WorldWideScience

Sample records for biologically active products

  1. Urine: Waste product or biologically active tissue?

    Science.gov (United States)

    2018-03-01

    Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  2. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2014-01-01

    Full Text Available A content of biologically active compounds (BAC with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical and chemical characteristics of distillers grains' liquid base were identified. Elementary composition of distillers grains is signified by active accumulation of biogenic elements (phosphorus, potassium, magnesium, calcium, sodium, iron and low content of heavy metals. The solid phase of distillers grains accumulates carbon, hydrogen and nitrogen in high concentration. The liquid phase of distillers grains contains: proteins and amino acids (20-46%, reducing sugars (5,6%-17,5%, galacturonides (0,8-1,4%, ascorbic acid (6,2-11,4 mg%. The solid base of distillers grains contains: galacturonides (3,4-5,3%, fatty oil (8,4-11,1% with predomination of essential fatty acids, proteins and amino acids (2,1-2,5%, flavonoids (0,4-0,9%, tocopherols (3,4-7,7 mg%. A method of complex processing of distillers grains based on application of membrane filtering of liquid phase and liquid extraction by inorganic and organic solvents of solid phase, which allows almost full extraction of the sum of biologically active compounds (BAC from liquid phase (Biobardin BM and solid phase (Biobardin UL. Biobardin BM comprises the following elements: proteins and amino acids (41-69%, reducing sugars (3,5-15,6%, fatty oil (0,2-0,3%, flavonoids (0,2-0,7%, ascorbic acid (17-37 mg%. Biobardin UL includes: oligouronids (16,4-19,5%, proteins and amino acids (11-21%, fatty oil (3,2-4,9% which includes essential acids; flavonoids (0,6-1,5%, tocopherols (6,6-10,2 mg%, carotinoids (0,13-0,21 mg

  3. MILK KEFIR: COMPOSITION, MICROBIAL CULTURES, BIOLOGICAL ACTIVITIES AND RELATED PRODUCTS

    Directory of Open Access Journals (Sweden)

    Maria Rosa Prado

    2015-10-01

    Full Text Available In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance.

  4. Milk kefir: composition, microbial cultures, biological activities, and related products.

    Science.gov (United States)

    Prado, Maria R; Blandón, Lina Marcela; Vandenberghe, Luciana P S; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance.

  5. Natural products as a resource for biologically active compounds

    International Nuclear Information System (INIS)

    Hanke, F.J.

    1986-01-01

    The goal of this study was to investigate various sources of biologically active natural products in an effort to identify the active pesticidal compounds involved. The study is divided into several parts. Chapter 1 contains a discussion of several new compounds from plant and animal sources. Chapter 2 introduces a new NMR technique. In section 2.1 a new technique for better utilizing the lanthanide relaxation agent Gd(fod) 3 is presented which allows the predictable removal of resonances without line broadening. Section 2.2 discusses a variation of this technique for use in an aqueous solvent by applying this technique towards identifying the binding sites of metals of biological interest. Section 2.3 presents an unambiguous 13 C NMR assignment of melibiose. Chapter 3 deals with work relating to the molting hormone of most arthropods, 20-hydroxyecdysone. Section 3.1 discusses the use of two-dimensional NMR (2D NMR) to assign the 1 H NMR spectrum of this biologically important compound. Section 3.2 presents a new application for Droplet countercurrent chromatography (DCCC). Chapter 4 presents a basic improvement to the commercial DCCC instrument that is currently being applied to future commercial instruments. Chapter 5 discusses a curious observation of the effects that two previously known compounds, nagilactone C and (-)-epicatechin, have on lettuce and rice and suggest a possible new role for the ubiquitous flavanol (-)-epicatechin in plants

  6. Production and biological activities of yellow pigments from Monascus fungi.

    Science.gov (United States)

    Chen, Gong; Wu, Zhenqiang

    2016-08-01

    Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed.

  7. Sustainable production of biologically active molecules of marine based origin.

    Science.gov (United States)

    Murray, Patrick M; Moane, Siobhan; Collins, Catherine; Beletskaya, Tanya; Thomas, Olivier P; Duarte, Alysson W F; Nobre, Fernando S; Owoyemi, Ifeloju O; Pagnocca, Fernando C; Sette, L D; McHugh, Edward; Causse, Eric; Pérez-López, Paula; Feijoo, Gumersindo; Moreira, Ma T; Rubiolo, Juan; Leirós, Marta; Botana, Luis M; Pinteus, Susete; Alves, Celso; Horta, André; Pedrosa, Rui; Jeffryes, Clayton; Agathos, Spiros N; Allewaert, Celine; Verween, Annick; Vyverman, Wim; Laptev, Ivan; Sineoky, Sergei; Bisio, Angela; Manconi, Renata; Ledda, Fabio; Marchi, Mario; Pronzato, Roberto; Walsh, Daniel J

    2013-09-25

    The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Production of biologically active recombinant human factor H in Physcomitrella.

    Science.gov (United States)

    Büttner-Mainik, Annette; Parsons, Juliana; Jérôme, Hanna; Hartmann, Andrea; Lamer, Stephanie; Schaaf, Andreas; Schlosser, Andreas; Zipfel, Peter F; Reski, Ralf; Decker, Eva L

    2011-04-01

    The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age-related macular degeneration (AMD). There is a current need to apply intact full-length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full-length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal-derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss-derived secretion signal. Correct processing of the signal peptide and integrity of the moss-produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  9. Presence and biological activity of antibiotics used in fuel ethanol and corn co-product production.

    Science.gov (United States)

    Compart, D M Paulus; Carlson, A M; Crawford, G I; Fink, R C; Diez-Gonzalez, F; Dicostanzo, A; Shurson, G C

    2013-05-01

    Antibiotics are used in ethanol production to control bacteria from competing with yeast for nutrients during starch fermentation. However, there is no published scientific information on whether antibiotic residues are present in distillers grains (DG), co-products from ethanol production, or whether they retain their biological activity. Therefore, the objectives of this study were to quantify concentrations of various antibiotic residues in DG and determine whether residues were biologically active. Twenty distillers wet grains and 20 distillers dried grains samples were collected quarterly from 9 states and 43 ethanol plants in the United States. Samples were analyzed for DM, CP, NDF, crude fat, S, P, and pH to describe the nutritional characteristics of the samples evaluated. Samples were also analyzed for the presence of erythromycin, penicillin G, tetracycline, tylosin, and virginiamycin M1, using liquid chromatography and mass spectrometry. Additionally, virginiamycin residues were determined, using a U.S. Food and Drug Administration-approved bioassay method. Samples were extracted and further analyzed for biological activity by exposing the sample extracts to 10(4) to 10(7) CFU/mL concentrations of sentinel bacterial strains Escherichia coli ATCC 8739 and Listeria monocytogenes ATCC 19115. Extracts that inhibited bacterial growth were considered to have biological activity. Physiochemical characteristics varied among samples but were consistent with previous findings. Thirteen percent of all samples contained low (≤1.12 mg/kg) antibiotic concentrations. Only 1 sample extract inhibited growth of Escherichia coli at 10(4) CFU/mL, but this sample contained no detectable concentrations of antibiotic residues. No extracts inhibited Listeria monocytogenes growth. These data indicate that the likelihood of detectable concentrations of antibiotic residues in DG is low; and if detected, they are found in very low concentrations. The inhibition in only 1 DG

  10. New approaches to estimation of peat deposits for production of biologically active compounds

    Science.gov (United States)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  11. Insects: an underrepresented resource for the discovery of biologically active natural products

    Directory of Open Access Journals (Sweden)

    Lauren Seabrooks

    2017-07-01

    Full Text Available Nature has been the source of life-changing and -saving medications for centuries. Aspirin, penicillin and morphine are prime examples of Nature׳s gifts to medicine. These discoveries catalyzed the field of natural product drug discovery which has mostly focused on plants. However, insects have more than twice the number of species and entomotherapy has been in practice for as long as and often in conjunction with medicinal plants and is an important alternative to modern medicine in many parts of the world. Herein, an overview of current traditional medicinal applications of insects and characterization of isolated biologically active molecules starting from approximately 2010 is presented. Insect natural products reviewed were isolated from ants, bees, wasps, beetles, cockroaches, termites, flies, true bugs, moths and more. Biological activities of these natural products from insects include antimicrobial, antifungal, antiviral, anticancer, antioxidant, anti-inflammatory and immunomodulatory effects.

  12. Biological activities of Agave by-products and their possible applications in food and pharmaceuticals.

    Science.gov (United States)

    López-Romero, Julio Cesar; Ayala-Zavala, Jesús Fernando; González-Aguilar, Gustavo Adolfo; Peña-Ramos, Etna Aida; González-Ríos, Humberto

    2018-05-01

    Agave leaves are considered a by-product of alcoholic beverage production (tequila, mezcal and bacanora) because they are discarded during the production process, despite accounting for approximately 50% of the total plant weight. These by-products constitute a potential source of Agave extracts rich in bioactive compounds, such as saponins, phenolic compounds and terpenes, and possess different biological effects, as demonstrated by in vitro and in vivo tests (e.g. antimicrobial, antifungal, antioxidant, anti-inflammatory, antihypertensive, immunomodulatory, antiparasitic and anticancer activity). Despite their positive results in biological assays, Agave extracts have not been widely evaluated in food systems and pharmaceutical areas, and these fields represent a potential route to improve the usage of Agave plants as food additives and agents for treating medical diseases. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCOD consumed . It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production. - Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • The hydrogen yield was 10.5±0.7 mL/g SCOD consumed .

  14. Production of Some Biologically Active Secondary Metabolites From Marine-derived Fungus Varicosporina ramulosa

    Directory of Open Access Journals (Sweden)

    Atalla, M. M.

    2008-01-01

    Full Text Available In a screening of fungal isolates associated with marine algae collected from Abou-keer, Alexanderia during the four seasons of 2004, to obtain new biologically active compounds. Varicosporina ramulosa isolate was identified and selected as a producer of 13 compounds. Out of 13 pure compounds produced, compounds 3 and 10 were considered as antibacterial and antifungal compounds, respectively as they were active against gram positive, gram negative bacteria and a fungus. Optimization of conditions (fermentation media, incubation period, temperature, initial pH, aeration levels which activate compounds 3 and 10 production were studied. Also the spectral properties (UV, MS, GC/MS, IR and 1H-NMR of the purified compounds were determined. Compound 3 suggested to be dibutyl phthalate and compound 10 may be ergosterol or one of its isomers. Biological evaluation of the two compounds towards 6 different types of tumor cell lines showed weak effect of compound 3 at different concentrations on the viable cell count of the different tumor cell lines. While compound 10 showed different activities against the viable cell count of the 6 different tumor cell lines. It kills 50% of the viable infected liver and lung cells at concentrations equal to 99.7 µg/mL, 74.9µg/mL, respectively. Compound 10 can be recommended as new anticancer compounds.

  15. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26 Al, 49 V, 51 Cr, 54 Mn, 55 Fe, 58 Co, 60 Co, 93 Nb, and 94 Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs

  16. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  17. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...... developments in the synthesis of macrocycles, with an emphasis on chemistry developed to generate libraries of putative biologically active compounds....

  18. Use of Brevibacillus choshinensis for the production of biologically active brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Angart, Phillip A; Carlson, Rebecca J; Thorwall, Sarah; Patrick Walton, S

    2017-07-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family critical for neuronal cell survival and differentiation, with therapeutic potential for the treatment of neurological disorders and spinal cord injuries. The production of recombinant, bioactive BDNF is not practical in most traditional microbial expression systems because of the inability of the host to correctly form the characteristic cystine-knot fold of BDNF. Here, we investigated Brevibacillus choshinensis as a suitable expression host for bioactive BDNF expression, evaluating the effects of medium type (2SY and TM), temperature (25 and 30 °C), and culture time (48-120 h). Maximal BDNF bioactivity (per unit mass) was observed in cultures grown in 2SY medium at extended times (96 h at 30 °C or >72 h at 25 °C), with resulting bioactivity comparable to that of a commercially available BDNF. For cultures grown in 2SY medium at 25 °C for 72 h, the condition that led to the greatest quantity of biologically active protein in the shortest culture time, we recovered 264 μg/L of BDNF. As with other microbial expression systems, BDNF aggregates did form in all culture conditions, indicating that while we were able to recover biologically active BDNF, further optimization of the expression system could yield still greater quantities of bioactive protein. This study provides confirmation that B. choshinensis is capable of producing biologically active BDNF and that further optimization of culture conditions could prove valuable in increasing BDNF yields.

  19. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Directory of Open Access Journals (Sweden)

    Laura Montesinos

    Full Text Available Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.

  20. Back to the Roots: Prediction of Biologically Active Natural Products from Ayurveda Traditional Medicine

    DEFF Research Database (Denmark)

    Polur, Honey; Joshi, Tejal; Workman, Christopher

    2011-01-01

    Ayurveda, the traditional Indian medicine is one of the most ancient, yet living medicinal traditions. In the present work, we developed an in silico library of natural products from Ayurveda medicine, coupled with structural information, plant origin and traditional therapeutic use. Following this....... We hereby present a number of examples where the traditional medicinal use of the plant matches with the medicinal use of the drug that is structurally similar to a plant component. With this approach, we have brought to light a number of obscure compounds of natural origin (e.g. kanugin......, we compared their structures with those of drugs from DrugBank and we constructed a structural similarity network. Information on the traditional therapeutic use of the plants was integrated in the network in order to provide further evidence for the predicted biologically active natural compounds...

  1. A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates.

    Science.gov (United States)

    Xu, Yang; Li, Yuting; Bao, Tao; Zheng, Xiaodong; Chen, Wei; Wang, Jianxu

    2017-04-15

    Cauliflower by-products (CBP) are rich in leaf protein. Every year tons of CBP will lead to environmental pollution. Therefore, this study was conducted to extract leaf protein from CBP and investigate its biological activities. Our results showed that the optimal extraction parameters were: a liquid to solid ratio of 4mL/g, a pH of 11, an ultrasonic extraction lasting 15min, and at an applied power of 175W. Under these optimized conditions, 12.066g of soluble leaf protein (SLP) was obtained from 1000g of CBP and its extraction yield was 53.07%. The obtained SLP was further hydrolysed by Alcalase and the SLP hydrolysate (SLPH) showed a potent angiotensin I-converting enzyme (ACE) inhibitory activity with an IC 50 value of 138.545μg/mL in vitro. In addition, SLPH promoted the glucose consumption and enhanced the glycogen content in HepG2 cells. Overall, our results suggested that CBP may be recycled for designing future functional foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa.

    Science.gov (United States)

    Kimura, Takashi

    2013-01-01

    Sparassis crispa, also known as cauliflower mushroom, is an edible mushroom with medicinal properties. Its cultivation became popular in Japan about 10 years ago, a phenomenon that has been attributed not only to the quality of its taste, but also to its potential for therapeutic applications. Herein, I present a comprehensive summary of the pharmacological activities and mechanisms of action of its bioactive components, such as beta-glucan, and other physiologically active substances. In particular, the immunomodulatory mechanisms of the beta-glucan components are presented herein in detail.

  3. Natural Products and Biological Activity of the Pharmacologically Active Cauliflower Mushroom Sparassis crispa

    Directory of Open Access Journals (Sweden)

    Takashi Kimura

    2013-01-01

    Full Text Available Sparassis crispa, also known as cauliflower mushroom, is an edible mushroom with medicinal properties. Its cultivation became popular in Japan about 10 years ago, a phenomenon that has been attributed not only to the quality of its taste, but also to its potential for therapeutic applications. Herein, I present a comprehensive summary of the pharmacological activities and mechanisms of action of its bioactive components, such as beta-glucan, and other physiologically active substances. In particular, the immunomodulatory mechanisms of the beta-glucan components are presented herein in detail.

  4. On the possibility of biologically active fenole substances forming during irradiation of vegetable origin products

    International Nuclear Information System (INIS)

    Koval'skaya, L.P.; Petrash, I.P.; Medvedeva, T.N.; Lezhneva, M.L.; Shchegoleva, G.I.

    1974-01-01

    The purpose of this study was to find out whether biologically active substances of phenol nature can form upon irradiation of fresh fruits and vegetables with doses of 200-300 Krad, to ascertain the stability of these substances during storage and processing, and to see whether they display cytostatic effects. The results of the study led to modifications and improvements in the methods used to study biologically active substances of phenol nature in fresh fruits irradiated with 200-300 krad. The total amount of phenolic compounds was found to be somewhat increased upon their extraction with cold ethanol. Of the substances detected in extracts from red tomatoes, the contens of chlorogenic acid, caffeic acid, and naranguenine were appreciably increased. Neither chemical methods nor bioassays revealed in irradiated juices and fruits any biologically active substances affecting the living organism. (E.T.)

  5. AN INFLUENCE OF SPONTANEOUS MICROFLORA OF FERMENTED HORSEMEAT PRODUCTS ON THE FORMATION OF BIOLOGICALLY ACTIVE PEPTIDES

    Directory of Open Access Journals (Sweden)

    I. M. Chernukha

    2017-01-01

    Full Text Available At present, different methods are used to accumulate functional peptides in meat raw materials, including the use of spontaneous microflora during autolysis, the use of the microbial enzymes (the application of starter cultures and the use of the non-microbial enzymes (enzymes of animals and plant origin. Each method has its own specific characteristics of an impact on raw materials, which requires their detail study. This paper examines an effect of spontaneous microflora of fermented meat products from horsemeat on formation of biologically active peptides. Using the T-RFLP analysis, it was established that in air dried and uncooked smoked sausages produced with the use of the muscle tissue of horsemeat as a raw material, a significant proportion of microflora was presented by lactic acid microorganisms. The highest content of lactic acid microflora was observed in sample 1 (52.45 %, and the least in sample 3 (29.62 %. Sample 2 had the medium percent content of microflora compared to samples 1 and 3 — 38.82 %. It is necessary to note that about 25 % of microflora was unculturable; i.e., it had metabolic processes but did not grow on culture media. In the samples, the representatives of Actinobacteria and Pseudomonadales were found. Pathogenic and conditionally pathogenic microflora was not detected. Not only quantitative but also qualitative changes were observed in the studied samples. For example, in samples 1 and 2, the fractions of amilo-1,6-glucosidase, fast-type muscle myosin-binding-protein C; glucose-6-phosphate isomerase; fast skeletal muscle troponin I, phosphoglycerate kinase, pyruvate kinase and skeletal muscle actin were found, which were absent or reduced in sample 3. Therefore, in the studied product, good preservation of the main spectra of muscle proteins was observed, and the identified fractions, apparently, can be sources of new functional peptides. Not only quantitative but also qualitative changes were observed in the

  6. The importance of extremophile cyanobacteria in the production of biologically active compounds

    Directory of Open Access Journals (Sweden)

    Drobac-Čik Aleksandra V.

    2007-01-01

    Full Text Available Due to their ability to endure extreme conditions, terrestrial cyanobacteria belong to a group of organisms known as "extremophiles". Research so far has shown that these organisms posses a great capacity for producing biologically active compounds (BAC. The antibacterial and antifungal activities of methanol extracts of 21 cyanobacterial strains belonging to Anabaena and Nostoc genera, previously isolated from different soil types and water resources in Serbia, were evaluated. In general, larger number of cyanobacterial strains showed antifungal activity. In contrast to Nostoc, Anabaena strains showed greater diversity of antibacterial activity (mean value of percentages of sensitive targeted bacterial strains 3% and 25.9% respectively. Larger number of targeted fungi was sensitive to cultural liquid extract (CL, while crude cell extract (CE affected more bacterial strains. According to this investigation, the higher biological activity of terrestrial strains as representatives of extremophiles may present them as significant BAC producers. This kind of investigation creates very general view of cyanobacterial possibility to produce biologically active compounds but it points out the necessity of exploring terrestrial cyanobacterial extremophiles as potentially excellent sources of these substances and reveals the most prospective strains for further investigations.

  7. RESEARCHES CONCERNING THE EFFECT OF SOME BIOLOGICALLY-ACTIVE PRODUCTS ON FORAGE BIOMASS YIELD IN SMOOTH BROME

    Directory of Open Access Journals (Sweden)

    I. PET

    2008-05-01

    Full Text Available Vegetal biostimulants are organic products (natural or synthesized that exert upon plant growth an action similar to the phytohormones’ one, when they are applied in small amounts, in certain stages of plant development. Biostimulants change organisms or organs’ development, nutrition or resistance, under various stress conditions, by inducing changes into the vital processes leading to the improvement of crop quality and quantity, to a better and more operative mechanical harvesting and to an improvement in the agricultural products’ preservation. The application of biologically-active products in the smooth brome crop determined growth of the dry matter yield of up to 1.11 t/ha depending on the product used, and the foliar surface index increased in the variants with application of biologically-active products with up to 1.16 m2SA/m2 land, compared to the control variant.

  8. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  9. Biological activity of a leached chernozem contaminated with the products of combustion of petroleum gas and its restoration upon phytoremediation

    Science.gov (United States)

    Kireeva, N. A.; Novoselova, E. I.; Shamaeva, A. A.; Grigoriadi, A. S.

    2009-04-01

    It is shown that contamination of leached chernozems by combustion products of petroleum gas favors changes in the biological activity of the soil: the number of hydrocarbon-oxidizing bacteria and micromycetes has increased, as well as the activity of catalase and lipase and phytotoxicity. Bromopsis inermis Leys used as a phytoameliorant has accelerated the destruction of hydrocarbons in the rhizosphere. The benzpyrene concentration in plants on contaminated soils considerably exceeds its background concentration.

  10. Biological activity of anthocyanins and their phenolic degradation products and metabolites in human vascular endothelial cells

    OpenAIRE

    Edwards, Michael

    2013-01-01

    Human, animal, and in vitro data indicate significant vasoprotective activity of anthocyanins. However, few studies have investigated the activity of anthocyanin degradation products and metabolites which are likely to mediate bioactivity in vivo. The present thesis therefore examined the vascular bioactivity in vitro of anthocyanins, their phenolic degradants, and the potential for interactions between dietary bioactive compounds. Seven treatment compounds (cyanidin-, peonidin-, petunidin- &...

  11. Reductive methylation of insulin. Production of a biologically active tritiated insulin

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, J W; Nahum, A; Steiner, D F [Department of Biochemistry, University of Chicago, Illinois, USA

    1983-01-01

    Reductive methylation of the three amino groups of porcine insulin was accomplished by incubation with formaldehyde and sodium cyanoborohydride. The two amino termini and the epsilon amino group of B29 lysine were each dimethylated within 1 h of incubation. The fully methylated insulin bound more tightly to a reverse phase column than did native insulin, had a slightly more acid isoelectric point, and maintained approximately 50% biological activity when examined with an insulin sensitive cultured cell line. Reductive methylation with sodium cyanoboro (/sup 3/H) hydride resulted in a (/sup 3/H) methylated insulin with a specific activity of 6 Ci/mmol.

  12. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    Science.gov (United States)

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  13. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology

    Directory of Open Access Journals (Sweden)

    Zhigang Xie

    2014-01-01

    Full Text Available In order to improve adsorption of macromolecular contaminants and promote the growth of microorganisms, active carbon for biological wastewater treatment or follow-up processing requires abundant mesopore and good biophile ability. In this experiment, biophile mesopore active carbon is produced in one-step activation with orange peel as raw material, and zinc chloride as activator, and the adsorption characteristics of orange peel active carbon is studied by static adsorption method. BET specific surface area and pore volume reached 1477 m2/g and 2.090 m3/g, respectively. The surface functional groups were examined by Fourier transform infrared spectroscopy (FT-IR. The surface of the as-prepared activated carbon contained hydroxyl group, carbonyl group, and methoxy group. The analysis based on X-ray diffraction spectrogram (XRD and three-dimensional fluorescence spectrum indicated that the as-prepared activated carbon, with smaller microcrystalline diameter and microcrystalline thickness and enhanced reactivity, exhibited enhanced adsorption performance. This research has a deep influence in effectively controlling water pollution, improving area water quality, easing orange peel waste pollution, and promoting coordinated development among society, economy, and environment.

  14. Isolation of Lactic Acid Bacteria with High Biological Activity from Local Fermented Dairy Products

    OpenAIRE

    B. Munkhtsetseg; M. Margad-Erdene; B. Batjargal

    2009-01-01

    The thirty-two strains of lactic acid bacteria were isolated from the Mongolian traditional fermented dairy products, among them 25 strains show antimicrobial activity against test microorganisms including Escherichia coli , Staphylococcus aureus , Enterococcus faecalis , Pseudom о nas aeruginosa . Protease sensitivity assay demonstrated that the antimicrobial substances produced by isolates А 23, Т 2 are bacterio...

  15. Isolation of Lactic Acid Bacteria with High Biological Activity from Local Fermented Dairy Products

    Directory of Open Access Journals (Sweden)

    B. Munkhtsetseg

    2009-12-01

    Full Text Available The thirty-two strains of lactic acid bacteria were isolated from the Mongolian traditional fermented dairy products, among them 25 strains show antimicrobial activity against test microorganisms including Escherichia coli , Staphylococcus aureus , Enterococcus faecalis , Pseudom о nas aeruginosa . Protease sensitivity assay demonstrated that the antimicrobial substances produced by isolates А 23, Т 2 are bacteriocins as their antibacterial activities were eliminated completely after treatment with protease. Identi fi cation of bacteria is being carried out. Among the isolates 22 strains show protease enzyme producing activity. The selected strains isolated from mare’s fermented milk (airag or kumis and yoghurt (tarag show the speci fi c protease activity from 7.9 μ g/ml to 11.9 μ g/ml. The strain T2, isolated from yoghurt exhibited the highest proteolytic activity.

  16. Application of Asian pumpkin (Cucurbita ficifolia) serine proteinase for production of biologically active peptides from casein.

    Science.gov (United States)

    Dąbrowska, Anna; Szołtysik, Marek; Babij, Konrad; Pokora, Marta; Zambrowicz, Aleksandra; Chrzanowska, Józefa

    2013-01-01

    The main objective of this study was to determine potential application of a serine proteinase derived from Asian pumpkin for obtaining biologically active peptides from casein. The course of casein hydrolysis by three doses of the enzyme (50, 150, 300 U/mg of protein) was monitored for 24 hours by the determinations of: hydrolysis degree DH (%), free amino group content (μmole Gly/g), RP HPLC peptide profiles and by polyacrylamide gel electrophoresis. In all hydrolyzates analyzed antioxidant activities were determined using three tests: the ability to reduce iron ions in FRAP test, the ability to scavenge free radicals in DPPH test, and Fe(2+) chelating activity. The antimicrobial activity of obtained peptide fractions was determined as the ability to inhibit the growth of Escherichia coli, Bacillus cereus and Pseudomonas fluorescens in a diffusion plate test. The deepest degradation, expressed as the DH [%] and the free amino group content (67% and 7528 µmole Gly/mg, respectively), was noted in samples hydrolyzed with 300 U/ml of enzyme for 24 hours, while in other samples the determined values were about three and two times lower. The results were in agreement with the peptide profiles obtained by RP HPLC. The highest antioxidative activities determined in all tests were seen for the casein hydrolysate obtained with 300 U/mg protein of serine proteinase after 24 h of reaction (2.15 µM Trolox/mg, 96.15 µg Fe(3+)/mg, 814.97 µg Fe(2+)/mg). Antimicrobial activity was presented in three preparations. In other samples no antimicrobial activity was detected.

  17. Production of a biological surfactant

    Directory of Open Access Journals (Sweden)

    N. Gladys Rosero

    2002-01-01

    Full Text Available This paper summarizes the scale up work performed at the Colombian Petroleum Institute on a process to produce at pilot plant level a biosurfactant of the rhamnolipid type. By examination of both the activation conditions of the microorganism and design aspects of the broth, a stable condition was achieved which consistently triggers the production mechanisms and thus it was obtained a significant increment in biosurfactant productivity. The biological surfactant exhibited high efficiency in applications such as hydrocarbon biodegradation in saline environments, corrosion inhibition, and crude oil recovery from storage tank bottom sludges.

  18. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    Directory of Open Access Journals (Sweden)

    Muthu Thiruvengadam

    2016-11-01

    Full Text Available Anthraquinones (AQs and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs, media, sucrose, l-glutamine, jasmonic acid (JA, and salicylic acid (SA for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM; 3 and 2.93 g dry mass (DM and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds from cell suspension cultures, and the phytochemicals can be used for various biological activities.

  19. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    Science.gov (United States)

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-01-01

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities. PMID:27854330

  20. Production of feline leukemia inhibitory factor with biological activity in Escherichia coli.

    Science.gov (United States)

    Kanegi, R; Hatoya, S; Tsujimoto, Y; Takenaka, S; Nishimura, T; Wijewardana, V; Sugiura, K; Takahashi, M; Kawate, N; Tamada, H; Inaba, T

    2016-07-15

    Leukemia inhibitory factor (LIF) is a cytokine which is essential for oocyte and embryo development, embryonic stem cell, and induced pluripotent stem cell maintenance. Leukemia inhibitory factor improves the maturation of oocytes in the human and the mouse. However, feline LIF (fLIF) cloning and effects on oocytes during IVM have not been reported. Thus, we cloned complete cDNA of fLIF and examined its biological activity and effects on oocytes during IVM in the domestic cat. The aminoacid sequence of fLIF revealed a homology of 81% or 92% with that of mouse or human. The fLIF produced by pCold TF DNA in Escherichia coli was readily soluble and after purification showed bioactivity in maintaining the undifferentiated state of mouse embryonic stem cells and enhancing the proliferation of human erythrocyte leukemia cells. Furthermore, 10- and 100-ng/mL fLIF induced cumulus expansion with or without FSH and EGF (P Feline LIF will further improve reproduction and stem cell research in the feline family. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications - A review.

    Science.gov (United States)

    Shahid-Ul-Islam; Rather, Luqman J; Mohammad, Faqeer

    2016-05-01

    Bixa orellana commonly known as annatto is one of the oldest known natural dye yielding plants native to Central and South America. Various parts of annatto have been widely used in the traditional medical system for prevention and treatment of a wide number of health disorders. The plethora of traditional uses has encouraged researchers to identify and isolate phytochemicals from all parts of this plant. Carotenoids, apocarotenoids, terpenes, terpenoids, sterols, and aliphatic compounds are main compounds found in all parts of this plant and are reported to exhibit a wide range of pharmacological activities. In recent years annatto has received tremendous scientific interest mainly due to the isolation of yellow-orange natural dye from its seeds which exhibits high biodegradability, low toxicity, and compatibility with the environment. Considerable research work has already been done and is currently underway for its applications in food, textile, leather, cosmetic, solar cells, and other industries. The present review provides up-to-date systematic and organized information on the traditional usage, phytochemistry and pharmacology of annatto. It also highlights its non-food industrial applications in order to bring more interest on this dye plant, identifies the existing gaps and provides potential for future studies. Studies reported in this review have demonstrated that annatto holds a great potential for being exploited as source of drugs and a potential natural dye. However, further efforts are required to identify extract biomolecules and their action mechanisms in exhibiting certain biological activities in order to understand the full phytochemical profile and the complex pharmacological effects of this plant.

  2. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  3. Metabolic Engineering of Yeast and Plants for the Production of the Biologically Active Hydroxystilbene, Resveratrol

    Science.gov (United States)

    Jeandet, Philippe; Delaunois, Bertrand; Aziz, Aziz; Donnez, David; Vasserot, Yann; Cordelier, Sylvain; Courot, Eric

    2012-01-01

    Resveratrol, a stilbenic compound deriving from the phenyalanine/polymalonate route, being stilbene synthase the last and key enzyme of this pathway, recently has become the focus of a number of studies in medicine and plant physiology. Increased demand for this molecule for nutraceutical, cosmetic and possibly pharmaceutic uses, makes its production a necessity. In this context, the use of biotechnology through recombinant microorganisms and plants is particularly promising. Interesting results can indeed arise from the potential of genetically modified microorganisms as an alternative mechanism for producing resveratrol. Strategies used to tailoring yeast as they do not possess the genes that encode for the resveratrol pathway, will be described. On the other hand, most interest has centered in recent years, on STS gene transfer experiments from various origins to the genome of numerous plants. This work also presents a comprehensive review on plant molecular engineering with the STS gene, resulting in disease resistance against microorganisms and the enhancement of the antioxidant activities of several fruits in transgenic lines. PMID:22654481

  4. RESEARCHES REGARDING THE EFFECT OF SOME BIOLOGICALLY ACTIVE PRODUCTS UPON THE GERMINATION CAPACITIES OF SMOOTH BROME SEEDS

    Directory of Open Access Journals (Sweden)

    I. PET

    2007-05-01

    Full Text Available The carrying out of uniform forage crops represents an important technological loop for all agricultural species. The uniformity of these crops is caused especially by seed germination capacity, respectively by plant emergence capacity, depending upon the climatic and technological conditions. With regards to the researches carried out in this direction, we present here the influence exerted by some biologically-active products, used through extra-root application during plant vegetation period, upon seeds submitted to germination. The observations performed on smooth brome seeds have led to the conclusion that the per cent of germinated seeds ranges from 82%, in the untreated control variant, to 87.67% in the variant treated with the product Stimupro.

  5. Mucoralean fungi for sustainable production of bioethanol and biologically active molecules.

    Science.gov (United States)

    Satari, Behzad; Karimi, Keikhosro

    2018-02-01

    Mucoralean fungi are suitable microorganisms for the sustainable production of food, fodder, and fuels from inexpensive natural resources. Ethanol-producing Mucorales are particularly advantageous for second-generation ethanol production in comparison to the conventional ethanolic yeasts and bacteria. They are able to ferment a wide range of sugars to a range of valuable products, while they are typically resistance against the inhibitors available in different substrates, including untreated lignocellulosic hydrolysates. In addition to a high ethanol yield, the fungi produce several commercially valuable by-products, including chitosan, microbial oil (mainly polyunsaturated fatty acids), and protein. Moreover, the fungal extracts can replace the expensive nutrients required in fermentation. Besides, their morphologies can be altered from filamentous to yeast like and are adjustable based on the process requirement. The focus of this review is on applying Mucorales in producing ethanol and the biomass by-products thereof.

  6. Application of cyclic phosphonamide reagents in the total synthesis of natural products and biologically active molecules

    Directory of Open Access Journals (Sweden)

    Thilo Focken

    2014-08-01

    Full Text Available A review of the synthesis of natural products and bioactive compounds adopting phosphonamide anion technology is presented highlighting the utility of phosphonamide reagents in stereocontrolled bond-forming reactions. Methodologies utilizing phosphonamide anions in asymmetric alkylations, Michael additions, olefinations, and cyclopropanations will be summarized, as well as an overview of the synthesis of the employed phosphonamide reagents.

  7. The use of theoretical and empirical knowledge in the production of explanations and arguments in an inquiry biology activity

    Directory of Open Access Journals (Sweden)

    Maíra Batistoni e Silva

    2017-08-01

    Full Text Available Agreeing with the scientific literacy as the purpose of science education and with the recent propositions that in order to achieve it we should favor the engagement of students in practices of scientific culture, this study intends to analyze the production of explanations and arguments in an inquiry based teaching activity in order to characterize students' mobilization of theoretical and empirical knowledge by engaging in these practices. Analyzing the scientific reports elaborated by the students (14-15 years old after the inquiry activity on population dynamics, we highlight the importance of empirical knowledge about the experimental context as a repertoire for construction of explanations, especially when students deal with anomalous data. This knowledge was also important for production of valid arguments, since most of the justifications were empirical, regardless of whether or not the data were in accordance with the explanatory model already known. These results reinforce the importance of students' engagement in inquiry activities, as already defended by different authors of this research area, and indicate that the inquiry practice allowed the engagement in epistemic practices, since the knowledge about the experimental conditions and the procedures of data collection provided a repertoire for the production of explanations and arguments. Finally, we discuss the relevance of this research to the field of biology teaching, seeking to defend the promotion of inquiry activities with an experimental approach as an opportunity to integrate conceptual and epistemic objectives and overcome the difficulties generated by the specificities of this area of knowledge in relation to the other disciplines in nature sciences.

  8. Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment.

    Science.gov (United States)

    Yang, Shan-Shan; Guo, Wan-Qian; Cao, Guang-Li; Zheng, He-Shan; Ren, Nan-Qi

    2012-11-01

    This paper offers an effective pretreatment method that can simultaneously achieve excess sludge reduction and bio-hydrogen production from sludge self-fermentation. Batch tests demonstrated that the combinative use of ozone/ultrasound pretreatment had an advantage over the individual ozone and ultrasound pretreatments. The optimal condition (ozone dose of 0.158 g O(3)/g DS and ultrasound energy density of 1.423 W/mL) was recommended by response surface methodology. The maximum hydrogen yield was achieved at 9.28 mL H(2)/g DS under the optimal condition. According to the kinetic analysis, the highest hydrogen production rate (1.84 mL/h) was also obtained using combined pretreatment, which well fitted the predicted equation (the squared regression statistic was 0.9969). The disintegration degrees (DD) were limited to 19.57% and 46.10% in individual ozone and ultrasound pretreatments, while it reached up to 60.88% in combined pretreatment. The combined ozone/ultrasound pretreatment provides an ideal and environmental friendly solution to the problem of sludge disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. [Cycloferon biological activity characteristics].

    Science.gov (United States)

    Utkina, T M; Potekhina, L P; Kartashova, O L; Vasilchenko, A S

    2014-01-01

    Study the effect of cycloferon in experimental and clinical conditions on persistence properties of aurococci as well as features of their morpho-functional reaction by atomic force microscopy. The study was carried out in 12 Staphylococcus aureus clones isolated from mucous membrane of nose anterior part of a resident carrier. The effect of cycloferon in vivo was evaluated in 26 resident staphylococci carriers under the control of anti-carnosine activity of staphylococci. Anti-carnosine activity was determined by O.V. Bukharin et al. (1999), biofilm formation -by G.A. O'Toole et al. (2000). Staphylococci treated with cycloferon were studied by atomic force microscopy in contact mode using scanning probe SMM-2000 microscope. The decrease of persistence properties of staphylococci under the effect of cycloferon in vitro and in vivo may be examined as one of the mechanisms of biological activity of the preparation. A significant increase of S. aureus surface roughness and changes in their morphology under the effect of cycloferon allow stating the disorder of barrier functions in the aurococci cell wall. The data obtained expand the understanding of cycloferon biological activity mechanisms.

  10. [Scientific bases for the development of functional meat products with combined biological activity].

    Science.gov (United States)

    Palanca, V; Rodríguez, E; Señoráns, J; Reglero, G

    2006-01-01

    The scientific evidences on the relationship between food and health have given place to a new food market of rapid growth in the last years: the market of the functional food. Though the interest of maintaining or improving the state of health by means of the consumption of traditional food with bioactive ingredients added is undoubtedly high, the Spanish population, increasingly formed and informed, is unwilling to consume functional food, until these possess a scientific rigorous base. This article presents a review of the scientific bases that support the development of functional meat products with balanced ratio omega-6/omega-3 and a combination of synergic antioxidants, among them an extract of rosemary obtained by means of extraction with supercritical CO2.

  11. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  12. Carbon and nitrogen - The key to biological activity, diversity and productivity in a Haplic Acrisol

    International Nuclear Information System (INIS)

    Okae-Anti, Daniel; Torkpo, Addison; Kankam-Boadu, Maryross; Agyei Frimpong, Kwame; Obuobi, Daniel

    2004-10-01

    Soil organic matter is important because it impacts all soil quality functions. Much less information is available on the dynamics of the residual carbon and nitrogen content and their distribution in continuously cropped arable fields. We described the values of the soil properties, pH, moisture content, organic carbon and total nitrogen considering them to be random variables. We treated their spatial variation as a function of the distance between observations within the study site, a continuously-cropped field dominated by Haplic Acrisols. We discussed the nature and structure of the modeled functions, the semivariograms, and interpreted these in the light of the potential of these soils to sustain agricultural productivity. At these sites there had been no conversion of natural forests to agriculture so the paper does not discuss soil carbon storage for either the regional or global storage. All the properties studied showed spatial non-stationarity for the distances covered, indicating that the variance between pairs of observations increased as separating distances also increased. pH, moisture content and total nitrogen were fitted with the power model whereas the linear model best fitted organic carbon. Total nitrogen had the least nugget variance and pH the highest estimated exponent, α, from the power equations. The soils are highly variable in terms of input or return of organic residue to provide a sink for carbon and nitrogen and the breakdown of these materials as affected by pH, moisture availability and microorganisms. (author)

  13. Carbon and nitrogen - The key to biological activity, diversity and productivity in a Haplic Acrisol

    Energy Technology Data Exchange (ETDEWEB)

    Okae-Anti, Daniel [Department of Soil Science, School of Agriculture, University of Cape Coast, Cape Coast (Ghana); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)] E-mail: dokaent@yahoo.co.uk; Torkpo, Addison; Kankam-Boadu, Maryross; Agyei Frimpong, Kwame [Department of Soil Science, School of Agriculture, University of Cape Coast, Cape Coast (Ghana); Obuobi, Daniel [Department of Computer Science and Information Technology, University of Cape Coast, Cape Coast (Ghana)

    2004-10-01

    Soil organic matter is important because it impacts all soil quality functions. Much less information is available on the dynamics of the residual carbon and nitrogen content and their distribution in continuously cropped arable fields. We described the values of the soil properties, pH, moisture content, organic carbon and total nitrogen considering them to be random variables. We treated their spatial variation as a function of the distance between observations within the study site, a continuously-cropped field dominated by Haplic Acrisols. We discussed the nature and structure of the modeled functions, the semivariograms, and interpreted these in the light of the potential of these soils to sustain agricultural productivity. At these sites there had been no conversion of natural forests to agriculture so the paper does not discuss soil carbon storage for either the regional or global storage. All the properties studied showed spatial non-stationarity for the distances covered, indicating that the variance between pairs of observations increased as separating distances also increased. pH, moisture content and total nitrogen were fitted with the power model whereas the linear model best fitted organic carbon. Total nitrogen had the least nugget variance and pH the highest estimated exponent, {alpha}, from the power equations. The soils are highly variable in terms of input or return of organic residue to provide a sink for carbon and nitrogen and the breakdown of these materials as affected by pH, moisture availability and microorganisms. (author)

  14. Imidazole: Having Versatile Biological Activities

    Directory of Open Access Journals (Sweden)

    Amita Verma

    2013-01-01

    Full Text Available Imidazoles have occupied a unique position in heterocyclic chemistry, and its derivatives have attracted considerable interests in recent years for their versatile properties in chemistry and pharmacology. Imidazole is nitrogen-containing heterocyclic ring which possesses biological and pharmaceutical importance. Thus, imidazole compounds have been an interesting source for researchers for more than a century. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine, and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus is used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. There are several methods used for the synthesis of imidazole-containing compounds, and also their various structure reactions offer enormous scope in the field of medicinal chemistry. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. This paper aims to review the biological activities of imidazole during the past years.

  15. Radical production in biological systems

    International Nuclear Information System (INIS)

    Johnson, J.R.; Akabani, G.

    1994-10-01

    This paper describes our effort to develop a metric for radiation exposure that is more fundamental than adsorbed dose and upon which a metric for exposure to chemicals could be based. This metric is based on the production of radicals by the two agents. Radicals produced by radiation in biological systems commonly assumed to be the same as those produced in water despite the presence of a variety of complex molecules. This may explain why the extensive efforts to describe the relationship between energy deposition (track structure) and molecular damage to DNA, based on the spectrum of radicals produced, have not been successful in explaining simple biological effects such as cell killing. Current models assume that DNA and its basic elements are immersed in water-like media and only model the production and diffusion of water-based radicals and their interaction with DNA structures; these models lack the cross sections associated with each macro-component of DNA and only treat water-based radicals. It has been found that such models are not realistic because DNA is not immersed in pure water. A computer code capable of simulating electron tracks, low-energy electrons, energy deposition in small molecules, and radical production and diffusion in water like media has been developed. This code is still in at a primitive stage and development is continuing. It is being used to study radical production by radiation, and radical diffusion and interactions in simple molecular systems following their production. We are extending the code to radical production by chemicals to complement our PBPK modeling efforts. It therefore has been developed primarily for use with radionuclides that are in biological materials, and not for radiation fields

  16. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  17. RESEARCHES CONCERNING THE ECONOMIC EFFICIENCY ACHIEVED SUCCESSIVE TO THE APPLICATION OF BIOLOGICALLY-ACTIVE PRODUCTS IN SMOOTH BROME CROP

    Directory of Open Access Journals (Sweden)

    ELENA PEł

    2008-05-01

    Full Text Available Within any branch of material production, the supervision of the economic effects caused by the applied technologies is an essential requirement. Not only related to the productive activity, but also related to scientific research, designing and other fields of activity, the final goal is represented by the achievement of immediate or far off economic effects. The introduction and generalization into production of the newest technologies of forage production must rely upon calculations of economic efficiency, too. The objective of these calculations is to offer to any producer the possibility to choose among the optimal technologic variants, with great productions per surface unit, of high quality and low costs. The calculations of economic efficiency were carried out during the three years of experimentation. The economic efficiency obtained after the application of biostimulants in smooth brome during the first year of production is expressed through the achievement of a profit per surface unit of 75.85 – 127.00 €/ha. Successive to the calculations of economic efficiency, during the second year of production, the profit per surface unit recorded values between 79.10 – 153.10 €/ha depending upon the applied biostimulant, and during the third year of production the profit obtained per surface unit was 211.05 – 270.70 €/ha.

