WorldWideScience

Sample records for biologically active products

  1. Milk kefir: composition, microbial cultures, biological activities, and related products.

    Science.gov (United States)

    Prado, Maria R; Blandón, Lina Marcela; Vandenberghe, Luciana P S; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance.

  2. MILK KEFIR: COMPOSITION, MICROBIAL CULTURES, BIOLOGICAL ACTIVITIES AND RELATED PRODUCTS

    Directory of Open Access Journals (Sweden)

    Maria Rosa Prado

    2015-10-01

    Full Text Available In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance.

  3. New approaches to estimation of peat deposits for production of biologically active compounds

    Science.gov (United States)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  4. Presence and biological activity of antibiotics used in fuel ethanol and corn co-product production.

    Science.gov (United States)

    Compart, D M Paulus; Carlson, A M; Crawford, G I; Fink, R C; Diez-Gonzalez, F; Dicostanzo, A; Shurson, G C

    2013-05-01

    Antibiotics are used in ethanol production to control bacteria from competing with yeast for nutrients during starch fermentation. However, there is no published scientific information on whether antibiotic residues are present in distillers grains (DG), co-products from ethanol production, or whether they retain their biological activity. Therefore, the objectives of this study were to quantify concentrations of various antibiotic residues in DG and determine whether residues were biologically active. Twenty distillers wet grains and 20 distillers dried grains samples were collected quarterly from 9 states and 43 ethanol plants in the United States. Samples were analyzed for DM, CP, NDF, crude fat, S, P, and pH to describe the nutritional characteristics of the samples evaluated. Samples were also analyzed for the presence of erythromycin, penicillin G, tetracycline, tylosin, and virginiamycin M1, using liquid chromatography and mass spectrometry. Additionally, virginiamycin residues were determined, using a U.S. Food and Drug Administration-approved bioassay method. Samples were extracted and further analyzed for biological activity by exposing the sample extracts to 10(4) to 10(7) CFU/mL concentrations of sentinel bacterial strains Escherichia coli ATCC 8739 and Listeria monocytogenes ATCC 19115. Extracts that inhibited bacterial growth were considered to have biological activity. Physiochemical characteristics varied among samples but were consistent with previous findings. Thirteen percent of all samples contained low (≤1.12 mg/kg) antibiotic concentrations. Only 1 sample extract inhibited growth of Escherichia coli at 10(4) CFU/mL, but this sample contained no detectable concentrations of antibiotic residues. No extracts inhibited Listeria monocytogenes growth. These data indicate that the likelihood of detectable concentrations of antibiotic residues in DG is low; and if detected, they are found in very low concentrations. The inhibition in only 1 DG

  5. Insects: an underrepresented resource for the discovery of biologically active natural products

    Directory of Open Access Journals (Sweden)

    Lauren Seabrooks

    2017-07-01

    Full Text Available Nature has been the source of life-changing and -saving medications for centuries. Aspirin, penicillin and morphine are prime examples of Nature׳s gifts to medicine. These discoveries catalyzed the field of natural product drug discovery which has mostly focused on plants. However, insects have more than twice the number of species and entomotherapy has been in practice for as long as and often in conjunction with medicinal plants and is an important alternative to modern medicine in many parts of the world. Herein, an overview of current traditional medicinal applications of insects and characterization of isolated biologically active molecules starting from approximately 2010 is presented. Insect natural products reviewed were isolated from ants, bees, wasps, beetles, cockroaches, termites, flies, true bugs, moths and more. Biological activities of these natural products from insects include antimicrobial, antifungal, antiviral, anticancer, antioxidant, anti-inflammatory and immunomodulatory effects.

  6. Urine: Waste product or biologically active tissue?

    Science.gov (United States)

    2018-03-01

    Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  7. Natural products as a resource for biologically active compounds

    International Nuclear Information System (INIS)

    Hanke, F.J.

    1986-01-01

    The goal of this study was to investigate various sources of biologically active natural products in an effort to identify the active pesticidal compounds involved. The study is divided into several parts. Chapter 1 contains a discussion of several new compounds from plant and animal sources. Chapter 2 introduces a new NMR technique. In section 2.1 a new technique for better utilizing the lanthanide relaxation agent Gd(fod) 3 is presented which allows the predictable removal of resonances without line broadening. Section 2.2 discusses a variation of this technique for use in an aqueous solvent by applying this technique towards identifying the binding sites of metals of biological interest. Section 2.3 presents an unambiguous 13 C NMR assignment of melibiose. Chapter 3 deals with work relating to the molting hormone of most arthropods, 20-hydroxyecdysone. Section 3.1 discusses the use of two-dimensional NMR (2D NMR) to assign the 1 H NMR spectrum of this biologically important compound. Section 3.2 presents a new application for Droplet countercurrent chromatography (DCCC). Chapter 4 presents a basic improvement to the commercial DCCC instrument that is currently being applied to future commercial instruments. Chapter 5 discusses a curious observation of the effects that two previously known compounds, nagilactone C and (-)-epicatechin, have on lettuce and rice and suggest a possible new role for the ubiquitous flavanol (-)-epicatechin in plants

  8. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCOD consumed . It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production. - Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • The hydrogen yield was 10.5±0.7 mL/g SCOD consumed .

  9. RESEARCHES CONCERNING THE EFFECT OF SOME BIOLOGICALLY-ACTIVE PRODUCTS ON FORAGE BIOMASS YIELD IN SMOOTH BROME

    Directory of Open Access Journals (Sweden)

    I. PET

    2008-05-01

    Full Text Available Vegetal biostimulants are organic products (natural or synthesized that exert upon plant growth an action similar to the phytohormones’ one, when they are applied in small amounts, in certain stages of plant development. Biostimulants change organisms or organs’ development, nutrition or resistance, under various stress conditions, by inducing changes into the vital processes leading to the improvement of crop quality and quantity, to a better and more operative mechanical harvesting and to an improvement in the agricultural products’ preservation. The application of biologically-active products in the smooth brome crop determined growth of the dry matter yield of up to 1.11 t/ha depending on the product used, and the foliar surface index increased in the variants with application of biologically-active products with up to 1.16 m2SA/m2 land, compared to the control variant.

  10. Biological activities of Agave by-products and their possible applications in food and pharmaceuticals.

    Science.gov (United States)

    López-Romero, Julio Cesar; Ayala-Zavala, Jesús Fernando; González-Aguilar, Gustavo Adolfo; Peña-Ramos, Etna Aida; González-Ríos, Humberto

    2018-05-01

    Agave leaves are considered a by-product of alcoholic beverage production (tequila, mezcal and bacanora) because they are discarded during the production process, despite accounting for approximately 50% of the total plant weight. These by-products constitute a potential source of Agave extracts rich in bioactive compounds, such as saponins, phenolic compounds and terpenes, and possess different biological effects, as demonstrated by in vitro and in vivo tests (e.g. antimicrobial, antifungal, antioxidant, anti-inflammatory, antihypertensive, immunomodulatory, antiparasitic and anticancer activity). Despite their positive results in biological assays, Agave extracts have not been widely evaluated in food systems and pharmaceutical areas, and these fields represent a potential route to improve the usage of Agave plants as food additives and agents for treating medical diseases. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  12. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Directory of Open Access Journals (Sweden)

    Laura Montesinos

    Full Text Available Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.

  13. Biological activity of egg-yolk protein by-product hydrolysates obtained with the use of non-commercial plant protease

    Directory of Open Access Journals (Sweden)

    A. Zambrowicz

    2015-12-01

    Full Text Available Enzymatic hydrolysis leads to improved functional and biological properties of protein by-products, which can be further used as nutraceuticals and protein ingredients for food applications.The present study evaluated ACE-inhibitory, antioxidant and immunostimulating activities in hydrolysates of egg-yolk protein by-product (YP, generated during industrial process of delipidation of yolk. The protein substrate was hydrolyzed using non-commercial protease from Asian pumpkin (Cucurbita ficifolia. The reaction was conducted in 0.1 M Tris-HCl buffer (pH 8.0 at temperature of 37°C for 4 hours using different enzyme doses (100-1000 U/mg of substrate. The protein degradation was monitored by the determination of the degree of hydrolysis (DH, release of free amino groups (FAG and by RP-HPLC. In the obtained hydrolysates we also evaluated biological activities. It was shown that the highest DH of substrate (46.6% was obtained after 4h of reaction at the highest amount of enzyme. This hydrolysate exhibited antioxidant activity, including ferricion reducing (FRAP (56.41 μg Fe2+/mg, ferric ion chelating (695.76 μg Fe2+/mg and DPPH free radical scavenging (0.89 μmol troloxeq/mg as well as ACE-inhibitory (IC50=837.75 μg/mL activities.The research showed improved biological properties of enzymatically modified YP by-product.

