also developed and an experiment performed to verify the kinematic analysis. Compared with existing lower limb exoskeletons, the designed mechanism has a large workspace, while allowing knee joint rotation and small amount of sliding.

  5. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation

    Science.gov (United States)

    Lyu, Mingxing; Chen, Weihai; Ding, Xilun; Wang, Jianhua; Bai, Shaoping; Ren, Huichao

    2016-10-01

    This paper proposes a novel bionic model of the human leg according to the theory of physiology. Based on this model, we present a biologically inspired 3-degree of freedom (DOF) lower limb exoskeleton for human gait rehabilitation, showing that the lower limb exoskeleton is fully compatible with the human knee joint. The exoskeleton has a hybrid serial-parallel kinematic structure consisting of a 1-DOF hip joint module and a 2-DOF knee joint module in the sagittal plane. A planar 2-DOF parallel mechanism is introduced in the design to fully accommodate the motion of the human knee joint, which features not only rotation but also relative sliding. Therefore, the design is consistent with the requirements of bionics. The forward and inverse kinematic analysis is studied and the workspace of the exoskeleton is analyzed. The structural parameters are optimized to obtain a larger workspace. The results using MATLAB-ADAMS co-simulation are shown in this paper to demonstrate the feasibility of our design. A prototype of the exoskeleton is also developed and an experiment performed to verify the kinematic analysis. Compared with existing lower limb exoskeletons, the designed mechanism has a large workspace, while allowing knee joint rotation and small amount of sliding.

  6. Modelling of a biologically inspired robotic fish driven by compliant parts

    International Nuclear Information System (INIS)

    Daou, Hadi El; Salumäe, Taavi; Kruusmaa, Maarja; Chambers, Lily D; Megill, William M

    2014-01-01

    Inspired by biological swimmers such as fish, a robot composed of a rigid head, a compliant body and a rigid caudal fin was built. It has the geometrical properties of a subcarangiform swimmer of the same size. The head houses a servo-motor which actuates the compliant body and the caudal fin. It achieves this by applying a concentrated moment on a point near the compliant body base. In this paper, the dynamics of the compliant body driving the robotic fish is modelled and experimentally validated. Lighthill’s elongated body theory is used to define the hydrodynamic forces on the compliant part and Rayleigh proportional damping is used to model damping. Based on the assumed modes method, an energetic approach is used to write the equations of motion of the compliant body and to compute the relationship between the applied moment and the resulting lateral deflections. Experiments on the compliant body were carried out to validate the model predictions. The results showed that a good match was achieved between the measured and predicted deformations. A discussion of the swimming motions between the real fish and the robot is presented. (paper)

  7. A Biologically Inspired Approach to Frequency Domain Feature Extraction for EEG Classification

    Directory of Open Access Journals (Sweden)

    Nurhan Gursel Ozmen

    2018-01-01

    Full Text Available Classification of electroencephalogram (EEG signal is important in mental decoding for brain-computer interfaces (BCI. We introduced a feature extraction approach based on frequency domain analysis to improve the classification performance on different mental tasks using single-channel EEG. This biologically inspired method extracts the most discriminative spectral features from power spectral densities (PSDs of the EEG signals. We applied our method on a dataset of six subjects who performed five different imagination tasks: (i resting state, (ii mental arithmetic, (iii imagination of left hand movement, (iv imagination of right hand movement, and (v imagination of letter “A.” Pairwise and multiclass classifications were performed in single EEG channel using Linear Discriminant Analysis and Support Vector Machines. Our method produced results (mean classification accuracy of 83.06% for binary classification and 91.85% for multiclassification that are on par with the state-of-the-art methods, using single-channel EEG with low computational cost. Among all task pairs, mental arithmetic versus letter imagination yielded the best result (mean classification accuracy of 90.29%, indicating that this task pair could be the most suitable pair for a binary class BCI. This study contributes to the development of single-channel BCI, as well as finding the best task pair for user defined applications.

  8. A Comparative Study of Biologically Inspired Walking Gaits through Waypoint Navigation

    Directory of Open Access Journals (Sweden)

    Umar Asif

    2011-01-01

    Full Text Available This paper investigates the locomotion of a walking robot by delivering a comparative study of three different biologically inspired walking gaits, namely: tripod, ripple, and wave, in terms of ground slippage they experience while walking. The objective of this study is to identify the gait model which experiences the minimum slippage while walking on a ground with a specific coefficient of friction. To accomplish this feat, the robot is steered over a reference path using a waypoint navigation algorithm, and the divergence of the robot from the reference path is investigated in terms of slip errors. Experiments are conducted through closed-loop simulations using an open dynamics engine which emphasizes the fact that due to uneven and unsymmetrical distribution of payload in tripod and ripple gait models, the robot experiences comparatively larger drift in these gaits than when using the wave gait model in which the distribution of payload is even and symmetrical on both sides of the robot body. The paper investigates this phenomenon on the basis of force distribution of supporting legs in each gait model.

  9. 16th International Conference on Hybrid Intelligent Systems and the 8th World Congress on Nature and Biologically Inspired Computing

    CERN Document Server

    Haqiq, Abdelkrim; Alimi, Adel; Mezzour, Ghita; Rokbani, Nizar; Muda, Azah

    2017-01-01

    This book presents the latest research in hybrid intelligent systems. It includes 57 carefully selected papers from the 16th International Conference on Hybrid Intelligent Systems (HIS 2016) and the 8th World Congress on Nature and Biologically Inspired Computing (NaBIC 2016), held on November 21–23, 2016 in Marrakech, Morocco. HIS - NaBIC 2016 was jointly organized by the Machine Intelligence Research Labs (MIR Labs), USA; Hassan 1st University, Settat, Morocco and University of Sfax, Tunisia. Hybridization of intelligent systems is a promising research field in modern artificial/computational intelligence and is concerned with the development of the next generation of intelligent systems. The conference’s main aim is to inspire further exploration of the intriguing potential of hybrid intelligent systems and bio-inspired computing. As such, the book is a valuable resource for practicing engineers /scientists and researchers working in the field of computational intelligence and artificial intelligence.

  10. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    Science.gov (United States)

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary

  11. Bio-Inspired Carbon Monoxide Sensors with Voltage-Activated Sensitivity

    KAUST Repository

    Savagatrup, Suchol; Schroeder, Vera; He, Xin; Lin, Sibo; He, Maggie; Yassine, Omar; Salama, Khaled N.; Zhang, Xixiang; Swager, Timothy M.

    2017-01-01

    voltage offers a predicted extra dimension for sensing. Specifically, the sensors show a significant increase in sensitivity toward CO when negative gate voltage is applied. The dosimetric sensors are selective to ppm levels of CO and functional in air. UV

  12. Training mechanical engineering students to utilize biological inspiration during product development.

    Science.gov (United States)

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  13. Extensive Investigations on Bio-Inspired Trust and Reputation Model over Hops Coefficient Factor in Distributed Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Vinod Kumar Verma

    2014-08-01

    Full Text Available Resource utilization requires a substantial consideration for a trust and reputation model to be deployed within a wireless sensor network (WSN. In the evaluation, our attention is focused on the effect of hops coefficient factor estimation on WSN with bio-inspired trust and reputation model (BTRM. We present the state-of-the-art system level evaluation of accuracy and path length of sensor node operations for their current and average scenarios. Additionally, we emphasized over the energy consumption evaluation for static, dynamic and oscillatory modes of BTRM-WSN model. The performance of the hops coefficient factor for our proposed framework is evaluated via analytic bounds and numerical simulations.

  14. Development of a rechargeable optical hydrogen peroxide sensor - sensor design and biological application

    DEFF Research Database (Denmark)

    Koren, Klaus; Jensen, Peter Østrup; Kühl, Michael

    2016-01-01

    and readout strategy, H2O2 can be measured with high spatial (∼500 μm) and temporal (∼30 s) resolution. The sensor has a broad applicability both in complex environmental and biomedical systems, as demonstrated by (i) H2O2 concentration profile measurements in natural photosynthetic biofilms under light....... Quantifying H2O2 within biological samples is challenging and often not possible. Here we present a quasi-reversible fiber-optic sensor capable of measuring H2O2 concentrations ranging from 1-100 μM within different biological samples. Based on a Prussian blue/white redox cycle and a simple sensor recharging...

  15. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection.

    Science.gov (United States)

    Pang, Wei; Zhao, Hongyuan; Kim, Eun Sok; Zhang, Hao; Yu, Hongyu; Hu, Xiaotang

    2012-01-07

    Piezoelectric microelectromechanical systems (MEMS) resonant sensors, known for their excellent mass resolution, have been studied for many applications, including DNA hybridization, protein-ligand interactions, and immunosensor development. They have also been explored for detecting antigens, organic gas, toxic ions, and explosives. Most piezoelectric MEMS resonant sensors are acoustic sensors (with specific coating layers) that enable selective and label-free detection of biological events in real time. These label-free technologies have recently garnered significant attention for their sensitive and quantitative multi-parameter analysis of biological systems. Since piezoelectric MEMS resonant sensors do more than transform analyte mass or thickness into an electrical signal (e.g., frequency and impedance), special attention must be paid to their potential beyond microweighing, such as measuring elastic and viscous properties, and several types of sensors currently under development operate at different resonant modes (i.e., thickness extensional mode, thickness shear mode, lateral extensional mode, flexural mode, etc.). In this review, we provide an overview of recent developments in micromachined resonant sensors and activities relating to biochemical interfaces for acoustic sensors.

  16. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    Science.gov (United States)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  17. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation

    International Nuclear Information System (INIS)

    Childs, Allie; Castro, Nathan J; Zhang, Lijie Grace; Hemraz, Usha D; Fenniri, Hicham

    2013-01-01

    Cartilage defects are a persistent issue in orthopedic tissue engineering where acute and chronic tissue damage stemming from osteoarthritis, trauma, and sport injuries, present a common and serious clinical problem. Unlike bone, cartilage repair continues to be largely intractable due to the tissue's inherently poor regenerative capacity. Thus, the objective of this study is to design a novel tissue engineered nanostructured cartilage scaffold via biologically-inspired self-assembling rosette nanotubes (RNTs) and biocompatible non-woven poly (l-lactic acid) (PLLA) for enhanced human bone marrow mesenchymal stem cell (hMSC) chondrogenic differentiation. Specifically, RNTs are a new class of biomimetic supramolecular nanomaterial obtained through the self-assembly of low-molecular-weight modified guanine/cytosine DNA base hybrids (the G∧C motif) in an aqueous environment. In this study, we synthesized a novel twin G∧C-based RNT (TB-RGDSK) functionalized with cell-favorable arginine–glycine–aspartic acid–serine–lysine (RGDSK) integrin binding peptide and a twin G∧C based RNT with an aminobutane linker molecule (TBL). hMSC adhesion, proliferation and chondrogenic differentiation were evaluated in vitro in scaffold groups consisting of biocompatible PLLA with TBL, 1:9 TB-RGDSK:TBL, and TB-RGDSK, respectively. Our results show that RNTs can remarkably increase total glycosaminoglycan, collagen, and protein production when compared to PLLA controls without nanotubes. Furthermore, the TB-RGDSK with 100% well-organized RGDSK peptides achieved the highest chondrogenic differentiation of hMSCs. The current in vitro study illustrated that RNT nanotopography and surface chemistry played an important role in enhancing hMSC chondrogenic differentiation thus making them promising for cartilage regeneration. (paper)

  18. Optical sensor for heat conduction measurement in biological tissue

    International Nuclear Information System (INIS)

    Gutierrez-Arroyo, A; Sanchez-Perez, C; Aleman-Garcia, N

    2013-01-01

    This paper presents the design of a heat flux sensor using an optical fiber system to measure heat conduction in biological tissues. This optoelectronic device is based on the photothermal beam deflection of a laser beam travelling in an acrylic slab this deflection is measured with a fiber optic angle sensor. We measure heat conduction in biological samples with high repeatability and sensitivity enough to detect differences in tissues from three chicken organs. This technique could provide important information of vital organ function as well as the detect modifications due to degenerative diseases or physical damage caused by medications or therapies.

  19. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    Science.gov (United States)

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  20. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    OpenAIRE

    Lonsdale, Wade; Wajrak, Magdalena; Alameh, Kamal

    2017-01-01

    A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to...

  1. Neuro-Inspired Spike-Based Motion: From Dynamic Vision Sensor to Robot Motor Open-Loop Control through Spike-VITE

    Directory of Open Access Journals (Sweden)

    Fernando Perez-Peña

    2013-11-01

    Full Text Available In this paper we present a complete spike-based architecture: from a Dynamic Vision Sensor (retina to a stereo head robotic platform. The aim of this research is to reproduce intended movements performed by humans taking into account as many features as possible from the biological point of view. This paper fills the gap between current spike silicon sensors and robotic actuators by applying a spike processing strategy to the data flows in real time. The architecture is divided into layers: the retina, visual information processing, the trajectory generator layer which uses a neuroinspired algorithm (SVITE that can be replicated into as many times as DoF the robot has; and finally the actuation layer to supply the spikes to the robot (using PFM. All the layers do their tasks in a spike-processing mode, and they communicate each other through the neuro-inspired AER protocol. The open-loop controller is implemented on FPGA using AER interfaces developed by RTC Lab. Experimental results reveal the viability of this spike-based controller. Two main advantages are: low hardware resources (2% of a Xilinx Spartan 6 and power requirements (3.4 W to control a robot with a high number of DoF (up to 100 for a Xilinx Spartan 6. It also evidences the suitable use of AER as a communication protocol between processing and actuation.

  2. Neuro-Inspired Spike-Based Motion: From Dynamic Vision Sensor to Robot Motor Open-Loop Control through Spike-VITE

    Science.gov (United States)

    Perez-Peña, Fernando; Morgado-Estevez, Arturo; Linares-Barranco, Alejandro; Jimenez-Fernandez, Angel; Gomez-Rodriguez, Francisco; Jimenez-Moreno, Gabriel; Lopez-Coronado, Juan

    2013-01-01

    In this paper we present a complete spike-based architecture: from a Dynamic Vision Sensor (retina) to a stereo head robotic platform. The aim of this research is to reproduce intended movements performed by humans taking into account as many features as possible from the biological point of view. This paper fills the gap between current spike silicon sensors and robotic actuators by applying a spike processing strategy to the data flows in real time. The architecture is divided into layers: the retina, visual information processing, the trajectory generator layer which uses a neuroinspired algorithm (SVITE) that can be replicated into as many times as DoF the robot has; and finally the actuation layer to supply the spikes to the robot (using PFM). All the layers do their tasks in a spike-processing mode, and they communicate each other through the neuro-inspired AER protocol. The open-loop controller is implemented on FPGA using AER interfaces developed by RTC Lab. Experimental results reveal the viability of this spike-based controller. Two main advantages are: low hardware resources (2% of a Xilinx Spartan 6) and power requirements (3.4 W) to control a robot with a high number of DoF (up to 100 for a Xilinx Spartan 6). It also evidences the suitable use of AER as a communication protocol between processing and actuation. PMID:24264330

  3. Heme-based sensors in biological systems.

    Science.gov (United States)

    Rodgers, K R

    1999-04-01

    The past several years have been witness to a staggering rate of advancement in the understanding of how organisms respond to changes in the availability of diatomic molecules that are toxic and/or crucial to survival. Heme-based sensors presently constitute the majority of the proteins known to sense NO, O2 and CO and to initiate the chemistry required to adapt to changes in their availabilities. Knowledge of the three characterized members of this class, soluble guanylate cyclase, FixL and CooA, has grown substantially during the past year. The major advances have resulted from a broad range of approaches to elucidation of both function and mechanism. They include growth in the understanding of the interplay between the heme and protein in soluble guanylate cyclase, as well as alternate means for its stimulation. Insight into the O2-induced structural changes in FixL has been supplied by the single crystal structure of the heme domain of Bradyrhizobium japonicum. Finally, the ligation environment and ligand interchange that facilitates CO sensing by CooA has been established by spectroscopic and mutagenesis techniques.

  4. RuO₂ pH Sensor with Super-Glue-Inspired Reference Electrode.

    Science.gov (United States)

    Lonsdale, Wade; Wajrak, Magdalena; Alameh, Kamal

    2017-09-06

    A pH-sensitive RuO₂ electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO₂ working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO₂ pH-sensitive working electrode and a SiO₂-PVB junction-modified RuO₂ reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices.

  5. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    Directory of Open Access Journals (Sweden)

    Wade Lonsdale

    2017-09-01

    Full Text Available A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices.

  6. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    Science.gov (United States)

    Wajrak, Magdalena; Alameh, Kamal

    2017-01-01

    A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices. PMID:28878182

  7. Towards an Automatic Parking System using Bio-Inspired 1-D Optical Flow Sensors

    OpenAIRE

    Mafrica , Stefano; Servel , Alain; Ruffier , Franck

    2015-01-01

    International audience; Although several (semi-) automatic parking systems have been presented throughout the years [1]–[12], car manufacturers are still looking for low-cost sensors providing redundant information about the obstacles around the vehicle, as well as efficient methods of processing this information, in the hope of achieving a very high level of robustness. We therefore investigated how Local Motion Sensors (LMSs) [13], [14], comprising only of a few pixels giving 1-D optical fl...

  8. Animals as Mobile Biological Sensors for Forest Fire Detection

    Directory of Open Access Journals (Sweden)

    Yasar Guneri Sahin

    2007-12-01

    Full Text Available This paper proposes a mobile biological sensor system that can assist in earlydetection of forest fires one of the most dreaded natural disasters on the earth. The main ideapresented in this paper is to utilize animals with sensors as Mobile Biological Sensors(MBS. The devices used in this system are animals which are native animals living inforests, sensors (thermo and radiation sensors with GPS features that measure thetemperature and transmit the location of the MBS, access points for wireless communicationand a central computer system which classifies of animal actions. The system offers twodifferent methods, firstly: access points continuously receive data about animals’ locationusing GPS at certain time intervals and the gathered data is then classified and checked tosee if there is a sudden movement (panic of the animal groups: this method is called animalbehavior classification (ABC. The second method can be defined as thermal detection(TD: the access points get the temperature values from the MBS devices and send the datato a central computer to check for instant changes in the temperatures. This system may beused for many purposes other than fire detection, namely animal tracking, poachingprevention and detecting instantaneous animal death.

  9. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors.

    Science.gov (United States)

    Ha, Minjeong; Lim, Seongdong; Cho, Soowon; Lee, Youngoh; Na, Sangyun; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 μW/cm 2 ), pressure (0.55 V/kPa), and bending (∼0.1 V/°) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics.

  10. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Eugenia Pechkova

    2011-08-01

    Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.

  11. Skin inspired fractal strain sensors using a copper nanowire and graphite microflake hybrid conductive network.

    Science.gov (United States)

    Jason, Naveen N; Wang, Stephen J; Bhanushali, Sushrut; Cheng, Wenlong

    2016-09-22

    This work demonstrates a facile "paint-on" approach to fabricate highly stretchable and highly sensitive strain sensors by combining one-dimensional copper nanowire networks with two-dimensional graphite microflakes. This paint-on approach allows for the fabrication of electronic skin (e-skin) patches which can directly replicate with high fidelity the human skin surface they are on, regardless of the topological complexity. This leads to high accuracy for detecting biometric signals for applications in personalised wearable sensors. The copper nanowires contribute to high stretchability and the graphite flakes offer high sensitivity, and their hybrid coating offers the advantages of both. To understand the topological effects on the sensing performance, we utilized fractal shaped elastomeric substrates and systematically compared their stretchability and sensitivity. We could achieve a high stretchability of up to 600% and a maximum gauge factor of 3000. Our simple yet efficient paint-on approach enabled facile fine-tuning of sensitivity/stretchability simply by adjusting ratios of 1D vs. 2D materials in the hybrid coating, and the topological structural designs. This capability leads to a wide range of biomedical sensors demonstrated here, including pulse sensors, prosthetic hands, and a wireless ankle motion sensor.

  12. Bio-Inspired Carbon Monoxide Sensors with Voltage-Activated Sensitivity

    KAUST Repository

    Savagatrup, Suchol

    2017-09-27

    Carbon monoxide (CO) outcompetes oxygen when binding to the iron center of hemeproteins, leading to a reduction in blood oxygen level and acute poisoning. Harvesting the strong specific interaction between CO and the iron porphyrin provides a highly selective and customizable sensor. We report the development of chemiresistive sensors with voltage-activated sensitivity for the detection of CO comprising iron porphyrin and functionalized single-walled carbon nanotubes (F-SWCNTs). Modulation of the gate voltage offers a predicted extra dimension for sensing. Specifically, the sensors show a significant increase in sensitivity toward CO when negative gate voltage is applied. The dosimetric sensors are selective to ppm levels of CO and functional in air. UV/Vis spectroscopy, differential pulse voltammetry, and density functional theory reveal that the in situ reduction of FeIII to FeII enhances the interaction between the F-SWCNTs and CO. Our results illustrate a new mode of sensors wherein redox active recognition units are voltage-activated to give enhanced and highly specific responses.

  13. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    Science.gov (United States)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  14. Solution-gated graphene transistors for chemical and biological sensors.

    Science.gov (United States)

    Yan, Feng; Zhang, Meng; Li, Jinhua

    2014-03-01

    Graphene has attracted much attention in biomedical applications for its fascinating properties. Because of the well-known 2D structure, every atom of graphene is exposed to the environment, so the electronic properties of graphene are very sensitive to charged analytes (ions, DNA, cells, etc.) or an electric field around it, which renders graphene an ideal material for high-performance sensors. Solution-gated graphene transistors (SGGTs) can operate in electrolytes and are thus excellent candidates for chemical and biological sensors, which have been extensively studied in the recent 5 years. Here, the device physics, the sensing mechanisms, and the performance of the recently developed SGGT-based chemical and biological sensors, including pH, ion, cell, bacterial, DNA, protein, glucose sensors, etc., are introduced. Their advantages and shortcomings, in comparison with some conventional techniques, are discussed. Conclusions and challenges for the future development of the field are addressed in the end. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A wearable mobility device for the blind using retina-inspired dynamic vision sensors.

    Science.gov (United States)

    Ghaderi, Viviane S; Mulas, Marcello; Pereira, Vinicius Felisberto Santos; Everding, Lukas; Weikersdorfer, David; Conradt, Jorg

    2015-01-01

    Proposed is a prototype of a wearable mobility device which aims to assist the blind with navigation and object avoidance via auditory-vision-substitution. The described system uses two dynamic vision sensors and event-based information processing techniques to extract depth information. The 3D visual input is then processed using three different strategies, and converted to a 3D output sound using an individualized head-related transfer function. The performance of the device with different processing strategies is evaluated via initial tests with ten subjects. The outcome of these tests demonstrate promising performance of the system after only very short training times of a few minutes due to the minimal encoding of outputs from the vision sensors which are translated into simple sound patterns easily interpretable for the user. The envisioned system will allow for efficient real-time algorithms on a hands-free and lightweight device with exceptional battery life-time.

  16. Virtual Wireless Sensor Networks: Adaptive Brain-Inspired Configuration for Internet of Things Applications

    Science.gov (United States)

    Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki

    2016-01-01

    Many researchers are devoting attention to the so-called “Internet of Things” (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user’s demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology. PMID:27548177

  17. Virtual Wireless Sensor Networks: Adaptive Brain-Inspired Configuration for Internet of Things Applications.

    Science.gov (United States)

    Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki

    2016-08-19

    Many researchers are devoting attention to the so-called "Internet of Things" (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user's demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology.

  18. B-iTRS: A Bio-Inspired Trusted Routing Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mingchuan Zhang

    2015-01-01

    Full Text Available In WSNs, routing algorithms need to handle dynamical changes of network topology, extra overhead, energy saving, and other requirements. Therefore, routing in WSNs is an extremely interesting and challenging issue. In this paper, we present a novel bio-inspired trusted routing scheme (B-iTRS based on ant colony optimization (ACO and Physarum autonomic optimization (PAO. For trust assessment, B-iTRS monitors neighbors’ behavior in real time, receives feedback from Sink, and then assesses neighbors’ trusts based on the acquired information. For routing scheme, each node finds routes to the Sink based on ACO and PAO. In the process of path finding, B-iTRS senses the load and trust value of each node and then calculates the link load and link trust of the found routes to support the route selection. Moreover, B-iTRS also assesses the route based on PAO to maintain the route table. Simulation results show how B-iTRS can achieve the effective performance compared to existing state-of-the-art algorithms.

  19. A Biologically-Inspired Power Control Algorithm for Energy-Efficient Cellular Networks

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Choi

    2016-03-01

    Full Text Available Most of the energy used to operate a cellular network is consumed by a base station (BS, and reducing the transmission power of a BS can therefore afford a substantial reduction in the amount of energy used in a network. In this paper, we propose a distributed transmit power control (TPC algorithm inspired by bird flocking behavior as a means of improving the energy efficiency of a cellular network. Just as each bird in a flock attempts to match its velocity with the average velocity of adjacent birds, in the proposed algorithm, each mobile station (MS in a cell matches its rate with the average rate of the co-channel MSs in adjacent cells by controlling the transmit power of its serving BS. We verify that this bio-inspired TPC algorithm using a local rate-average process achieves an exponential convergence and maximizes the minimum rate of the MSs concerned. Simulation results show that the proposed TPC algorithm follows the same convergence properties as the flocking algorithm and also effectively reduces the power consumption at the BSs while maintaining a low outage probability as the inter-cell interference increases; in so doing, it significantly improves the energy efficiency of a cellular network.

  20. Using Internet of Things inspired wireless sensor networks to monitor cryospheric processes

    Science.gov (United States)

    Hart, J. K.; Martinez, K.

    2017-12-01

    In order to understand how modern climate change is effecting cryospheric environments we need to monitor these remote environments. There are few measurements of current day conditions because of the logistical difficulties. In particular, the whole year needs to be monitored, as well as accessing challenging environments (such as beneath the glacier). We demonstrate from Norway, Iceland and Scotland how embedded sensors along with geophysical (GPR)and surveying data (dGPS, TLS, UAV and time-lapse photography) can be used to investigate recent dramatic environmental changes associated with climate change. This includes: i) a comparison between stable and unstable glacier retreat (the subglacial hydrology, glacier motion, englacial structure and till behaviour of a rapid subaqueous glacier break-up compared with slower terrestrial retreat); and iii) an investigation of future ground stability and greenhouse gas release associated with periglacial conditions.

  1. Various on-chip sensors with microfluidics for biological applications.

    Science.gov (United States)

    Lee, Hun; Xu, Linfeng; Koh, Domin; Nyayapathi, Nikhila; Oh, Kwang W

    2014-09-12

    In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  2. Various On-Chip Sensors with Microfluidics for Biological Applications

    Directory of Open Access Journals (Sweden)

    Hun Lee

    2014-09-01

    Full Text Available In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR and surface-enhanced Raman scattering (SERS to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV and greater depth of field (DOF. As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  3. A biologically inspired artificial fish using flexible matrix composite actuators: analysis and experiment

    International Nuclear Information System (INIS)

    Zhang, Zhiye; Philen, Michael; Neu, Wayne

    2010-01-01

    A bio-inspired prototype fish using the flexible matrix composite (FMC) muscle technology for fin and body actuation is developed. FMC actuators are pressure driven muscle-like actuators capable of large displacements as well as large blocking forces. An analytical model of the artificial fish using FMC actuators is developed and analysis results are presented. An experimental prototype of the artificial fish having FMC artificial muscles has been completed and tested. Constant mean thrusts have been achieved in the laboratory for a stationary fish for different undulation frequencies around 1 Hz. The experimental results demonstrate that a nearly constant thrust can be achieved through tuning of excitation frequency for given body stiffness. Free swimming results show that the prototype can swim at approximately 0.3 m s −1

  4. An insect-inspired bionic sensor for tactile localisation and material classification with state-dependent modulation

    Directory of Open Access Journals (Sweden)

    Luca ePatanè

    2012-08-01

    Full Text Available Insects carry a pair of antennae on their head: multimodal sensory organs that serve a wide range of sensory-guided behaviours. During locomotion, antennae are involved in near-range orientation, for example in detecting, localising, probing and negotiating obstacles.Here we present a bionic, active tactile sensing system inspired by insect antennae. It comprises an actuated elastic rod equipped with a terminal acceleration sensor. The measurement principle is based on the analysis of damped harmonic oscillations registered upon contact with an object. The dominant frequency of the oscillation is extracted to determine the distance of the contact point along the probe, and basal angular encoders allow tactile localisation in a polar coordinate system. Finally, the damping behaviour of the registered signal is exploited to determine the most likely material.The tactile sensor is tested in four approaches with increasing neural plausibility: First, we show that peak extraction from the Fourier spectrum is sufficient for tactile localisation with position errors below 1%. Also, the damping property of the extracted frequency is used for material classification. Second, we show that the Fourier spectrum can be analysed by an Artificial Neural Network which can be trained to decode contact distance and to classify contact materials. Thirdly, we show how efficiency can be improved by band-pass filtering the Fourier spectrum by application of non-negative matrix factorisation. This reduces the input dimension by 95% while reducing classification performance by 8% only. Finally, we replace the FFT by an array of spiking neurons with gradually differing resonance properties, such that their spike rate is a function of the input frequency. We show that this network can be applied to detect tactile contact events of a wheeled robot, and how detrimental effects of robot velocity on antennal dynamics can be suppressed by state-dependent modulation of the

  5. Fiber Optic Sensors For Detection of Toxic and Biological Threats

    Directory of Open Access Journals (Sweden)

    Jianming Yuan

    2007-12-01

    Full Text Available Protection of public and military personnel from chemical and biological warfareagents is an urgent and growing national security need. Along with this idea, we havedeveloped a novel class of fiber optic chemical sensors, for detection of toxic and biologicalmaterials. The design of these fiber optic sensors is based on a cladding modificationapproach. The original passive cladding of the fiber, in a small section, was removed and thefiber core was coated with a chemical sensitive material. Any change in the opticalproperties of the modified cladding material, due to the presence of a specific chemicalvapor, changes the transmission properties of the fiber and result in modal powerredistribution in multimode fibers. Both total intensity and modal power distribution (MPDmeasurements were used to detect the output power change through the sensing fibers. TheMPD technique measures the power changes in the far field pattern, i.e. spatial intensitymodulation in two dimensions. Conducting polymers, such as polyaniline and polypyrrole,have been reported to undergo a reversible change in conductivity upon exposure tochemical vapors. It is found that the conductivity change is accompanied by optical propertychange in the material. Therefore, polyaniline and polypyrrole were selected as the modifiedcladding material for the detection of hydrochloride (HCl, ammonia (NH3, hydrazine(H4N2, and dimethyl-methl-phosphonate (DMMP {a nerve agent, sarin stimulant},respectively. Several sensors were prepared and successfully tested. The results showeddramatic improvement in the sensor sensitivity, when the MPD method was applied. In thispaper, an overview on the developed class of fiber optic sensors is presented and supportedwith successful achieved results.

  6. The role of mechanics in biological and bio-inspired systems.

    Science.gov (United States)

    Egan, Paul; Sinko, Robert; LeDuc, Philip R; Keten, Sinan

    2015-07-06

    Natural systems frequently exploit intricate multiscale and multiphasic structures to achieve functionalities beyond those of man-made systems. Although understanding the chemical make-up of these systems is essential, the passive and active mechanics within biological systems are crucial when considering the many natural systems that achieve advanced properties, such as high strength-to-weight ratios and stimuli-responsive adaptability. Discovering how and why biological systems attain these desirable mechanical functionalities often reveals principles that inform new synthetic designs based on biological systems. Such approaches have traditionally found success in medical applications, and are now informing breakthroughs in diverse frontiers of science and engineering.

  7. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    CERN Document Server

    Pisharady, Pramod Kumar; Poh, Loh Ai

    2014-01-01

    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  8. Phase-assisted synthesis and DNA unpacking evaluation of biologically inspired metallo nanocomplexes using peptide as unique building block.