  18. Biological activity of egg-yolk protein by-product hydrolysates obtained with the use of non-commercial plant protease

    Directory of Open Access Journals (Sweden)

    A. Zambrowicz

    2015-12-01

    Full Text Available Enzymatic hydrolysis leads to improved functional and biological properties of protein by-products, which can be further used as nutraceuticals and protein ingredients for food applications.The present study evaluated ACE-inhibitory, antioxidant and immunostimulating activities in hydrolysates of egg-yolk protein by-product (YP, generated during industrial process of delipidation of yolk. The protein substrate was hydrolyzed using non-commercial protease from Asian pumpkin (Cucurbita ficifolia. The reaction was conducted in 0.1 M Tris-HCl buffer (pH 8.0 at temperature of 37°C for 4 hours using different enzyme doses (100-1000 U/mg of substrate. The protein degradation was monitored by the determination of the degree of hydrolysis (DH, release of free amino groups (FAG and by RP-HPLC. In the obtained hydrolysates we also evaluated biological activities. It was shown that the highest DH of substrate (46.6% was obtained after 4h of reaction at the highest amount of enzyme. This hydrolysate exhibited antioxidant activity, including ferricion reducing (FRAP (56.41 μg Fe2+/mg, ferric ion chelating (695.76 μg Fe2+/mg and DPPH free radical scavenging (0.89 μmol troloxeq/mg as well as ACE-inhibitory (IC50=837.75 μg/mL activities.The research showed improved biological properties of enzymatically modified YP by-product.

  19. Biological Activities of Hydrazone Derivatives

    Directory of Open Access Journals (Sweden)

    S. Güniz Küçükgüzel

    2007-08-01

    Full Text Available There has been considerable interest in the development of novel compounds with anticonvulsant, antidepressant, analgesic, antiinflammatory, antiplatelet, antimalarial, antimicrobial, antimycobacterial, antitumoral, vasodilator, antiviral and antischistosomiasis activities. Hydrazones possessing an azometine -NHN=CH- proton constitute an important class of compounds for new drug development. Therefore, many researchers have synthesized these compounds as target structures and evaluated their biological activities. These observations have been guiding for the development of new hydrazones that possess varied biological activities.

  20. Brassinosteroids: synthesis and biological activities

    Czech Academy of Sciences Publication Activity Database

    Oklešťková, Jana; Rárová, Lucie; Kvasnica, Miroslav; Strnad, Miroslav

    2015-01-01

    Roč. 14, č. 6 (2015), s. 1053-1072 ISSN 1568-7767 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Brassinosteroids * Chemical synthesis * Plant biological activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.686, year: 2015

  1. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  2. Biological activities of some Xylooligosaccharides from ...

    African Journals Online (AJOL)

    Xylooligosaccharides (XOS's) exhibited considerable biological activities and be incorporated into many food products and in pharmaceutical and drug industry. XOS's were produced from xylose-containing polysaccharides (XPS's) obtained from natural, xylan-rich, agro-industrial wastes, i.e., corncobs and sugarcane ...

  3. Taguchi Experimental Design for Optimization of Recombinant Human Growth Hormone Production in CHO Cell Lines and Comparing its Biological Activity with Prokaryotic Growth Hormone.

    Science.gov (United States)

    Aghili, Zahra Sadat; Zarkesh-Esfahani, Sayyed Hamid

    2018-02-01

    Growth hormone deficiency results in growth retardation in children and the GH deficiency syndrome in adults and they need to receive recombinant-GH in order to rectify the GH deficiency symptoms. Mammalian cells have become the favorite system for production of recombinant proteins for clinical application compared to prokaryotic systems because of their capability for appropriate protein folding, assembly, post-translational modification and proper signal. However, production level in mammalian cells is generally low compared to prokaryotic hosts. Taguchi has established orthogonal arrays to describe a large number of experimental situations mainly to reduce experimental errors and to enhance the efficiency and reproducibility of laboratory experiments.In the present study, rhGH was produced in CHO cells and production of rhGH was assessed using Dot blotting, western blotting and Elisa assay. For optimization of rhGH production in CHO cells using Taguchi method An M16 orthogonal experimental design was used to investigate four different culture components. The biological activity of rhGH was assessed using LHRE-TK-Luciferase reporter gene system in HEK-293 and compared to the biological activity of prokaryotic rhGH.A maximal productivity of rhGH was reached in the conditions of 1%DMSO, 1%glycerol, 25 µM ZnSO 4 and 0 mM NaBu. Our findings indicate that control of culture conditions such as the addition of chemical components helps to develop an efficient large-scale and industrial process for the production of rhGH in CHO cells. Results of bioassay indicated that rhGH produced by CHO cells is able to induce GH-mediated intracellular cell signaling and showed higher bioactivity when compared to prokaryotic GH at the same concentrations. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Chemical Biology of Microbial Anticancer Natural Products

    DEFF Research Database (Denmark)

    Bladt, Tanja Thorskov; Gotfredsen, Charlotte Held

    than 100 years. New natural products (NPs) are continually discovered and with the increase in selective biological assays, previously described compounds often also display novel bioactivities, justifying their presence in novel screening efforts. Screening and discovery of compounds with activity...... towards chronic lymphocytic leukemia (CLL) cells is crucial since CLL is considered as an incurable disease. To discover novel agents that targets CLL cells is complicated. CLL cells rapidly undergo apoptosis in vitro when they are removed from their natural microenvironment, even though they are long...

  5. FDA 101: Regulating Biological Products

    Science.gov (United States)

    ... based and cellular biologics, at the forefront of biomedical research today, may make it possible to treat a ... transplantation vaccines The Center for Drug Evaluation and Research ... as targeted therapies in cancer and other diseases cytokines (types of ...

  6. Biosurfactant production by the crude oil degrading Stenotrophomonas sp. B-2: chemical characterization, biological activities and environmental applications.

    Science.gov (United States)

    Gargouri, Boutheina; Contreras, María Del Mar; Ammar, Sonda; Segura-Carretero, Antonio; Bouaziz, Mohamed

    2017-02-01

    In this work, biosurfactant-producing microorganisms were isolated from hydrocarbon-contaminated water collected from Tunisian oilfield. After enrichment and isolation, different bacterial strains were preliminary studied for their biosurfactant/bioemulsifier properties when using crude oil as the unique carbon source. In particular, the isolate strain B-2, a Gram-negative, rod-shaped bacterium, efficiently emulsified crude oil. The extracellular biosurfactant product from this strain presented an emulsification activity above 70% and a hydrophobicity of 71%. In addition, a diameter of 6 cm was observed in the oil displacement test. The characterization of B-2 strain using 16S rDNA sequencing enables us to find a high degree of similarity with various members of the genus Stenotrophomonas (with a percentage of similarity of 99%). The emulsification activity of Stenotrophomonas biosurfactant B-2 was maintained in a wide range of pH (2 to 6), temperature (4 to 55 °C), and salinity (0 to 50 g L -1 ) conditions. It also enhanced the solubility of phenanthrene in water and could be used in the re-mobilization of hydrocarbon-contaminated environment. In addition, this biosurfactant exhibited antimicrobial and antioxidant properties. Infrared spectroscopy suggested potential lipidic and peptidic moieties, and mass spectrometry-based analyses showed that the biosurfactant contains mainly cyclic peptidic structures belonging to the class of diketopiperazines. Therefore, the B-2 strain is a promising biosurfactant-producing microorganism and its derived biosurfactant presents a wide range of industrial applications.

  7. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  8. In-vivo biological activity and glycosylation analysis of a biosimilar recombinant human follicle-stimulating hormone product (Bemfola compared with its reference medicinal product (GONAL-f.

    Directory of Open Access Journals (Sweden)

    Renato Mastrangeli

    Full Text Available Recombinant human follicle-stimulating hormone (r-hFSH is widely used in fertility treatment. Although biosimilar versions of r-hFSH (follitropin alfa are currently on the market, given their structural complexity and manufacturing process, it is important to thoroughly evaluate them in comparison with the reference product. This evaluation should focus on how they differ (e.g., active component molecular characteristics, impurities and potency, as this could be associated with clinical outcome. This study compared the site-specific glycosylation profile and batch-to-batch variability of the in-vivo bioactivity of Bemfola, a biosimilar follitropin alfa, with its reference medicinal product GONAL-f. The focus of this analysis was the site-specific glycosylation at asparagine (Asn 52 of the α-subunit of FSH, owing to the pivotal role of Asn52 glycosylation in FSH receptor (FSHR activation/signalling. Overall, Bemfola had bulkier glycan structures and greater sialylation than GONAL-f. The nominal specific activity for both Bemfola and GONAL-f is 13,636 IU/mg. Taking into account both the determined potency and the nominal amount the average specific activity of Bemfola was 14,522 IU/mg (105.6% of the nominal value, which was greater than the average specific activity observed for GONAL-f (13,159 IU/mg; 97.3% of the nominal value; p = 0.0048, although this was within the range stated in the product label. A higher batch-to-batch variability was also observed for Bemfola versus GONAL-f (coefficient of variation: 8.3% vs 5.8%. A different glycan profile was observed at Asn52 in Bemfola compared with GONAL-f (a lower proportion of bi-antennary structures [~53% vs ~77%], and a higher proportion of tri-antennary [~41% vs ~23%] and tetra-antennary structures [~5% vs <1%]. These differences in the Asn52 glycan profile might potentially lead to differences in FSHR activation. This, together with the greater bioactivity and higher batch-to-batch variability

  9. Synthetic biology advances for pharmaceutical production

    OpenAIRE

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.

  10. Synthetic biology advances for pharmaceutical production

    Science.gov (United States)

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872

  11. Biological production of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianping; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael

    2016-04-12

    Strains of cyanobacteria that produce high levels of alpha ketoglutarate (AKG) and pyruvate are disclosed herein. Methods of culturing these cyanobacteria to produce AKG or pyruvate and recover AKG or pyruvate from the culture are also described herein. Nucleic acid sequences encoding polypeptides that function as ethylene-forming enzymes and their use in the production of ethylene are further disclosed herein. These nucleic acids may be expressed in hosts such as cyanobacteria, which in turn may be cultured to produce ethylene.

  12. Biological Activities of Royal Jelly - Review

    Directory of Open Access Journals (Sweden)

    Crenguţa I. Pavel

    2011-10-01

    Full Text Available Royal jelly is a secretion product of the cephalic glands of nurse bees that has been used for centuries for itsextraordinary properties and health effects. This bibliographic study aims to review many of the scientific findingsand research that prove many of the remarkable various actions, effects and some uses of royal jelly. There are takeninto consideration numerous biological properties and effects of royal jelly: antioxidant, neurotrophic, hipoglicemiant, hipocholesterolemiant and hepatoprotective, hypotensive and blood pressure regulatory, antitumor, antibiotic, anti-inflammatory, immunomodulatory and anti-allergic, general tonic and antiaging. Royal jelly is one ofthe most studied bee products, but there still remains much to reveal about its biochemistry and biological activity infuture research for our health and life benefit.

  13. The Role of Biotechnology for Conservation and Biologically Active Substances Production of Rhodiola rosea: Endangered Medicinal Species

    Science.gov (United States)

    Tasheva, Krasimira; Kosturkova, Georgina

    2012-01-01

    At present, more than 50 000 plant species are used in phytotherapy and medicine. About 2/3 of them are harvested from nature leading to local extinction of many species or degradation of their habitats. Biotechnological methods offer possibilities not only for faster cloning and conservation of the genotype of the plants but for modification of their gene information, regulation, and expression for production of valuable substances in higher amounts or with better properties. Rhodiola rosea is an endangered medicinal species with limited distribution. It has outstanding importance for pharmaceutical industry for prevention and cure of cancer, heart and nervous system diseases, and so forth. Despite the great interest in golden root and the wide investigations in the area of phytochemistry, plant biotechnology remained less endeavoured and exploited. The paper presents research on initiation of in vitro cultures in Rhodiola rosea and some other Rhodiola species. Achievements in induction of organogenic and callus cultures, regeneration, and micropropagation varied but were a good basis for alternative in vitro synthesis of the desired metabolites and for the development of efficient systems for micropropagation for conservation of the species. PMID:22666097

  14. Biological activation of carbon filters.

    Science.gov (United States)

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  15. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    Science.gov (United States)

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  16. 9 CFR 114.6 - Mixing biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mixing biological products. 114.6... BIOLOGICAL PRODUCTS § 114.6 Mixing biological products. Each biological product, when in liquid form, shall be mixed thoroughly in a single container. During bottling operations, the product shall be...

  17. STRUCTURES AND BIOLOGICAL ACTIVITY OF CUPROPHYLLINS

    Directory of Open Access Journals (Sweden)

    Martynov A.V.

    2017-06-01

    Full Text Available Chlorophylls (a, b are the porphyrin compounds and most common chemical in the plant’s world. In fact, these compounds are an obligatory intermediate product both in energy metabolism and in plant catabolism. At the same time, currently there are few pharmaceutical preparations on the pharmaceutical market based on chlorophylls. Dyes based on hydrolyzed chlorophyll are successfully used in the food industry. Commercial chlorophylline is a copper complex of hydrolyzed chlorophylls. As shown earlier in TLC, the chlorophyllin mixture contains a large number of different compounds. It is like water-soluble saponified derivatives in the form of sodium-magnesium complexes, and similar structures in the form of a complex with copper. The latter are more brightly colored, soluble in water and widely used as coloring agents in cooking. In this case, if the initial chlorophyll was not found to have a pronounced biological activity, the substituted derivatives in the form of copper complexes possessed a number of new unique biological properties. Non-hydrolyzed hydrophobic cuprophylline obtained from eucalyptus leaves possessed high antimicrobial activity to most strains of staphylococci, inclusion resistant to antimicrobials and multiresistant strains. This drug is called Chlorophyllipt, it is allowed to be used as a medicinal product and is one of the oldest antibacterial drugs from plants on the market. It is marketed as ethanoic and oily solutions for topical use, and as an alcohol solution for intravenous injections. Its main purpose is the fight against staphylococcal infections. Recently, found that the oral administration of chlorophyllipt activates cellular immunity and indirectly exhibits antiviral activity. Another compound of cuprophyllin is water-soluble chlorophyllin. Some authors show the variability of the structure and biological activity of cuprophyllins. Different derivatives of chlorophyll have different biological activity

  18. Biological activity of liposomal vanillin.

    Science.gov (United States)

    Castan, Leniher; Del Toro, Grisel; Fernández, Adolfo A; González, Manuel; Ortíz, Emilia; Lobo, Daliana

    2013-06-01

    This article presents a study of vanillin encapsulation inside multilamellar liposomes, with emphasis on the evaluation of antioxidant activity, the hemolytic effect, and the antisickling properties of these products. Egg phosphatidylcholine-cholesterol and egg phosphatidylcholine-cholesterol-1-O-decylglycerol liposomes were prepared by mechanical dispersion, all with vanillin included. Vesicles were characterized by determination of encapsulation efficiency and vanillin retention capacity. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The hemolytic effect of liposomes was also evaluated by spectrophotometry, as well as the antisickling activity by the Huck test using optical microscopy. Results showed that the lipid composition of liposomes did not significantly affect the encapsulation efficiency. Stable vesicles were obtained with a high retention percentage of vanillin. Liposomes exhibited a high capture of the DPPH radical compared to free vanillin and 1-O-decylglycerol (C10) in solution. Vesicles caused no significant hemolisys in normal erythrocytes, nor in those coming from patients with sickle cell anemia. Vanillin encapsulated in liposomes retained its antisickling activity, with a greater effect for C10-containing vesicles. Our results show that vanillin encapsulation in liposomes is a way to enhance the pharmacologic properties of this molecule using a suitable vehicle.

  19. Ethnobotanical and biological activities of Leptadenia pyrotechnica ...

    African Journals Online (AJOL)

    Conclusion: This review includes the substance of different ethnobotanical uses, phytochemistry and exclusive capability of this plant in the field of anti-microbial and human disease activities. Key words: Leptadenia pyrotechnica, Biological activities, Desert plant, Ethnobotanical, Phytochemical activity, phytochemistry.

  20. Biological activities of Lavandula angustifolia essential oil

    OpenAIRE

    Bílková, Zuzana

    2013-01-01

    Zuzana Bílková, Biological activities of Lavandula angustifolia essential oil, Thesis, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, thesis author: PharmDr. Jan Martin, PhD., Hradec Králové, 2013, 72 pages. The thesis called "Biological activities of Lavandula angustifolia essential oil" is interested in biological activities of Lavandula angustifolia essential oil, specifically antifungal, antioxidant, anti-inflammatory, cytotoxicity, nematicidal and repellency activit...

  1. A review exploring biological activities of hydrazones

    Directory of Open Access Journals (Sweden)

    Garima Verma

    2014-01-01

    Full Text Available The development of novel compounds, hydrazones has shown that they possess a wide variety of biological activities viz. antimicrobial, anticonvulsant, antidepressant, anti-inflammatory, analgesic, antiplatelet, antimalarial, anticancer, antifungal, antitubercular, antiviral, cardio protective etc., Hydrazones/azomethines/imines possess-NHN = CH- and constitute an important class of compounds for new drug development. A number of researchers have synthesized and evaluated the biological activities of hydrazones. This review aims at highlighting the diverse biological activities of hydrazones.

  2. Biological activities of the natural imidazole-containing peptidomimetics n-acetylcarnosine, carcinine and L-carnosine in ophthalmic and skin care products.

    Science.gov (United States)

    Babizhayev, Mark A

    2006-04-11

    Apart from genetically programmed cell aging, different external aggressors related to oxidative stress and lipid peroxidation (LPO) can accelerate the skin aging phenomenon. Oxidative stress associated with the formation of lipid peroxides is suggested to contribute to pathological processes in aging and systemic diseases known as the risk factors for cataract. Despite the fact that L-carnosine-related peptidomimetics N-acetylcarnosine (N-acetyl-beta-alanyl-L-histidine) (NAC) and carcinine (beta-alanylhistamine) are metabolically related to L-carnosine and have been demonstrated to occur in tissues of many vertebrates, including humans, these compounds were shown resistant toward enzymatic hydrolysis. A series of related biocompatible imidazole-containing peptidomimetics were synthesized in order to confer resistance to enzymatic hydrolysis and ex vivo improvement of protective antioxidative properties related to L-carnosine. The included findings revealed a greater role of N-acetylcarnosine (NAC) and carcinine ex vivo in the prolongation and potentiation of physiological responses to the therapeutical and cosmetics treatments with L-carnosine as antioxidant. 3-D molecular conformation studies proposed the antioxidant activity of peptidomimetics (carcinine, L-prolylhistamine, N-acetylcarnosine, L-carnosine) for metal ion binding, quenching of a number free radicals, and binding of hydroperoxide or aldehyde (including dialdehyde LPO products) in an imidazole-peroxide adducts. NAC can act as a time release (carrier) stable version of L-carnosine during application in ophthalmic pharmaceutical and cosmetics formulations which include lubricants. Carcinine, L-prolylhistamine show efficient deactivation of lipid hydroperoxides monitored by HPLC and protection of membrane phospholipids and water soluble proteins from the lipid peroxides-induced damages. This activity is superior over the lipophilic antioxidant vitamin E. The biologically significant applications of

  3. Systems biology solutions for biochemical production challenges

    DEFF Research Database (Denmark)

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus

    2017-01-01

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics...... characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity...... compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains...

  4. Systems biology solutions for biochemical production challenges.

    Science.gov (United States)

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J

    2017-06-01

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Biologically Active Metabolites Synthesized by Microalgae

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2015-01-01

    Full Text Available Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  6. 9 CFR 112.6 - Packaging biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Packaging biological products. 112.6... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.6 Packaging biological products. (a) Each multiple-dose final container of a biological product...

  7. Publishing activities improves undergraduate biology education.

    Science.gov (United States)

    Smith, Michelle K

    2018-06-01

    To improve undergraduate biology education, there is an urgent need for biology instructors to publish their innovative active-learning instructional materials in peer-reviewed journals. To do this, instructors can measure student knowledge about a variety of biology concepts, iteratively design activities, explore student learning outcomes and publish the results. Creating a set of well-vetted activities, searchable through a journal interface, saves other instructors time and encourages the use of active-learning instructional practices. For authors, these publications offer new opportunities to collaborate and can provide evidence of a commitment to using active-learning instructional techniques in the classroom.

  8. Baltic cyanobacteria- A source of biologically active compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Mazur-Marzec, H.; Błaszczyk, A.; Felczykowska, A.; Hohlfeld, N.; Kobos, J.; Toruńska-Sitarz, A.; PrabhaDevi; Montalva`o, S.; DeSouza, L.; Tammela, P.; Mikosik, A.; Bloch, S.; Nejman-Faleńczyk, B.; Węgrzyn, G.

    cyanobacteria, enzyme activity, enzyme inhibitors, immunological activity, natural products, nonribosomal peptides, plant growth regulators 2 INTRODUCTION Cyanobacteria are Gram-negative bacteria which are widely distributed in many water bodies..., immunological, 4 antimicrobial and plant growth tests. The overall aim of the experiments was to identify strains showing the most promising biological activity for potential biotechnological application. MATERIALS AND METHODS Isolation, culture...

  9. Benzimidazoles: A biologically active compounds

    Directory of Open Access Journals (Sweden)

    Salahuddin

    2017-02-01

    Full Text Available Synthesis of commercially available benzimidazole involves condensation of o-phenylenediamine with formic acid. The most prominent benzimidazole compound in nature is N-riosyldimethylbenzimidazole, which serves as a axial ligand for cobalt in vitamin B12. The benzimidazole and its derivatives play a very important role as a therapeutic agent e.g. antiulcer and anthelmintic drugs. Apart from this the benzimidazole derivatives exhibit pharmacological activities such as antimicrobial, antiviral, anticancer, anti-inflammatory, analgesic, etc. The substituted benzimidazoles are summarized in this review to know about the chemistry as well as pharmacological activities.

  10. Production of Active Nonglycosylated Recombinant B-Chain of Type-2 Ribosome-Inactivating Protein from Viscum articulatum and Its Biological Effects on Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Tzu-Li Lu

    2011-01-01

    Full Text Available Type-2 ribosome-inactivating proteins, composed of a toxic A-chain and lectin-like B-chain, display various biological functions, including cytotoxicity and immunomodulation. We here cloned the lectin-like B-chain encoding fragment of a newly identified type-2 RIP gene, articulatin gene, from Viscum articulatum, into a bacterial expression vector to obtain nonglycosylated recombinant protein expressed in inclusion bodies. After purification and protein refolding, soluble refolded recombinant articulatin B-chain (rATB showed lectin activity specific toward galactoside moiety and was stably maintained while stored in low ionic strength solution. Despite lacking glycosylation, rATB actively bound leukocytes with preferential binding to monocytes and in vitro stimulated PBMCs to release cytokines without obvious cytotoxicity. These results implicated such a B-chain fragment as a potential immunomodulator.

  11. Biological activities of red propolis: a rewiew

    Science.gov (United States)

    de Figueiredo, Sonia M; de Freitas, Marcia Christina Dornelas; de Oliveira, Daiana Teixeira; de Miranda, Marina Barcelos; Vieira-Filho, Sidney Augusto; Caligiorne, Rachel Basques

    2018-02-23

    • Background: The red propolis (RdProp) is a resin produced by Apis mellifera bees, which collect the reddish exudate on the surface of its botanic source, the species Dalbergiae castophyllum, popularly known in Brazil as "rabo de bugio". Considered as the 13th type of Brazilian propolis, this resin has been gaining prominence due to its natural composition, rich in bioactive substances not found in other types of propolis. • Objective: This review aims to address the most important characteristics of PV, its botanical origin, the main constituents, its biological properties and the patents related to this natural product. • Method: By means of the SciFinder, Google Patents, Patus® and Spacenet, scientific articles and patents involving the term "red propolis" were searched until August 2017 • Results: A number of biological properties, including antimicrobial, anti-inflammatory, antiparasitic, antitumor, antioxidant, metabolic and nutraceutical activities are attributed to RdProp, demonstrating the great potential of its use in the food, pharmaceutical and cosmetics industries. • Conclusion: The available papers are associated to pharmacological potential of RdProp, but the molecular mechanisms or bioactive compounds responsible for each activity have not yet been fully elucidated. The RdProp patents currently found are directed to components for the pharmaceutical industry (EP2070543A1; WO2014186851A1; FR3006589A1; CN1775277A; CN105797149A; CN1879859A), cosmetic (JP6012138B2; JP2008247830A; JP6012138B2) and food (JP5478392B2; CN101380052A; WO2006038690A1). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Systems biology of microbial exopolysaccharides production

    Directory of Open Access Journals (Sweden)

    Ozlem eAtes

    2015-12-01

    Full Text Available Exopolysaccharides (EPS produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture and medicine. EPSs are mainly associated with high-value applications and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore a systems-based approach constitutes an important step towards understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan and dextran.

  13. Systems Biology of Microbial Exopolysaccharides Production.

    Science.gov (United States)

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran.

  14. Marine Biology Activities. Ocean Related Curriculum Activities.

    Science.gov (United States)

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  15. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammad Abdel-Mawgoud

    2018-03-01

    Full Text Available Glycosylated lipids (GLs are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

  16. Genus Pouteria: chemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Cíntia A. M. Silva

    Full Text Available The genus Pouteria belongs to the family Sapotaceae and can be widely found around the World. These plants have been used as building material, as food, because the eatable fruits, as well as remedies in folk medicine. Some biological activities have been reported to species of this genus such as antioxidant, anti-inflammatory, antibacterial and antifungal. However, the real potential of this genus as source of new drugs or phytomedicines remains unknown. Therefore, a review of the so far known chemical composition and biological activities of this genus is presented to stimulate new studies about the species already reported moreover that species have no reference about chemistry or biological activities could be found until now.

  17. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer

    Directory of Open Access Journals (Sweden)

    Ukkonen Kaisa

    2011-12-01

    Full Text Available Abstract This report describes the combined use of an enzyme-based glucose release system (EnBase® and high-aeration shake flask (Ultra Yield Flask™. The benefit of this combination is demonstrated by over 100-fold improvement in the active yield of recombinant alcohol dehydrogenase expressed in E. coli. Compared to Terrific Broth and ZYM-5052 autoinduction medium, the EnBase system improved yield mainly through increased productivity per cell. Four-fold increase in oxygen transfer by the Ultra Yield Flask contributed to higher cell density with EnBase but not with the other tested media, and consequently the product yield per ml of EnBase culture was further improved.

  18. MODERN TECHNOLOGICAL SOLUTIONS USED IN THE PRODUCTION OF BAKERY PRODUCTS WITH HIGH BIOLOGICAL VALUE

    OpenAIRE

    Marta Brodowska; Dominika Guzek; Agnieszka Wierzbicka

    2014-01-01

    Biological value of the food products is a result of the presence of bioactive substances and the proportions of the components. Technological development allows to optimize and accelerate the processes of bread production and increase value of food. Bakery industry used whole grains and pseudocereals as additional source of active compounds, biotechnological techniques as using appropriate yeast strain and encapsulation, which provide protection of substance and their controlled release in p...

  19. Parameters of biological activity in colorectal cancer

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Š.; Topolčan, O.; Holubec jr., L.; Levý, M.; Pecen, Ladislav; Svačina, Š.

    2011-01-01

    Roč. 31, č. 1 (2011), s. 373-378 ISSN 0250-7005 Institutional research plan: CEZ:AV0Z10300504 Keywords : colorectal cancer * biological activity * prognosis * tumor markers * angiogenetic factors * metalloproteinases * adhesion molecules Subject RIV: FD - Oncology ; Hematology Impact factor: 1.725, year: 2011

  20. Biological activity of SV40 DNA

    International Nuclear Information System (INIS)

    Abrahams, P.J.

    1978-01-01

    This thesis deals with a study on the biological activity of SV40 DNA. The transforming activity of SV40 DNA and DNA fragments is investigated in order to define as precisely as possible the area of the viral genome that is involved in the transformation. The infectivity of SV40 DNA is used to study the defective repair mechanisms of radiation damages of human xeroderma pigmentosum cells. (C.F.)

  1. Biosynthesis of therapeutic natural products using synthetic biology.

    Science.gov (United States)

    Awan, Ali R; Shaw, William M; Ellis, Tom

    2016-10-01

    Natural products are a group of bioactive structurally diverse chemicals produced by microorganisms and plants. These molecules and their derivatives have contributed to over a third of the therapeutic drugs produced in the last century. However, over the last few decades traditional drug discovery pipelines from natural products have become far less productive and far more expensive. One recent development with promise to combat this trend is the application of synthetic biology to therapeutic natural product biosynthesis. Synthetic biology is a young discipline with roots in systems biology, genetic engineering, and metabolic engineering. In this review, we discuss the use of synthetic biology to engineer improved yields of existing therapeutic natural products. We further describe the use of synthetic biology to combine and express natural product biosynthetic genes in unprecedented ways, and how this holds promise for opening up completely new avenues for drug discovery and production. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biological control and sustainable food production

    NARCIS (Netherlands)

    Bale, J.S.; Lenteren, van J.C.; Bigler, F.

    2008-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control).

  3. Loranthus micranthus Linn.: Biological Activities and Phytochemistry

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2013-01-01

    Full Text Available Loranthus micranthus Linn. is a medicinal plant from the Loranthaceae family commonly known as an eastern Nigeria species of the African mistletoe and is widely used in folkloric medicine to cure various ailments and diseases. It is semiparasitic plant because of growing on various host trees and shrubs and absorbing mineral nutrition and water from respective host. Hence, the phytochemicals and biological activities of L. micranthus demonstrated strong host and harvesting period dependency. The leaves have been proved to possess immunomodulatory, antidiabetic, antimicrobial, antihypertensive, antioxidant, antidiarrhoeal, and hypolipidemic activities. This review summarizes the information and findings concerning the current knowledge on the biological activities, pharmacological properties, toxicity, and chemical constituents of Loranthus micranthus.

  4. Photochemical versus biological production of methyl iodide during Meteor 55

    Science.gov (United States)

    Richter, U.; Wallace, D.

    2003-04-01

    The flux of methyl iodide from sea to air represents the largest flux of iodine from the ocean to the atmosphere. Surface water concentrations and hence fluxes are particularly high in tropical regions. This flux may be responsible for the enrichment of iodine in the marine aerosol and may contribute to important processes in the marine boundary layer, including particle formation. Methyl iodide is commonly referred to as a biogenic gas, with both macroalgae and phytoplankton identified as important sources. On the other hand experimental and field data have shown the importance of photochemical production that is not necessarily associated directly with biological activity. During the Meteor cruise 55 along 11°N in the tropical Atlantic Ocean, a series of experiments were conducted to examine the biological vs. photochemical production of methyl iodide. A total of eight separate experiments were conducted. Production of CH3I in quartz glass flasks during 24 hour incubations (dark and natural sunlight) was measured under three experimental treatments: untreated seawater, filtered seawater (0.1 um pore size filter to exclude most phytoplankton and bacteria), and seawater that was poisoned with mercuric chloride. There were two clear findings from these experiments: (1) methyl iodide production was significantly higher in all the incubations that were exposed to the light than in the dark incubations; (2) there was no significant difference between CH3I production under the three experimental treatments. These results argue very strongly for the primary importance of photochemical production of CH3I as opposed to biogenic production at least for the tropical open ocean surface waters. Further experiments are required to investigate the reactants involved, their sources, the wavelength and depth dependence of production, etc. as well as (possibly related) sink processes.

  5. 9 CFR 101.3 - Biological products and related terms.

    Science.gov (United States)

    2010-01-01

    ... as required by the regulations. (e) Released product. A finished product released for marketing after... total quantity of completed product which has been thoroughly mixed in a single container and identified... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Biological products and related terms...

  6. Neutron activation analysis of biological substances

    International Nuclear Information System (INIS)

    Ordogh, M.

    1978-08-01

    A Bowen cabbage sample was used as a reference material for the neutron activation studies, and the method was checked by the analysis of other biological substances (blood or serum etc.). For nondestructive measurements also some non-trace elements were determined in order to decide whether the activation analysis is a useful means for such measurements. The new activation analysis procedure was used for biomedical studies as, e.g., for trace element determination in body fluids, and for the analysis of inorganic components in air samples. (R.P.)

  7. Biological treatment of chicken feather waste for improved biogas production

    Institute of Scientific and Technical Information of China (English)

    Gergely Forgács; Saeid Alinezhad; Amir Mirabdollah; Elisabeth Feuk-Lagerstedt; Ilona Sárvári Horwáth

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas.Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production.Chopped,autoclaved chicken feathers (4%,W/V) were completely degraded,resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain.During the subsequent anaerobic batch digestion experiments,methane production of 0.35 Nm3/kg dry feathers (i.e.,0.4 Nm3/kg volatile solids of feathers),corresponding to 80% of the theoretical value on proteins,was achieved from the feather hydrolyzates,independently of the prehydrolysis time period of 1,2 or 8 days.Cultivation with a native keratinase producing strain,Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate,which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers.Feather hydrolyzates treated with the wild type B.megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  8. MODERN TECHNOLOGICAL SOLUTIONS USED IN THE PRODUCTION OF BAKERY PRODUCTS WITH HIGH BIOLOGICAL VALUE

    Directory of Open Access Journals (Sweden)

    Marta Brodowska

    2014-06-01

    Full Text Available Biological value of the food products is a result of the presence of bioactive substances and the proportions of the components. Technological development allows to optimize and accelerate the processes of bread production and increase value of food. Bakery industry used whole grains and pseudocereals as additional source of active compounds, biotechnological techniques as using appropriate yeast strain and encapsulation, which provide protection of substance and their controlled release in production of functional bread. The adding to bread fruits, vegetables and condiments may increase content of vitamin, minerals, dietary fiber and other bioactive compounds.

  9. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  10. Marine natural flavonoids: chemistry and biological activities.

    Science.gov (United States)

    Martins, Beatriz T; Correia da Silva, Marta; Pinto, Madalena; Cidade, Honorina; Kijjoa, Anake

    2018-05-04

    As more than 70% of the world's surface is covered by oceans, marine organisms offer a rich and unlimited resource of structurally diverse bioactive compounds. These organisms have developed unique properties and bioactive compounds that are, in majority of them, unparalleled by their terrestrial counterparts due to the different surrounding ecological systems. Marine flavonoids have been extensively studied in the last decades due to a growing interest concerning their promising biological/pharmacological activities. The most common classes of marine flavonoids are flavones and flavonols, which are mostly isolated from marine plants. Although most of flavonoids are hydroxylated and methoxylated, some marine flavonoids possess an unusual substitution pattern, not commonly found in terrestrial organisms, namely the presence of sulphate, chlorine, and amino groups. This review presents, for the first time in a systematic way, the structure, natural occurrence, and biological activities of marine flavonoids.

  11. Silychristin: Skeletal Alterations and Biological Activities

    Czech Academy of Sciences Publication Activity Database

    Biedermann, David; Buchta, M.; Holečková, Veronika; Sedlák, David; Valentová, Kateřina; Cvačka, Josef; Bednárová, Lucie; Křenková, Alena; Kuzma, Marek; Škuta, Ctibor; Peikerová, Žaneta; Bartůněk, Petr; Křen, Vladimír

    2016-01-01

    Roč. 79, č. 12 (2016), s. 3086-3092 ISSN 0163-3864 R&D Projects: GA ČR(CZ) GA15-03037S; GA MZd(CZ) NV16-27317A; GA MŠk LO1220; GA MŠk LM2015063; GA MŠk(CZ) LD15081 Institutional support: RVO:61388971 ; RVO:68378050 ; RVO:61388963 Keywords : Silychristin * skeletal alterations * biological activities Subject RIV: CC - Organic Chemistry Impact factor: 3.281, year: 2016

  12. Radiometallating antibodies and biologically active peptides

    International Nuclear Information System (INIS)

    Mercer-Smith, J.A.; Roberts, J.C.; Lewis, D.; Newmyer, S.L.; Schulte, L.D.; Burns, T.P.; Mixon, P.L.; Jeffery, A.L.; Schreyer, S.A.; Cole, D.A.; Figard, S.D.; Lennon, V.A.; Hayashi, M.; Lavallee, D.K.

    1990-01-01

    We have developed methods to radiolabel large molecules, using porphyrins as bifunctional chelating agents for radiometals. The porphyrins are substituted with an N-benzyl group to activate them for radiometallation under mild reaction conditions. Porphyrins that have on functional group for covalent attachment to other molecules cannot cause crosslinking. We have examined the labeling chemistry for antibodies, and we have also developed methods to label smaller biologically active molecules, such as autoantigenic peptides. The autoantigenic peptides, fragments of the acetylcholine receptor, are under investigation for myasthenia gravis research. The methods of covalent attachment of these bifunctional chelating agents to large molecules and the radiometallation chemistry will be discussed

  13. 75 FR 33312 - Indexing Structured Product Labeling for Human Prescription Drug and Biological Products; Request...

    Science.gov (United States)

    2010-06-11

    ...] Indexing Structured Product Labeling for Human Prescription Drug and Biological Products; Request for... Biologics Evaluation and Research (CBER) are indexing certain categories of information in product labeling for use as terms to search repositories of approved prescription medical product structured product...

  14. Cephalostatin analogues--synthesis and biological activity.

    Science.gov (United States)

    Flessner, Timo; Jautelat, Rolf; Scholz, Ulrich; Winterfeldt, Ekkehard

    2004-01-01

    Starting off in the early 90's the field of cephalostatin analogues has continually expanded over the last 10 years. First syntheses prepared symmetric analogues like 14b (119) and 26 (65), which were subsequently desymmetrized to provide analogues like beta-hydroxy ketone 31 (19). Importantly the straightforward approach provided already compounds with mu-molar potency and the same pattern of activity as cephalostatin 1 (1) (see Chapter 2.1). Chemically more demanding, two new methods for the directed synthesis of (bissteroidal) pyrazines were devised and subsequently applied to a wide variety of differently functionalized coupling partners. These new methods allowed for the synthesis of various analogues (Chapter 2.2.; and, last but not least, for the totals synthesis of several cephalostatin natural products; Chapter 1.). Functionalization and derivatization of the 12-position was performed (Chapter 2.1 and 3) and synthetic approaches to establish the D-ring double bond were successfully investigated (Chapter 3). [figure: see text] Dealing synthetically with the spiroketal moiety, novel oxidative opening procedures on monomeric delta 14, 15-steroids were devised as well as intensive studies regarding spiroketal synthesis and spiroketal rearrangements were conducted (Chapter 3.2. and 4.). Last but not least direct chemical modification of ritterazines and cephalostatins were studied, which provided a limited number of ritterazine analogues (Chapter 4.). All these synthetic activities towards analogues are summarized in Fig. 18. During this period of time the growing number of cephalostatins and ritterazines on the one hand and of analogues on the other hand provided several SAR trends, which can guide future analogue synthesis. The combined SAR findings are displayed in Fig. 19. So far it is apparent that: Additional methoxylations or hydroxylations in the steroidal A ring core structure (1-position) are slightly decreasing activity (compare cephalostatin 1 1 to

  15. Biologic activity of porphyromonas endodontalis complex lipids.

    Science.gov (United States)

    Mirucki, Christopher S; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E; Clark, Robert B; Nichols, Frank C

    2014-09-01

    Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis and evaluate their capacity to promote proinflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Constituent lipids of both organisms were fractionated by high-performance liquid chromatography and were structurally characterized using electrospray mass spectrometry or electrospray-mass spectrometry/mass spectrometry. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. P. endodontalis total lipids were shown to promote tumor necrosis factor alpha secretion from RAW 264.7 cells, and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells, but osteoblast differentiation in culture was inhibited and appeared to be dependent on Toll-like receptor 2 expression. These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. 9 CFR 114.17 - Rebottling of biological products.

    Science.gov (United States)

    2010-01-01

    ... reports of all tests conducted on the rebottled product shall be submitted to Animal and Plant Health... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Rebottling of biological products. 114.17 Section 114.17 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT...

  17. Biological Variance in Agricultural Products. Theoretical Considerations

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Konopacki, P.

    2003-01-01

    The food that we eat is uniform neither in shape or appearance nor in internal composition or content. Since technology became increasingly important, the presence of biological variance in our food became more and more of a nuisance. Techniques and procedures (statistical, technical) were

  18. Cholesterol oxidation products and their biological importance

    Czech Academy of Sciences Publication Activity Database

    Kulig, W.; Cwiklik, Lukasz; Jurkiewicz, P.; Rog, T.; Vattulainen, I.

    2016-01-01

    Roč. 199, Sep (2016), s. 144-160 ISSN 0009-3084 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : cholesterol * oxidation * oxysterols * biological membranes * biophysical properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.361, year: 2016

  19. Application of activation techniques to biological analysis

    International Nuclear Information System (INIS)

    Bowen, H.J.M.

    1981-01-01

    Applications of activation analysis in the biological sciences are reviewed for the period of 1970 to 1979. The stages and characteristics of activation analysis are described, and its advantages and disadvantages enumerated. Most applications involve activation by thermal neutrons followed by either radiochemical or instrumental determination. Relatively little use has been made of activation by fast neutrons, photons, or charged particles. In vivo analyses are included, but those based on prompt gamma or x-ray emission are not. Major applications include studies of reference materials, and the elemental analysis of plants, marine biota, animal and human tissues, diets, and excreta. Relatively little use of it has been made in biochemistry, microbiology, and entomology, but it has become important in toxicology and environmental science. The elements most often determined are Ag, As, Au, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, Hg, I, K, Mn, Mo, Na, Rb, Sb, Sc, Se, and Zn, while few or no determinations of B, Be, Bi, Ga, Gd, Ge, H, In, Ir, Li, Nd, Os, Pd, Pr, Pt, Re, Rh, Ru, Te, Tl, or Y have been made in biological materials

  20. Biological activities of Curcuma longa L.

    Directory of Open Access Journals (Sweden)

    Araújo CAC

    2001-01-01

    Full Text Available There are several data in the literature indicating a great variety of pharmacological activities of Curcuma longa L. (Zingiberaceae, which exhibit anti-inflammatory, anti-human immunodeficiency virus, anti-bacteria, antioxidant effects and nematocidal activities. Curcumin is a major component in Curcuma longa L., being responsible for its biological actions. Other extracts of this plant has been showing potency too. In vitro, curcumin exhibits anti-parasitic, antispasmodic, anti-inflammatory and gastrointestinal effects; and also inhibits carcinogenesis and cancer growth. In vivo, there are experiments showing the anti-parasitic, anti-inflammatory potency of curcumin and extracts of C. longa L. by parenteral and oral application in animal models. In this present work we make an overview of the pharmacological activities of C. longa L., showing its importance.

  1. Neutron activation analysis of biological material

    International Nuclear Information System (INIS)

    Kucera, J.; Simkova, M.; Obrusnik, I.

    1985-01-01

    The possibilities are briefly summed up of usino. NAA (neutron activation analysis) for determining element traces in foodstuffs and their intake by organisms, for monitoring changes in the content of important trace elements in tissues and body fluids owing to environmental pollution, for verifying the results of other analytical techniques and for certifying the content of element traces in reference materials. Examples are given of the use of NAA, and the results are summed up of the determination of Cd, Mn and Zn in biological reference materials NBS SRM-1577, Bovine Liver, Bowen's Kale, IAEA Milk Powder A-11 and IAEA Animal Muscle H-4. (E.S.)