  14. Sustainable production of biologically active molecules of marine based origin.

    Science.gov (United States)

    Murray, Patrick M; Moane, Siobhan; Collins, Catherine; Beletskaya, Tanya; Thomas, Olivier P; Duarte, Alysson W F; Nobre, Fernando S; Owoyemi, Ifeloju O; Pagnocca, Fernando C; Sette, L D; McHugh, Edward; Causse, Eric; Pérez-López, Paula; Feijoo, Gumersindo; Moreira, Ma T; Rubiolo, Juan; Leirós, Marta; Botana, Luis M; Pinteus, Susete; Alves, Celso; Horta, André; Pedrosa, Rui; Jeffryes, Clayton; Agathos, Spiros N; Allewaert, Celine; Verween, Annick; Vyverman, Wim; Laptev, Ivan; Sineoky, Sergei; Bisio, Angela; Manconi, Renata; Ledda, Fabio; Marchi, Mario; Pronzato, Roberto; Walsh, Daniel J

    2013-09-25

    The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Production of Some Biologically Active Secondary Metabolites From Marine-derived Fungus Varicosporina ramulosa

    Directory of Open Access Journals (Sweden)

    Atalla, M. M.

    2008-01-01

    Full Text Available In a screening of fungal isolates associated with marine algae collected from Abou-keer, Alexanderia during the four seasons of 2004, to obtain new biologically active compounds. Varicosporina ramulosa isolate was identified and selected as a producer of 13 compounds. Out of 13 pure compounds produced, compounds 3 and 10 were considered as antibacterial and antifungal compounds, respectively as they were active against gram positive, gram negative bacteria and a fungus. Optimization of conditions (fermentation media, incubation period, temperature, initial pH, aeration levels which activate compounds 3 and 10 production were studied. Also the spectral properties (UV, MS, GC/MS, IR and 1H-NMR of the purified compounds were determined. Compound 3 suggested to be dibutyl phthalate and compound 10 may be ergosterol or one of its isomers. Biological evaluation of the two compounds towards 6 different types of tumor cell lines showed weak effect of compound 3 at different concentrations on the viable cell count of the different tumor cell lines. While compound 10 showed different activities against the viable cell count of the 6 different tumor cell lines. It kills 50% of the viable infected liver and lung cells at concentrations equal to 99.7 µg/mL, 74.9µg/mL, respectively. Compound 10 can be recommended as new anticancer compounds.

  16. Production of a biological surfactant

    Directory of Open Access Journals (Sweden)

    N. Gladys Rosero

    2002-01-01

    Full Text Available This paper summarizes the scale up work performed at the Colombian Petroleum Institute on a process to produce at pilot plant level a biosurfactant of the rhamnolipid type. By examination of both the activation conditions of the microorganism and design aspects of the broth, a stable condition was achieved which consistently triggers the production mechanisms and thus it was obtained a significant increment in biosurfactant productivity. The biological surfactant exhibited high efficiency in applications such as hydrocarbon biodegradation in saline environments, corrosion inhibition, and crude oil recovery from storage tank bottom sludges.

  17. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  18. Potential for widespread application of biological control of stored-product pests

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biologica...... for these situations will contribute to ensuring that stored food products are protected from insect and mite pests using techniques that are safe for consumers, workers and the environment.......Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological...

  19. 9 CFR 114.6 - Mixing biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mixing biological products. 114.6... BIOLOGICAL PRODUCTS § 114.6 Mixing biological products. Each biological product, when in liquid form, shall be mixed thoroughly in a single container. During bottling operations, the product shall be...

  20. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26 Al, 49 V, 51 Cr, 54 Mn, 55 Fe, 58 Co, 60 Co, 93 Nb, and 94 Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs

  1. Imidazole: Having Versatile Biological Activities

    Directory of Open Access Journals (Sweden)

    Amita Verma

    2013-01-01

    Full Text Available Imidazoles have occupied a unique position in heterocyclic chemistry, and its derivatives have attracted considerable interests in recent years for their versatile properties in chemistry and pharmacology. Imidazole is nitrogen-containing heterocyclic ring which possesses biological and pharmaceutical importance. Thus, imidazole compounds have been an interesting source for researchers for more than a century. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine, and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus is used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. There are several methods used for the synthesis of imidazole-containing compounds, and also their various structure reactions offer enormous scope in the field of medicinal chemistry. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. This paper aims to review the biological activities of imidazole during the past years.

  2. Production and biological activities of yellow pigments from Monascus fungi.

    Science.gov (United States)

    Chen, Gong; Wu, Zhenqiang

    2016-08-01

    Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed.

  3. Biological activities of some Xylooligosaccharides from ...

    African Journals Online (AJOL)

    Xylooligosaccharides (XOS's) exhibited considerable biological activities and be incorporated into many food products and in pharmaceutical and drug industry. XOS's were produced from xylose-containing polysaccharides (XPS's) obtained from natural, xylan-rich, agro-industrial wastes, i.e., corncobs and sugarcane ...

  4. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...... developments in the synthesis of macrocycles, with an emphasis on chemistry developed to generate libraries of putative biologically active compounds....

  5. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammad Abdel-Mawgoud

    2018-03-01

    Full Text Available Glycosylated lipids (GLs are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

  6. 9 CFR 112.6 - Packaging biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Packaging biological products. 112.6... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.6 Packaging biological products. (a) Each multiple-dose final container of a biological product...

  7. The importance of extremophile cyanobacteria in the production of biologically active compounds

    Directory of Open Access Journals (Sweden)

    Drobac-Čik Aleksandra V.

    2007-01-01

    Full Text Available Due to their ability to endure extreme conditions, terrestrial cyanobacteria belong to a group of organisms known as "extremophiles". Research so far has shown that these organisms posses a great capacity for producing biologically active compounds (BAC. The antibacterial and antifungal activities of methanol extracts of 21 cyanobacterial strains belonging to Anabaena and Nostoc genera, previously isolated from different soil types and water resources in Serbia, were evaluated. In general, larger number of cyanobacterial strains showed antifungal activity. In contrast to Nostoc, Anabaena strains showed greater diversity of antibacterial activity (mean value of percentages of sensitive targeted bacterial strains 3% and 25.9% respectively. Larger number of targeted fungi was sensitive to cultural liquid extract (CL, while crude cell extract (CE affected more bacterial strains. According to this investigation, the higher biological activity of terrestrial strains as representatives of extremophiles may present them as significant BAC producers. This kind of investigation creates very general view of cyanobacterial possibility to produce biologically active compounds but it points out the necessity of exploring terrestrial cyanobacterial extremophiles as potentially excellent sources of these substances and reveals the most prospective strains for further investigations.

  8. Nutrient availability limits biological production in Arctic sea ice melt ponds

    DEFF Research Database (Denmark)

    Sørensen, Heidi Louise; Thamdrup, Bo; Jeppesen, Erik

    2017-01-01

    nutrient limitation in melt ponds. We also document that the addition of nutrients, although at relative high concentrations, can stimulate biological productivity at several trophic levels. Given the projected increase in first-year ice, increased melt pond coverage during the Arctic spring and potential......Every spring and summer melt ponds form at the surface of polar sea ice and become habitats where biological production may take place. Previous studies report a large variability in the productivity, but the causes are unknown. We investigated if nutrients limit the productivity in these first...... additional nutrient supply from, e.g. terrestrial sources imply that biological activity of melt ponds may become increasingly important for the sympagic carbon cycling in the future Arctic....