    Science.gov (United States)

    Raman, N; Sudharsan, S

    2011-12-01

    The goal of nanomaterials' surface modification using a biomaterial is to preserve the materials' bulk properties while modifying only their surface to possess desired recognition and specificity. Here, we have developed a phase-assisted, modified Brust-Schiffrin methodological synthesis of metallo nanocomplexes anchored by a peptide, N,N'-(1,3-propylene)-bis-hippuricamide. The spectral, thermal and morphological characterizations assure the formation of nanocomplexes. Therapeutic behavior of all the nanocomplexes has been well sighted by evaluating their DNA unpacking skills. In addition, we demonstrate their biological inspiration by targeting few bacterial and fungal strains. The in vitro antimicrobial investigation reports that all the nanocomplexes disrupt microbial cell walls/membranes efficiently and inhibit the growth of microbes. These sorts of nanocomplexes synthesized in large quantities and at low cost, deliver versatile biomedical applications, and can be used to treat various diseases which may often cause high mortality. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Enhanced chondrocyte culture and growth on biologically inspired nanofibrous cell culture dishes.

    Science.gov (United States)

    Bhardwaj, Garima; Webster, Thomas J

    2016-01-01

    Chondral and osteochondral defects affect a large number of people in which treatment options are currently limited. Due to its ability to mimic the natural nanofibrous structure of cartilage, this current in vitro study aimed at introducing a new scaffold, called XanoMatrix™, for cartilage regeneration. In addition, this same scaffold is introduced here as a new substrate onto which to study chondrocyte functions. Current studies on chondrocyte functions are limited due to nonbiologically inspired cell culture substrates. With its polyethylene terephthalate and cellulose acetate composition, good mechanical properties and nanofibrous structure resembling an extracellular matrix, XanoMatrix offers an ideal surface for chondrocyte growth and proliferation. This current study demonstrated that the XanoMatrix scaffolds promote chondrocyte growth and proliferation as compared with the Corning and Falcon surfaces normally used for chondrocyte cell culture. The XanoMatrix scaffolds also have greater hydrophobicity, three-dimensional surface area, and greater tensile strength, making them ideal candidates for alternative treatment options for chondral and osteochondral defects as well as cell culture substrates to study chondrocyte functions.

  10. A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers

    Science.gov (United States)

    Liu, Lei; Zhang, Chi; Luo, Meng; Chen, Xi; Li, Dichen; Chen, Hualing

    2017-08-01

    Dielectric elastomers (DEs) have great potential for use as artificial muscles because of the following characteristics: electrical activity, fast and large deformation under stimuli, and softness as natural muscles. Inspired by the traditional McKibben actuators, in this study, we developed a cylindrical soft fiber-reinforced and electropneumatic DE artificial muscle (DEAM) by mimicking the spindle shape of natural muscles. Based on continuum mechanics and variation principle, the inhomogeneous actuation of DEAMs was theoretically modeled and calculated. Prototypes of DEAMs were prepared to validate the design concept and theoretical model. The theoretical predictions are consistent with the experimental results; they successfully predicted the evolutions of the contours of DEAMs with voltage. A pneumatically supported high prestretch in the hoop direction was achieved by our DEAM prototype without buckling the soft fibers sandwiched by the DE films. Besides, a continuously tunable prestretch in the actuation direction was achieved by varying the supporting pressure. Using the theoretical model, the failure modes, maximum actuations, and critical voltages were analyzed; they were highly dependent on the structural parameters, i.e., the cylinder aspect ratio, prestretch level, and supporting pressure. The effects of structural parameters and supporting pressure on the actuation performance were also investigated to optimize the DEAMs.

  11. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation.

    Science.gov (United States)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-07-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA-RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners.

  12. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation

    International Nuclear Information System (INIS)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-01-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA–RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners

  13. Biological armors under impact—effect of keratin coating, and synthetic bio-inspired analogues

    International Nuclear Information System (INIS)

    Achrai, B; Wagner, H D; Bar-On, B

    2015-01-01

    A number of biological armors, such as turtle shells, consist of a strong exoskeleton covered with a thin keratin coating. The mechanical role upon impact of this keratin coating has surprisingly not been investigated thus far. Low-velocity impact tests on the turtle shell reveal a unique toughening phenomenon attributed to the thin covering keratin layer, the presence of which noticeably improves the fracture energy and shell integrity. Synthetic substrate/coating analogues were subsequently prepared and exhibit an impact behavior similar to the biological ones. The results of the present study may improve our understanding, and even future designs, of impact-tolerant structures. (paper)

  14. An experimental study of double-peeling mechanism inspired by biological adhesive systems

    DEFF Research Database (Denmark)

    Heepe, Lars; Raguseo, Saverio; Gorb, Stanislav N.

    2017-01-01

    Double- (or multiple-) peeling systems consist of two (or numerous) tapes adhering to a substrate and having a common hinge, where the pulling force is applied. Biological systems, consisting of tape-like (or spatula-like) contact elements, are widely observed in adhesive pads of flies, beetles...

  15. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing

    NARCIS (Netherlands)

    Marx, Uwe; Andersson, Tommy B; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B; Hoeng, Julia; de Jong, Wim H; Kojima, Hajime; Kuehnl, Jochen; Leist, Marcel; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J A M; Steger-Hartmann, Thomas; Tagle, Danilo A; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian

    2016-01-01

    The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various

  16. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    Science.gov (United States)

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A high-throughput screening approach to discovering good forms of biologically inspired visual representation.

    Directory of Open Access Journals (Sweden)

    Nicolas Pinto

    2009-11-01

    Full Text Available While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor. In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.

  18. A high-throughput screening approach to discovering good forms of biologically inspired visual representation.

    Science.gov (United States)

    Pinto, Nicolas; Doukhan, David; DiCarlo, James J; Cox, David D

    2009-11-01

    While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor). In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.

  19. Biologically-inspired synthetic dry adhesives for wall-climbing robots

    Science.gov (United States)

    Murphy, Michael P.

    Animals such as insects, spiders, and lizards are capable of clinging to and climbing on a variety of surfaces, from rough stone to smooth silicon. Hairy microscale arrays of structures on their feet conform to surface roughness to create millions of points of contact, creating a large overall contact area. Weak intermolecular forces (van der Waals forces) between each fiber tip and the surface sum to large overall forces due to the high number of contacts. In this work we present the fabrication, characterization, and demonstration of synthetic polyurethane fibrillar adhesives inspired by these animals. Angled polymer micro-fiber arrays are fabricated and characterized. A tip modification technique is presented which enables fabrication of fibers with flat mushroom shaped tips which greatly increase the adhesion of the fibers, up to 5N/cm 2 (normal direction), and with a magnitude within the range of geckos (10 N/cm2) in the shear direction on smooth surfaces. We present a fabrication technique to create fibers with angled flat mushroom-shaped tips which replicate the directional characteristics of geckos, gripping in one direction (within the range of gecko adhesion) and releasing easily in the other. Multilevel hierarchical structures with specialized tips for roughness adaptation are also presented. Fiber hierarchies from the millimeter scale to the sub-micron scale are demonstrated, including three-level fiber fabrication with specialized tips. Hierarchical structures demonstrate up to 5 times the adhesion of an unstructured sample, and requiring up to 10 times the detachment energy. Finally, an agile, wireless, palm-sized wall climbing robot which uses the synthetic fibrillar dry adhesives to climb is presented. Waalbot , named after the van der Waals forces it uses to climb, exploits the attachment and detachment characteristics of the developed dry adhesives, capabilities include climbing smooth surfaces such as glass in any orientation on any surface slope

  20. Biologically Inspired Modular Neural Control for a Leg-Wheel Hybrid Robot

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Wörgötter, Florentin; Laksanacharoen, Pudit

    2014-01-01

    In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal...... processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions...... or they can serve as useful modules for other module-based neural control applications....

  1. Chemical, Biological, and Explosive Sensors for Field Measurements

    International Nuclear Information System (INIS)

    Kyle, Kevin; Manard, Manuel; Weeks, Stephan

    2009-01-01

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: (1) Direct air/particulate 'smart' sampling; (2) Selective, continuous real-time (∼1 sec) alert monitoring using DMS; and (3) Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security

  2. Agile Robust Autonomy: Inspired by Connecting Natural Flight and Biological Sensors

    Science.gov (United States)

    2017-03-01

    stabilization in insects while tethered. The stimulating is a rotating horizon line produced by UV and green LEDs (Figure 2). DISTRIBUTION A 12...recordings from the eyes. In the damselflies, we recorded from the compound eyes. The stimulation is a xenon light lamp producing light from the UV to near...addition to a green LED . One green light LED recording was taken after each spectral measurement. ............... 29 24. KHILS Projector Spectral

  3. Biologically-inspired robust and adaptive multi-sensor fusion and active control

    Science.gov (United States)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.

  4. The effect of shape on drag: a physics exercise inspired by biology

    Science.gov (United States)

    Fingerut, Jonathan; Johnson, Nicholas; Mongeau, Eric; Habdas, Piotr

    2017-07-01

    As part of a biomechanics course aimed at upper-division biology and physics majors, but applicable to a range of student learning levels, this laboratory exercise provides an insight into the effect of shape on hydrodynamic performance, as well an introduction to computer aided design (CAD) and 3D printing. Students use hydrodynamic modeling software and simple CAD programs to design a shape with the least amount of drag based on strategies gleaned from the study of natural forms. Students then print the shapes using a 3D printer and test their shapes against their classmates in a friendly competition. From this exercise, students gain a more intuitive sense of the challenges that organisms face when moving through fluid environments, the physical phenomena involved in moving through fluids at high Reynolds numbers and observe how and why certain morphologies, such as streamlining, are common answers to the challenge of swimming at high speeds.

  5. Biology-inspired Microphysiological System Approaches to Solve the Prediction Dilemma of Substance Testing

    Science.gov (United States)

    Marx, Uwe; Andersson, Tommy B.; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R.; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B.; Hoeng, Julia; de Jong, Wim H.; Kojima, Hajime; Kuehnl, Jochen; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J. A. M.; Steger-Hartmann, Thomas; Tagle, Danilo A.; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian

    2017-01-01

    Summary The recent advent of microphysiological systems – microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro – is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-five experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale. PMID:27180100

  6. A biologically inspired scale-space for illumination invariant feature detection

    International Nuclear Information System (INIS)

    Vonikakis, Vasillios; Chrysostomou, Dimitrios; Kouskouridas, Rigas; Gasteratos, Antonios

    2013-01-01

    This paper presents a new illumination invariant operator, combining the nonlinear characteristics of biological center-surround cells with the classic difference of Gaussians operator. It specifically targets the underexposed image regions, exhibiting increased sensitivity to low contrast, while not affecting performance in the correctly exposed ones. The proposed operator can be used to create a scale-space, which in turn can be a part of a SIFT-based detector module. The main advantage of this illumination invariant scale-space is that, using just one global threshold, keypoints can be detected in both dark and bright image regions. In order to evaluate the degree of illumination invariance that the proposed, as well as other, existing, operators exhibit, a new benchmark dataset is introduced. It features a greater variety of imaging conditions, compared to existing databases, containing real scenes under various degrees and combinations of uniform and non-uniform illumination. Experimental results show that the proposed detector extracts a greater number of features, with a high level of repeatability, compared to other approaches, for both uniform and non-uniform illumination. This, along with its simple implementation, renders the proposed feature detector particularly appropriate for outdoor vision systems, working in environments under uncontrolled illumination conditions. (paper)

  7. Biologically inspired information theory: Adaptation through construction of external reality models by living systems.

    Science.gov (United States)

    Nakajima, Toshiyuki

    2015-12-01

    Higher animals act in the world using their external reality models to cope with the uncertain environment. Organisms that have not developed such information-processing organs may also have external reality models built in the form of their biochemical, physiological, and behavioral structures, acquired by natural selection through successful models constructed internally. Organisms subject to illusions would fail to survive in the material universe. How can organisms, or living systems in general, determine the external reality from within? This paper starts with a phenomenological model, in which the self constitutes a reality model developed through the mental processing of phenomena. Then, the it-from-bit concept is formalized using a simple mathematical model. For this formalization, my previous work on an algorithmic process is employed to constitute symbols referring to the external reality, called the inverse causality, with additional improvements to the previous work. Finally, as an extension of this model, the cognizers system model is employed to describe the self as one of many material entities in a world, each of which acts as a subject by responding to the surrounding entities. This model is used to propose a conceptual framework of information theory that can deal with both the qualitative (semantic) and quantitative aspects of the information involved in biological processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Dynamics Analysis of Fluid-Structure Interaction for a Biologically-Inspired Biped Robot Running on Water

    Directory of Open Access Journals (Sweden)

    Linsen Xu

    2013-10-01

    Full Text Available A kinematics analysis of a biologically-inspired biped robot is carried out, and the trajectory of the robot foot is understood. For calculating the pressure distribution across a robot foot before touching the surface of water, the compression flow of air and the depression motion of the water surface are considered. The pressure model after touching the water surface has been built according to the theory of rigid body planar motion. The multi-material ALE algorithm is applied to emulate the course of the foot slapping water. The simulation results indicate that the model of the bionic robot can satisfy the water-running function. The real prototype of the robot is manufactured to test its function of running on water. When the biped robot is running on water, the average force generated by the propulsion mechanism is about 1.3N. The experimental results show that the propulsion system can satisfy the requirement of biped robot running on water.

  9. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors

    Science.gov (United States)

    Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang

    2014-10-01

    Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.

  10. Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors.

    Science.gov (United States)

    Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang

    2014-10-23

    Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.

  11. Writing Inspired

    Science.gov (United States)

    Tischhauser, Karen

    2015-01-01

    Students need inspiration to write. Assigning is not teaching. In order to inspire students to write fiction worth reading, teachers must take them through the process of writing. Physical objects inspire good writing with depth. In this article, the reader will be taken through the process of inspiring young writers through the use of boxes.…

  12. Hybrid integrated label-free chemical and biological sensors.

    Science.gov (United States)

    Mehrabani, Simin; Maker, Ashley J; Armani, Andrea M

    2014-03-26

    Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.

  13. Hybrid Integrated Label-Free Chemical and Biological Sensors

    Science.gov (United States)

    Mehrabani, Simin; Maker, Ashley J.; Armani, Andrea M.

    2014-01-01

    Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach. PMID:24675757

  14. Hybrid Integrated Label-Free Chemical and Biological Sensors

    Directory of Open Access Journals (Sweden)

    Simin Mehrabani

    2014-03-01

    Full Text Available Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits. This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.

  15. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space

    Directory of Open Access Journals (Sweden)

    Kan Li

    2018-04-01

    Full Text Available This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM speech processing as well as neuromorphic implementations based on spiking neural network (SNN, yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR regime.

  16. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space.

    Science.gov (United States)

    Li, Kan; Príncipe, José C

    2018-01-01

    This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime.

  17. Inspired Responses

    Science.gov (United States)

    Steele, Carol Frederick

    2011-01-01

    In terms of teacher quality, Steele believes the best teachers have reached a stage she terms inspired, and that teachers move progressively through the stages of unaware, aware, and capable until the most reflective teachers finally reach the inspired level. Inspired teachers have a wide repertoire of teaching and class management techniques and…

  18. Biomimetic Flow Sensors

    NARCIS (Netherlands)

    Casas, J.; Liu, Chang; Krijnen, Gijsbertus J.M.

    2012-01-01

    Biomimetic flow sensors are biologically inspired devices that measure the speed and direction of fluids. This survey starts by describing the role and functioning of airflow-sensing hairs in arthropods and in fishes, carries on with the biomimetic MEMS implementations, both for air and water flow

  19. Modeling Wireless Sensor Networks for Monitoring in Biological Processes

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil

    parameters, as the use of wired sensors is impractical. In this thesis, a ZigBee based wireless sensor network was employed and only a part of the herd was monitored, as monitoring each individual animal in a large herd under practical conditions is inefficient. Investigations to show that the monitored...... (MMAE) approach to the data resulted in the highest classification success rate, due to the use of precise forth-order mathematical models which relate the feed offer to the pitch angle of the neck. This thesis shows that wireless sensor networks can be successfully employed to monitor the behavior...

  20. SensorDB: a virtual laboratory for the integration, visualization and analysis of varied biological sensor data.

    Science.gov (United States)

    Salehi, Ali; Jimenez-Berni, Jose; Deery, David M; Palmer, Doug; Holland, Edward; Rozas-Larraondo, Pablo; Chapman, Scott C; Georgakopoulos, Dimitrios; Furbank, Robert T

    2015-01-01

    To our knowledge, there is no software or database solution that supports large volumes of biological time series sensor data efficiently and enables data visualization and analysis in real time. Existing solutions for managing data typically use unstructured file systems or relational databases. These systems are not designed to provide instantaneous response to user queries. Furthermore, they do not support rapid data analysis and visualization to enable interactive experiments. In large scale experiments, this behaviour slows research discovery, discourages the widespread sharing and reuse of data that could otherwise inform critical decisions in a timely manner and encourage effective collaboration between groups. In this paper we present SensorDB, a web based virtual laboratory that can manage large volumes of biological time series sensor data while supporting rapid data queries and real-time user interaction. SensorDB is sensor agnostic and uses web-based, state-of-the-art cloud and storage technologies to efficiently gather, analyse and visualize data. Collaboration and data sharing between different agencies and groups is thereby facilitated. SensorDB is available online at http://sensordb.csiro.au.

  1. Detection principles of biological and chemical FET sensors.

    Science.gov (United States)

    Kaisti, Matti

    2017-12-15

    The seminal importance of detecting ions and molecules for point-of-care tests has driven the search for more sensitive, specific, and robust sensors. Electronic detection holds promise for future miniaturized in-situ applications and can be integrated into existing electronic manufacturing processes and technology. The resulting small devices will be inherently well suited for multiplexed and parallel detection. In this review, different field-effect transistor (FET) structures and detection principles are discussed, including label-free and indirect detection mechanisms. The fundamental detection principle governing every potentiometric sensor is introduced, and different state-of-the-art FET sensor structures are reviewed. This is followed by an analysis of electrolyte interfaces and their influence on sensor operation. Finally, the fundamentals of different detection mechanisms are reviewed and some detection schemes are discussed. In the conclusion, current commercial efforts are briefly considered. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Constrained VPH+: a local path planning algorithm for a bio-inspired crawling robot with customized ultrasonic scanning sensor.

    Science.gov (United States)

    Rao, Akshay; Elara, Mohan Rajesh; Elangovan, Karthikeyan

    This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms.

  3. Quality-of-service sensitivity to bio-inspired/evolutionary computational methods for intrusion detection in wireless ad hoc multimedia sensor networks

    Science.gov (United States)

    Hortos, William S.

    2012-06-01

    In the author's previous work, a cross-layer protocol approach to wireless sensor network (WSN) intrusion detection an identification is created with multiple bio-inspired/evolutionary computational methods applied to the functions of the protocol layers, a single method to each layer, to improve the intrusion-detection performance of the protocol over that of one method applied to only a single layer's functions. The WSN cross-layer protocol design embeds GAs, anti-phase synchronization, ACO, and a trust model based on quantized data reputation at the physical, MAC, network, and application layer, respectively. The construct neglects to assess the net effect of the combined bioinspired methods on the quality-of-service (QoS) performance for "normal" data streams, that is, streams without intrusions. Analytic expressions of throughput, delay, and jitter, coupled with simulation results for WSNs free of intrusion attacks, are the basis for sensitivity analyses of QoS metrics for normal traffic to the bio-inspired methods.

  4. Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors.

    Science.gov (United States)

    Hu, PingAn; Zhang, Jia; Li, Le; Wang, Zhenlong; O'Neill, William; Estrela, Pedro

    2010-01-01

    Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

  5. Wireless-accessible sensor populations for monitoring biological variables

    NARCIS (Netherlands)

    Mazzu, Marco; Scalvini, Simonetta; Giordano, A.; Frumento, E.; Wells, Hannah; Lokhorst, C.; Glisenti, Fulvio

    2008-01-01

    The current health-care infrastructure is generally considered to be inadequate to meet the needs of an increasingly older population. We have investigated the feasibility of a passive in-home monitoring system based on wireless accessible sensor populations (WASP). In an EU-funded project we have

  6. Sensor for measurement of biological objects and their mutual interaction - patent No. 285 085

    International Nuclear Information System (INIS)

    Komarek, K.; Chrapan, J.; Herec, I.

    2006-01-01

    In this paper the sensor for measurement of biological objects 'Aurograph' is described. The 'Aurograph' was proposed for measurement of human aura. The aura is characterised as a space with electric charge in vicinity of biological but also non-biological object. Their expression can be measured by known interactions of electric and magnetic fields. It is the space with electric charge in locality of human body where by action of bio-potential the atoms of surrounding are excited

  7. Noninvasive biological sensor system for detection of drunk driving.

    Science.gov (United States)

    Murata, Kohji; Fujita, Etsunori; Kojima, Shigeyuki; Maeda, Shinitirou; Ogura, Yumi; Kamei, Tsutomu; Tsuji, Toshio; Kaneko, Shigehiko; Yoshizumi, Masao; Suzuki, Nobutaka

    2011-01-01

    Systems capable of monitoring the biological condition of a driver and issuing warnings during instances of drowsiness have recently been studied. Moreover, many researchers have reported that biological signals, such as brain waves, pulsation waves, and heart rate, are different between people who have and have not consumed alcohol. Currently, we are developing a noninvasive system to detect individuals driving under the influence of alcohol by measuring biological signals. We used the frequency time series analysis to attempt to distinguish between normal and intoxicated states of a person as the basis of the sensing system.

  8. Contractile fibers and catch bond clusters : a biological force sensor?

    NARCIS (Netherlands)

    Novikova, E.A.; Storm, C.

    2013-01-01

    Catch bonds are cellular receptor-ligand pairs whose lifetime, counterintuitively, increases with increasing load. Although their existence was initially pure theoretical speculation, recent years have seen several experimental demonstrations of catch-bond behavior in biologically relevant and

  9. Optimization of Graphene Sensors to Detect Biological Warfare Agents

    Science.gov (United States)

    2014-03-27

    variations that use detection elements such as glucose, cholesterol, NADH, hydrogen peroxide, nitrites , nitrous oxide and aptamers (such as ssDNA...electrical current [34]. The sensor materials and detection limits listed in Table 1 illustrate the types of processed graphene that can be used to...and a 1% mortality rate for those treated[28]. Gastrointestinal anthrax results when B. anthracis enters the body by eating infected meat and has

  10. Bio-inspired networking

    CERN Document Server

    Câmara, Daniel

    2015-01-01

    Bio-inspired techniques are based on principles, or models, of biological systems. In general, natural systems present remarkable capabilities of resilience and adaptability. In this book, we explore how bio-inspired methods can solve different problems linked to computer networks. Future networks are expected to be autonomous, scalable and adaptive. During millions of years of evolution, nature has developed a number of different systems that present these and other characteristics required for the next generation networks. Indeed, a series of bio-inspired methods have been successfully used to solve the most diverse problems linked to computer networks. This book presents some of these techniques from a theoretical and practical point of view. Discusses the key concepts of bio-inspired networking to aid you in finding efficient networking solutions Delivers examples of techniques both in theoretical concepts and practical applications Helps you apply nature's dynamic resource and task management to your co...

  11. Correlating Multimodal Physical Sensor Information with Biological Analysis in Ultra Endurance Cycling

    Directory of Open Access Journals (Sweden)

    Giles D.Warrington

    2010-07-01

    Full Text Available The sporting domain has traditionally been used as a testing ground for new technologies which subsequently make their way into the public domain. This includes sensors. In this article a range of physical and biological sensors deployed in a 64 hour ultra-endurance non-stop cycling race are described. A novel algorithm to estimate the energy expenditure while cycling and resting during the event are outlined. Initial analysis in this noisy domain of “sensors in the field” are very encouraging and represent a first with respect to cycling.

  12. Optical sensors and their applications for probing biological systems

    DEFF Research Database (Denmark)

    Palanco, Marta Espina

    There is a great interest in exploring and developing new optical sensitive methodologies for probing complex biological systems. In this project we developed non-invasive and sensitive biosensor strategies for studying physiologically relevant chemical and physical properties of plant and mammal......There is a great interest in exploring and developing new optical sensitive methodologies for probing complex biological systems. In this project we developed non-invasive and sensitive biosensor strategies for studying physiologically relevant chemical and physical properties of plant...... of a trapped cell. The project could provide new insights into the desired biosensor for future membrane-protein cell studies....

  13. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  14. Design and characterization of a magnetoelastic sensor for the detection of biological agents

    International Nuclear Information System (INIS)

    Shen Wen; Mathison, Leslie C; Chin, Bryan A; Petrenko, Valery A

    2010-01-01

    This paper presents the design and development of a free-standing, magnetoelastic biosensor. The detection principle is presented and various resonance characteristics of the sensor are discussed. Experimental measurements of the sensor resonance frequencies agree with theoretical predictions. The influence of the external magnetic field on the resonance behaviour of the sensor was studied and the optimum dc magnetic fields for best sensitivity in air and in water solutions for 2000 x 400 x 15 μm (2 mm) sensors and 1000 x 200 x 15 μm (1 mm) size sensors were determined to be 75 Oe and 38 Oe, respectively. Both theoretical prediction and experimental results show that smaller sensors have greater mass sensitivity and can theoretically detect mass as small as one biological spore. The sensor platform was immobilized with JRB7 phages for specific, in vitro detection of B. anthracis spores. Real-time detection of spores suspended in water was demonstrated using a flowing system. The 1 mm and 2 mm sensors were found to have a detection limit of 10 4 spores ml -1 and 10 5 spores ml -1 , respectively.

  15. Detection of biological molecules using chemical amplification and optical sensors

    Science.gov (United States)

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  16. Thermal impact of migrating birds' wing color on their flight performance: Possibility of new generation of biologically inspired drones.

    Science.gov (United States)

    Hassanalian, M; Abdelmoula, H; Ben Ayed, S; Abdelkefi, A

    2017-05-01

    The thermal impact of the birds' color on their flight performance are investigated. In most of the large migrating birds, the top of their wings is black. Considering this natural phenomenon in the migrating birds, such as albatross, a thermal analysis of the boundary layer of their wings is performed during the year depending on the solar insulation. It is shown that the temperature difference between the bright and dark colored top wing surface is around 10°C. The dark color on the top of the wing increases the temperature of the boundary layer over the wing which consequently reduces the skin drag force over the wing. This reduction in the drag force can be considered as one of the effective factors for long endurance of these migrating birds. This research should lead to improved designs of the drones by applying the inspired colors which can help drones increase their endurance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bio-Inspired Distributed Transmission Power Control Considering QoS Fairness in Wireless Body Area Sensor Networks.

    Science.gov (United States)

    Lee, Chan-Jae; Jung, Ji-Young; Lee, Jung-Ryun

    2017-10-14

    Recently, the development of wireless body area sensor network (WBASN) has accelerated due to the rapid development of wireless technology. In the WBASN environment, many WBASNs coexist where communication ranges overlap with each other, resulting in the possibility of interference. Although nodes in a WBASN typically operate at a low power level, to avoid adversely affecting the human body, high transmission rates may be required to support some applications. In addition to this, since many varieties of applications exist in the WBASN environment, each prospective user may have different quality of service (QoS) requirements. Hence, the following issues should be considered in the WBASN environment: (1) interference between adjacent WBASNs, which influences the performance of a specific system, and (2) the degree of satisfaction on the QoS of each user, i.e., the required QoS such as user throughput should be considered to ensure that all users in the network are provided with a fair QoS satisfaction. Thus, in this paper, we propose a transmission power adjustment algorithm that addresses interference problems and guarantees QoS fairness between users. First, we use a new utility function to measure the degree of the satisfaction on the QoS for each user. Then, the transmission power of each sensor node is calculated using the Cucker-Smale model, and the QoS satisfaction of each user is synchronized dispersively. The results of simulations show that the proposed algorithm performs better than existing algorithms, with respect to QoS fairness and energy efficiency.

  18. Modeling biology with HDL languages: a first step toward a genetic design automation tool inspired from microelectronics.

    Science.gov (United States)

    Gendrault, Yves; Madec, Morgan; Lallement, Christophe; Haiech, Jacques

    2014-04-01

    Nowadays, synthetic biology is a hot research topic. Each day, progresses are made to improve the complexity of artificial biological functions in order to tend to complex biodevices and biosystems. Up to now, these systems are handmade by bioengineers, which require strong technical skills and leads to nonreusable development. Besides, scientific fields that share the same design approach, such as microelectronics, have already overcome several issues and designers succeed in building extremely complex systems with many evolved functions. On the other hand, in systems engineering and more specifically in microelectronics, the development of the domain has been promoted by both the improvement of technological processes and electronic design automation tools. The work presented in this paper paves the way for the adaptation of microelectronics design tools to synthetic biology. Considering the similarities and differences between the synthetic biology and microelectronics, the milestones of this adaptation are described. The first one concerns the modeling of biological mechanisms. To do so, a new formalism is proposed, based on an extension of the generalized Kirchhoff laws to biology. This way, a description of all biological mechanisms can be made with languages widely used in microelectronics. Our approach is therefore successfully validated on specific examples drawn from the literature.

  19. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis.

    Science.gov (United States)

    Yang, Qian; Li, Jinhua; Wang, Xiaoyan; Peng, Hailong; Xiong, Hua; Chen, Lingxin

    2018-07-30

    One pressing concern today is to construct sensors that can withstand various disturbances for highly selective and sensitive detecting trace analytes in complicated samples. Molecularly imprinted polymers (MIPs) with tailor-made binding sites are preferred to be recognition elements in sensors for effective targets detection, and fluorescence measurement assists in highly sensitive detection and user-friendly control. Accordingly, molecular imprinting-based fluorescence sensors (MI-FL sensors) have attracted great research interest in many fields such as chemical and biological analysis. Herein, we comprehensively review the recent advances in MI-FL sensors construction and applications, giving insights on sensing principles and signal transduction mechanisms, focusing on general construction strategies for intrinsically fluorescent or nonfluorescent analytes and improvement strategies in sensing performance, particularly in sensitivity. Construction strategies are well overviewed, mainly including the traditional indirect methods of competitive binding against pre-bound fluorescent indicators, employment of fluorescent functional monomers and embedding of fluorescence substances, and novel rational designs of hierarchical architecture (core-shell/hollow and mesoporous structures), post-imprinting modification, and ratiometric fluorescence detection. Furthermore, MI-FL sensor based microdevices are discussed, involving micromotors, test strips and microfluidics, which are more portable for rapid point-of-care detection and in-field diagnosing. Finally, the current challenges and future perspectives of MI-FL sensors are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. An investigation into biological recognition coatings for piezoelectric sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Sharron

    2002-07-01

    The concept of harvesting chemicals from nature and employing them with piezoelectric crystals for biosensor development is investigated. Literature is reviewed for information theory relating to molecular structure, biosensors, immobilisation techniques, piezoelectric transducers and biosensor applications of quartz crystals. Three types of molecules were investigated for their biosensing potential, saccharides (pectic acid and alginic acid), an enzyme (galactose oxidase) and an antibody (specific for Botrytis cinerea). Immobilisation procedures using {gamma}-aminopropyltrimethoxy silane, polyethyleneimine and glutaraldehyde cross-linking are developed for pectic acid, alginic acid, galactose oxidase and the Botrytis antibody. These materials are immobilised onto the gold electrode area of an AT-cut quartz crystal microbalance. Operating conditions, either dip and dry batch monitoring or dynamic real-time monitoring using a flow cell are outlined. Ageing of the piezoelectric crystal sensor through erosion of coatings or during physical cleaning of crystals, prior to recoating, is featured and is particularly important to future cost effective commercial piezoelectric crystal sensor systems. Scanning tunnel microscopy is selected and an example from literature is used to evidence possible mechanisms of primary coat bonding to the gold electrodes. The associated cleaning problems and explanation of memory effects are then postulated. Calibrating data with sensitivities and limits of detection are presented for Cu{sup 2+} (pectic acid coating, Cu{sup 2+} range of 0.002mM (0.128ppm) to 0.5mM (32ppm); galactose oxidase coating, Cu{sup 2+} range of 0.002mM (0.128ppm) to 0.5mM (32ppm)); and for Pb{sup 2+} (alginic acid coating, Pb{sup 2+} range of 0.002mM (0.414ppm) to 0.1mM (20.7ppm)). Interference effects of Pb, Co, Ni, Zn, Ca and Mg on Cu{sup 2+} detection and measurement are presented. Similarly interference effects of Cu, Co, Ni, Zn and Ca on Pb{sup 2+} detection

  1. Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors.