  2. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  3. Recent advances on biological production of difructose dianhydride III.

    Science.gov (United States)

    Zhu, Yingying; Yu, Shuhuai; Zhang, Wenli; Zhang, Tao; Guang, Cuie; Mu, Wanmeng

    2018-04-01

    Difructose dianhydride III (DFA III) is a cyclic difructose containing two reciprocal glycosidic linkages. It is easily generated with a small amount by sucrose caramelization and thus occurs in a wide range of food-stuffs during food processing. DFA III has half sweetness but only 1/15 energy of sucrose, showing potential industrial application as low-calorie sucrose substitute. In addition, it displays many benefits including prebiotic effect, low cariogenicity property, and hypocholesterolemic effect, and improves absorption of minerals, flavonoids, and immunoglobulin G. DFA III is biologically produced from inulin by inulin fructotransferase (IFTase, EC 4.2.2.18). Plenty of DFA III-producing enzymes have been identified. The crystal structure of inulin fructotransferase has been determined, and its molecular modification has been performed to improve the catalytic activity and structural stability. Large-scale production of DFA III has been studied by various IFTases, especially using an ultrafiltration membrane bioreactor. In this article, the recent findings on physiological effects of DFA III are briefly summarized; the research progresses on identification, expression, and molecular modification of IFTase and large-scale biological production of DFA III by IFTase are reviewed in detail.

  4. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  5. 9 CFR 114.18 - Reprocessing of biological products.

    Science.gov (United States)

    2010-01-01

    ... for all tests conducted shall be submitted to Animal and Plant Health Inspection Service. The licensee... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Reprocessing of biological products. 114.18 Section 114.18 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE...

  6. 9 CFR 102.5 - U.S. Veterinary Biological Product License.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false U.S. Veterinary Biological Product... BIOLOGICAL PRODUCTS § 102.5 U.S. Veterinary Biological Product License. (a) Authorization to produce each biological product shall be specified on a U.S. Veterinary Biological Product License, issued by the...

  7. Cholesterol oxidation products and their biological importance

    DEFF Research Database (Denmark)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr

    2016-01-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low...... and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have...

  8. New enamine derivatives of lapachol and biological activity

    Directory of Open Access Journals (Sweden)

    OLIVEIRA MAILCAR F.

    2002-01-01

    Full Text Available A convenient synthesis of the new enamine derivatives 2-(4-morpholinyl-3-(3-methyl-2-butenyl-1,4-naphthalenedione, 2-(1-piperidinyl-3-(3-methyl-2-butenyl-1,4-naphtalenedione and 2-(1-pyrrolidinyl-3-(3-methyl-2-butenyl-1,4-naphthalenedione was carried out from natural 2-hydroxy-3-(3-methyl-2-butenyl-1,4-naphthalenedione (lapachol and morpholine, piperidine and pyrrolidine. The structures of the products were established mainly by NMR analysis, including 2D experiments. Biological activities of these products were evaluated against Artemia salina, Aedes aegypti and cytotoxicity using A549 human breast cells.

  9. Risk assessment of the biological plant protection products Nemasys G and Nemasys H with the active organism Heterorhabditis Bacteriophora. Opinion of the Panel on Plant Protection Products of the Norwegian Scientific Committee for Food Safety

    OpenAIRE

    Källqvist, Torsten; Borgå, Katrine; Dirven, Hubert; Eklo, Ole Martin; Grung, Merete; Lyche, Jan Ludvig; Låg, Marit; Nilsen, Asbjørn Magne; Sverdrup, Line Emilie

    2014-01-01

    Nemasys G and Nemasys H with the nematode Heterorhabditis bacteriophora as the active organism is applied for as a plant protection product in Norway. Nemasys G is intended for use against the garden chafer (Phyllopertha horticola) in lawns and Nemasys H against black vine weevil (Otiorhynchus sulcatus) in strawberries and ornamentals. VKM was requested by the Norwegian Food Safety Authority to consider the possible health and environmental risk related to the properties of Nemasys G and Nema...

  10. Marine natural products. XXXII. Absolute configurations of C-4 of the manoalide family, biologically active sesterterpenes from the marine sponge Hyrtios erecta.

    Science.gov (United States)

    Kobayashi, M; Okamoto, T; Hayashi, K; Yokoyama, N; Sasaki, T; Kitagawa, I

    1994-02-01

    Cytotoxic sesterterpenes, manoalide 25-acetals (1a, 1b), seco-manoalide (2), (E)-neomanoalide (3), (Z)-neomanoalide (4), and heteronemin (6), were isolated from the marine sponge Hyrtios erecta (collected at Amami Island, Kagoshima Prefecture, Japan) by bioassay-guided separation and the absolute configurations of these manoalide family members have been determined. Manoalide 25-acetals (1a, 1b) were shown to exhibit in vivo antitumor activity and to inhibit the DNA-relaxing activity of mouse DNA topoisomerase I and the DNA-unknotting activity of calf thymus DNA topoisomerase II.

  11. Spectroscopic study of biologically active glasses

    Science.gov (United States)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  12. Biocomes: new biological products for sustainable farming and forestry

    NARCIS (Netherlands)

    Teixidó, N.; Cal, de A.L.; Usall, J.; Guijarro, B.; Larena, I.; Torres, R.; Abadias, M.; Köhl, J.

    2016-01-01

    The growing interest in biological control has been reflected during last decades in a big number of scientific publications, books and symposia. However, biocontrol commercial application at a European level is limited and biological control products are not currently available for the control of

  13. Systems Biology in Animal Production and Health

    DEFF Research Database (Denmark)

    for improved animal production and health. The book will contain online resources where additional data and programs can be accessed. Some chapters also come with computer programming codes and example datasets to provide readers hands-on (computer) exercises. This second volume deals with integrated modeling...... and analyses of multi-omics datasets from theoretical and computational approaches and presents their applications in animal production and health as well as veterinary medicine to improve diagnosis, prevention and treatment of animal diseases. This book is suitable for both students and teachers in animal...

  14. Ethnobotany, chemistry, and biological activities of the genus Tithonia (Asteraceae).

    Science.gov (United States)

    Chagas-Paula, Daniela A; Oliveira, Rejane B; Rocha, Bruno A; Da Costa, Fernando B

    2012-02-01

    The genus Tithonia is an important source of diverse natural products, particularly sesquiterpene lactones, diterpenes, and flavonoids. The collected information in this review attempts to summarize the recent developments in the ethnobotany, biological activities, and secondary metabolite chemistry of this genus. More than 100 structures of natural products from Tithonia are reported in this review. The species that has been most investigated in this genus is T. diversifolia, from which ca. 150 compounds were isolated. Biological studies are described to evaluate the anti-inflammatory, analgesic, antimalarial, antiviral, antidiabetic, antidiarrhoeal, antimicrobial, antispasmodic, vasorelaxant, cancer-chemopreventive, cytotoxic, toxicological, bioinsecticide, and repellent activities. A few of these studies have been carried out with isolated compounds from Tithonia species, but the majority has been conducted with different extracts. The relationship between the biological activity and the toxicity of compounds isolated from the plants of this genus as well as T. diversifolia extracts still remains unclear, and mechanisms of action remain to be determined. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  15. Biological productivity, terrigenous influence and noncrustal ...

    Indian Academy of Sciences (India)

    1100ka. Our data suggest that during ~ 1100 ka and ~ 400 ka siliceous productivity was lower, ... Manganese, Ba, Cu, Ni, Zn, and Co have around 90% of their supply from noncrustal ...... Pattan J N, Masuzawa T, Divakar Naidu P, Parthiban G.

  16. Linking neuroethology to the chemical biology of natural products

    DEFF Research Database (Denmark)

    Olivera, Baldomero M.; Raghuraman, Shrinivasan; Schmidt, Eric W.

    2017-01-01

    From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively...... a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as “Chemical Neuroethology”, linking...... the substantial work carried out by chemists on natural products with accelerating advances in neuroethology....

  17. Biological activities of secondary metabolites of the order Zoanthids

    Directory of Open Access Journals (Sweden)

    Zahra Aminikhoei

    2015-11-01

    Full Text Available The phylum Cnidaria is a large, diverse and ecologically important group of marine invertebrates, which produce powerful toxins and venoms. The number of marine natural product from cnidarians isolated from class Anthozoa. Among the Anthozoa, the order of zoanthids are sessile, clonal and mostly brightly colored invertebrate which produce high biodiversity of cytolitic, neurotoxic and cardiotoxic compounds. Zoanthids containing palytoxins are reportedly among the most toxic marine organisms known. In addition, a high concentration of zoanthamine alkaloids extracted from this group.The zoanthamine alkaloids were isolated over 20 years ago, exhibit a broad range of biological activities.The best studied and most well-known biological activity of zoanthamine derivative significantly suppressed bone resorption and enhanced bone formation.

  18. Biological production of liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  19. Biological production of gas from farmyard manure

    Energy Technology Data Exchange (ETDEWEB)

    Scheffer, F; Kemmler, G

    1953-01-08

    Under anaerobic conditions of farmyard-manure storage, the products include organic acids from which methane is formed. The Schmidt-Eggersgluss method is described in which 5 to 7m/sup 3/ of gas is formed per 100 kg of fresh manure, without loss of N, P, K, or Ca from the residual sludge which is of high nutrient content. Large N losses occur if the sludge comes long in contact with atmosphere.

  20. Crop production in salt affected soils: A biological approach

    Energy Technology Data Exchange (ETDEWEB)

    Malik, K A [National Inst. for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan)

    1995-01-01

    Plant are susceptible to various stresses, affecting growth productivity. Among the abiotic stresses, soil salinity is most significant and prevalent in both developed and developing countries. As a result, good productive lands are being desertified at a very high pace. To combat this problem various approaches involving soil management and drainage are underway but with little success. It seems that a durable solution of the salinity and water-logging problems may take a long time and we may have to learn to live with salinity and to find other ways to utilize the affected lands fruitfully. A possible approach could be to tailor plants to suit the deleterious environment. The saline-sodic soils have excess of sodium, are impermeable, have little or no organic matter and are biologically almost dead. Introduction of a salt tolerant crop will provide a green cover and will improve the environment for biological activity, increase organic matter and will improve the soil fertility. The plant growth will result in higher carbon dioxide levels, and would thus create acidic conditions in the soil which would dissolve the insoluble calcium carbonate and will help exchange sodium with calcium ions on the soil complex. The biomass produced could be used directly as fodder or by the use of biotechnological and other procedures it could be converted into other value added products. However, in order to tailor plants to suit these deleterious environments, acquisition of better understanding of the biochemical and genetic aspects of salt tolerance at the cellular/molecular level is essential. For this purpose model systems have been carefully selected to carry out fundamental basic research that elucidates and identifies the major factors that confer salt tolerance in a living system. With the development of modern biotechnological methods it is now possible to introduce any foreign genetic material known to confer salt tolerance into crop plants. (Abstract Truncated)

  1. Heterologous expression of biologically active chicken granulocyte ...

    African Journals Online (AJOL)

    user

    2012-02-07

    Feb 7, 2012 ... CD4+ T cells to enhance the ability of secreting antibody and also enhance the function of CD8+ T cells. (Papatriantafyllou, 2011; Tovey and Lallemand, 2010). GM-CSF also is a key regulator of IL-1beta production. Furthermore, It was reported that GM-CSF play a key role in the activation of Th1 and Th17 ...

  2. Using cereal rye (catch crop) and dehydrogenase activity as indicators of the residual fertility effects of anaerobic soil disinfestation and other biological soil management practices following field tomato production

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD) and other biological soil management practices employing carbon-rich and/or biologically-active ingredients help contribute to overall soil suppressiveness in crop disease management. However, their roles in soil fertility tended to be overshadowed by disease cont...

  3. Design control considerations for biologic-device combination products.

    Science.gov (United States)

    Anderson, Dave; Liu, Roger; Anand Subramony, J; Cammack, Jon

    2017-03-01

    Combination products are therapeutic and diagnostic medical products that combine drugs, devices, and/or biological products with one another. Historically, biologics development involved identifying efficacious doses administered to patients intravenously or perhaps by a syringe. Until fairly recently, there has been limited focus on developing an accompanying medical device, such as a prefilled syringe or auto-injector, to enable easy and more efficient delivery. For the last several years, and looking forward, where there may be little to distinguish biologics medicines with relatively similar efficacy profiles, the biotechnology market is beginning to differentiate products by patient-focused, biologic-device based combination products. As innovative as biologic-device combination products are, they can pose considerable development, regulatory, and commercialization challenges due to unique physicochemical properties and special clinical considerations (e.g., dosing volumes, frequency, co-medications, etc.) of the biologic medicine. A biologic-device combination product is a marriage between two partners with "cultural differences," so to speak. There are clear differences in the development, review, and commercialization processes of the biologic and the device. When these two cultures come together in a combination product, developers and reviewers must find ways to address the design controls and risk management processes of both the biologic and device, and knit them into a single entity with supporting product approval documentation. Moreover, digital medicine and connected health trends are pushing the boundaries of combination product development and regulations even further. Despite an admirable cooperation between industry and FDA in recent years, unique product configurations and design features have resulted in review challenges. These challenges have prompted agency reviewers to modernize consultation processes, while at the same time, promoting

  4. Biologically Active and Antimicrobial Peptides from Plants

    Science.gov (United States)

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  5. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: MODELING

    Directory of Open Access Journals (Sweden)

    Brînduşa-Antonela SBÎRCEA

    2011-01-01

    Full Text Available By using active and participatory methods it is hoped that pupils will not only come to a deeper understanding of the issues involved, but also that their motivation will be heightened. Pupil involvement in their learning is essential. Moreover, by using a variety of teaching techniques, we can help students make sense of the world in different ways, increasing the likelihood that they will develop a conceptual understanding. The teacher must be a good facilitator, monitoring and supporting group dynamics. Modeling is an instructional strategy in which the teacher demonstrates a new concept or approach to learning and pupils learn by observing. In the teaching of biology the didactic materials are fundamental tools in the teaching-learning process. Reading about scientific concepts or having a teacher explain them is not enough. Research has shown that modeling can be used across disciplines and in all grade and ability level classrooms. Using this type of instruction, teachers encourage learning.

  6. Biologically Active and Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    Carlos E. Salas

    2015-01-01

    Full Text Available Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  7. NBS activities in biological reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Rasberry, S.D.

    1988-12-01

    NBS activities in biological reference materials during 1986-1988 are described with a preview of plans for future certifications of reference materials. During the period, work has been completed or partially completed on about 40 reference materials of importance to health, nutrition, and environmental quality. Some of the reference materials that have been completed during the period and are described include: creatinine (SRM 914a), bovine serum albumin (SRM 927a), cholesterol in human serum (SRM's 1951-1952), aspartate aminotransferase (RM 8430), cholesterol and fat-soluble vitamins in coconut oil (SRM 1563), wheat flour (SRM 1567a), rice flour (SRM 1568a), mixed diet (RM 8431a), dinitropyrene isomers and 1-nitropyrene (SRM 1596), and complex PAH's from coal tar (SRM 1597). Oyster tissue (SRM 1566a) is being analyzed and should be available in 1988.

  8. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha Sankar, P.C.; Ramakrishnan, Reshmi; Rosemary, M.J., E-mail: rosemarymj@lifecarehll.com

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. - Highlights: • Different amounts of silver nanoparticles (0.2 g–0.4 g/napkin) were added to cellulose pulp. • The silver nanoparticle incorporated cellulose pulp was proved to be antibacterial by JIS L 1902 method. • The minimum concentration of silver required for antibacterial activity with no cytotoxicity has been found out. • In-vivo vaginal irritation and intracutaneous reactivity studies confirmed the biocompatibility of the material.

  9. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products

    International Nuclear Information System (INIS)

    Kavitha Sankar, P.C.; Ramakrishnan, Reshmi; Rosemary, M.J.

    2016-01-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. - Highlights: • Different amounts of silver nanoparticles (0.2 g–0.4 g/napkin) were added to cellulose pulp. • The silver nanoparticle incorporated cellulose pulp was proved to be antibacterial by JIS L 1902 method. • The minimum concentration of silver required for antibacterial activity with no cytotoxicity has been found out. • In-vivo vaginal irritation and intracutaneous reactivity studies confirmed the biocompatibility of the material.

  10. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  11. Hormones in international meat production: biological, sociological and consumer issues.

    Science.gov (United States)

    Galbraith, Hugh

    2002-12-01

    Beef and its products are an important source of nutrition in many human societies. Methods of production vary and include the use of hormonal compounds ('hormones') to increase growth and lean tissue with reduced fat deposition in cattle. The hormonal compounds are naturally occurring in animals or are synthetically produced xenobiotics and have oestrogenic (oestradiol-17beta and its esters; zeranol), androgenic (testosterone and esters; trenbolone acetate) or progestogenic (progesterone; melengestrol acetate) activity. The use of hormones as production aids is permitted in North American countries but is no longer allowed in the European Union (EU), which also prohibits the importation of beef and its products derived from hormone-treated cattle. These actions have resulted in a trade dispute between the two trading blocs. The major concern for EU authorities is the possibility of adverse effects on human consumers of residues of hormones and metabolites. Methods used to assess possible adverse effects are typical of those used by international agencies to assess acceptability of chemicals in human food. These include analysis of quantities present in the context of known biological activity and digestive, absorptive, post-absorptive and excretory processes. Particular considerations include the low quantities of hormonal compounds consumed in meat products and their relationships to endogenous production particularly in prepubertal children, enterohepatic inactivation, cellular receptor- and non-receptor-mediated effects and potential for interference with growth, development and physiological function in consumers. There is particular concern about the role of oestradiol-17beta as a carcinogen in certain tissues. Now subject to a 'permanent' EU ban, current evidence suggests that certain catechol metabolites may induce free-radical damage of DNA in cell and laboratory animal test systems. Classical oestrogen-receptor mediation is considered to stimulate

  12. Expression of biologically active murine interleukin-18 in Lactococcus lactis.

    Science.gov (United States)

    Feizollahzadeh, Sadegh; Khanahmad, Hossein; Rahimmanesh, Ilnaz; Ganjalikhani-Hakemi, Mazdak; Andalib, Alireza; Sanei, Mohammad Hossein; Rezaei, Abbas

    2016-11-01

    The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900. The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)-γ production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3-4 μg mL -1 and 0.6-0.7 ng mL -1 , respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Synthesis and biological activity of organothiophosphoryl polyoxotungstates.

    Science.gov (United States)

    Sun, Zhengang; Liu, Jutao; Ma, Jianfang; Liu, Jingfu

    2002-01-01

    Organothiophosphoryl polyoxotungstates R(contains)XW(infinityinfinity)O(contains exists) (/-) , R(contains) P(contains)W(infinity),O(infinity) (/-), R(contains)PW( exists)O(contains) (Delta) (-)(X = P, Si, Ge, B or Ga; R = PhP(S), C(6)H(11)P(S)) have been prepared from lacunary polyoxoanions and PhP(S). The products were characterized by elemental analysis, IR, and NMR spectroscopy. According to spectroscopic observations, the hybrid anions consist of a lacunary anion framework on which are grafted two equivalent or groups through P-O-W bridges. Some of the title compounds showed the antigerm activity.

  14. Synthesis and biological activity of radiolabeled phytosterols

    Energy Technology Data Exchange (ETDEWEB)

    De Palma, A.

    1984-01-01

    /sup 3/H and /sup 14/C-labeled phytosterols were synthesized for the purpose of elucidating insect sterol side-chain dealkylating mechanisms. Sitosterol, stigmasterol, and the 29-fluoro derivatives of these compounds, which are highly toxic, were labeled with /sup 3/H at C-29 in order to study the fate of the two-carbon dealkylation product in vivo and in vitro. The first rapid, reliable in vitro dealkylation bioassay was developed using doubly-labeled (29-/sup 3/H)-(24-/sup 14/C) fucosterol epoxides as the substrates, incubated with midgut preparations from Manduca sexta, the tobacco hornworm. Since C-28 and C-29 are lost in the dealkylation process, the extent of dealkylation is expressed as the change in the isotopic ratio when the system is partitioned between an organic solvent and water after incubation. As predicted, the /sup 3/H//sup 14/C ratio decreases in the organic layer as a function of time, due to loss of /sup 3/H into the aqueous phase as acetate or a biological equivalent. This ratio likewise increases in the aqueous phase for the same reason. The (29-/sup 3/H) phytosterols alone are reliable substrates for the first rapid in vivo bioassay of phytosterol dealkylation.

  15. Synthesis and biological activity of radiolabeled phytosterols

    International Nuclear Information System (INIS)

    De Palma, A.

    1984-01-01

    3 H and 14 C-labeled phytosterols were synthesized for the purpose of elucidating insect sterol side-chain dealkylating mechanisms. Sitosterol, stigmasterol, and the 29-fluoro derivatives of these compounds, which are highly toxic, were labeled with 3 H at C-29 in order to study the fate of the two-carbon dealkylation product in vivo and in vitro. The first rapid, reliable in vitro dealkylation bioassay was developed using doubly-labeled [29- 3 H]-[24- 14 C] fucosterol epoxides as the substrates, incubated with midgut preparations from Manduca sexta, the tobacco hornworm. Since C-28 and C-29 are lost in the dealkylation process, the extent of dealkylation is expressed as the change in the isotopic ratio when the system is partitioned between an organic solvent and water after incubation. As predicted, the 3 H/ 14 C ratio decreases in the organic layer as a function of time, due to loss of 3 H into the aqueous phase as acetate or a biological equivalent. This ratio likewise increases in the aqueous phase for the same reason. The [29- 3 H] phytosterols alone are reliable substrates for the first rapid in vivo bioassay of phytosterol dealkylation

  16. Biological effects induced by low amounts of nuclear fission products

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.; Shishkin, V.F.; Khudyakova, N.V.

    1991-01-01

    The review deals with the problem of biological hazard of low radiation doses for animals and human beings taking into the danger of internal and external irradiation by nuclear fission products under conditions of enhancing anthropogenic radiation contamination of biosphere. An attention is paid to the estimation of life span carcinogenesis, genetic and delayed effects. A conclusion is made on a necessity of multiaspect investigation of biological importance of low radiation doses taking into account modifying effects of other environmental factors

  17. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    OpenAIRE

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward ...

  18. Chemical constituents and biological activities of the genus Linaria (Scrophulariaceae).

    Science.gov (United States)

    Cheriet, Thamere; Mancini, Ines; Seghiri, Ramdane; Benayache, Fadila; Benayache, Samir

    2015-01-01

    This is a review on 95 references dealing with the genus Linaria (Scrophularioideae-Antirrhineae tribe), a known genus of the Scrophulariaceae family, which comprises about 200 species mainly distributed in Europe, Asia and North Africa. The use of some Linaria species in folk medicine has attracted the attention for chemical and biological studies. This report is aimed to be a comprehensive overview on the isolated or identified known and often new metabolites from the 41 Linaria species so far cited. It is organised presenting first the phytochemical classes of alkaloids, polyphenols including flavonoids, the latter being quite diffused and mostly present as flavones, flavonols and their glycosides, and terpenoids including iridoids and steroids. Second, the results from biological investigation on plant extracts, pure natural products isolated from Linaria species and some synthetic derivatives are reported, with antitumour, anti-acetylcholinesterase, anti-inflammatory and analgesic, antioxidant and antibacterial activities.

  19. Minimizing activated carbons production cost

    International Nuclear Information System (INIS)

    Stavropoulos, G.G.; Zabaniotou, A.A.

    2009-01-01

    A detailed economic evaluation of activated carbons production process from various raw materials is undertaken using the conventional economic indices (ROI, POT, and NPV). The fundamental factors that affect production cost were taken into account. It is concluded that for an attractive investment in activated carbons production one should select the raw material with the highest product yield, adopt a chemical activation production scheme and should base product price on product-surface area (or more generally on product adsorption capacity for the adsorbate in consideration). A raw material that well meets the above-mentioned criteria is petroleum coke but others are also promising (charcoals, and carbon black). Production cost then can be optimized by determining its minimum value of cost that results from the intercept between the curves of plant capacity and raw material cost - if any. Taking into account the complexity of such a techno-economic analysis, a useful suggestion could be to start the evaluations from a plant capacity corresponding to the break-even point, i. e. the capacity at which income equals production cost. (author)

  20. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Maurizio Servili

    2013-12-01

    Full Text Available Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.

  1. Ionizing radiation for sterilization of medical products and biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S K; Raghevendrarao, M K [Bhabha Atomic Research Centre, Bombay (India). Library and Technical Information Section

    1975-10-01

    The article reviews the deliberations of the International Symposium on Ionizing Radiation for Sterilization of Medical Products and Biological Tissues which was held during 9-13 December 1974 under the auspices of the IAEA at the Bhabha Atomic Research Centre, Bombay. 42 papers were presented in the following broad subject areas: (1) Microbiological Control aspects of radiation sterilization, (2) Dosimetry aspects of radiation sterilization practices, (3) Effects of sterilizing radiation dose on the constituents of medical products, (4) Application of radiation sterilization of medical products of biological origin, (5) Technological aspects of radiation sterilization facilities, (6) Radiation sterilization of pharmaceutical substances, (7) Reports on current status of radiation sterilization of medical products in IAEA member states and (8) Working group discussion on the revision of the IAEA recommended code of practice for radiation sterilization of medical products.

  2. Summary of diamino pyrazoles derived and study their biological activities

    International Nuclear Information System (INIS)

    Hagui, Marwa

    2016-01-01

    The work involves the synthesis of new heterocyclic structures diamino pyrazoles derivatives that are present in many natural products and products of pharmacological and therapeutic interests and study their biological activities. In order to develop a radiotracer interest and use in diagnostic nuclear medicine, we are interested to synthesis a pyrazole derivative with the precursor [Re(CO)5Br] and studying the antibacterial and antifungal activity of 3.5-diamino pyrazole and even thioamide complex rhenium. The objectives of our workout: 1/ Synthesis of molecules 3,5-diamino pyrazole and thioamide. 2/ Synthesis of 3,5-diamino pyrazole-rhenium complex. 3/ The in vitro study: Bacteriological Tests (Study of antibacterial and antifungal activity of 3,5-diamino pyrazole and thioamide). The first part of this work concerns the chemical synthesis of molecules such as: thioamide, Amp z1 Ampz2 and then we had synthesized the complex 3,5-diamino pyrazole-rhenium. Similarly we determined the physicochemical characteristics of the compounds synthesized by CLHP, CCM and RMN ( 1 H, 13 C). The second part is devoted to the study in vitro of biological activities of the synthesized molecules and complex 3,5 diaminopyrazole-rhenium with concentration 1 mg/mL and 2 mg/mL. The results allow us to say that the thioamide and Ampz2 have antibacterial activity against S. enterica and Ampz2 has low activity against S. aureus and P. aeruginossa. Other pyrazole derivatives have no significant antibacterial and antifungal activity. The results also show that the synthesized compounds of concentration 2 mg/mL in relation to the inhibition zones of amoxicillin and DMSO: 1/ Escherichia coli, there is antibacterial activity for thioamide, and the Amp z1-Re Ampz2 compound. 2/ Staphylococcus aureus, the complex Ampz 1-Re and the thioamide have significant antibacterial activity. 3/ Salmonella, we observe that the thioamide molecules, Ampz2 and Amp z1-Re have significant antibacterial activity

  3. Yeast synthetic biology toolbox and applications for biofuel production.

    Science.gov (United States)

    Tsai, Ching-Sung; Kwak, Suryang; Turner, Timothy L; Jin, Yong-Su

    2015-02-01

    Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  4. Biological activity of Serratia marcescens cytotoxin

    Directory of Open Access Journals (Sweden)

    G.V. Carbonell

    2003-03-01

    Full Text Available Serratia marcescens cytotoxin was purified to homogeneity by ion-exchange chromatography on a DEAE Sepharose Fast Flow column, followed by gel filtration chromatography on a Sephadex G100 column. The molecular mass of the cytotoxin was estimated to be about 50 kDa. Some biological properties of the cytotoxin were analyzed and compared with well-characterized toxins, such as VT1, VT2 and CNF from Escherichia coli and hemolysin produced by S. marcescens. The sensitivity of the cell lines CHO, HeLa, HEp-2, Vero, BHK-21, MA 104 and J774 to the cytotoxin was determined by the cell viability assay using neutral red. CHO and HEp-2 were highly sensitive, with massive cellular death after 1 h of treatment, followed by BHK-21, HeLa, Vero and J774 cells, while MA 104 was insensitive to the toxin. Cytotoxin induced morphological changes such as cell rounding with cytoplasmic retraction and nuclear compactation which were evident 15 min after the addition of cytotoxin. The cytotoxic assays show that 15 min of treatment with the cytotoxin induced irreversible intoxication of the cells, determined by loss of cell viability. Concentrations of 2 CD50 (0.56 µg/ml of purified cytotoxin did not present any hemolytic activity, showing that the cytotoxin is distinct from S. marcescens hemolysin. Antisera prepared against S. marcescens cytotoxin did not neutralize the cytotoxic activity of VT1, VT2 or CNF toxin, indicating that these toxins do not share antigenic determinants with cytotoxin. Moreover, we did not detect gene sequences for any of these toxins in S. marcescens by PCR assay. These results suggest that S. marcescens cytotoxin is not related to any of these toxins from E. coli.

  5. Activation analysis of biological materials at the Activation Analysis Centre

    International Nuclear Information System (INIS)

    Kukula, F.; Obrusnik, I.; Simkova, M.; Kucera, J.; Krivanek, M.

    1976-01-01

    A review is presented of the work of the Activation Analysis Centre of the Nuclear Research Institute for different fields of the Czechoslovak economy, aimed primarily at analyzing biological materials with the purpose of determining the contents of the so-called vital trace elements and of elements which already have a toxic effect on the organism in trace concentrations. Another important field of research is the path of trace elements from the environment to the human organism. A destructive method for the simultaneous determination of 12 trace elements in 11 kinds of human tissue has been studied. (Z.M.)

  6. Natural product synthesis at the interface of chemistry and biology

    Science.gov (United States)

    2014-01-01

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences. PMID:25043880

  7. Protease activated receptors (PARS) mediation in gyroxin biological activity

    International Nuclear Information System (INIS)

    Silva, Jose Alberto Alves da

    2009-01-01

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH 2 , respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  8. Synthetic and systems biology for microbial production of commodity chemicals.

    Science.gov (United States)

    Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J; Keasling, Jay D; Martín, Héctor García

    2016-01-01

    The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.

  9. Biological hydrogen production by moderately thermophilic anaerobic bacteria

    International Nuclear Information System (INIS)

    HP Goorissen; AJM Stams

    2006-01-01

    This study focuses on the biological production of hydrogen at moderate temperatures (65-75 C) by anaerobic bacteria. A survey was made to select the best (moderate) thermophiles for hydrogen production from cellulolytic biomass. From this survey we selected Caldicellulosiruptor saccharolyticus (a gram-positive bacterium) and Thermotoga elfii (a gram-negative bacterium) as potential candidates for biological hydrogen production on mixtures of C 5 -C 6 sugars. Xylose and glucose were used as model substrates to describe growth and hydrogen production from hydrolyzed biomass. Mixed substrate utilization in batch cultures revealed differences in the sequence of substrate consumption and in catabolites repression of the two microorganisms. The regulatory mechanisms of catabolites repression in these microorganisms are not known yet. (authors)

  10. Continuous downstream processing for high value biological products: A Review.

    Science.gov (United States)

    Zydney, Andrew L

    2016-03-01

    There is growing interest in the possibility of developing truly continuous processes for the large-scale production of high value biological products. Continuous processing has the potential to provide significant reductions in cost and facility size while improving product quality and facilitating the design of flexible multi-product manufacturing facilities. This paper reviews the current state-of-the-art in separations technology suitable for continuous downstream bioprocessing, focusing on unit operations that would be most appropriate for the production of secreted proteins like monoclonal antibodies. This includes cell separation/recycle from the perfusion bioreactor, initial product recovery (capture), product purification (polishing), and formulation. Of particular importance are the available options, and alternatives, for continuous chromatographic separations. Although there are still significant challenges in developing integrated continuous bioprocesses, recent technological advances have provided process developers with a number of attractive options for development of truly continuous bioprocessing operations. © 2015 Wiley Periodicals, Inc.

  11. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    Science.gov (United States)

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.

  12. Technical suitability mapping of feedstocks for biological hydrogen production

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Karaoglanoglou, L.S.; Koullas, D.P.; Bakker, R.R.; Claassen, P.A.M.; Koukios, E.G.

    2015-01-01

    The objective of this work was to map and compare the technical suitability of different raw materials for biological hydrogen production. Our model was based on hydrogen yield potential, sugar mobilization efficiency, fermentability and coproduct yield and value. The suitability of the studied

  13. Production of biological nanoparticles from bovine serum albumin ...

    African Journals Online (AJOL)

    Production of biological nanoparticles from bovine serum albumin for drug delivery. ... Bovine serum albumin (BSA) was used for generation of nanoparticles in a drug delivery system. ... The impact of protein concentration and additional rate of organic solvent (i.e. ethanol) upon the particle ... AJOL African Journals Online.

  14. Biological activity of Stevia rebaudiana Bertoni and their relationship to health.

    Science.gov (United States)

    Ruiz-Ruiz, Jorge Carlos; Moguel-Ordoñez, Yolanda Beatriz; Segura-Campos, Maira Rubi

    2017-08-13

    The leaves of Stevia rebaudiana Bertoni has nutrients and phytochemicals, which make it an adequate source for the extraction and production of functional food ingredients. Preclinical and clinical studies suggest therapeutic and pharmacological applications for stevia and their extracts because they are not toxic and exhibit several biological activities. This review presents the biological activity of Stevia rebaudiana Bertoni and their relationship to antidiabetic, anticariogenic, antioxidant, hypotensive, antihypertensive, antimicrobial, anti-inflammatory and antitumor activities. Consumption and adverse effects were also reviewed.

  15. Potential for widespread application of biological control of stored-product pests

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biologica...... for these situations will contribute to ensuring that stored food products are protected from insect and mite pests using techniques that are safe for consumers, workers and the environment.......Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological...

  16. Facile Chemical Access to Biologically Active Norcantharidin Derivatives from Biomass

    Directory of Open Access Journals (Sweden)

    Konstantin I. Galkin

    2017-12-01

    Full Text Available Reductive amination of 2,5-diformylfuran (DFF was used to implement the transition from bio-derived 5-hydroxymethylfurfural (HMF to pharmaceuticals. The synthesized bis(aminomethylfurans were utilized as building blocks for the construction of new derivatives with structural cores of naturally occurring biologically active compounds. Using the one-pot procedure, which included the Diels–Alder reaction followed by hydrogenation of the double bond, bio-derived analogues of the anticancer drug norcantharidin were obtained. The cyclization process was diastereoselective, and resulted in the formation of tricyclic products with the endo configuration. Analysis of cytotoxycity for the resulting tricyclic amine-containing compounds showed an increase of anticancer activity as compared with the unsubstituted norcantharimide.

  17. Biological activity of common mullein, a medicinal plant.

    Science.gov (United States)

    Turker, Arzu Ucar; Camper, N D

    2002-10-01

    Common Mullein (Verbascum thapsus L., Scrophulariaceae) is a medicinal plant that has been used for the treatment of inflammatory diseases, asthma, spasmodic coughs, diarrhea and other pulmonary problems. The objective of this study was to assess the biological activity of Common Mullein extracts and commercial Mullein products using selected bench top bioassays, including antibacterial, antitumor, and two toxicity assays--brine shrimp and radish seed. Extracts were prepared in water, ethanol and methanol. Antibacterial activity (especially the water extract) was observed with Klebsiella pneumonia, Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. Agrobacterium tumefaciens-induced tumors in potato disc tissue were inhibited by all extracts. Toxicity to Brine Shrimp and to radish seed germination and growth was observed at higher concentrations of the extracts.

  18. Activation Product Inverse Calculations with NDI

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Mark Girard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-27

    NDI based forward calculations of activation product concentrations can be systematically used to infer structural element concentrations from measured activation product concentrations with an iterative algorithm. The algorithm converges exactly for the basic production-depletion chain with explicit activation product production and approximately, in the least-squares sense, for the full production-depletion chain with explicit activation product production and nosub production-depletion chain. The algorithm is suitable for automation.

  19. PERSPECTIVES FOR DEVELOPMENT OF THE BIOLOGIC PLUM PRODUCTION IN BULGARIA

    Directory of Open Access Journals (Sweden)

    Ivanka Vitanova

    2014-03-01

    Full Text Available The Bulgarian plum cultivars Gabrovska, Nevena, Strinava, Guliaeva and Balvanska slava, breeding in the Plum Experimental Station in the town of Dryanovo and the introduced cultivars Stanley, Chachanska lepotitsa, Opal, Malvazinka, Hramova renkloda, Tuleu timpuriu, Althan’s Gage, Pacific, Mirabell de Nancy, Anna Schpet and Jojo, what are high productive and are tolerant to sharka and other important economic plum diseases are suitable for the biologic plum production. The organic fertilization is a basic element of the technology for the biologic plum production. The fertilization with manure and the green manure with a winter green peas and with a peas-rye mix increased the humus content, influenced positive action on the supplying of the plum plants with the main nutrient macro elements, increased the yield and to be able apply successfully in the plum orchards and at not irrigation conditions.

  20. Radio-active waste disposal and deep-sea biology

    International Nuclear Information System (INIS)

    Rice, A.L.

    1978-01-01

    The deep-sea has been widely thought of as a remote, sparsely populated, and biologically inactive environment, well suited to receive the noxious products of nuclear fission processes. Much of what is known of abyssal biology tends to support this view, but there are a few disquieting contra-indications. The realisation, in recent years, that many animal groups show a previously unsuspected high species diversity in the deep-sea emphasized the paucity of our knowledge of this environment. More dramatically, the discovery of a large, active, and highly mobile abysso-bentho-pelagic fauna changed the whole concept of abyssal life. Finally, while there is little evidence for the existence of vertical migration patterns linking the deep-sea bottom communities with those of the overlying water layers, there are similarly too few negative results for the possibility of such transport mechanisms to be dismissed. In summary, biological knowledge of the abyss is insufficient to answer the questions raised in connection with deep-sea dumping, but in the absence of adequate answers it might be dangerous to ignore the questions

  1. Nutrient availability limits biological production in Arctic sea ice melt ponds

    DEFF Research Database (Denmark)

    Sørensen, Heidi Louise; Thamdrup, Bo; Jeppesen, Erik

    2017-01-01

    nutrient limitation in melt ponds. We also document that the addition of nutrients, although at relative high concentrations, can stimulate biological productivity at several trophic levels. Given the projected increase in first-year ice, increased melt pond coverage during the Arctic spring and potential......Every spring and summer melt ponds form at the surface of polar sea ice and become habitats where biological production may take place. Previous studies report a large variability in the productivity, but the causes are unknown. We investigated if nutrients limit the productivity in these first...... additional nutrient supply from, e.g. terrestrial sources imply that biological activity of melt ponds may become increasingly important for the sympagic carbon cycling in the future Arctic....

  2. Chemistry and Biological Activities of Flavonoids: An Overview

    Science.gov (United States)

    Kumar, Shashank; Pandey, Abhay K.

    2013-01-01

    There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production. PMID:24470791

  3. Chemistry and Biological Activities of Flavonoids: An Overview

    Directory of Open Access Journals (Sweden)

    Shashank Kumar

    2013-01-01

    Full Text Available There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.

  4. Active agents in common skin care products.

    Science.gov (United States)

    Draelos, Zoe Diana

    2010-02-01

    Skin care products are numerous and perplexing, yet the majority fall into the moisturizer category. Moisturizers are substances designed to improve and maintain the skin barrier. They serve as a vehicle for the delivery of active ingredients that minimize facial lines of dehydration, deliver photoprotection, and provide antioxidant properties. Moisturizers are based on occlusive substances, such as petrolatum and dimethicone, and humectant substances, such as glycerin, with a variety of sunscreens and botanicals for added functionality and marketing impact. This article reviews these common active agents. The plethora of over-the-counter skin care products available for patient purchase is overwhelming, yet there is certain commonality among 80 percent of the formulations. The majority of the products are moisturizers with added ingredients to support marketing claims. Whether the product is a facial foundation, an antiaging night cream, a sunscreen, a topical antioxidant, or a skin-lightening serum, the formulation is basically a moisturizer. Sunscreen is the most biologically active antiaging ingredient in skin care products, but the antiinflammatory and antioxidant effects of botanicals possess tremendous marketing appeal.

  5. Instrumental neutron activation analysis of biological samples

    International Nuclear Information System (INIS)

    Guinn, V.P.; Gavrilas, M.

    1990-01-01

    The elemental compositions of 18 biological reference materials have been processed, for 14 stepped combinations of irradiation/decay/counting times, by the INAA Advance Prediction Computer Program. The 18 materials studied include 11 plant materials, 5 animal materials, and 2 other biological materials. Of these 18 materials, 14 are NBS Standard Reference Materials and four are IAEA reference materials. Overall, the results show that a mean of 52% of the input elements can be determined to a relative standard deviation of ±10% or better by reactor flux (thermal plus epithermal) INAA

  6. A Review of the Secondary Metabolites and Biological Activities of ...

    African Journals Online (AJOL)

    Review Article. A Review of the Secondary Metabolites and Biological. Activities of Tinospora crispa ... triterpenes have been isolated, some of which have also shown corresponding biological activities. The current review is an update on the .... were found to exhibit higher antioxidative potency than the synthetic antioxidant.

  7. Role of Muramyl Dipeptide in Lipopolysaccharide-Mediated Biological Activity and Osteoclast Activity

    Directory of Open Access Journals (Sweden)

    Hideki Kitaura

    2018-01-01

    Full Text Available Lipopolysaccharide (LPS is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and immunological activity. Muramyl dipeptide (MDP, the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP. MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-κB ligand (RANKL expression and toll-like receptor 4 (TLR4 expression both in vivo and in vitro. Additionally, MDP enhances LPS-induced mitogen-activated protein kinase (MAPK signaling in stromal cells. Taken together, these findings suggest that MDP plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological activities, primarily in relation to osteoclastogenesis.

  8. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  9. Dew formation and activity of biological crusts

    NARCIS (Netherlands)

    Veste, M.; Heusinkveld, B.G.; Berkowicz, S.M.; Breckle, S.W.; Littmann, T.; Jacobs, A.F.G.

    2008-01-01

    Biological soil crusts are prominent in many drylands and can be found in diverse parts of the globe including the Atacama desert, Chile, the Namib desert, Namibia, the Succulent-Karoo desert, South Africa, and the Negev desert, Israel. Because precipitation can be negligible in deserts ¿ the

  10. Galloylation of polyphenols alters their biological activity

    Czech Academy of Sciences Publication Activity Database

    Karas, D.; Ulrichová, J.; Valentová, Kateřina

    2017-01-01

    Roč. 105, JUL 2017 (2017), s. 223-240 ISSN 0278-6915 R&D Projects: GA MŠk(CZ) LD15082; GA MŠk(CZ) LD15084; GA MŠk(CZ) LO1304 Grant - others:GA ČR(CZ) GAP303/12/G163 Program:GA Institutional support: RVO:61388971 Keywords : Polyphenols * Gallic acid * Galloylation Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.778, year: 2016

  11. Biological risks associated with consumption of reptile products

    DEFF Research Database (Denmark)

    Magnino, S.; Colin, P.; Dei-Cas, E.

    2009-01-01

    recently increased in some areas of the world. Biological risks associated with the consumption of products from both farmed and wild reptile meat and eggs include infections caused by bacteria (Salmonella spp., Vibrio spp.). parasites (Spirometra, Trichinella, Gnathostoma, pentastomids), as well...... to increase the occurrence of biological hazards in reptile meat. Application of GHP, GMP and HACCP procedures, respectively at farm and slaughterhouse level, is crucial for controlling the hazards.......The consumption of a wide variety of species of reptiles caught from the wild has been an important source of protein for humans world-wide for millennia. Terrapins. snakes, lizards, crocodiles and iguanas are now farmed and the consumption and trade of their meat and other edible products have...