  9. Biological Activities of Royal Jelly - Review

    Directory of Open Access Journals (Sweden)

    Crenguţa I. Pavel

    2011-10-01

    Full Text Available Royal jelly is a secretion product of the cephalic glands of nurse bees that has been used for centuries for itsextraordinary properties and health effects. This bibliographic study aims to review many of the scientific findingsand research that prove many of the remarkable various actions, effects and some uses of royal jelly. There are takeninto consideration numerous biological properties and effects of royal jelly: antioxidant, neurotrophic, hipoglicemiant, hipocholesterolemiant and hepatoprotective, hypotensive and blood pressure regulatory, antitumor, antibiotic, anti-inflammatory, immunomodulatory and anti-allergic, general tonic and antiaging. Royal jelly is one ofthe most studied bee products, but there still remains much to reveal about its biochemistry and biological activity infuture research for our health and life benefit.

  10. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    Directory of Open Access Journals (Sweden)

    Muthu Thiruvengadam

    2016-11-01

    Full Text Available Anthraquinones (AQs and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs, media, sucrose, l-glutamine, jasmonic acid (JA, and salicylic acid (SA for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM; 3 and 2.93 g dry mass (DM and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds from cell suspension cultures, and the phytochemicals can be used for various biological activities.

  11. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    Science.gov (United States)

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-01-01

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities. PMID:27854330

  12. STRUCTURES AND BIOLOGICAL ACTIVITY OF CUPROPHYLLINS

    Directory of Open Access Journals (Sweden)

    Martynov A.V.

    2017-06-01

    Full Text Available Chlorophylls (a, b are the porphyrin compounds and most common chemical in the plant’s world. In fact, these compounds are an obligatory intermediate product both in energy metabolism and in plant catabolism. At the same time, currently there are few pharmaceutical preparations on the pharmaceutical market based on chlorophylls. Dyes based on hydrolyzed chlorophyll are successfully used in the food industry. Commercial chlorophylline is a copper complex of hydrolyzed chlorophylls. As shown earlier in TLC, the chlorophyllin mixture contains a large number of different compounds. It is like water-soluble saponified derivatives in the form of sodium-magnesium complexes, and similar structures in the form of a complex with copper. The latter are more brightly colored, soluble in water and widely used as coloring agents in cooking. In this case, if the initial chlorophyll was not found to have a pronounced biological activity, the substituted derivatives in the form of copper complexes possessed a number of new unique biological properties. Non-hydrolyzed hydrophobic cuprophylline obtained from eucalyptus leaves possessed high antimicrobial activity to most strains of staphylococci, inclusion resistant to antimicrobials and multiresistant strains. This drug is called Chlorophyllipt, it is allowed to be used as a medicinal product and is one of the oldest antibacterial drugs from plants on the market. It is marketed as ethanoic and oily solutions for topical use, and as an alcohol solution for intravenous injections. Its main purpose is the fight against staphylococcal infections. Recently, found that the oral administration of chlorophyllipt activates cellular immunity and indirectly exhibits antiviral activity. Another compound of cuprophyllin is water-soluble chlorophyllin. Some authors show the variability of the structure and biological activity of cuprophyllins. Different derivatives of chlorophyll have different biological activity

  13. Use of Brevibacillus choshinensis for the production of biologically active brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Angart, Phillip A; Carlson, Rebecca J; Thorwall, Sarah; Patrick Walton, S

    2017-07-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family critical for neuronal cell survival and differentiation, with therapeutic potential for the treatment of neurological disorders and spinal cord injuries. The production of recombinant, bioactive BDNF is not practical in most traditional microbial expression systems because of the inability of the host to correctly form the characteristic cystine-knot fold of BDNF. Here, we investigated Brevibacillus choshinensis as a suitable expression host for bioactive BDNF expression, evaluating the effects of medium type (2SY and TM), temperature (25 and 30 °C), and culture time (48-120 h). Maximal BDNF bioactivity (per unit mass) was observed in cultures grown in 2SY medium at extended times (96 h at 30 °C or >72 h at 25 °C), with resulting bioactivity comparable to that of a commercially available BDNF. For cultures grown in 2SY medium at 25 °C for 72 h, the condition that led to the greatest quantity of biologically active protein in the shortest culture time, we recovered 264 μg/L of BDNF. As with other microbial expression systems, BDNF aggregates did form in all culture conditions, indicating that while we were able to recover biologically active BDNF, further optimization of the expression system could yield still greater quantities of bioactive protein. This study provides confirmation that B. choshinensis is capable of producing biologically active BDNF and that further optimization of culture conditions could prove valuable in increasing BDNF yields.

  14. Role of Muramyl Dipeptide in Lipopolysaccharide-Mediated Biological Activity and Osteoclast Activity

    Directory of Open Access Journals (Sweden)

    Hideki Kitaura

    2018-01-01

    Full Text Available Lipopolysaccharide (LPS is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and immunological activity. Muramyl dipeptide (MDP, the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP. MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-κB ligand (RANKL expression and toll-like receptor 4 (TLR4 expression both in vivo and in vitro. Additionally, MDP enhances LPS-induced mitogen-activated protein kinase (MAPK signaling in stromal cells. Taken together, these findings suggest that MDP plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological activities, primarily in relation to osteoclastogenesis.

  15. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2014-01-01

    Full Text Available A content of biologically active compounds (BAC with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical and chemical characteristics of distillers grains' liquid base were identified. Elementary composition of distillers grains is signified by active accumulation of biogenic elements (phosphorus, potassium, magnesium, calcium, sodium, iron and low content of heavy metals. The solid phase of distillers grains accumulates carbon, hydrogen and nitrogen in high concentration. The liquid phase of distillers grains contains: proteins and amino acids (20-46%, reducing sugars (5,6%-17,5%, galacturonides (0,8-1,4%, ascorbic acid (6,2-11,4 mg%. The solid base of distillers grains contains: galacturonides (3,4-5,3%, fatty oil (8,4-11,1% with predomination of essential fatty acids, proteins and amino acids (2,1-2,5%, flavonoids (0,4-0,9%, tocopherols (3,4-7,7 mg%. A method of complex processing of distillers grains based on application of membrane filtering of liquid phase and liquid extraction by inorganic and organic solvents of solid phase, which allows almost full extraction of the sum of biologically active compounds (BAC from liquid phase (Biobardin BM and solid phase (Biobardin UL. Biobardin BM comprises the following elements: proteins and amino acids (41-69%, reducing sugars (3,5-15,6%, fatty oil (0,2-0,3%, flavonoids (0,2-0,7%, ascorbic acid (17-37 mg%. Biobardin UL includes: oligouronids (16,4-19,5%, proteins and amino acids (11-21%, fatty oil (3,2-4,9% which includes essential acids; flavonoids (0,6-1,5%, tocopherols (6,6-10,2 mg%, carotinoids (0,13-0,21 mg

  16. Baltic cyanobacteria- A source of biologically active compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Mazur-Marzec, H.; Błaszczyk, A.; Felczykowska, A.; Hohlfeld, N.; Kobos, J.; Toruńska-Sitarz, A.; PrabhaDevi; Montalva`o, S.; DeSouza, L.; Tammela, P.; Mikosik, A.; Bloch, S.; Nejman-Faleńczyk, B.; Węgrzyn, G.

    cyanobacteria, enzyme activity, enzyme inhibitors, immunological activity, natural products, nonribosomal peptides, plant growth regulators 2 INTRODUCTION Cyanobacteria are Gram-negative bacteria which are widely distributed in many water bodies..., immunological, 4 antimicrobial and plant growth tests. The overall aim of the experiments was to identify strains showing the most promising biological activity for potential biotechnological application. MATERIALS AND METHODS Isolation, culture...

  17. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    Science.gov (United States)

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  18. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  19. Production of biologically active recombinant human factor H in Physcomitrella.

    Science.gov (United States)

    Büttner-Mainik, Annette; Parsons, Juliana; Jérôme, Hanna; Hartmann, Andrea; Lamer, Stephanie; Schaaf, Andreas; Schlosser, Andreas; Zipfel, Peter F; Reski, Ralf; Decker, Eva L

    2011-04-01

    The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age-related macular degeneration (AMD). There is a current need to apply intact full-length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full-length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal-derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss-derived secretion signal. Correct processing of the signal peptide and integrity of the moss-produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  20. 9 CFR 102.5 - U.S. Veterinary Biological Product License.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false U.S. Veterinary Biological Product... BIOLOGICAL PRODUCTS § 102.5 U.S. Veterinary Biological Product License. (a) Authorization to produce each biological product shall be specified on a U.S. Veterinary Biological Product License, issued by the...