    Science.gov (United States)

    Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland

    2017-06-20

    Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NO x , trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.

  2. Manufacturing and Evaluation of a Biologically Inspired Engineered MAV Wing Compared to the Manduca Sexta Wing Under Simulated Flapping Conditions

    Science.gov (United States)

    2011-03-24

    and tested under simplified flapping conditions by analyzing ‘frozen’ digital images of the de - formed wing by methods of photogrammetry. This... Rocker System to Biological Flapping Mechanism . . . . . . . . . . . . . . 49 2.6 PhotoModeler Methods . . . . . . . . . . . . . . . . . . 55 2.7 A Word on...126 4.5.3 Residual Calculation . . . . . . . . . . . . . . . 127 4.5.4 Orientation Angle Determination (Torsional De

  3. MIAMI cells embedded within a biologically-inspired construct promote recovery in a mouse model of peripheral vascular disease

    Science.gov (United States)

    Grau-Monge, Cristina; Delcroix, Gaëtan J.-R; Bonnin-Marquez, Andrea; Valdes, Mike; Awadallah, Ead Lewis Mazen; Quevedo, Daniel F.; Armour, Maxime R.; Montero, Ramon B.; Schiller, Paul C.; Andreopoulos, Fotios M.; D’Ippolito, Gianluca

    2017-01-01

    Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of 2 layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration. PMID:28211362

  4. Novel Spectroscopic and Electrochemical Sensors and Nanoprobes for the Characterization of Food and Biological Antioxidants.

    Science.gov (United States)

    Apak, Reşat; Demirci Çekiç, Sema; Üzer, Ayşem; Çelik, Saliha Esin; Bener, Mustafa; Bekdeşer, Burcu; Can, Ziya; Sağlam, Şener; Önem, Ayşe Nur; Erçağ, Erol

    2018-01-11

    Since an unbalanced excess of reactive oxygen/nitrogen species (ROS/RNS) causes various diseases, determination of antioxidants that can counter oxidative stress is important in food and biological analyses. Optical/electrochemical nanosensors have attracted attention in antioxidant activity (AOA) assessment because of their increased sensitivity and selectivity. Optical sensors offer advantages such as low cost, flexibility, remote control, speed, miniaturization and on-site/in situ analysis. Electrochemical sensors using noble metal nanoparticles on modified electrodes better catalyze bioelectrochemical reactions. We summarize the design principles of colorimetric sensors and nanoprobes for food antioxidants (including electron-transfer based and ROS/RNS scavenging assays) and important milestones contributed by our laboratory. We present novel sensors and nanoprobes together with their mechanisms and analytical performances. Our colorimetric sensors for AOA measurement made use of cupric-neocuproine and ferric-phenanthroline complexes immobilized on a Nafion membrane. We recently designed an optical oxidant/antioxidant sensor using N , N -dimethyl- p -phenylene diamine (DMPD) as probe, from which ROS produced colored DMPD-quinone cationic radicals electrostatically retained on a Nafion membrane. The attenuation of initial color by antioxidants enabled indirect AOA estimation. The surface plasmon resonance absorption of silver nanoparticles as a result of enlargement of citrate-reduced seed particles by antioxidant addition enabled a linear response of AOA. We determined biothiols with Ellman reagent-derivatized gold nanoparticles.

  5. A Reconfigurable and Biologically Inspired Paradigm for Computation Using Network-On-Chip and Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Jim Harkin

    2009-01-01

    Full Text Available FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels of interneuron connectivity inherent in complex SNNs. This paper highlights and discusses the current challenges of implementing scalable SNNs on reconfigurable FPGAs. The paper proposes a novel field programmable neural network architecture (EMBRACE, incorporating low-power analogue spiking neurons, interconnected using a Network-on-Chip architecture. Results on the evaluation of the EMBRACE architecture using the XOR benchmark problem are presented, and the performance of the architecture is discussed. The paper also discusses the adaptability of the EMBRACE architecture in supporting fault tolerant computing.

  6. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shinar, Joseph [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth [Microelectronics Research Center, Iowa State University, Ames, IA 50011 (United States)

    2008-07-07

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of {approx}2 x 10{sup 5} h ({approx}23 yr) at {approx}150 Cd m{sup -2} (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m{sup -2}). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. (topical review)

  7. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    International Nuclear Information System (INIS)

    Shinar, Joseph; Shinar, Ruth

    2008-01-01

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ∼2 x 10 5 h (∼23 yr) at ∼150 Cd m -2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m -2 ). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. (topical review)

  8. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  9. Impact of sensor metal thickness on microwave spectroscopy sensitivity for individual particles and biological cells analysis

    OpenAIRE

    Chen , Wenli; Dubuc , David; Grenier , Katia

    2016-01-01

    International audience; This paper focuses on evaluating the impact of metal thickness of a microwave coplanar based sensor dedicated to the microwave dielectric spectroscopy of single particles and individual biological cells. A sensitivity study has therefore been achieved for metal thicknesses comprised between 0.3 and 20 µm. After the validation of electromagnetic simulations with measurements of 10 μm-diameter polystyrene bead, both capacitive and conductive contrasts have been defined f...

  10. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking.

    Science.gov (United States)

    Panizzolo, Fausto A; Galiana, Ignacio; Asbeck, Alan T; Siviy, Christopher; Schmidt, Kai; Holt, Kenneth G; Walsh, Conor J

    2016-05-12

    Carrying load alters normal walking, imposes additional stress to the musculoskeletal system, and results in an increase in energy consumption and a consequent earlier onset of fatigue. This phenomenon is largely due to increased work requirements in lower extremity joints, in turn requiring higher muscle activation. The aim of this work was to assess the biomechanical and physiological effects of a multi-joint soft exosuit that applies assistive torques to the biological hip and ankle joints during loaded walking. The exosuit was evaluated under three conditions: powered (EXO_ON), unpowered (EXO_OFF) and unpowered removing the equivalent mass of the device (EXO_OFF_EMR). Seven participants walked on an instrumented split-belt treadmill and carried a load equivalent to 30 % their body mass. We assessed their metabolic cost of walking, kinetics, kinematics, and lower limb muscle activation using a portable gas analysis system, motion capture system, and surface electromyography. Our results showed that the exosuit could deliver controlled forces to a wearer. Net metabolic power in the EXO_ON condition (7.5 ± 0.6 W kg(-1)) was 7.3 ± 5.0 % and 14.2 ± 6.1 % lower than in the EXO_OFF_EMR condition (7.9 ± 0.8 W kg(-1); p = 0.027) and in the EXO_OFF condition (8.5 ± 0.9 W kg(-1); p = 0.005), respectively. The exosuit also reduced the total joint positive biological work (sum of hip, knee and ankle) when comparing the EXO_ON condition (1.06 ± 0.16 J kg(-1)) with respect to the EXO_OFF condition (1.28 ± 0.26 J kg(-1); p = 0.020) and to the EXO_OFF_EMR condition (1.22 ± 0.21 J kg(-1); p = 0.007). The results of the present work demonstrate for the first time that a soft wearable robot can improve walking economy. These findings pave the way for future assistive devices that may enhance or restore gait in other applications.

  11. A biologically inspired two-species exclusion model: effects of RNA polymerase motor traffic on simultaneous DNA replication

    Science.gov (United States)

    Ghosh, Soumendu; Mishra, Bhavya; Patra, Shubhadeep; Schadschneider, Andreas; Chowdhury, Debashish

    2018-04-01

    We introduce a two-species exclusion model to describe the key features of the conflict between the RNA polymerase (RNAP) motor traffic, engaged in the transcription of a segment of DNA, concomitant with the progress of two DNA replication forks on the same DNA segment. One of the species of particles (P) represents RNAP motors while the other (R) represents the replication forks. Motivated by the biological phenomena that this model is intended to capture, a maximum of two R particles only are allowed to enter the lattice from two opposite ends whereas the unrestricted number of P particles constitutes a totally asymmetric simple exclusion process (TASEP) in a segment in the middle of the lattice. The model captures three distinct pathways for resolving the co-directional as well as head-on collision between the P and R particles. Using Monte Carlo simulations and heuristic analytical arguments that combine exact results for the TASEP with mean-field approximations, we predict the possible outcomes of the conflict between the traffic of RNAP motors (P particles engaged in transcription) and the replication forks (R particles). In principle, the model can be adapted to experimental conditions to account for the data quantitatively.

  12. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density

    Directory of Open Access Journals (Sweden)

    Balasundaram G

    2015-01-01

    Full Text Available Ganesan Balasundaram,1 Daniel M Storey,1 Thomas J Webster2,3 1Chameleon Scientific, Longmont, CO, USA; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA and coat it on titanium (Ti using molecular plasma deposition (MPD. NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. Keywords: hydroxyapatite, anodization, nanotechnology

  13. ADAPTIVE MONITORING TO ENHANCE WATER SENSOR CAPABILITIES FOR CHEMICAL AND BIOLOGICAL CONTAMINANT DETECTION IN DRINKING WATER SYSTEMS

    Science.gov (United States)

    Optoelectronic and other conventional water quality sensors offer a potential for real-time online detection of chemical and biological contaminants in a drinking water supply and distribution system. The nature of the application requires sensors of detection capabilities at lo...

  14. An epidemic model for biological data fusion in ad hoc sensor networks

    Science.gov (United States)

    Chang, K. C.; Kotari, Vikas

    2009-05-01

    Bio terrorism can be a very refined and a catastrophic approach of attacking a nation. This requires the development of a complete architecture dedicatedly designed for this purpose which includes but is not limited to Sensing/Detection, Tracking and Fusion, Communication, and others. In this paper we focus on one such architecture and evaluate its performance. Various sensors for this specific purpose have been studied. The accent has been on use of Distributed systems such as ad-hoc networks and on application of epidemic data fusion algorithms to better manage the bio threat data. The emphasis has been on understanding the performance characteristics of these algorithms under diversified real time scenarios which are implemented through extensive JAVA based simulations. Through comparative studies on communication and fusion the performance of channel filter algorithm for the purpose of biological sensor data fusion are validated.

  15. Sensor Fusion and Autonomy as a Powerful Combination for Biological Assessment in the Marine Environment

    Directory of Open Access Journals (Sweden)

    Mark A. Moline

    2016-02-01

    Full Text Available The ocean environment and the physical and biological processes that govern dynamics are complex. Sampling the ocean to better understand these processes is difficult given the temporal and spatial domains and sampling tools available. Biological systems are especially difficult as organisms possess behavior, operate at horizontal scales smaller than traditional shipboard sampling allows, and are often disturbed by the sampling platforms themselves. Sensors that measure biological processes have also generally not kept pace with the development of physical counterparts as their requirements are as complex as the target organisms. Here, we attempt to address this challenge by advocating the need for sensor-platform combinations to integrate and process data in real-time and develop data products that are useful in increasing sampling efficiencies. Too often, the data of interest is only garnered after post-processing after a sampling effort and the opportunity to use that information to guide sampling is lost. Here we demonstrate a new autonomous platform, where data are collected, analyzed, and data products are output in real-time to inform autonomous decision-making. This integrated capability allows for enhanced and informed sampling towards improving our understanding of the marine environment.

  16. Characterization of bio-inspired hair flow sensors for oscillatory airflows: techniques to measure the response for both flow and pressure

    NARCIS (Netherlands)

    Droogendijk, H.; Dagamseh, A.M.K.; Sanders, Remco G.P.; Yntema, Doekle Reinder; Krijnen, Gijsbertus J.M.

    2014-01-01

    Hair sensors for oscillatory airflow, operating in the regime of bulk flow, particle velocity or both, can be characterized by several methods. In this work, we discuss harmonic measurements on MEMS hair flow sensors. To characterize this type of flow sensor the use of three different types of

  17. BIOLOGICALLY INSPIRED HARDWARE CELL ARCHITECTURE

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a system comprising: - a reconfigurable hardware platform; - a plurality of hardware units defined as cells adapted to be programmed to provide self-organization and self-maintenance of the system by means of implementing a program expressed in a programming language defined as DNA...... language, where each cell is adapted to communicate with one or more other cells in the system, and where the system further comprises a converter program adapted to convert keywords from the DNA language to a binary DNA code; where the self-organisation comprises that the DNA code is transmitted to one...... or more of the cells, and each of the one or more cells is adapted to determine its function in the system; where if a fault occurs in a first cell and the first cell ceases to perform its function, self-maintenance is performed by that the system transmits information to the cells that the first cell has...

  18. Polymer micro-grippers with an integrated force sensor for biological manipulation

    International Nuclear Information System (INIS)

    Mackay, R E; Le, H R; Clark, S; Williams, J A

    2013-01-01

    The development of a novel micro-system integrating SU-8 polymer micro-grippers with a tensile force sensor for handling and characterizing the mechanical properties of delicate biological materials, such as fibrils, is presented. The micro-grippers are actuated by the electro-thermal effect and have gripping forces comparable to the common ‘hot-and-cold-arm’ grippers. A robust finite element model was developed to investigate system performance and validated experimentally. A new micro-mechanical calibration method using a piezoelectric manipulator with a micro-force measurement system was successfully applied to test the structure. Both FEA simulation and micro-mechanical testing results indicated that the system could fulfil the requirements for micro-object manipulation within a biological environment. (paper)

  19. Smart Nacre-inspired Nanocomposites.

    Science.gov (United States)

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor.

    Science.gov (United States)

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-11

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based 'cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Physical, chemical, and metabolic state sensors expand the synthetic biology toolbox for Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Immethun, Cheryl M; DeLorenzo, Drew M; Focht, Caroline M; Gupta, Dinesh; Johnson, Charles B; Moon, Tae Seok

    2017-07-01

    Many under-developed organisms possess important traits that can boost the effectiveness and sustainability of microbial biotechnology. Photoautotrophic cyanobacteria can utilize the energy captured from light to fix carbon dioxide for their metabolic needs while living in environments not suited for growing crops. Various value-added compounds have been produced by cyanobacteria in the laboratory; yet, the products' titers and yields are often not industrially relevant and lag behind what have been accomplished in heterotrophic microbes. Genetic tools for biological process control are needed to take advantage of cyanobacteria's beneficial qualities, as tool development also lags behind what has been created in common heterotrophic hosts. To address this problem, we developed a suite of sensors that regulate transcription in the model cyanobacterium Synechocystis sp. PCC 6803 in response to metabolically relevant signals, including light and the cell's nitrogen status, and a family of sensors that respond to the inexpensive chemical, l-arabinose. Increasing the number of available tools enables more complex and precise control of gene expression. Expanding the synthetic biology toolbox for this cyanobacterium also improves our ability to utilize this important under-developed organism in biotechnology. Biotechnol. Bioeng. 2017;114: 1561-1569. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Compliant Tactile Sensors

    Science.gov (United States)

    Torres-Jara, Eduardo R.

    2011-01-01

    Tactile sensors are currently being designed to sense interactions with human hands or pen-like interfaces. They are generally embedded in screens, keyboards, mousepads, and pushbuttons. However, they are not well fitted to sense interactions with all kinds of objects. A novel sensor was originally designed to investigate robotics manipulation where not only the contact with an object needs to be detected, but also where the object needs to be held and manipulated. This tactile sensor has been designed with features that allow it to sense a large variety of objects in human environments. The sensor is capable of detecting forces coming from any direction. As a result, this sensor delivers a force vector with three components. In contrast to most of the tactile sensors that are flat, this one sticks out from the surface so that it is likely to come in contact with objects. The sensor conforms to the object with which it interacts. This augments the contact's surface, consequently reducing the stress applied to the object. This feature makes the sensor ideal for grabbing objects and other applications that require compliance with objects. The operational range of the sensor allows it to operate well with objects found in peoples' daily life. The fabrication of this sensor is simple and inexpensive because of its compact mechanical configuration and reduced electronics. These features are convenient for mass production of individual sensors as well as dense arrays. The biologically inspired tactile sensor is sensitive to both normal and lateral forces, providing better feedback to the host robot about the object to be grabbed. It has a high sensitivity, enabling its use in manipulation fingers, which typically have low mechanical impedance in order to be very compliant. The construction of the sensor is simple, using inexpensive technologies like silicon rubber molding and standard stock electronics.

  3. A novel "modularized" optical sensor for pH monitoring in biological matrixes.

    Science.gov (United States)

    Liu, Xun; Zhang, Shang-Qing; Wei, Xing; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua

    2018-06-30

    A novel core-shell structure optical pH sensor is developed with upconversion nanoparticles (UCNPs) serving as the core and silica as the shell, followed by grafting bovineserumalbumin (BSA) as another shell via glutaraldehyde cross-linking. The obtained core-shell-shell structure is shortly termed as UCNPs@SiO 2 @BSA, and its surface provides a platform for loading various pH sensitive dyes, which are alike "modules" to make it feasible for measuring pHs within different pH ranges by simply regulating the type of dyes. Generally, a single pH sensitive dye is adopted to respond within a certain pH range. This study employs bromothymol blue (BTB) and rhodamine B (RhB) to facilitate their responses to pH variations within two ranges, i.e., pH 5.99-8.09 and pH 4.98-6.40, respectively, with detection by ratio-fluorescence protocol. The core-shell-shell structure offers superior sensitivity, which is tens of times more sensitive than those achieved by ratio-fluorescence approaches based on various nanostructures, and favorable stability is achieved in high ionic strength medium. In addition, this sensor exhibits superior photostability under continuous excitation at 980 nm. Thanks to the near infrared excitation in the core-shell-shell structure, it effectively avoids the self-fluorescence from biological samples and thus facilitates accurate sensing of pH in various biological sample matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Communication analysis for feedback control of civil infrastructure using cochlea-inspired sensing nodes

    Science.gov (United States)

    Peckens, Courtney A.; Cook, Ireana; Lynch, Jerome P.

    2016-04-01

    Wireless sensor networks (WSNs) have emerged as a reliable, low-cost alternative to the traditional wired sensing paradigm. While such networks have made significant progress in the field of structural monitoring, significantly less development has occurred for feedback control applications. Previous work in WSNs for feedback control has highlighted many of the challenges of using this technology including latency in the wireless communication channel and computational inundation at the individual sensing nodes. This work seeks to overcome some of those challenges by drawing inspiration from the real-time sensing and control techniques employed by the biological central nervous system and in particular the mammalian cochlea. A novel bio-inspired wireless sensor node was developed that employs analog filtering techniques to perform time-frequency decomposition of a sensor signal, thus encompassing the functionality of the cochlea. The node then utilizes asynchronous sampling of the filtered signal to compress the signal prior to communication. This bio-inspired sensing architecture is extended to a feedback control application in order to overcome the traditional challenges currently faced by wireless control. In doing this, however, the network experiences high bandwidths of low-significance information exchange between nodes, resulting in some lost data. This study considers the impact of this lost data on the control capabilities of the bio-inspired control architecture and finds that it does not significantly impact the effectiveness of control.

  5. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  6. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  7. Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes.

    Science.gov (United States)

    Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H

    2015-12-21

    Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and

  8. HIGHLY SELECTIVE SENSORS FOR CHEMICAL AND BIOLOGICAL WARFARE AGENTS, INSECTICIDES AND VOCS BASED ON A MOLECULAR SURFACE IMPRINTING TECHNIQUE

    Science.gov (United States)

    Abstract was given as an oral platform presentation at the Pittsburgh Conference, Orlando FL (March 5-9, 2006). Research described is the development of sensors based on molecular surface imprinting. Applications include the monitoring of chemical and biological agents and inse...

  9. The sensor on the principle of ionization chamber for the measurement of biological objects and of their mutual interactions

    International Nuclear Information System (INIS)

    Komarek, K.; Chrapan, J.; Herec, I.; Bucka, P.

    2012-01-01

    In the contribution the sensor for measuring biological objects 'Auro-Graph' is described, which was suggested and designed for measuring the expressions of human's aura. From the physical point of view the aura is a field with electrical charge in the surroundings of biological as well as non-biological object, whose expressions are measured by known interactions of electrical and magnetically field. It is a field with electrical field in the human's surrounding, where atoms of surroundings are being excited by operation of biopotential (authors)

  10. Multi-functional photonic crystal sensors enabled by biological silica (Conference Presentation)

    Science.gov (United States)

    Wang, Alan X.

    2017-02-01

    Diatoms are microalgae found in every habitat where water is present. They produce 40% of the ocean's yearly production of organic carbon and 20% of the oxygen that we breathe. Their abundance and wide distribution make them ideal materials for a wide range of applications as living organisms. In our previous work, we have demonstrated that diatom biosilica with self-assembled silver nanoparticles (Ag NPs) can be used as ultra-sensitive, low-cost substrates for surface-enhanced Raman scattering (SERS) sensing. The enhancement comes from the photonic crystal enhancement of diatom frustules that could improve the hot-spots of Ag NPs. In this work, we report the unique micro-fluidic flow, analyte concentration effect, and thin layer chromatography (TLC) on diatom biosilica, which enables selection, separation, detection, and analysis of complex chemical and biological samples. Particularly, we show that the microscopic fluidic flow induced by the evaporation of liquid droplet can concentrate the analyte and achieve label-free sensing of single molecule detection of R6G and label-free sensing of 4.5×10-17g trinitrotoluene (TNT) from only 200 nano-liter solution. We also demonstrated a facile method for instant on-site separation and detection of analytes by TLC in tandem with SERS spectroscopy using high density diatom thin film. This lab-on-chip technology has been successfully applied for label-free detection of polycyclic aromatic hydrocarbons from human plasma and histamine from salmon fish. Our research suggests that such cost-effective, multi-functional photonic crystal sensors enabled by diatom biosilica opens a new route for lab-on-chip systems and possess significant engineering potentials for chemical and biological sensing.

  11. Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications

    International Nuclear Information System (INIS)

    Wagner, Torsten; Molina, Roberto; Yoshinobu, Tatsuo; Kloock, Joachim P.; Biselli, Manfred; Canzoneri, Michelangelo; Schnitzler, Thomas; Schoening, Michael J.

    2007-01-01

    The light-addressable potentiometric sensor is a promising technology platform for multi-sensor applications and lab-on-chip devices. However, many prior LAPS developments suffer from their lack in terms of non-portability, insufficient robustness, complicate handling, etc. Hence, portable and robust LAPS-based measurement devices have been investigated by the authors recently. In this work, a 'chip card'-based light-addressable potentiometric sensor system is presented. The utilisation of ordinary 'chip cards' allows an easy handling of different sensor chips for a wide range of possible applications. The integration of the electronic and the mechanical set-up into a single reader unit results in a compact design with the benefits of portability and low required space. In addition, the presented work includes a new multi-frequency measurement procedure, based on an FFT algorithm, which enables the simultaneous real-time measurement of up to 16 sensor spots. The comparison between the former batch-LAPS and the new FFT-based LAPS set-up will be presented. The immobilisation of biological cells (CHO: Chinese hamster ovary) demonstrates the possibility to record their metabolic activity with 16 measurement spots on the same chip. Furthermore, a Cd 2+ -selective chalcogenide-glass layer together with a pH-sensitive Ta 2 O 5 layer validates the use of the LAPS for chemical multi-sensor applications

  12. Functionalized polypyrrole film: synthesis, characterization, and potential applications in chemical and biological sensors.

    Science.gov (United States)

    Dong, Hua; Cao, Xiaodong; Li, Chang Ming

    2009-07-01

    In this paper, we report the synthesis of a carboxyl-functionalized polypyrrole derivative, a poly(pyrrole-N-propanoic acid) (PPPA) film, by electrochemical polymerization, and the investigation of its basic properties via traditional characterization techniques such as confocal-Raman, FTIR, SEM, AFM, UV-vis, fluorescence microscopy, and contact-angle measurements. The experimental data show that the as-prepared PPPA film exhibits a hydrophilic nanoporous structure, abundant -COOH functional groups in the polymer backbone, and high fluorescent emission under laser excitation. On the basis of these unique properties, further experiments were conducted to demonstrate three potential applications of the PPPA film in chemical and biological sensors: a permeable and permselective membrane, a membrane with specific recognition sites for biomolecule immobilization, and a fluorescent conjugated polymer for amplification of fluorescence quenching. Specifically, the permeability and permselectivity of ion species through the PPPA film are detected by means of rotating-disk-electrode voltammetry; the specific recognition sites on the film surface are confirmed with protein immobilization, and the amplification of fluorescence quenching is measured by the addition of a quenching agent with fluorescence microscopy. The results are in good agreement with our expectations.

  13. Biomimetic microsensors inspired by marine life

    CERN Document Server

    Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael S

    2017-01-01

    This book narrates the development of various biomimetic microelectromechanical systems (MEMS) sensors, such as pressure, flow, acceleration, chemical, and tactile sensors, that are inspired by sensing phenomenon that exist in marine life. The research described in this book is multi-faceted and combines the expertise and understanding from diverse fields, including biomimetics, microfabrication, sensor engineering, MEMS design, nanotechnology, and material science. A series of chapters examine the design and fabrication of MEMS sensors that function on piezoresistive, piezoelectric, strain gauge, and chemical sensing principles. By translating nature-based engineering solutions to artificial manmade technology, we could find innovative solutions to critical problems.

  14. A bio-inspired asynchronous skin system for crack detection applications

    International Nuclear Information System (INIS)

    Sharp, Nathan; Kuntz, Alan; Brubaker, Cole; Amos, Stephanie; Gao, Wei; Gupta, Gautum; Mohite, Aditya; Farrar, Charles; Mascareñas, David

    2014-01-01

    In many applications of structural health monitoring (SHM) it is imperative or advantageous to have large sensor arrays in order to properly sense the state of health of the structure. Typically these sensor networks are implemented by placing a large number of sensors over a structure and running individual cables from each sensor back to a central measurement station. Data is then collected from each sensor on the network at a constant sampling rate regardless of the current timescales at which events are acting on the structure. These conventional SHM sensor networks have a number of shortfalls. They tend to have a large number of cables that can represent a single point of failure for each sensor as well as add significant weight and installation costs. The constant sampling rate associated with each sensor very quickly leads to large amounts of data that must be analyzed, stored, and possibly transmitted to a remote user. This leads to increased demands on power consumption, bandwidth, and size. It also taxes our current techniques for managing large amounts of data. For the last decade the goal of the SHM community has been to endow structures with the functionality of a biological nervous system. Despite this goal the community has predominantly ignored the biological nervous system as inspiration for building structural nervous systems, choosing instead to focus on experimental mechanics and simulation techniques. In this work we explore the use of a novel, bio-inspired, SHM skin. This skin makes use of distributed computing and asynchronous communication techniques to alleviate the scale of the data management challenge as well as reduce power. The system also periodically sends a ‘heat beat’ signal to provide state-of-health updates. This conductive skin was implemented using conductive ink resistors as well as with graphene-oxide capacitors. (paper)

  15. Social insects inspire human design

    Science.gov (United States)

    Holbrook, C. Tate; Clark, Rebecca M.; Moore, Dani; Overson, Rick P.; Penick, Clint A.; Smith, Adrian A.

    2010-01-01

    The international conference ‘Social Biomimicry: Insect Societies and Human Design’, hosted by Arizona State University, USA, 18–20 February 2010, explored how the collective behaviour and nest architecture of social insects can inspire innovative and effective solutions to human design challenges. It brought together biologists, designers, engineers, computer scientists, architects and businesspeople, with the dual aims of enriching biology and advancing biomimetic design. PMID:20392721

  16. NATO Advanced Research Workshop on Boron Rich Solids Sensors for Biological and Chemical Detection, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  17. NATO Advanced Research Workshop on Fluorescence and other Optical Properties of Biological Particles for Biological Warfare Agent Sensors

    CERN Document Server

    Hoekstra, Alfons; Videen, Gorden; Optics of Biological Particles

    2007-01-01

    This book covers the optics of single biological particles, both theory and experiment, with emphasis on Elastic Light Scattering and Fluorescence. It deals with the optics of bacteria (bio-aerosols), marine particles (selected phytoplankton communities) and red and white blood cells. Moreover, there are dedicated chapters on a general theory for scattering by a cell, and modelling and simulation of scattering by inhomogeneous biological cells. Finally, one chapter is dedicated to astro-biological signatures, discussing the possibilities for detecting non-terrestrial biological material. The volume has up-to-date discussions on new experimental and numerical techniques, and many examples of applications of these techniques in real-life systems, as used to detect and characterize e.g. biological warfare agents or human blood cells.

  18. Bio-inspired vision

    International Nuclear Information System (INIS)

    Posch, C

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  19. Electronic and optoelectronic materials and devices inspired by nature

    Science.gov (United States)

    Meredith, P.; Bettinger, C. J.; Irimia-Vladu, M.; Mostert, A. B.; Schwenn, P. E.

    2013-03-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist.

  20. Interfacing of differential-capacitive biomimetic hair flow-sensors for optimal sensitivity

    International Nuclear Information System (INIS)

    + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Dagamseh, A M K; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Bruinink, C M; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Wiegerink, R J; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Lammerink, T S J; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Droogendijk, H; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Krijnen, G J M

    2013-01-01

    Biologically inspired sensor-designs are investigated as a possible path to surpass the performance of more traditionally engineered designs. Inspired by crickets, artificial hair sensors have shown the ability to detect minute flow signals. This paper addresses developments in the design, fabrication, interfacing and characterization of biomimetic hair flow-sensors towards sensitive high-density arrays. Improvement of the electrode design of the hair sensors has resulted in a reduction of the smallest hair movements that can be measured. In comparison to the arrayed hairs-sensor design, the detection-limit was arguably improved at least twelve-fold, down to 1 mm s –1 airflow amplitude at 250 Hz as measured in a bandwidth of 3 kHz. The directivity pattern closely resembles a figure-of-eight. These sensitive hair-sensors open possibilities for high-resolution spatio-temporal flow pattern observations. (paper)

  1. Nanostructured Fiber Optic Cantilever Arrays and Hybrid MEMS Sensors for Chemical and Biological Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advancements in nano-/micro-scale sensor fabrication and molecular recognition surfaces offer promising opportunities to develop miniaturized hybrid fiber optic and...

  2. Nanoparticle sensor for label free detection of swine DNA in mixed biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M E; Hashim, U [Institute of Nano Electronic Engineering (INNE), Universiti Malaysia Perlis, Lot 104-108, Tingkat 1, Block A, Taman Pertiwi Indah, Jalan Kangar-Alor Star, Seriab, 01000 Kangar, Perlis (Malaysia); Mustafa, S; Che Man, Y B; Yusop, M H M [Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Bari, M F [School of Materials Engineering, University Malaysia Perlis, Seriab 01000, Kangar, Perlis (Malaysia); Islam, Kh N [Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hasan, M F, E-mail: uda@unimap.edu.my [Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-05-13

    We used 40 {+-} 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 {sup 0}C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 {mu}g ml{sup -1} swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.

  3. Nanoparticle sensor for label free detection of swine DNA in mixed biological samples

    International Nuclear Information System (INIS)

    Ali, M E; Hashim, U; Mustafa, S; Che Man, Y B; Yusop, M H M; Bari, M F; Islam, Kh N; Hasan, M F

    2011-01-01

    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 0 C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 μg ml -1 swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.