  12. PCMO L01-Setting Specifications for Biological Investigational Medicinal Products.

    Science.gov (United States)

    Krause, Stephan O

    2015-01-01

    This paper provides overall guidance and best practices for the setting of specifications for clinical biological drug substances and drug products within the framework of ICH guidelines on pharmaceutical development [Q8(R2) and Q11], quality risk management (Q9), and quality systems (Q10). A review is provided of the current regulatory expectations for the specification setting process as part of a control strategy during product development, pointing to existing challenges for the investigational new drug/investigational medicinal product dossier (IND/IMPD) sponsor. A case study illustrates how the investigational medicinal product specification revision process can be managed within a flexible quality system, and how specifications can be set and justified for early and late development stages. This paper provides an overview for the setting of product specifications for investigational medicinal products used in clinical trials. A case study illustrates how product specifications of investigational medicinal products can be justified and managed within a modern product quality system. © PDA, Inc. 2015.

  13. National experience in radiosterelization or radiodescontamination of biological products

    International Nuclear Information System (INIS)

    Padron, E.; Romay, Z.; Otero, I.; Chavez, A.; Prieto, E.; Sainz, D.; Rodriguez, R.; Diaz, D.

    1997-01-01

    The ionizing radiations are especially important when other chemical and physical methods can't be used, or they don't give the result required, for which the employment of advanced technologies for the sterilization is found in ascent at world level. To such effect, the International Atomic Energy Agency has, sponsored a coordinated program for the radiosterilization of medical and biological products in Latin America, in which Cuba participates. (author) [es

  14. Implementation of Plasma Fractionation in Biological Medicines Production

    OpenAIRE

    Mousavi Hosseini, Kamran; Ghasemzadeh, Mehran

    2016-01-01

    Context The major motivation for the preparation of the plasma derived biological medicine was the treatment of casualties from the Second World War. Due to the high expenses for preparation of plasma derived products, achievement of self-sufficiency in human plasma biotechnological industry is an important goal for developing countries. Evidence Acquisition The complexity of the blood plasma was first revealed by the Nobel Prize laureate, Arne Tiselius and Theodor Svedberg, which resulted in...

  15. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Loubette, N.; Junker, M.

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  16. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Nicolas Loubette; Michel Junker

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water bio-photolysis, photo-fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are explained. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  17. SYNBIOCHEM Synthetic Biology Research Centre, Manchester – A UK foundry for fine and speciality chemicals production

    Directory of Open Access Journals (Sweden)

    Le Feuvre RA

    2016-12-01

    Full Text Available The UK Synthetic Biology Research Centre, SYNBIOCHEM, hosted by the Manchester Institute of Biotechnology at the University of Manchester is delivering innovative technology platforms to facilitate the predictable engineering of microbial bio-factories for fine and speciality chemicals production. We provide an overview of our foundry activities that are being applied to grand challenge projects to deliver innovation in bio-based chemicals production for industrial biotechnology.

  18. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  19. Ficus carica L. (Moraceae: Phytochemistry, Traditional Uses and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shukranul Mawa

    2013-01-01

    Full Text Available This paper describes the botanical features of Ficus carica L. (Moraceae, its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents.

  20. Evolution of approaches to viral safety issues for biological products.

    Science.gov (United States)

    Lubiniecki, Anthony S

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) Approaches to viral safety issues for biological products have evolved during the past 50+ years. The first cell culture products (viral vaccines) relied largely on the use of in vitro and in vivo virus screening assays that were based upon infectivity of adventitious viral agents. The use of Cohn fractionation and pasteurization by manufacturers of plasma derivatives introduced the concepts that purification and treatment with physical and chemical agents could greatly reduce the risk of viral contamination of human albumin and immunoglobulin products. But the limitations of such approaches became clear for thermolabile products that were removed early in fractionation such as antihemophilic factors, which transmitted hepatitis viruses and HIV-1 to some product recipients. These successes and limitations were taken into account by the early developers of recombinant DNA (rDNA)-derived cell culture products and by regulatory agencies, leading to the utilization of cloning technology to reduce/eliminate contamination due to human viruses and purification technologies to physically remove and inactivate adventitious and endogenous viruses, along with cell banking and cell bank characterization for adventitious and endogenous viruses, viral screening of biological raw materials, and testing of cell culture harvests, to ensure virus safety. Later development and incorporation of nanofiltration technology in the manufacturing process provided additional assurance of viral clearance for safety of biotechnology products. These measures have proven very effective at preventing iatrogenic infection of recipients of biotechnology products; however, viral contamination of production cell cultures has

  1. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  2. SYNTHESIS, REACTIVITY AND BIOLOGICAL ACTIVITY OF QUINOXALIN-2-ONE DERIVATIVES

    OpenAIRE

    El Mokhtar Essassi; R. Bouhfid; Y. Kandri Rodi; S. Ferfra; H. Benzeid; Y. Ramli

    2010-01-01

    Quinoxalines have a great interest in various fields and particularly in chemistry, biology and pharmacology. It enabled the researchers to develop many methods for their preparations and to seek new fields of application. In this review, we’ll expose different methods of synthesis of the quinoxalin-2-one, its reactivity and finally we’ll discuss the various biological activities of its derivatives.

  3. Constituents and biological activities of Schinus polygamus.

    Science.gov (United States)

    Erazo, Silvia; Delporte, Carla; Negrete, Rosa; García, Rubén; Zaldívar, Mercedes; Iturra, Gladys; Caballero, Esther; López, José Luis; Backhouse, Nadine

    2006-10-11

    The folk medicine employs Schinus polygamus to treat arthritic pain and cleansing of wounds. As no reports of pharmacological studies supporting its anti-inflammatory and analgesic properties, extracts of increasing polarity were assayed on the base of fever, pain and inflammation, together with its antimicrobial activity. All the extracts showed pharmacological activities. From the most active extracts different metabolites were isolated that can in part explain the antipyretic, anti-inflammatory, and analgesic activity: beta-sitosterol, shikimic acid together with quercetin, previously reported. Also, the essential oil of leaves and fruits was obtained and compared with the oil obtained from Schinus polygamus collected in Argentine. Oils differed in composition and in antibacterial activity, where the Chilean species exhibited a wide spectrum of activity against Gram-positive and Gram-negative bacteria, and the most abundant compound found in leaves and fruits was beta-pinene, meanwhile the Argentine species showed high activity against Bacillus cereus, and the main components resulted to be alpha-phellandrene and limonene.

  4. Biotransformation of Lactones with Methylcyclohexane Ring and Their Biological Activity

    Directory of Open Access Journals (Sweden)

    Katarzyna Wińska

    2016-12-01

    Full Text Available The aim of the study was to obtain biological active compounds during biotransformation. Three bicyclic halolactones with methylcyclohexane ring (2-chloro-4-methyl-9-oxabicyclo-[4.3.0]nonan-8-one, 2-bromo-4-methyl-9-oxabicyclo[4.3.0]nona- -8-one and 2-iodo-4-methyl-9-oxabicyclo[4.3.0]nonan-8-one obtained from the corresponding γ,δ-unsaturated acid were subjected to a screening biotransformation using 22 fungal strains. Two of these strains (Cunninghamella japonica AM472 and Fusarium culmorum AM10 were able to transform halolactones into 2-hydroxy-4-methyl-9-oxabicyclo[4.3.0]nonan-8-one by hydrolytic dehalogenation with good yield. The biotransformation product was structurally different from its synthetically prepared analog. All halolactones and hydroxylactones were tested for their biological activity. The chlorolactone inhibited growth of Staphylococcus aureus (max ΔOD = 0, Escherichia coli (max ΔOD = 0.3 and Candida albicans (max ΔOD = 0 strains. Bromolactone caused inhibition of growth of Staphylococcus aureus (max ΔOD = 0 and Fusarium linii (max ΔOD = 0 strains. Iodolactone limited growth of Staphylococcus aureus (max ΔOD = 0, Escherichia coli (max ΔOD = 0.25, Candida albicans (max ΔOD = 0.45 and Pseudomonas fluorescens (max ΔOD = 0.42 strains. Hydroxylactone caused inhibition of growth of Staphylococcus aureus (max ΔOD = 0.36 and Pseudomonas fluorescens (max ΔOD = 0.39 strains only. The test performed on aphids Myzus persicae (Sulz. showed that chloro- and bromolactone exhibited deterrent activity after 24 h (ID = 0.5 and 0.4, respectively, while hydroxylactone was a weak attractant (ID = −0.3.

  5. Biological activity of sugarcane pyroligneous acid against ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-10-23

    Oct 23, 2013 ... most used for charcoal production is the Pinus elliottii var. .... de produtos naturais para o controle de Bemisia tabaci biótipo B .... larva. J. Econ. Entomol. 76:219-222. Zandersons J, Gravitis J, Kokorevics A, Zhurinsh A, ...

  6. Sustained climate warming drives declining marine biological productivity

    Science.gov (United States)

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois; Britten, Gregory L.; Lindsay, Keith; Long, Matthew; Doney, Scott C.; Mahowald, Natalie; Hoffman, Forrest; Randerson, James T.

    2018-03-01

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.

  7. Production of high specific activity silicon-32

    International Nuclear Information System (INIS)

    Phillips, D.R.; Brzezinski, M.A.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development Project (LDRD) at Los Alamos National Laboratory (LANL). There were two primary objectives for the work performed under this project. The first was to take advantage of capabilities and facilities at Los Alamos to produce the radionuclide 32 Si in unusually high specific activity. The second was to combine the radioanalytical expertise at Los Alamos with the expertise at the University of California to develop methods for the application of 32 Si in biological oceanographic research related to global climate modeling. The first objective was met by developing targetry for proton spallation production of 32 Si in KCl targets and chemistry for its recovery in very high specific activity. The second objective was met by developing a validated field-useable, radioanalytical technique, based upon gas-flow proportional counting, to measure the dynamics of silicon uptake by naturally occurring diatoms

  8. Biologically active substances from Zanthoxylum capense(thumb.) Harv.

    CSIR Research Space (South Africa)

    Steyn, PS

    1998-08-01

    Full Text Available A chemical investigation into the composition of Zanthoxylum capense yielded several biologically active compounds, including pellitorine. A convenient HPLC method was developed to determine the presence of pellitorine in crude extracts from plants...

  9. Biologically Active Compounds of Plant Foods: Prospective Impact ...

    African Journals Online (AJOL)

    On the other hand, other biologically active compounds impair health by ... of essential elements through different mechanisms and giving astringent taste, odor, ... The health benefits of selected substances from Ethiopian food crops need to ...

  10. Biological activities of Rumex dentatus L: Evaluation of methanol ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... of different the extracts of R. dentatus effectively inhibited tumor ... Plants contain thousands of biologically active mole- .... The vials were kept open over night with .... between prokaryotic and eukaryotic cells (Stachel and.

  11. Synthetic Approaches and Biological Activities of 4-Hydroxycoumarin Derivatives

    Directory of Open Access Journals (Sweden)

    Oee-Sook Park

    2009-11-01

    Full Text Available The main purpose of this review is to summarize recent chemical syntheses and structural modifications of 4-hydroxycoumarin and its derivatives, of interest due to their characteristic conjugated molecular architecture and biological activities.

  12. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    Science.gov (United States)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2010-01-01

    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.

  13. Physical activity and biological maturation: a systematic review

    Directory of Open Access Journals (Sweden)

    Eliane Denise Araújo Bacil

    2015-03-01

    Full Text Available OBJECTIVE: To analyze the association between physical activity (PA and biological maturation in children and adolescents. DATA SOURCE: We performed a systematic review in April 2013 in the electronic databases of PubMed/MEDLINE, SportDiscus, Web of Science and LILACS without time restrictions. A total of 628 potentially relevant articles were identified and 10 met the inclusion criteria for this review: cross-sectional or longitudinal studies, published in Portuguese, English or Spanish, with schoolchildren aged 9-15 years old of both genders. DATA SYNTHESIS: Despite the heterogeneity of the studies, there was an inverse association between PA and biological maturation. PA decreases with increased biological and chronological age in both genders. Boys tend to be more physically active than girls; however, when controlling for biological age, the gender differences disappear. The association between PA and timing of maturation varies between the genders. Variation in the timing of biological maturation affects the tracking of PA in early adolescent girls. This review suggests that mediators (BMI, depression, low self-esteem, and concerns about body weight can explain the association between PA and biological maturation. CONCLUSIONS: There is an association between PA and biological maturation. PA decreases with increasing biological age with no differences between genders. As for the timing of biological maturation, this association varies between genders.

  14. Radiopharmaceuticals production activities in Egypt

    International Nuclear Information System (INIS)

    Raieh, M.

    1998-01-01

    Applications of radiopharmaceuticals and labelled compounds in the field of nuclear medicine in Egypt have increased so rapidly in the last few years. At present, a large number of hospitals are utilizing these radioisotopic techniques for both diagnosis and treatment. The following production activities are taking place in the Egyptian Radioisotope Production laboratories. By utilizing the research reactor a large number of radioisotopes which find wide applications in nuclear medicine were produced, such as iodine-131, phosphorus-32, sodium-24, potassium-42 and molybdenum-99 / technetium-99m generators. Gallium-67, indium-111 and iodine-123 will be produced locally after installation of the cyclotron at the end of 1998. A large number of Tc-99m based kits for diagnostic medical applications have been produced. Also, many radiopharmaceuticals labelled with iodine-131 were produced. The radioisotope production laboratory is able to supply many hospitals with the radioimmunoassay kits of the thyroid related hormones (T4, T3 and TSH). Research and development activities are taking place in the field of monoclonal antibodies and tumor markers with special consideration of AFP, CEA, PSA and βhCG. (author)

  15. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  16. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  17. SYNTHESIS, CHARACTERIZATION OF BIOLOGICALLY ACTIVE N ...

    African Journals Online (AJOL)

    DR. AMINU

    2013-12-02

    Dec 2, 2013 ... Gibbs free energy of the complex compound are 3.1x1011 and -64.15 KJmol-1, respectively, suggesting ... Schiff base and its iron(II) complex showed good activity. Keywords: ... maximum solubility in DMF and DMSO at room.

  18. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  19. New uracil derivatives and their biological activity

    International Nuclear Information System (INIS)

    Hudecova, D.; Striganova, J.; Chovanec, P.; Uher, M.

    1998-01-01

    Present study is concentrated to the research of antimicrobial activity of some derivatives of the uracil and 1,3-dimethyluracyl. The antimicrobial effects of these compounds have been tested on various strains of bacteria, yeasts, and filamentous fungi. The highest antimicrobial effects were found with dithiocarbamato-derivatives, which were effective against pathogenic and non-pathogenic bacteria (IC 50 = 7-25 μg cm -3 ), yeasts (IC 50 = 9-60 μg cm -3 ) and filamentous fungi.The most sensitive fungus to dithiocarbamato-derivatives was Botritis cinerea. It seems to be apparent that the presence of the -NH-C(S)-S- group in molecules of derivatives of uracil and and 1,3-dimethyluracyl influencing the incorporation rate [ 14 ]-adenine and 14 ]-leucine into the biomolecules and also markedly inhibits oxygen consumption (IC 50 = 58 μg cm -3 ). The same derivative demonstrated no mutagenic activity. (authors)

  20. Isolation and biological activity of frankiamide.

    Science.gov (United States)

    Haansuu, J P; Klika, K D; Söderholm, P P; Ovcharenko, V V; Pihlaja, K; Haahtela, K K; Vuorela, P M

    2001-07-01

    An antibiotic produced by the symbiotic actinomycete Frankia strain AiPs1 was isolated from culture broth using optimized thin-layer chromatography and high-performance liquid chromatography (HPLC) methods. The novel compound that was isolated, dubbed frankiamide, displayed antimicrobial activity against all 14 Gram-positive bacterial strains and six pathogenic fungal strains tested. The pathogenic actinomycete Clavibacter michiganensis and the oomycete Phytophthora were especially susceptible. In addition to displaying antimicrobial activity, frankiamide also strongly inhibited 45Ca(2+) fluxes in clonal rat pituitary GH4C1 tumor cells and was comparable to a frequently used calcium antagonist, verapamil hydrochloride. The results of HPLC analysis, supported by both nuclear magnetic resonance and mass spectroscopy studies, showed that frankiamide has a high affinity for Na(+) ions.

  1. A field survey of chemicals and biological products used in shrimp farming

    International Nuclear Information System (INIS)

    Graeslund, S.; Holmstroem, K.; Wahlstroem, A.

    2003-01-01

    This study documented the use of chemicals and biological products in marine and brackish water shrimp farming in Thailand, the world's top producer of farmed shrimp. Interviews were conducted with 76 shrimp farmers in three major shrimp producing regions, the eastern Gulf coast, the southern Gulf coast and the Andaman coast area. Farmers in the study used on average 13 different chemicals and biological products. The most commonly used products were soil and water treatment products, pesticides and disinfectants. Farmers in the southern Gulf coast area used a larger number of products than farmers in the other two areas. In the study, the use of more than 290 different chemicals and biological products was documented. Many of the pesticides, disinfectants and antibiotics used by the farmers could have negative effects on the cultured shrimps, cause a risk for food safety, occupational health, and/or have negative effects on adjacent ecosystems. Manufacturers and retailers of the products often neglected to provide farmers with necessary information regarding active ingredient and relevant instructions for safe and efficient use

  2. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  3. Biological Activities of Three Essential Oils of the Lamiaceae Family

    Directory of Open Access Journals (Sweden)

    Gema Nieto

    2017-08-01

    Full Text Available Herbs and spices have been used since ancient times to improve the sensory characteristics of food, to act as preservatives and for their nutritional and healthy properties. Herbs and spices are generally recognized as safe (GRAS and are excellent substitutes for chemical additives. Essential oils are mixtures of volatile compounds obtained, mainly by steam distillation, from medicinal and aromatic plants. They are an alternative to synthetic additives for the food industry, and they have gained attention as potential sources for natural food preservatives due to the growing interest in the development of safe, effective, natural food preservation. Lamiaceae is one of the most important families in the production of essential oils with antioxidants and antimicrobial properties. Aromatic plants are rich in essential oils and are mainly found in the Mediterranean region, where the production of such oils is a profitable source of ecological and economic development. The use of essential oils with antimicrobial and antioxidant properties to increase the shelf life of food is a promising technology, and the essential oils of the Lamiaceae family, such as rosemary, thyme, and sage, have been extensively studied with respect to their use as food preservatives. Regarding the new applications of essential oils, this review gives an overview of the current knowledge and recent trends in the use of these oils from aromatic plants as antimicrobials and antioxidants in foods, as well as their biological activities, future potential, and challenges.

  4. Biological Activities of Three Essential Oils of the Lamiaceae Family.

    Science.gov (United States)

    Nieto, Gema

    2017-08-23

    Herbs and spices have been used since ancient times to improve the sensory characteristics of food, to act as preservatives and for their nutritional and healthy properties. Herbs and spices are generally recognized as safe (GRAS) and are excellent substitutes for chemical additives. Essential oils are mixtures of volatile compounds obtained, mainly by steam distillation, from medicinal and aromatic plants. They are an alternative to synthetic additives for the food industry, and they have gained attention as potential sources for natural food preservatives due to the growing interest in the development of safe, effective, natural food preservation. Lamiaceae is one of the most important families in the production of essential oils with antioxidants and antimicrobial properties. Aromatic plants are rich in essential oils and are mainly found in the Mediterranean region, where the production of such oils is a profitable source of ecological and economic development. The use of essential oils with antimicrobial and antioxidant properties to increase the shelf life of food is a promising technology, and the essential oils of the Lamiaceae family, such as rosemary, thyme, and sage, have been extensively studied with respect to their use as food preservatives. Regarding the new applications of essential oils, this review gives an overview of the current knowledge and recent trends in the use of these oils from aromatic plants as antimicrobials and antioxidants in foods, as well as their biological activities, future potential, and challenges.

  5. Phytochemical Analysis and Biological Activities of Cola nitida Bark

    Directory of Open Access Journals (Sweden)

    Durand Dah-Nouvlessounon

    2015-01-01

    Full Text Available Kola nut is chewed in many West African cultures and is used ceremonially. The aim of this study is to investigate some biological effects of Cola nitida’s bark after phytochemical screening. The bark was collected, dried, and then powdered for the phytochemical screening and extractions. Ethanol and ethyl acetate extracts of C. nitida were used in this study. The antibacterial activity was tested on ten reference strains and 28 meat isolated Staphylococcus strains by disc diffusion method. The antifungal activity of three fungal strains was determined on the Potato-Dextrose Agar medium mixed with the appropriate extract. The antioxidant activity was determined by DPPH and ABTS methods. Our data revealed the presence of various potent phytochemicals. For the reference and meat isolated strains, the inhibitory diameter zone was from 17.5±0.7 mm (C. albicans to 9.5±0.7 mm (P. vulgaris. The MIC ranged from 0.312 mg/mL to 5.000 mg/mL and the MBC from 0.625 mg/mL to >20 mg/mL. The highest antifungal activity was observed with F. verticillioides and the lowest one with P. citrinum. The two extracts have an excellent reducing free radical activity. The killing effect of A. salina larvae was perceptible at 1.04 mg/mL. The purified extracts of Cola nitida’s bark can be used to hold meat products and also like phytomedicine.

  6. Zoanthid mucus as new source of useful biologically active proteins.

    Science.gov (United States)

    Guarnieri, Míriam Camargo; de Albuquerque Modesto, Jeanne Claíne; Pérez, Carlos Daniel; Ottaiano, Tatiana Fontes; Ferreira, Rodrigo da Silva; Batista, Fabrício Pereira; de Brito, Marlon Vilela; Campos, Ikaro Henrique Mendes Pinto; Oliva, Maria Luiza Vilela

    2018-03-01

    Palythoa caribaeorum is a very common colonial zoanthid in the coastal reefs of Brazil. It is known for its massive production of mucus, which is traditionally used in folk medicine by fishermen in northeastern Brazil. This study identified biologically active compounds in P. caribaerum mucus. Crude mucus was collected during low tides by the manual scraping of colonies; samples were maintained in an ice bath, homogenized, and centrifuged at 16,000 g for 1 h at 4 °C; the supernatant (mucus) was kept at -80 °C until use. The enzymatic (proteolytic and phospholipase A 2 ), inhibitory (metallo, cysteine and serine proteases), and hemagglutinating (human erythrocyte) activities were determined. The results showed high levels of cysteine and metallo proteases, intermediate levels of phosholipase A 2 , low levels of trypsin, and no elastase and chymotrypsin like activities. The mucus showed potent inhibitory activity on snake venom metalloproteases and cysteine proteinase papain. In addition, it showed agglutinating activity towards O + , B + , and A + erythrocyte types. The hemostatic results showed that the mucus prolongs the aPTT and PT, and strongly inhibited platelet aggregation induced by arachidonic acid, collagen, epinephrine, ADP, and thrombin. The antimicrobial activity was tested on 15 strains of bacteria and fungi through the radial diffusion assay in agar, and no activity was observed. Compounds in P. caribaeorum mucus were analyzed for the first time in this study, and our results show potential pharmacological activities in these compounds, which are relevant for use in physiopathological investigations. However, the demonstration of these activities indicates caution in the use of crude mucus in folk medicine. Furthermore, the present or absent activities identified in this mucus suggest that the studied P. caribaeorum colonies were in thermal stress conditions at the time of sample collection; these conditions may precede the bleaching

  7. The yeast stands alone: the future of protein biologic production.

    Science.gov (United States)

    Love, Kerry R; Dalvie, Neil C; Love, J Christopher

    2017-12-22

    Yeasts are promising alternative hosts for the manufacturing of recombinant protein therapeutics because they simply and efficiently meet needs for both platform and small-market drugs. Fast accumulation of biomass and low-cost media reduce the cost-of-goods when using yeast, which in turn can enable agile, small-volume manufacturing facilities. Small, tractable yeast genomes are amenable to rapid process development, facilitating strain and product quality by design. Specifically, Pichia pastoris is becoming a widely accepted yeast for biopharmaceutical manufacturing in much of the world owing to a clean secreted product and the rapidly expanding understanding of its cell biology as a host organism. We advocate for a near term partnership spanning industry and academia to promote open source, timely development of yeast hosts. Copyright © 2017. Published by Elsevier Ltd.

  8. The bountiful biological activities of cyclotides

    Directory of Open Access Journals (Sweden)

    Samantha L Gerlach

    2012-01-01

    Full Text Available Cyclotides are exceptionally stable circular peptides (28-37 amino acid residues with a unique cyclic cystine knot (CCK motif that were originally discovered through ethnobotanical investigations and bioassay-directed natural products screenings. They have been isolated from four angiosperm families (Violaceae, Rubiaceae, Curcurbitaceae, and Fabaceae, and they exhibit a wide range of bioactivities including antibacterial/antimicrobial, nematocidal, molluscicidal, antifouling, insecticidal, antineurotensin, trypsin inhibiting, hemolytic, cytotoxic, antitumor, and anti-HIV properties. Reports indicate that the mechanism of cyclotide bioactivity is the ability to target and interact with lipid membranes via the development of pores. Additionally, the nature of their surface-exposed hydrophobic patch and CCK play integral roles in the potency of cyclotides. Their extraordinary stability and flexibility have recently allowed for the successful grafting of analogs with therapeutic properties onto their CCK framework. This achievement, coupled with the myriad of useful naturally occurring bioactivities displayed by cyclotides, makes them appealing candidates in drug design and crop management.

  9. Biologically active extracts with kidney affections applications

    Science.gov (United States)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  10. Soil biological activity as affected by tillage intensity

    Science.gov (United States)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  11. Biologically active extracts with kidney affections applications

    International Nuclear Information System (INIS)

    Pascu, Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-01-01

    Highlights: • The paper highlighted the compositional similarities and differences between the three extracts of bilberry and cranberry fruit derived from the same Ericaceae family. • A method of antioxidant activity, different cellulose membranes, a Whatman filter and Langmuir – kinetic model were used. • Arbutoside presence in all three extracts of bilberry and cranberry fruit explains their use in urinary infections – cystitis and colibacillosis. • Following these research studies, it was established that the fruits of bilberry and cranberry (fruit and leaves) significantly reduce the risk of urinary infections, and work effectively to protect against free radicals and inflammation. - Abstract: This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) – Vaccinium vitis-idaea L. and Bilberry (fruit) – Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  12. Biologically active extracts with kidney affections applications

    Energy Technology Data Exchange (ETDEWEB)

    Pascu, Mihaela, E-mail: mihhaela_neagu@yahoo.com [SC HOFIGAL S.A., Analytical Research Department, 2 Intr. Serelor, Bucharest-4 042124 (Romania); Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, 1-5 Polizu Street, 11061 Bucharest (Romania); Pascu, Daniela-Elena [Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, 1-5 Polizu Street, 11061 Bucharest (Romania); Cozea, Andreea [SC HOFIGAL S.A., Analytical Research Department, 2 Intr. Serelor, Bucharest-4 042124 (Romania); Transilvania University of Brasov, Faculty of Food and Tourism, 148 Castle Street, 500036 Brasov (Romania); Bunaciu, Andrei A. [SCIENT – Research Center for Instrumental Analysis, S.C. CROMATEC-PLUS S.R.L., 18 Sos. Cotroceni, Bucharest 060114 (Romania); Miron, Alexandra Raluca; Nechifor, Cristina Aurelia [Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, 1-5 Polizu Street, 11061 Bucharest (Romania)

    2015-12-15

    Highlights: • The paper highlighted the compositional similarities and differences between the three extracts of bilberry and cranberry fruit derived from the same Ericaceae family. • A method of antioxidant activity, different cellulose membranes, a Whatman filter and Langmuir – kinetic model were used. • Arbutoside presence in all three extracts of bilberry and cranberry fruit explains their use in urinary infections – cystitis and colibacillosis. • Following these research studies, it was established that the fruits of bilberry and cranberry (fruit and leaves) significantly reduce the risk of urinary infections, and work effectively to protect against free radicals and inflammation. - Abstract: This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) – Vaccinium vitis-idaea L. and Bilberry (fruit) – Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  13. Evaluation of the biological activity of sunflower hull extracts

    Energy Technology Data Exchange (ETDEWEB)

    Taha, F. S.; Wagdy, S. M.; Hassanein, M. M. M.; Hamed, S. F.

    2012-11-01

    This work was planned with the aim of adding value to sunflower seed hulls, a waste product of the oil industry by preparing a sunflower hull phenolic extract rich in chlorogenic acid (CGA). In order to fulfill this goal, the optimization for the extraction of a phenolic extract from the hulls was investigated. The parameters studied were: type of solvent, solvent to water ratio and hull to solvent ratio. In addition, the solvent mixtures were also studied. The resulting phenolic extracts were evaluated for their biological activities. This included phenolic content determination, evaluation of the antioxidant and antimicrobial activities. Chlorogenic acid was determined in two chosen hull extracts using the UV spectrophotometric method and HPLC analysis. The anti carcinogenic activity of the two chosen extracts was tested on seven different cell line carcinomas. The results revealed that all the phenolic extracts of sunflower hull studied contain between 190-312.5 mg phenolics/ 100 g hulls. The highest phenolic extraction was achieved with 80% methanol (1:30, hull to solvent, w/v ratio) and methanol to ethanol to water (7:7:6 v/v/v) mixture with values of 312.5 and 306.5 mg phenolics/100 g hulls, respectively. The free radical scavenging activity and antioxidant activity of all the samples ranged from 33.6-72.6%. The highest antioxidant activity and free radical scavenging activity were achieved by the same extracts that possessed the highest phenolic content, namely methanol to ethanol to water extract and 80% methanol with values 71.8 and 72.6%, 68.2 and 70.9% respectively, compared to 77.9 and 76.9% respectively for TBHQ. All the phenolic extracts possessed antimicrobial activity but to different levels against different pathogenic bacteria. The two chosen extracts also possessed anti carcinogenic activity, which differed among varying cell line carcinomas. The HPLC analysis indicated that chlorogenic acid was the main phenolic acid in the extract. Thus it can

  14. 78 FR 60884 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-02

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... Immunoregulation, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics...

  15. 77 FR 3780 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-01-25

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, FDA. The...

  16. 76 FR 44016 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-07-22

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research...

  17. Biological activities of radiation-degraded carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Relleve, Lorna; Dela Rosa, Alumanda; ABAD, Lucille; Aranilla, Charito; Aliganga, Anne Kathrina [Philippine Nuclear Research Institute, Quezon City (Philippines); Yoshii, Fumio; Kume, Tamikazu; Nagasawa, Naotsugu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  18. Protein covalent modification by biologically active quinones

    Directory of Open Access Journals (Sweden)

    MIROSLAV J. GASIC

    2004-11-01

    Full Text Available The avarone/avarol quinone/hydroquinone couple shows considerable antitumor activity. In this work, covalent modification of b-lactoglobulin by avarone and its derivatives as well as by the synthetic steroidal quinone 2,5(10-estradiene-1,4,17-trione and its derivatives were studied. The techniques for studying chemical modification of b-lactoglobulin by quinones were: UV/Vis spectrophotometry, SDS PAGE and isoelectrofocusing. SDS PAGE results suggest that polymerization of the protein occurs. It could be seen that the protein of 18 kD gives the bands of 20 kD, 36 kD, 40 kD, 45 kD, 64 kD and 128 kD depending on modification agent. The shift of the pI of the protein (5.4 upon modification toward lower values (from pI 5.0 to 5.3 indicated that lysine amino groups are the principal site of the reaction of b-lactoglobulin with the quinones.

  19. Biological activities of radiation-degraded carrageenan

    International Nuclear Information System (INIS)

    Relleve, Lorna; Dela Rosa, Alumanda; ABAD, Lucille; Aranilla, Charito; Aliganga, Anne Kathrina; Yoshii, Fumio; Kume, Tamikazu; Nagasawa, Naotsugu

    2001-01-01

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  20. Transport of biologically active material in laser cutting.

    Science.gov (United States)

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  1. Liposomal packaging generates Wnt protein with in vivo biological activity.

    Directory of Open Access Journals (Sweden)

    Nathan T Morrell

    2008-08-01

    Full Text Available Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  2. The Biological Activities of Sesterterpenoid-Type Ophiobolins.

    Science.gov (United States)

    Tian, Wei; Deng, Zixin; Hong, Kui

    2017-07-18

    Ophiobolins (Ophs) are a group of tricarbocyclic sesterterpenoids whose structures contain a tricyclic 5-8-5 carbotricyclic skeleton. Thus far, 49 natural Ophs have been reported and assigned into A-W subgroups in order of discovery. While these sesterterpenoids were first characterized as highly effective phytotoxins, later investigations demonstrated that they display a broad spectrum of biological and pharmacological characteristics such as phytotoxic, antimicrobial, nematocidal, cytotoxic, anti-influenza and inflammation-promoting activities. These bioactive molecules are promising drug candidates due to the developments of their anti-proliferative activities against a vast number of cancer cell lines, multidrug resistance (MDR) cells and cancer stem cells (CSCs). Despite numerous studies on the biological functions of Ophs, their pharmacological mechanism still requires further research. This review summarizes the chemical structures, sources, and biological activities of the oph family and discusses its mechanisms and structure-activity relationship to lay the foundation for the future developments and applications of these promising molecules.

  3. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T., E-mail: rsayre@newmexicoconsortium.org [Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM (United States)

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  4. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    International Nuclear Information System (INIS)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  5. Comparative study of biological activity of glutathione, sodium ...

    African Journals Online (AJOL)

    Glutathione (GSH) and sodium tungstate (Na2WO4) are important pharmacological agents. They provide protection to cells against cytotoxic agents and thus reduce their cytotoxicity. It was of interest to study the biological activity of these two pharmacological active agents. Different strains of bacteria were used and the ...

  6. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  7. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  8. SYNTHESIS, REACTIVITY AND BIOLOGICAL ACTIVITY OF QUINOXALIN-2-ONE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    El Mokhtar Essassi

    2010-04-01

    Full Text Available Quinoxalines have a great interest in various fields and particularly in chemistry, biology and pharmacology. It enabled the researchers to develop many methods for their preparations and to seek new fields of application. In this review, we’ll expose different methods of synthesis of the quinoxalin-2-one, its reactivity and finally we’ll discuss the various biological activities of its derivatives.

  9. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    Science.gov (United States)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  10. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    Science.gov (United States)

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  11. A study on biological activity of marine fungi from different habitats in coastal regions

    OpenAIRE

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results show...

  12. Biological activity of antitumoural MGBG: the structural variable.

    Science.gov (United States)

    Marques, M P M; Gil, F P S C; Calheiros, R; Battaglia, V; Brunati, A M; Agostinelli, E; Toninello, A

    2008-05-01

    The present study aims at determining the structure-activity relationships (SAR's) ruling the biological function of MGBG (methylglyoxal bis(guanylhydrazone)), a competitive inhibitor of S-adenosyl-L-methionine decarboxylase displaying anticancer activity, involved in the biosynthesis of the naturally occurring polyamines spermidine and spermine. In order to properly understand its biochemical activity, MGBG's structural preferences at physiological conditions were ascertained, by quantum mechanical (DFT) calculations.

  13. Biological activity of selected plants with adaptogenic effect

    OpenAIRE

    Eva Ivanišová; Miroslava Kačániová; Jana Petrová; Radka Staňková; Lucia Godočíková; Tomáš Krajčovič; Štefan Dráb

    2016-01-01

    The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diff...

  14. Improved biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using recombinant host cells. More particularly, the present invention pertains to recombinant host cells comprising (e.g., expressing) a polypeptide having aryl sulfotransferase...... activity, wherein said recombinant host cells have been modified to have an increased uptake of sulfate compared to identical host cells that does not carry said modification. Further provided are processes for the production of aryl sulfates, such as zosteric acid, employing such recombinant host cells....

  15. Biological Activity of Curcuminoids Isolated from Curcuma longa

    Directory of Open Access Journals (Sweden)

    Simay Çıkrıkçı

    2008-04-01

    Full Text Available Curcumin is the most important fraction of turmeric which is responsible for its biological activity. In this study, isolation and biological assessment of turmeric and curcumin have been discussed against standard bacterial and mycobacterial strains such as E.coli , S.aureus, E.feacalis, P.aeuroginosa, M.smegmatis, M.simiae, M.kansasii, M. terrae, M.szulgai and the fungi Candida albicans. The antioxidant activity of curcumin and turmeric were also determined by the CUPRAC method.

  16. Natural occurrence, biological activities and synthesis of eight-, nine-, and eleven-membered ring lactones

    Directory of Open Access Journals (Sweden)

    Helena M. C. Ferraz

    2008-01-01

    Full Text Available The natural occurrence, biological activities and synthetic approaches to natural eight-, nine-, and eleven-membered lactones is reviewed. These medium ring lactones are grouped according to ring size, and their syntheses are discussed. The structures of some natural products early identified as medium-ring lactones were revised after total synthesis.

  17. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Syntheses and biological activities of 13-substituted avermectin aglycons.

    Science.gov (United States)

    Mrozik, H; Linn, B O; Eskola, P; Lusi, A; Matzuk, A; Preiser, F A; Ostlind, D A; Schaeffer, J M; Fisher, M H

    1989-02-01

    The reactions of sulfonate esters of the allylic/homoallylic 13-alcohol of 5-O-(tert-butyldimethylsilyl)-22,23-dihydroavermectin B1a aglycon (1a) were investigated. Nucleophilic substitution gave 13 beta-chloro and 13 beta-iodo derivatives, while solvolytic reaction conditions yielded 13 alpha-methoxy, 13 alpha-fluoro, and 13 alpha-chloro products. A mixture of 13 alpha- and 13 beta-fluorides was obtained upon reaction with DAST. The 13 beta-iodide gave, upon elimination with lutidine, the 8(9),10(11),12(13),14(15)-tetraene. The 13 beta-alcohol and the rearranged 15-ol 13(14)-ene and 15-amino 13(14)-ene derivatives were obtained by substitution via the allylic carbonium ion. MEM ethers 11 and 12 of the two epimeric 13-ols were prepared by alkylation with MEM chloride. In contrast, methylation of 1a with MeI and Ag2O in CH2Cl2 occurred exclusively at the tertiary 7-hydroxy group and not at the secondary 13 alpha-ol. Oxidation of the allylic alcohol 1a proceeded under Swern conditions but not with MnO2 to the 13-oxo aglycon, which was reduced by NaBH4 exclusively to the natural 13 alpha-ol, while reductive amination with NaCNBH3-NH4OAc gave the 13 alpha-amine. The methoxime derivative was obtained in the form of the two geometric isomers. Anthelmintic activities against the sheep nematode Trichostrongylus colubriformis, miticidal activities against the two-spotted spider mite (Tetranychus urticae), and insecticidal activities against the southern armyworm (Spodoptera eridania) as well as the binding constants to a free living nematode (Caenorhabditis elegans) derived receptor assay were obtained and compared to avermectin B1a, 22,23-dihydroavermectin B1a, and the 13-deoxy-22,23-dihydroavermectin B1 aglycon related to the milbemycins. None of the newly prepared derivatives exceeded the potency of the three reference compounds. Lipophilic 13-substituents such as halogen, alkoxy, and methoxime retained high biological activities in all assays, while the more polar

  19. Supercritical Algal Extracts: A Source of Biologically Active Compounds from Nature

    Directory of Open Access Journals (Sweden)

    Izabela Michalak

    2015-01-01

    Full Text Available The paper discusses the potential applicability of the process of supercritical fluid extraction (SFE in the production of algal extracts with the consideration of the process conditions and yields. State of the art in the research on solvent-free isolation of biologically active compounds from the biomass of algae was presented. Various aspects related with the properties of useful compounds found in cells of microalgae and macroalgae were discussed, including their potential applications as the natural components of plant protection products (biostimulants and bioregulators, dietary feed and food supplements, and pharmaceuticals. Analytical methods of determination of the natural compounds derived from algae were discussed. Algal extracts produced by SFE process enable obtaining a solvent-free concentrate of biologically active compounds; however, detailed economic analysis, as well as elaboration of products standardization procedures, is required in order to implement the products in the market.

  20. Effect of gamma irradiation on biological activity of thyrotropin

    Energy Technology Data Exchange (ETDEWEB)

    Strbak, V; Macho, L; Sedlak, J; Hromadova, M

    1976-03-01

    The biological activity of thyrotropin (TSH) was tested after sterilization by 0.5 and 12.5 Mrad of gamma irradiation. It was found that the biological activity (McKenzie's assay) of TSH irradiated in dry state was not affected during the first month after sterilization by doses of 0.5 and 2.5 Mrad. However, substantial decrease of TSH biological activity was observed 3 to 5 months after the irradiation, the lower activity being after the former dose. The irradiation of TSH by 12.5 Mrad in dry state and by 0.5 and 2.5 Mrad in solution resulted in a decrease of biological activity already during first month. The structural changes in the molecule of TSH were apparently not very extensive, since a decrease of disulfide bonds from 0.96 to 0.77 M per 1M of TSH was found immediately after the irradiation, while uv absorbancy and electrophoretic mobility on polyacrylamide gel electrophoresis were unaffected. These changes were followed by the decrease of TSH stability during storage in dry state. It is hypothesized that TSH molecule may be affected in ..beta.. subunit or in its connection with ..cap alpha...

  1. Effect of gamma irradiation on biological activity of thyrotropin

    International Nuclear Information System (INIS)

    Strbak, V.; Macho, L.; Sedlak, J.; Hromadova, M.

    1976-01-01

    The biological activity of thyrotropin (TSH) was tested after sterilization by 0.5 and 12.5 Mrad of gamma radiation. It was found that the biological activity (McKenzie's assay) of TSH irradiated in dry state was not affected during the first month after sterilization by doses of 0.5 and 2.5 Mrad. However, substantial decrease of TSH biological activity was observed 3 to 5 months after the irradiation, the lower activity after the 0.5 Mrad dose. The irradiation of TSH by 12.5 Mrad in dry state and by 0.5 and 2.5 Mrad in solution resulted in decreased biological activity already during the first month. The structural changes in the TSH molecule were apparently not very extensive, as a decrease of disulfide bonds from 0.96 to 0.77 M per 1 M of TSH was found immediately after the irradiation, while UV absorbancy and electrophoretic mobility on polyacrylamide gel electrophoresis were unaffected. These changes were followed by a decrease of TSH stability during storage in dry state. It is hypothesized that a TSH molecule may be affected in a β subunit or in its connection with α. (author)

  2. Isolation, structural determination, and evaluation of the biological activity of 20(S)-25-methoxyl-dammarane-3beta, 12beta, 20-triol [20(S)-25-OCH3-PPD], a novel natural product from Panax notoginseng.

    Science.gov (United States)

    Zhao, Y; Wang, W; Han, L; Rayburn, E R; Hill, D L; Wang, H; Zhang, R

    2007-01-01

    Ginseng has been used extensively for medicinal purposes, with suggested utility for indications as diverse as diabetes, cardiovascular disease and cancer. Herein we report the discovery and characterization of 20(S)-25-OCH3-PPD, a ginsenoside that inhibits growth and survival of cancer cells. The novel dammarane triterpene sapogenin (C31H56O4; molecular weight 492) was isolated from the total hydrolyzed saponins extracted from the leaves of Panax notoginseng using conventional and reverse-phase silica gel chromatography. Based on physicochemical characteristics and NMR data, the compound was identified as 20(S)-25-OCH3-PPD. The biological activities of 20(S)-25-OCH3-PPD and its known analogs, 20(S)-PPD and Rg3, were evaluated in 12 human cancer cell lines. In all cell lines, the order of cytotoxicity of the test compounds was 20(S)-25-OCH3-PPD > 20(S)-PPD > Rg3. 20(S)-25-OCH3-PPD also induced apoptosis and cell cycle arrest in the G1 phase, and inhibited proliferation in breast cancer cell lines, demonstrating its potent biological effects. In regard to cytotoxicity, the IC50 values of 20(S)-25-OCH3-PPD for most cell lines were in the lower microM range, a 5-15-fold greater cytotoxicity relative to 20(S)-PPD and a 10-100-fold increase over Rg3. These findings suggest a structure-activity relationship among dammarane-type sapogenins. The data presented here may provide a basis for the future development of 20(S)-25-OCH3-PPD as a novel anti-cancer agent.

  3. Generation of structurally novel short carotenoids and study of their biological activity.

    Science.gov (United States)

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-02-23

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli.