  1. MODERN TECHNOLOGICAL SOLUTIONS USED IN THE PRODUCTION OF BAKERY PRODUCTS WITH HIGH BIOLOGICAL VALUE

    OpenAIRE

    Marta Brodowska; Dominika Guzek; Agnieszka Wierzbicka

    2014-01-01

    Biological value of the food products is a result of the presence of bioactive substances and the proportions of the components. Technological development allows to optimize and accelerate the processes of bread production and increase value of food. Bakery industry used whole grains and pseudocereals as additional source of active compounds, biotechnological techniques as using appropriate yeast strain and encapsulation, which provide protection of substance and their controlled release in p...

  2. Biological activity of a leached chernozem contaminated with the products of combustion of petroleum gas and its restoration upon phytoremediation

    Science.gov (United States)

    Kireeva, N. A.; Novoselova, E. I.; Shamaeva, A. A.; Grigoriadi, A. S.

    2009-04-01

    It is shown that contamination of leached chernozems by combustion products of petroleum gas favors changes in the biological activity of the soil: the number of hydrocarbon-oxidizing bacteria and micromycetes has increased, as well as the activity of catalase and lipase and phytotoxicity. Bromopsis inermis Leys used as a phytoameliorant has accelerated the destruction of hydrocarbons in the rhizosphere. The benzpyrene concentration in plants on contaminated soils considerably exceeds its background concentration.

  3. Design control considerations for biologic-device combination products.

    Science.gov (United States)

    Anderson, Dave; Liu, Roger; Anand Subramony, J; Cammack, Jon

    2017-03-01

    Combination products are therapeutic and diagnostic medical products that combine drugs, devices, and/or biological products with one another. Historically, biologics development involved identifying efficacious doses administered to patients intravenously or perhaps by a syringe. Until fairly recently, there has been limited focus on developing an accompanying medical device, such as a prefilled syringe or auto-injector, to enable easy and more efficient delivery. For the last several years, and looking forward, where there may be little to distinguish biologics medicines with relatively similar efficacy profiles, the biotechnology market is beginning to differentiate products by patient-focused, biologic-device based combination products. As innovative as biologic-device combination products are, they can pose considerable development, regulatory, and commercialization challenges due to unique physicochemical properties and special clinical considerations (e.g., dosing volumes, frequency, co-medications, etc.) of the biologic medicine. A biologic-device combination product is a marriage between two partners with "cultural differences," so to speak. There are clear differences in the development, review, and commercialization processes of the biologic and the device. When these two cultures come together in a combination product, developers and reviewers must find ways to address the design controls and risk management processes of both the biologic and device, and knit them into a single entity with supporting product approval documentation. Moreover, digital medicine and connected health trends are pushing the boundaries of combination product development and regulations even further. Despite an admirable cooperation between industry and FDA in recent years, unique product configurations and design features have resulted in review challenges. These challenges have prompted agency reviewers to modernize consultation processes, while at the same time, promoting

  4. RESEARCHES REGARDING THE EFFECT OF SOME BIOLOGICALLY ACTIVE PRODUCTS UPON THE GERMINATION CAPACITIES OF SMOOTH BROME SEEDS

    Directory of Open Access Journals (Sweden)

    I. PET

    2007-05-01

    Full Text Available The carrying out of uniform forage crops represents an important technological loop for all agricultural species. The uniformity of these crops is caused especially by seed germination capacity, respectively by plant emergence capacity, depending upon the climatic and technological conditions. With regards to the researches carried out in this direction, we present here the influence exerted by some biologically-active products, used through extra-root application during plant vegetation period, upon seeds submitted to germination. The observations performed on smooth brome seeds have led to the conclusion that the per cent of germinated seeds ranges from 82%, in the untreated control variant, to 87.67% in the variant treated with the product Stimupro.

  5. Biosynthesis of therapeutic natural products using synthetic biology.

    Science.gov (United States)

    Awan, Ali R; Shaw, William M; Ellis, Tom

    2016-10-01

    Natural products are a group of bioactive structurally diverse chemicals produced by microorganisms and plants. These molecules and their derivatives have contributed to over a third of the therapeutic drugs produced in the last century. However, over the last few decades traditional drug discovery pipelines from natural products have become far less productive and far more expensive. One recent development with promise to combat this trend is the application of synthetic biology to therapeutic natural product biosynthesis. Synthetic biology is a young discipline with roots in systems biology, genetic engineering, and metabolic engineering. In this review, we discuss the use of synthetic biology to engineer improved yields of existing therapeutic natural products. We further describe the use of synthetic biology to combine and express natural product biosynthetic genes in unprecedented ways, and how this holds promise for opening up completely new avenues for drug discovery and production. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ethnobotany, chemistry, and biological activities of the genus Tithonia (Asteraceae).

    Science.gov (United States)

    Chagas-Paula, Daniela A; Oliveira, Rejane B; Rocha, Bruno A; Da Costa, Fernando B

    2012-02-01

    The genus Tithonia is an important source of diverse natural products, particularly sesquiterpene lactones, diterpenes, and flavonoids. The collected information in this review attempts to summarize the recent developments in the ethnobotany, biological activities, and secondary metabolite chemistry of this genus. More than 100 structures of natural products from Tithonia are reported in this review. The species that has been most investigated in this genus is T. diversifolia, from which ca. 150 compounds were isolated. Biological studies are described to evaluate the anti-inflammatory, analgesic, antimalarial, antiviral, antidiabetic, antidiarrhoeal, antimicrobial, antispasmodic, vasorelaxant, cancer-chemopreventive, cytotoxic, toxicological, bioinsecticide, and repellent activities. A few of these studies have been carried out with isolated compounds from Tithonia species, but the majority has been conducted with different extracts. The relationship between the biological activity and the toxicity of compounds isolated from the plants of this genus as well as T. diversifolia extracts still remains unclear, and mechanisms of action remain to be determined. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Biological activity of Stevia rebaudiana Bertoni and their relationship to health.

    Science.gov (United States)

    Ruiz-Ruiz, Jorge Carlos; Moguel-Ordoñez, Yolanda Beatriz; Segura-Campos, Maira Rubi

    2017-08-13

    The leaves of Stevia rebaudiana Bertoni has nutrients and phytochemicals, which make it an adequate source for the extraction and production of functional food ingredients. Preclinical and clinical studies suggest therapeutic and pharmacological applications for stevia and their extracts because they are not toxic and exhibit several biological activities. This review presents the biological activity of Stevia rebaudiana Bertoni and their relationship to antidiabetic, anticariogenic, antioxidant, hypotensive, antihypertensive, antimicrobial, anti-inflammatory and antitumor activities. Consumption and adverse effects were also reviewed.

  8. Toxicity of Biologically Active Peptides and Future Safety Aspects: An Update.

    Science.gov (United States)

    Khan, Fazlullah; Niaz, Kamal; Abdollahi, Mohammad

    2018-02-18

    Peptides are fragments of proteins with significant biological activities. These peptides are encoded in the protein sequence. Initially, such peptides are inactive in their parental form, unless proteolytic enzymes are released. These peptides then exhibit various functions and play a therapeutic role in the body. Besides the therapeutic and physiological activities of peptides, the main purpose of this study was to highlight the safety aspects of peptides. We performed an organized search of available literature using PubMed, Google Scholar, Medline, EMBASE, Reaxys and Scopus databases. All the relevant citations including research and review articles about the toxicity of biologically active peptides were evaluated and gathered in this study. Biological peptides are widely used in the daily routine ranging from food production to the cosmetics industry and also they have a beneficial role in the treatment and prevention of different diseases. These peptides are manufactured by both chemical and biotechnological techniques, which show negligible toxicity, however, some naturally occurring peptides and enzymes may induce high toxicity. Depending upon the demand and expected use in the food or pharmaceutical industry, we need different approaches to acertain the safety of these peptides preferentially through in silico methods. Intestinal wall disruption, erythrocytes and lymphocytes toxicity, free radical production, enzymopathic and immunopathic tissue damage and cytotoxicity due to the consumption of peptides are the main problems in the biological system that lead to various complicated disorders. Therefore, before considering biologically active peptides for food production and for therapeutic purpose, it is first necessary to evaluate the immunogenicity and toxicities of peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. A field survey of chemicals and biological products used in shrimp farming

    International Nuclear Information System (INIS)

    Graeslund, S.; Holmstroem, K.; Wahlstroem, A.