  4. Tripodal chelating ligand-based sensor for selective determination of Zn(II) in biological and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Singh, Ashok; Mehtab, Sameena; Singh, Udai P.; Aggarwal, Vaibhave [Indian Institute of Technology-Roorkee, Department of Chemistry, Roorkee (India)

    2007-08-15

    Potassium hydrotris(N-tert-butyl-2-thioimidazolyl)borate [KTt{sup t-Bu}] and potassium hydrotris(3-tert-butyl-5-isopropyl-l-pyrazolyl)borate [KTp{sup t-Bu,i-Pr}] have been synthesized and evaluated as ionophores for preparation of a poly(vinyl chloride) (PVC) membrane sensor for Zn(II) ions. The effect of different plasticizers, viz. benzyl acetate (BA), dioctyl phthalate (DOP), dibutyl phthalate (DBP), tributyl phosphate (TBP), and o-nitrophenyl octyl ether (o-NPOE), and the anion excluders sodium tetraphenylborate (NaTPB), potassium tetrakis(p-chlorophenyl)borate (KTpClPB), and oleic acid (OA) were studied to improve the performance of the membrane sensor. The best performance was obtained from a sensor with a of [KTt{sup t-Bu}] membrane of composition (mg): [KTt{sup t-Bu}] (15), PVC (150), DBP (275), and NaTPB (4). This sensor had a Nernstian response (slope, 29.4 {+-} 0.2 mV decade of activity) for Zn{sup 2+} ions over a wide concentration range (1.4 x 10{sup -7} to 1.0 x 10{sup -1} mol L{sup -1}) with a limit of detection of 9.5 x 10{sup -8} mol L{sup -1}. It had a relatively fast response time (12 s) and could be used for 3 months without substantial change of the potential. The membrane sensor had very good selectivity for Zn{sup 2+} ions over a wide variety of other cations and could be used in a working pH range of 3.5-7.8. The sensor was also found to work satisfactorily in partially non-aqueous media and could be successfully used for estimation of zinc at trace levels in biological and environmental samples. (orig.)

  5. Chemical and biological sensors based on defect-engineered graphene mesh field-effect transistors.

    Science.gov (United States)

    Cho, Seunghee H; Kwon, Sun Sang; Yi, Jaeseok; Park, Won Il

    2016-01-01

    Graphene has been intensively studied for applications to high-performance sensors, but the sensing characteristics of graphene devices have varied from case to case, and the sensing mechanism has not been satisfactorily determined thus far. In this review, we describe recent progress in engineering of the defects in graphene grown by a silica-assisted chemical vapor deposition technique and elucidate the effect of the defects upon the electrical response of graphene sensors. This review provides guidelines for engineering and/or passivating defects to improve sensor performance and reliability.

  6. Sensor

    OpenAIRE

    Gleeson, Helen; Dierking, Ingo; Grieve, Bruce; Woodyatt, Christopher; Brimicombe, Paul

    2015-01-01

    An electrical temperature sensor (10) comprises a liquid crystalline material (12). First and second electrically conductive contacts (14), (16), having a spaced relationship there between, contact the liquid crystalline material (12). An electric property measuring device is electrically connected to the first and second contacts (14), (16) and is arranged to measure an electric property of the liquid crystalline material (12). The liquid crystalline material (12) has a transition temperatur...

  7. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor

    Science.gov (United States)

    Liang, Xin M.; Sekar, Praveen K.; Zhao, Gang; Zhou, Xiaoming; Shu, Zhiquan; Huang, Zhongping; Ding, Weiping; Zhang, Qingchuan; Gao, Dayong

    2015-01-01

    An improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent. Dynamic thermal conductivity response during cooling (40 °C to –40 °C) was observed using the miniaturized single tip sensor for various concentrations of CPAs, i.e., glycerol, ethylene glycol and dimethyl sulfoxide. Chicken breast, chicken skin, porcine limb, and bovine liver were assayed to investigate the effect of anatomical heterogeneity on thermal conductivity using the arrayed multi-tip sensor at 20 °C. Experimental results revealed distinctive differences in localized thermal conductivity, which suggests the use of approximated or constant property values is expected to bring about results with largely inflated uncertainties when investigating bio-heat transfer mechanisms and/or performing sophisticated thermal modeling with complex biological tissues. Overall, the presented micro thermal sensor with automated data analysis algorithm is a promising approach for direct thermal conductivity measurement of aqueous solutions and soft biomaterials and is of great value to cryopreservation of tissues, hyperthermia or cryogenic, and other thermal-based clinical diagnostics and treatments. PMID:25993037

  8. Marrow-isolated adult multilineage inducible cells embedded within a biologically-inspired construct promote recovery in a mouse model of peripheral vascular disease.

    Science.gov (United States)

    Grau-Monge, Cristina; Delcroix, Gaëtan J-R; Bonnin-Marquez, Andrea; Valdes, Mike; Awadallah, Ead Lewis Mazen; Quevedo, Daniel F; Armour, Maxime R; Montero, Ramon B; Schiller, Paul C; Andreopoulos, Fotios M; D'Ippolito, Gianluca

    2017-02-17

    Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of two layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration.

  9. Retina-Inspired Filter.

    Science.gov (United States)

    Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien

    2018-07-01

    This paper introduces a novel filter, which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer, and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model "virtual retina." This model is the cornerstone to derive the non-separable spatio-temporal OPL retina-inspired filter, briefly renamed retina-inspired filter, studied in this paper. This filter is connected to the dynamic behavior of the retina, which enables the retina to increase the sharpness of the visual stimulus during filtering before its transmission to the brain. We establish that this retina-inspired transform forms a group of spatio-temporal Weighted Difference of Gaussian (WDoG) filters when it is applied to a still image visible for a given time. We analyze the spatial frequency bandwidth of the retina-inspired filter with respect to time. It is shown that the WDoG spectrum varies from a lowpass filter to a bandpass filter. Therefore, while time increases, the retina-inspired filter enables to extract different kinds of information from the input image. Finally, we discuss the benefits of using the retina-inspired filter in image processing applications such as edge detection and compression.

  10. Clay Bells: Edo Inspiration

    Science.gov (United States)

    Wagner, Tom

    2010-01-01

    The ceremonial copper and iron bells at the Smithsonian's National Museum of African Art were the author's inspiration for an interdisciplinary unit with a focus on the contributions various cultures make toward the richness of a community. The author of this article describes an Edo bell-inspired ceramic project incorporating slab-building…

  11. Inspiration from britain?

    DEFF Research Database (Denmark)

    Vagnby, Bo

    2008-01-01

    Danish housing policy needs a dose of renewed social concern - and could find new inspiration in Britain's housing and urban planning policies, says Bo Vagnby. Udgivelsesdato: November......Danish housing policy needs a dose of renewed social concern - and could find new inspiration in Britain's housing and urban planning policies, says Bo Vagnby. Udgivelsesdato: November...

  12. Butterfly effects: novel functional materials inspired from the wings scales.

    Science.gov (United States)

    Zhang, Wang; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Fan, Tongxiang; Zhang, Di

    2014-10-07

    Through millions of years of evolutionary selection, nature has created biological materials with various functional properties for survival. Many complex natural architectures, such as shells, bones, and honeycombs, have been studied and imitated in the design and fabrication of materials with enhanced hardness and stiffness. Recently, more and more researchers have started to research the wings of butterflies, mostly because of their dazzling colors. It was found that most of these iridescent colors are caused by periodic photonic structures on the scales that make up the surfaces of these wings. These materials have recently become a focus of multidiscipline research because of their promising applications in the display of structural colors, and in advanced sensors, photonic crystals, and solar cells. This paper review aims to provide a perspective overview of the research inspired by these wing structures in recent years.

  13. Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future.

    Science.gov (United States)

    Fennell, John F; Liu, Sophie F; Azzarelli, Joseph M; Weis, Jonathan G; Rochat, Sébastien; Mirica, Katherine A; Ravnsbæk, Jens B; Swager, Timothy M

    2016-01-22

    Chemiresistive sensors are becoming increasingly important as they offer an inexpensive option to conventional analytical instrumentation, they can be readily integrated into electronic devices, and they have low power requirements. Nanowires (NWs) are a major theme in chemosensor development. High surface area, interwire junctions, and restricted conduction pathways give intrinsically high sensitivity and new mechanisms to transduce the binding or action of analytes. This Review details the status of NW chemosensors with selected examples from the literature. We begin by proposing a principle for understanding electrical transport and transduction mechanisms in NW sensors. Next, we offer the reader a review of device performance parameters. Then, we consider the different NW types followed by a summary of NW assembly and different device platform architectures. Subsequently, we discuss NW functionalization strategies. Finally, we propose future developments in NW sensing to address selectivity, sensor drift, sensitivity, response analysis, and emerging applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Neuroscience-Inspired Artificial Intelligence.

    Science.gov (United States)

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  15. Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors.

    Science.gov (United States)

    Jiang, Hongji

    2011-09-05

    Graphene is a flat monolayer of carbon atoms packed tightly into a 2D honeycomb lattice that shows many intriguing properties meeting the key requirements for the implementation of highly excellent sensors, and all kinds of proof-of-concept sensors have been devised. To realize the potential sensor applications, the key is to synthesize graphene in a controlled way to achieve enhanced solution-processing capabilities, and at the same time to maintain or even improve the intrinsic properties of graphene. Several production techniques for graphene-based nanomaterials have been developed, ranging from the mechanical cleavage and chemical exfoliation of high-quality graphene to direct growth onto different substrates and the chemical routes using graphite oxide as a precusor to the newly developed bottom-up approach at the molecular level. The current review critically explores the recent progress on the chemical preparation of graphene-based nanomaterials and their applications in sensors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Semiconductor Metal Oxide Sensors in Water and Water Based Biological Systems

    Directory of Open Access Journals (Sweden)

    Marina V. Strobkova

    2003-10-01

    Full Text Available The results of implementation of In2O3-based semiconductor sensors for oxygen concentration evaluation in water and the LB-nutrient media (15.5 g/l Luria Broth Base, Miller (Sigma, Lot-1900 and NaCl without bacteria and with E.coli bacteria before and after UV-irradiation are presented.

  17. Five Years of Designing Wireless Sensor Networks in the Doñana Biological Reserve (Spain): An Applications Approach

    Science.gov (United States)

    Larios, Diego F.; Barbancho, Julio; Sevillano, José L.; Rodríguez, Gustavo; Molina, Francisco J.; Gasull, Virginia G.; Mora-Merchan, Javier M.; León, Carlos

    2013-01-01

    Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task. PMID:24025554

  18. Five years of designing wireless sensor networks in the Doñana Biological Reserve (Spain): an applications approach.

    Science.gov (United States)

    Larios, Diego F; Barbancho, Julio; Sevillano, José L; Rodríguez, Gustavo; Molina, Francisco J; Gasull, Virginia G; Mora-Merchan, Javier M; León, Carlos

    2013-09-10

    Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task.

  19. Nature-inspired computation in engineering

    CERN Document Server

    2016-01-01

    This timely review book summarizes the state-of-the-art developments in nature-inspired optimization algorithms and their applications in engineering. Algorithms and topics include the overview and history of nature-inspired algorithms, discrete firefly algorithm, discrete cuckoo search, plant propagation algorithm, parameter-free bat algorithm, gravitational search, biogeography-based algorithm, differential evolution, particle swarm optimization and others. Applications include vehicle routing, swarming robots, discrete and combinatorial optimization, clustering of wireless sensor networks, cell formation, economic load dispatch, metamodeling, surrogated-assisted cooperative co-evolution, data fitting and reverse engineering as well as other case studies in engineering. This book will be an ideal reference for researchers, lecturers, graduates and engineers who are interested in nature-inspired computation, artificial intelligence and computational intelligence. It can also serve as a reference for relevant...

  20. Crickets as bio-inspiration for MEMS-based flow-sensing

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Droogendijk, H.; Dagamseh, A.M.K.; Jaganatharaja, R.K.; Casas, Jerome

    2014-01-01

    MEMS offers exciting possibilities for the fabrication of bio-inspired mechanosensors. Over the last few years, we have been working on cricket- inspired hair-sensor arrays for spatio-temporal flow-field observations (i.e. flow camera) and source localisation. Whereas making flow-sensors as energy

  1. A fully automated health-care monitoring at home without attachment of any biological sensors and its clinical evaluation.

    Science.gov (United States)

    Motoi, Kosuke; Ogawa, Mitsuhiro; Ueno, Hiroshi; Kuwae, Yutaka; Ikarashi, Akira; Yuji, Tadahiko; Higashi, Yuji; Tanaka, Shinobu; Fujimoto, Toshiro; Asanoi, Hidetsugu; Yamakoshi, Ken-ichi

    2009-01-01

    Daily monitoring of health condition is important for an effective scheme for early diagnosis, treatment and prevention of lifestyle-related diseases such as adiposis, diabetes, cardiovascular diseases and other diseases. Commercially available devices for health care monitoring at home are cumbersome in terms of self-attachment of biological sensors and self-operation of the devices. From this viewpoint, we have been developing a non-conscious physiological monitor installed in a bath, a lavatory, and a bed for home health care and evaluated its measurement accuracy by simultaneous recordings of a biological sensors directly attached to the body surface. In order to investigate its applicability to health condition monitoring, we have further developed a new monitoring system which can automatically monitor and store the health condition data. In this study, by evaluation on 3 patients with cardiac infarct or sleep apnea syndrome, patients' health condition such as body and excretion weight in the toilet and apnea and hypopnea during sleeping were successfully monitored, indicating that the system appears useful for monitoring the health condition during daily living.

  2. Freshwater Mussels as Biological Sensors and Cyclers of Aquatic Nitrogen Constituents: An Experimental Investigation

    Science.gov (United States)

    Kruger, A.; Just, C. L.; Mudumbai, R.; Dasgupta, S.; Newton, T. J.; Durst, J.; Boddicker, M. D.; Diken, M. B.; Bril, J.; Baidoo-Williams, H. E.

    2011-12-01

    One of the most extensive manifestations of anthropogenic mismanagement of nitrogen is eutrophication of the Gulf of Mexico. Leaching and runoff transport nitrate compounds-excess agricultural fertilizer and animal waste-via the Mississippi River to the Gulf of Mexico. Phytoplankton then multiplies exponentially, and consumes most of the dissolved oxygen. This hypoxia kills fish and other organisms, leading to so-called dead zones in the Gulf that can cover 6,000-7,000 square miles. Dead zone mitigation plans call for coupling management actions with enhanced monitoring, modeling, and research on nitrogen delivery to, as well as processing within, the Mississippi River. Our vision is to create a biosensor network of native freshwater mussels in a major river to monitor, comprehend, and ultimately model key components of the nitrogen cycle. Native freshwater mussels are a guild of long-lived, suspension feeding bivalves that perform important ecological functions in aquatic systems. Mussels can influence nutrient cycling by transferring nutrients from the water column to the riverbed. A major problem for environmental scientists is that relatively little is known about the diurnal behaviors of freshwater mussels or the impacts these behaviors may have on the aquatic nitrogen cycle. Our multidisciplinary team is performing a series of laboratory experiments exploring the feasibility of using freshwater mussels as sensors of and capacitors for nitrates. For sensing, we place Hall-effect sensors on mussels to monitor the rhythmic opening and closing of their valves (gape). One shortcoming of previous work is that mussels were monitored in artificial conditions: glued fast in laboratory flumes, or tethered in constrained settings. To overcome this shortcoming, our team has built a mussel microhabitat with a constant river water feed stock, solar simulator, and a variety of water chemistry sensor. A main thrust of our work is to develop the technology to monitor mussel

  3. Physicists get INSPIREd

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Particle physicists thrive on information. They first create information by performing experiments or elaborating theoretical conjectures and then they share it through publications and various web tools. The INSPIRE service, just released, will bring state of the art information retrieval to the fingertips of researchers.   Keeping track of the information shared within the particle physics community has long been the task of libraries at the larger labs, such as CERN, DESY, Fermilab and SLAC, as well as the focus of indispensible services like arXiv and those of the Particle Data Group. In 2007, many providers of information in the field came together for a summit at SLAC to see how physics information resources could be enhanced, and the INSPIRE project emerged from that meeting. The vision behind INSPIRE was built by a survey launched by the four labs to evaluate the real needs of the community. INSPIRE responds to these directives from the community by combining the most successful aspe...

  4. Species detection and abundance using a biosensor - Development and Testing of in-situ Biological Sensors

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Environmental Sample Processor (ESP), http://www.mbari.org/ESP/, is an autonomous biological sensing system that conducts in situ collection and molecular...

  5. Buckling Pneumatic Linear Actuators Inspired by Muscle

    OpenAIRE

    Yang, Dian; Verma, Mohit Singh; So, Ju-Hee; Mosadegh, Bobak; Keplinger, Christoph; Lee, Benjamin; Khashai, Fatemeh; Lossner, Elton Garret; Suo, Zhigang; Whitesides, George McClelland

    2016-01-01

    The mechanical features of biological muscles are difficult to reproduce completely in synthetic systems. A new class of soft pneumatic structures (vacuum-actuated muscle-inspired pneumatic structures) is described that combines actuation by negative pressure (vacuum), with cooperative buckling of beams fabricated in a slab of elastomer, to achieve motion and demonstrate many features that are similar to that of mammalian muscle.

  6. Cricket Inspired Flow-Sensor Arrays

    NARCIS (Netherlands)

    Jaganatharaja, R.K.

    2011-01-01

    Crickets, like many other arthropods, are evolved with an astonishing sensory system, which plays a vital role in their survival. Located at the rear-end of the crickets, are a pair of sensory appendages called cerci, carrying numerous mechano-receptive filiform hairs. These filiform hairs are

  7. Electronic and optoelectronic materials and devices inspired by nature

    International Nuclear Information System (INIS)

    Meredith, P; Schwenn, P E; Bettinger, C J; Irimia-Vladu, M; Mostert, A B

    2013-01-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist. (review article)

  8. Conditioned Microplitis croceipes Cresson (Hymenoptera: Braconidae) detect and respond to 2,4-DNT: development of a biological sensor.

    Science.gov (United States)

    Tomberlin, Jeffery K; Tertuliano, Moukaram; Rains, Glen; Lewis, W Joe

    2005-09-01

    We examined the ability of M. croceipes to learn, detect, and respond to 2,4-DNT, which is a volatile discriminator of trinitrotoluene (TNT). The percentage of conditioned wasps to detect and respond to the various concentrations of 2,4-DNT for > or = 15 sec was measured. Significantly more of the conditioned wasps responded to the concentration of 2,4-DNT used for conditioning than other concentrations examined. Accordingly, percent conditioned wasps to respond > or = 15 sec could be used as a suitable measure to screen air samples and distinguish between samples with or without the target odorant. The data recorded in this study indicate the measured behavior could be used to estimate the concentration of target odorants. Data in this study indicate M. croceipes can detect and respond to this compound, which provide further support for its development as a biological sensor.

  9. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    Science.gov (United States)

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Grace, Karen M [Los Alamos, NM; Grace, Wynne K [Los Alamos, NM; Shreve, Andrew P [Santa Fe, NM

    2009-06-02

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  10. Prototypes of Newly Conceived Inorganic and Biological Sensors for Health and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Rosanna Spera

    2012-12-01

    Full Text Available This paper describes the optimal implementation of three newly conceived sensors for both health and environmental applications, utilizing a wide range of detection methods and complex nanocomposites. The first one is inorganic and based on matrices of calcium oxide, the second is based on protein arrays and a third one is based on Langmuir-Blodgett laccase multi-layers. Special attention was paid to detecting substances significant to the environment (such as carbon dioxide and medicine (drug administration, cancer diagnosis and prognosis by means of amperometric, quartz crystal microbalance with frequency (QCM_F and quartz crystal microbalance with dissipation monitoring (QCM_D technologies. The resulting three implemented nanosensors are described here along with proofs of principle and their corresponding applications.

  11. Detection of biological molecules using boronate-based chemical amplification and optical sensors

    Science.gov (United States)

    Van Antwerp, William Peter; Mastrototaro, John Joseph; Lane, Stephen M.; Satcher, Jr., Joe H.; Darrow, Christopher B.; Peyser, Thomas A.; Harder, Jennifer

    1999-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  12. Performance assessment of bio-inspired systems: flow sensing MEMS hairs

    International Nuclear Information System (INIS)

    Droogendijk, H; Krijnen, G J M; Casas, J; Steinmann, T

    2015-01-01

    Despite vigorous growth in biomimetic design, the performance of man-made devices relative to their natural templates is still seldom quantified, a procedure which would however significantly increase the rigour of the biomimetic approach. We applied the ubiquitous engineering concept of a figure of merit (FoM) to MEMS flow sensors inspired by cricket filiform hairs. A well known mechanical model of a hair is refined and tailored to this task. Five criteria of varying importance in the biological and engineering fields are computed: responsivity, power transfer, power efficiency, response time and detection threshold. We selected the metrics response time and detection threshold for building the FoM to capture the performance in a single number. Crickets outperform actual MEMS on all criteria for a large range of flow frequencies. Our approach enables us to propose several improvements for MEMS hair-sensor design. (paper)

  13. Learning from nature: Nature-inspired algorithms

    DEFF Research Database (Denmark)

    Albeanu, Grigore; Madsen, Henrik; Popentiu-Vladicescu, Florin

    2016-01-01

    .), genetic and evolutionary strategies, artificial immune systems etc. Well-known examples of applications include: aircraft wing design, wind turbine design, bionic car, bullet train, optimal decisions related to traffic, appropriate strategies to survive under a well-adapted immune system etc. Based......During last decade, the nature has inspired researchers to develop new algorithms. The largest collection of nature-inspired algorithms is biology-inspired: swarm intelligence (particle swarm optimization, ant colony optimization, cuckoo search, bees' algorithm, bat algorithm, firefly algorithm etc...... on collective social behaviour of organisms, researchers have developed optimization strategies taking into account not only the individuals, but also groups and environment. However, learning from nature, new classes of approaches can be identified, tested and compared against already available algorithms...

  14. Selective and sensitive fluorescent sensor for Pd2+ using coumarin 460 for real-time and biological applications.

    Science.gov (United States)

    Ashwin, Bosco Christin Maria Arputham; Sivaraman, Gandhi; Stalin, Thambusamy; Yuvakkumar, Rathinam; Muthu Mareeswaran, Paulpandian

    2018-05-03

    The efficient fluorescent property of coumarin 460 (C460) is utilized to sense the Pd 2+ selectively and sensitively. Fabrication of a sensor strip using commercial adhesive tape is achieved and the detection of Pd 2+ is attempted using a handy UV torch. The naked eye detection in solution state using UV chamber is also attempted. The calculated high binding constant values support the strong stable complex formation of Pd 2+ with C460. The detection limit up to 2.5 × 10 -7  M is achieved using fluorescence spectrometer, which is considerably low from the WHO's recommendation. The response of coumarin 460 with various cations also studied. The quenching is further studied by the lifetime measurements. The binding mechanism is clearly explained by the 1 H NMR titration. The sensing mechanism is established as ICT. C460 strip's Pd 2+ quenching detection is further confirmed by solid-state PL study. The in-vitro response of Pd 2+ in a living cell is also studied using fluorescent imaging studies by means of HeLa cell lines and this probe is very compatible with biological environments. It could be applicable to sense trace amounts of a Pd 2+ ion from various industries. Compared with previous reports, this one is very cheap, sensitive, selective and suitable for biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues

    Science.gov (United States)

    Lubner, Sean D.; Choi, Jeunghwan; Wehmeyer, Geoff; Waag, Bastian; Mishra, Vivek; Natesan, Harishankar; Bischof, John C.; Dames, Chris

    2015-01-01

    Accurate knowledge of the thermal conductivity (k) of biological tissues is important for cryopreservation, thermal ablation, and cryosurgery. Here, we adapt the 3ω method—widely used for rigid, inorganic solids—as a reusable sensor to measure k of soft biological samples two orders of magnitude thinner than conventional tissue characterization methods. Analytical and numerical studies quantify the error of the commonly used "boundary mismatch approximation" of the bi-directional 3ω geometry, confirm that the generalized slope method is exact in the low-frequency limit, and bound its error for finite frequencies. The bi-directional 3ω measurement device is validated using control experiments to within ±2% (liquid water, standard deviation) and ±5% (ice). Measurements of mouse liver cover a temperature ranging from -69 °C to +33 °C. The liver results are independent of sample thicknesses from 3 mm down to 100 μm and agree with available literature for non-mouse liver to within the measurement scatter.

  16. Inspirations in medical genetics.

    Science.gov (United States)

    Asadollahi, Reza

    2016-02-01

    There are abundant instances in the history of genetics and medical genetics to illustrate how curiosity, charisma of mentors, nature, art, the saving of lives and many other matters have inspired great discoveries. These achievements from deciphering genetic concepts to characterizing genetic disorders have been crucial for management of the patients. There remains, however, a long pathway ahead. © The Author(s) 2014.

  17. Nature as Inspiration

    Science.gov (United States)

    Tank, Kristina; Moore, Tamara; Strnat, Meg

    2015-01-01

    This article describes the final lesson within a seven-day STEM and literacy unit that is part of the Picture STEM curriculum (pictureSTEM. org) and uses engineering to integrate science and mathematics learning in a meaningful way (Tank and Moore 2013). For this engineering challenge, students used nature as a source of inspiration for designs to…

  18. Ndebele Inspired Houses

    Science.gov (United States)

    Rice, Nicole

    2012-01-01

    The house paintings of the South African Ndebele people are more than just an attempt to improve the aesthetics of a community; they are a source of identity and significance for Ndebele women. In this article, the author describes an art project wherein students use the tradition of Ndebele house painting as inspiration for creating their own…

  19. Biologically inspired technologies using artificial muscles

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-01-01

    One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their response mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the current state of- the-art and challenges to making artificial muscles and their potential biomimetic applications.

  20. Biological Inspiration for Agile Autonomous Air Vehicles

    National Research Council Canada - National Science Library

    Evers, Johnny H

    2007-01-01

    .... Flying animals exhibit capabilities for aerial acrobatics, insensitivity to wind gusts, avoiding collision with or intercepting fixed and moving objects, landing and take off from small perches...

  1. A Biologically Inspired Learning to Grasp System

    Science.gov (United States)

    2001-10-25

    possible extensive discussions of data on the premotor cortex and monkey grasping circuit with Giacomo Rizzolatti , Vittorio Gallese, to whom we express...premotor specialisation for the different types of grasps that Rizzolatti group [3] has found be formed at this age yet. Infants will need to...our gratitude. REFERENCES [1] M. Jeannerod, M.A. Arbib, G. Rizzolatti , H. Sakata, “Grasping objects: the cortical mechanisms of visuomotor

  2. Project Summary: Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-02-01

    pp. 644–650, 2005. [4] L. Dugatkin, Cheating monkeys and citizen bees : the nature of cooperation in animals and humans. Simon and Shuster, 1999. [5] L...varied behavioral American Institute of Aeronautics and Astronautics 7 repertoires. Many of the animal extinctions of the past few centuries

  3. Music Information Retrieval Using Biologically Inspired Techniques

    NARCIS (Netherlands)

    Bountouridis, D.

    2018-01-01

    The computational modeling of our perception of music similarity is an intricate, unsolved problem with various practical applications. Many of the current approaches aim at solving it by employing heuristics, such as expert intuition or music theory, which limit their application to narrow

  4. Biologically inspired hairy surfaces for liquid repellency

    Science.gov (United States)

    Hsu, Shu-Hau

    Owing to remarkable features, such as self-cleaning, anti-biofouling and drag reduction, interest on rendering surfaces water-repellent has significantly grown within this decade. Attempts on making surfaces "superhydrophobic", where high water contact angle (θc >150°) accompanied with only few degrees of roll-off angle, have been extensively demonstrated through the mimicking of the surface chemistry and morphology of lotus leaves. This appealing phenomenon also exists on another structure from nature: surfaces comprising soft hairs. Although the role of this piliferous integument has long been recognized for providing life, arthropods in particular, waterrepellency, the synthetic superhydrophobic surfaces based on this structure are still very limited. In this study, the goal was to develop a novel liquid-repellent surface by mimicking the hairy exterior of species. The artificial hairy surfaces were prepared by means of pressurized membrane casting, in which thermoplastic sheets were forced to flow into porous membranes at elevated temperature. The G-shaped pillars on the membrane cast polypropylene substrate are particularly similar to the conformation of natural hairs. The principle of this fabrication technique is relatively accessible and is expected to be compatible with large-area fabrication of superhydrophobic interfaces. The artificial hairy surface features perfectly hydrophobic response where no contact angle hysteresis was observed from video assessment. Thus the artificial hairy surface of the current work appears to be the first report to have such extreme hydrophobicity with only structural modification from the original substrate. This ultralow adhesion to water droplet is believed to be attributed to the hydrophobic methyl groups and the mechanical response of the artificial hairs. Liquid repellency of the hairy surfaces was further enhanced by coating with fluorocarbon (CF) layers via deep reactive ion etching (DRIE). The contact angle of water-methanol mixture (gamma < 35.2 mN/m) was raised from 60° to around 140°. The surface energy of coated samples, however, was still not low enough to repel non-polar liquids. Moreover, the hairy structure is not favorable for maintaining the low surface tension liquid in Cassie-Baxter state.

  5. Biologically inspired rate control of chaos.

    Science.gov (United States)

    Olde Scheper, Tjeerd V

    2017-10-01

    The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.

  6. Trusted computation through biologically inspired processes

    Science.gov (United States)

    Anderson, Gustave W.

    2013-05-01

    Due to supply chain threats it is no longer a reasonable assumption that traditional protections alone will provide sufficient security for enterprise systems. The proposed cognitive trust model architecture extends the state-of-the-art in enterprise anti-exploitation technologies by providing collective immunity through backup and cross-checking, proactive health monitoring and adaptive/autonomic threat response, and network resource diversity.

  7. Biologically inspired optimization methods an introduction

    CERN Document Server

    Wahde, M

    2008-01-01

    The advent of rapid, reliable and cheap computing power over the last decades has transformed many, if not most, fields of science and engineering. The multidisciplinary field of optimization is no exception. First of all, with fast computers, researchers and engineers can apply classical optimization methods to problems of larger and larger size. In addition, however, researchers have developed a host of new optimization algorithms that operate in a rather different way than the classical ones, and that allow practitioners to attack optimization problems where the classical methods are either not applicable or simply too costly (in terms of time and other resources) to apply.This book is intended as a course book for introductory courses in stochastic optimization algorithms (in this book, the terms optimization method and optimization algorithm will be used interchangeably), and it has grown from a set of lectures notes used in courses, taught by the author, at the international master programme Complex Ada...

  8. Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    Daniel Matatagui

    2014-07-01

    Full Text Available The following paper examines a time-efficient method for detecting biological warfare agents (BWAs. The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13, and the rabbit immunoglobulin (Rabbit IgG has been detected using the polyclonal antibody goat anti-rabbit (GAR. Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved.

  9. Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications

    Directory of Open Access Journals (Sweden)

    Robert M. Strongin

    2007-08-01

    Full Text Available Changes in the chemical environment can trigger large motions in chemomechanical polymers. The unique feature of such intelligent materials, mostly in the form of hydrogels, is therefore, that they serve as sensors and actuators at the same time, and do not require any measuring devices, transducers or power supplies. Until recently the most often used of these materials responded to changes in pH. Chemists are now increasingly using supramolecular recognition sites in materials, which are covalently bound to the polymer backbone. This allows one to use a nearly unlimited variety of guest (or effector compounds in the environment for a selective response by automatically triggered size changes. This is illustrated with non-covalent interactions of effectors comprising of metal ions, isomeric organic compounds, including enantiomers, nucleotides, aminoacids, and peptides. Two different effector molecules can induce motions as functions of their concentration, thus representing a logical AND gate. This concept is particularly fruitful with effector compounds such as peptides, which only trigger size changes if, e.g. copper ions are present in the surroundings. Another principle relies on the fast formation of covalent bonds between an effector and the chemomechanical polymer. The most promising application is the selective interaction of covalently fixed boronic acid residues with glucose, which renders itself not only for sensing, but eventually also for delivery of drugs such as insulin. The speed of the responses can significantly increase by increasing the surface to volume ratio of the polymer particles. Of particular interest is the sensitivity increase which can be reached by downsizing the particle volume.