  4. Biological risks associated with consumption of reptile products.

    Science.gov (United States)

    Magnino, Simone; Colin, Pierre; Dei-Cas, Eduardo; Madsen, Mogens; McLauchlin, Jim; Nöckler, Karsten; Maradona, Miguel Prieto; Tsigarida, Eirini; Vanopdenbosch, Emmanuel; Van Peteghem, Carlos

    2009-09-15

    The consumption of a wide variety of species of reptiles caught from the wild has been an important source of protein for humans world-wide for millennia. Terrapins, snakes, lizards, crocodiles and iguanas are now farmed and the consumption and trade of their meat and other edible products have recently increased in some areas of the world. Biological risks associated with the consumption of products from both farmed and wild reptile meat and eggs include infections caused by bacteria (Salmonella spp., Vibrio spp.), parasites (Spirometra, Trichinella, Gnathostoma, pentastomids), as well as intoxications by biotoxins. For crocodiles, Salmonella spp. constitute a significant public health risk due to the high intestinal carrier rate which is reflected in an equally high contamination rate in their fresh and frozen meat. There is a lack of information about the presence of Salmonella spp. in meat from other edible reptilians, though captive reptiles used as pets (lizards or turtles) are frequently carriers of these bacteria in Europe. Parasitic protozoa in reptiles represent a negligible risk for public health compared to parasitic metazoans, of which trichinellosis, pentastomiasis, gnathostomiasis and sparganosis can be acquired through consumption of contaminated crocodile, monitor lizard, turtle and snake meat, respectively. Other reptiles, although found to harbour the above parasites, have not been implicated with their transmission to humans. Freezing treatment inactivates Spirometra and Trichinella in crocodile meat, while the effectiveness of freezing of other reptilian meat is unknown. Biotoxins that accumulate in the flesh of sea turtles may cause chelonitoxism, a type of food poisoning with a high mortality rate in humans. Infections by fungi, including yeasts, and viruses widely occur in reptiles but have not been linked to a human health risk through the contamination of their meat. Currently there are no indications that natural transmissible spongiform

  5. [Biologically active substances of black currant of new varieties].

    Science.gov (United States)

    Miasishcheva, N V; Artemova, E N

    2013-01-01

    The assortment of black currant actively replenishes and is constantly updated as a result of successful work of domestic and foreign selectors. New grades of black currant are characterized by the raised content of biologically active substances, including vitamin C, P-active agents, pectin and are of special interest for studying. Fresh berries of seven grades (Azhurnaya, Arapka, Iskushenie, Kreolka, Ladushka, Orel serenade, Ocharovanie) of black currant which were selected by the All-Russian research institute of selection of fruit crops and are perspective for cultivation in the Central Chernozem Region of Russia were chosen as objects for research. The nutritional value of fresh berries was found to vary. Average content of soluble solids was 14.1%, while those below the average were observed in Kreolka (12.1%). The maximum amount of sugars characterized Ladushka grade (11.05%), minimum--Kreolka (9.00%). It has been found that most varieties have fairly high acidity. It is worth noting grade Ladushka, which had the highest sugar-acid index (4.39), with the lowest acidity (2.51%). The highest content of ascorbic acid was found in varieties Orel Serenade--183.7 mg/100 g, the smallest--Ocharovanie--110 mg/100 g, grade Azhurnaya, Kreolka, Ladushka exceeded this indicator average value (144.9 mg/100 g). In terms of the amount of P-active substances stood grades having values above the average (722.2 mg/100 g): Azhurnaya (789.8 mg/100 g), Kreolka (864.5 mg/100 g), Oryol serenade (765.6 mg/100 g). The average content of pectin in the studied berries of black currant was 7.92%, with a minimum of 6.30% was observed in grades Azhurnaya, maximum 9.90%--the kind Oryol serenade. High values of this index were characterized by grade Ladushka, Ocharovanie. Azhurnaya varieties, Creole, Orel serenade had high levels of ascorbic acid and P-active substances. Sort Ladushka marked as a dessert due to the largest sugar-acid ratio. Ladushka, Orel Serenade, Ocharovanie have the

  6. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  7. 78 FR 19492 - Draft Guidance for Industry on Formal Meetings Between FDA and Biosimilar Biological Product...

    Science.gov (United States)

    2013-04-01

    ..., or Office of Communication, Outreach, and Development (HFM-40), Center for Biologics Evaluation and... biological product. This draft guidance describes the Agency's current thinking on how it intends to... review of biosimilar biological products. Because these meetings often will represent critical points in...

  8. 78 FR 20663 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-05

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function..., Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, FDA. FDA intends to...

  9. Synthesis and Biological Investigation of Antioxidant Pyrrolomorpholine Spiroketal Natural Products

    Science.gov (United States)

    Verano, Alyssa Leigh

    The pyrrolomorpholine spiroketal natural product family is comprised of epimeric furanose and pyranose isomers. These compounds were isolated from diverse plant species, all of which are used as traditional Chinese medicines for the treatment of a variety of diseases. Notably, the spiroketal natural products acortatarins A and B exhibit antioxidant activity in a diabetic renal cell model, significantly attenuating hyperglycemia-induced production of reactive oxygen species (ROS), a hallmark of diabetic nephropathy. The xylapyrrosides, additional members of the family, also inhibit t-butyl hydroperoxide-induced cytotoxicity in rat vascular smooth muscle cells. Accordingly, these natural products have therapeutic potential for the treatment of oxidative stress-related pathologies, and synthetic access would provide an exciting opportunity to investigate bioactivity and mechanism of action. Herein, we report the stereoselective synthesis of acortatarins A and B, furanose members of the pyrrolomorpholine spiroketal family. Our synthetic route was expanded to synthesize the pyranose congeners, thus completing entire D-enantiomeric family of natural products. Efficient access towards these scaffolds enabled systematic analogue synthesis, investigation of mechanism-of-action, and the discovery of novel antioxidants.

  10. [Recent advances of synthetic biology for production of functional ingredients in Chinese materia medica].

    Science.gov (United States)

    Su, Xin-Yao; Xue, Jian-Ping; Wang, Cai-Xia

    2016-11-01

    The functional ingredients in Chinese materia medica are the main active substance for traditional Chinese medicine and most of them are secondary metabolites derivatives. Until now,the main method to obtain those functional ingredients is through direct extraction from the Chinese materia medica. However, the income is very low because of the high extraction costs and the decreased medicinal plants. Synthetic biology technology, as a new and microbial approach, can be able to carry out large-scale production of functional ingredients and greatly ease the shortage of traditional Chinese medicine ingredients. This review mainly focused on the recent advances in synthetic biology for the functional ingredients production. Copyright© by the Chinese Pharmaceutical Association.

  11. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products.

    Science.gov (United States)

    Frevert, Jürgen

    2015-03-01

    Botulinum neurotoxin injections are a valuable treatment modality for many therapeutic indications and have revolutionized the field of aesthetic medicine so that they are the leading cosmetic procedure performed worldwide. Studies show that onabotulinumtoxinA, abobotulinumtoxinA, and incobotulinumtoxinA are comparable in terms of clinical efficacy. Differences between the products relate to the botulinum neurotoxin complexes, specific biological potency, and their immunogenicity. Protein complex size and molecular weight have no effect on biological activity, stability, distribution, or side effect profile. Complexing proteins and inactive toxin (toxoid) content increase the risk of neutralizing antibody formation, which can cause secondary treatment failure, particularly in chronic disorders that require frequent injections and long-term treatment. These attributes could lead to differences in therapeutic outcomes, and, given the widespread aesthetic use of these three neurotoxin products, physicians should be aware of how they differ to ensure their safe and effective use.

  12. Recent Advances in Momordica charantia: Functional Components and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shuo Jia

    2017-11-01

    Full Text Available Momordica charantia L. (M. charantia, a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.

  13. Recent Advances in Momordica charantia: Functional Components and Biological Activities.

    Science.gov (United States)

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-11-28

    Momordica charantia L. ( M. charantia ), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia .

  14. Biological activity of phenolic compounds present in buckwheat plants

    Czech Academy of Sciences Publication Activity Database

    Kalinová, J.; Tříska, Jan; Vrchotová, Naděžda

    2005-01-01

    Roč. 16, č. 1 (2005), s. 123-129 ISSN 0971-4693 Institutional research plan: CEZ:AV0Z60870520 Keywords : biological activity, extract, Fagopyrum esculenthum Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.686, year: 2005

  15. Design, Synthesis, and Biological Evaluation of Isothiosemicarbazones with Antimycobacterial Activity

    Czech Academy of Sciences Publication Activity Database

    Novotná, E.; Waisser, K.; Kuneš, J.; Palát, K.; Skálová, L.; Szotáková, B.; Buchta, V.; Stolaříková, J.; Ulmann, V.; Pávová, Marcela; Weber, Jan; Komrsková, J.; Hašková, P.; Vokřál, I.; Wsól, V.

    2017-01-01

    Roč. 350, č. 8 (2017), č. článku e1700020. ISSN 0365-6233 Institutional support: RVO:61388963 Keywords : biological activity * cytotoxicity * isocitrate lyase * isothiosemicarbazone * tuberculosis Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.994, year: 2016

  16. Aspartate and glutamate mimetic structures in biologically active compounds.

    Science.gov (United States)

    Stefanic, Peter; Dolenc, Marija Sollner

    2004-04-01

    Glutamate and aspartate are frequently recognized as key structural elements for the biological activity of natural peptides and synthetic compounds. The acidic side-chain functionality of both the amino acids provides the basis for the ionic interaction and subsequent molecular recognition by specific receptor sites that results in the regulation of physiological or pathophysiological processes in the organism. In the development of new biologically active compounds that possess the ability to modulate these processes, compounds offering the same type of interactions are being designed. Thus, using a peptidomimetic design approach, glutamate and aspartate mimetics are incorporated into the structure of final biologically active compounds. This review covers different bioisosteric replacements of carboxylic acid alone, as well as mimetics of the whole amino acid structure. Amino acid analogs presented include those with different distances between anionic moieties, and analogs with additional functional groups that result in conformational restriction or alternative interaction sites. The article also provides an overview of different cyclic structures, including various cycloalkane, bicyclic and heterocyclic analogs, that lead to conformational restriction. Higher di- and tripeptide mimetics in which carboxylic acid functionality is incorporated into larger molecules are also reviewed. In addition to the mimetic structures presented, emphasis in this article is placed on their steric and electronic properties. These mimetics constitute a useful pool of fragments in the design of new biologically active compounds, particularly in the field of RGD mimetics and excitatory amino acid agonists and antagonists.

  17. Biological activities of some Fluoroquinolones-metal complexes

    African Journals Online (AJOL)

    McRoy

    Background: Metal ions play a vital role in the design of more biologically active drugs. Aim: The paper reviewed the .... 2H2O by direct reaction of copper(II) sulphate pentahydrate with ciprofloxacin in distilled water. ... membered ring and the chloride ion completes the seven coordination around the Ca2+ion.[37-39].

  18. Biological activities of species in the genus Tulbaghia : A review ...

    African Journals Online (AJOL)

    Species of the genus Tulbaghia has been widely used in traditional medicine to treat various ailments such rheumatism, fits, fever, earache, tuberculosis etc. It is believed that the species possess several therapeutic properties. This paper evaluates some of the biological activities of the genus Tulbaghia. It is evident from ...

  19. A Review on Chemical Constituents and Biological Activities of the ...

    African Journals Online (AJOL)

    The current review is aimed to deliver some updates on the ethnobotany, phytochemistry and biological activities of Beilschmiedia species in order to throw more light on their therapeutic potentials and future research priorities. Phytochemical studies on Beilschmiedia genus yielded essential oils, endiandric acid ...

  20. Students’ learning activities while studying biological process diagrams

    NARCIS (Netherlands)

    Kragten, M.; Admiraal, W.; Rijlaarsdam, G.

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students’ learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each

  1. Physio-chemical evaluation and biological activity of Ajuga ...

    African Journals Online (AJOL)

    Physio-chemical evaluation and biological activity of Ajuga bracteosa wall and Viola odoroto Linn. Anwar Ali Shad, M. Zeeshan, Hina Fazal, Hamid Ullah Shah, Shabir Ahmed, Hasem Abeer, E. F. Abd_Allah, Riaz Ullah, Hamid Afridi, Akash tariq, Muhammad Adnan Asma ...

  2. Polysaccharies of higher fungi: Biological role, structure and antioxidative activity

    NARCIS (Netherlands)

    Kozarski, M.S.; Klaus, A.; Niksic, M.; Griensven, van L.J.L.D.; Vrvic, M.M.; Jakovljevic, D.M.

    2014-01-01

    The fungal polysaccharides attract a lot of attention due to their multiple challenging bio-logical properties, such as: anti-tumor, anti-viral, anticomplementary, anticoagulant, hypo-lipidemic, immunomodulatory and immune-stimulatory activities, which all together make them suitable for application

  3. Occurrence, biological activity and synthesis of drimane sesquiterpenoids

    NARCIS (Netherlands)

    Jansen, B.J.M.; Groot, de Æ.

    2004-01-01

    In this review the names, structures and occurrence of all new drimanes and rearranged drimanes, which have been published between January 1990 and January 2003 have been collected. Subjects that have been treated are biosynthesis, analysis, biological activities, with special attention to cytotoxic

  4. Development of biological functional material and product from Nelumbo nucifera

    International Nuclear Information System (INIS)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-01

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient

  5. Development of biological functional material and product from Nelumbo nucifera

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-15

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient.

  6. Secondary Metabolites from Inula britannica L. and Their Biological Activities

    Directory of Open Access Journals (Sweden)

    Yoon-Ha Kim

    2010-03-01

    Full Text Available Inula britannica L., family Asteraceae, is used in traditional Chinese and Kampo Medicines for various diseases. Flowers or the aerial parts are a rich source of secondary metabolites. These consist mainly of terpenoids (sesquiterpene lactones and dimmers, diterpenes and triterpenoids and flavonoids. The isolated compounds have shown diverse biological activities: anticancer, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities. This review provides information on isolated bioactive phytochemicals and pharmacological potentials of I. britannica.

  7. A Review on Phytoconstituents and Biological activities of Cuscuta species.

    Science.gov (United States)

    Ahmad, Ateeque; Tandon, Sudeep; Xuan, Tran Dang; Nooreen, Zulfa

    2017-08-01

    The genus Cuscuta belonging to the Cuscutaceae family comprises of about 100-170 species spread around the world. Although several species have been studied for their phytochemical characterization and biological activities but still many species are yet unexplored till date. Cuscuta are parasitic plants generally of yellow, orange, red or rarely green color. The Cuscuta species were reported rich in flavonoid and glycosidic constituents along with alkaloids, fatty acids, fixed oil, minerals, essential oil and others phytomolecules also etc. Flavonoids and other molecules of Cuscuta species were reported for different types of biological activities such as antiproliferative activity, antioxidant activity, anti-inflammatory, hepatoprotective, antimicrobial and anxiolytic activity, while some other flavonoids have exhibited potential antiviral and anticancer especially in ovarian and breast cancer activities. This review is an attempt to compile all the available data for the 24 different of Cuscuta species on the basis of different types of phytochemical constituents and biological studies as above. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is why active learning is such an effective instructional tool and the limits of this instructional method’s ability to influence performance. This dissertation builds a case in three steps for why active learning is an effective instructional tool. In step one, I assessed the influence of different types of active learning (clickers, group activities, and whole class discussions) on student engagement behavior in one semester of two different introductory biology courses and found that active learning positively influenced student engagement behavior significantly more than lecture. For step two, I examined over four semesters whether student engagement behavior was a predictor of performance and found participation (engagement behavior) in the online (video watching) and in-class course activities (clicker participation) that I measure were significant predictors of performance. In the third, I assessed whether certain active learning satisfied the psychological needs that lead to students’ intrinsic motivation to participate in those activities when compared over two semesters and across two different institutions of higher learning. Findings from this last step show us that student’s perceptions of autonomy, competency, and relatedness in doing various types of active learning are significantly higher than lecture and consistent across two institutions of higher learning. Lastly, I tie everything together, discuss implications of the research, and address future directions for research on biology student motivation and behavior.

  9. Certification of biological reference materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lanjewar, Mamata R.; Lanjewar, R.B.

    2014-01-01

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 21 minor and trace elements in two standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques ,Czechoslovakia. Also some biological standards such as Bowen's kale, cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of Reference Materials of Biological Matrices. (author)

  10. Radiometric microbiologic assay for the biologically active forms of niacin

    International Nuclear Information System (INIS)

    Kertcher, J.A.; Guilarte, T.R.; Chen, M.F.; Rider, A.A.; McIntyre, P.A.

    1979-01-01

    A radiometric microbiologic assay has been developed for the determination of niacin in biologic fluids. Lactobacillus plantarum produced 14 CO 2 from L-[U- 14 C] malic acid in quantities proportional to the amount of niacin present. The assay is specific for the biologically active forms of niacin in humans. Thirty normal hemolysates were analyzed and the values ranged from 13.0 to 17.8 μg niacin/ml RBC (mean = 15.27 +- 1.33 s.d.). Good recovery and reproducibility studies were obtained with this assay. On thirty blood samples, correlation was excellent between the radiometric and the conventional turbidimetric assays

  11. Protein stability and enzyme activity at extreme biological temperatures

    International Nuclear Information System (INIS)

    Feller, Georges

    2010-01-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 0 C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  12. Evolution of activities in international biological standardization since the early days of the Health Organisation of the League of Nations.

    Science.gov (United States)

    Sizaret, P

    1988-01-01

    The main activities in international biological standardization during the 18 years that followed the first international biological standardization meeting in London in 1921 were concerned with expressing the potencies of test preparations in comparison with reference materials. After the Second World War, however, it became clear that the testing of biological substances against international reference materials was only one among several measures for obtaining safe and potent products. The activities in international biological standardization were therefore widened so that, by the strict observance of specific manufacturing and control requirements, it was possible to gain further in safety and efficacy. At the end of 1987, 42 international requirements for biological substances were available and were being used as national requirements, sometimes after minor modification, by the majority of WHO's Member States. This is of utmost importance for the worldwide use of safe and potent biological products, including vaccines.

  13. Integrated anaerobic/aerobic biological treatment for intensive swine production.

    Science.gov (United States)

    Bortone, Giuseppe

    2009-11-01

    Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment.

  14. Determination of chromium in biological matrices by neutron activation

    International Nuclear Information System (INIS)

    McClendon, L.T.

    1978-01-01

    Chromium is recognized to be an essential trace element in several biological systems. It exists in many biological materials in a variety of chemical forms and very low concentration levels which cause problems for many analytical techniques. Both instrumental and destructive neutron activation analysis were used to determine the chromium concentration in Orchard Leaves, SRM 1571, Brewers Yeast, SRM 1569, and Bovine Liver, SRM 1577. Some of the problems inherent with determining chromium in certain biological matrices and the data obtained here at the National Bureau of Standards using this technique are discussed. The results obtained from dissolution of brewers yeast in a closed system as described in the DNAA procedure are in good agreement with the INAA results. The same phenomenon existed in the determination of chromium in bovine liver. The radiochemical procedure described for chromium (DNAA) provides the analyst with a simple, rapid and selective technique for chromium determination in a variety of matrices. (T.G.)

  15. 76 FR 13646 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-03-14

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review...

  16. 76 FR 55397 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-09-07

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... Laboratory of Method Development, Division of Viral Products, Office of Vaccines Research and Review, Center...

  17. Biological activity of soils strongly polluted with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Krol, M; Maliszewska, W; Siuta, J

    1972-01-01

    Studies were carried out on soils strongly polluted with sulfur and acidified (to pH 1.4). The soils were subjected to an intensive liming. In field and pot experiments, the authors determined: the total quantity of bacteria, actinomycetes, fungi, azotobacter, nitrifiers, proteolytic activity of microorganisms, activity of ammonifiers and the number of sulfur-oxidizing and sulfate-reducing bacteria. It was found that intensive liming of sulfur-affected soils restored their biological activity. 8 references, 5 figures, 1 table.

  18. Synthesis and biological activity of imidazopyridine anticoccidial agents: Part II.

    Science.gov (United States)

    Scribner, Andrew; Dennis, Richard; Lee, Shuliang; Ouvry, Gilles; Perrey, David; Fisher, Michael; Wyvratt, Matthew; Leavitt, Penny; Liberator, Paul; Gurnett, Anne; Brown, Chris; Mathew, John; Thompson, Donald; Schmatz, Dennis; Biftu, Tesfaye

    2008-06-01

    Coccidiosis is the major cause of morbidity and mortality in the poultry industry. Protozoan parasites of the genus Eimeria invade the intestinal lining of the avian host causing tissue pathology, poor weight gain, and in some cases mortality. Resistance to current anticoccidials has prompted the search for new therapeutic agents with potent in vitro and in vivo activity against Eimeria. Recently, we reported the synthesis and biological activity of potent imidazo[1,2-a]pyridine anticoccidial agents. Antiparasitic activity is due to inhibition of a parasite specific cGMP-dependent protein kinase (PKG). In this study, we report the synthesis and anticoccidial activity of a second set of such compounds, focusing on derivatization of the amine side chain at the imidazopyridine 7-position. From this series, several compounds showed subnanomolar in vitro activity and commercial levels of in vivo activity. However, the potential genotoxicity of these compounds precludes them from further development.

  19. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana.

    Science.gov (United States)

    Jassbi, Amir Reza; Zare, Somayeh; Asadollahi, Mojtaba; Schuman, Meredith C

    2017-10-11

    Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.

  20. Biological activity and photostability of biflorin micellar nanostructures.

    Science.gov (United States)

    Santana, Edson R B; Ferreira-Neto, João P; Yara, Ricardo; Sena, Kêsia X F R; Fontes, Adriana; Lima, Cláudia S A

    2015-05-13

    Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR) and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9%) and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS). The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures' photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  1. Biological Activity and Photostability of Biflorin Micellar Nanostructures

    Directory of Open Access Journals (Sweden)

    Edson R. B. Santana

    2015-05-01

    Full Text Available Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9% and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS. The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures’ photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  2. The Biological Activities of Sesterterpenoid-Type Ophiobolins

    Directory of Open Access Journals (Sweden)

    Wei Tian

    2017-07-01

    Full Text Available Ophiobolins (Ophs are a group of tricarbocyclic sesterterpenoids whose structures contain a tricyclic 5-8-5 carbotricyclic skeleton. Thus far, 49 natural Ophs have been reported and assigned into A–W subgroups in order of discovery. While these sesterterpenoids were first characterized as highly effective phytotoxins, later investigations demonstrated that they display a broad spectrum of biological and pharmacological characteristics such as phytotoxic, antimicrobial, nematocidal, cytotoxic, anti-influenza and inflammation-promoting activities. These bioactive molecules are promising drug candidates due to the developments of their anti-proliferative activities against a vast number of cancer cell lines, multidrug resistance (MDR cells and cancer stem cells (CSCs. Despite numerous studies on the biological functions of Ophs, their pharmacological mechanism still requires further research. This review summarizes the chemical structures, sources, and biological activities of the oph family and discusses its mechanisms and structure–activity relationship to lay the foundation for the future developments and applications of these promising molecules.

  3. Biological activities of xanthatin from Xanthium strumarium leaves.

    Science.gov (United States)

    Nibret, Endalkachew; Youns, Mahamoud; Krauth-Siegel, R Luise; Wink, Michael

    2011-12-01

    The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC(50) value of 2.63 µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE(2) synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100 µg/mL and 97 µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC(50) values of 26.04 µg/mL and 44.70 µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6 h of treatment with 100 µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE(2) synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Entropy Production and Fluctuation Theorems for Active Matter

    Science.gov (United States)

    Mandal, Dibyendu; Klymko, Katherine; DeWeese, Michael R.

    2017-12-01

    Active biological systems reside far from equilibrium, dissipating heat even in their steady state, thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics. In this Letter, we have extended the emerging framework of stochastic thermodynamics to active matter. In particular, for the active Ornstein-Uhlenbeck model, we have provided consistent definitions of thermodynamic quantities such as work, energy, heat, entropy, and entropy production at the level of single, stochastic trajectories and derived related fluctuation relations. We have developed a generalization of the Clausius inequality, which is valid even in the presence of the non-Hamiltonian dynamics underlying active matter systems. We have illustrated our results with explicit numerical studies.

  5. A study on biological activity of marine fungi from different habitats in coastal regions.

    Science.gov (United States)

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.

  6. 78 FR 65904 - Permanent Discontinuance or Interruption in Manufacturing of Certain Drug or Biological Products

    Science.gov (United States)

    2013-11-04

    ... Manufacturing of Certain Drug or Biological Products AGENCY: Food and Drug Administration, HHS. ACTION: Proposed.... The Fabrazyme shortage resulted from contamination at the manufacturing [[Page 65910

  7. Biological activity of selected plants with adaptogenic effect

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2016-05-01

    Full Text Available The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diffusion method against three species of Gram-negative bacteria: Escherichia coli CCM 3988, Salmonella enterica subsp. enterica CCM 3807, Yersinia enterocolitica CCM 5671 and two Gram-positive bacteria: Bacillus thuringiensis CCM 19, Stapylococcus aureus subsp. aureus CCM 2461. Results showed that plants with adaptogenic effect are rich for biologically active substances. The highest antioxidant activity by DPPH method was determined in the sample of Eleuterococcus senticosus (3.15 mg TEAC – Trolox equivalent antioxidant capacity per g of sample and by phosphomolybdenum method in the sample of Codonopsis pilosulae (188.79 mg TEAC per g of sample. In the sample of Panax ginseng was measured the highest content of total polyphenols (8.10 mg GAE – galic acid equivalent per g of sample and flavonoids (3.41 μg QE – quercetin equivalent per g of sample. All samples also showed strong antimicrobial activity with the best results in Panax ginseng and Withania somnifera in particular for species Yersinia enterocolitica CCM 5671 and Salmonella enterica subsp. enterica CCM 3807. The analyzed species of plant with high value of biological activity can be used more in the future, not only in food, but also in cosmetics and pharmaceutical industries.

  8. Charged particle activation analysis of phosphorus in biological materials

    International Nuclear Information System (INIS)

    Masumoto, K.; Yagi, M.

    1983-01-01

    Charged particle activation analysis of phosphorus in biological materials using the 31 P(α,n) sup(34m)Cl reaction has been studied. Since sup(34m)Cl is also produced by the 32 S(α,pn) and the 35 Cl(α,α'n) reactions, the thick-target yield curves on phosphorus, sulfur and chlorine were determined in order to choose the optimum irradiation conditions. As a result, it was found that the activation analysis for phosphorus without interferences from sulfur and chlorine is possible by bombarding with less than 17 MeV alphas. The applicability of this method to biological samples was then examined by irradiating several standard reference materials. It was confirmed that phosphorus can readily be determined at the detection limit of 1μg free from interferences due to the matrix elements. (author)

  9. Biological activities and medicinal properties of Cajanus cajan (L) Millsp.

    Science.gov (United States)

    Pal, Dilipkumar; Mishra, Pragya; Sachan, Neetu; Ghosh, Ashoke K

    2011-10-01

    Cajanus cajan (L) Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur) (family: Fabaceae) is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  10. Biological activities and medicinal properties of Cajanus cajan (L Millsp.

    Directory of Open Access Journals (Sweden)

    Dilipkumar Pal

    2011-01-01

    Full Text Available Cajanus cajan (L Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur (family: Fabaceae is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  11. Detection of biologically active diterpenoic acids by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Talian, Ivan; Orinak, Andrej; Efremov, Evtim V.

    2010-01-01

    Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy is not su......Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy...... few enhanced Raman lines. SERS spectra with 514-nm excitation with Ag colloids were also relatively weak. The best SERS spectrawere obtained with 785-nm excitation on a novel nanostructured substrate, 'black silicon' coated with a 400-nm gold layer. The spectra showed clear differences...

  12. Allobetulin and Its Derivatives: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Talgat S. Seitembetov

    2011-03-01

    Full Text Available This review covers the chemistry of allobetulin analogs, including their formation by rearrangement from betulin derivatives, their further derivatisation, their fusion with heterocyclic rings, and any further rearrangements of allobetulin compounds including ring opening, ring contraction and ring expansion reactions. In the last part, the most important biological activities of allobetulin derivatives are listed. One hundred and fifteen references are cited and the relevant literature is covered, starting in 1922 up to the end of 2010.

  13. Biological Activities and Phytochemicals of Swietenia macrophylla King

    Directory of Open Access Journals (Sweden)

    Habsah Abdul Kadir

    2013-08-01

    Full Text Available Swietenia macrophylla King (Meliaceae is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance.

  14. Synthesis and biological activity of imidazopyridine anticoccidial agents: part I.

    Science.gov (United States)

    Scribner, Andrew; Dennis, Richard; Hong, Jean; Lee, Shuliang; McIntyre, Donald; Perrey, David; Feng, Dennis; Fisher, Michael; Wyvratt, Matthew; Leavitt, Penny; Liberator, Paul; Gurnett, Anne; Brown, Chris; Mathew, John; Thompson, Donald; Schmatz, Dennis; Biftu, Tesfaye

    2007-01-01

    Coccidiosis is the major cause of morbidity and mortality in the poultry industry. Protozoan parasites of the genus Eimeria invade the intestinal lining of the avian host causing tissue pathology, poor weight gain, and in some cases mortality. Resistance to current anticoccidials has prompted the search for new therapeutic agents with potent in vitro and in vivo activity against Eimeria. Antiparasitic activity is due to inhibition of a parasite specific cGMP-dependent protein kinase (PKG). In this study, we present the synthesis and biological activity of imidazo[1,2-a]pyridine anticoccidial agents. From this series, several compounds showed subnanomolar in vitro activity and commercial levels of in vivo activity. However, the potential genotoxicity of these compounds precludes them from further development.

  15. Biological evaluation of recombinant human erythropoietin in pharmaceutical products

    Directory of Open Access Journals (Sweden)

    Ramos A.S.

    2003-01-01

    Full Text Available The potencies of mammalian cell-derived recombinant human erythropoietin pharmaceutical preparations, from a total of five manufacturers, were assessed by in vivo bioassay using standardized protocols. Eight-week-old normocythemic mice received a single subcutaneous injection followed by blood sampling 96 h later or multiple daily injections with blood sampling 24 h after the last injection. Reticulocyte counting by microscopic examination was employed as the end-point using the brilliant cresyl blue or selective hemolysis methods, together with automated flow cytometry. Different injection schedules were investigated and dose-response curves for the European Pharmacopoeia Biological Reference Preparation of erythropoietin were compared. Manual and automated methods of reticulocyte counting were correlated with respect to assay validity and precision. Using 8 mice per treatment group, intra-assay precision determined for all of the assays in the study showed coefficients of variation of 12.1-28.4% for the brilliant cresyl blue method, 14.1-30.8% for the selective hemolysis method and 8.5-19.7% for the flow cytometry method. Applying the single injection protocol, a combination of at least two independent assays was required to achieve the precision potency and confidence limits indicated by the manufacturers, while the multiple daily injection protocol yielded the same acceptable results within a single assay. Although the latter protocol using flow cytometry for reticulocyte counting gave more precise and reproducible results (intra-assay coefficients of variation: 5.9-14.2%, the well-characterized manual methods provide equally valid alternatives for the quality control of recombinant human erythropoietin therapeutic products.

  16. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    Science.gov (United States)

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  18. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    International Nuclear Information System (INIS)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan

    2012-01-01

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, 1 H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  19. Adsorption of Heavy Metals on Biologically Activated Brown Coal Sludge

    Directory of Open Access Journals (Sweden)

    Mária Praščáková

    2005-11-01

    Full Text Available Adsorption of cooper (II and zinc (II ions from aqueous solutions on a biologically activated brown coal sludge was investigated. Four families of adsorbents were prepared from the brown coal sludge bya microorganism’s activity. There were used microscopic fungi such as Aspergillus niger, Aspergillus clavatus, Penicillium glabrum and Trichoderma viride. Prepared sorbents were capable of removing Cu (II and Zn (II. The sorption isotherm has been constructed and the specific metal uptake and the maximum capacity of the adsorbent have been determined.

  20. Phytochemistry and biological activities of Heracleum persicum: a review.

    Science.gov (United States)

    Majidi, Zahra; Sadati Lamardi, S N

    2018-05-24

    Heracleum persicum Desf. ex Fisch is used in Iranian traditional medicines, for the treatment of various diseases including neurological, gastrointestinal, respiratory, rheumatological and urinary tract diseases. In phytochemical analysis of H. persicum, several classes of natural chemicals including volatile (aliphatic esters, carbonyls, phenyl propenes and terpenes) and nonvolatile (flavonoids, furanocoumarins, tannins and alkaloids) constituents as well as different minerals have been identified. Scientific studies on H. persicum proved that it has a wide range of biological and pharmacological activities. This article has provided comprehensive information on Iranian traditional uses, phytochemistry and pharmacological activities of H. persicum. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  1. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  2. The biological activities and chemical composition of Pereskia species (Cactaceae)--a review.

    Science.gov (United States)

    Pinto, Nícolas de Castro Campos; Scio, Elita

    2014-09-01

    The exploration of nature as a source of sustainable, novel bioactive substances continues to grow as natural products play a significant role in the search for new therapeutic and agricultural agents. In this context, plants of the genus Pereskia (Cactaceae) have been studied for their biological activities, and are evolving as an interesting subject in the search for new, bioactive compounds. These species are commonly used as human foodstuffs and in traditional medicine to treat a variety of diseases. This review focuses on the bioactivity and chemical composition of the genus Pereskia, and aims to stimulate further studies on the chemistry and biological potential of the genus.

  3. Biological methane production under putative Enceladus-like conditions.

    Science.gov (United States)

    Taubner, Ruth-Sophie; Pappenreiter, Patricia; Zwicker, Jennifer; Smrzka, Daniel; Pruckner, Christian; Kolar, Philipp; Bernacchi, Sébastien; Seifert, Arne H; Krajete, Alexander; Bach, Wolfgang; Peckmann, Jörn; Paulik, Christian; Firneis, Maria G; Schleper, Christa; Rittmann, Simon K-M R

    2018-02-27

    The detection of silica-rich dust particles, as an indication for ongoing hydrothermal activity, and the presence of water and organic molecules in the plume of Enceladus, have made Saturn's icy moon a hot spot in the search for potential extraterrestrial life. Methanogenic archaea are among the organisms that could potentially thrive under the predicted conditions on Enceladus, considering that both molecular hydrogen (H 2 ) and methane (CH 4 ) have been detected in the plume. Here we show that a methanogenic archaeon, Methanothermococcus okinawensis, can produce CH 4 under physicochemical conditions extrapolated for Enceladus. Up to 72% carbon dioxide to CH 4 conversion is reached at 50 bar in the presence of potential inhibitors. Furthermore, kinetic and thermodynamic computations of low-temperature serpentinization indicate that there may be sufficient H 2 gas production to serve as a substrate for CH 4 production on Enceladus. We conclude that some of the CH 4 detected in the plume of Enceladus might, in principle, be produced by methanogens.

  4. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Matsuhashi, S.

    2000-01-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48 V and 62 Zn. (author)

  5. On the mechanism of biological activation by tritium.

    Science.gov (United States)

    Rozhko, T V; Badun, G A; Razzhivina, I A; Guseynov, O A; Guseynova, V E; Kudryasheva, N S

    2016-06-01

    The mechanism of biological activation by beta-emitting radionuclide tritium was studied. Luminous marine bacteria were used as a bioassay to monitor the biological effect of tritium with luminescence intensity as the physiological parameter tested. Two different types of tritium sources were used: HTO molecules distributed regularly in the surrounding aqueous medium, and a solid source with tritium atoms fixed on its surface (tritium-labeled films, 0.11, 0.28, 0.91, and 2.36 MBq/cm(2)). When using the tritium-labeled films, tritium penetration into the cells was prevented. The both types of tritium sources revealed similar changes in the bacterial luminescence kinetics: a delay period followed by bioluminescence activation. No monotonic dependences of bioluminescence activation efficiency on specific radioactivities of the films were found. A 15-day exposure to tritiated water (100 MBq/L) did not reveal mutations in bacterial DNA. The results obtained give preference to a "non-genomic" mechanism of bioluminescence activation by tritium. An activation of the intracellular bioluminescence process develops without penetration of tritium atoms into the cells and can be caused by intensification of trans-membrane cellular processes stimulated by ionization and radiolysis of aqueous media. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Generation of structurally novel short carotenoids and study of their biological activity

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Moon S.; Lee, Bun Y.

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored...... thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid...... structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-atocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid...

  7. Toxicity of Biologically Active Peptides and Future Safety Aspects: An Update.

    Science.gov (United States)

    Khan, Fazlullah; Niaz, Kamal; Abdollahi, Mohammad

    2018-02-18

    Peptides are fragments of proteins with significant biological activities. These peptides are encoded in the protein sequence. Initially, such peptides are inactive in their parental form, unless proteolytic enzymes are released. These peptides then exhibit various functions and play a therapeutic role in the body. Besides the therapeutic and physiological activities of peptides, the main purpose of this study was to highlight the safety aspects of peptides. We performed an organized search of available literature using PubMed, Google Scholar, Medline, EMBASE, Reaxys and Scopus databases. All the relevant citations including research and review articles about the toxicity of biologically active peptides were evaluated and gathered in this study. Biological peptides are widely used in the daily routine ranging from food production to the cosmetics industry and also they have a beneficial role in the treatment and prevention of different diseases. These peptides are manufactured by both chemical and biotechnological techniques, which show negligible toxicity, however, some naturally occurring peptides and enzymes may induce high toxicity. Depending upon the demand and expected use in the food or pharmaceutical industry, we need different approaches to acertain the safety of these peptides preferentially through in silico methods. Intestinal wall disruption, erythrocytes and lymphocytes toxicity, free radical production, enzymopathic and immunopathic tissue damage and cytotoxicity due to the consumption of peptides are the main problems in the biological system that lead to various complicated disorders. Therefore, before considering biologically active peptides for food production and for therapeutic purpose, it is first necessary to evaluate the immunogenicity and toxicities of peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Hydrological structure and biological productivity of the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, U.D.; Muraleedharan, P.M.

    Hydrological structure analyses of regions in the tropical Atlantic Ocean have consistently revealed the existence of a typical tropical structure characterized by a nitrate-depleted mixed layer above the thermocline. The important biological...

  9. Synthesis and Antiplatelet Activity of Antithrombotic Thiourea Compounds: Biological and Structure-Activity Relationship Studies

    Directory of Open Access Journals (Sweden)

    André Luiz Lourenço

    2015-04-01

    Full Text Available The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations.

  10. Rectal Cancer Survivors' Participation in Productive Activities.

    Science.gov (United States)

    Hornbrook, Mark C; Grant, Marcia; Wendel, Christopher; Bulkley, Joanna E; Mcmullen, Carmit K; Altschuler, Andrea; Temple, Larissa Kf; Herrinton, Lisa J; Krouse, Robert S

    2017-01-01

    Rectal cancer and its treatment impair survivors' productivity. To assess determinants of market and nonmarket employment, job search, volunteering, and homemaking among survivors five years or longer after diagnosis. We mailed questionnaires to 1063 survivors who were members of Kaiser Permanente (Northern California, Northwest) during 2010 and 2011. Productive activities, functional health status, and bowel management at the time of the survey. Response rate was 60.5% (577/953). Higher comorbidity burdens were associated with lower productivity for men and women rectal cancer survivors. Productive survivors were younger and had lower disease stage and age at diagnosis, higher household income and educational attainment, and fewer comorbidity burdens and workplace adjustments than did nonproductive survivors (p < 0.05 each; 2-sided). Productive rectal cancer survivors were evenly split by sex. Staying productive is associated with better mental health for rectal cancer survivors. Rectal cancer survivors with multiple chronic conditions, higher disease stage, lower productive activities, and older age need better access to medical care and closer monitoring of the quality of their care, including self-care. To capture the full extent of the involvement of survivors in all types of productive activities, research should routinely include measures of employment, searching for employment, homemaking, and volunteering. Counting market and nonmarket productive activities is innovative and recognizes the continuum of contributions survivors make to families and society. Health care systems should routinely monitor rectal cancer survivors' medical care access, comorbidities, health-related quality of life, and productive activities.

  11. ACTIVE PACKAGING SYSTEM FOR MEAT AND MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    Adriana Pavelková

    2012-10-01

    Full Text Available In the recent past, food packaging was used to enable marketing of products and to provide passive protection against environmental contaminations or influences that affect the shelf life of the products. However, unlike traditional packaging, which must be totally inert, active packaging is designed to interact with the contents and/or the surrounding environment. Interest in the use of active packaging systems for meat and meat products has increased in recent years. Active packaging systems are developed with the goal of extending shelf life for foods and increasing the period of time that the food is high quality. Developments in active packaging have led to advances in many areas, including delayed oxidation and controlled respiration rate, microbial growth, and moisture migration. Active packaging technologies include some physical, chemical, or biological action which changes interactions between a package, product, and/or headspace of the package in order to get a desired outcome. Active packaging systems discussed include oxygen scavengers, carbon dioxide scavengers and emitters, moisture control agents, flavour/odour absorbers and releasers  and antimicrobial packaging technologies. Active packaging is typically found in two types of systems; sachets and pads which are placed inside of packages, and active ingredients that are incorporated directly into packaging materials.  Recognition of the benefits of active packaging technologies by the food industry, development of economically viable packaging systems and increased consumer acceptance is necessary for commercial realisation of these packaging technologies.doi:10.5219/205

  12. Radiometric microbiologic assay for the biologically active forms of niacin

    Energy Technology Data Exchange (ETDEWEB)

    Kertcher, J.A.; Guilarte, T.R.; Chen, M.F.; Rider, A.A.; McIntyre, P.A.

    1979-05-01

    A radiometric microbiologic assay has been developed for the determination of niacin in biologic fluids. Lactobacillus plantarum produced /sup 14/CO/sub 2/ from L-(U-/sup 14/C) malic acid in quantities proportional to the amount of niacin present. The assay is specific for the biologically active forms of niacin in humans. Thirty normal hemolysates were analyzed and the values ranged from 13.0 to 17.8 ..mu..g niacin/ml RBC (mean = 15.27 +- 1.33 s.d.). Good recovery and reproducibility studies were obtained with this assay. On thirty blood samples, correlation was excellent between the radiometric and the conventional turbidimetric assays.

  13. European activities in space radiation biology and exobiology

    International Nuclear Information System (INIS)

    Horneck, G.

    1996-01-01

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  14. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].

    Science.gov (United States)

    Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L

    2016-01-01

    Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.

  15. 37 CFR 1.779 - Calculation of patent term extension for a veterinary biological product.

    Science.gov (United States)

    2010-07-01

    ... period beginning on the date the authority to prepare an experimental biological product under the Virus... diligence; (iii) One-half the number of days remaining in the period defined by paragraph (c)(1) of this... experimental biological product under the Virus-Serum-Toxin Act was submitted before November 16, 1988, by— (A...

  16. 77 FR 42319 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-07-18

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Vaccines and Related Biological Products Advisory Committee. General Function of the Committee: To provide... consideration of the appropriateness of cell lines derived from human tumors for vaccine manufacture. FDA...

  17. 75 FR 59729 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-09-28

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... vaccines for a post-exposure prophylaxis indication using the animal rule. On November 17, 2010, the...

  18. 77 FR 63839 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-10-17

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Vaccines and Related Biological Products Advisory Committee. General Function of the Committee: To provide...) Virus Monovalent Vaccine manufactured by GlaxoSmithKline. On November 15, 2012, the committee will meet...

  19. 75 FR 2876 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-01-19

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Vaccines and Related Biological Products Advisory Committee. General Function of the Committee: To provide... virus vaccine for the 2010 - 2011 influenza season. FDA intends to make background material available to...

  20. 76 FR 3639 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-01-20

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Vaccines and Related Biological Products Advisory Committee. General Function of the Committee: To provide... the influenza virus vaccine for the 2011-2012 influenza season. The committee will also hear an update...

  1. 78 FR 5465 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-01-25

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Vaccines and Related Biological Products Advisory Committee. General Function of the Committee: To provide... virus vaccine for the 2013- 2014 influenza season. FDA intends to make background material available to...

  2. 21 CFR 310.4 - Biologics; products subject to license control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Biologics; products subject to license control... to license control. (a) If a drug has an approved license under section 351 of the Public Health.... (b) To obtain marketing approval for radioactive biological products for human use, as defined in...