    2003-01-01

    This study documented the use of chemicals and biological products in marine and brackish water shrimp farming in Thailand, the world's top producer of farmed shrimp. Interviews were conducted with 76 shrimp farmers in three major shrimp producing regions, the eastern Gulf coast, the southern Gulf coast and the Andaman coast area. Farmers in the study used on average 13 different chemicals and biological products. The most commonly used products were soil and water treatment products, pesticides and disinfectants. Farmers in the southern Gulf coast area used a larger number of products than farmers in the other two areas. In the study, the use of more than 290 different chemicals and biological products was documented. Many of the pesticides, disinfectants and antibiotics used by the farmers could have negative effects on the cultured shrimps, cause a risk for food safety, occupational health, and/or have negative effects on adjacent ecosystems. Manufacturers and retailers of the products often neglected to provide farmers with necessary information regarding active ingredient and relevant instructions for safe and efficient use

  10. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana.

    Science.gov (United States)

    Jassbi, Amir Reza; Zare, Somayeh; Asadollahi, Mojtaba; Schuman, Meredith C

    2017-10-11

    Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.

  11. Supercritical Algal Extracts: A Source of Biologically Active Compounds from Nature

    Directory of Open Access Journals (Sweden)

    Izabela Michalak

    2015-01-01

    Full Text Available The paper discusses the potential applicability of the process of supercritical fluid extraction (SFE in the production of algal extracts with the consideration of the process conditions and yields. State of the art in the research on solvent-free isolation of biologically active compounds from the biomass of algae was presented. Various aspects related with the properties of useful compounds found in cells of microalgae and macroalgae were discussed, including their potential applications as the natural components of plant protection products (biostimulants and bioregulators, dietary feed and food supplements, and pharmaceuticals. Analytical methods of determination of the natural compounds derived from algae were discussed. Algal extracts produced by SFE process enable obtaining a solvent-free concentrate of biologically active compounds; however, detailed economic analysis, as well as elaboration of products standardization procedures, is required in order to implement the products in the market.

  12. MODERN TECHNOLOGICAL SOLUTIONS USED IN THE PRODUCTION OF BAKERY PRODUCTS WITH HIGH BIOLOGICAL VALUE

    Directory of Open Access Journals (Sweden)

    Marta Brodowska

    2014-06-01

    Full Text Available Biological value of the food products is a result of the presence of bioactive substances and the proportions of the components. Technological development allows to optimize and accelerate the processes of bread production and increase value of food. Bakery industry used whole grains and pseudocereals as additional source of active compounds, biotechnological techniques as using appropriate yeast strain and encapsulation, which provide protection of substance and their controlled release in production of functional bread. The adding to bread fruits, vegetables and condiments may increase content of vitamin, minerals, dietary fiber and other bioactive compounds.

  13. Chemical Biology of Microbial Anticancer Natural Products

    DEFF Research Database (Denmark)

    Bladt, Tanja Thorskov; Gotfredsen, Charlotte Held

    than 100 years. New natural products (NPs) are continually discovered and with the increase in selective biological assays, previously described compounds often also display novel bioactivities, justifying their presence in novel screening efforts. Screening and discovery of compounds with activity...... towards chronic lymphocytic leukemia (CLL) cells is crucial since CLL is considered as an incurable disease. To discover novel agents that targets CLL cells is complicated. CLL cells rapidly undergo apoptosis in vitro when they are removed from their natural microenvironment, even though they are long...

  14. Back to the Roots: Prediction of Biologically Active Natural Products from Ayurveda Traditional Medicine

    DEFF Research Database (Denmark)

    Polur, Honey; Joshi, Tejal; Workman, Christopher

    2011-01-01

    Ayurveda, the traditional Indian medicine is one of the most ancient, yet living medicinal traditions. In the present work, we developed an in silico library of natural products from Ayurveda medicine, coupled with structural information, plant origin and traditional therapeutic use. Following this....... We hereby present a number of examples where the traditional medicinal use of the plant matches with the medicinal use of the drug that is structurally similar to a plant component. With this approach, we have brought to light a number of obscure compounds of natural origin (e.g. kanugin......, we compared their structures with those of drugs from DrugBank and we constructed a structural similarity network. Information on the traditional therapeutic use of the plants was integrated in the network in order to provide further evidence for the predicted biologically active natural compounds...

  15. Reductive methylation of insulin. Production of a biologically active tritiated insulin

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, J W; Nahum, A; Steiner, D F [Department of Biochemistry, University of Chicago, Illinois, USA

    1983-01-01

    Reductive methylation of the three amino groups of porcine insulin was accomplished by incubation with formaldehyde and sodium cyanoborohydride. The two amino termini and the epsilon amino group of B29 lysine were each dimethylated within 1 h of incubation. The fully methylated insulin bound more tightly to a reverse phase column than did native insulin, had a slightly more acid isoelectric point, and maintained approximately 50% biological activity when examined with an insulin sensitive cultured cell line. Reductive methylation with sodium cyanoboro (/sup 3/H) hydride resulted in a (/sup 3/H) methylated insulin with a specific activity of 6 Ci/mmol.

  16. On the possibility of biologically active fenole substances forming during irradiation of vegetable origin products

    International Nuclear Information System (INIS)

    Koval'skaya, L.P.; Petrash, I.P.; Medvedeva, T.N.; Lezhneva, M.L.; Shchegoleva, G.I.

    1974-01-01

    The purpose of this study was to find out whether biologically active substances of phenol nature can form upon irradiation of fresh fruits and vegetables with doses of 200-300 Krad, to ascertain the stability of these substances during storage and processing, and to see whether they display cytostatic effects. The results of the study led to modifications and improvements in the methods used to study biologically active substances of phenol nature in fresh fruits irradiated with 200-300 krad. The total amount of phenolic compounds was found to be somewhat increased upon their extraction with cold ethanol. Of the substances detected in extracts from red tomatoes, the contens of chlorogenic acid, caffeic acid, and naranguenine were appreciably increased. Neither chemical methods nor bioassays revealed in irradiated juices and fruits any biologically active substances affecting the living organism. (E.T.)

  17. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  18. Radical production in biological systems

    International Nuclear Information System (INIS)

    Johnson, J.R.; Akabani, G.

    1994-10-01

    This paper describes our effort to develop a metric for radiation exposure that is more fundamental than adsorbed dose and upon which a metric for exposure to chemicals could be based. This metric is based on the production of radicals by the two agents. Radicals produced by radiation in biological systems commonly assumed to be the same as those produced in water despite the presence of a variety of complex molecules. This may explain why the extensive efforts to describe the relationship between energy deposition (track structure) and molecular damage to DNA, based on the spectrum of radicals produced, have not been successful in explaining simple biological effects such as cell killing. Current models assume that DNA and its basic elements are immersed in water-like media and only model the production and diffusion of water-based radicals and their interaction with DNA structures; these models lack the cross sections associated with each macro-component of DNA and only treat water-based radicals. It has been found that such models are not realistic because DNA is not immersed in pure water. A computer code capable of simulating electron tracks, low-energy electrons, energy deposition in small molecules, and radical production and diffusion in water like media has been developed. This code is still in at a primitive stage and development is continuing. It is being used to study radical production by radiation, and radical diffusion and interactions in simple molecular systems following their production. We are extending the code to radical production by chemicals to complement our PBPK modeling efforts. It therefore has been developed primarily for use with radionuclides that are in biological materials, and not for radiation fields

  19. A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates.

    Science.gov (United States)

    Xu, Yang; Li, Yuting; Bao, Tao; Zheng, Xiaodong; Chen, Wei; Wang, Jianxu

    2017-04-15

    Cauliflower by-products (CBP) are rich in leaf protein. Every year tons of CBP will lead to environmental pollution. Therefore, this study was conducted to extract leaf protein from CBP and investigate its biological activities. Our results showed that the optimal extraction parameters were: a liquid to solid ratio of 4mL/g, a pH of 11, an ultrasonic extraction lasting 15min, and at an applied power of 175W. Under these optimized conditions, 12.066g of soluble leaf protein (SLP) was obtained from 1000g of CBP and its extraction yield was 53.07%. The obtained SLP was further hydrolysed by Alcalase and the SLP hydrolysate (SLPH) showed a potent angiotensin I-converting enzyme (ACE) inhibitory activity with an IC 50 value of 138.545μg/mL in vitro. In addition, SLPH promoted the glucose consumption and enhanced the glycogen content in HepG2 cells. Overall, our results suggested that CBP may be recycled for designing future functional foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. 75 FR 33312 - Indexing Structured Product Labeling for Human Prescription Drug and Biological Products; Request...