  10. Polymer-based wireless implantable sensor and platform for systems biology study

    Science.gov (United States)

    Xue, Ning

    Wireless implantable MEMS (microelectromechanical systems) devices have been developed over the past decade based on the combination of bio-MEMS and Radio frequency (RF) MEMS technology. These devices require the components of wireless telemetric antenna and the corresponding circuit. In the meanwhile, biocompatible material needs to be involved in the devices design. To supply maximum power upon the implantable device at given power supply from the external coil circuit, this dissertation theoretically analyzed the mutual inductance under the positions of variety of vertical distances, lateral displacements and angular misalignments between two coils in certain surgical coils misalignment situations. A planar spiral coil has been developed as the receiver coil of the coupling system. To get maximum induced voltage over the receiver circuit, different geometries of the power coil, system operation frequencies were investigated. An intraocular pressure (IOP) sensor has been developed consisting of only biocompatible matierials-SU-8 and gold. Its size is sufficiently small to be implanted in the eye. The measurement results showed that it has relatively linear pressure response, high resolution and relatively long working stability in saline environment. Finally, a simple and low cost micro-wells bio-chip has been developed with sole polydimethylsiloxane (PDMS) to be used for single cell or small group cells isolation. By performing atomic force microscopy (AFM), contact angle and x-ray photoelectron spectroscopy (XPS) measurements on the PDMS surfaces under various surface treatment conditions, the physical and chemical surface natures were thoroughly analyzed as the basis of study of cells attachment and isolation to the surfaces.

  11. Data specifications for INSPIRE

    Science.gov (United States)

    Portele, Clemens; Woolf, Andrew; Cox, Simon

    2010-05-01

    In Europe a major recent development has been the entering in force of the INSPIRE Directive in May 2007, establishing an infrastructure for spatial information in Europe to support Community environmental policies, and policies or activities which may have an impact on the environment. INSPIRE is based on the infrastructures for spatial information established and operated by the 27 Member States of the European Union. The Directive addresses 34 spatial data themes needed for environmental applications, with key components specified through technical implementing rules. This makes INSPIRE a unique example of a legislative "regional" approach. One of the requirements of the INSPIRE Directive is to make existing spatial data sets with relevance for one of the spatial data themes available in an interoperable way, i.e. where the spatial data from different sources in Europe can be combined to a coherent result. Since INSPIRE covers a wide range of spatial data themes, the first step has been the development of a modelling framework that provides a common foundation for all themes. This framework is largely based on the ISO 19100 series of standards. The use of common generic spatial modelling concepts across all themes is an important enabler for interoperability. As a second step, data specifications for the first set of themes has been developed based on the modelling framework. The themes include addresses, transport networks, protected sites, hydrography, administrative areas and others. The data specifications were developed by selected experts nominated by stakeholders from all over Europe. For each theme a working group was established in early 2008 working on their specific theme and collaborating with the other working groups on cross-theme issues. After a public review of the draft specifications starting in December 2008, an open testing process and thorough comment resolution process, the draft technical implementing rules for these themes have been

  12. Noise-exploitation and adaptation in neuromorphic sensors

    Science.gov (United States)

    Hindo, Thamira; Chakrabartty, Shantanu

    2012-04-01

    Even though current micro-nano fabrication technology has reached integration levels where ultra-sensitive sensors can be fabricated, the sensing performance (resolution per joule) of synthetic systems are still orders of magnitude inferior to those observed in neurobiology. For example, the filiform hairs in crickets operate at fundamental limits of noise; auditory sensors in a parasitoid fly can overcome fundamental limitations to precisely localize ultra-faint acoustic signatures. Even though many of these biological marvels have served as inspiration for different types of neuromorphic sensors, the main focus these designs have been to faithfully replicate the biological functionalities, without considering the constructive role of "noise". In man-made sensors device and sensor noise are typically considered as a nuisance, where as in neurobiology "noise" has been shown to be a computational aid that enables biology to sense and operate at fundamental limits of energy efficiency and performance. In this paper, we describe some of the important noise-exploitation and adaptation principles observed in neurobiology and how they can be systematically used for designing neuromorphic sensors. Our focus will be on two types of noise-exploitation principles, namely, (a) stochastic resonance; and (b) noise-shaping, which are unified within our previously reported framework called Σ▵ learning. As a case-study, we describe the application of Σ▵ learning for the design of a miniature acoustic source localizer whose performance matches that of its biological counterpart(Ormia Ochracea).

  13. Semi-flocking algorithm for motion control of mobile sensors in large-scale surveillance systems.

    Science.gov (United States)

    Semnani, Samaneh Hosseini; Basir, Otman A

    2015-01-01

    The ability of sensors to self-organize is an important asset in surveillance sensor networks. Self-organize implies self-control at the sensor level and coordination at the network level. Biologically inspired approaches have recently gained significant attention as a tool to address the issue of sensor control and coordination in sensor networks. These approaches are exemplified by the two well-known algorithms, namely, the Flocking algorithm and the Anti-Flocking algorithm. Generally speaking, although these two biologically inspired algorithms have demonstrated promising performance, they expose deficiencies when it comes to their ability to maintain simultaneous robust dynamic area coverage and target coverage. These two coverage performance objectives are inherently conflicting. This paper presents Semi-Flocking, a biologically inspired algorithm that benefits from key characteristics of both the Flocking and Anti-Flocking algorithms. The Semi-Flocking algorithm approaches the problem by assigning a small flock of sensors to each target, while at the same time leaving some sensors free to explore the environment. This allows the algorithm to strike balance between robust area coverage and target coverage. Such balance is facilitated via flock-sensor coordination. The performance of the proposed Semi-Flocking algorithm is examined and compared with other two flocking-based algorithms once using randomly moving targets and once using a standard walking pedestrian dataset. The results of both experiments show that the Semi-Flocking algorithm outperforms both the Flocking algorithm and the Anti-Flocking algorithm with respect to the area of coverage and the target coverage objectives. Furthermore, the results show that the proposed algorithm demonstrates shorter target detection time and fewer undetected targets than the other two flocking-based algorithms.

  14. Inspiring a generation

    CERN Multimedia

    2012-01-01

    The motto of the 2012 Olympic and Paralympic Games is ‘Inspire a generation’ so it was particularly pleasing to see science, the LHC and Higgs bosons featuring so strongly in the opening ceremony of the Paralympics last week.   It’s a sign of just how far our field has come that such a high-profile event featured particle physics so strongly, and we can certainly add our support to that motto. If the legacy of London 2012 is a generation inspired by science as well as sport, then the games will have more than fulfilled their mission. Particle physics has truly inspiring stories to tell, going well beyond Higgs and the LHC, and the entire community has played its part in bringing the excitement of frontier research in particle physics to a wide audience. Nevertheless, we cannot rest on our laurels: maintaining the kind of enthusiasm for science we witnessed at the Paralympic opening ceremony will require constant vigilance, and creative thinking about ways to rea...

  15. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  16. Neurobiologically inspired mobile robot navigation and planning

    Directory of Open Access Journals (Sweden)

    Mathias Quoy

    2007-11-01

    Full Text Available After a short review of biologically inspired navigation architectures, mainly relying on modeling the hippocampal anatomy, or at least some of its functions, we present a navigation and planning model for mobile robots. This architecture is based on a model of the hippocampal and prefrontal interactions. In particular, the system relies on the definition of a new cell type “transition cells” that encompasses traditional “place cells”.

  17. A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue

    International Nuclear Information System (INIS)

    Bohndiek, Sarah E; Cook, Emily J; Arvanitis, Costas D; Olivo, Alessandro; Royle, Gary J; Clark, Andy T; Prydderch, Mark L; Turchetta, Renato; Speller, Robert D

    2008-01-01

    X-ray diffraction studies give material-specific information about biological tissue. Ideally, a large area, low noise, wide dynamic range digital x-ray detector is required for laboratory-based x-ray diffraction studies. The goal of this work is to introduce a novel imaging technology, the CMOS active pixel sensor (APS) that has the potential to fulfil all these requirements, and demonstrate its feasibility for coherent scatter imaging. A prototype CMOS APS has been included in an x-ray diffraction demonstration system. An industrial x-ray source with appropriate beam filtration is used to perform angle dispersive x-ray diffraction (ADXRD). Optimization of the experimental set-up is detailed including collimator options and detector operating parameters. Scatter signatures are measured for 11 different materials, covering three medical applications: breast cancer diagnosis, kidney stone identification and bone mineral density calculations. Scatter signatures are also recorded for three mixed samples of known composition. Results are verified using two independent models for predicting the APS scatter signature: (1) a linear systems model of the APS and (2) a linear superposition integral combining known monochromatic scatter signatures with the input polychromatic spectrum used in this case. Cross validation of experimental, modelled and literature results proves that APS are able to record biologically relevant scatter signatures. Coherent scatter signatures are sensitive to multiple materials present in a sample and provide a means to quantify composition. In the future, production of a bespoke APS imager for x-ray diffraction studies could enable simultaneous collection of the transmitted beam and scattered radiation in a laboratory-based coherent scatter system, making clinical transfer of the technique attainable

  18. Corrosion of bare carbon steel as a passive sensor to assess moisture availability for biological activity in Atacama Desert soils.

    Science.gov (United States)

    Cáceres, Luis; Davila, Alfonso F; Soliz, Alvaro; Saldivia, Jessica

    2018-02-28

    Here we consider that the corrosion of polished bared metal coupons can be used as a passive sensor to detect or identify the lower limit of water availability suitable for biological activity in Atacama Desert soils or solid substrates. For this purpose, carbon steel coupons were deposited at selected sites along a west-east transect and removed at predetermined times for morphological inspection. The advantage of this procedure is that the attributes of the oxide layer (corrosion extent, morphology and oxide phases) can be considered as a fingerprint of the atmospheric moisture history at a given time interval. Two types of coupons were used, long rectangular shaped ones that were half-buried in a vertical position, and square shaped ones that were deposited on the soil surface. The morphological attributes observed by SEM inspection were found to correlate to the so-called humectation time which is determined from local meteorological parameters. The main finding was that the decreasing trend of atmospheric moisture along the transect was closely related to corrosion behaviour and water soil penetration. For instance, at the coastal site oxide phases formed on the coupon surface rapidly evolve into well-crystallized species, while at the driest inland site Lomas Bayas only amorphous oxide was observed on the coupons.

  19. Corrosion of Bare Carbon Steel as a Passive Sensor to Assess Moisture Availability for Biological Activity in Atacama Desert Soils

    Science.gov (United States)

    Caceres, Luis; Davila, Alfonso F.; Soliz, Alvaro; Saldivia, Jessica

    2018-01-01

    In this work we suggest the corrosion of polished bared metal coupons as a passive sensor to detect or identify the lower limit of water availability that could be suitable for biological activity in the Atacama Desert on soil or solid substrates. For this purpose, carbon steel coupons were deposited in selected sites along a west-east transect and removed at predetermined times for morphological inspection. The advantage of this procedure is that the attributes of the oxide layer (corrosion extent, morphology and oxide phases) can be considered as a fingerprint of the atmospheric moisture history at a given time interval. Two types of coupons were used, a long rectangular shape that are half-buried in a vertical position, and square shape that are deposited on the soil surface. The morphological attributes observed by SEM inspection is correlated to the so-called humectation time which is determined from local meteorological parameters. The main result is that the decreasing trend of atmospheric moisture along the transect is closely related to corrosion behavior and water soil penetration. For instance, while in the coastal site oxide phases formed on the coupon surface rapidly evolve to well- crystallized species, in the driest inland site Lomas Bayas only amorphous oxide is observed.

  20. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  1. A bio-inspired spatial patterning circuit.

    Science.gov (United States)

    Chen, Kai-Yuan; Joe, Danial J; Shealy, James B; Land, Bruce R; Shen, Xiling

    2014-01-01

    Lateral Inhibition (LI) is a widely conserved patterning mechanism in biological systems across species. Distinct from better-known Turing patterns, LI depend on cell-cell contact rather than diffusion. We built an in silico genetic circuit model to analyze the dynamic properties of LI. The model revealed that LI amplifies differences between neighboring cells to push them into opposite states, hence forming stable 2-D patterns. Inspired by this insight, we designed and implemented an electronic circuit that recapitulates LI patterning dynamics. This biomimetic system serve as a physical model to elucidate the design principle of generating robust patterning through spatial feedback, regardless of the underlying devices being biological or electrical.

  2. #IWD2016 Academic Inspiration

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    What academics or books have inspired you in your writing and research, or helped to make sense of the world around you? In this feature essay, Ninna Meier returns to her experience of reading Hannah Arendt as she sought to understand work and how it relates to value production in capitalist...... economies. Meier recounts how Arendt’s book On Revolution (1963) forged connective threads between the ‘smallest parts’ and the ‘largest wholes’ and showed how academic work is never fully relegated to the past, but can return in new iterations across time....

  3. Mercapto-ordered carbohydrate-derived porous carbon electrode as a novel electrochemical sensor for simple and sensitive ultra-trace detection of omeprazole in biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Kalate Bojdi, Majid [Department of Chemistry, Faculty of Science, Shahid Beheshti University, Tehran 1983963113 (Iran, Islamic Republic of); Faculty of Chemistry, Kharazmi (Tarbiat Moallem) University, Tehran (Iran, Islamic Republic of); Behbahani, Mohammad [Department of Chemistry, Faculty of Science, Shahid Beheshti University, Tehran 1983963113 (Iran, Islamic Republic of); Mashhadizadeh, Mohammad Hosein [Faculty of Chemistry, Kharazmi (Tarbiat Moallem) University, Tehran (Iran, Islamic Republic of); Bagheri, Akbar [Department of Chemistry, Faculty of Science, Shahid Beheshti University, Tehran 1983963113 (Iran, Islamic Republic of); Hosseiny Davarani, Saied Saeed, E-mail: ss-hosseiny@sbu.ac.ir [Department of Chemistry, Faculty of Science, Shahid Beheshti University, Tehran 1983963113 (Iran, Islamic Republic of); Farahani, Ali [Department of Chemistry, Faculty of Science, Shahid Beheshti University, Tehran 1983963113 (Iran, Islamic Republic of)

    2015-03-01

    We are introducing mercapto-mesoporous carbon modified carbon paste electrode (mercapto-MP-C-CPE) as a new sensor for trace determination of omeprazole (OM) in biological samples. The synthesized modifier was characterized by thermogravimetry analysis (TGA), differential thermal analysis (DTA), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), elemental analysis (CHN) and N{sub 2} adsorption surface area measurement (BET). The electrochemical response characteristic of the modified-CPE toward OM was investigated by cyclic and differential pulse voltammetry (CV and DPV). The proposed sensor displayed a good electrooxidation response to the OM, its linear range is 0.25 nM to 25 μM with a detection limit of 0.04 nM under the optimized conditions. The prepared modified electrode shows several advantages such as high sensitivity, long-time stability, wide linear range, ease of preparation and regeneration of the electrode surface by simple polishing and excellent reproducibility. - Highlights: • A modified nanoporous carbon as a novel sensor • High stability and good repeatability and reproducibility by the prepared sensor • Trace determination of omeprazole • Biological and pharmaceutical samples.

  4. Mercapto-ordered carbohydrate-derived porous carbon electrode as a novel electrochemical sensor for simple and sensitive ultra-trace detection of omeprazole in biological samples

    International Nuclear Information System (INIS)

    Kalate Bojdi, Majid; Behbahani, Mohammad; Mashhadizadeh, Mohammad Hosein; Bagheri, Akbar; Hosseiny Davarani, Saied Saeed; Farahani, Ali

    2015-01-01

    We are introducing mercapto-mesoporous carbon modified carbon paste electrode (mercapto-MP-C-CPE) as a new sensor for trace determination of omeprazole (OM) in biological samples. The synthesized modifier was characterized by thermogravimetry analysis (TGA), differential thermal analysis (DTA), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), elemental analysis (CHN) and N 2 adsorption surface area measurement (BET). The electrochemical response characteristic of the modified-CPE toward OM was investigated by cyclic and differential pulse voltammetry (CV and DPV). The proposed sensor displayed a good electrooxidation response to the OM, its linear range is 0.25 nM to 25 μM with a detection limit of 0.04 nM under the optimized conditions. The prepared modified electrode shows several advantages such as high sensitivity, long-time stability, wide linear range, ease of preparation and regeneration of the electrode surface by simple polishing and excellent reproducibility. - Highlights: • A modified nanoporous carbon as a novel sensor • High stability and good repeatability and reproducibility by the prepared sensor • Trace determination of omeprazole • Biological and pharmaceutical samples

  5. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...

  6. When science inspires art

    CERN Multimedia

    Anaïs Vernède

    2011-01-01

    On Tuesday 18 January 2011, artist Pipilotti Rist came to CERN to find out how science could provide her with a source of inspiration for her art and perhaps to get ideas for future work. Pipilotti, who is an eclectic artist always on the lookout for an original source of inspiration, is almost as passionate about physics as she is about art.   Ever Is Over All, 1997, audio video installation by Pipilotti Rist.  View of the installation at the National Museum for Foreign Art, Sofia, Bulgaria. © Pipilotti Rist. Courtesy the artist and Hauser & Wirth. Photo by Angel Tzvetanov. Swiss video-maker Pipilotti Rist (her real name is Elisabeth Charlotte Rist), who is well-known in the international art world for her highly colourful videos and creations, visited CERN for the first time on Tuesday 18 January 2011.  Her visit represented a trip down memory lane, since she originally studied physics before becoming interested in pursuing a career as an artist and going on to de...

  7. DESYNC: Self-Organizing Desynchronization and TDMA on Wireless Sensor Networks

    OpenAIRE

    Degesys, Julius; Rose, Ian; Patel, Ankit; Nagpal, Radhika

    2006-01-01

    Desynchronization is a novel primitive for sensor networks: it implies that nodes perfectly interleave periodic events to occur in a round-robin schedule. This primitive can be used to evenly distribute sampling burden in a group of nodes, schedule sleep cycles, or organize a collision-free TDMA schedule for transmitting wireless messages. Here we present Desync, a biologically-inspired self-maintaining algorithm for desynchronization in a single-hop network. We present (1) theoretical result...

  8. Skin-Inspired Electronics: An Emerging Paradigm.

    Science.gov (United States)

    Wang, Sihong; Oh, Jin Young; Xu, Jie; Tran, Helen; Bao, Zhenan

    2018-05-15

    stretchable conductors, semiconductors, and dielectrics without sacrificing their electrical performance. Employing such materials, innovative device design coupled with fabrication method development has enabled stretchable sensors and displays as input/output components and large-scale transistor arrays for circuits and active matrixes. Strategies to incorporate self-healing into electronic materials are the second focus of this Account. To date, dynamic intermolecular interactions have been the most effective approach for imparting self-healing properties onto polymeric electronic materials, which have been utilized to fabricate self-healing sensors and actuators. Moreover, biodegradability has emerged as an important feature in skin-inspired electronics. The incorporation of degradable moieties along the polymer backbone allows for degradable conducting polymers and the use of bioderived materials has led to the demonstration of biodegradable functional devices, such as sensors and transistors. Finally, we highlight examples of skin-inspired electronics for three major applications: prosthetic e-skins, wearable electronics, and implantable electronics.

  9. Biomimetics as a Model for Inspiring Human Innovation

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    Electroactive polymers (EAP) are human made actuators that are the closest to mimic biological muscles. Technology was advanced to the level that biologically inspired robots are taking increasing roles in the world around us and making science fiction ideas a closer engineering reality. Artificial technologies (AI, AM, and others) are increasingly becoming practical tools for making biologically inspired devices and instruments with enormous potential for space applications. Polymer materials are used to produce figures that resemble human and animals. These materials are widely employed by the movie industry for making acting figures and by the orthopedic industry to construct cyborg components. There are still many challenges ahead that are critical to making such possibilities practical. The annual armwrestling contest is providing an exciting measure of how well advances in EAP are implemented to address the field challenges. There is a need to document natures inventions in an engineering form to possibly inspire new capabilities.

  10. Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linjie [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Yuqiang [Lanzhou Military Command Center for Disease Prevention and Control, Lanzhou 730000 (China); Gao, Xia; Zhang, Pei; Chen, Wenxia; Feng, Shilan [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Li, Yingdong, E-mail: lydj412@163.com [Gansu College of Tradition Chinese Medicine, Lanzhou 730000 (China)

    2014-09-01

    An electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE) was used as a new voltammetric sensor for the determination of ferulic acid (FA). The morphology and microstructure of the modified electrodes were characterized by scanning electron microscopy (SEM) and Raman spectroscopy analysis, and the electrochemical effective surface areas of the modified electrodes were also calculated by chronocoulometry method. Sensing properties of the electrochemical sensor were investigated by means of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that ERGO was electrodeposited on the surface of GCE by using potentiostatic method. The proposed electrode exhibited electrocatalytic activity to the redox of FA because of excellent electrochemical properties of ERGO. The transfer electron number (n), electrode reaction rate constant (k{sub s}) and electron-transfer coefficient (α) were calculated as 1.12, 1.24 s{sup −1}, and 0.40, respectively. Under the optimized conditions, the oxidation peak current was proportional to FA concentration at 8.49 × 10{sup −8} mol L{sup −1} to 3.89 × 10{sup −5} mol L{sup −1} with detection limit of 2.06 × 10{sup −8} mol L{sup −1}. This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. The voltammetric sensor was successfully applied to detect FA in A. sinensis and biological samples with recovery values in the range of 99.91%-101.91%. - Highlights: • A novel ERGO–based electrochemical sensor of FA was successfully fabricated by using one-step electrodeposition method. • The electrode reaction was an adsorption–diffusion mixed controlled process. • The low detection limit with good selectivity and sensitivity were obtained. • This method was applied for the determination of FA in A. sinensis and biological samples.

  11. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  12. Bio-inspired dental fillings

    Science.gov (United States)

    Deyhle, Hans; Bunk, Oliver; Buser, Stefan; Krastl, Gabriel; Zitzmann, Nicola U.; Ilgenstein, Bernd; Beckmann, Felix; Pfeiffer, Franz; Weiger, Roland; Müller, Bert

    2009-08-01

    Human teeth are anisotropic composites. Dentin as the core material of the tooth consists of nanometer-sized calcium phosphate crystallites embedded in collagen fiber networks. It shows its anisotropy on the micrometer scale by its well-oriented microtubules. The detailed three-dimensional nanostructure of the hard tissues namely dentin and enamel, however, is not understood, although numerous studies on the anisotropic mechanical properties have been performed and evaluated to explain the tooth function including the enamel-dentin junction acting as effective crack barrier. Small angle X-ray scattering (SAXS) with a spatial resolution in the 10 μm range allows determining the size and orientation of the constituents on the nanometer scale with reasonable precision. So far, only some dental materials, i.e. the fiber reinforced posts exhibit anisotropic properties related to the micrometer-size glass fibers. Dental fillings, composed of nanostructures oriented similar to the natural hard tissues of teeth, however, do not exist at all. The current X-ray-based investigations of extracted human teeth provide evidence for oriented micro- and nanostructures in dentin and enamel. These fundamental quantitative findings result in profound knowledge to develop biologically inspired dental fillings with superior resistance to thermal and mechanical shocks.

  13. EAP artificial muscle actuators for bio-inspired intelligent social robotics (Conference Presentation)

    Science.gov (United States)

    Hanson, David F.

    2017-04-01

    Bio-inspired intelligent robots are coming of age in both research and industry, propelling market growth for robots and A.I. However, conventional motors limit bio-inspired robotics. EAP actuators and sensors could improve the simplicity, compliance, physical scaling, and offer bio-inspired advantages in robotic locomotion, grasping and manipulation, and social expressions. For EAP actuators to realize their transformative potential, further innovations are needed: the actuators must be robust, fast, powerful, manufacturable, and affordable. This presentation surveys progress, opportunities, and challenges in the author's latest work in social robots and EAP actuators, and proposes a roadmap for EAP actuators in bio-inspired intelligent robotics.

  14. Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide.

    Science.gov (United States)

    Crack, Jason C; Green, Jeffrey; Thomson, Andrew J; Le Brun, Nick E

    2014-10-21

    Iron-sulfur cluster proteins exhibit a range of physicochemical properties that underpin their functional diversity in biology, which includes roles in electron transfer, catalysis, and gene regulation. Transcriptional regulators that utilize iron-sulfur clusters are a growing group that exploit the redox and coordination properties of the clusters to act as sensors of environmental conditions including O2, oxidative and nitrosative stress, and metabolic nutritional status. To understand the mechanism by which a cluster detects such analytes and then generates modulation of DNA-binding affinity, we have undertaken a combined strategy of in vivo and in vitro studies of a range of regulators. In vitro studies of iron-sulfur cluster proteins are particularly challenging because of the inherent reactivity and fragility of the cluster, often necessitating strict anaerobic conditions for all manipulations. Nevertheless, and as discussed in this Account, significant progress has been made over the past decade in studies of O2-sensing by the fumarate and nitrate reduction (FNR) regulator and, more recently, nitric oxide (NO)-sensing by WhiB-like (Wbl) and FNR proteins. Escherichia coli FNR binds a [4Fe-4S] cluster under anaerobic conditions leading to a DNA-binding dimeric form. Exposure to O2 converts the cluster to a [2Fe-2S] form, leading to protein monomerization and hence loss of DNA binding ability. Spectroscopic and kinetic studies have shown that the conversion proceeds via at least two steps and involves a [3Fe-4S](1+) intermediate. The second step involves the release of two bridging sulfide ions from the cluster that, unusually, are not released into solution but rather undergo oxidation to sulfane (S(0)) subsequently forming cysteine persulfides that then coordinate the [2Fe-2S] cluster. Studies of other [4Fe-4S] cluster proteins that undergo oxidative cluster conversion indicate that persulfide formation and coordination may be more common than previously

  15. Assessment of a combined gas chromatography mass spectrometer sensor (GC-MSS) system for detecting biologically relevant volatile compounds (VCs).

    Science.gov (United States)

    Gould, Oliver; Wieczorek, Tomas; de Lacy Costello, Ben P J; Persad, Raj; Ratcliffe, Norman

    2017-09-26

    There have been a number of studies in which metal oxide sensors (MOS) have replaced conventional analytical detectors in gas chromatography systems. However, despite the use of these instruments in a range of applications including breath research the sensor responses (i.e. resistance changes w.r.t. concentration of VCs) remain largely unreported. This paper addresses that issue by comparing the response of a metal oxide sensor directly with a mass spectrometer (MS), whereby both detectors are interfaced to the same GC column using an s-swafer. It was demonstrated that the sensitivity of an in-house fabricated ZnO/ SnO2 thick film MOS was superior to a modern MS for the detection of a wide range of volatile compounds (VCs) of different functionalities and masses. Better techniques for detection and quantification of these VCs is valuable, as many of these compounds are commonly reported throughout the scientific literature. This is also the first published report of a combined GC-MS sensor system. These 2 different detector technologies when combined, should enhance discriminatory abilities to aid disease diagnoses using volatiles from e.g. breath, and bodily fluids. 29 chemical standards have been tested using solid phase micro-extraction; 25 of these compounds are found on human breath. In all but 2 instances the sensor exhibited the same or superior limit of detection compared to the MS. 12 stool samples from healthy participants were analysed, the sensor detected, on average 1.6 peaks more per sample than the MS. Similarly analysing the headspace of E. coli broth cultures the sensor detected 6.9 more peaks per sample versus the MS. This greater sensitivity is primarily a function of the superior limits of detection of the metal oxide sensor. This shows that systems based on the combination of chromatography systems with solid state sensors shows promise for a range of applications. © 2017 IOP Publishing Ltd.

  16. The scientific study of inspiration in the creative process: Challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Victoria C. Oleynick

    2014-06-01

    Full Text Available Inspiration is a motivational state that compels individuals to bring ideas into fruition. Creators have long argued that inspiration is important to the creative process, but until recently, scientists have not investigated this claim. In this article, we review challenges to the study of creative inspiration, as well as solutions to these challenges afforded by theoretical and empirical work on inspiration over the past decade. First, we discuss the problem of definitional ambiguity, which has been addressed through an integrative process of construct conceptualization. Second, we discuss the challenge of how to operationalize inspiration. This challenge has been overcome by the development and validation of the Inspiration Scale, which may be used to assess trait or state inspiration. Third, we address ambiguity regarding how inspiration differs from related concepts (creativity, insight, positive affect by discussing discriminant validity. Next, we discuss the preconception that inspiration is less important than perspiration (effort, and we review empirical evidence that inspiration and effort both play important—but different—roles in the creative process. Finally, with many challenges overcome, we argue that the foundation is now set for a new generation of research focused on neural underpinnings. We discuss potential challenges to and opportunities for the neuroscientific study of inspiration. A better understanding of the biological basis of inspiration will illuminate the process through which creative ideas fire the soul, such that individuals are compelled to transform ideas into products and solutions that may benefit society.

  17. Bio-inspired algorithms applied to molecular docking simulations.

    Science.gov (United States)

    Heberlé, G; de Azevedo, W F

    2011-01-01

    Nature as a source of inspiration has been shown to have a great beneficial impact on the development of new computational methodologies. In this scenario, analyses of the interactions between a protein target and a ligand can be simulated by biologically inspired algorithms (BIAs). These algorithms mimic biological systems to create new paradigms for computation, such as neural networks, evolutionary computing, and swarm intelligence. This review provides a description of the main concepts behind BIAs applied to molecular docking simulations. Special attention is devoted to evolutionary algorithms, guided-directed evolutionary algorithms, and Lamarckian genetic algorithms. Recent applications of these methodologies to protein targets identified in the Mycobacterium tuberculosis genome are described.

  18. VI International Workshop on Nature Inspired Cooperative Strategies for Optimization

    CERN Document Server

    Otero, Fernando; Masegosa, Antonio

    2014-01-01

    Biological and other natural processes have always been a source of inspiration for computer science and information technology. Many emerging problem solving techniques integrate advanced evolution and cooperation strategies, encompassing a range of spatio-temporal scales for visionary conceptualization of evolutionary computation. This book is a collection of research works presented in the VI International Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO) held in Canterbury, UK. Previous editions of NICSO were held in Granada, Spain (2006 & 2010), Acireale, Italy (2007), Tenerife, Spain (2008), and Cluj-Napoca, Romania (2011). NICSO 2013 and this book provides a place where state-of-the-art research, latest ideas and emerging areas of nature inspired cooperative strategies for problem solving are vigorously discussed and exchanged among the scientific community. The breadth and variety of articles in this book report on nature inspired methods and applications such as Swarm In...

  19. Mobile Robots for Localizing Gas Emission Sources on Landfill Sites: Is Bio-Inspiration the Way to Go?

    Directory of Open Access Journals (Sweden)

    Victor eHernandez Bennetts

    2012-01-01

    Full Text Available Roboticists often take inspiration from animals for designing sensors, actuators or algorithms that control the behaviour of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odour plume. In particular the task of tracking an odour plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behaviour of moths, dungbeetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro drone in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is at the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behaviour of animals, can be usefully translated into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically-inspired algorithms.

  20. Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go?

    Science.gov (United States)

    Hernandez Bennetts, Victor; Lilienthal, Achim J; Neumann, Patrick P; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully "translated" into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms.

  1. Neuro-Inspired Computing with Stochastic Electronics

    KAUST Repository

    Naous, Rawan

    2016-01-06

    The extensive scaling and integration within electronic systems have set the standards for what is addressed to as stochastic electronics. The individual components are increasingly diverting away from their reliable behavior and producing un-deterministic outputs. This stochastic operation highly mimics the biological medium within the brain. Hence, building on the inherent variability, particularly within novel non-volatile memory technologies, paves the way for unconventional neuromorphic designs. Neuro-inspired networks with brain-like structures of neurons and synapses allow for computations and levels of learning for diverse recognition tasks and applications.