  3. Circumventing furin enhances factor VIII biological activity and ameliorates bleeding phenotypes in hemophilia models

    OpenAIRE

    Siner, Joshua I.; Samelson-Jones, Benjamin J.; Crudele, Julie M.; French, Robert A.; Lee, Benjamin J.; Zhou, Shanzhen; Merricks, Elizabeth; Raymer, Robin; Nichols, Timothy C.; Camire, Rodney M.; Arruda, Valder R.

    2016-01-01

    Processing by the proprotein convertase furin is believed to be critical for the biological activity of multiple proteins involved in hemostasis, including coagulation factor VIII (FVIII). This belief prompted the retention of the furin recognition motif (amino acids 1645–1648) in the design of B-domain–deleted FVIII (FVIII-BDD) products in current clinical use and in the drug development pipeline, as well as in experimental FVIII gene therapy strategies. Here, we report that processing by fu...

  4. Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity

    OpenAIRE

    Turner, David P.

    2015-01-01

    Low income, poor diet, obesity and a lack of exercise are inter-related lifestyle factors that can profoundly alter our biological make-up to increase cancer risk, growth and development. We recently reported a potential mechanistic link between carbohydrate derived metabolites and cancer which may provide a biological consequence of lifestyle that can directly impact tumor biology. Advanced glycation end-products (AGEs) are reactive metabolites produced as a by-product of sugar metabolism. F...

  5. Biological activity of Penaeus monodon GILT in shrimp pathogen protection

    Directory of Open Access Journals (Sweden)

    Aekkaraj Nualla-ong

    2017-04-01

    Full Text Available Gamma-interferon-inducible lysosomal thiol reductase (GILT contains a CXXC active site motif that possesses thiol reductase activity by catalyzing the disulfide bond reduction of exogenous antigens. Mutating the active site of human GILT to change the cysteine residues to serine residues eliminates this property. Our previous study reported that Penaeus monodon GILT (PmGILT contained a CXXS active site motif. Therefore, we assessed the enzymatic activity of PmGILT and demonstrated that it displayed identical thiol reductase activity at an acidic pH. In addition, the biological activity of PmGILT against shrimp pathogens, including white spot syndrome virus (WSSV and Gram-negative bacteria, was investigated. The neutralization of WSSV with PmGILT indicated the inhibition of WSSV invasion into shrimp hemocyte cells. Moreover, the relative percentage survival of shrimp injected with PmGILT-treated virus solution was 75%. Finally, the antimicrobial activity of PmGILT was confirmed by the growth inhibition of Vibrio harveyi. These results establish the role of PmGILT in the inhibition of the virulence of two major shrimp pathogens.

  6. Biochemical studies on certain biologically active nitrogenous compounds

    International Nuclear Information System (INIS)

    Abdel kader, S.M.; El Sayed, M.M.; El Malt, E.A.; Shaker, E.S.; Abdel Aziz, H.G.

    2010-01-01

    Certain biologically active nitrogenous compounds such as alkaloids are widely distributed in many wild and medicinal plants such as peganum harmala L. (Phycophyllaceae). However, less literature cited on the natural compounds was extracted from the aerial parts of this plant; therefore this study was conducted on harmal leaves using several solvents. Data indicated that methanol extract was the inhibitoriest effect against some pathogenic bacteria, particularly Streptococcus pyogenus. Chromatographic separation illustrated that presence of four compounds; the most active one was the third compound (3). Elementary analysis (C, H, N) revealed that the primary chemical structure of the active antibacterial compound (C3) was: C17 H21 N3 O7 S with molecular weight 411. Spectroscopic analysis proved that coninical structure was = 1- thioformyl, 8?- D glucoperanoside- Bis- 2, 3 dihydroisopyridino pyrrol. This new compound is represented as a noval ?- carboline alkaloid compound

  7. Investigating Biological Activity Spectrum for Novel Styrylquinazoline Analogues

    Directory of Open Access Journals (Sweden)

    Jaroslaw Polanski

    2009-10-01

    Full Text Available In this study, series of ring-substituted 2-styrylquinazolin-4(3H-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.

  8. Biological Activity Predictions and Hydrogen Bonding Analysis in Quinolines

    Science.gov (United States)

    Gupta, Palvi; Kamni

    The paper has been designed to make a comprehensive review of a particular series of organic molecular assembly in the form of compendium. An overview of general description of fifteen quinoline derivatives has been given. The biological activity spectra of quinoline derivatives have been correlated on structure activity relationships base which provides the different Pa (possibility of activity) and Pi (possibility of inactivity) values. Expositions of the role of intermolecular interactions in the identified derivatives have been discussed with the standard distance and angle cut-off criteria criteria as proposed by Desiraju and Steiner (1999) in an International monogram on crystallography. Distance-angle scatter plots for intermolecular interactions are presented for a better understanding of the packing interactions which exist in quinoline derivatives.

  9. Biological and therapeutic activities, and anticancer properties of curcumin.

    Science.gov (United States)

    Perrone, Donatella; Ardito, Fatima; Giannatempo, Giovanni; Dioguardi, Mario; Troiano, Giuseppe; Lo Russo, Lucio; DE Lillo, Alfredo; Laino, Luigi; Lo Muzio, Lorenzo

    2015-11-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.

  10. Pereskia aculeata Muller (Cactaceae Leaves: Chemical Composition and Biological Activities

    Directory of Open Access Journals (Sweden)

    Lucèia Fàtima Souza

    2016-09-01

    Full Text Available The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE/g. The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  11. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    Science.gov (United States)

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-09-03

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  12. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  13. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    Directory of Open Access Journals (Sweden)

    Nocerino N

    2014-03-01

    Full Text Available Nunzia Nocerino,1 Andrea Fulgione,1 Marco Iannaccone,1 Laura Tomasetta,1 Flora Ianniello,1 Francesca Martora,1 Marco Lelli,2 Norberto Roveri,2 Federico Capuano,3 Rosanna Capparelli1 1Department of Agriculture Special Biotechnology Center Federico II, CeBIOTEC Biotechnology, University of Naples Federico II, Naples, 2Department of Chemistry, G Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, 3Department of Food Inspection IZS ME, Naples, Italy Abstract: The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA. We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. Keywords: lactoferrin, hydroxyapatite nanocrystals, biomimetism, biological activity, drug delivery

  14. Marine products with anti-protozoal activity: a review.

    Science.gov (United States)

    García, Marley; Monzote, Lianet

    2014-01-01

    The marine organisms are a rich source of varied natural products with unique functionality. A variety of natural products of new molecular structures with diverse biological activities have been reported from marine flora and fauna for treatment and/or prevention of human diseases. The present review briefly illustrates current status of marine products as antiprotozoal agents. The in vitro and in vivo studies of marine algae, invertebrates and micro-organism against different protozoa parasites are included. The marine products studied, according to international criterions for selection of more promisory products in the different models reported, demonstrated their potentialities as antiprozoal agents. Herein, the interest of scientific community to search new alternatives from marine environment has been demonstrated.

  15. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  16. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  17. Synthetic biology for microbial production of lipid-based biofuels

    Energy Technology Data Exchange (ETDEWEB)

    d' Espaux, L; Mendez-Perez, D; Li, R; Keasling, JD

    2015-10-23

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  18. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    Directory of Open Access Journals (Sweden)

    Ranga Rao Ambati

    2014-01-01

    Full Text Available There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.

  19. Eurotium (Aspergillus) repens metabolites and their biological activity.

    Science.gov (United States)

    Podojil, M; Sedmera, P; Vokoun, J; Betina, V; Baráthová, H; Duracková, Z; Horáková, K; Nemec, P

    1978-01-01

    Eurotium repens mycelium cultivated under static conditions was used to isolate and identify metabolities--echinulin, physcion, erythroglaucin, flavoglaucin and asperentin; the filtrate of the culture yielded asperentin 8-methylether. The broadest biological activity spectrum was displayed by asperentin which had antibacterial and antifungal effects and, at a concentration of 86 microgram/ml, caused 50% mor7 tality in Artemia saline larvae. The highest cytotoxicity towards HeLa cells was found in physcion which caused 50% growth inhibition at a concentration of 0.1 microgram/ml.

  20. Prompt gamma cold neutron activation analysis applied to biological materials

    International Nuclear Information System (INIS)

    Rossbach, M.; Hiep, N.T.

    1992-01-01

    Cold neutrons at the external neutron guide laboratory (ELLA) of the KFA Juelich are used to demonstrate their profitable application for multielement characterization of biological materials. The set-up and experimental conditions of the Prompt Gamma Cold Neutron Activation Analysis (PGCNAA) device is described in detail. Results for C, H, N, S, K, B, and Cd using synthetic standards and the 'ratio' technique for calculation are reported for several reference materials and prove the method to be reliable and complementary with respect to the elements being determined by INAA. (orig.)

  1. Physicochemical Characteristics and Biological Activity of Irradiated Pectin Solution

    International Nuclear Information System (INIS)

    Kwon, J.H.; Kang, H.J.; Jo, C.O.; Jeong, I.Y.; Byun, M.W.

    2005-01-01

    Pectin was dissolved in HCI, citric acid, and deionized distilled water (DW, 2%, v/v) and irradiated at different irradiation doses (2.5-50 kGy) by gamma ray to investigate its physicochemical characteristics and biological activity. Viscosity of pectin solution was significantly decreased by irradiation up to 10 kGy, then remained constant thereafter. Gamma-irradiation increased monosaccharide and polysaccharide levels up to 30-40 kDa. Electron donating ability of pectin solution was highest when DW was added was increased by increasing irradiation dose (p less than 0.05)

  2. Secondary metabolites and biological activity of Pentas species: A minireview

    Directory of Open Access Journals (Sweden)

    Heba-tollah M. Sweelam

    2018-03-01

    Full Text Available The genus Pentas belongs to the Rubiaceae family, which contains approximately 40 species. Several Pentas species were reported to be used as a folk treatment by African indigenous people in treating some diseases such as malaria, tapeworms, dysentery, gonorrhea, syphilis and snake poisoning. This article covers the period from 1962 to 2017 and presents an overview of the biological activity of different Pentas species and describes their phytochemical traits. As a conclusion, the main secondary metabolites from Pentas species are quinones, highly oxygenated chromene-based structures, and iridoids. Pentas species are widely used in folk medicine but they have to be more investigated for their medicinal properties.

  3. Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances

    Directory of Open Access Journals (Sweden)

    Petunin AI

    2010-01-01

    Full Text Available Abstract Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgGI125 and RAM-nanodiamond-BSAI125 complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSAI125 complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody–antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs to various targets in vivo.

  4. The scientific production in health and biological sciences of the top 20 Brazilian universities

    Directory of Open Access Journals (Sweden)

    R. Zorzetto

    2006-12-01

    Full Text Available Brazilian scientific output exhibited a 4-fold increase in the last two decades because of the stability of the investment in research and development activities and of changes in the policies of the main funding agencies. Most of this production is concentrated in public universities and research institutes located in the richest part of the country. Among all areas of knowledge, the most productive are Health and Biological Sciences. During the 1998-2002 period these areas presented heterogeneous growth ranging from 4.5% (Pharmacology to 191% (Psychiatry, with a median growth rate of 47.2%. In order to identify and rank the 20 most prolific institutions in these areas, searches were made in three databases (DataCAPES, ISI and MEDLINE which permitted the identification of 109,507 original articles produced by the 592 Graduate Programs in Health and Biological Sciences offered by 118 public universities and research institutes. The 20 most productive centers, ranked according to the total number of ISI-indexed articles published during the 1998-2003 period, produced 78.7% of the papers in these areas and are strongly concentrated in the Southern part of the country, mainly in São Paulo State.

  5. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends.

    Science.gov (United States)

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Khan, Haji; Ali, Gul Shad

    2017-11-01

    The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.

  6. Evaluating the biological activity of oil-polluted soils using a complex index

    Science.gov (United States)

    Kabirov, R. R.; Kireeva, N. A.; Kabirov, T. R.; Dubovik, I. Ye.; Yakupova, A. B.; Safiullina, L. M.

    2012-02-01

    A complex index characterizing the biological activity of soils (BAS) is suggested. It is based on an estimate of the level of activity of catalase; the number of heterotrophic and hydrocarbon oxidizing microorganisms, microscopic fungi, algae, and cyanobacteria; and the degree of development of higher plants and insects in the studied soil. The data on using the BAS coefficient for evaluating the efficiency of rehabilitation measures for oil-polluted soils are given. Such measures included introducing the following biological preparations: Lenoil based on a natural consortium of microorganisms Bacillus brevis and Arthrobacter sp.; the Azolen biofertilizer with complex action based on Azotobacter vinelandii; the Belvitamil biopreparation, which is the active silt of pulp and paper production; and a ready-mixed industrial association of aerobic and anaerobic microorganisms that contains hydrocarbon oxidizing microorganisms of the Arthrobacter, Bacillus, Candida, Desulfovibrio, and Pseudomonas genera.

  7. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Sik; Lee, Eun Mi; Hong, Sung Hyun; Bai, Hyoung Woo; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, In Chul [Youngdong University, Youngdong (Korea, Republic of)

    2011-10-15

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  8. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    International Nuclear Information System (INIS)

    Lee, Seung Sik; Lee, Eun Mi; Hong, Sung Hyun; Bai, Hyoung Woo; Chung, Byung Yeoup; Lee, In Chul

    2011-01-01

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  9. Parsley: a review of ethnopharmacology, phytochemistry and biological activities.

    Science.gov (United States)

    Farzaei, Mohammad Hosein; Abbasabadi, Zahra; Ardekani, Mohammad Reza Shams; Rahimi, Roja; Farzaei, Fatemeh

    2013-12-01

    To summarize comprehensive information concerning ethnomedicinal uses, phytochemistry, and pharmacological activities of parsley. Databases including PubMed, Scopus, Google Scholar, and Web of Science were searched for studies focusing on the ethnomedicinal use, phytochemical compounds and biological and pharmacological activities of parsley. Data were collected from 1966 to 2013. The search terms were: "Parsley" or "Petroselinum crispum" or "Petroselinum hortence". Parsley has been used as carminative, gastro tonic, diuretic, antiseptic of urinary tract, anti-urolithiasis, anti-dote and anti-inflammatory and for the treatment of amenorrhea, dysmenorrhea, gastrointestinal disorder, hypertension, cardiac disease, urinary disease, otitis, sniffle, diabetes and also various dermal disease in traditional and folklore medicines. Phenolic compounds and flavonoids particularly apigenin, apiin and 6"-Acetylapiin; essential oil mainly myristicin and apiol; and also coumarins are the active compounds identified in Petroselinum crispum. Wide range of pharmacological activity including antioxidant, hepatoprotective, brain protective, anti-diabetic, analgesic, spasmolytic, immunosuppressant, anti-platelet, gastroprotective, cytoprotective, laxative, estrogenic, diuretic, hypotensive, antibacterial and antifungal activities have been exhibited for this plant in modern medicine. It is expectant that this study resulted in improvement the tendencies toward Petroselinum crispum as a useful and important medicinal plant with wide range of proven medicinal activity.

  10. Importance of systems biology in engineering microbes for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

    2009-12-02

    Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

  11. Biological production of alcohols from coal through indirect liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Prieto, S; Harrison, S B; Clausen, E C; Gaddy, J L

    1988-08-01

    The purpose of this project is to demonstrate the feasibility of producing liquid fuels from the components of synthesis gas through biological indirect liquefaction. The results of pure culture and natural source screening studies aimed at finding organisms capable of carrying out the conversions are presented and discussed. 17 refs., 2 figs., 8 tabs.

  12. Advances in reproductive biology and seed production systems of ...

    African Journals Online (AJOL)

    Eucalyptus globulus is the main eucalypt species grown in Australian plantations. The focus on seedling deployment systems, coupled with exploitation of large, open-pollinated base populations for breeding purposes over the last two decades, has required a detailed understanding of the reproductive biology of this ...

  13. Newer biological agents in rheumatoid arthritis: impact on health-related quality of life and productivity.

    Science.gov (United States)

    Strand, Vibeke; Singh, Jasvinder A

    2010-01-01

    Health-related quality of life (HR-QOL) in patients with rheumatoid arthritis (RA) is significantly impaired as a result of pain, deficits in physical function and fatigue associated with this disease. Decrements in HR-QOL are also associated with an increased probability of no longer working, absence from work due to RA-associated sickness, and reduced productivity while at work or in the home, all of which have consequences for the patient as well as society. HR-QOL and productivity are thus important components in the assessment of outcomes in RA, and assessment of HR-QOL is now recommended in clinical trials that assess the efficacy of new treatments for RA. Measures to assess HR-QOL include the Medical Outcomes Study Short Form 36 (SF-36), EuroQol (EQ-5D) and the Health Utilities Index - Mark 3 (HUI3); these measures not only provide an indication of the clinical (i.e. statistical) efficacy of a treatment, but also provide information on whether this efficacy is truly 'meaningful' from a patient's perspective. These measures have been utilized in clinical trials of biological agents in patients with RA, including tumour necrosis factor inhibitors (etanercept, infliximab, adalimumab, certolizumab pegol and golimumab), the co-stimulatory inhibitor molecule abatacept, the B-cell depletion agent rituximab and the interleukin-6 receptor antagonist tocilizumab, and have demonstrated that these agents can significantly improve HR-QOL. Assessment of work productivity in patients with RA and the impact of treatment is a practical way to measure disability from RA from individual and societal perspectives. As RA affects women three times more frequently than men, there is also a critical need for productivity assessment within the home as well as participation in family/social/leisure activities. Data from recent trials of biological agents demonstrate that these agents can reverse disease-related decrements in productivity and limitations in participation in family

  14. Exploring rhizosphere bacteria of Eichhornia crassipes for metal tolerance and biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Gomez, S.; Ribeiro, M.; Deshpande, S.A.; Singh, K.S.; DeSouza, L.

    Cl3, They were further screened for antibiotic sensitivity and biological activity according to Kirby-Bauer disc diffusion method The MTB under metal stress condition showed significant biological activity against clinical pathogens, fouling...

  15. Structural Diversity and Biological Activities of the Cyclodipeptides from Fungi

    Directory of Open Access Journals (Sweden)

    Xiaohan Wang

    2017-11-01

    Full Text Available Cyclodipeptides, called 2,5-diketopiperazines (2,5-DKPs, are obtained by the condensation of two amino acids. Fungi have been considered to be a rich source of novel and bioactive cyclodipeptides. This review highlights the occurrence, structures and biological activities of the fungal cyclodipeptides with the literature covered up to July 2017. A total of 635 fungal cyclodipeptides belonging to the groups of tryptophan-proline, tryptophan-tryptophan, tryptophan–Xaa, proline–Xaa, non-tryptophan–non-proline, and thio-analogs have been discussed and reviewed. They were mainly isolated from the genera of Aspergillus and Penicillium. More and more cyclodipeptides have been isolated from marine-derived and plant endophytic fungi. Some of them were screened to have cytotoxic, phytotoxic, antimicrobial, insecticidal, vasodilator, radical scavenging, antioxidant, brine shrimp lethal, antiviral, nematicidal, antituberculosis, and enzyme-inhibitory activities to show their potential applications in agriculture, medicinal, and food industry.

  16. Established and emerging biological activity markers of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Nielsen, O H; Vainer, B; Madsen, S M

    2000-01-01

    Assessment of disease activity in inflammatory bowel disease (IBD), i.e., ulcerative colitis (UC) and Crohn's disease (CD), is done using clinical parameters and various biological disease markers. Ideally, a disease marker must: be able to identify individuals at risk of a given disorder......, be disease specific, mirror the disease activity and, finally, be easily applicable for routine clinical purposes. However, no such disease markers have yet been identified for IBD. In this article, classical disease markers including erythrocyte sedimentation rate, acute phase proteins (especially...... orosomucoid and CRP), leukocyte and platelet counts, albumin, neopterin, and beta2-microglobulin will be reviewed together with emerging disease markers such as antibodies of the ANCA/ASCA type, cytokines (e.g., IL-1, IL-2Ralpha, IL-6, IL-8, TNF-alpha, and TNF-alpha receptors) and with various adhesion...

  17. Borrelidin B: isolation, biological activity, and implications for nitrile biosynthesis.

    Science.gov (United States)

    Schulze, Christopher J; Bray, Walter M; Loganzo, Frank; Lam, My-Hanh; Szal, Teresa; Villalobos, Anabella; Koehn, Frank E; Linington, Roger G

    2014-11-26

    Borrelidin (1) is a nitrile-containing bacterially derived polyketide that is a potent inhibitor of bacterial and eukaryotic threonyl-tRNA synthetases. We now report the discovery of borrelidin B (2), a tetrahydro-borrelidin derivative containing an aminomethyl group in place of the nitrile functionality in borrelidin. The discovery of this new metabolite has implications for both the biosynthesis of the nitrile group and the bioactivity of the borrelidin compound class. Screening in the SToPS assay for tRNA synthetase inhibition revealed that the nitrile moiety is essential for activity, while profiling using our in-house image-based cytological profiling assay demonstrated that 2 retains biological activity by causing a mitotic stall, even in the absence of the nitrile motif.

  18. Established and emerging biological activity markers of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Nielsen, O H; Vainer, B; Madsen, S M

    2000-01-01

    orosomucoid and CRP), leukocyte and platelet counts, albumin, neopterin, and beta2-microglobulin will be reviewed together with emerging disease markers such as antibodies of the ANCA/ASCA type, cytokines (e.g., IL-1, IL-2Ralpha, IL-6, IL-8, TNF-alpha, and TNF-alpha receptors) and with various adhesion......Assessment of disease activity in inflammatory bowel disease (IBD), i.e., ulcerative colitis (UC) and Crohn's disease (CD), is done using clinical parameters and various biological disease markers. Ideally, a disease marker must: be able to identify individuals at risk of a given disorder......, be disease specific, mirror the disease activity and, finally, be easily applicable for routine clinical purposes. However, no such disease markers have yet been identified for IBD. In this article, classical disease markers including erythrocyte sedimentation rate, acute phase proteins (especially...

  19. Surface mixing and biological activity in the four Eastern Boundary Upwelling Systems

    Directory of Open Access Journals (Sweden)

    V. Rossi

    2009-08-01

    Full Text Available Eastern Boundary Upwelling Systems (EBUS are characterized by a high productivity of plankton associated with large commercial fisheries, thus playing key biological and socio-economical roles. Since they are populated by several physical oceanic structures such as filaments and eddies, which interact with the biological processes, it is a major challenge to study this sub- and mesoscale activity in connection with the chlorophyll distribution. The aim of this work is to make a comparative study of these four upwelling systems focussing on their surface stirring, using the Finite Size Lyapunov Exponents (FSLEs, and their biological activity, based on satellite data. First, the spatial distribution of horizontal mixing is analysed from time averages and from probability density functions of FSLEs, which allow us to divide each areas in two different subsystems. Then we studied the temporal variability of surface stirring focussing on the annual and seasonal cycle. We also proposed a ranking of the four EBUS based on the averaged mixing intensity. When investigating the links with chlorophyll concentration, the previous subsystems reveal distinct biological signatures. There is a global negative correlation between surface horizontal mixing and chlorophyll standing stocks over the four areas. To try to better understand this inverse relationship, we consider the vertical dimension by looking at the Ekman-transport and vertical velocities. We suggest the possibility of a changing response of the phytoplankton to sub/mesoscale turbulence, from a negative effect in the very productive coastal areas to a positive one in the open ocean. This study provides new insights for the understanding of the variable biological productivity in the ocean, which results from both dynamics of the marine ecosystem and of the 3-D turbulent medium.

  20. Myricetin: A Dietary Molecule with Diverse Biological Activities

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Semwal

    2016-02-01

    Full Text Available Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson’s and Alzheimer’s. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound’s ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities.

  1. Characterization of chickpea (Cicer arietinum L.) lectin for biological activity.

    Science.gov (United States)

    Gautam, Ajay Kumar; Gupta, Neha; Narvekar, Dakshita T; Bhadkariya, Rajni; Bhagyawant, Sameer S

    2018-05-01

    Lectins are proteins that are subject of intense investigations. Information on lectin from chickpea ( Cicer arietinum L.) with respect to its biological activities are very limited. In this study, we purified lectin from the seeds of chickpea employing DEAE-cellulose and SP-Sephadex ion exchange chromatography and identified its molecular subunit mass as 35 kDa. The free radical scavenging activity of lectin measured by the DPPH assay has IC 50 of 0.88 µg/mL. Lectin exerted antifungal activity against Candida krusei , Fusarium oxysporium oxysporium , Saccharomyces cerevisiae and Candida albicans , while antibacterial activity against E. coli , B. subtilis , S. marcescens and P. aeruginosa. The minimum inhibitory concentrations were 200, 240, 160 and 140 µg for C. krusei, F. oxysporium , S. cerevisiae and C. albicans respectively. Lectin was further examined for its antiproliferative potential against cancerous cell line. The cell viability assay indicated a high inhibition activity on Ishikawa, HepG2, MCF-7 and MDA-MB-231 with IC 50 value of 46.67, 44.20, 53.58 and 37.46 µg/mL respectively. These results can provide a background for future research into the benefits of chickpea lectin to pharmacological perspective.

  2. Bone Scan in Detection of Biological Activity in Nonhypertrophic Fracture Nonunion

    OpenAIRE

    Gandhi, Sunny J.; Rabadiya, Bhavdeep

    2017-01-01

    Biological activity of the fracture site is very important factor in treatment planning of fracture nonunion. If no biological activity is detected, then an autologous bone graft can be supplemented or osteogenic supplementations, such as bone morphogenetic protein is given. If biological activity is present, then secure fixation is sufficient to achieve bony union. Biological activity of nonunions is usually assessed by conventional radiographs. The presence of callus formation is usually as...

  3. Radiation biological technology for preservation of agricultural products

    International Nuclear Information System (INIS)

    Kudryasheva, A.

    1988-01-01

    A study is reported on the food irradiation procedures experimented in the Moskow Institute for National Economy. The effect of gamma radiation on the quality, mass loss and storage life of fruits and vegetables is investigated. The combined effect of several biological and environmental factors on the microorganisms affecting foodstuffs are discussed. The influence of dose rate is illustrated quantitatively for different species of fruits and vegetables. 3 tabs., 6 refs

  4. Preparation and characterization of new biologically active polyurethane foams.

    Science.gov (United States)

    Savelyev, Yuri; Veselov, Vitali; Markovskaya, Ludmila; Savelyeva, Olga; Akhranovich, Elena; Galatenko, Natalya; Robota, Ludmila; Travinskaya, Tamara

    2014-12-01

    Biologically active polyurethane foams are the fast-developed alternative to many applications of biomedical materials. Due to the polyurethane structure features and foam technology it is possible to incorporate into their structure the biologically active compounds of target purpose via structural-chemical modification of macromolecule. A series of new biologically active polyurethane foams (PUFs) was synthesized with polyethers (MM 2500-5000), polyesters MM (500-2200), 2,4(2,6) toluene diisocyanate, water as a foaming agent, catalysts, foam stabilizers and functional compounds. Different functional compounds: 1,4-di-N-oxy-2,3-bis-(oxymethyl)-quinoxaline (DOMQ), partial sodium salt of poly(acrylic acid) and 2,6-dimethyl-N,N-diethyl aminoacetatanilide hydrochloride were incorporated into the polymer structure/composition due to the chemical and/or physical bonding. Structural peculiarities of PUFs were studied by FTIR spectroscopy and X-ray scattering. Self-adhesion properties of PUFs were estimated by measuring of tensile strength at break of adhesive junction. The optical microscopy method was performed for the PUF morphology studies. Toxicological estimation of the PUFs was carried out in vitro and in vivo. The antibacterial action towards the Gram-positive and Gram-negative bacteria (Escherichia coli ATC 25922, E. coli ATC 2150, Klebsiella pneumoniae 6447, Staphylococcus aureus 180, Pseudomonas aeruginosa 8180, Proteus mirabilis F 403, P. mirabilis 6054, and Proteus vulgaris 8718) was studied by the disc method on the solid nutrient. Physic-chemical properties of the PUFs (density, tensile strength and elongation at break, water absorption and vapor permeability) showed that all studied PUFs are within the operational requirements for such materials and represent fine-cellular foams. Spectral studies confirmed the incorporation of DOMQ into the PUF's macrochain. PUFs are characterized by microheterogeneous structure. They are antibacterially active, non

  5. Biology Needs a Modern Assessment System for Professional Productivity

    Science.gov (United States)

    McDade, Lucinda A.; Maddison, David R.; Guralnick, Robert; Piwowar, Heather A.; Jameson, Mary Liz; Helgen, Kristofer M.; Herendeen, Patrick S.; Hill, Andrew; Vis, Morgan L.

    2011-01-01

    Stimulated in large part by the advent of the Internet, research productivity in many academic disciplines has changed dramatically over the last two decades. However, the assessment system that governs professional success has not kept pace, creating a mismatch between modes of scholarly productivity and academic assessment criteria. In this…

  6. Biological Activity of Tannins from Acacia mangium Bark Extracted by Different Solvents

    Directory of Open Access Journals (Sweden)

    E. Wina

    2010-08-01

    Full Text Available Acacia mangium bark is abundant byproduct of wood industry in Indonesia. It is underutilized and mainly used as fire wood for the wood industry. The bark contains high level of tannin but the tannin has not been extracted or produced commercially. Tannin isolate can be used for several purposes such as tanning agent for leather, adhesive for plywood or particle board, etc. In ruminant, tannin can be detrimental but can also be beneficial. This experiment was aimed of getting the highest yield of tannin extract with the highest biological activity in rumen fermentation. Nine different solvents at different temperatures were used to extract tannin from A. mangium bark. The extracts were analyzed for their tannin contents and biological activities. Tannin content was analyzed using folin ciocalteau and butanol-HCl methods. Biological activity was described as a percentage of an increase in gas production in the in vitro rumen-buffer fermentation, with and without addition of PEG. The results show that Na2SO3 solution extracted more tannin than other solutions and the higher the concentration of Na2SO3 solution, the higher the yield of tannin extract. The solution of 6% sodium sulphite gave the highest yield of tannin extract (31.2% of original bark sample and the highest concentration of tannin (18.26% but produced a negative effect on in vitro fermentation (% increase of gas production = 2.70%. Extraction with 50% acetone gave a high yield of extract (22.28% of original bark which contained 12.98% of tannin and showed the highest biological response (% increase of gas production = 216%. In conclusion, sodium sulphite solution is not recommended for tannin extraction if the tannin will be used as feed additive in ruminant feed; on the other hand, the aqueous acetone (50% acetone solution is a better choice to be used.

  7. Biological activity of soil contaminated with cobalt, tin, and molybdenum.

    Science.gov (United States)

    Zaborowska, Magdalena; Kucharski, Jan; Wyszkowska, Jadwiga

    2016-07-01

    In this age of intensive industrialization and urbanization, mankind's highest concern should be to analyze the effect of all metals accumulating in the environment, both those considered toxic and trace elements. With this aim in mind, a unique study was conducted to determine the potentially negative impact of Sn(2+), Co(2+), and Mo(5+) in optimal and increased doses on soil biological properties. These metals were applied in the form of aqueous solutions of Sn(2+) (SnCl2 (.)2H2O), Co(2+) (CoCl2 · 6H2O), and Mo(5+) (MoCl5), each in the doses of 0, 25, 50, 100, 200, 400, and 800 mg kg(-1) soil DM. The activity of dehydrogenases, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and catalase and the counts of twelve microorganism groups were determined on the 25th and 50th day of experiment duration. Moreover, to present the studied problem comprehensively, changes in the biochemical activity and yield of spring barley were shown using soil and plant resistance indices-RS. The study shows that Sn(2+), Co(2+), and Mo(5+) disturb the state of soil homeostasis. Co(2+) and Mo(5+) proved the greatest soil biological activity inhibitors. The residence of these metals in soil, particularly Co(2+), also generated a drastic decrease in the value of spring barley resistance. Only Sn(2+) did not disrupt its yielding. The studied enzymes can be arranged as follows for their sensitivity to Sn(2+), Co(2+), Mo(5+): Deh > Ure > Aryl > Pal > Pac > Cat. Dehydrogenases and urease may be reliable soil health indicators.

  8. Biological Activity and Phytochemical Study of Scutellaria platystegia.

    Science.gov (United States)

    Madani Mousavi, Seyedeh Neda; Delazar, Abbas; Nazemiyeh, Hossein; Khodaie, Laleh

    2015-01-01

    This study aimed to determine biological activity and phytochemical study of Scutellaria platystegia (family Labiatae). Methanolic (MeOH) extract of aerial parts of S. platystegia and SPE fractions of methanolic extract (specially 20% and 40% methanolic fractions), growing in East-Azarbaijan province of Iran were found to have radical scavenging activity by DPPH (2, 2-diphenyl -1- pycryl hydrazyl) assay. Dichloromethane (DCM) extract of this plant exhibited animalarial activity by cell free method providing IC50 at 1.1876 mg/mL. Crude extracts did not exhibit any toxicity assessed by brine shrimp lethality assay. Phytochemical study of methanolic extract by using reverse phase HPLC method and NMR instrument for isolation and identification of pure compounds respectively, yielded 2-(4- hydroxy phenyl) ethyl-O-β-D- glucopyranoside from 10% and apigenin 7-O-glucoside, verbascoside and martynoside from 40% SPE fraction. Occurance of verbascoside and martynoside as biochemical markers appeared to be widespread in this genus. Antioxidant and antimalarial activity of MeOH and DCM extracts, respectively, as well as no general toxicity of them could provide a basis for further in-vitro and in-vivo studies and clinical trials to develop new therapeutical alternatives.

  9. Biological Activities of the Essential Oil from Erigeron floribundus

    Directory of Open Access Journals (Sweden)

    Riccardo Petrelli

    2016-08-01

    Full Text Available Erigeron floribundus (Asteraceae is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD, a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%, caryophyllene oxide (12.4% and limonene (8.8%. The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL. Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL, with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 μmol·TE/g.

  10. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Science.gov (United States)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  11. Synoptic events force biological productivity in Patagonian fjord ecosystems

    Science.gov (United States)

    Daneri, Giovanni

    2016-04-01

    The annual cycle of primary productivity of the Patagonian fjords has, to date, been described as a two phase system consisting of a short non productive winter phase (during June and July) and a productive phase extending from late winter (August) to autumn (May). Low levels of primary production, phytoplankton biomass and high concentrations of surface nutrients have been described as characterizing winter conditions while pulsed productivity events typifies the productivity pattern during the extended productive season. Pulsed productivity events characterize coastal waters where inorganic nutrients in surface layers are replenished following periods of intensive utilization by autotrophs. Freshwater input in Patagonian fjords in southern Chile (41-55°S) results in one of the largest estuarine regions worldwide. Here strong haline water column stratification prevents nutrient mixing to the surface layers thus potentially shutting off algal production. Our working hypothesis considered that in order to reconcile the observed pulsed productivity pattern, periodic breaking (associated to surface nutrient replenishment) and re-establishment of estuarine conditions (associated to water column stratification) would be required. Up to now however our understanding of the physical processes that control water column conditions in the Patagonian fjord area has been extremely limited. Here we present evidence linking the passage of synoptic low pressure fronts to pulsed productivity events in the Patagonian fjord area. These front controls and influence local processes of interaction between the fjord and the atmosphere generating a rapid water column response. In the specific case of the Puyuhuapi fjord we have been able to show that such synoptic fronts induce surface flow reversal and water column mixing. Phytoplankton blooming occurs after the passage of the synoptic front once calmer conditions prevail and estuarine conditions are re established. The occurrence of

  12. Biological regeneration of para-nitrophenol loaded activated carbon

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.; Martin, R.J.

    1997-01-01

    Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon (GAC). This study deals with in-situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration of a given adsorbate were studied. The research investigated the extent of bio regeneration for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in he total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was re-saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the during of regeneration for a fixed initial biomass content of the bioreactor. The bio regeneration efficiency of the totally exhausted (with PNP) GAC the empty bed contact time (EBCT) and the initial concentration of the substrate had a profound effect on the bio regeneration efficiency. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  13. Traditional Uses, Chemical Constituents, and Biological Activities of Bixa orellana L.: A Review

    Directory of Open Access Journals (Sweden)

    Daniela de Araújo Vilar

    2014-01-01

    Full Text Available Bixa orellana L., popularly known as “urucum,” has been used by indigenous communities in Brazil and other tropical countries for several biological applications, which indicates its potential use as an active ingredient in pharmaceutical products. The aim of this work was to report the main evidence found in the literature, concerning the ethnopharmacology, the biological activity, and the phytochemistry studies related to Bixa orellana L. Therefore, this work comprises a systematic review about the use of Bixa orellana in the American continent and analysis of the data collected. This study shows the well-characterized pharmacological actions that may be considered relevant for the future development of an innovative therapeutic agent.

  14. Human IgE is efficiently produced in glycosylated and biologically active form in lepidopteran cells

    DEFF Research Database (Denmark)

    Bantleon, Frank; Wolf, Sara; Seismann, Henning

    2016-01-01

    the recombinant production of the highly complex IgE isotype in insect cells. Recombinant IgE (rIgE) was efficiently assembled and secreted into the supernatant in yields of >30 mg/L. Purification from serum free medium using different downstream processing methods provided large amounts of rIgE. This exhibited...... a highly specific interaction with its antigen, therapeutic anti-IgE and its high affinity receptor, the FcεRI. Lectins and glyco-proteomic analyses proved the presence of prototypic insect type N-glycans on the epsilon heavy chain. Mediator release assays demonstrated a biological activity of the r......IgE comparable to IgE derived from mammalian cells. In summary the expression in insect cells provides rIgE with variant glycosylation pattern, but retained characteristics and biological activity. Therefore our data contribute to the understanding of functional and structural aspects and potential use of the Ig...

  15. Biological production of hydroxylated aromatics : Optimization strategies for Pseudomonas putida S12

    NARCIS (Netherlands)

    Verhoef, A.

    2010-01-01

    To replace environmentally unfriendly petrochemical production processes, the demand for bio-based production of organic chemicals is increasing. This thesis focuses on the biological production of hydroxylated aromatics from renewable substrates by engineered P. putida S12 including several cases

  16. Recombinant biologic products versus nutraceuticals from plants - a regulatory choice?

    Science.gov (United States)

    Drake, Pascal M W; Szeto, Tim H; Paul, Mathew J; Teh, Audrey Y-H; Ma, Julian K-C

    2017-01-01

    Biotechnology has transformed the potential for plants to be a manufacturing source of pharmaceutical compounds. Now, with transgenic and transient expression techniques, virtually any biologic, including vaccines and therapeutics, could be manufactured in plants. However, uncertainty over the regulatory path for such new pharmaceuticals has been a deterrent. Consideration has been given to using alternative regulatory paths, including those for nutraceuticals or cosmetic agents. This review will consider these possibilities, and discuss the difficulties in establishing regulatory guidelines for new pharmaceutical manufacturing technologies. © 2016 The British Pharmacological Society.

  17. BIOLOGICALLY ACTIVE SUBSTANCES OF THE LAURUS NOBILIS LEAVES

    Directory of Open Access Journals (Sweden)

    N. M. Nasukhova

    2017-01-01

    Full Text Available Laurus nobilis L. is an evergreen dioecious, rarely monecious plant up to 12-15 m high. The plant’s name is devoted to an Ancient Greek God of Sun Apollo and is a symbol of peace and victory. It was used in making up wreaths for emperors, generals, and poets. Its natural area includes Mediterranean countries with high level of annual precipitation. It is actively cultivated as a decorative plant in Europe, Russia, USA and other countries. It is cultivated in Turkey, Algeria, Morocco, Portugal, Spain, Italy, France, Russia, and Mexico. The aim of the study is the review of available literature about isolation, identification, quantitative determination of biologically active compounds of the Laurus nobilis leaves in the established species and their pharmacological activity. Materialsand methods. The study was carried out using searching (PubMed, CiteSeer, arXiv, library databases (eLibrary, Cyberleninka, and ResearchGate free social network. Results and discussion. We have established that Laurus nobilis leaves have components of essential oil, phenolic compounds, and sesquiterpenic lactones as the principal active substances. Qualitative composition and quantitative content of these compound groups in these raw materials varies depending on the ecological and geographical, edaphic, climatic factors, phase of the plant growth, cultivation technology, drying method etc. The results of the pharmacological studies of the extracts, summary fractions, and individual compounds of Laurus nobilis leaves characterize this type of raw materials as a perspective source for a more profound study. Conclusion. As the available open review data showed, the essential oil components, phenolic compounds (phenolic acids, flavonoids, etc, sesquiterpenic lactones of Laurus nobilis exhibit a diverse spectrum of pharmacological activity. Antimicrobial (widely, anti-virus, anti-inflammatory, anti-diabetic, and cytoxic (anticancer activities, established in extracts

  18. Biological activities of ENEA in Emilia-Romagna region; Attivita` in campo biologico dell`ENEA in Emilia-Romagna

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, A; Bortone, G; Bruni, S; Calamosca, M; D` Orazi, R; Malaguti, A; Pagano, P; Silingardi, D [ENEA, Centro Ricerche ` ` E. Clementel` ` Bologna (Italy). Dip. Ambiente; Bonassisa, L; Scarcella, E

    1995-12-01

    This report deals with the activities in the biologic field of the ENEA in the Emilia-Romagna region with some original papers of the Environmental Department researchers. These topics are treated: sewage purification and treatment; primary productivity in seas and lagoons; the trophic state of water in the valley of Comacchio; the biological research in the Brasimone ENEA centre; in vivo and in vitro inhalation toxicology.

  19. Chemical and biological effects of radiation sterilization of medical products

    International Nuclear Information System (INIS)

    Gupta, B.L.

    1975-01-01

    Radiation is extensively used for the sterilization of plastic materials, pharmaceuticals and biological tissue grafts. The pharmaceuticals may be solid, liquid, or suspension in a liquid or a solution. Cobalt-60 gamma radiation, generally used for sterilization, primarily interacts with these materials through the Compton process. The resulting damage may be direct or indirect. In aqueous systems the primary species produced compete for interaction among themselves and the dissolved solutes. The nature, the G-values and the reactions of the primary species very much depend on the pH of the solution. The important chemical changes in plastic materials are gas liberation, change in concentration of double bonds, cross-linking, degradation and oxidation. These chemical changes lead to some physical changes like crystallinity, specific conductivity and permeability. The reactions in biological systems are very complex and are influenced by the presence or absence of water and oxygen. Water produces indirect damage and the radiation effect is generally more in the presence of oxygen. Most microorganisms are relatively radioresistant. Various tissues of an animal differ in their response to radiation. Catgut is not stable to irradiation. Lyophilized human serum is stable to irradiation whereas, when irradiated in aqueous solutions, several changes are observed. Generally, pharmaceuticals are considerably more stable in the dry solid state to ionizing radiations than in aqueous solutions or in any other form of molecular aggregation. (author)

  20. Neutron activation analysis on determination of arsenic in biological matrixes

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Angela de B.C.; Silva, Maria Aparecida, E-mail: menezes@cdtn.br, E-mail: cida@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Aiming at giving support to the Worker's Health Awareness Program of the Municipal Department of Health of Belo Horizonte, an assessment related arsenic was carried out in two galvanising factories by means of hair and toenail samples analysis as biomonitors. The arsenic was determined in all matrixes from the factories where gold electrodeposition process was applied. This is because arsenic salts are usually added to gold bath to improve the metal covering. The high concentration results surprised the health surveillance professionals, and alerted for the need of assessing the influence of a long-term exposure. Studies concerning galvanising process have usually been developed broaching many aspects, but so far few works has pointed out the detection and measurement of other elements like arsenic. The k{sub 0}-Instrumental Neutron Activation method was applied confirming to be a suitable technique on determination of arsenic in biological matrixes. (author)

  1. [The release of biologically active compounds from peat peloids].

    Science.gov (United States)

    Babaskin, D V

    2011-01-01

    This work had the objective to study kinetics of the release of flavonoides from peat peloid compositions containing extracts of medicinal herbs in model systems.The key parameters of the process are defined. The rate of liberation of flavonoides is shown to depend on their initial concentration in the compositions being used. The influence of the flavonoide composition of the tested extracts and dimethylsulfoxide on the release of biologically active compounds contained in the starting material in the model environment is estimated. The possibility of the layer-by-layer deposition of the compositions and peat peloids in order to increase the efficacy of flavonoide release from the starting composition and to ensure more rational utilization of the extracts of medicinal plants is demonstrated.