    Science.gov (United States)

    2010-06-11

    ...] Indexing Structured Product Labeling for Human Prescription Drug and Biological Products; Request for... Biologics Evaluation and Research (CBER) are indexing certain categories of information in product labeling for use as terms to search repositories of approved prescription medical product structured product...

  1. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  2. Biological activities of secondary metabolites of the order Zoanthids

    Directory of Open Access Journals (Sweden)

    Zahra Aminikhoei

    2015-11-01

    Full Text Available The phylum Cnidaria is a large, diverse and ecologically important group of marine invertebrates, which produce powerful toxins and venoms. The number of marine natural product from cnidarians isolated from class Anthozoa. Among the Anthozoa, the order of zoanthids are sessile, clonal and mostly brightly colored invertebrate which produce high biodiversity of cytolitic, neurotoxic and cardiotoxic compounds. Zoanthids containing palytoxins are reportedly among the most toxic marine organisms known. In addition, a high concentration of zoanthamine alkaloids extracted from this group.The zoanthamine alkaloids were isolated over 20 years ago, exhibit a broad range of biological activities.The best studied and most well-known biological activity of zoanthamine derivative significantly suppressed bone resorption and enhanced bone formation.

  3. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  4. Synthetic biology advances for pharmaceutical production

    OpenAIRE

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.

  5. Publishing activities improves undergraduate biology education.

    Science.gov (United States)

    Smith, Michelle K

    2018-06-01

    To improve undergraduate biology education, there is an urgent need for biology instructors to publish their innovative active-learning instructional materials in peer-reviewed journals. To do this, instructors can measure student knowledge about a variety of biology concepts, iteratively design activities, explore student learning outcomes and publish the results. Creating a set of well-vetted activities, searchable through a journal interface, saves other instructors time and encourages the use of active-learning instructional practices. For authors, these publications offer new opportunities to collaborate and can provide evidence of a commitment to using active-learning instructional techniques in the classroom.

  6. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    Science.gov (United States)

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  7. Synthetic biology advances for pharmaceutical production

    Science.gov (United States)

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872

  8. Biological treatment of chicken feather waste for improved biogas production

    Institute of Scientific and Technical Information of China (English)

    Gergely Forgács; Saeid Alinezhad; Amir Mirabdollah; Elisabeth Feuk-Lagerstedt; Ilona Sárvári Horwáth

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas.Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production.Chopped,autoclaved chicken feathers (4%,W/V) were completely degraded,resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain.During the subsequent anaerobic batch digestion experiments,methane production of 0.35 Nm3/kg dry feathers (i.e.,0.4 Nm3/kg volatile solids of feathers),corresponding to 80% of the theoretical value on proteins,was achieved from the feather hydrolyzates,independently of the prehydrolysis time period of 1,2 or 8 days.Cultivation with a native keratinase producing strain,Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate,which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers.Feather hydrolyzates treated with the wild type B.megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  9. New enamine derivatives of lapachol and biological activity

    Directory of Open Access Journals (Sweden)

    OLIVEIRA MAILCAR F.

    2002-01-01

    Full Text Available A convenient synthesis of the new enamine derivatives 2-(4-morpholinyl-3-(3-methyl-2-butenyl-1,4-naphthalenedione, 2-(1-piperidinyl-3-(3-methyl-2-butenyl-1,4-naphtalenedione and 2-(1-pyrrolidinyl-3-(3-methyl-2-butenyl-1,4-naphthalenedione was carried out from natural 2-hydroxy-3-(3-methyl-2-butenyl-1,4-naphthalenedione (lapachol and morpholine, piperidine and pyrrolidine. The structures of the products were established mainly by NMR analysis, including 2D experiments. Biological activities of these products were evaluated against Artemia salina, Aedes aegypti and cytotoxicity using A549 human breast cells.

  10. Biological Activities of Hydrazone Derivatives

    Directory of Open Access Journals (Sweden)

    S. Güniz Küçükgüzel

    2007-08-01

    Full Text Available There has been considerable interest in the development of novel compounds with anticonvulsant, antidepressant, analgesic, antiinflammatory, antiplatelet, antimalarial, antimicrobial, antimycobacterial, antitumoral, vasodilator, antiviral and antischistosomiasis activities. Hydrazones possessing an azometine -NHN=CH- proton constitute an important class of compounds for new drug development. Therefore, many researchers have synthesized these compounds as target structures and evaluated their biological activities. These observations have been guiding for the development of new hydrazones that possess varied biological activities.

  11. Biologically Active Metabolites Synthesized by Microalgae

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2015-01-01

    Full Text Available Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  12. Purity-activity relationships of natural products: the case of anti-TB active ursolic acid.

    Science.gov (United States)

    Jaki, Birgit U; Franzblau, Scott G; Chadwick, Lucas R; Lankin, David C; Zhang, Fangqiu; Wang, Yuehong; Pauli, Guido F

    2008-10-01

    The present study explores the variability of biological responses from the perspective of sample purity and introduces the concept of purity-activity relationships (PARs) in natural product research. The abundant plant triterpene ursolic acid (1) was selected as an exemplary natural product due to the overwhelming number yet inconsistent nature of its approximate 120 reported biological activities, which include anti-TB potential. Nine different samples of ursolic acid with purity certifications were obtained, and their purity was independently assessed by means of quantitative 1H NMR (qHNMR). Biological evaluation consisted of determining MICs against two strains of virulent Mycobacterium tuberculosis and IC50 values in Vero cells. Ab initio structure elucidation provided unequivocal structural confirmation and included an extensive 1H NMR spin system analysis, determination of nearly all J couplings and the complete NOE pattern, and led to the revision of earlier reports. As a net result, a sigmoid PAR profile of 1 was obtained, demonstrating the inverse correlation of purity and anti-TB bioactivity. The results imply that synergistic effects of 1 and its varying impurities are the likely cause of previously reported antimycobacterial potential. Generating PARs is a powerful extension of the routinely performed quantitative correlation of structure and activity ([Q]SAR). Advanced by the use of primary analytical methods such as qHNMR, PARs enable the elucidation of cases like 1 when increasing purity voids biological activity. This underlines the potential of PARs as a tool in drug discovery and synergy research and accentuates the need to routinely combine biological testing with purity assessment.

  13. The use of theoretical and empirical knowledge in the production of explanations and arguments in an inquiry biology activity

    Directory of Open Access Journals (Sweden)

    Maíra Batistoni e Silva

    2017-08-01

    Full Text Available Agreeing with the scientific literacy as the purpose of science education and with the recent propositions that in order to achieve it we should favor the engagement of students in practices of scientific culture, this study intends to analyze the production of explanations and arguments in an inquiry based teaching activity in order to characterize students' mobilization of theoretical and empirical knowledge by engaging in these practices. Analyzing the scientific reports elaborated by the students (14-15 years old after the inquiry activity on population dynamics, we highlight the importance of empirical knowledge about the experimental context as a repertoire for construction of explanations, especially when students deal with anomalous data. This knowledge was also important for production of valid arguments, since most of the justifications were empirical, regardless of whether or not the data were in accordance with the explanatory model already known. These results reinforce the importance of students' engagement in inquiry activities, as already defended by different authors of this research area, and indicate that the inquiry practice allowed the engagement in epistemic practices, since the knowledge about the experimental conditions and the procedures of data collection provided a repertoire for the production of explanations and arguments. Finally, we discuss the relevance of this research to the field of biology teaching, seeking to defend the promotion of inquiry activities with an experimental approach as an opportunity to integrate conceptual and epistemic objectives and overcome the difficulties generated by the specificities of this area of knowledge in relation to the other disciplines in nature sciences.

  14. Generation of structurally novel short carotenoids and study of their biological activity.

    Science.gov (United States)

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-02-23

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli.