  2. Microflyers: inspiration from nature

    Science.gov (United States)

    Sirohi, Jayant

    2013-04-01

    Over the past decade, there has been considerable interest in miniaturizing aircraft to create a class of extremely small, robotic vehicles with a gross mass on the order of tens of grams and a dimension on the order of tens of centimeters. These are collectively refered to as micro aerial vehicles (MAVs) or microflyers. Because the size of microflyers is on the same order as that of small birds and large insects, engineers are turning to nature for inspiration. Bioinspired concepts make use of structural or aerodynamic mechanisms that are observed in insects and birds, such as elastic energy storage and unsteady aerodynamics. Biomimetic concepts attempt to replicate the form and function of natural flyers, such as flapping-wing propulsion and external appearance. This paper reviews recent developments in the area of man-made microflyers. The design space for microflyers will be described, along with fundamental physical limits to miniaturization. Key aerodynamic phenomena at the scale of microflyers will be highlighted. Because the focus is on bioinspiration and biomimetics, scaled-down versions of conventional aircraft, such as fixed wing micro air vehicles and microhelicopters will not be addressed. A few representative bioinspired and biomimetic microflyer concepts developed by researchers will be described in detail. Finally, some of the sensing mechanisms used by natural flyers that are being implemented in man-made microflyers will be discussed.

  3. Inspiration, anyone? (Editorial

    Directory of Open Access Journals (Sweden)

    Lindsay Glynn

    2006-09-01

    Full Text Available I have to admit that writing an editorial for this issue was a struggle. Trying to sit down and write when the sun was shining outside and most of my colleagues were on vacation was, to say the least, difficult. Add to that research projects and conferences…let’s just say that I found myself less than inspired. A pitiful plea for ideas to a colleague resulted in the reintroduction to a few recent evidence based papers and resources which inspired further searching and reading. Though I generally find myself surrounded (more like buried in research papers and EBLIP literature, somehow I had missed the great strides that have been made of late in the world of evidence based library and information practice. I realize now that I am inspired by the researchers, authors and innovators who are putting EBLIP on the proverbial map. My biggest beef with library literature in general has been the plethora of articles highlighting what we should be doing. Take a close look at the evidence based practitioners in the information professions: these are some of the people who are actively practicing what has been preached for the past few years. Take, for example, the about‐to‐be released Libraries using Evidence Toolkit by Northern Sydney Central Coast Health and The University of Newcastle, Australia (see their announcement in this issue. An impressive advisory group is responsible for maintaining the currency and relevancy of the site as well as promoting the site and acting as a steering committee for related projects. This group is certainly doing more than “talking the talk”: they took their experience at the 3rd International Evidence Based Librarianship Conference and did something with the information they obtained by implementing solutions that worked in their environment. The result? The creation of a collection of tools for all of us to use. This toolkit is just what EBLIP needs: a portal to resources aimed at supporting the information

  4. Inspired by CERN

    CERN Multimedia

    2004-01-01

    Art students inspired by CERN will be returning to show their work 9 to 16 October in Building 500, outside the Auditorium. Seventeen art students from around Europe visited CERN last January for a week of introductions to particle physics and astrophysics, and discussions with CERN scientists about their projects. A CERN scientist "adopted"each artist so they could ask questions during and after the visit. Now the seeds planted during their visit have come to fruition in a show using many media and exploring varied concepts, such as how people experience the online world, the sheer scale of CERN's equipment, and the abstractness of the entities scientists are looking for. "The work is so varied, people are going to love some pieces and detest others," says Andrew Charalambous, the project coordinator from University College London who is also curating the exhibition. "It's contemporary modern art, and that's sometimes difficult to take in." For more information on this thought-provoking show, see: htt...

  5. Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study

    Directory of Open Access Journals (Sweden)

    E. Toprak

    2013-01-01

    Full Text Available In this paper bioaerosol measurements conducted with the Waveband Integrated Bioaerosol Sensor mark 4 (WIBS-4 are presented. The measurements comprise aerosol chamber characterization experiments and a one-year ambient measurement period at a semi-rural site in South Western Germany. This study aims to investigate the sensitivity of WIBS-4 to biological and non-biological aerosols and detection of biological particles in the ambient aerosol. Several types of biological and non-biological aerosol samples, including fungal spores, bacteria, mineral dust, ammonium sulphate, combustion soot, and fluorescent polystyrene spheres, were analyzed by WIBS-4 in the laboratory. The results confirm the sensitivity of the ultraviolet light-induced fluorescence (UV-LIF method to biological fluorophores and show the good discrimination capabilities of the two excitation wavelengths/detection wavebands method applied in WIBS-4. However, a weak cross-sensitivity to non-biological fluorescent interferers remains and is discussed in this paper.

    All the laboratory studies have been undertaken in order to prepare WIBS-4 for ambient aerosol measurements. According to the one-year ambient aerosol study, number concentration of fluorescent biological aerosol particles (FBAP show strong seasonal and diurnal variability. The highest number concentration of FBAP was measured during the summer term and decreased towards the winter period when colder and drier conditions prevail. Diurnal FBAP concentrations start to increase after sunset and reach maximum values during the late night and early morning hours. On the other hand, the total aerosol number concentration was almost always higher during daytime than during nighttime and a sharp decrease after sunset was observed. There was no correlation observed between the FBAP concentration and the meteorological parameters temperature, precipitation, wind direction and wind speed. However, a clear correlation was

  6. Extending lifetime of wireless sensor networks using multi-sensor ...

    Indian Academy of Sciences (India)

    SOUMITRA DAS

    In this paper a multi-sensor data fusion approach for wireless sensor network based on bayesian methods and ant colony ... niques for efficiently routing the data from source to the BS ... Literature review ... efficient scheduling and lot more to increase the lifetime of ... Nature-inspired algorithms such as ACO algorithms have.

  7. Review of Recent Metamaterial Microfluidic Sensors.

    Science.gov (United States)

    Salim, Ahmed; Lim, Sungjoon

    2018-01-15

    Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter-nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological) sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range) with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.

  8. Review of Recent Metamaterial Microfluidic Sensors

    Directory of Open Access Journals (Sweden)

    Ahmed Salim

    2018-01-01

    Full Text Available Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter–nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.

  9. Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications

    International Nuclear Information System (INIS)

    Lu, Tao; Peng, Wenhong; Zhu, Shenmin; Zhang, Di

    2016-01-01

    When the constitutive materials of photonic crystals (PCs) are stimuli-responsive, the resultant PCs exhibit optical properties that can be tuned by the stimuli. This can be exploited for promising applications in colour displays, biological and chemical sensors, inks and paints, and many optically active components. However, the preparation of the required photonic structures is the first issue to be solved. In the past two decades, approaches such as microfabrication and self-assembly have been developed to incorporate stimuli-responsive materials into existing periodic structures for the fabrication of PCs, either as the initial building blocks or as the surrounding matrix. Generally, the materials that respond to thermal, pH, chemical, optical, electrical, or magnetic stimuli are either soft or aggregate, which is why the manufacture of three-dimensional hierarchical photonic structures with responsive properties is a great challenge. Recently, inspired by biological PCs in nature which exhibit both flexible and responsive properties, researchers have developed various methods to synthesize metals and metal oxides with hierarchical structures by using a biological PC as the template. This review will focus on the recent developments in this field. In particular, PCs with biological hierarchical structures that can be tuned by external stimuli have recently been successfully fabricated. These findings offer innovative insights into the design of responsive PCs and should be of great importance for future applications of these materials. (topical review)

  10. Nature-inspired computing and optimization theory and applications

    CERN Document Server

    Yang, Xin-She; Nakamatsu, Kazumi

    2017-01-01

    The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based opti...

  11. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    Science.gov (United States)

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  12. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  13. Kids Inspire Kids for STEAM

    OpenAIRE

    Fenyvesi, Kristof; Houghton, Tony; Diego-Mantecón, José Manuel; Crilly, Elizabeth; Oldknow, Adrian; Lavicza, Zsolt; Blanco, Teresa F.

    2017-01-01

    Abstract The goal of the Kids Inspiring Kids in STEAM (KIKS) project was to raise students' awareness towards the multi- and transdisciplinary connections between the STEAM subjects (Science, Technology, Engineering, Arts & Mathematics), and make the learning about topics and phenomena from these fields more enjoyable. In order to achieve these goals, KIKS project has popularized the STEAM-concept by projects based on the students inspiring other students-approach and by utilizing new tec...

  14. A ferrofluid based artificial tactile sensor with magnetic field control

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, T.I., E-mail: tatiana.volkova@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Böhm, V., E-mail: valter.boehm@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Naletova, V.A., E-mail: naletova@imec.msu.ru [Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Kaufhold, T., E-mail: tobias.kaufhold@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Becker, F., E-mail: felix.becker@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Zeidis, I., E-mail: igor.zeidis@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Zimmermann, K., E-mail: klaus.zimmermann@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany)

    2017-06-01

    The paper deals with a tactile sensor inspired by biological hairs of mammals. The working principle is based on the effect of the magnetic force exerted on a paramagnetic body submerged into a ferrofluid volume under the influence of a nonuniform magnetic field. The deflection of the sensor's rod caused by external mechanical stimuli may be unambiguously identified by the distortion of the magnetic field, which occurs due to the motion of the attached body in the ferrofluid. The magnetic force acting on the body is evaluated experimentally and theoretically for the nonuniform magnetic field of a permanent magnet. The controlled oscillations of the rod are realised by applying a nonuniform magnetic field of periodically altering direction. - Highlights: • A design approach of a tactile sensor inspired by special mammalian hairs is presented. • The working principle is based on magnetic properties of a ferrofluid in magnetic fields. • The magnetic force acting on a body submerged into a ferrofluid volume is evaluated. • External mechanical stimuli may be identified by the distortion of the magnetic field. • The controlled whisking-like oscillations of the sensor's rod are realised experimentally.

  15. A ferrofluid based artificial tactile sensor with magnetic field control

    International Nuclear Information System (INIS)

    Volkova, T.I.; Böhm, V.; Naletova, V.A.; Kaufhold, T.; Becker, F.; Zeidis, I.; Zimmermann, K.

    2017-01-01

    The paper deals with a tactile sensor inspired by biological hairs of mammals. The working principle is based on the effect of the magnetic force exerted on a paramagnetic body submerged into a ferrofluid volume under the influence of a nonuniform magnetic field. The deflection of the sensor's rod caused by external mechanical stimuli may be unambiguously identified by the distortion of the magnetic field, which occurs due to the motion of the attached body in the ferrofluid. The magnetic force acting on the body is evaluated experimentally and theoretically for the nonuniform magnetic field of a permanent magnet. The controlled oscillations of the rod are realised by applying a nonuniform magnetic field of periodically altering direction. - Highlights: • A design approach of a tactile sensor inspired by special mammalian hairs is presented. • The working principle is based on magnetic properties of a ferrofluid in magnetic fields. • The magnetic force acting on a body submerged into a ferrofluid volume is evaluated. • External mechanical stimuli may be identified by the distortion of the magnetic field. • The controlled whisking-like oscillations of the sensor's rod are realised experimentally.

  16. BioMAV : Bio-inspired intelligence for autonomous flight

    NARCIS (Netherlands)

    Gerke, P.K.; Langevoort, J.; Lagarde, S.; Bax, L.; Grootswagers, T.; Drenth, R.J.; Slieker, V.; Vuurpijl, L.; Haselager, P.; Sprinkhuizen-Kuyper, I.; Van Otterlo, M.; De Croon, G.C.H.E.

    2011-01-01

    This paper aims to contribute to research on biologically inspired micro air vehicles in two ways: (i) it explores a novel repertoire of behavioral modules which can be controlled through ?nite state machines (FSM) and (ii) elementary movement detectors (EMD) are combined with a center/surround edge

  17. Highly Sensitive and Reproducible SERS Sensor for Biological pH Detection Based on a Uniform Gold Nanorod Array Platform.

    Science.gov (United States)

    Bi, Liyan; Wang, Yunqing; Yang, Ying; Li, Yuling; Mo, Shanshan; Zheng, Qingyin; Chen, Lingxin

    2018-05-09

    Conventional research on surface-enhanced Raman scattering (SERS)-based pH sensors often depends on nanoparticle aggregation, whereas the variability in nanoparticle aggregation gives rise to poor repeatability in the SERS signal. Herein, we fabricated a gold nanorod array platform via an efficient evaporative self-assembly method. The platform exhibits great SERS sensitivity with an enhancement factor of 5.6 × 10 7 and maintains excellent recyclability and reproducibility with relative standard deviation (RSD) values of less than 8%. On the basis of the platform, we developed a highly sensitive bovine serum albumin (BSA)-coated 4-mercaptopyridine (4-MPy)-linked (BMP) SERS-based pH sensor to report pH ranging from pH 3.0 to pH 8.0. The intensity ratio variation of 1004 and 1096 cm -1 in 4-MPy showed excellent pH sensitivity, which decreased as the surrounding pH increased. Furthermore, this BMP SERS-based pH sensor was employed to measure the pH value in C57BL/6 mouse blood. We have demonstrated that the pH sensor has great advantages such as good stability, reliability, and accuracy, which could be extended for the design of point-of-care devices.

  18. Sensing Structures Inspired by Blind Cave Fish

    Science.gov (United States)

    McConney, Michael E.; Chen, Nannan; Lu, David; Anderson, Kyle D.; Hu, Huan; Liu, Chang; Tsukruk, Vladimir V.

    2009-03-01

    Blind cave fish, with degenerated non-functioning eyes, have evolved to ``see'' their hydrodynamic environment by using the flow receptors of the lateral line system. The hair-cell receptors are encapsulated in a hydrogel-like material, called a cupula, which increases the sensitivity of the hair-cell receptors by coupling their motion to the surrounding flowing media. We characterized the viscoelastic properties and of blind cave fish cupulae by using colloidal-probe spectroscopy in fluid. A photo-patternable hydrogel with similar properties was developed to mimic the fish receptor coupling structure. Flow-based measurements indicated that the hydrogels enhance drag through increased surface area, but also inherent material properties. These bio-inspired structures endowed micro-fabricated flow sensors with sensitivities rivaling that of fish.

  19. The on-line detection of biological particle emissions from selected agricultural materials using the WIBS-4 (Waveband Integrated Bioaerosol Sensor) technique

    Science.gov (United States)

    O'Connor, David J.; Healy, David A.; Sodeau, John R.

    2013-12-01

    Agricultural activities have, for some time, been linked to adverse health effects such as Farmers' lung, hypersensitivity pneumonitis, aspergillosis and chronic obstructive pulmonary disease (COPD) This connection is known to be, at least in part, due to the numerous microbiological organisms that live and grow on materials found in occupational settings such as barns, animal shelters, stables and composting sites. Traditional techniques for determining biological release of fungal spores and bacteria require intensive, experienced human resources and considerable time to determine ambient concentrations. However more recently the fluorescence and light scattering signals obtained from primary biological aerosol particles (PBAP) have been utilised for their near real-time counting and characterisation abilities. In the current study, data collected for the bioaerosol types released from hay and silage were counted and identified using a combination of the WIBS-4 bioaerosol sensor approach and impaction/optical microscopy. Particle emissions were characterised according to particle numbers, their size distributions, particle asymmetry values and fluorescence characteristics. The variables obtained were shown to provide potential “fingerprint” signatures for PBAP emissions emanating from two important compost components, namely, silage and hay. Comparisons between the data acquired by the WIBS-4 bioaerosol sensor, optical microscopy findings and also previous literature suggest that the likely identification of Aspergillus/Penicillium type spores and bacterial species released from hay and silage was achieved on a relatively rapid time-scale.

  20. (YIP 10) - Bio-Inspired Interfaces for Hybrid Structures

    Science.gov (United States)

    2013-07-01

    vertebrate bones and teeth, mollusk shells and arthropod exoskeletons [1, 2]. Two interesting examples of such biological systems are gecko’s footpad...range from non-wetting painting and smart adhesives [35-41] to intricate bioinspired designs such as nano- and micro- robotics with climbing abilities...smart adhesion. Advanced Materials, 2008. 20(4): p. 711-716. 42. Wood, R.J., The first takeoff of a biologically inspired at-scale robotic insect

  1. Inspiration and application in the evolution of biomaterials

    OpenAIRE

    Huebsch, Nathaniel; Mooney, David J.

    2009-01-01

    Biomaterials, traditionally defined as materials used in medical devices, have been used since antiquity, but recently their degree of sophistication has increased significantly. Biomaterials made today are routinely information rich and incorporate biologically active components derived from nature. In the future, biomaterials will assume an even greater role in medicine and will find use in a wide variety of non-medical applications through biologically inspired design and incorporation of ...

  2. Inspiration and application in the evolution of biomaterials.

    Science.gov (United States)

    Huebsch, Nathaniel; Mooney, David J

    2009-11-26

    Biomaterials, traditionally defined as materials used in medical devices, have been used since antiquity, but recently their degree of sophistication has increased significantly. Biomaterials made today are routinely information rich and incorporate biologically active components derived from nature. In the future, biomaterials will assume an even greater role in medicine and will find use in a wide variety of non-medical applications through biologically inspired design and incorporation of dynamic behaviour.

  3. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    International Nuclear Information System (INIS)

    Klem, Jukka; Iwaszkiewicz, Jan

    2011-01-01

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  4. eDNA: A Bio-Inspired Reconfigurable Hardware Cell Architecture Supporting Self-organisation and Self-healing

    DEFF Research Database (Denmark)

    Boesen, Michael Reibel; Madsen, Jan

    2009-01-01

    This paper presents the concept of a biological inspired reconfigurable hardware cell architecture which supports self-organisation and self-healing. Two fundamental processes in biology, namely fertilization-to-birth and cell self-healing have inspired the development of this cell architecture...... to simulate our self-organisation and self-healing algorithms and the results obtained from this looks promising....

  5. Energy efficient sensor nodes placement using Territorial Predator Scent Marking Algorithm (TPSMA)

    International Nuclear Information System (INIS)

    Abidin, H Z; Din, N M

    2013-01-01

    The positions of sensor nodes in a Wireless Sensor Network (WSN) must be able to provide maximum coverage with a longer lifetime. This paper proposed a sensor node placement technique that utilizes a new biologically inspired optimization technique that imitates the behavior of territorial predators in marking their territories with their odors known as Territorial Predator Scent Marking Algorithm (TPSMA). The TPSMA deployed in this paper uses the maximum coverage ratio as the objective function. The performance of the proposed technique is then compared with other schemes in terms of uniformity and average energy consumption. Simulation results show that the WSN deployed with the proposed sensor node placement scheme consumes lower energy compared to the other two schemes and is expected to provide longer lifetime.

  6. Mosquito inspired medical needles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Hesselberg, Thomas; Drakidis, Alexandros Dimitrios

    2017-01-01

    The stinging proboscis in mosquitos have diameters of only 40-100 μm which is much less than the thinnest medical needles and the mechanics of these natural stinging mechanisms have therefore attracted attention amongst developers of injection devises. The mosquito use a range of different...... strategies to lower the required penetration force hence allowing a thinner and less stiff proboscis structure. Earlier studies of the mosquito proboscis insertion strategies have shown how each of the single strategies reduces the required penetration force. The present paper gives an overview...... of the advanced set of mechanisms that allow the mosquito to penetrate human skin and also presents other biological mechanisms that facilitate skin penetration. Results from experiments in a skin mimic using biomimetic equivalents to the natural mechanisms are presented. This includes skin stretching, insertion...

  7. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles

    Science.gov (United States)

    Savage, Nicole J.; Krentz, Christine E.; Könemann, Tobias; Han, Taewon T.; Mainelis, Gediminas; Pöhlker, Christopher; Huffman, J. Alex

    2017-11-01

    Atmospheric particles of biological origin, also referred to as bioaerosols or primary biological aerosol particles (PBAP), are important to various human health and environmental systems. There has been a recent steep increase in the frequency of published studies utilizing commercial instrumentation based on ultraviolet laser/light-induced fluorescence (UV-LIF), such as the WIBS (wideband integrated bioaerosol sensor) or UV-APS (ultraviolet aerodynamic particle sizer), for bioaerosol detection both outdoors and in the built environment. Significant work over several decades supported the development of the general technologies, but efforts to systematically characterize the operation of new commercial sensors have remained lacking. Specifically, there have been gaps in the understanding of how different classes of biological and non-biological particles can influence the detection ability of LIF instrumentation. Here we present a systematic characterization of the WIBS-4A instrument using 69 types of aerosol materials, including a representative list of pollen, fungal spores, and bacteria as well as the most important groups of non-biological materials reported to exhibit interfering fluorescent properties. Broad separation can be seen between the biological and non-biological particles directly using the five WIBS output parameters and by taking advantage of the particle classification analysis introduced by Perring et al. (2015). We highlight the importance that particle size plays on observed fluorescence properties and thus in the Perring-style particle classification. We also discuss several particle analysis strategies, including the commonly used fluorescence threshold defined as the mean instrument background (forced trigger; FT) plus 3 standard deviations (σ) of the measurement. Changing the particle fluorescence threshold was shown to have a significant impact on fluorescence fraction and particle type classification. We conclude that raising the

  8. Ag ion irradiated based sensor for the electrochemical determination of epinephrine and 5-hydroxytryptamine in human biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Rajendra N., E-mail: rngcyfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Agrawal, Bharati [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2012-09-19

    Highlights: Black-Right-Pointing-Pointer Ag ions irradiation enhances the electrocatalytic activity of carbon nano tubes. Black-Right-Pointing-Pointer The low fluence of irradiation caused the ordering of carbon nano tubes. Black-Right-Pointing-Pointer Simultaneous determination of epinephrine and 5-hydroxytryptamine has been carried out. Black-Right-Pointing-Pointer The determination of the neurotransmitters in human blood and urine is reported. - Abstract: A promising and highly sensitive voltammetric method has been developed for the first time for the determination of epinephrine (EP) and 5-hydroxytryptamine (5-HT) using 120 MeV Ag ion irradiated multi-walled carbon nano tube (MWCNT) based sensor. The MWCNT were irradiated at various fluences of 1e12, 3e12 and 1e13 ions cm{sup -2} using palletron accelerator. The simultaneous determination of EP and 5-HT has been carried out in phosphate buffer solution of pH 7.20 using square wave voltammetry and cyclic voltammetry. Experimental results suggested that irradiation of MWCNT by Ag ions enhanced the electrocatalytic activity due to increase in effective surface area and insertion of Ag ions, leading to a remarkable enhancement in peak currents and shift of peak potentials to less positive values as compared to the unirradiated MWCNT (pristine). The developed sensor exhibited a linear relationship between peak current and concentration of EP and 5-HT in the range 0.1-105 {mu}M with detection limit (3{sigma}/b) of 2 nM and 0.75 nM, respectively. The practical utility of irradiation based MWCNT sensor has been demonstrated for the determination of EP and 5-HT in human urine and blood samples.

  9. Bio-inspired step-climbing in a hexapod robot

    International Nuclear Information System (INIS)

    Chou, Ya-Cheng; Yu, Wei-Shun; Huang, Ke-Jung; Lin, Pei-Chun

    2012-01-01

    Inspired by the observation that the cockroach changes from a tripod gait to a different gait for climbing high steps, we report on the design and implementation of a novel, fully autonomous step-climbing maneuver, which enables a RHex-style hexapod robot to reliably climb a step up to 230% higher than the length of its leg. Similar to the climbing strategy most used by cockroaches, the proposed maneuver is composed of two stages. The first stage is the ‘rearing stage,’ inclining the body so the front side of the body is raised and it is easier for the front legs to catch the top of the step, followed by the ‘rising stage,’ maneuvering the body's center of mass to the top of the step. Two infrared range sensors are installed on the front of the robot to detect the presence of the step and its orientation relative to the robot's heading, so that the robot can perform automatic gait transition, from walking to step-climbing, as well as correct its initial tilt approaching posture. An inclinometer is utilized to measure body inclination and to compute step height, thus enabling the robot to adjust its gait automatically, in real time, and to climb steps of different heights and depths successfully. The algorithm is applicable for the robot to climb various rectangular obstacles, including a narrow bar, a bar and a step (i.e. a bar of infinite width). The performance of the algorithm is evaluated experimentally, and the comparison of climbing strategies and climbing behaviors in biological and robotic systems is discussed. (paper)

  10. Inspiration fra NY-times

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye

    2015-01-01

    NY-times har en ugentlig klumme med gode råd. For nogle uger siden var ugens inspiration henvendt til lærere/undervisere og drejede sig om, hvordan man skaber taletid til alle uden at have favoritter og overse de mere stille elever.......NY-times har en ugentlig klumme med gode råd. For nogle uger siden var ugens inspiration henvendt til lærere/undervisere og drejede sig om, hvordan man skaber taletid til alle uden at have favoritter og overse de mere stille elever....

  11. Towards Bio-Inspired Chromatic Behaviours in Surveillance Robots

    Directory of Open Access Journals (Sweden)

    Sampath Kumar Karutaa Gnaniar

    2016-09-01

    Full Text Available The field of Robotics is ever growing at the same time as posing enormous challenges. Numerous works has been done in biologically inspired robotics emulating models, systems and elements of nature for the purpose of solving traditional robotics problems. Chromatic behaviours are abundant in nature across a variety of living species to achieve camouflage, signaling, and temperature regulation. The ability of these creatures to successfully blend in with their environment and communicate by changing their colour is the fundamental inspiration for our research work. In this paper, we present dwarf chameleon inspired chromatic behaviour in the context of an autonomous surveillance robot, “PACHONDHI”. In our experiments, we successfully validated the ability of the robot to autonomously change its colour in relation to the terrain that it is traversing for maximizing detectability to friendly security agents and minimizing exposure to hostile agents, as well as to communicate with fellow cooperating robots.

  12. Midrange affinity fluorescent Zn(II) sensors of the Zinpyr family: syntheses, characterization, and biological imaging applications.

    Science.gov (United States)

    Nolan, Elizabeth M; Jaworski, Jacek; Racine, Maryann E; Sheng, Morgan; Lippard, Stephen J

    2006-11-27

    The syntheses and photophysical characterization of ZP9, 2-{2-chloro-6-hydroxy-3-oxo-5-[(2-{[pyridin-2-ylmethyl-(1H-pyrrol-2-ylmethyl)amino]methyl}phenylamino)methyl]-3H-xanthen-9-yl}benzoic acid, and ZP10, 2-{2-chloro-6-hydroxy-5-[(2-{[(1-methyl-1H-pyrrol-2-ylmethyl)pyridin-2-ylmethylamino]methyl}phenylamino)methyl]-3-oxo-3H-xanthen-9-yl}benzoic acid, two asymmetrically derivatized fluorescein-based dyes, are described. These sensors each contain an aniline-based ligand moiety functionalized with a pyridyl-amine-pyrrole group and have dissociation constants for Zn(II) in the sub-micromolar (ZP9) and low-micromolar (ZP10) range, which we define as "midrange". They give approximately 12- (ZP9) and approximately 7-fold (ZP10) fluorescence turn-on immediately following Zn(II) addition at neutral pH and exhibit improved selectivity for Zn(II) compared to the di-(2-picolyl)amine-based Zinpyr (ZP) sensors. Confocal microscopy studies indicate that such asymmetrical fluorescein-based probes are cell permeable and Zn(II) responsive in vivo.

  13. Detection of Hidden Hostile/Terrorist Groups in Harsh Territories by Using Animals as Mobile Biological Sensors.

    Science.gov (United States)

    Sahin, Yasar Guneri; Ercan, Tuncay

    2008-07-25

    Terrorism is the greatest threat to national security and cannot be defeated by conventional military force alone. In critical areas such as Iraq, Afghanistan and Turkey, regular forces cannot reach these hostile/terrorist groups, the instigators of terrorism. These groups have a clear understanding of the relative ineffectiveness of counter-guerrilla operations and rely on guerrilla warfare to avoid major combat as their primary means of continuing the conflict with the governmental structures. In Internal Security Operations, detection of terrorist and hostile groups in their hiding places such as caves, lairs, etc. can only be achieved by professionally trained people such as Special Forces or intelligence units with the necessary experience and tools suitable for collecting accurate information in these often harsh, rugged and mountainous countries. To assist these forces, commercial micro-sensors with wireless interfaces could be utilized to study and monitor a variety of phenomena and environments from a certain distance for military purposes. In order to locate hidden terrorist groups and enable more effective use of conventional military resources, this paper proposes an active remote sensing model implanted into animals capable of living in these environments. By using these mobile sensor devices, improving communications for data transfer from the source, and developing better ways to monitor and detect threats, terrorist ability to carry out attacks can be severely disrupted.

  14. Detection of Hidden Hostile/Terrorist Groups in Harsh Territories by Using Animals as Mobile Biological Sensors

    Directory of Open Access Journals (Sweden)

    Tuncay Ercan

    2008-07-01

    Full Text Available Terrorism is the greatest threat to national security and cannot be defeated by conventional military force alone. In critical areas such as Iraq, Afghanistan and Turkey, regular forces cannot reach these hostile/terrorist groups, the instigators of terrorism. These groups have a clear understanding of the relative ineffectiveness of counter-guerrilla operations and rely on guerrilla warfare to avoid major combat as their primary means of continuing the conflict with the governmental structures. In Internal Security Operations, detection of terrorist and hostile groups in their hiding places such as caves, lairs, etc. can only be achieved by professionally trained people such as Special Forces or intelligence units with the necessary experience and tools suitable for collecting accurate information in these often harsh, rugged and mountainous countries. To assist these forces, commercial micro-sensors with wireless interfaces could be utilized to study and monitor a variety of phenomena and environments from a certain distance for military purposes. In order to locate hidden terrorist groups and enable more effective use of conventional military resources, this paper proposes an active remote sensing model implanted into animals capable of living in these environments. By using these mobile sensor devices, improving communications for data transfer from the source, and developing better ways to monitor and detect threats, terrorist ability to carry out attacks can be severely disrupted.

  15. Mercapto-ordered carbohydrate-derived porous carbon electrode as a novel electrochemical sensor for simple and sensitive ultra-trace detection of omeprazole in biological samples.

    Science.gov (United States)

    Kalate Bojdi, Majid; Behbahani, Mohammad; Mashhadizadeh, Mohammad Hosein; Bagheri, Akbar; Hosseiny Davarani, Saied Saeed; Farahani, Ali

    2015-03-01

    We are introducing mercapto-mesoporous carbon modified carbon paste electrode (mercapto-MP-C-CPE) as a new sensor for trace determination of omeprazole (OM) in biological samples. The synthesized modifier was characterized by thermogravimetry analysis (TGA), differential thermal analysis (DTA), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), elemental analysis (CHN) and N2 adsorption surface area measurement (BET). The electrochemical response characteristic of the modified-CPE toward OM was investigated by cyclic and differential pulse voltammetry (CV and DPV). The proposed sensor displayed a good electrooxidation response to the OM, its linear range is 0.25nM to 25μM with a detection limit of 0.04nM under the optimized conditions. The prepared modified electrode shows several advantages such as high sensitivity, long-time stability, wide linear range, ease of preparation and regeneration of the electrode surface by simple polishing and excellent reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Integration of an optical CMOS sensor with a microfluidic channel allows a sensitive readout for biological assays in point-of-care tests.

    Science.gov (United States)

    Van Dorst, Bieke; Brivio, Monica; Van Der Sar, Elfried; Blom, Marko; Reuvekamp, Simon; Tanzi, Simone; Groenhuis, Roelf; Adojutelegan, Adewole; Lous, Erik-Jan; Frederix, Filip; Stuyver, Lieven J

    2016-04-15

    In this manuscript, a microfluidic detection module, which allows a sensitive readout of biological assays in point-of-care (POC) tests, is presented. The proposed detection module consists of a microfluidic flow cell with an integrated Complementary Metal-Oxide-Semiconductor (CMOS)-based single photon counting optical sensor. Due to the integrated sensor-based readout, the detection module could be implemented as the core technology in stand-alone POC tests, for use in mobile or rural settings. The performance of the detection module was demonstrated in three assays: a peptide, a protein and an antibody detection assay. The antibody detection assay with readout in the detection module proved to be 7-fold more sensitive that the traditional colorimetric plate-based ELISA. The protein and peptide assay showed a lower limit of detection (LLOD) of 200 fM and 460 fM respectively. Results demonstrate that the sensitivity of the immunoassays is comparable with lab-based immunoassays and at least equal or better than current mainstream POC devices. This sensitive readout holds the potential to develop POC tests, which are able to detect low concentrations of biomarkers. This will broaden the diagnostic capabilities at the clinician's office and at patient's home, where currently only the less sensitive lateral flow and dipstick POC tests are implemented. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. 1 kHz 2D Visual Motion Sensor Using 20 × 20 Silicon Retina Optical Sensor and DSP Microcontroller.