  2. Neutron activation analysis on determination of arsenic in biological matrixes

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B.C.; Silva, Maria Aparecida

    2013-01-01

    Aiming at giving support to the Worker's Health Awareness Program of the Municipal Department of Health of Belo Horizonte, an assessment related arsenic was carried out in two galvanising factories by means of hair and toenail samples analysis as biomonitors. The arsenic was determined in all matrixes from the factories where gold electrodeposition process was applied. This is because arsenic salts are usually added to gold bath to improve the metal covering. The high concentration results surprised the health surveillance professionals, and alerted for the need of assessing the influence of a long-term exposure. Studies concerning galvanising process have usually been developed broaching many aspects, but so far few works has pointed out the detection and measurement of other elements like arsenic. The k 0 -Instrumental Neutron Activation method was applied confirming to be a suitable technique on determination of arsenic in biological matrixes. (author)

  3. Radiation degradation of polysaccharides and induced biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi Keizo; Kume Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Mitomo, Hiroshi [Gunma Univ., Kiryu (Japan). Faculty of Engineering

    1999-09-01

    Relationship between irradiation effect of polysaccharides and induced biological activity for plants has been investigated. Sodium alginate was irradiated by gamma-rays from a Co-60 source in liquid state (aqueous solution) and in solid state (powder form). Measurement of molecular weight and analysis of UV spectra of irradiated sodium alginate have been carried out. The molecular weight was decreased by irradiation in both conditions. New absorbance peak derived from double bond or/and carbonyl group was appeared at close to 267 nm by irradiation in UV spectra. It was found that alginate having molecular weight about 10,000 is most suitable to used as growth promoter in plants. To obtain the molecular weight of 10,000 by irradiation, the necessary doses are 100 kGy in liquid state and 500 kGy in solid state, respectively. (author)

  4. Certification of biological candidates reference materials by neutron activation analysis

    Science.gov (United States)

    Kabanov, Denis V.; Nesterova, Yulia V.; Merkulov, Viktor G.

    2018-03-01

    The paper gives the results of interlaboratory certification of new biological candidate reference materials by neutron activation analysis recommended by the Institute of Nuclear Chemistry and Technology (Warsaw, Poland). The correctness and accuracy of the applied method was statistically estimated for the determination of trace elements in candidate reference materials. The procedure of irradiation in the reactor thermal fuel assembly without formation of fast neutrons was carried out. It excluded formation of interfering isotopes leading to false results. The concentration of more than 20 elements (e.g., Ba, Br, Ca, Co, Ce, Cr, Cs, Eu, Fe, Hf, La, Lu, Rb, Sb, Sc, Ta, Th, Tb, Yb, U, Zn) in candidate references of tobacco leaves and bottom sediment compared to certified reference materials were determined. It was shown that the average error of the applied method did not exceed 10%.

  5. Laser Polarimeter for Measurement of Optical Activity of Biological Objects

    Science.gov (United States)

    Protasov, E. A.; Protasov, D. E.; Ryzhkova, A. V.

    In this paper has been described the polarimetric device for measurement of optical activity of biological tissues, where the source of radiation is an infrared laser with a wave λ=0.808 micron. The polarizers used are polarizing prisms of Glan - Taylor. To obtain required angular resolution (0.180/cm) has been developed a device that converts the angle of rotation of the analyzer into electrical signal, which is fed to the appropriate scan digital oscilloscope. The passage of the polarized light through the fingers of the hand was established and the angles of rotation of the polarization vector of the transmitted radiation were measured, the values of which may be determined by the content of hemoglobin in the blood.

  6. Notes on the genus Paramignya: Phytochemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Ninh The Son

    2018-06-01

    Full Text Available Genus Paramignya belongs to Rutaceae family, with interesting secondary metabolites, comprising main classes of compounds coumarin and coumarin glycosides, acridone alkaloids, tirucallane and tirucallane glycosides, phenols, and flavonoids, as well as several compounds limonoid, lignin glycoside and sterol. Paramignya species has been employing as folk medicines against hepatitis, diabetes, cancer, nose infections. Many bioactive reported such as cytotoxic assay, antioxidant, antiinflammatory, antiumor cancer, α-glucosidase inhibitory activities indicated either Paramignya extracts, fractions, or isolated compounds to become valuable resources for natural new drug developments. However, no evidences are reported for general view about this genus. In current paper, we exhibit overview almost of isolated components and biological evaluations from this genus. These findings are important to improve the values of these medicinal plants for the health benefit, drug discovery and guideline for future researches.

  7. Simaroubaceae family: botany, chemical composition and biological activities

    Directory of Open Access Journals (Sweden)

    Iasmine A.B.S. Alves

    Full Text Available The Simaroubaceae family includes 32 genera and more than 170 species of trees and brushes of pantropical distribution. The main distribution hot spots are located at tropical areas of America, extending to Africa, Madagascar and regions of Australia bathed by the Pacific. This family is characterized by the presence of quassinoids, secondary metabolites responsible of a wide spectrum of biological activities such as antitumor, antimalarial, antiviral, insecticide, feeding deterrent, amebicide, antiparasitic and herbicidal. Although the chemical and pharmacological potential of Simaroubaceae family as well as its participation in official compendia; such as British, German, French and Brazilian pharmacopoeias, and patent registration, many of its species have not been studied yet. In order to direct further investigation to approach detailed botanical, chemical and pharmacological aspects of the Simaroubaceae, the present work reviews the information regarding the main genera of the family up to 2013.

  8. Structure and Biological Activity of Pathogen-like Synthetic Nanomedicines

    Science.gov (United States)

    Lőrincz, Orsolya; Tőke, Enikő R.; Somogyi, Eszter; Horkay, Ferenc; Chandran, Preethi; Douglas, Jack F.; Szebeni, János; Lisziewicz, Julianna

    2011-01-01

    Here we characterize the structure, stability and intracellular mode-of-action of DermaVir nanomedicine that is under clinical development for the treatment of HIV/AIDS. This nanomedicine is comprised of pathogen-like pDNA/PEIm nanoparticles (NPs) having the structure and function resembling spherical viruses that naturally evolved to deliver nucleic acids to the cells. Atomic force microscopy demonstrated spherical 100–200nm NPs with a smooth polymer surface protecting the pDNA in the core. Optical-absorption determined both the NP structural stability and biological activity relevant to their ability to escape from the endosome and release the pDNA at the nucleus. Salt, pH and temperature influence the nanomedicine shelf-life and intracellular stability. This approach facilitates the development of diverse polyplex nanomedicines where the delivered pDNA-expressed antigens induce immune responses to kill infected cells. PMID:21839051

  9. Biological activity analysis of native and recombinant streptokinase using clot lysis and chromogenic substrate assay.

    Science.gov (United States)

    Mahboubi, Arash; Sadjady, Seyyed Kazem; Mirzaei Saleh Abadi, Mohammad; Azadi, Saeed; Solaimanian, Roya

    2012-01-01

    DETERMINATION OF STREPTOKINASE ACTIVITY IS USUALLY ACCOMPLISHED THROUGH TWO ASSAY METHODS: a) Clot lysis, b) Chromogenic substrate assay. In this study the biological activity of two streptokinase products, namely Streptase®, which is a native product and Heberkinasa®, which is a recombinant product, was determined against the third international reference standard using the two forementioned assay methods. The results indicated that whilst the activity of Streptase® was found to be 101 ± 4% and 97 ± 5% of the label claim with Clot lysis and Chromogenic substrate assay respectively, for Heberkinasa® the potency values obtained were 42 ± 5% and 92.5 ± 2% of the label claim respectively. To shed some light on the reason for this finding, the n-terminal sequence of the streptokinase molecules present in the two products was determined. The results showed slight differences in the amino acid sequence of the recombinant product in comparison to the native one at the amino terminus. This finding supports those of other workers who found that n-terminal sequence of the streptokinase molecule can have significant effect on the activity of this protein.

  10. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Sang-Yong; Lee, Jung-Kul; Kim, In-Won

    2016-04-28

    Methane (CH₄) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH₄ can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH₄; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl₂ as a methanol dehydrogenase inhibitor, 50% CH₄ concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH₄.

  11. Some aspects of biological production and fishery resources of the EEZ of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bhargava, R.M.S.

    Region and season-wise biological production in the Exclusive Economic Zone (EEZ) of India has been computed from the data of more than twenty years available at the Indian National Oceanographic Data Centre of the National Institute of Oceanography...

  12. Biological activities of undescribed North American lichen species.

    Science.gov (United States)

    Yeash, Erik A; Letwin, Lyndon; Malek, Lada; Suntres, Zacharias; Knudsen, Kerry; Christopher, Lew P

    2017-11-01

    Lichens provide a large array of compounds with the potential for pharmaceutical development. In the present study, extracts from three previously undescribed North American lichen species were examined for antioxidant, antibacterial and anticancer activities. The results from this study demonstrated the following: (i) Acarospora socialis ethanol extract exhibited significant DPPH antioxidant scavenging activities, which were concentration dependent; (ii) acetone and ethyl acetate extracts of Xanthoparmelia mexicana inhibited Gram-positive bacteria but had no effect on Gram-negative bacteria; X. mexicana acetone extract yielded a minimum inhibitory concentration (MIC) of 20.9 µg mL -1 against Staphylococcus aureus, and 41.9 µg mL -1 against Enterococcus faecalis; (iii) acetone extract of Lobothallia alphoplaca inhibited growth of cultured breast cancer MCF-7 cells with an effective concentration (EC 50 ) of 87 µg mL -1 ; the MCF-7 cell cycle appears arrested in the G2 phase, whereas the DNA synthesis cell cycle (S) may be inhibited. New lichen species that possess strong biological activities have been identified. These lichens comprise secondary metabolites that possess antioxidant, antibacterial and anticancer properties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. BIOLOGICAL ACTIVITY OF APPLE JUICE ENRICHED BY HERBAL EXTRACTS

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2015-02-01

    Full Text Available Herbal phytochemicals have recently become an attractive subject for scientists in many different research areas. The aim of this study was to determine antioxidant activity, total polyphenol and flavonoid content of apple juice enriched by water herbal extracts. Secondary was to evaluate sensory characteristic of enriched apple juice. It was found that applications of water herbal extracts to apple juice increase antioxidant activities, and also total polyphenol and flavonoid content with compare to pure apple juice. The highest biological activities were detected in apple juice with addition of lemon balm (14.42 mg TEAC/L; 84.38 mg TEAC/L; 50.88 mg GAE/L; 36.26 μg QE/L, oregano (14.92 mg TEAC/L; 79.97 mg TEAC/L; 50.51 mg GAE/L; 31.02 μg QE/L and salvia (8.40 mg TEAC/L; 30.40 mg TEAC/L; 23.33 mg GAE/L; 27.67 μg QE/L water extract. Sensorial analysis of samples showed, that enriched juices had better properties for evaluators with compared to pure juice. The aim of this study was also to mention the potential use of medicinal herbs in food industry, because plant bioactive compounds can play an important role in preventing cardiovascular diseases, cancers and reduction inflammatory action.

  14. High biological productivity in the central Arabian Sea during the summer monsoon driven by Ekman pumping and lateral advection

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Madhupratap, M.; DileepKumar, M.; Muraleedharan, P.M.; DeSouza, S.N.; Gauns, M.; Sarma, V.V.S.S.

    Open oceans are generally oligotrophic and support less biological production. Results from the central Arabian Sea show that it may be an exception to this. We provide the observational evidence of fairly high biological production (up to 1700 mg C...

  15. Biological pretreatment and ethanol production from olive cake

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Baroi, George Nabin

    2010-01-01

    Olive oil is one of the major Mediterranean products, whose nutritional and economic importance is well-known. However the extraction of olive oil yields a highly contaminating residue that causes serious environmental concerns in the olive oil producing countries. The olive cake (OC) coming out...... of the three-phase olive oil production process could be used as low price feedstock for lignocellulosic ethanol production due to its high concentration in carbohydrates. However, the binding of the carbohydrates with lignin may significantly hinder the necessary enzymatic hydrolysis of the polymeric sugars...... before ethanol fermentation. Treatment with three white rot fungi, Phaneroachaete chrysosporium, Ceriporiopsis subvermispora and Ceriolopsis polyzona has been applied on olive cake in order to investigate the potential for performing delignification and thus enhancing the efficiency of the subsequent...

  16. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  17. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    Science.gov (United States)

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  18. JAERI's activities on photon production data

    International Nuclear Information System (INIS)

    Shibata, Keiichi; Maekawa, Fujio; Niita, Koji

    1996-01-01

    Summarized are activities on photon production data at JAERI. The activities consists of evaluation of photon production data for JENDL Fusion File, benchmark tests of JENDL and FENDL-1 data, and calculation of photon production data in the framework of the Quantum Molecular Dynamics. The capture cross sections of 12 C and 16 O were evaluated for JENDL Fusion File by taking account of the direct radiative capture calculations obtained by A. Mengoni (ENEA). The presently evaluated data are in good agreement with the measurements of Igashira et al. in the keV region, describing the behaviour of p-wave capture which is in proportion to υ. Photon production data on Fe and Ni were updated for JENDL Fusion File by using a statistical-model calculations. According to the results of benchmark tests, the calculations with the updated data reproduce the integral measurements on gamma-ray heating. Benchmark tests of evaluated photon production data have been continued by analyzing the integral experimental performed at OKTAVIAN and FNS. The calculations with JENDL Fusion File are in good agreement with the integral measurements. Preliminary calculation of photon production data in the high energy region has been done in the framework of the Quantum Molecular Dynamics approach. The quasi-deuteron model was used to describe photon absorption in the low energy region. Above pion production threshold, pion production channels were included in the calculation. The neutron-proton bremsstrahlung obtained with the one-boson-exchange model was incorporated into QMD codes. (Abstract only)

  19. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  20. Production of biological nanoparticles from Θ- lactalbumin for drug ...

    African Journals Online (AJOL)

    In recent years, the concept of controlled release of encapsulated ingredients at the right place and the right time has become of more interest to the food and pharmaceutical industry. Whey proteins are valuable by-products from the cheese industry. The physicochemical properties of the whey proteins suggest that they ...

  1. 9 CFR 113.3 - Sampling of biological products.

    Science.gov (United States)

    2010-01-01

    ... into the United States as prescribed in this section. Additional samples may be purchased in the open market by a Animal and Plant Health Inspection Service representative. (a) Either an employee of the... operation. Bulk containers of completed product may be sampled when authorized by the Administrator. (iii...

  2. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-07-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  3. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    International Nuclear Information System (INIS)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-01-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  4. Preliminary Phytochemical and Biological activities on Russelia juncea Zucc

    Directory of Open Access Journals (Sweden)

    Maryam Bibi

    2017-12-01

    Full Text Available To probe the ethnomedicinal claims of Russelia juncea Zucc. (Plantaginaceae as prescribed traditionally in the folklore history of medicines. Methods: The dichloromethane and methanol extracts of aerial parts and roots were examined for antimicrobial, antioxidant, antiglycation, insecticidal, leishmanicidal, cytotoxic and phytotoxic activities. Different phytochemical tests were also performed to confirm the presence of various groups of secondary metabolites such as alkaloids, glycosides, saponins, tannins, flavonoids and terpenoids. Results: Phytochemical screening of this plant confirmed the presence of alkaloids, saponins, tannins, flavonoids and terpenoids. Antibacterial activity was only shown by RJRD with 80% inhibition at the concentration of 150µg/ml against Shigella flexneri. Among the tested samples, RJAM and RJRM displayed significant radical scavenging activity up to 93% and 89% with IC50 values of 184.75 ± 4.05µM and 263.01 ± 9.36µM. The significant antiglycation potential was exhibited by RJAD, RJAM and RJRM with 55.35%, 62.25% and 59.22% inhibition and IC50 values of 0.84 ± 0.08mg/ml, 1.37 ± 0.15mg/ml and 1.52 ± 0.10mg/ml respectively. Moderate leishmanicidal activity was exposed by RJAD and RJRM with IC50 values of 73.04 ± 1.05µg/ml and 77.66 ± 0.23µg/ml while RJAM was found to be more potent and exposed significant leishmanicidal activity having IC50 of 48 ± 0.39µg/ml. However, prominent cytotoxic activity was displayed by RJRM with 66.08% inhibition and IC50 of 31.20 ± 3µg/ml. Non-significant antifungal, insecticidal and phytotoxic activities were demonstrated by all the tested samples. Conclusion: All the above contributions give serious attentiveness to scientists to isolate and purify the biologically active phytoconstituents by using advanced scientific methodologies that serve as lead compounds in the synthesis of new therapeutic agents of desired interest in the world of drug discovery.

  5. In situ biomolecule production by bacteria; a synthetic biology approach to medicine.

    Science.gov (United States)

    Flores Bueso, Yensi; Lehouritis, Panos; Tangney, Mark

    2018-04-10

    The ability to modify existing microbiota at different sites presents enormous potential for local or indirect management of various diseases. Because bacteria can be maintained for lengthy periods in various regions of the body, they represent a platform with enormous potential for targeted production of biomolecules, which offer tremendous promise for therapeutic and diagnostic approaches for various diseases. While biological medicines are currently limited in the clinic to patient administration of exogenously produced biomolecules from engineered cells, in situ production of biomolecules presents enormous scope in medicine and beyond. The slow pace and high expense of traditional research approaches has particularly hampered the development of biological medicines. It may be argued that bacterial-based medicine has been "waiting" for the advent of enabling technology. We propose that this technology is Synthetic Biology, and that the wait is over. Synthetic Biology facilitates a systematic approach to programming living entities and/or their products, using an approach to Research and Development (R&D) that facilitates rapid, cheap, accessible, yet sophisticated product development. Full engagement with the Synthetic Biology approach to R&D can unlock the potential for bacteria as medicines for cancer and other indications. In this review, we describe how by employing Synthetic Biology, designer bugs can be used as drugs, drug-production factories or diagnostic devices, using oncology as an exemplar for the concept of in situ biomolecule production in medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Gamma irradiation enhances biological activities of mulberry leaf extract

    International Nuclear Information System (INIS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-01-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE 2 , and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods. - Highlights: • Gamma-irradiated mulberry leaf extract enhanced in vitro antioxidant activities. • Gamma-irradiated mulberry leaf extract enhanced in vitro tyrosinase inhibitory effects. • Gamma-irradiated mulberry leaf extract treatment reduced the production of IL-6, TNF-α, PGE 2 , and NO.

  7. Activation product transport in fusion reactors

    International Nuclear Information System (INIS)

    Klein, A.C.; Vogelsang, W.F.

    1984-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. A computer code, RAPTOR, has been developed to determine the transport of these products in fusion reactor coolant/tritium breeding materials. Without special treatment, it is likely that fusion reactor power plant operators could experience dose rates as high as 8 rem per hour around a number of plant components after only a few years of operation. (orig.)

  8. INFLUENCE OF BIOLOGICALLY ACTIVE SUBSTANCES ON TOMATO YIELD AND QUALITY

    Directory of Open Access Journals (Sweden)

    G. I. Yarovoy

    2017-01-01

    Full Text Available The study of influence of growth regulators and biopreparations affecting on decrease of disease development, increase of yield capacity and final product quality was carried out in tomato. It was shown that all preparations were effective in decreasing the process of diseases development and increasing the yield capacity and product quality. The studies were carried out in the experimental fields at the Institute of Vegetables and Melons NAAS, in Ukraine in 2011-2012. The field studies were performed according to ‘Methodology of Experimental Work in Vegetable and Melon Growing’ on area sown with cultivars ‘Karas’ and ‘Kremenchugskiy’. The fungicides ‘Mars U 77%’, ‘Vimpel with Fitotsid’, ‘Vermistim’ wth ‘Azotofit’ and ‘Bioglobin’ with ‘Azotofit’ were used on cultivars of tomato, as control were the plants without treatment. It was determined that all preparations decreased the development of diseases. On average, the development of early dry spot had decreased by 12.2–16.1% and anthracnose by 10.0–12.6% in the cultivars ‘Kremenchugskiy’ and ‘Karas’. Thus, biopreparations used on the varieties ‘Kremenchugskiy’ and ‘Karas’ were effective in decrease of disease development, such as early dry spot, anthracnose, in a range of 39.1–52.7 %. Generally, during observation period the efficacy index of the preparations ‘Vermistim’ with ‘Azotofit’, ‘Bioglobin’ with ‘Azotofit’ was higher than others preparations on the varieties ‘Kremenchug and ‘Karas’ against early dry spot (48.3–50.9%, 50.3–52.7% and anthracnose (46.1–47.0%, 47.6–48.5%. The results showed that the vast majority of biological preparations, phytohormones used against diseases in tomato crops of varieties ‘Kremenchugskiy’ and ‘Karas’, were effective in a range of 39.1-52.7% and also maintained the tomato yield within 2.8-5.1 t/ha or 8.1- 13.9%. The biological preparations, phytohormones improved

  9. Regeneration of nutrients and biological productivity in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Somasundar, K.; Qasim, S.Z.

    0 30r-. -::.12°..:E~30:_·--Y..':.-_~~ HEARD Is. • .. " 08 x IN 0 I A N o C fAN rJ ~MAURIT!US x ';ol"!> 0" ill IS (:] l 158 010 148 9& CROZET 130 .. , 15. KERGUELEN X.. Is,.'b 120 ANTARCTICA a BOUVET Is. 0' 20 50 Verlencar et al.: Production... and from 0.4 to 3.33 mg C m- 3 h- 1 respectively (Table 1). In the eupho tic column daily production ranged from 0.3 to 1.03 g C m- 2 d- 1 and chlorophyll a from 21.1 to 85.5 mg m- 2 (Table 2). Microscopic examination of 500 ml of sedimented water samples...

  10. Time-ordered product expansions for computational stochastic system biology

    International Nuclear Information System (INIS)

    Mjolsness, Eric

    2013-01-01

    The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie’s stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems. (paper)

  11. Production of biological reagents for radioimmunoassay second antibody

    International Nuclear Information System (INIS)

    Borghi, V.C.; Silva, S.R. da; Bellini, M.H.; Lin, L.H.

    1992-02-01

    The experimental production of second antibody to be used in hormonal assays, in which the first antibody is raised in rabbits, is described. Four sheep were immunized with the rabbit immunoglobulin prepared at IPEN-CNEN laboratory. Their antisera were evaluated by the human thyrotropin radioimmunoassay employing materials provided by the National Hormone and Pituitary Program (USA), in comparison with a reference antiserum of known quality, produced in goat by the Radioassay Systems Laboratories - RSL (USA). From the fourth booster injection the animals developed antiserum with titer similar to that exhibited by the commercial product, even presenting higher values. These antisera are now being examinated for the optimal conditions of precipitation before be packed for future use and distribution. (author)

  12. A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction

    Science.gov (United States)

    Gardner, Joel; Belland, Brian R.

    2012-01-01

    Introductory biology courses form a cornerstone of undergraduate instruction. However, the predominantly used lecture approach fails to produce higher-order biology learning. Research shows that active learning strategies can increase student learning, yet few biology instructors use all identified active learning strategies. In this paper, we…

  13. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    OpenAIRE

    Strucko, Tomas; Eriksen, Jens Christian; Nielsen, J.; Mortensen, Uffe Hasbro

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of...

  14. A novel conformation of gel grown biologically active cadmium nicotinate

    Science.gov (United States)

    Nair, Lekshmi P.; Bijini, B. R.; Divya, R.; Nair, Prabitha B.; Eapen, S. M.; Dileep Kumar, B. S.; Nishanth Kumar, S.; Nair, C. M. K.; Deepa, M.; Rajendra Babu, K.

    2017-11-01

    The elimination of toxic heavy metals by the formation of stable co-ordination compounds with biologically active ligands is applicable in drug designing. A new crystalline complex of cadmium with nicotinic acid is grown at ambient temperature using the single gel diffusion method in which the crystal structure is different from those already reported. Single crystal x-ray diffraction reveals the identity of crystal structure belonging to monoclinic system, P21/c space group with cell dimensions a = 17.220 (2) Å, b = 10.2480 (2) Å, c = 7.229(9) Å, β = 91.829(4)°. Powder x-ray diffraction analysis confirmed the crystallinity of the sample. The unidentate mode of co-ordination between the metal atom and the carboxylate group is supported by the Fourier Transform Infra Red spectral data. Thermal analysis ensures the thermal stability of the complex. Kinetic and thermodynamic parameters are also calculated. The stoichiometry of the complex is confirmed by the elemental analysis. The UV-visible spectral analysis shows the wide transparency window of the complex in the visible region. The band gap of the complex is found to be 3.92 eV. The complex shows excellent antibacterial and antifungal activity.

  15. Pomegranate Fruit as a Rich Source of Biologically Active Compounds

    Science.gov (United States)

    Sreekumar, Sreeja; Sithul, Hima; Muraleedharan, Parvathy; Azeez, Juberiya Mohammed; Sreeharshan, Sreeja

    2014-01-01

    Pomegranate is a widely used plant having medicinal properties. In this review, we have mainly focused on the already published data from our laboratory pertaining to the effect of methanol extract of pericarp of pomegranate (PME) and have compared it with other relevant literatures on Punica. Earlier, we had shown its antiproliferative effect using human breast (MCF-7, MDA MB-231), and endometrial (HEC-1A), cervical (SiHa, HeLa), and ovarian (SKOV3) cancer cell lines, and normal breast fibroblasts (MCF-10A) at concentration of 20–320 μg/mL. The expressions of selected estrogen responsive genes (PR, pS2, and C-Myc) were downregulated by PME. Unlike estradiol, PME did not increase the uterine weight and proliferation in bilaterally ovariectomized Swiss-Albino mice models and its cardioprotective effects were comparable to that of 17β-estradiol. We had further assessed the protective role of PME on skeletal system, using MC3T3-E1 cells. The results indicated that PME (80 μg/mL) significantly increased ALP (Alkaline Phosphatase) activity, supporting its suggested role in modulating osteoblastic cell differentiation. The antiosteoporotic potential of PME was also evaluated in ovariectomized (OVX) rodent model. The results from our studies and from various other studies support the fact that pomegranate fruit is indeed a source of biologically active compounds. PMID:24818149

  16. Ultratrace determination of platinum in biological materials via neutron activation and radiochemical separation

    International Nuclear Information System (INIS)

    Zeisler, R.; Greenberg, R.R.

    1982-01-01

    A neutron activation analysis scheme based upon a radiochemical separation of the activation products has been developed. The method utilizes the inherent sensitivity of the activation reaction 198 Pt(n,ν) 199 Pt and counting of the daughter nuclide 199 Au. This nuclide is radiochemically separated from interfering activities by homogeneous precipitation as elemental gold. The remaining interference of the secondary reaction 197 Au(n,ν) 198 Au(n,ν) 199 Au from gold in the samples is quantitatively assessed and corrected. During this process accurate gold concentrations in the samples are obtained at ultratrace levels. The analysis scheme is applied to gold and platinum determinations in biological Standard Reference Materials and human liver specimens. Gold and platinum are determined at concentrations of 5x10 - 11 g/g, and at higher levels. (author)

  17. Specific methanogenic activity (SMA of industrial sludge from the aerobic and anaerobic biological treatment

    Directory of Open Access Journals (Sweden)

    Danieli Schneiders

    2013-08-01

    Full Text Available In this study, specific methanogenic activity (SMA tests were performed on textile sludge and food industry sludge. The textile sludge from an activated sludge was collected at the entrance of the secondary biologic clarifier and the food sludge was collected in a UASB reactor. Once collected, the sludges were characterized and tested for SMA. It was found that the microrganisms present in the food sludge had SMA of 0.17 gCOD-CH4 gSSV.d-1 and 337.05 mL of methane production, while the microrganisms of the textile sludge presented 0.10 gCOD-CH4 gSSV.d-1 of SMA and 3.04 mL of methane production. Therefore, the food sludge was more suitable to be used as a starting inoculum in UASB.

  18. Aloe vera: Potential candidate in health management via modulation of biological activities

    Science.gov (United States)

    Rahmani, Arshad H.; Aldebasi, Yousef H.; Srikar, Sauda; Khan, Amjad A.; Aly, Salah M.

    2015-01-01

    Treatment based on natural products is rapidly increasing worldwide due to the affordability and fewer side effects of such treatment. Various plants and the products derived from them are commonly used in primary health treatment, and they play a pivotal role in the treatment of diseases via modulation of biochemical and molecular pathways. Aloe vera, a succulent species, produces gel and latex, plays a therapeutic role in health management through antioxidant, antitumor, and anti-inflammatory activities, and also offers a suitable alternative approach for the treatment of various types of diseases. In this review, we summarize the possible mechanism of action and the therapeutic implications of Aloe vera in health maintenance based on its modulation of various biological activities. PMID:26392709

  19. Purity-activity relationships of natural products: the case of anti-TB active ursolic acid.

    Science.gov (United States)

    Jaki, Birgit U; Franzblau, Scott G; Chadwick, Lucas R; Lankin, David C; Zhang, Fangqiu; Wang, Yuehong; Pauli, Guido F

    2008-10-01

    The present study explores the variability of biological responses from the perspective of sample purity and introduces the concept of purity-activity relationships (PARs) in natural product research. The abundant plant triterpene ursolic acid (1) was selected as an exemplary natural product due to the overwhelming number yet inconsistent nature of its approximate 120 reported biological activities, which include anti-TB potential. Nine different samples of ursolic acid with purity certifications were obtained, and their purity was independently assessed by means of quantitative 1H NMR (qHNMR). Biological evaluation consisted of determining MICs against two strains of virulent Mycobacterium tuberculosis and IC50 values in Vero cells. Ab initio structure elucidation provided unequivocal structural confirmation and included an extensive 1H NMR spin system analysis, determination of nearly all J couplings and the complete NOE pattern, and led to the revision of earlier reports. As a net result, a sigmoid PAR profile of 1 was obtained, demonstrating the inverse correlation of purity and anti-TB bioactivity. The results imply that synergistic effects of 1 and its varying impurities are the likely cause of previously reported antimycobacterial potential. Generating PARs is a powerful extension of the routinely performed quantitative correlation of structure and activity ([Q]SAR). Advanced by the use of primary analytical methods such as qHNMR, PARs enable the elucidation of cases like 1 when increasing purity voids biological activity. This underlines the potential of PARs as a tool in drug discovery and synergy research and accentuates the need to routinely combine biological testing with purity assessment.

  20. Actinobacteria from arid and desert habitats: diversity and biological activity

    Directory of Open Access Journals (Sweden)

    Joachim eWink

    2016-01-01

    Full Text Available Abstract The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability.At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS and nonribosomal peptide synthetase (NRPS genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria

  1. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity.

    Science.gov (United States)

    Mohammadipanah, Fatemeh; Wink, Joachim

    2015-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  2. Important biological activities induced by Thalassophryne maculosa fish venom.

    Science.gov (United States)

    Sosa-Rosales, Josefina Ines; Piran-Soares, Ana Amélia; Farsky, Sandra H P; Takehara, Harumi Ando; Lima, Carla; Lopes-Ferreira, Mônica

    2005-02-01

    The accidents caused by Thalassophryne maculosa fish venoms are frequent and represent a public health problem in some regions of Venezuela. Most accidents occur in the fishing communities and tourists. The clinical picture is characterized by severe pain, dizziness, fever, edema, and necrosis. Due to the lack of efficient therapy it may take weeks, or even months for complete recovery of the victims. The investigations presented here were undertaken to assess the eletrophoretical profile and principal biological properties of the T. maculosa venom. Venom obtained from fresh captured specimens of this fish was tested in vitro or in animal models for a better characterization of its toxic activities. In contrast to other fish venoms, T. maculosa venom showed relative low LD50. The injection of venom in the footpad of mice reproduced a local inflammatory lesion similar to that described in humans. Significant increase of the nociceptive and edematogenic responses was observed followed within 48 h by necrosis. Pronounced alterations on microvascular hemodynamics were visualized after venom application. These alterations were represented by fibrin depots and thrombus formation followed by complete venular stasis and transient arteriolar contraction. T. maculosa venom is devoid of phospholipase A2 activity, but the venom showed proteolytic and myotoxic activities. SDS-Page analysis of the crude venom showed important bands: one band located above 97 M(w), one band between 68 and 97 M(w), one major band between 29 and 43 M(w) and the last one located below 18.4 M(w) Then, the results presented here support that T. maculosa venom present a mixture of bioactive toxins involved in a local inflammatory lesion.

  3. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity

    Science.gov (United States)

    Mohammadipanah, Fatemeh; Wink, Joachim

    2016-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  4. Total Synthesis of Natural Products of Microbial Origins(Recent Topics of the Agricultunal Biological Science in Tohoku University)

    OpenAIRE

    Hiromasa, KIYOTA; Shigefumi, KUWAHARA; Laboratory of Applied Bioorganic Chemistry, Division of Bioscience & Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University; Laboratory of Applied Bioorganic Chemistry, Division of Bioscience & Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University

    2008-01-01

    Microorganisms are an important rich source of secondary metabolites, which could be useful leads to valuable agrochemicals and/or medicinal drugs. This mini-review describes our recent achievements on the total synthesis of biologically active natural products of microbial origins: pteridic acids A and B (strong plant growth promoters), epoxyquinols A and B (anti-angiogenic compounds), communiols A-F, G, and H, and macrotetrolide α (antibiotics), pyricuol and tabtoxinine-β-lactam (phytotoxin...

  5. Circulating biologically active oxidized phospholipids show on-going and increased oxidative stress in older male mice

    Directory of Open Access Journals (Sweden)

    Jinbo Liu

    2013-01-01

    Significance: Oxidatively modified phospholipids are increased in the circulation during common, mild oxidant stresses of aging, or in male compared to female animals. Turnover of these biologically active phospholipids by rapid transport into liver and kidney is unchanged, so circulating levels reflect continuously increased production.

  6. Organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds

    International Nuclear Information System (INIS)

    Maltsev, O V; Beletskaya, Irina P; Zlotin, Sergei G

    2011-01-01

    Recent applications of organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds: natural products, pharmaceutical agents and plant protection agents are reviewed. The key mechanisms of stereoinduction, types of organocatalysts and reagents used in these reactions are considered. The material is classified according to the type of newly formed bonds incorporating the asymmetric carbon atom, and the information for the most numerous C–C coupling reactions is systematized according to the natures of the electrophile and the nucleophile. The bibliography includes 433 references.

  7. A novel biological hydrogen production system. Impact of organic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Western Ontario Univ. (Canada)

    2010-07-01

    The patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. Two biohydrogenators were operated for 220 days at 37 C, hydraulic retention time 8 h and solids retention time ranged from 1.4 to 2 days under four different glucose concentrations of 2, 8, 16, 32, 48 and 64 g/L, corresponding to organic loading rates of 6.5-206 kg COD/m{sup 3}-d, and started up using anaerobically-digested sludge from the St. Marys wastewater treatment plant (St.Mary, Ontario, Canada) as the seed. The system steadily produced hydrogen with no methane. A maximum hydrogen yield of 3.1 mol H{sub 2} /mol glucose was achieved in the system for all the organic loading rates with an average of 2.8mol H{sub 2} /mol glucose. Acetate and butyrate were the main effluent liquid products at concentrations ranging from 640-7400 mg/L and 400-4600 mg/l, respectively, with no lactate detection. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) confirmed the absence of lactate producing bacteria Lactobacillus fermentum and other non-hydrogen producing species, and the predominance of various Clostridium species. Biomass concentrations in the biohydrogenators were steady, during the runs, varying form 1500 mg/L at the OLR of 6.5 kg COD/m{sup 3}-d to 14000 mg/L at the 104 kg COD/m{sup 3}-d, thus emphasizing the potential of this novel system for sustained stable hydrogen production and prevention of biomass washout. (orig.)

  8. Biological Activities and Phytochemical Profiles of Extracts from Different Parts of Bamboo (Phyllostachys pubescens

    Directory of Open Access Journals (Sweden)

    Akinobu Tanaka

    2014-06-01

    Full Text Available Besides being a useful building material, bamboo also is a potential source of bioactive substances. Although some studies have been performed to examine its use in terms of the biological activity, only certain parts of bamboo, especially the leaves or shoots, have been studied. Comprehensive and comparative studies among different parts of bamboo would contribute to a better understanding and application of this knowledge. In this study, the biological activities of ethanol and water extracts from the leaves, branches, outer culm, inner culm, knots, rhizomes and roots of Phyllostachys pubescens, the major species of bamboo in Japan, were comparatively evaluated. The phytochemical profiles of these extracts were tentatively determined by liquid chromatography-mass spectrometry (LC-MS analysis. The results showed that extracts from different parts of bamboo had different chemical compositions and different antioxidative, antibacterial and antiallergic activities, as well as on on melanin biosynthesis. Outer culm and inner culm were found to be the most important sources of active compounds. 8-C-Glucosylapigenin, luteolin derivatives and chlorogenic acid were the most probable compounds responsible for the anti-allergy activity of these bamboo extracts. Our study suggests the potential use of bamboo as a functional ingredient in cosmetics or other health-related products.

  9. Biological activities caused by far-infrared radiation

    Science.gov (United States)

    Inoué, Shojiro; Kabaya, Morihiro

    1989-09-01

    Contrary to previous presumption, accumulated evidence indicates that far-infrared rays are biologically active. A small ceramic disk that emist far-infrared rays (4 16 μm) has commonly been applied to a local spot or a whole part of the body for exposure. Pioneering attempts to experimentally analyze an effect of acute and chronic radiation of far-infrared rays on living organisms have detected a growth-promoting effect in growing rats, a sleep-modulatory effect in freely behaving rats and an insomiac patient, and a blood circulation-enhancing effect in human skin. Question-paires to 542 users of far-infrared radiator disks embedded in bedelothes revealed that the majority of the users subjectively evaluated an improvement of their health. These effects on living organisms appear to be non-specifically triggered by an exposure to far-infrared rays, which eventually induce an increase in temperature of the body tissues or, more basically, an elevated motility of body fluids due to decrease in size of water clusters.

  10. Nonoxidized, biologically active parathyroid hormone determines mortality in hemodialysis patients

    DEFF Research Database (Denmark)

    Tepel, Martin; Armbruster, Franz Paul; Grön, Hans Jürgen

    2013-01-01

    Background: It was shown that nonoxidized PTH (n-oxPTH) is bioactive, whereas the oxidation of PTH results in a loss of biological activity. Methods: In this study we analyzed the association of n-oxPTH on mortality in hemodialysis patients using a recently developed assay system. Results......: Hemodialysis patients (224 men, 116 women) had a median age of 66 years. One hundred seventy patients (50%) died during the follow-up period of 5 years. Median n-oxPTH levels were higher in survivors (7.2 ng/L) compared with deceased patients (5.0 ng/L; P = .002). Survival analysis showed an increased survival...... in the highest n-oxPTH tertile compared with the lowest n-oxPTH tertile (χ(2), 14.3; P = .0008). Median survival was 1702 days in the highest n-oxPTH tertile, whereas it was only 453 days in the lowest n-oxPTH tertile. Multivariable-adjusted Cox regression showed that higher age increased odds for death, whereas...

  11. Fraxinus: A Plant with Versatile Pharmacological and Biological Activities.

    Science.gov (United States)

    Sarfraz, Iqra; Rasul, Azhar; Jabeen, Farhat; Younis, Tahira; Zahoor, Muhammad Kashif; Arshad, Muhammad; Ali, Muhammad

    2017-01-01

    Fraxinus , a member of the Oleaceae family, commonly known as ash tree is found in northeast Asia, north America, east and western France, China, northern areas of Pakistan, India, and Afghanistan. Chemical constituents of Fraxinus plant include various secoiridoids, phenylethanoids, flavonoids, coumarins, and lignans; therefore, it is considered as a plant with versatile biological and pharmacological activities. Its tremendous range of pharmacotherapeutic properties has been well documented including anticancer, anti-inflammatory, antioxidant, antimicrobial, and neuroprotective. In addition, its bioactive phytochemicals and secondary metabolites can be effectively used in cosmetic industry and as a competent antiaging agent. Fraxinus presents pharmacological effectiveness by targeting the novel targets in several pathological conditions, which provide a spacious therapeutic time window. Our aim is to update the scientific research community with recent endeavors with specifically highlighting the mechanism of action in different diseases. This potentially efficacious pharmacological drug candidate should be used for new drug discovery in future. This review suggests that this plant has extremely important medicinal utilization but further supporting studies and scientific experimentations are mandatory to determine its specific intracellular targets and site of action to completely figure out its pharmacological applications.

  12. Essential Oils from Neotropical Piper Species and Their Biological Activities

    Science.gov (United States)

    da Trindade, Rafaela; Alves, Nayara Sabrina; Figueiredo, Pablo Luís; Maia, José Guilherme S.; Setzer, William N.

    2017-01-01

    The Piper genus is the most representative of the Piperaceae reaching around 2000 species distributed in the pantropical region. In the Neotropics, its species are represented by herbs, shrubs, and lianas, which are used in traditional medicine to prepare teas and infusions. Its essential oils (EOs) present high yield and are chemically constituted by complex mixtures or the predominance of main volatile constituents. The chemical composition of Piper EOs displays interspecific or intraspecific variations, according to the site of collection or seasonality. The main volatile compounds identified in Piper EOs are monoterpenes hydrocarbons, oxygenated monoterpenoids, sesquiterpene hydrocarbons, oxygenated sesquiterpenoids and large amounts of phenylpropanoids. In this review, we are reporting the biological potential of Piper EOs from the Neotropical region. There are many reports of Piper EOs as antimicrobial agents (fungi and bacteria), antiprotozoal (Leishmania spp., Plasmodium spp., and Trypanosoma spp.), acetylcholinesterase inhibitor, antinociceptive, anti-inflammatory and cytotoxic activity against different tumor cells lines (breast, leukemia, melanoma, gastric, among others). These studies can contribute to the rational and economic exploration of Piper species, once they have been identified as potent natural and alternative sources to treat human diseases. PMID:29240662

  13. Polyphenols from Bee Pollen: Structure, Absorption, Metabolism and Biological Activity

    Directory of Open Access Journals (Sweden)

    Anna Rzepecka-Stojko

    2015-12-01

    Full Text Available Bee pollen constitutes a natural source of antioxidants such as phenolic acids and flavonoids, which are responsible for its biological activity. Research has indicated the correlation between dietary polyphenols and cardioprotective, hepatoprotective, anti-inflammatory, antibacterial, anticancerogenic, immunostimulating, antianaemic effects, as well as their beneficial influence on osseous tissue. The beneficial effects of bee pollen on health result from the presence of phenolic acids and flavonoids which possess anti-inflammatory properties, phytosterol and linolenic acid which play an anticancerogenic role, and polysaccharides which stimulate immunological activity. Polyphenols are absorbed in the alimentary tract, metabolised by CYP450 enzymes, and excreted with urine and faeces. Flavonoids and phenolic acids are characterised by high antioxidative potential, which is closely related to their chemical structure. The high antioxidant potential of phenolic acids is due to the presence and location of hydroxyl groups, a carboxyl group in the immediate vicinity of ortho-diphenolic substituents, and the ethylene group between the phenyl ring and the carboxyl group. As regards flavonoids, essential structural elements are hydroxyl groups at the C5 and C7 positions in the A ring, and at the C3′ and C4′ positions in the B ring, and a hydroxyl group at the C3 position in the C ring. Furthermore, both, the double bond between C2 and C3, and a ketone group at the C4 position in the C ring enhance the antioxidative potential of these compounds. Polyphenols have an ideal chemical structure for scavenging free radicals and for creating chelates with metal ions, which makes them effective antioxidants in vivo.

  14. Variations in composition of farmyard manure in biologic gas production

    Energy Technology Data Exchange (ETDEWEB)

    Scheffer, F; Welte, E; Kemmler, G

    1953-01-01

    The advantages of the ''Bihugas'' method, Schmidt-Eggersgluss system, are discussed. The losses of organic matter and of C are about 33 percent for a gas output of 270 l/kg of organic matter, but 55 percent of the C of the decomposition products is utilized as mixed gas (about 60 percent as methane). The gas output amounts to 3-7 m/sup 3/ per 100 kg fresh manure. The maximum heating value of the mixed gas is 5700 kcal. The loss of N is only 1 percent of the total N; no P, K, and Ca are lost. No formation of humus was observed. The average composition of fermented manure was dry matter 10.56 organic matter 6.9, C 3.47, N 0.36, ammonia N in percentage of total N 38, K/sub 2/O/sub 7/ 0.27, CaO 0.18, and P/sub 2/O/sub 5/ 0.13 percent. The process, compared with the conventional handling of manure, decreases losses in N from 18.5 percent to 1 percent, and those in C from 38 percent to 7.3 percent.