  15. Yeast synthetic biology toolbox and applications for biofuel production.

    Science.gov (United States)

    Tsai, Ching-Sung; Kwak, Suryang; Turner, Timothy L; Jin, Yong-Su

    2015-02-01

    Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  16. Biological activities of Lavandula angustifolia essential oil

    OpenAIRE

    Bílková, Zuzana

    2013-01-01

    Zuzana Bílková, Biological activities of Lavandula angustifolia essential oil, Thesis, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, thesis author: PharmDr. Jan Martin, PhD., Hradec Králové, 2013, 72 pages. The thesis called "Biological activities of Lavandula angustifolia essential oil" is interested in biological activities of Lavandula angustifolia essential oil, specifically antifungal, antioxidant, anti-inflammatory, cytotoxicity, nematicidal and repellency activit...

  17. Biological Activity of Tannins from Acacia mangium Bark Extracted by Different Solvents

    Directory of Open Access Journals (Sweden)

    E. Wina

    2010-08-01

    Full Text Available Acacia mangium bark is abundant byproduct of wood industry in Indonesia. It is underutilized and mainly used as fire wood for the wood industry. The bark contains high level of tannin but the tannin has not been extracted or produced commercially. Tannin isolate can be used for several purposes such as tanning agent for leather, adhesive for plywood or particle board, etc. In ruminant, tannin can be detrimental but can also be beneficial. This experiment was aimed of getting the highest yield of tannin extract with the highest biological activity in rumen fermentation. Nine different solvents at different temperatures were used to extract tannin from A. mangium bark. The extracts were analyzed for their tannin contents and biological activities. Tannin content was analyzed using folin ciocalteau and butanol-HCl methods. Biological activity was described as a percentage of an increase in gas production in the in vitro rumen-buffer fermentation, with and without addition of PEG. The results show that Na2SO3 solution extracted more tannin than other solutions and the higher the concentration of Na2SO3 solution, the higher the yield of tannin extract. The solution of 6% sodium sulphite gave the highest yield of tannin extract (31.2% of original bark sample and the highest concentration of tannin (18.26% but produced a negative effect on in vitro fermentation (% increase of gas production = 2.70%. Extraction with 50% acetone gave a high yield of extract (22.28% of original bark which contained 12.98% of tannin and showed the highest biological response (% increase of gas production = 216%. In conclusion, sodium sulphite solution is not recommended for tannin extraction if the tannin will be used as feed additive in ruminant feed; on the other hand, the aqueous acetone (50% acetone solution is a better choice to be used.

  18. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products.

    Science.gov (United States)

    Frevert, Jürgen

    2015-03-01

    Botulinum neurotoxin injections are a valuable treatment modality for many therapeutic indications and have revolutionized the field of aesthetic medicine so that they are the leading cosmetic procedure performed worldwide. Studies show that onabotulinumtoxinA, abobotulinumtoxinA, and incobotulinumtoxinA are comparable in terms of clinical efficacy. Differences between the products relate to the botulinum neurotoxin complexes, specific biological potency, and their immunogenicity. Protein complex size and molecular weight have no effect on biological activity, stability, distribution, or side effect profile. Complexing proteins and inactive toxin (toxoid) content increase the risk of neutralizing antibody formation, which can cause secondary treatment failure, particularly in chronic disorders that require frequent injections and long-term treatment. These attributes could lead to differences in therapeutic outcomes, and, given the widespread aesthetic use of these three neurotoxin products, physicians should be aware of how they differ to ensure their safe and effective use.

  19. Brassinosteroids: synthesis and biological activities

    Czech Academy of Sciences Publication Activity Database

    Oklešťková, Jana; Rárová, Lucie; Kvasnica, Miroslav; Strnad, Miroslav

    2015-01-01

    Roč. 14, č. 6 (2015), s. 1053-1072 ISSN 1568-7767 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Brassinosteroids * Chemical synthesis * Plant biological activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.686, year: 2015

  20. A review exploring biological activities of hydrazones

    Directory of Open Access Journals (Sweden)

    Garima Verma

    2014-01-01

    Full Text Available The development of novel compounds, hydrazones has shown that they possess a wide variety of biological activities viz. antimicrobial, anticonvulsant, antidepressant, anti-inflammatory, analgesic, antiplatelet, antimalarial, anticancer, antifungal, antitubercular, antiviral, cardio protective etc., Hydrazones/azomethines/imines possess-NHN = CH- and constitute an important class of compounds for new drug development. A number of researchers have synthesized and evaluated the biological activities of hydrazones. This review aims at highlighting the diverse biological activities of hydrazones.

  1. Active agents in common skin care products.

    Science.gov (United States)

    Draelos, Zoe Diana

    2010-02-01

    Skin care products are numerous and perplexing, yet the majority fall into the moisturizer category. Moisturizers are substances designed to improve and maintain the skin barrier. They serve as a vehicle for the delivery of active ingredients that minimize facial lines of dehydration, deliver photoprotection, and provide antioxidant properties. Moisturizers are based on occlusive substances, such as petrolatum and dimethicone, and humectant substances, such as glycerin, with a variety of sunscreens and botanicals for added functionality and marketing impact. This article reviews these common active agents. The plethora of over-the-counter skin care products available for patient purchase is overwhelming, yet there is certain commonality among 80 percent of the formulations. The majority of the products are moisturizers with added ingredients to support marketing claims. Whether the product is a facial foundation, an antiaging night cream, a sunscreen, a topical antioxidant, or a skin-lightening serum, the formulation is basically a moisturizer. Sunscreen is the most biologically active antiaging ingredient in skin care products, but the antiinflammatory and antioxidant effects of botanicals possess tremendous marketing appeal.

  2. Recent advances on biological production of difructose dianhydride III.

    Science.gov (United States)

    Zhu, Yingying; Yu, Shuhuai; Zhang, Wenli; Zhang, Tao; Guang, Cuie; Mu, Wanmeng

    2018-04-01

    Difructose dianhydride III (DFA III) is a cyclic difructose containing two reciprocal glycosidic linkages. It is easily generated with a small amount by sucrose caramelization and thus occurs in a wide range of food-stuffs during food processing. DFA III has half sweetness but only 1/15 energy of sucrose, showing potential industrial application as low-calorie sucrose substitute. In addition, it displays many benefits including prebiotic effect, low cariogenicity property, and hypocholesterolemic effect, and improves absorption of minerals, flavonoids, and immunoglobulin G. DFA III is biologically produced from inulin by inulin fructotransferase (IFTase, EC 4.2.2.18). Plenty of DFA III-producing enzymes have been identified. The crystal structure of inulin fructotransferase has been determined, and its molecular modification has been performed to improve the catalytic activity and structural stability. Large-scale production of DFA III has been studied by various IFTases, especially using an ultrafiltration membrane bioreactor. In this article, the recent findings on physiological effects of DFA III are briefly summarized; the research progresses on identification, expression, and molecular modification of IFTase and large-scale biological production of DFA III by IFTase are reviewed in detail.

  3. Generation of structurally novel short carotenoids and study of their biological activity

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Moon S.; Lee, Bun Y.

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored...... thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid...... structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-atocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid...

  4. Genus Pouteria: chemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Cíntia A. M. Silva

    Full Text Available The genus Pouteria belongs to the family Sapotaceae and can be widely found around the World. These plants have been used as building material, as food, because the eatable fruits, as well as remedies in folk medicine. Some biological activities have been reported to species of this genus such as antioxidant, anti-inflammatory, antibacterial and antifungal. However, the real potential of this genus as source of new drugs or phytomedicines remains unknown. Therefore, a review of the so far known chemical composition and biological activities of this genus is presented to stimulate new studies about the species already reported moreover that species have no reference about chemistry or biological activities could be found until now.

  5. 9 CFR 114.17 - Rebottling of biological products.

    Science.gov (United States)

    2010-01-01

    ... reports of all tests conducted on the rebottled product shall be submitted to Animal and Plant Health... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Rebottling of biological products. 114.17 Section 114.17 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT...

  6. Chemistry and Biological Activities of Flavonoids: An Overview

    Directory of Open Access Journals (Sweden)

    Shashank Kumar

    2013-01-01

    Full Text Available There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.

  7. Chemistry and Biological Activities of Flavonoids: An Overview

    Science.gov (United States)

    Kumar, Shashank; Pandey, Abhay K.