    Science.gov (United States)

    Liu, Shih-Chii; Yang, MinHao; Steiner, Andreas; Moeckel, Rico; Delbruck, Tobi

    2015-04-01

    Optical flow sensors have been a long running theme in neuromorphic vision sensors which include circuits that implement the local background intensity adaptation mechanism seen in biological retinas. This paper reports a bio-inspired optical motion sensor aimed towards miniature robotic and aerial platforms. It combines a 20 × 20 continuous-time CMOS silicon retina vision sensor with a DSP microcontroller. The retina sensor has pixels that have local gain control and adapt to background lighting. The system allows the user to validate various motion algorithms without building dedicated custom solutions. Measurements are presented to show that the system can compute global 2D translational motion from complex natural scenes using one particular algorithm: the image interpolation algorithm (I2A). With this algorithm, the system can compute global translational motion vectors at a sample rate of 1 kHz, for speeds up to ±1000 pixels/s, using less than 5 k instruction cycles (12 instructions per pixel) per frame. At 1 kHz sample rate the DSP is 12% occupied with motion computation. The sensor is implemented as a 6 g PCB consuming 170 mW of power.

  18. In Search of Scientific Inspiration.

    Science.gov (United States)

    2017-01-12

    In the ever-expanding sea of scientific advances, how do you find inspiration for your own study? Cell editor Jiaying Tan talked with Mark Lemmon and Joseph (Yossi) Schlessinger about the importance of fueling your research creativity with the conceptual excitement and technical advance from the broad scientific field. An excerpt of the conversation appears below. Copyright © 2017. Published by Elsevier Inc.

  19. INSPIRED High School Computing Academies

    Science.gov (United States)

    Doerschuk, Peggy; Liu, Jiangjiang; Mann, Judith

    2011-01-01

    If we are to attract more women and minorities to computing we must engage students at an early age. As part of its mission to increase participation of women and underrepresented minorities in computing, the Increasing Student Participation in Research Development Program (INSPIRED) conducts computing academies for high school students. The…

  20. Inspiration: One Percent and Rising

    Science.gov (United States)

    Walling, Donovan R.

    2009-01-01

    Inventor Thomas Edison once famously declared, "Genius is one percent inspiration and ninety-nine percent perspiration." If that's the case, then the students the author witnessed at the International Student Media Festival (ISMF) last November in Orlando, Florida, are geniuses and more. The students in the ISMF pre-conference workshop…

  1. LEGO-inspired drug design

    DEFF Research Database (Denmark)

    Thanh Tung, Truong; Dao, Trong Tuan; Grifell Junyent, Marta

    2018-01-01

    The fungal plasma membrane H+-ATPase (Pma1p) is a potential target for the discovery of new antifungal agents. Surprisingly, no structure-activity relationship studies for small molecules targeting Pma1p have been reported. Herein, we disclose a LEGO-inspired fragment assembly strategy for design...

  2. Inspiration til fremtidens naturfaglige uddannelser

    DEFF Research Database (Denmark)

    Busch, Henrik; Troelsen, Rie; Horst, Sebastian

    uddannelsesniveauer • at den naturfaglige uddannelseskultur styrkes • at lærerkompetencerne styrkes. Rapportens 2. bind - den selvstændige publikation Inspiration til fremtidens naturfaglige uddannelser • En antologi indeholder en række essays om væsentlige problemstillinger for naturfagene. Der er tidligere udsendt...

  3. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.

    Science.gov (United States)

    Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo

    2016-04-26

    Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).

  4. Molecular machines with bio-inspired mechanisms.

    Science.gov (United States)

    Zhang, Liang; Marcos, Vanesa; Leigh, David A

    2018-02-26

    The widespread use of molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular machines-which by and large function as switches-and the machines of the macroscopic world, which utilize the synchronized behavior of integrated components to perform more sophisticated tasks than is possible with any individual switch. Should we try to make molecular machines of greater complexity by trying to mimic machines from the macroscopic world or instead apply unfamiliar (and no doubt have to discover or invent currently unknown) mechanisms utilized by biological machines? Here we try to answer that question by exploring some of the advances made to date using bio-inspired machine mechanisms.

  5. SABRE: a bio-inspired fault-tolerant electronic architecture

    International Nuclear Information System (INIS)

    Bremner, P; Samie, M; Dragffy, G; Pipe, A G; Liu, Y; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-01-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance. (paper)

  6. A Tony Thomas-Inspired Guide to INSPIRE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, Heath B.; /Fermilab

    2010-04-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  7. A Tony Thomas-Inspired Guide to INSPIRE

    International Nuclear Information System (INIS)

    O'Connell, Heath B.

    2010-01-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  8. Norsk inspiration til uddannelse og job

    DEFF Research Database (Denmark)

    Skovhus, Randi Boelskifte; Thomsen, Rie; Buhl, Rita

    2017-01-01

    Anmeldelse af bog om det norske fag Utdanningsvalg - inspiration til arbejde med uddannelse og job......Anmeldelse af bog om det norske fag Utdanningsvalg - inspiration til arbejde med uddannelse og job...

  9. Dissolvable tattoo sensors: from science fiction to a viable technology

    Science.gov (United States)

    Cheng, Huanyu; Yi, Ning

    2017-01-01

    Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond.

  10. Dissolvable tattoo sensors: from science fiction to a viable technology

    International Nuclear Information System (INIS)

    Cheng, Huanyu; Yi, Ning

    2017-01-01

    Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond. (invited comment)

  11. Ships - inspiring objects in architecture

    Science.gov (United States)

    Marczak, Elzbieta

    2017-10-01

    Sea-going vessels have for centuries fascinated people, not only those who happen to work at sea, but first and foremost, those who have never set foot aboard a ship. The environment in which ships operate is reminiscent of freedom and countless adventures, but also of hard and interesting maritime working life. The famous words of Pompey: “Navigare necesseest, vivere non estnecesse” (sailing is necessary, living - is not necessary), which he pronounced on a stormy sea voyage, arouse curiosity and excitement, inviting one to test the truth of this saying personally. It is often the case, however, that sea-faring remains within the realm of dreams, while the fascination with ships demonstrates itself through a transposition of naval features onto land constructions. In such cases, ship-inspired motifs bring alive dreams and yearnings as well as reflect tastes. Tourism is one of the indicators of people’s standard of living and a measure of a society’s civilisation. Maritime tourism has been developing rapidly in recent decades. A sea cruise offers an insight into life at sea. Still, most people derive their knowledge of passenger vessels and their furnishings from the mass media. Passenger vessels, also known as “floating cities,” are described as majestic and grand, while their on-board facilities as luxurious, comfortable, exclusive and inaccessible to common people on land. Freight vessels, on the other hand, are described as enormous objects which dwarf the human being into insignificance. This article presents the results of research intended to answer the following questions: what makes ships a source of inspiration for land architecture? To what extent and by what means do architects draw on ships in their design work? In what places can we find structures inspired by ships? What ships inspire architects? This article presents examples of buildings, whose design was inspired by the architecture and structural details of sea vessels. An analysis of

  12. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor.

    Science.gov (United States)

    Yang, Gai-Xiu; Sun, Yong-Ming; Kong, Xiao-Ying; Zhen, Feng; Li, Ying; Li, Lian-Hua; Lei, Ting-Zhou; Yuan, Zhen-Hong; Chen, Guan-Yi

    2013-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5-200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.

  13. Detecting single-abasic residues within a DNA strand immobilized in a biological nanopore using an integrated CMOS sensor.

    Science.gov (United States)

    Kim, Jungsuk; Maitra, Raj D; Pedrotti, Ken; Dunbar, William B

    2013-02-01

    In this paper, we demonstrate the application of a novel current-measuring sensor (CMS) customized for nanopore applications. The low-noise CMS is fabricated in a 0.35μm CMOS process and is implemented in experiments involving DNA captured in an α-hemolysin (α-HL) nanopore. Specifically, the CMS is used to build a current amplitude map as a function of varying positions of a single-abasic residue within a homopolymer cytosine single-stranded DNA (ssDNA) that is captured and held in the pore. Each ssDNA is immobilized using a biotin-streptavidin linkage. Five different DNA templates are measured and compared: one all-cytosine ssDNA, and four with a single-abasic residue substitution that resides in or near the ~1.5nm aperture of the α-HL channel when the strand is immobilized. The CMOS CMS is shown to resolves the ~5Å displacements of the abasic residue within the varying templates. The demonstration represents an advance in application-specific circuitry that is optimized for small-footprint nanopore applications, including genomic sequencing.

  14. An electric-eel-inspired soft power source from stacked hydrogels.

    Science.gov (United States)

    Schroeder, Thomas B H; Guha, Anirvan; Lamoureux, Aaron; VanRenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-13

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  15. An electric-eel-inspired soft power source from stacked hydrogels

    Science.gov (United States)

    Schroeder, Thomas B. H.; Guha, Anirvan; Lamoureux, Aaron; Vanrenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-01

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  16. Spatial Modeling Tools for Cell Biology

    National Research Council Canada - National Science Library

    Przekwas, Andrzej; Friend, Tom; Teixeira, Rodrigo; Chen, Z. J; Wilkerson, Patrick

    2006-01-01

    .... Scientific potentials and military relevance of computational biology and bioinformatics have inspired DARPA/IPTO's visionary BioSPICE project to develop computational framework and modeling tools for cell biology...

  17. High Resolution Flexible Tactile Sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Bilberg, Arne

    2011-01-01

    both spatial distribution of pressure and dynamic events such as contact, release of contact and slip. Data acquisition and object recognition applications are described and it is proposed that such a sensor could be used in robotic grippers to improve object recognition, manipulation of objects......This paper describes the development of a tactile sensor for robotics inspired by the human sense of touch. It consists of two parts: a static tactile array sensor based on piezoresistive rubber and a dynamic sensor based on piezoelectric PVDF film. The combination of these two layers addresses...

  18. Combining supramolecular chemistry with biology

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Petkau - Milroy, K.; Brunsveld, L.

    2010-01-01

    Supramolecular chemistry has primarily found its inspiration in biological molecules, such as proteins and lipids, and their interactions. Currently the supramolecular assembly of designed compounds can be controlled to great extent. This provides the opportunity to combine these synthetic

  19. The use of remote sensors to relate biological and physical indicators to environmental and public health problems

    Science.gov (United States)

    1972-01-01

    Relationships between biological, ecological and botanical structures, and disease organisms and their vectors which might be detected and measured by remote sensing are determined. In addition to the use of trees as indicators of disease or potential disease, an attempt is made to identify environmental factors such as soil moisture and soil and water temperatures as they relate to disease or health problems and may be detected by remote sensing. The following three diseases and one major health problem are examined: Malaria, Rocky Mountain spotted fever, Encephalitis and Red Tide. It is shown that no single species of vascular plant nor any one environmental factor can be used as the indicator of disease or health problems. Entire vegetation types, successional stages and combinations of factors must be used.

  20. Systematization of the protein sequence diversity in enzymes related to secondary metabolic pathways in plants, in the context of big data biology inspired by the KNApSAcK motorcycle database.

    Science.gov (United States)

    Ikeda, Shun; Abe, Takashi; Nakamura, Yukiko; Kibinge, Nelson; Hirai Morita, Aki; Nakatani, Atsushi; Ono, Naoaki; Ikemura, Toshimichi; Nakamura, Kensuke; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2013-05-01

    Biology is increasingly becoming a data-intensive science with the recent progress of the omics fields, e.g. genomics, transcriptomics, proteomics and metabolomics. The species-metabolite relationship database, KNApSAcK Core, has been widely utilized and cited in metabolomics research, and chronological analysis of that research work has helped to reveal recent trends in metabolomics research. To meet the needs of these trends, the KNApSAcK database has been extended by incorporating a secondary metabolic pathway database called Motorcycle DB. We examined the enzyme sequence diversity related to secondary metabolism by means of batch-learning self-organizing maps (BL-SOMs). Initially, we constructed a map by using a big data matrix consisting of the frequencies of all possible dipeptides in the protein sequence segments of plants and bacteria. The enzyme sequence diversity of the secondary metabolic pathways was examined by identifying clusters of segments associated with certain enzyme groups in the resulting map. The extent of diversity of 15 secondary metabolic enzyme groups is discussed. Data-intensive approaches such as BL-SOM applied to big data matrices are needed for systematizing protein sequences. Handling big data has become an inevitable part of biology.

  1. Human Brain inspired Artificial Intelligence & Developmental Robotics: A Review

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2017-06-01

    Full Text Available Along with the developments in the field of the robotics, fascinating contributions and developments can be seen in the field of Artificial intelligence (AI. In this paper we will discuss about the developments is the field of artificial intelligence focusing learning algorithms inspired from the field of Biology, particularly large scale brain simulations, and developmental Psychology. We will focus on the emergence of the Developmental robotics and its significance in the field of AI.

  2. Sensor agnostic object recognition using a map seeking circuit

    Science.gov (United States)

    Overman, Timothy L.; Hart, Michael

    2012-05-01

    Automatic object recognition capabilities are traditionally tuned to exploit the specific sensing modality they were designed to. Their successes (and shortcomings) are tied to object segmentation from the background, they typically require highly skilled personnel to train them, and they become cumbersome with the introduction of new objects. In this paper we describe a sensor independent algorithm based on the biologically inspired technology of map seeking circuits (MSC) which overcomes many of these obstacles. In particular, the MSC concept offers transparency in object recognition from a common interface to all sensor types, analogous to a USB device. It also provides a common core framework that is independent of the sensor and expandable to support high dimensionality decision spaces. Ease in training is assured by using commercially available 3D models from the video game community. The search time remains linear no matter how many objects are introduced, ensuring rapid object recognition. Here, we report results of an MSC algorithm applied to object recognition and pose estimation from high range resolution radar (1D), electrooptical imagery (2D), and LIDAR point clouds (3D) separately. By abstracting the sensor phenomenology from the underlying a prior knowledge base, MSC shows promise as an easily adaptable tool for incorporating additional sensor inputs.

  3. Design and implementation of optical imaging and sensor systems for characterization of deep-sea biological camouflage

    Science.gov (United States)

    Haag, Justin Mathew

    The visual ecology of deep-sea animals has long been of scientific interest. In the open ocean, where there is no physical structure to hide within or behind, diverse strategies have evolved to solve the problem of camouflage from a potential predator. Simulations of specific predator-prey scenarios have yielded estimates of the range of possible appearances that an animal may exhibit. However, there is a limited amount of quantitative information available related to both animal appearance and the light field at mesopelagic depths (200 m to 1000 m). To mitigate this problem, novel optical instrumentation, taking advantage of recent technological advances, was developed and is described in this dissertation. In the first half of this dissertation, the appearance of mirrored marine animals is quantitatively evaluated. A portable optical imaging scatterometer was developed to measure angular reflectance, described by the bidirectional reflectance distribution function (BRDF), of biological specimens. The instrument allows for BRDF capture from samples of arbitrary size, over a significant fraction of the reflectance hemisphere. Multiple specimens representing two species of marine animals, collected at mesopelagic depths, were characterized using the scatterometer. Low-dimensional parametric models were developed to simplify use of the data sets, and to validate the BRDF method. Results from principal component analysis confirm that BRDF measurements can be used to study intra- and interspecific variability of mirrored marine animal appearance. Collaborative efforts utilizing the BRDF data sets to develop physically-based scattering models are underway. In the second half of this dissertation, another key part of the deep-sea biological camouflage problem is examined. Two underwater radiometers, capable of low-light measurements, were developed to address the lack of available information related to the deep-sea light field. Quantitative comparison of spectral

  4. Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks.

    Science.gov (United States)

    Ling, Wei; Liew, Guoguang; Li, Ya; Hao, Yafeng; Pan, Huizhuo; Wang, Hanjie; Ning, Baoan; Xu, Hang; Huang, Xian

    2018-06-01

    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10 -6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Reaction-Diffusion-Based Coding Rate Control Mechanism for Camera Sensor Networks

    Directory of Open Access Journals (Sweden)

    Naoki Wakamiya

    2010-08-01

    Full Text Available A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  6. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    Science.gov (United States)

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  7. Continuum robot arms inspired by cephalopods

    Science.gov (United States)

    Walker, Ian D.; Dawson, Darren M.; Flash, Tamar; Grasso, Frank W.; Hanlon, Roger T.; Hochner, Binyamin; Kier, William M.; Pagano, Christopher C.; Rahn, Christopher D.; Zhang, Qiming M.

    2005-05-01

    In this paper, we describe our recent results in the development of a new class of soft, continuous backbone ("continuum") robot manipulators. Our work is strongly motivated by the dexterous appendages found in cephalopods, particularly the arms and suckers of octopus, and the arms and tentacles of squid. Our ongoing investigation of these animals reveals interesting and unexpected functional aspects of their structure and behavior. The arrangement and dynamic operation of muscles and connective tissue observed in the arms of a variety of octopus species motivate the underlying design approach for our soft manipulators. These artificial manipulators feature biomimetic actuators, including artificial muscles based on both electro-active polymers (EAP) and pneumatic (McKibben) muscles. They feature a "clean" continuous backbone design, redundant degrees of freedom, and exhibit significant compliance that provides novel operational capacities during environmental interaction and object manipulation. The unusual compliance and redundant degrees of freedom provide strong potential for application to delicate tasks in cluttered and/or unstructured environments. Our aim is to endow these compliant robotic mechanisms with the diverse and dexterous grasping behavior observed in octopuses. To this end, we are conducting fundamental research into the manipulation tactics, sensory biology, and neural control of octopuses. This work in turn leads to novel approaches to motion planning and operator interfaces for the robots. The paper describes the above efforts, along with the results of our development of a series of continuum tentacle-like robots, demonstrating the unique abilities of biologically-inspired design.

  8. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  9. Hair-based flow-sensing inspired by the cricket cercal system

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Droogendijk, H.; Steinmann, T.; Dagamseh, A.M.K.; Jaganatharaja, R.K.; Casas, J.

    2014-01-01

    Micro Electro Mechanical Systems (MEMS) offer exciting possibilities for the fabri­cation of bioinspired mechanosensors. Over the last years we have been working on cricket inspired hair-sensor arrays for spatio-temporal flow-field observations (i.e., flow-cameras) and source localization. Whereas

  10. A Theoretical Characterization of Curvature Controlled Adhesive Properties of Bio-Inspired Membranes

    DEFF Research Database (Denmark)

    Afferante, Luciano; Heepe, Lars; Casdorff, Kirstin

    2016-01-01

    Some biological systems, such as the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima, have developed the ability to control adhesion by changing the curvature of their pads. Active control systems of adhesion inspired by these biological models can be very attractive...

  11. Space as an inspiring context

    Science.gov (United States)

    Stancu, Cristina

    2017-04-01

    Using space as context to inspire science education tapps into the excitement of generations of discovering the unknown resulting in unprecedented public participation. Educators are finding exciting and age appropiate materials for their class that explore science, technology, engineering and mathematics. Possible misconceptions are highlighted so that teachers may plan lessons to facilitate correct conceptual understanding. With a range of hands-on learning experiences, Web materials and online ,opportunities for students, educators are invited to take a closer look to actual science missions. This session leverages resources, materials and expertise to address a wide range of traditional and nontraditional audiences while providing consistent messages and information on various space agencies programs.

  12. Natural photonics for industrial inspiration.

    Science.gov (United States)

    Parker, Andrew R

    2009-05-13

    There are two considerations for optical biomimetics: the diversity of submicrometre architectures found in the natural world, and the industrial manufacture of these. A review exists on the latter subject, where current engineering methods are considered along with those of the natural cells. Here, on the other hand, I will provide a modern review of the different categories of reflectors and antireflectors found in animals, including their optical characterization. The purpose of this is to inspire designers within the $2 billion annual optics industry.

  13. Fabrication and characterization of artificial hair cell sensor based on MWCNT-PDMS composite

    Science.gov (United States)

    Kim, Chi Yeon; Lee, Hyun Sup; Cho, Yo Han; Joh, Cheeyoung; Choi, Pyung; Park, Seong Jin

    2011-06-01

    The aim of this work is to design and fabricate a flow sensor using an artificial hair cell (AHC) inspired by biological hair cells of fish. The sensor consists of a single cilium structure with high aspect ratio and a mechanoreceptor using force sensitive resistor (FSR). The cilium structure is designed for capturing a drag force with direction due to flow field around the sensor and the mechanoreceptor is designed for sensing the drag force with direction from the cilium structure and converting it into an electric signal. The mechanoreceptor has a symmetric four electrodes to sense the drag force and its direction. To fabricate the single cilium structure with high aspect ratio, we have proposed a new design concept using a separated micro mold system (SMS) fabricated by the LIGA process. For a successful replication of the cilium structure, we used the hot embossing process with the help of a double-sided mold system. We used a composite of multiwall carbon nanotube and polydimethylsiloxane (MWCNT-PDMS). The performance of the mechanoreceptors was measured by a computer-controlled nanoindenter. We carried out several experiments with the sensor in the different flow rate and direction using the experimental test apparatus. To calibrate the sensor and calculate the velocity with direction based the signal from the sensor, we analyzed the coupled phenomena between flow field and the cilium structure to calculate the deflection of the cilium structure and the drag force applying to the cilium structure due to the flow field around sensor.

  14. Optimization Of Bio-inspired Hair Sensor Arrays

    NARCIS (Netherlands)

    Jaganatharaja, R.K.; Bruinink, C.M.; Izadi, N.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Casas, J.; Krijnen, Gijsbertus J.M.

    2008-01-01

    Crickets use a pair of hairy appendages on their abdomen called cerci, each of which contains numerous mechano-receptive filiform hairs. These sensitive hairs can respond even to the slightest air movements, down to 0.03 mm/s, generated by the approaching predators and initiating an escape mechanism

  15. Scaling up liquid state machines to predict over address events from dynamic vision sensors.

    Science.gov (United States)

    Kaiser, Jacques; Stal, Rainer; Subramoney, Anand; Roennau, Arne; Dillmann, Rüdiger

    2017-09-01

    Short-term visual prediction is important both in biology and robotics. It allows us to anticipate upcoming states of the environment and therefore plan more efficiently. In theoretical neuroscience, liquid state machines have been proposed as a biologically inspired method to perform asynchronous prediction without a model. However, they have so far only been demonstrated in simulation or small scale pre-processed camera images. In this paper, we use a liquid state machine to predict over the whole  [Formula: see text]  event stream provided by a real dynamic vision sensor (DVS, or silicon retina). Thanks to the event-based nature of the DVS, the liquid is constantly fed with data when an object is in motion, fully embracing the asynchronicity of spiking neural networks. We propose a smooth continuous representation of the event stream for the short-term visual prediction task. Moreover, compared to previous works (2002 Neural Comput. 2525 282-93 and Burgsteiner H et al 2007 Appl. Intell. 26 99-109), we scale the input dimensionality that the liquid operates on by two order of magnitudes. We also expose the current limits of our method by running experiments in a challenging environment where multiple objects are in motion. This paper is a step towards integrating biologically inspired algorithms derived in theoretical neuroscience to real world robotic setups. We believe that liquid state machines could complement current prediction algorithms used in robotics, especially when dealing with asynchronous sensors.

  16. INSPIRE 2012 da Istanbul a Firenze

    Directory of Open Access Journals (Sweden)

    Mauro Salvemini

    2012-09-01

    Full Text Available DURING THE CONFERENCE HELD IN  ISTANBUL IN  2012 INSPIRE  THE  NEWS  THAT  MOST  IMPRESSED ITALIANS PRESENT,  EVEN THOSE IN THE PUBLIC ADMINISTRATION , WAS THAT THE NEXT  INSPIRE CONFERENCE WILL TAKE PLACE IN  FLORENCEDurante la conferenza INSPIRE 2012 svoltasi ad Istanbul la notizia che ha maggiormente colpito gli italiani presenti, anche quelli della pubblica amministrazione , è stata che la prossima Conferenza INSPIRE si svolgerà a Firenze dal 23 al 27 giugno 2013.

  17. INSPIRE 2012 da Istanbul a Firenze

    Directory of Open Access Journals (Sweden)

    Mauro Salvemini

    2012-09-01

    Full Text Available DURING THE CONFERENCE HELD IN  ISTANBUL IN  2012 INSPIRE  THE  NEWS  THAT  MOST  IMPRESSED ITALIANS PRESENT,  EVEN THOSE IN THE PUBLIC ADMINISTRATION , WAS THAT THE NEXT  INSPIRE CONFERENCE WILL TAKE PLACE IN  FLORENCE Durante la conferenza INSPIRE 2012 svoltasi ad Istanbul la notizia che ha maggiormente colpito gli italiani presenti, anche quelli della pubblica amministrazione , è stata che la prossima Conferenza INSPIRE si svolgerà a Firenze dal 23 al 27 giugno 2013.

  18. Bio-Inspired Optimization of Sustainable Energy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zheng

    2013-01-01

    Full Text Available Sustainable energy development always involves complex optimization problems of design, planning, and control, which are often computationally difficult for conventional optimization methods. Fortunately, the continuous advances in artificial intelligence have resulted in an increasing number of heuristic optimization methods for effectively handling those complicated problems. Particularly, algorithms that are inspired by the principles of natural biological evolution and/or collective behavior of social colonies have shown a promising performance and are becoming more and more popular nowadays. In this paper we summarize the recent advances in bio-inspired optimization methods, including artificial neural networks, evolutionary algorithms, swarm intelligence, and their hybridizations, which are applied to the field of sustainable energy development. Literature reviewed in this paper shows the current state of the art and discusses the potential future research trends.

  19. A Mathematical Model of a Novel 3D Fractal-Inspired Piezoelectric Ultrasonic Transducer.

    Science.gov (United States)

    Canning, Sara; Walker, Alan J; Roach, Paul A

    2016-12-17

    Piezoelectric ultrasonic transducers have the potential to operate as both a sensor and as an actuator of ultrasonic waves. Currently, manufactured transducers operate effectively over narrow bandwidths as a result of their regular structures which incorporate a single length scale. To increase the operational bandwidth of these devices, consideration has been given in the literature to the implementation of designs which contain a range of length scales. In this paper, a mathematical model of a novel Sierpinski tetrix fractal-inspired transducer for sensor applications is presented. To accompany the growing body of research based on fractal-inspired transducers, this paper offers the first sensor design based on a three-dimensional fractal. The three-dimensional model reduces to an effective one-dimensional model by allowing for a number of assumptions of the propagating wave in the fractal lattice. The reception sensitivity of the sensor is investigated. Comparisons of reception force response (RFR) are performed between this novel design along with a previously investigated Sierpinski gasket-inspired device and standard Euclidean design. The results indicate that the proposed device surpasses traditional design sensors.

  20. Bio-Inspired Cyber Security for Smart Grid Deployments

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, Archibald D.; Thompson, Seth R.; Doroshchuk, Ruslan A.; Fink, Glenn A.; Fulp, Errin W.

    2013-05-01

    mart grid technologies are transforming the electric power grid into a grid with bi-directional flows of both power and information. Operating millions of new smart meters and smart appliances will significantly impact electric distribution systems resulting in greater efficiency. However, the scale of the grid and the new types of information transmitted will potentially introduce several security risks that cannot be addressed by traditional, centralized security techniques. We propose a new bio-inspired cyber security approach. Social insects, such as ants and bees, have developed complex-adaptive systems that emerge from the collective application of simple, light-weight behaviors. The Digital Ants framework is a bio-inspired framework that uses mobile light-weight agents. Sensors within the framework use digital pheromones to communicate with each other and to alert each other of possible cyber security issues. All communication and coordination is both localized and decentralized thereby allowing the framework to scale across the large numbers of devices that will exist in the smart grid. Furthermore, the sensors are light-weight and therefore suitable for implementation on devices with limited computational resources. This paper will provide a brief overview of the Digital Ants framework and then present results from test bed-based demonstrations that show that Digital Ants can identify a cyber attack scenario against smart meter deployments.

  1. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Science.gov (United States)

    Wang, Hui; Zhang, Ke-Qin

    2013-01-01

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

  2. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Directory of Open Access Journals (Sweden)

    Ke-Qin Zhang

    2013-03-01

    Full Text Available Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

  3. [Nikola Tesla: flashes of inspiration].

    Science.gov (United States)

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions.

  4. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  5. Chameleon-Inspired Mechanochromic Photonic Films Composed of Non-Close-Packed Colloidal Arrays.

    Science.gov (United States)

    Lee, Gun Ho; Choi, Tae Min; Kim, Bomi; Han, Sang Hoon; Lee, Jung Min; Kim, Shin-Hyun

    2017-11-28

    Chameleons use a non-close-packed array of guanine nanocrystals in iridophores to develop and tune skin colors in the full visible range. Inspired by the biological process uncovered in panther chameleons, we designed photonic films containing a non-close-packed face-centered-cubic array of silica particles embedded in an elastomer. The non-close-packed array is formed by interparticle repulsion exerted by solvation layers on the particle surface, which is rapidly captured in the elastomer by photocuring of the dispersion medium. The artificial skin exhibits a structural color that shifts from red to blue under stretching or compression. The separation between inelastic particles enables tuning without experiencing significant rearrangement of particles, providing elastic deformation and reversible color change, as chameleons do. The simple fabrication procedure consists of film casting and UV irradiation, potentially enabling the continuous high-throughput production. The mechanochromic property of the photonic films enables the visualization of deformation or stress with colors, which is potentially beneficial for various applications, including mechanical sensors, sound-vision transformers, and color display.

  6. Graphene-Based Chemical Vapor Sensors for Electronic Nose Applications

    Science.gov (United States)

    Nallon, Eric C.

    An electronic nose (e-nose) is a biologically inspired device designed to mimic the operation of the olfactory system. The e-nose utilizes a chemical sensor array consisting of broadly responsive vapor sensors, whose combined response produces a unique pattern for a given compound or mixture. The sensor array is inspired by the biological function of the receptor neurons found in the human olfactory system, which are inherently cross-reactive and respond to many different compounds. The use of an e-nose is an attractive approach to predict unknown odors and is used in many fields for quantitative and qualitative analysis. If properly designed, an e-nose has the potential to adapt to new odors it was not originally designed for through laboratory training and algorithm updates. This would eliminate the lengthy and costly R&D costs associated with materiel and product development. Although e-nose technology has been around for over two decades, much research is still being undertaken in order to find new and more diverse types of sensors. Graphene is a single-layer, 2D material comprised of carbon atoms arranged in a hexagonal lattice, with extraordinary electrical, mechanical, thermal and optical properties due to its 2D, sp2-bonded structure. Graphene has much potential as a chemical sensing material due to its 2D structure, which provides a surface entirely exposed to its surrounding environment. In this configuration, every carbon atom in graphene is a surface atom, providing the greatest possible surface area per unit volume, so that electron transport is highly sensitive to adsorbed molecular species. Graphene has gained much attention since its discovery in 2004, but has not been realized in many commercial electronics. It has the potential to be a revolutionary material for use in chemical sensors due to its excellent conductivity, large surface area, low noise, and versatile surface for functionalization. In this work, graphene is incorporated into a

  7. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    International Nuclear Information System (INIS)

    Yang, Henry T Y; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J; Hansma, Paul K

    2010-01-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force–displacement–velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators

  8. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    Science.gov (United States)

    Yang, Henry T. Y.; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J.; Hansma, Paul K.

    2010-10-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force-displacement-velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators.