  15. Activation product transport in fusion reactors

    International Nuclear Information System (INIS)

    Klein, A.C.

    1983-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. Similar problems are experienced around fission reactor systems. The determination of the transport of radioactive corrosion and neutron sputtering products through the system is achieved using the computer code RAPTOR. This code calculates the mass transfer of a number of activation products based on the corrosion and sputtering rates through the system, the deposition and release characteristics of various plant components, the neturon flux spectrum, as well as other plant parameters. RAPTOR assembles a system of first order linear differential equations into a matrix equation based upon the reactor system parameters. Included in the transfer matrix are the deposition and erosion coefficients, and the decay and activation data for the various plant nodes and radioactive isotopes. A source vector supplies the corrosion and neutron sputtering source rates. This matrix equation is then solved using a matrix operator technique to give the specific activity distribution of each radioactive species throughout the plant. Once the amount of mass transfer is determined, the photon transport due to the radioactive corrosion and sputtering product sources can be evaluated, and dose rates around the plant components of interest as a function of time can be determined. This method has been used to estimate the radiation hazards around a number of fusion reactor system designs

  16. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  17. Purification, Characterization and Biological Activity of Polysaccharides from Dendrobium officinale

    Directory of Open Access Journals (Sweden)

    Kaiwei Huang

    2016-05-01

    Full Text Available Polysaccharide (DOPA from the stem of D. officinale, as well as two fractions (DOPA-1 and DOPA-2 of it, were isolated and purified by DEAE cellulose-52 and Sephacryl S-300 chromatography, and their structural characteristics and bioactivities were investigated. The average molecular weights of DOPA-1 and DOPA-2 were 394 kDa and 362 kDa, respectively. They were mainly composed of d-mannose, d-glucose, and had a backbone consisting of 1,4-linked β-d-Manp and 1,4-linked β-d-Glcp with O-acetyl groups. Bioactivity studies indicated that both DOPA and its purified fractions (DOPA-1 and DOPA-2 could activate splenocytes and macrophages. The D. officinale polysaccharides had stimulatory effects on splenocytes, T-lymphocytes and B-lymphocytes, promoting the cell viability and NO production of RAW 264.7 macrophages. Furthermore, DOPA, DOPA-1 and DOPA-2 were found to protect RAW 264.7 macrophages against hydrogen peroxide (H2O2-induced oxidative injury by promoting cell viability, suppressing apoptosis and ameliorating oxidative lesions. These results suggested that D. officinale polysaccharides possessed antioxidant activity and mild immunostimulatory activity.

  18. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles

    2011-01-01

    on N2O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO2– participates as final electron acceptor compared to the oxic pathway. Among......Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...

  19. Enhanced biological activities of gamma-irradiated persimmon leaf extract.

    Science.gov (United States)

    Cho, Byoung-Ok; Nchang Che, Denis; Yin, Hong-Hua; Jang, Seon-Il

    2017-09-01

    The aim of this study was to compare the anti-oxidative and anti-inflammatory activities of gamma-irradiated persimmon leaf extract (GPLE) with those of non-irradiated persimmon leaf extract (PLE). Ethanolic extract of persimmon leaf was exposed to gamma irradiation at a dose of 10 kGy. After gamma irradiation, the color of the extract changed from dark brown to light brown. The anti-oxidative and anti-inflammatory activities of GPLE and PLE were assessed from: total polyphenol and total flavonoid contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay; 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assay, and levels of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The total polyphenol contents of GPLE and PLE were determined to be 224.44 ± 1.54 and 197.33 ± 5.81 mg gallic acid equivalents (GAE)/g, respectively, and the total flavonoid contents of GPLE and PLE were 206.27 ± 1.15 and 167.60 ± 2.00 mg quercetin equivalents (QUE)/g, respectively. The anti-oxidant activities of GPLE and PLE as measured by DPPH assays were 338.33 ± 30.19 μg/ml (IC50) and 388.68 ± 8.45 μg/ml (IC50), respectively, and those measured by ABTS assays were 510.49 ± 15.12 μg/ml (IC50) and 731.30 ± 10.63 μg/ml (IC50), respectively. IC50 is the inhibitor concentration that reduces the response by 50%. GPLE strongly inhibited the production of NO, PGE2 and IL-6 compared with PLE in lipopolysaccharide-stimulated RAW264.7 macrophages. Furthermore, GPLE significantly inhibited the production of TNF-α and IL-6 cytokines compared with PLE in phorbol 12-myristate 13-acetate (PMA) plus A23187-stimulated HMC-1 human mast cells. These results indicate that gamma irradiation of PLE can enhance its anti-oxidative and anti-inflammatory activities through elevation of the phenolic contents. Therefore, gamma-irradiated PLE has potential for use in the food and cosmetic

  20. Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa)

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Maheswaran, P.A.; Jyothibabu, R.; Sunil, V.; Revichandran, C.; Balasubramanian, T.; Gopalakrishnan, T.C.; Nair, K.K.C.

    COMMUNICATIONS CURRENT SCIENCE, VOL. 82, NO. 12, 25 JUNE 2002 *For correspondence. (e - mail: madhu@niokochi.org) Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa) N. V. Madhu*, P. A. Maheswaran, R... in the world?s oceans typically have duration of only a few days, but the physical and biological effects due to this perturbation can last up to several weeks 1 ? 4 . The integrated effect from these storm events has the potential to account for a...

  1. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust.

    Science.gov (United States)

    Raanan, Hagai; Felde, Vincent J M N L; Peth, Stephan; Drahorad, Sylvie; Ionescu, Danny; Eshkol, Gil; Treves, Haim; Felix-Henningsen, Peter; Berkowicz, Simon M; Keren, Nir; Horn, Rainer; Hagemann, Martin; Kaplan, Aaron

    2016-02-01

    Desert biological soil crusts (BSCs) are formed by adhesion of soil particles to polysaccharides excreted by filamentous cyanobacteria, the pioneers and main producers in this habitat. Biological soil crust destruction is a central factor leading to land degradation and desertification. We study the effect of BSC structure on cyanobacterial activity. Micro-scale structural analysis using X-ray microtomography revealed a vesiculated layer 1.5-2.5 mm beneath the surface in close proximity to the cyanobacterial location. Light profiles showed attenuation with depth of 1%-5% of surface light within 1 mm but also revealed the presence of 'light pockets', coinciding with the vesiculated layer, where the irradiance was 10-fold higher than adjacent crust parts at the same depth. Maximal photosynthetic activity, examined by O2 concentration profiles, was observed 1 mm beneath the surface and another peak in association with the 'light pockets'. Thus, photosynthetic activity may not be visible to currently used remote sensing techniques, suggesting that BSCs' contribution to terrestrial productivity is underestimated. Exposure to irradiance higher than 10% full sunlight diminished chlorophyll fluorescence, whereas O2 evolution and CO2 uptake rose, indicating that fluorescence did not reflect cyanobacterial photosynthetic activity. Our data also indicate that although resistant to high illumination, the BSC-inhabiting cyanobacteria function as 'low-light adapted' organisms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Comparison of growth methods and biological activities of brazilian marine Streptomyces

    Directory of Open Access Journals (Sweden)

    A. C. Granato

    2013-03-01

    Full Text Available The present work describes the study of the growth and the cytotoxic and antitumor activities of the extracts of the marine microorganisms Streptomyces acrymicini and Streptomyces cebimarensis, the latter a new strain. Both microorganisms were collected from coastal marine sediments of the north coast of São Paulo state. Growth was performed in a shaker and in a bioreactor using Gym medium and the broths of both microorganisms were extracted with ethyl acetate and n-butanol. Three extracts, two organic and one aqueous, from each microorganism were obtained and tested for cytotoxic and antitumor activity using the SF-295 (Central Nervous System, HCT-8 (Colon cell lines, and the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide method. The growth methods were compared and show that, although the shaker presented reasonable results, the bioreactor represents the best choice for growth of these microorganisms. The biological activity of the different extracts was evaluated and it was demonstrated that the growth methodology may influence the secondary metabolite production and the biological activity.

  3. Biological waste by-production costs in forest management and possibilities for their reduction

    Directory of Open Access Journals (Sweden)

    Jiří Kadlec

    2004-01-01

    Full Text Available Biological wastes in forestry were observed from view of their by-production in silvicultural and logging operations. There were identified points where biological waste was produced in this paper, waste costs ratio for silvicultural and logging operations and were made suggestions for reduction of these costs. Biological waste costs give 34.4% of total costs of silvicultural operations and 30% of total costs of logging operations. Natural regeneration and minor forest produce operations are opportunities for reduction of these costs.

  4. Development of Bicarbonate-Activated Peroxide as a Chemical and Biological Warfare Agent Decontaminant

    National Research Council Canada - National Science Library

    Richardson, David E

    2006-01-01

    ...) and other chemistry for the decontamination of chemical and biological warfare agents. The mechanism of formation of the active oxidant, peroxymonocarbonate, has been investigated in detail. New surfoxidants...

  5. Production and characterization of granular activated carbon from activated sludge

    Directory of Open Access Journals (Sweden)

    Z. Al-Qodah

    2009-03-01

    Full Text Available In this study, activated sludge was used as a precursor to prepare activated carbon using sulfuric acid as a chemical activation agent. The effect of preparation conditions on the produced activated carbon characteristics as an adsorbent was investigated. The results indicate that the produced activated carbon has a highly porous structure and a specific surface area of 580 m²/g. The FT-IR analysis depicts the presence of a variety of functional groups which explain its improved adsorption behavior against pesticides. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The adsorption isotherm data were fitted to three adsorption isotherm models and found to closely fit the BET model with R² equal 0.948 at pH 3, indicating a multilayer of pesticide adsorption. The maximum loading capacity of the produced activated carbon was 110 mg pesticides/g adsorbent and was obtained at this pH value. This maximum loading was found experimentally to steeply decrease as the solution pH increases. The obtained results show that activated sludge is a promising low cost precursor for the production of activated carbon.

  6. Recent progress in synthetic biology for microbial production of C3-C10 alcohols

    Directory of Open Access Journals (Sweden)

    Edna N. Lamsen

    2012-06-01

    Full Text Available The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. While microbial ethanol production is well established, higher chain alcohols possess chemical properties that are more similar to gasoline. Unfortunately, these alcohols (except 1-butanol are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. Synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of these advanced biofuels. This review concentrates on recent developments in synthetic biology to produce higher-chain alcohols as viable renewable replacements for traditional fuel.

  7. Characterization of biological macromolecules by electrophoresis and neutron activation

    International Nuclear Information System (INIS)

    Stone, S.F.; Hancock, D.; Zeisler, R.

    1987-01-01

    A procedure combining polyacrylamide gel electrophoresis (PAGE) with INAA and autoradiography was developed to study biological macromolecules and their associated trace elements. Results from the application of this method to several metalloproteins are presented. (author)

  8. Chemical constituents and biological activities of species of Justicia: a review

    Directory of Open Access Journals (Sweden)

    Geone M. Corrêa

    2012-02-01

    Full Text Available The Acanthaceae family is an important source of therapeutic drugs, and the ethnopharmacological knowledge of this family requires urgent documentation as several of its species are near extinction. Justicia is the largest genus of Acanthaceae, with approximately 600 species. The present work provides a review addressing the chemistry and pharmacology of the genus Justicia. In addition, the biological activities of compounds isolated from the genus are also covered. The chemical and pharmacological information in the present work may inspire new biomedical applications for the species of Justicia, considering atom economy, the synthesis of environmentally benign products without producing toxic by-products, the use of renewable sources of raw materials, and the search for processes with maximal efficiency of energy.

  9. Thermal mud maturation: organic matter and biological activity.

    Science.gov (United States)

    Centini, M; Tredici, M R; Biondi, N; Buonocore, A; Maffei Facino, R; Anselmi, C

    2015-06-01

    Many of the therapeutic and cosmetic treatments offered in spas are centred on mud therapy, to moisturize the skin and prevent skin ageing and rheumatic diseases. Thermal mud is a complex matrix composed of organic and inorganic elements which contribute to its functions. It is a natural product derived from the long mixing of clay and thermal water. During its maturation, organic substances are provided by the microalgae, which develop characteristic of the composition of thermal water. The aim of this study was to identify methods for introducing objective parameters as a basis for characterizing thermal mud and assessing its efficacy. Samples of thermal mud were collected at the Saturnia spa, where there are several sulphureous pools. The maturation of the mud was evaluated by organic component determination using extractive methods and chromatographic analysis (HPLC, GC-MS, SPME). We also studied the radical scavenging activity of mud samples at different stages of maturation, in a homogeneous phase, using several tests (DPPH, ORAC, ABTS). We identified several classes of compounds: saturated and unsaturated fatty acids, hydroxyl acids, dicarboxylic acids, ketoacids, alcohols and others. SPME analysis showed the presence of various hydrocarbons compounds (C(11) -C(17)) and long-chain alcohols (C(12) -C(16)). Six or seven months seemed appropriate to complete the process of maturation, and the main effect of maturation time was the increase of lipids. Six-month mud showed the highest activity. The hydrophilic extract was more active than the lipophilic extract. The results indicate that maturation of thermal mud can be followed on the basis of the changes in its organic composition and antioxidant properties along the time. They also highlight the need to develop reference standards for thermal muds in relation to assess their use for therapeutic and cosmetic purposes. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  10. Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater.

    Science.gov (United States)

    Sbardella, Luca; Comas, Joaquim; Fenu, Alessio; Rodriguez-Roda, Ignasi; Weemaes, Marjoleine

    2018-04-28

    Through their release of effluents, conventional wastewater treatment plants (WWTPs) represent a major pollution point sources for pharmaceutically active compounds (PhACs) in water bodies. The combination of a biological activated carbon (BAC) filter coupled with an ultrafiltration (UF) unit was evaluated as an advanced treatment for PhACs removal at pilot scale. The BAC-UF pilot plant was monitored for one year. The biological activity of the biofilm that developed on the granular activated carbon (GAC) particles and the contribution of this biofilm to the overall removal of PhACs were evaluated. Two different phases were observed during the long-term monitoring of PhACs removal. During the first 9200 bed volumes (BV; i.e., before GAC saturation), 89, 78, 83 and 79% of beta-blockers, psychiatric drugs, antibiotics and a mix of other therapeutic groups were removed, respectively. The second phase was characterized by deterioration of the overall performances during the period between 9200 and 13,800 BV. To quantify the respective contribution of adsorption and biodegradation, a lab-scale setup was operated for four months and highlighted the essential role played by GAC in biofiltration units. Physical adsorption was indeed the main removal mechanism. Nevertheless, a significant contribution due to biological activity was detected for some PhACs. The biofilm contributed to the removal of 22, 25, 30, 32 and 35% of ciprofloxacin, bezafibrate, ofloxacin, azithromycin and sulfamethoxazole, respectively. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Production of activated carbons from almond shell

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, Joao M. Valente; Laginhas, Carlos Eduardo C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    The production of activated carbons from almond shell, using physical activation by CO{sub 2} is reported in this work. The used method has produced activated carbons with apparent BET surface areas and micropore volume as high as 1138 m{sup 2} g{sup -1} and 0.49 cm{sup 3} g{sup -1}, respectively. The activated carbons produced have essentially primary micropores and only a small volume of wider micropores. By FTIR analysis it was possible to identify, in the surface of the activated carbons, several functional groups, namely hydroxyls (free and phenol), ethers, esters, lactones, pyrones and Si-H bonds. By the analysis of the XRD patterns it was possible to calculate the microcrystallites dimensions with height between 1.178 and 1.881 nm and width between 3.106 and 5.917 nm. From the XRD it was also possible to identify the presence of traces of inorganic heteroatoms such as Si, Pb, K, Fe and P. All activated carbons showed basic characteristics with point of zero charge between 9.42 and 10.43. (author)

  12. Adamantoylated biologically active small peptides and glycopeptides structurally related to the bacterial peptidoglycan.

    Science.gov (United States)

    Frkanec, Ruža; Vranešić, Branka; Tomić, Srdjanka

    2013-01-01

    A large number of novel synthetic compounds representing smaller parts of original peptidoglycan molecules have been synthesized and found to possess versatile biological activity, particularly immunomodulating properties. A series of compounds containing the adamantyl residues coupled to peptides and glycopeptides characteristic for bacterial peptidoglycan was described. The new adamantylpeptides and adamantylglycopeptides were prepared starting from N-protected racemic adamantylglycine and dipeptide L-Ala-D-isoglutamine. The adamantyl glycopeptides were obtained by coupling the adamantyltripeptides with alpha-D-mannose moiety through spacer molecule of fixed chirality. Since the starting material was D,L-(adamantyl-glycine) the condensation products with the dipeptide were mixtures of diastereoisomers. The obtained diastereoisomers were separated, characterized, and tested for immunostimulating activity. An HPLC method for purity testing was developed and adapted for the particular compounds.

  13. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems

    Directory of Open Access Journals (Sweden)

    Javad Sharifi-Rad

    2017-01-01

    Full Text Available Essential oils are complex mixtures of hydrocarbons and their oxygenated derivatives arising from two different isoprenoid pathways. Essential oils are produced by glandular trichomes and other secretory structures, specialized secretory tissues mainly diffused onto the surface of plant organs, particularly flowers and leaves, thus exerting a pivotal ecological role in plant. In addition, essential oils have been used, since ancient times, in many different traditional healing systems all over the world, because of their biological activities. Many preclinical studies have documented antimicrobial, antioxidant, anti-inflammatory and anticancer activities of essential oils in a number of cell and animal models, also elucidating their mechanism of action and pharmacological targets, though the paucity of in human studies limits the potential of essential oils as effective and safe phytotherapeutic agents. More well-designed clinical trials are needed in order to ascertain the real efficacy and safety of these plant products.

  14. Preparation of iodoinsulin with preserved biological activity. [/sup 125/I, /sup 127/I

    Energy Technology Data Exchange (ETDEWEB)

    Dominiczak, M [Akademia Medyczna, Gdansk (Poland)

    1978-01-01

    The paper presents a method of receiving iodoinsulin with preserved biological activity. As a raw material, recrystallized bovine insulin produced by ''Polfa'' was used. Chloramine T was used as an oxidizing agent in the iodide reaction. Insulin was labelled with /sup 125/I or /sup 127/I at a molar concentration of 0.6/n NaI to insulin. Obtained product contained about 0.3 iodine atoms per insulin molecule. Specific radioactivity of the iodoinsulin was between 77 and 147 ..mu..Ci/..mu..g. Such an insulin was over 95% precipitable with trichloroacetic acid. Its immunological reactivity varied from 89% to 100% while its biological activity, determined using the consumption of glucose by the fatty tissue of rat epididymis was 92% +- 24% of the native insulin activity. The half-life of /sup 125/I-insulin in the rat blood circulation was determined the clearance curve being biphasic. The half-life of the first phase (shorter one) was 0.64 +- 0.2 minute while the longer phase 8.89 +- 2.16 minutes.

  15. Plants from The Genus Daphne: A Review of its Traditional Uses, Phytochemistry, Biological and Pharmacological Activity

    Directory of Open Access Journals (Sweden)

    Sovrlić Miroslav M.

    2017-03-01

    Full Text Available Plants have an important role in maintaining people’s health and improving the quality of human life. They are an important component of people’s diet, but they are also used in other spheres of human life as a therapeutic resources, ingredients of cosmetic products, paints and others. The Daphne genus belongs to family Thymeleaceae which includes 44 families with approximately 500 herbal species. The plant species of the genus Daphne are used in the traditional medicine in China and tropical part of Africa for the treatment of various conditions. Previous studies showed significant biological potential of these species as a source of pharmacologically active compounds. This indicates that this genus possess a broad spectrum of biological activity including antimicrobial, antioxidant, analgesic, anti-inflammatory, cytotoxic, anti-ulcerogenic, abortive, hypocholesterolemic and hemostatic effects. Additionally, Daphne plants are the source of valuable bioactive phytochemicals such as coumarins, flavonoids, lignans, steroids and different classes of terpenes. Different parts of the Daphne plants contain specific bioactive metabolites and can represent a source of new, natural, pharmacologically active compounds, which may potentially be used in pharmaceutical, cosmetic and food industries.

  16. Physico-chemical and biological factors influencing dinoflagellate cyst production in the Cariaco Basin

    Directory of Open Access Journals (Sweden)

    M. Bringué

    2018-04-01

    Full Text Available We present a 2.5-year-long sediment trap record of dinoflagellate cyst production in the Cariaco Basin, off Venezuela (southern Caribbean Sea. The site lies under the influence of wind-driven, seasonal upwelling which promotes high levels of primary productivity during boreal winter and spring. Changes in dinoflagellate cyst production is documented between November 1996 and May 1999 at ∼ 14-day intervals and interpreted in the context of in situ observations of physico-chemical and biological parameters measured at the mooring site. Dinoflagellate cyst assemblages are diverse (57 taxa and dominated by cyst taxa of heterotrophic affinity, primarily Brigantedinium spp. (51 % of the total trap assemblage. Average cyst fluxes to the trap are high (17.1  ×  103 cysts m−2 day−1 and show great seasonal and interannual variability. On seasonal timescales, dinoflagellate cyst production responds closely to variations in upwelling strength, with increases in cyst fluxes of several protoperidinioid taxa observed during active upwelling intervals, predominantly Brigantedinium spp. Cyst taxa produced by autotrophic dinoflagellates, in particular Bitectatodinium spongium, also respond positively to upwelling. Several spiny brown cysts contribute substantially to the assemblages, including Echinidinium delicatum (9.7 % and Echinidinium granulatum (7.3 %, and show a closer affinity to weaker upwelling conditions. The strong El Niño event of 1997/98 appears to have negatively impacted cyst production in the basin with a 1-year lag, and may have contributed to the unusually high fluxes of cysts type Cp (possibly the cysts of the toxic dinoflagellate Cochlodinium polykrikoides sensu Li et al., 2015, with cyst type Cp fluxes up to 11.8  ×  103 cysts m−2 day−1 observed during the weak upwelling event of February–May 1999. Possible trophic interactions between dinoflagellates and other major planktonic groups are

  17. Physico-chemical and biological factors influencing dinoflagellate cyst production in the Cariaco Basin

    Science.gov (United States)

    Bringué, Manuel; Thunell, Robert C.; Pospelova, Vera; Pinckney, James L.; Romero, Oscar E.; Tappa, Eric J.

    2018-04-01

    We present a 2.5-year-long sediment trap record of dinoflagellate cyst production in the Cariaco Basin, off Venezuela (southern Caribbean Sea). The site lies under the influence of wind-driven, seasonal upwelling which promotes high levels of primary productivity during boreal winter and spring. Changes in dinoflagellate cyst production is documented between November 1996 and May 1999 at ˜ 14-day intervals and interpreted in the context of in situ observations of physico-chemical and biological parameters measured at the mooring site. Dinoflagellate cyst assemblages are diverse (57 taxa) and dominated by cyst taxa of heterotrophic affinity, primarily Brigantedinium spp. (51 % of the total trap assemblage). Average cyst fluxes to the trap are high (17.1 × 103 cysts m-2 day-1) and show great seasonal and interannual variability. On seasonal timescales, dinoflagellate cyst production responds closely to variations in upwelling strength, with increases in cyst fluxes of several protoperidinioid taxa observed during active upwelling intervals, predominantly Brigantedinium spp. Cyst taxa produced by autotrophic dinoflagellates, in particular Bitectatodinium spongium, also respond positively to upwelling. Several spiny brown cysts contribute substantially to the assemblages, including Echinidinium delicatum (9.7 %) and Echinidinium granulatum (7.3 %), and show a closer affinity to weaker upwelling conditions. The strong El Niño event of 1997/98 appears to have negatively impacted cyst production in the basin with a 1-year lag, and may have contributed to the unusually high fluxes of cysts type Cp (possibly the cysts of the toxic dinoflagellate Cochlodinium polykrikoides sensu Li et al., 2015), with cyst type Cp fluxes up to 11.8 × 103 cysts m-2 day-1 observed during the weak upwelling event of February-May 1999. Possible trophic interactions between dinoflagellates and other major planktonic groups are also investigated by comparing the timing and magnitude of cyst

  18. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    Science.gov (United States)

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  19. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2016-12-01

    Full Text Available Traditional Chinese Medicine (TCM has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  20. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    Science.gov (United States)

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  1. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics

    Energy Technology Data Exchange (ETDEWEB)

    Kandhasamy, Subramani [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India); Ramanathan, Giriprasath [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Muthukumar, Thangavelu [Department of Clinical and Experimental Medicine (IKE), Division of Neuro and Inflammation Sciences (NIV), Linkoping University (Sweden); Thyagarajan, SitaLakshmi [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Umamaheshwari, Narayanan [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India); Santhanakrishnan, V P [Department of Plant Biotechnology, TNAU, Coimbatore, Tamilnadu (India); Sivagnanam, Uma Tiruchirapalli, E-mail: suma67@gmail.com [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Perumal, Paramasivan Thirumalai, E-mail: ptperumal@gmail.com [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India)

    2017-05-01

    The nanomaterial with the novel biologically active compounds has been actively investigated for application in cancer research. Substantial use of nanofibrous scaffold for cancer research with potentially bioactive compounds through electrospinning has not been fully explored. Here, we describe the series of fabrication of nanofibrous scaffold loaded with novel potential biologically active hydroxybenzo[a]phenazine pyrazol-5(4H)-one derivatives were designed, synthesized by a simple one-pot, two step four component condensation based on Michael type addition reaction of lawsone, benzene-1,2-diamine, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one as the substrates. The heterogeneous solid state catalyst (Fe (III) Y-Zeolite) could effectively catalyze the reaction to obtain the product with high yield and short reaction time. The synthesized compounds (5a–5p) were analyzed by NMR, FTIR and HRMS analysis. Compound 5c was confirmed by single crystal XRD studies. All the compounds were biologically evaluated for their potential inhibitory effect on anticancer (MCF-7, Hep-2) and microbial (MRSA, MTCC 201 and FRCA) activities. Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines. Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. In addition, molecular docking (PDB ID: (1T46)) studies were performed to predict the binding affinity of ligand with receptor. Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. The in vitro apoptotic potential of the PHB-PCL-BPP nanofibrous scaffold was assessed against MCF-7, Hep-2 cancerous cells and fibroblast cells at 12, 24 and 48 h respectively. The nanofibrous scaffold with BPP can induce apoptosis and also suppress the

  2. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics

    International Nuclear Information System (INIS)

    Kandhasamy, Subramani; Ramanathan, Giriprasath; Muthukumar, Thangavelu; Thyagarajan, SitaLakshmi; Umamaheshwari, Narayanan; Santhanakrishnan, V P; Sivagnanam, Uma Tiruchirapalli; Perumal, Paramasivan Thirumalai

    2017-01-01

    The nanomaterial with the novel biologically active compounds has been actively investigated for application in cancer research. Substantial use of nanofibrous scaffold for cancer research with potentially bioactive compounds through electrospinning has not been fully explored. Here, we describe the series of fabrication of nanofibrous scaffold loaded with novel potential biologically active hydroxybenzo[a]phenazine pyrazol-5(4H)-one derivatives were designed, synthesized by a simple one-pot, two step four component condensation based on Michael type addition reaction of lawsone, benzene-1,2-diamine, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one as the substrates. The heterogeneous solid state catalyst (Fe (III) Y-Zeolite) could effectively catalyze the reaction to obtain the product with high yield and short reaction time. The synthesized compounds (5a–5p) were analyzed by NMR, FTIR and HRMS analysis. Compound 5c was confirmed by single crystal XRD studies. All the compounds were biologically evaluated for their potential inhibitory effect on anticancer (MCF-7, Hep-2) and microbial (MRSA, MTCC 201 and FRCA) activities. Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines. Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. In addition, molecular docking (PDB ID: (1T46)) studies were performed to predict the binding affinity of ligand with receptor. Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. The in vitro apoptotic potential of the PHB-PCL-BPP nanofibrous scaffold was assessed against MCF-7, Hep-2 cancerous cells and fibroblast cells at 12, 24 and 48 h respectively. The nanofibrous scaffold with BPP can induce apoptosis and also suppress the

  3. Protein aggregates as depots for the release of biologically active compounds.

    Science.gov (United States)

    Artemova, Natalya V; Kasakov, Alexei S; Bumagina, Zoya M; Lyutova, Elena M; Gurvits, Bella Ya

    2008-12-12

    Protein misfolding and aggregation is one of the most serious problems in cell biology, molecular medicine, and biotechnology. Misfolded proteins interact with each other or with other proteins in non-productive or damaging ways. However, a new paradigm arises that protein aggregation may be exploited by nature to perform specific functions in different biological contexts. From this consideration, acceleration of stress-induced protein aggregation triggered by any factor resulting in the formation of soluble aggregates may have paradoxical positive consequences. Here, we suggest that amorphous aggregates can act as a source for the release of biologically active proteins after removal of stress conditions. To address this concept, we investigated the kinetics of thermal aggregation in vitro of yeast alcohol dehydrogenase (ADH) as a model substrate in the presence of two amphiphilic peptides: Arg-Phe or Ala-Phe-Lys. Using dynamic light scattering (DLS) and turbidimetry, we have demonstrated that under mild stress conditions the concentration-dependent acceleration of ADH aggregation by these peptides results in formation of large but soluble complexes of proteins prone to refolding.

  4. A consilience model to describe N2O production during biological N removal

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Smets, Barth F.

    2016-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, is produced during biological nitrogen conversion in wastewater treatment operations. Complex mechanisms underlie N2O production by autotrophic and heterotrophic organisms, which continue to be unravelled. Mathematical models that describe nitric oxide...... (NO) and N2O dynamics have been proposed. Here, a first comprehensive model that considers all relevant NO and N2O production and consumption mechanisms is proposed. The model describes autotrophic NO production by ammonia oxidizing bacteria associated with ammonia oxidation and with nitrite reduction......, followed by NO reduction to N2O. It also considers NO and N2O as intermediates in heterotrophic denitrification in a 4-step model. Three biological NO and N2O production pathways are accounted for, improving the capabilities of existing models while not increasing their complexity. Abiotic contributions...

  5. The Use of Alternative Raw Material in Production of Pastry Products as a Progressive Direction in Creating the Products of High Biological Value

    Directory of Open Access Journals (Sweden)

    Janа Bachinska

    2017-02-01

    Full Text Available This paper examines the impact of the use of alternative vegetable raw materials in the manufacture of pastry products with high biological value; it presents the results of evaluation of commodity of the developed products and compares them with the main samples presented in Kharkiv trade network. The feasibility of using a mixture of fiber and pumpkin seeds in the technology of pastry production to extend the range of confectionery products of high biological value and products with reduced calories has been proved. Adding the mixture of fiber and pumpkin seeds to biscuits and cakes positively affected the chemical composition of the ready-made product, saturating it with useful and necessary to human body mineral elements, vitamins, dietary fiber.

  6. Rubus fruticosus L.: constituents, biological activities and health related uses.

    Science.gov (United States)

    Zia-Ul-Haq, Muhammad; Riaz, Muhammad; De Feo, Vincenzo; Jaafar, Hawa Z E; Moga, Marius

    2014-07-28

    Rubus fruticosus L. is a shrub famous for its fruit called blackberry fruit or more commonly blackberry. The fruit has medicinal, cosmetic and nutritive value. It is a concentrated source of valuable nutrients, as well as bioactive constituents of therapeutic interest highlighting its importance as a functional food. Besides use as a fresh fruit, it is also used as ingredient in cooked dishes, salads and bakery products like jams, snacks, desserts, and fruit preserves. R. fruticosus contains vitamins, steroids and lipids in seed oil and minerals, flavonoids, glycosides, terpenes, acids and tannins in aerial parts that possess diverse pharmacological activities such as antioxidant, anti-carcinogenic, anti-inflammatory, antimicrobial anti-diabetic, anti-diarrheal, and antiviral. Various agrogeoclimatological factors like cultivar, environmental conditions of the area, agronomic practices employed, harvest time, post-harvest storage and processing techniques all influence the nutritional composition of blackberry fruit. This review focuses on the nutrients and chemical constituents as well as medicinal properties of different parts of R. fruticosus. Various cultivars and their physicochemical characteristics, polyphenolic content and ascorbic acid content are also discussed. The information in the present work will serve as baseline data and may lead to new biomedical applications of R. fruticosus as functional food.

  7. Rubus Fruticosus L.: Constituents, Biological Activities and Health Related Uses

    Directory of Open Access Journals (Sweden)

    Muhammad Zia-Ul-Haq

    2014-07-01

    Full Text Available Rubus fruticosus L. is a shrub famous for its fruit called blackberry fruit or more commonly blackberry. The fruit has medicinal, cosmetic and nutritive value. It is a concentrated source of valuable nutrients, as well as bioactive constituents of therapeutic interest highlighting its importance as a functional food. Besides use as a fresh fruit, it is also used as ingredient in cooked dishes, salads and bakery products like jams, snacks, desserts, and fruit preserves. R. fruticosus contains vitamins, steroids and lipids in seed oil and minerals, flavonoids, glycosides, terpenes, acids and tannins in aerial parts that possess diverse pharmacological activities such as antioxidant, anti-carcinogenic, anti-inflammatory, antimicrobial anti-diabetic, anti-diarrheal, and antiviral. Various agrogeoclimatological factors like cultivar, environmental conditions of the area, agronomic practices employed, harvest time, post-harvest storage and processing techniques all influence the nutritional composition of blackberry fruit. This review focuses on the nutrients and chemical constituents as well as medicinal properties of different parts of R. fruticosus. Various cultivars and their physicochemical characteristics, polyphenolic content and ascorbic acid content are also discussed. The information in the present work will serve as baseline data and may lead to new biomedical applications of R. fruticosus as functional food.

  8. Coriander (Coriandrum sativum L. essential oil: Chemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Shyamapada Mandal

    2015-06-01

    Full Text Available Coriandrum sativum L. (C. sativum is one of the most useful essential oil bearing spices as well as medicinal plants, belonging to the family Umbelliferae/Apiaceae. The leaves and seeds of the plant are widely used in folk medicine in addition to its use as a seasoning in food preparation. The C. sativum essential oil and extracts possess promising antibacterial, antifungal and anti-oxidative activities as various chemical components in different parts of the plant, which thus play a great role in maintaining the shelf-life of foods by preventing their spoilage. This edible plant is non-toxic to humans, and the C. sativum essential oil is thus used in different ways, viz., in foods (like flavouring and preservatives and in pharmaceutical products (therapeutic action as well as in perfumes (fragancias and lotions. The current updates on the usefulness of the plant C. sativum are due to scientific research published in different web-based journals.

  9. Activation product analysis in a mixed sample containing both fission and neutron activation products

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Samuel S.; Clark, Sue B.; Eggemeyer, Tere A.; Finn, Erin C.; Hines, C. Corey; King, Mathew D.; Metz, Lori A.; Morley, Shannon M.; Snow, Mathew S.; Wall, Donald E.; Seiner, Brienne N.

    2017-11-02

    Activation analysis of gold (Au) is used to estimate neutron fluence resulting from a criticality event; however, such analyses are complicated by simultaneous production of other gamma-emitting fission products. Confidence in neutron fluence estimates can be increased by quantifying additional activation products such as platinum (Pt), tantalum (Ta), and tungsten (W). This work describes a radiochemical separation procedure for the determination of these activation products. Anion exchange chromatography is used to separate anionic forms of these metals in a nitric acid matrix; thiourea is used to isolate the Au and Pt fraction, followed by removal of the Ta fraction using hydrogen peroxide. W, which is not retained on the first anion exchange column, is transposed to an HCl/HF matrix to enhance retention on a second anion exchange column and finally eluted using HNO3/HF. Chemical separations result in a reduction in the minimum detectable activity by a factor of 287, 207, 141, and 471 for 182Ta, 187W, 197Pt, and 198Au respectively, with greater than 90% recovery for all elements. These results represent the highest recoveries and lowest minimum detectable activities for 182Ta, 187W, 197Pt, and 198Au from mixed fission-activation product samples to date, enabling considerable refinement in the measurement uncertainties for neutron fluences in highly complex sample matrices.

  10. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof...... biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae. We describe......-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic...

  11. Activities in biological radiation research at the AGF

    International Nuclear Information System (INIS)

    1984-01-01

    The AGF is working on a wide spectrum of biological radiation research, with the different scientific disciplines contributing different methodologies to long-term research projects. The following fields are studied: 1. Molecular and cellular modes of action of radiation. 2. Detection and characterisation of biological radiation damage, especially in humans. 3. Medical applications of radiation effects. 4. Concepts and methods of radiation protection. The studies will lead to suggestions for radiation protection and improved radiotherapy. They may also contribute to the development of environmental protection strategies. (orig./MG) [de

  12. Bioactivity of marine organisms. Part 3. Screening of marine algae of Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; Naik, C.G.; DeSouza, L.; Jayasree, V.; Ambiye, V.; Bhakuni, D.S.; Goel, A.K.; Garg, H.S.; Srimal, R.C.

    Ethanolic extracts from Indian marine algae have been tested for anti-viral, anti-bacterial, anti-fungal, anti-fertility, hypoglycaemic and a wide range of pharmacological activities. Of 34 species investigated 17 appeared biologically active. Six...

  13. Screening of some marine plants from the Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Solimabi; Kamat, S.Y.; DeSouza, L.; Reddy, C.V.G.; Bhakuni, D.S.; Dhawan, B.N.

    Extracts of twenty five seaweeds from Indian coast have been put through a broad biological screen which includes tests for antiviral, antibacterial, antifungal, antiprotozoal, antifertility activities and a wide range of pharmacological activities...

  14. Determination of biologically active phenols and polyphenols in various objects by chromatographic techniques

    International Nuclear Information System (INIS)

    Kochetova, M V; Semenistaya, E N; Larionov, Oleg G; Revina, A A

    2007-01-01

    Chromatographic techniques for determination of biologically active phenols and polyphenols are considered. Various methods for sample preparation and detection are compared. The advantages of high performance liquid chromatography with spectrophotometric detection for determination of antioxidants are demonstrated. Data on determination of biologically active phenols and polyphenols published in the period from 1995 to 2005 are analysed.

  15. Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench

    Science.gov (United States)

    2012-08-01

    1105 Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench Luiz H...fungal community and micropropagated clones of E. purpurea was re-established after acclimatization to soil and the endophytic fungi produced compounds...Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench 5a. CONTRACT

  16. Gifted and Talented Students' Views about Biology Activities in a Science and Art Center

    Science.gov (United States)

    Özarslan, Murat; Çetin, Gülcan

    2018-01-01

    The aim of the study was to determine gifted and talented students' views about biology activities in a science and art center. The study was conducted with 26 gifted and talented students who studied at a science and art center in southwestern Turkey. Students studied animal and plant genus and species in biology activities. Data were collected…

  17. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    Science.gov (United States)

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  18. Study On DPPH Free Radical - Scavenging Activity Of Antioxidant Compounds In Plants Composing BIN-5 Biological Active Preparation

    Directory of Open Access Journals (Sweden)

    Purevjav Urjintseren

    2015-08-01

    Full Text Available Recently there has been common trend among people to refuse from food and medications produced via synthetic method but try to consume natural products as much as possible instead. In this regard wild berries and medicinal plants are considered to be highly essential for human health as these kinds of plants serve as rich sources of biological active substances-phenol compounds. As a result of conducting research on source and spread of herbs which are commonly used as anti-diabetic medication we have developed a technological method to extract preparations from medicinal herbs such as Peony Paeonia lactiflora Pall Dandelion Taraxacum officinalis Wigg. Huckleberry Vaccinium myrtillus L Blueberry Vaccinium uliginosum L Cranberry Vaccinium vitisidaea L and Stinging nettles Urtica dioica accordingly studied chemical composition and antioxidant activity and conducted pharmacological study. With the use of Folin Denis amp Folin Ciocalteu reagent methodit was determined that the content of polyphenol compounds was 4.14-5.17 and 27.5 101.5mgml. The study was also aimed to investigate DPPH free radical-scavenging activity in connection with term temperature and concentration to identify the most rational technological procedure. As a result of study it was identified that free radical-scavenging activity of herbs selected for the study was generally estimated at 564.25-1750.00 mcgml whereas antioxidant activity of solvents with 2-10 mgml concentration was 417.20-1750.00 mcg ml respectively. This shows that such activity is dependent on concentration. However in temperature of 30 1000amp1057 degrees their activity has slowly been decreased by 1750 mcgml 476.7mcgml depending on temperature. Regarding the stinging nettles the activity was grown directly dependent from temperature. DPHH free radical-scavenging activity was gradually increased in 1-10 minutes but was relatively stable and active in 11-16 minutes.

  19. Manufacturing of curd products of increased biological value for the elderly from dried components.

    Science.gov (United States)

    Zabodalova, Ludmila A; Belozerova, Maria S; Evstigneeva, Tatiana N

    2018-01-01

    In recent years, the number of elderly people has increased, and the diseases that arise in old age are associated, amongst other factors, with malnutrition. In the elderly, the need for primary nutrients and energy changes, so the development of food products intended for this particular group of people is becom- ing increasingly important. The purpose of this research is to work out the composition of and technology for producing low-fat curd products from raw milk and vegetable components. The developed products can be used for their gerodietetic properties, because nutritional and energy needs in the elderly were taken into account when designing the product. The curd product was manufactured from skimmed dried milk (SDM), soy isolate protein (SIP) and spelt grain. Optimal conditions for the recombination of SIP were determined. The influence of mass fraction of SIP on the properties of the clot and the end product was studied. The degree of dispersion of the grain component was determined, from the organoleptic evaluation of samples of the mixture, and the optimum method of addition was chosen. The method of adding cooked spelt into the clot after pressing was chosen. Harrington’s generalized desirability function was used for the calculation of the optimum mass frac- tion of the grain component in the end product. The formulation and technology for a curd product based on dry ingredients were determined. The amino acid composition and content of essential components in the developed product were determined, and the biological and nutritional value were calculated. The use of dry ingredients for the production of a curd product makes it possible to manufac- ture the product in the absence of raw milk. The formulation of the product is designed taking into account the needs of the body in old age. The incorporation of spelt increases the biological value of the curd product to 81.5%.

  20. Trends in biological activity research of wild-growing aromatic plants from Central Balkans

    Directory of Open Access Journals (Sweden)

    Džamić, A.M.

    2016-12-01

    Full Text Available Flowering plants consists of more than 300.000 species around the world, out of which a small percentage has been sufficiently investigated from phytochemical and biological activity aspects. Plant diversity of the Balkans is very rich, but still poorly investigated. The aim of this paper is survey of current status and trends in research of wild-growing aromatic plants from Central Balkans. Many aromatic plants are investigated from morphological, physiological, ecological, systematic and phytochemical aspects. However, traditionally used medicinal and aromatic plants can also be considered from applicative aspects, concerning their health effects, and from wide range of usage in cosmetics, and as food, agrochemical and pharmaceutical products. In order to achieve all planned objectives, following methodology has been applied: field research, taxonomic authentication and, comparative biologically assayed phytochemical investigations. The total herbal extracts, postdistillation waste (deodorized extracts, essential oils and individual compounds of some autochthonous plants have been considered as potential source of antibacterial, antifungal, anti-biofilm, antioxidant and cytotoxic agents. In this manuscript, composition of essential oils and extracts were evaluated in a number of species, from the Apiaceae, Lamiaceae, Rosaceae and Asteraceae families. Extracts which were rich in phenols mostly of flavonoids, often showed high antioxidant potential. Also, phenolic compounds identified in essential oils and extracts were mostly responsible for expected antimicrobial activity. Current worldwide demand is to reduce or, if possible, eliminate chemically synthesized food additives. Plant-produced compounds are becoming of interest as a source of more effective and safe substances than synthetically produced antimicrobial agents (as inhibitors, growth reducers or even inactivators that control growth of microorganisms. Many different pathogens have