  9. Business Inspiration: Small Business Leadership in Recovery?

    Science.gov (United States)

    Rae, David; Price, Liz; Bosworth, Gary; Parkinson, Paul

    2012-01-01

    Business Inspiration was a short, action-centred leadership and innovation development programme designed for owners and managers of smaller firms to address business survival and repositioning needs arising from the UK's economic downturn. The article examines the design and delivery of Business Inspiration and the impact of the programme on…

  10. Inspiration til undervisning på museer

    DEFF Research Database (Denmark)

    Hyllested, Trine Elisabeth

    2015-01-01

    collection and arrangement of knowledge meant to give a general view of, to inspire and to develop teaching at museums in Denmark......collection and arrangement of knowledge meant to give a general view of, to inspire and to develop teaching at museums in Denmark...

  11. A bio-inspired approach for in situ synthesis of tunable adhesive

    International Nuclear Information System (INIS)

    Sun, Leming; Yi, Sijia; Wang, Yongzhong; Pan, Kang; Zhong, Qixin; Zhang, Mingjun

    2014-01-01

    Inspired by the strong adhesive produced by English ivy, this paper proposes an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive will be proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. (paper)

  12. Poly(3,6-diamino-9-ethylcarbazole) based molecularly imprinted polymer sensor for ultra-sensitive and selective detection of 17-β-estradiol in biological fluids.

    Science.gov (United States)

    Liu, Weilu; Li, Haifeng; Yu, Shangmin; Zhang, Jiaxing; Zheng, Weihua; Niu, Liting; Li, Gengen

    2018-05-01

    In this work, we reported the synthesis of 3, 6-diamino-9-ethylcarbazole and its application as a new monomer for preparation of molecularly imprinted polymer (MIP) electrochemical sensor. The as prepared MIP sensor exhibited ultrahigh sensitivity and selectivity for the detection of 17-β-estradiol in attomolar levels (1 × 10 -18 molL -1 ). The sensor works by detecting the change of the interfacial impedance that is derived from recognition of 17-β-estradiol on the MIP layer. The MIP sensor based on 3, 6-diamino-9-ethylcarbazole monomer revealed better performance than that of unmodified carbazole monomer. The monomer/template ratio, electropolymerization scanning cycles, and the incubation pH values were optimised in order to obtain the best detection efficiency. Under the optimised condition, the MIP sensor exhibits a wide linear range from 1aM to 10μM (1 × 10 -18 ̶ 1 × 10 -5 molL -1 ). A low detection limit of 0.36aM (3.6 × 10 -19 molL -1 ) and a good selectivity towards structurally similar compounds were obtained. The proposed MIP sensor also exhibits long-term stability and applicability in human serum samples. These advantages enabled this MIP sensor to be a promising alternative of electrochemical sensor and may be extended to detection of other endogenous compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Wireless synapses in bio-inspired neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin

    2009-05-01

    Wireless (virtual) synapses represent a novel approach to bio-inspired neural networks that follow the infrastructure of the biological brain, except that biological (physical) synapses are replaced by virtual ones based on cellular telephony modeling. Such synapses are of two types: intracluster synapses are based on IR wireless ones, while intercluster synapses are based on RF wireless ones. Such synapses have three unique features, atypical of conventional artificial ones: very high parallelism (close to that of the human brain), very high reconfigurability (easy to kill and to create), and very high plasticity (easy to modify or upgrade). In this paper we analyze the general concept of wireless synapses with special emphasis on RF wireless synapses. Also, biological mammalian (vertebrate) neural models are discussed for comparison, and a novel neural lensing effect is discussed in detail.

  14. Biologically-inspired radar and sonar lessons from nature

    CERN Document Server

    Balleri, Alessio; Baker, Chris

    2017-01-01

    This book presents some of the recent work that has been carried out to investigate how sophisticated sensing techniques used in nature can be applied to radar and sonar systems to improve their performance.

  15. Low Power Microrobotics Utilizing Biologically Inspired Energy Generation

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I study, the study team will investigate the usability of a microbial fuel cell to power a small microrover, design low-power electronics for effective...

  16. Biologically-inspired data decorrelation for hyper-spectral imaging

    Directory of Open Access Journals (Sweden)

    Ghita Ovidiu

    2011-01-01

    Full Text Available Abstract Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA, linear discriminant analysis (LDA, wavelet decomposition (WD, or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification

  17. A biologically inspired neural network controller for ballistic arm movements

    Directory of Open Access Journals (Sweden)

    Schmid Maurizio

    2007-09-01

    Full Text Available Abstract Background In humans, the implementation of multijoint tasks of the arm implies a highly complex integration of sensory information, sensorimotor transformations and motor planning. Computational models can be profitably used to better understand the mechanisms sub-serving motor control, thus providing useful perspectives and investigating different control hypotheses. To this purpose, the use of Artificial Neural Networks has been proposed to represent and interpret the movement of upper limb. In this paper, a neural network approach to the modelling of the motor control of a human arm during planar ballistic movements is presented. Methods The developed system is composed of three main computational blocks: 1 a parallel distributed learning scheme that aims at simulating the internal inverse model in the trajectory formation process; 2 a pulse generator, which is responsible for the creation of muscular synergies; and 3 a limb model based on two joints (two degrees of freedom and six muscle-like actuators, that can accommodate for the biomechanical parameters of the arm. The learning paradigm of the neural controller is based on a pure exploration of the working space with no feedback signal. Kinematics provided by the system have been compared with those obtained in literature from experimental data of humans. Results The model reproduces kinematics of arm movements, with bell-shaped wrist velocity profiles and approximately straight trajectories, and gives rise to the generation of synergies for the execution of movements. The model allows achieving amplitude and direction errors of respectively 0.52 cm and 0.2 radians. Curvature values are similar to those encountered in experimental measures with humans. The neural controller also manages environmental modifications such as the insertion of different force fields acting on the end-effector. Conclusion The proposed system has been shown to properly simulate the development of internal models and to control the generation and execution of ballistic planar arm movements. Since the neural controller learns to manage movements on the basis of kinematic information and arm characteristics, it could in perspective command a neuroprosthesis instead of a biomechanical model of a human upper limb, and it could thus give rise to novel rehabilitation techniques.

  18. Additive Layer Manufacturing of Biologically Inspired Short Fibre Reinforced Composites

    Science.gov (United States)

    2014-03-01

    ductile  fibre   coating  with  enhanced  mechanical...data   for   us   to   critically   assess   the   prospect   of   nanorod-­‐ coated   fibres  for  improved   ductility  in...fully   coated  with   zinc  acetate  seeds,  substrates   are  typically  dipped  in  the  solution  several  times

  19. Biologically-Inspired Hardware for Land/Aerial Robots

    Data.gov (United States)

    National Aeronautics and Space Administration — Future generations of NASA land/aerial robots will be required to operate in the harsh, unpredictable environments of extra-terrestrial bodies including asteroids,...

  20. Biologically Inspired Radio-Frequency (RF) Direction Finding

    Science.gov (United States)

    2015-12-15

    microcontroller unit (MCU) - arduino duemilanove. The interrogator consists of one DIGI xbee s2, one ultrasonic receiver, one arduino , a pair of PIFAs...out a localization request using 2450 MHz band, and the arduino at the interrogator mandates the xbee to emit an RF signal and to start the timer...Once the xbee at the tag receives the RF signal, the arduino at the tag will request the ultrasonic module to emit an ultrasound and the xbee to

  1. Biologically Inspired Waveform Diversity for Synthetic Autonomous Navigation Sensing

    Science.gov (United States)

    2009-11-01

    Pulse interval and repetition rate When searching for prey, bats often emit one pulse per wing beat . This is because the mechanics of flapping the...wings, breathing, and producing sound pulses are all coupled. Because of this coupling, the pulse repetition rate is often the same as wing beat ...give accurate measures of delay and hence range [26]. For determination of direction, the horizontal angle of a target is determined from binaural

  2. Adaptive leg coordination with a biologically inspired neurocontroller

    Science.gov (United States)

    Braught, Grant; Thomopoulos, Stelios C.

    1996-10-01

    Natural selection is responsible for the creation of robust and adaptive control systems. Nature's control systems are created only from primitive building blocks. Using insect neurophysiology as a guide, a neural architecture for leg coordination in a hexapod robot has been developed. Reflex chains and sensory feedback mechanisms from various insects and crustacea form the basis of a pattern generator for intra-leg coordination. The pattern generator contains neural oscillators which learn from sensory feedback to produce stepping patterns. Using sensory feedback as the source of learning information allows the pattern generator to adapt to changes in the leg dynamics due to internal or external causes. A coupling between six of the single leg pattern generators is used to produce the inter-leg coordination necessary to establish stable gaits.

  3. Preliminary physical, nutrients, biological, meteorological, and other data from bottle casts, CTD casts, ADCP casts, moored current meters, and meteorological sensors from the GYRE from as part of the Texas-Louisiana Shelf Circulation and Transport Processes Study (LATEX PART A) from 04 November 1992 to 05 August 1994 (NODC Accession 9500054)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary physical, nutrients, biological, meteorological, and other data from bottle casts, CTD casts, ADCP casts, and meteorological sensors from the GYRE from...

  4. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  5. Material requirements for bio-inspired sensing systems

    Science.gov (United States)

    Biggins, Peter; Lloyd, Peter; Salmond, David; Kusterbeck, Anne

    2008-10-01

    The aim of developing bio-inspired sensing systems is to try and emulate the amazing sensitivity and specificity observed in the natural world. These capabilities have evolved, often for specific tasks, which provide the organism with an advantage in its fight to survive and prosper. Capabilities cover a wide range of sensing functions including vision, temperature, hearing, touch, taste and smell. For some functions, the capabilities of natural systems are still greater than that achieved by traditional engineering solutions; a good example being a dog's sense of smell. Furthermore, attempting to emulate aspects of biological optics, processing and guidance may lead to more simple and effective devices. A bio-inspired sensing system is much more than the sensory mechanism. A system will need to collect samples, especially if pathogens or chemicals are of interest. Other functions could include the provision of power, surfaces and receptors, structure, locomotion and control. In fact it is possible to conceive of a complete bio-inspired system concept which is likely to be radically different from more conventional approaches. This concept will be described and individual component technologies considered.

  6. Product and technology innovation: what can biomimicry inspire?

    Science.gov (United States)

    Lurie-Luke, Elena

    2014-12-01

    Biomimicry (bio- meaning life in Greek, and -mimesis, meaning to copy) is a growing field that seeks to interpolate natural biological mechanisms and structures into a wide range of applications. The rise of interest in biomimicry in recent years has provided a fertile ground for innovation. This review provides an eco-system based analysis of biomimicry inspired technology and product innovation. A multi-disciplinary framework has been developed to accomplish this analysis and the findings focus on the areas that have been most strikingly affected by the application of biomimicry and also highlight the emerging trends and opportunity areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Fracture Mechanics: Inspirations from Nature

    Directory of Open Access Journals (Sweden)

    David Taylor

    2014-10-01

    Full Text Available In Nature there are many examples of materials performing structural functions. Nature requires materials which are stiff and strong to provide support against various forces, including self-weight, the dynamic forces involved in movement, and external loads such as wind or the actions of a predator. These materials and structures have evolved over millions of years; the science of Biomimetics seeks to understand Nature and, as a result, to find inspiration for the creation of better engineering solutions. There has been relatively little fundamental research work in this area from a fracture mechanics point of view. Natural materials are quite brittle and, as a result, they have evolved several interesting strategies for preventing failure by crack propagation. Fatigue is also a major problem for many animals and plants. In this paper, several examples will be given of recent work in the Bioengineering Research Centre at Trinity College Dublin, investigating fracture and fatigue in such diverse materials as bamboo, the legs and wings of insects, and living cells.

  8. Inspired at a book fair

    CERN Document Server

    Anaïs Schaeffer

    2012-01-01

    During the Frankfurt book fair last October, the CERN stand drew quite the crowd. Director-General Rolf Heuer was there to promote CERN’s mission and the "LHC: the Large Hadron Collider" book. He met a lot of visitors and for one of them there was also a nice follow-up…   Marcus and his father visiting the LINAC facility. Fifteen year-old Marcus lives in Lauterecken near Frankfurt. The popular book fair last autumn was for him a nice opportunity to get in touch with the CERN environment. Inspired by the stand and what the CERN people were describing, he started to ask more and more questions… So many, that Rolf Heuer decided to invite him to come to CERN and find out some of the answers for himself. A few weeks later, while recovering from an exciting visit to the ATLAS underground cavern and other CERN installations with a cup of tea in Restaurant 1, Marcus shared his enthusiasm about the Organization: “When I was younger, my moth...

  9. Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation

    International Nuclear Information System (INIS)

    Park, Yong-Lae; Chen, Bor-rong; Pérez-Arancibia, Néstor O; Young, Diana; Wood, Robert J; Nagpal, Radhika; Stirling, Leia; Goldfield, Eugene C

    2014-01-01

    We describe the design and control of a wearable robotic device powered by pneumatic artificial muscle actuators for use in ankle–foot rehabilitation. The design is inspired by the biological musculoskeletal system of the human foot and lower leg, mimicking the morphology and the functionality of the biological muscle–tendon–ligament structure. A key feature of the device is its soft structure that provides active assistance without restricting natural degrees of freedom at the ankle joint. Four pneumatic artificial muscles assist dorsiflexion and plantarflexion as well as inversion and eversion. The prototype is also equipped with various embedded sensors for gait pattern analysis. For the subject tested, the prototype is capable of generating an ankle range of motion of 27° (14° dorsiflexion and 13° plantarflexion). The controllability of the system is experimentally demonstrated using a linear time-invariant (LTI) controller. The controller is found using an identified LTI model of the system, resulting from the interaction of the soft orthotic device with a human leg, and model-based classical control design techniques. The suitability of the proposed control strategy is demonstrated with several angle-reference following experiments. (paper)

  10. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  11. La maturità di INSPIRE

    Directory of Open Access Journals (Sweden)

    Mauro Salvemini

    2010-03-01

    Full Text Available INPIRE's maturityThe INSPIRE Conference 2010 took place from 23 to 25 June 2010 in Kraków, Poland. On 22 June pre-conference workshops have been organized. The theme of this year’s edition has been "INSPIRE as a Framework for Cooperation".The INSPIRE Conference has been organised through a series of plenary sessions addressing common policy issues, and parallel sessions focusing in particular on applications and implementations of SDIs, research issues and new and evolvingtechnologies and applications and poster presentations.

  12. On the Cultivation of Students' Interests in Biology Teaching

    Science.gov (United States)

    Li, Yan

    2011-01-01

    This paper introduces the importance of middle school students' interests in learning biology. Considering the psychological characteristics of middle school students, this paper suggests several practical ways for inspiring students' interests in learning biology.

  13. Toward autonomous avian-inspired grasping for micro aerial vehicles

    International Nuclear Information System (INIS)

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Kumar, Vijay; Sreenath, Koushil

    2014-01-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches. (papers)

  14. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    Science.gov (United States)

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches.

  15. Innovative Didactics in an International Internship - inspiration

    DEFF Research Database (Denmark)

    Lembcke, Steen; Skibsted, Else Bengaard; Mølgaard, Niels

    An inspiration handbook for the international team from the teacher education programme in VIA. Aimed to assist internship supervisors and students during international internships in regards to innovation, social entrepreneurship and development of the international teacher. Introduces why and how...

  16. Ambient and laboratory measurements of ice nuclei and their biological faction with the Fast Ice Nuclei CHamber FINCH-HALO using the new 405nm Version of the BIO-IN Sensor

    Science.gov (United States)

    Bundke, U.; Nillius, B.; Bingemer, H.; Curtius, J.

    2012-04-01

    We have designed the BIO-IN detector as part of the ice nucleus counter FINCH (Fast Ice Nuclei CHamber counter) to distinguish activated Ice Nuclei (IN) ice crystals from water droplets (CCN) (Bundke et al. 2008) and their fraction of biological origin (Bundke 2010). The modified BIO-IN sensor illuminates an aerosol stream with a 405 nm laser, replacing a 365nm LED of the original BIO IN design. Particles will scatter the light and those of biological origin will show intrinsic fluorescence emissions by excitation of mainly Riboflavin, also known as vitamin B2. The incident laser light is circularly polarized by introducing a quarter-wave-plate. The circular depolarization ratio (p44/p11) of the scattering matrix is measured in the backward direction by two photomultipliers at 110° scattering angle using a combination of quarter-wave-plate and a beam splitting cube to analyze the two circular polarization components. The detection limit was lowered towards particle size of about 400nm diameter (non activated particles). It is now possible to calculate the activated fraction of IN of biological origin with respect to all biological particles measured with one detector. The performance of the sensor will be demonstrated showing the circular- depolarization properties of different test aerosol, dust samples, volcanic ashes as well as different biological particles. Measurements on the mountain Puy de Dôme of IN number concentration of ambient air, as well as measurements at the AIDA facility in Karlsruhe of the IN activation curves from different bacteria are shown. Acknowledgements: This work was supported by the German Research Foundation, Grant: BU 1432/3-2 BU 1432/4-1

  17. Inspirational Catalogue of Master Thesis Proposals 2015

    DEFF Research Database (Denmark)

    Thorndahl, Søren

    2015-01-01

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....

  18. Nature as inspiration for leisure education

    OpenAIRE

    ŠPIRHANZLOVÁ, Andrea

    2017-01-01

    The thesis deals with the organization of leisure activities where the main tool and inspiration is nature. The theoretical part defines basic concepts of pedagogy of free time and points to the possibility of using nature as an inspiration not only for creating content components of leisure activities, but also as the environment in which the pedagogical - educational process of activities takes place. The practical part contains specific pedagogical - educational activity whose essence is b...

  19. Using neuromorphic optical sensors for spacecraft absolute and relative navigation

    Science.gov (United States)

    Shake, Christopher M.

    We develop a novel attitude determination system (ADS) for use on nano spacecraft using neuromorphic optical sensors. The ADS intends to support nano-satellite operations by providing low-cost, low-mass, low-volume, low-power, and redundant attitude determination capabilities with quick and straightforward onboard programmability for real time spacecraft operations. The ADS is experimentally validated with commercial-off-the-shelf optical devices that perform sensing and image processing on the same circuit board and are biologically inspired by insects' vision systems, which measure optical flow while navigating in the environment. The firmware on the devices is modified to both perform the additional biologically inspired task of tracking objects and communicate with a PC/104 form-factor embedded computer running Real Time Application Interface Linux used on a spacecraft simulator. Algorithms are developed for operations using optical flow, point tracking, and hybrid modes with the sensors, and the performance of the system in all three modes is assessed using a spacecraft simulator in the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory at Rensselaer. An existing relative state determination method is identified to be combined with the novel ADS to create a self-contained navigation system for nano spacecraft. The performance of the method is assessed in simulation and found not to match the results from its authors using only conditions and equations already published. An improved target inertia tensor method is proposed as an update to the existing relative state method, but found not to perform as expected, but is presented for others to build upon.

  20. INSPIRE from the JRC Point of View

    Directory of Open Access Journals (Sweden)

    Vlado Cetl

    2012-12-01

    Full Text Available This paper summarises some recent developments in INSPIRE implementation from the JRC (Joint Research Centre point of view. The INSPIRE process started around 11 years ago and today, clear results and benefits can be seen. Spatial data are more accessible and shared more frequently between countries and at the European level. In addition to this, efficient, unified coordination and collaboration between different stakeholders and participants has been achieved, which is another great success. The JRC, as a scientific think-tank of the European Commission, has played a very important role in this process from the very beginning. This role is in line with its mission, which is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of European Union (EU policies. The JRC acts as the overall technical coordinator of INSPIRE, but it also carries out the activities necessary to support the coherent implementation of INSPIRE, by helping member states in the implementation process. Experiences drawn from collaboration and negotiation in each country and at the European level will be of great importance in the revision of the INSPIRE Directive, which is envisaged for 2014. Keywords: spatial data infrastructure (SDI; INSPIRE; development; Joint Research Centre (JRC

  1. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2011-02-01

    Full Text Available The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  2. Taste sensor; Mikaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K. [Kyushu University, Fukuoka (Japan)

    1998-03-05

    This paper introduces a taste sensor having a lipid/polymer membrane to work as a receptor of taste substances. The paper describes the following matters: this sensor uses a hollow polyvinyl chloride rod filled with KCl aqueous solution, and placed with silver and silver chloride wires, whose cross section is affixed with a lipid/polymer membrane as a lipid membrane electrode to identify taste from seven or eight kinds of response patterns of electric potential output from the lipid/polymer membrane; measurements of different substances presenting acidic taste, salty taste, bitter taste, sweet taste and flavor by using this sensor identified clearly each taste (similar response is shown to a similar taste even if the substances are different); different responses are indicated on different brands of beers; from the result of measuring a great variety of mineral waters, a possibility was suggested that this taste sensor could be used for water quality monitoring sensors; and application of this taste sensor may be expected as a maturation control sensor for Japanese sake (wine) and miso (bean paste) manufacturing. 2 figs., 1 tab.

  3. A survey of bio-inspired compliant legged robot designs

    International Nuclear Information System (INIS)

    Zhou Xiaodong; Bi Shusheng

    2012-01-01

    The roles of biological springs in vertebrate animals and their implementations in compliant legged robots offer significant advantages over the rigid legged ones in certain types of scenarios. A large number of robotics institutes have been attempting to work in conjunction with biologists and incorporated these principles into the design of biologically inspired robots. The motivation of this review is to investigate the most published compliant legged robots and categorize them according to the types of compliant elements adopted in their mechanical structures. Based on the typical robots investigated, the trade-off between each category is summarized. In addition, the most significant performances of these robots are compared quantitatively, and multiple available solutions for the future compliant legged robot design are suggested. Finally, the design challenges for compliant legged robots are analysed. This review will provide useful guidance for robotic designers in creating new designs by inheriting the virtues of those successful robots according to the specific tasks. (topical review)

  4. Bio-inspired functional surfaces for advanced applications

    DEFF Research Database (Denmark)

    Malshe, Ajay; Rajurkar, Kamlakar; Samant, Anoop

    2013-01-01

    , are being evolved to a higher state of intelligent functionality. These surfaces became more efficient by using combinations of available materials, along with unique physical and chemical strategies. Noteworthy physical strategies include features such as texturing and structure, and chemical strategies...... such as sensing and actuation. These strategies collectively enable functional surfaces to deliver extraordinary adhesion, hydrophobicity, multispectral response, energy scavenging, thermal regulation, antibiofouling, and other advanced functions. Production industries have been intrigued with such biological...... surface strategies in order to learn clever surface architectures and implement those architectures to impart advanced functionalities into manufactured consumer products. This keynote paper delivers a critical review of such inspiring biological surfaces and their nonbiological product analogs, where...

  5. Learning from Crickets: Artificial Hair-Sensor Array Developments

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2010-01-01

    We have successfully developed biomimetic flowsensitive hair-sensor arrays taking inspiration from mechanosensory hairs of crickets. Our current generation of sensors achieves sub mm/s threshold air-flow sensitivity for single hairs operating in a bandwidth of a few hundred Hz and is the result of a

  6. Bio-inspired UAV routing, source localization, and acoustic signature classification for persistent surveillance

    Science.gov (United States)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Pham, Tien

    2011-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara and the Army Research Laboratory* is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data. A fast and accurate method has been developed to localize an event by fusing data from a sparse number of UGSs. This technique uses a bio-inspired algorithm based on chemotaxis or the motion of bacteria seeking nutrients in their environment. A unique acoustic event classification algorithm was also developed based on using swarm optimization. Additional studies addressed the problem of routing multiple UAVs, optimally placing sensors in the field and locating the source of gunfire at helicopters. A field test was conducted in November of 2009 at Camp Roberts, CA. The field test results showed that a system controlled by bio-inspired software algorithms can autonomously detect and locate the source of an acoustic event with very high accuracy and visually verify the event. In nine independent test runs of a UAV, the system autonomously located the position of an explosion nine times with an average accuracy of 3 meters. The time required to perform source localization using the UAV was on the order of a few minutes based on UAV flight times. In June 2011, additional field tests of the system will be performed and will include multiple acoustic events, optimal sensor placement based on acoustic phenomenology and the use of the International Technology Alliance (ITA

  7. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  8. Cu2 + modulated nitrogen-doped grapheme quantum dots as a turn-off/on fluorescence sensor for the selective detection of histidine in biological fluid

    Science.gov (United States)

    Wang, Zhiyu; Fan, ZheFeng

    2018-01-01

    A highly sensitive sensor for detection of histidine (His) based on the nitrogen-doped graphene quantum dots (N-GQDs)-Cu2 + system has been designed. The N-GQDs were synthesized by one-step hydrothermal approach according to previous report. The fluorescence of N-GQDs can be effectively quenched by Cu2 + due to the binding between Cu2 + and functional groups on the surface of N-GQDs. The high affinity of His to Cu2 + enables Cu2 + to be dissociated from the surface of N-GQDs and recovering the fluorescence. The sensor displayed a sensitive response to His in the concentration range of 0-35 μmol L- 1, with a detection limit of 72.2 nmol L- 1. The proposed method is successfully applied to detect His in samples with a recovery range of 96-102%.

  9. Inspiration in the Act of Reading

    DEFF Research Database (Denmark)

    Zeller, Kinga

    2016-01-01

    In German-language theology, Professor Ulrich H. J. Körtner’s theory of inspiration, as it relates to the Bible reader’s perspective, is well known. His attempt to gain fruitful insights from contemporary literary hermeneutics while linking them to theological concerns makes his approach a valued...... yet not uncontroversial example of a reception-aesthetics twist on the Lutheran sola Scriptura. This article presents Körtner’s hermeneutical considerations with special regard to inspiration related to the Bible reader’s perspective and shows how this approach may be related to some aspects...

  10. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... for various biosensing applications, however a thorough study of the sensor configurations has not been presented, but is the main subject of this thesis. Optical sensors are generally well suited for bio-sensing asthey show high sensitivity and give an immediate response for minute changes in the refractive...... index of a sample, due to the high sensitivity of optical bio-sensors detection of non-labeled biological objects can be performed. The majority of opticalsensors presented in the literature and commercially available optical sensors are based on evanescent wave sensing, however most of these sensors...

  11. Development of a bio-inspired UAV perching system

    Science.gov (United States)

    Xie, Pu

    Although technologies of unmanned aerial vehicles (UAVs) including micro air vehicles (MAVs) have been greatly advanced in the recent years, it is still very difficult for a UAV to perform some very challenging tasks such as perching to any desired spot reliably and agilely like a bird. Unlike the UAVs, the biological control mechanism of birds has been optimized through millions of year evolution and hence, they can perform many extremely maneuverability tasks, such as perching or grasping accurately and robustly. Therefore, we have good reason to learn from the nature in order to significantly improve the capabilities of UAVs. The development of a UAV perching system is becoming feasible, especially after a lot of research contributions in ornithology which involve the analysis of the bird's functionalities. Meanwhile, as technology advances in many engineering fields, such as airframes, propulsion, sensors, batteries, micro-electromechanical-system (MEMS), and UAV technology is also advancing rapidly. All of these research efforts in ornithology and the fast growing development technologies in UAV applications are motivating further interests and development in the area of UAV perching and grasping research. During the last decade, the research contributions about UAV perching and grasping were mainly based on fixed-wing, flapping-wing, and rotorcraft UAVs. However, most of the current researches in UAV systems with perching and grasping capability are focusing on either active (powered) grasping and perching or passive (unpowered) perching. Although birds do have both active and passive perching capabilities depending on their needs, there is no UAV perching system with both capabilities. In this project, we focused on filling this gap. Inspired by the anatomy analysis of bird legs and feet, a novel perching system has been developed to implement the bionics action for both active grasping and passive perching. In addition, for developing a robust and

  12. Innovation Inspired by Nature: Capabilities, Potentials and Challenges

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2012-01-01

    Through evolution, nature came up with many effective solutions to its challenges and continually improving them. By mimicking, coping and being inspired, humans have been using Nature's solutions to address their own challenges. In recent years, the implementation of nature's capabilities has intensified with our growing understanding of the various biological and nastic mechanisms and processes. Successes include even the making of humanlike robots that perform such lifelike tasks as walking, talking, making eye-contact, interpreting speech and facial expressions, as well as many other humanlike functions. Generally, once humans are able to implement a function then, thru rapid advances in technology, capabilities are developed that can significantly exceed the original source of inspiration in Nature. Examples include flight where there is no species that can fly as high, carry so much mass, has so large dimensions and fly so fast, and operate at as such extreme conditions as our aircraft and other aerospace systems. However, using the capabilities of today's technology, there are many challenges that are not feasible to address in mimicking characteristics of species and plants. In this manuscript, state-of-the-art of biomimetic capabilities, potentials and challenges are reviewed.

  13. A bio-inspired electrocommunication system for small underwater robots.

    Science.gov (United States)

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  14. Nanofluidics in two-dimensional layered materials: inspirations from nature.

    Science.gov (United States)

    Gao, Jun; Feng, Yaping; Guo, Wei; Jiang, Lei

    2017-08-29

    With the advance of chemistry, materials science, and nanotechnology, significant progress has been achieved in the design and application of synthetic nanofluidic devices and materials, mimicking the gating, rectifying, and adaptive functions of biological ion channels. Fundamental physics and chemistry behind these novel transport phenomena on the nanoscale have been explored in depth on single-pore platforms. However, toward real-world applications, one major challenge is to extrapolate these single-pore devices into macroscopic materials. Recently, inspired partially by the layered microstructure of nacre, the material design and large-scale integration of artificial nanofluidic devices have stepped into a completely new stage, termed 2D nanofluidics. Unique advantages of the 2D layered materials have been found, such as facile and scalable fabrication, high flux, efficient chemical modification, tunable channel size, etc. These features enable wide applications in, for example, biomimetic ion transport manipulation, molecular sieving, water treatment, and nanofluidic energy conversion and storage. This review highlights the recent progress, current challenges, and future perspectives in this emerging research field of "2D nanofluidics", with emphasis on the thought of bio-inspiration.

  15. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  16. Sensor Technologies on Flexible Substrates

    Science.gov (United States)

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  17. Kinds of inspiration in interaction design

    DEFF Research Database (Denmark)

    Halskov, Kim

    2010-01-01

    In this paper, we explore the role of sources of inspiration in interaction design. We identify four strategies for relating sources of inspiration to emerging ideas: selection; adaptation; translation; and combination. As our starting point, we argue that sources of inspiration are a form...... of knowledge crucial to creativity. Our research is based on empirical findings arising from the use of Inspiration Card Workshops, which are collaborative design events in which domain and technology insight are combined to create design concepts. In addition to the systematically introduced sources...... of inspiration that form part of the workshop format, a number of spontaneous sources of inspiration emerged during these workshops....

  18. Inspiration and the Texts of the Bible

    Directory of Open Access Journals (Sweden)

    Dirk Buchner

    1997-12-01

    Full Text Available This article seeks to explore what the inspired text of the Old Testament was as it existed for the New Testament authors, particularly for the author of the book of Hebrews. A quick look at the facts makes. it clear that there was, at the time, more than one 'inspired' text, among these were the Septuagint and the Masoretic Text 'to name but two'. The latter eventually gained ascendancy which is why it forms the basis of our translated Old Testament today. Yet we have to ask: what do we make of that other text that was the inspired Bible to the early Church, especially to the writer of the book of Hebrews, who ignored the Masoretic text? This article will take a brief look at some suggestions for a doctrine of inspiration that keeps up with the facts of Scripture. Allied to this, the article is something of a bibliographical study of recent developments in textual research following the discovery of the Dead Sea scrolls.

  19. Using Space to Inspire and Engage Children

    Science.gov (United States)

    Clements, Allan

    2015-01-01

    The European Space Education Resources Office (ESERO-UK) is a project of the European Space Agency (ESA) and national partners including the Department for Education (DfE), The UK Space Agency (UKSA) and the Science and Technology Facilities Council (STFC). The key objective of the project is to promote space as an exciting inspirational context…

  20. Inspired by Athletes, Myths, and Poets

    Science.gov (United States)

    Melvin, Samantha

    2010-01-01

    Tales of love and hate, of athleticism, heroism, devotion to gods and goddesses that influenced myth and culture are a way of sharing ancient Greece's rich history. In this article, the author describes how her students created their own Greek-inspired clay vessels as artifacts of their study. (Contains 6 online resources.)