    2013-01-01

    There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production. PMID:24470791

  8. Biological hydrogen production by moderately thermophilic anaerobic bacteria

    International Nuclear Information System (INIS)

    HP Goorissen; AJM Stams

    2006-01-01

    This study focuses on the biological production of hydrogen at moderate temperatures (65-75 C) by anaerobic bacteria. A survey was made to select the best (moderate) thermophiles for hydrogen production from cellulolytic biomass. From this survey we selected Caldicellulosiruptor saccharolyticus (a gram-positive bacterium) and Thermotoga elfii (a gram-negative bacterium) as potential candidates for biological hydrogen production on mixtures of C 5 -C 6 sugars. Xylose and glucose were used as model substrates to describe growth and hydrogen production from hydrolyzed biomass. Mixed substrate utilization in batch cultures revealed differences in the sequence of substrate consumption and in catabolites repression of the two microorganisms. The regulatory mechanisms of catabolites repression in these microorganisms are not known yet. (authors)

  9. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    OpenAIRE

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward ...

  10. Surface mixing and biological activity in the four Eastern Boundary Upwelling Systems

    Directory of Open Access Journals (Sweden)

    V. Rossi

    2009-08-01

    Full Text Available Eastern Boundary Upwelling Systems (EBUS are characterized by a high productivity of plankton associated with large commercial fisheries, thus playing key biological and socio-economical roles. Since they are populated by several physical oceanic structures such as filaments and eddies, which interact with the biological processes, it is a major challenge to study this sub- and mesoscale activity in connection with the chlorophyll distribution. The aim of this work is to make a comparative study of these four upwelling systems focussing on their surface stirring, using the Finite Size Lyapunov Exponents (FSLEs, and their biological activity, based on satellite data. First, the spatial distribution of horizontal mixing is analysed from time averages and from probability density functions of FSLEs, which allow us to divide each areas in two different subsystems. Then we studied the temporal variability of surface stirring focussing on the annual and seasonal cycle. We also proposed a ranking of the four EBUS based on the averaged mixing intensity. When investigating the links with chlorophyll concentration, the previous subsystems reveal distinct biological signatures. There is a global negative correlation between surface horizontal mixing and chlorophyll standing stocks over the four areas. To try to better understand this inverse relationship, we consider the vertical dimension by looking at the Ekman-transport and vertical velocities. We suggest the possibility of a changing response of the phytoplankton to sub/mesoscale turbulence, from a negative effect in the very productive coastal areas to a positive one in the open ocean. This study provides new insights for the understanding of the variable biological productivity in the ocean, which results from both dynamics of the marine ecosystem and of the 3-D turbulent medium.

  11. Radio-active waste disposal and deep-sea biology

    International Nuclear Information System (INIS)

    Rice, A.L.

    1978-01-01

    The deep-sea has been widely thought of as a remote, sparsely populated, and biologically inactive environment, well suited to receive the noxious products of nuclear fission processes. Much of what is known of abyssal biology tends to support this view, but there are a few disquieting contra-indications. The realisation, in recent years, that many animal groups show a previously unsuspected high species diversity in the deep-sea emphasized the paucity of our knowledge of this environment. More dramatically, the discovery of a large, active, and highly mobile abysso-bentho-pelagic fauna changed the whole concept of abyssal life. Finally, while there is little evidence for the existence of vertical migration patterns linking the deep-sea bottom communities with those of the overlying water layers, there are similarly too few negative results for the possibility of such transport mechanisms to be dismissed. In summary, biological knowledge of the abyss is insufficient to answer the questions raised in connection with deep-sea dumping, but in the absence of adequate answers it might be dangerous to ignore the questions

  12. Soluble microbial products (SMPs release in activated sludge systems: a review

    Directory of Open Access Journals (Sweden)

    Azami Hamed

    2012-12-01

    Full Text Available Abstract This review discusses the characterization, production and implications of soluble microbial products (SMPs in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as “the pool of organic compounds that are released into solution from substrate metabolism and biomass decay”'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process.

  13. Soluble Microbial Products (SMPs Release in Activated Sludge Systems: a Review

    Directory of Open Access Journals (Sweden)

    Hamed Azami

    2012-12-01

    Full Text Available This review discusses the characterization, production and implications of soluble microbial products (SMPs in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as “the pool of organic compounds that are released into solution from substrate metabolism and biomass decay”'.Some of the SMPs have been identified as humic acids, olysaccharides, proteins, amino acids, antibiotics,extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production.As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewaterpost-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process.

  14. 9 CFR 114.18 - Reprocessing of biological products.

    Science.gov (United States)

    2010-01-01

    ... for all tests conducted shall be submitted to Animal and Plant Health Inspection Service. The licensee... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Reprocessing of biological products. 114.18 Section 114.18 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE...

  15. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Sik; Lee, Eun Mi; Hong, Sung Hyun; Bai, Hyoung Woo; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, In Chul [Youngdong University, Youngdong (Korea, Republic of)

    2011-10-15

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  16. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    International Nuclear Information System (INIS)

    Lee, Seung Sik; Lee, Eun Mi; Hong, Sung Hyun; Bai, Hyoung Woo; Chung, Byung Yeoup; Lee, In Chul

    2011-01-01

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  17. Taguchi Experimental Design for Optimization of Recombinant Human Growth Hormone Production in CHO Cell Lines and Comparing its Biological Activity with Prokaryotic Growth Hormone.

    Science.gov (United States)

    Aghili, Zahra Sadat; Zarkesh-Esfahani, Sayyed Hamid

    2018-02-01

    Growth hormone deficiency results in growth retardation in children and the GH deficiency syndrome in adults and they need to receive recombinant-GH in order to rectify the GH deficiency symptoms. Mammalian cells have become the favorite system for production of recombinant proteins for clinical application compared to prokaryotic systems because of their capability for appropriate protein folding, assembly, post-translational modification and proper signal. However, production level in mammalian cells is generally low compared to prokaryotic hosts. Taguchi has established orthogonal arrays to describe a large number of experimental situations mainly to reduce experimental errors and to enhance the efficiency and reproducibility of laboratory experiments.In the present study, rhGH was produced in CHO cells and production of rhGH was assessed using Dot blotting, western blotting and Elisa assay. For optimization of rhGH production in CHO cells using Taguchi method An M16 orthogonal experimental design was used to investigate four different culture components. The biological activity of rhGH was assessed using LHRE-TK-Luciferase reporter gene system in HEK-293 and compared to the biological activity of prokaryotic rhGH.A maximal productivity of rhGH was reached in the conditions of 1%DMSO, 1%glycerol, 25 µM ZnSO 4 and 0 mM NaBu. Our findings indicate that control of culture conditions such as the addition of chemical components helps to develop an efficient large-scale and industrial process for the production of rhGH in CHO cells. Results of bioassay indicated that rhGH produced by CHO cells is able to induce GH-mediated intracellular cell signaling and showed higher bioactivity when compared to prokaryotic GH at the same concentrations. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  19. [Recent advances of synthetic biology for production of functional ingredients in Chinese materia medica].

    Science.gov (United States)

    Su, Xin-Yao; Xue, Jian-Ping; Wang, Cai-Xia

    2016-11-01

    The functional ingredients in Chinese materia medica are the main active substance for traditional Chinese medicine and most of them are secondary metabolites derivatives. Until now,the main method to obtain those functional ingredients is through direct extraction from the Chinese materia medica. However, the income is very low because of the high extraction costs and the decreased medicinal plants. Synthetic biology technology, as a new and microbial approach, can be able to carry out large-scale production of functional ingredients and greatly ease the shortage of traditional Chinese medicine ingredients. This review mainly focused on the recent advances in synthetic biology for the functional ingredients production. Copyright© by the Chinese Pharmaceutical Association.

  20. Linking neuroethology to the chemical biology of natural products

    DEFF Research Database (Denmark)

    Olivera, Baldomero M.; Raghuraman, Shrinivasan; Schmidt, Eric W.

    2017-01-01

    From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively...... a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as “Chemical Neuroethology”, linking...... the substantial work carried out by chemists on natural products with accelerating advances in neuroethology....

  1. Photochemical versus biological production of methyl iodide during Meteor 55

    Science.gov (United States)

    Richter, U.; Wallace, D.

    2003-04-01

    The flux of methyl iodide from sea to air represents the largest flux of iodine from the ocean to the atmosphere. Surface water concentrations and hence fluxes are particularly high in tropical regions. This flux may be responsible for the enrichment of iodine in the marine aerosol and may contribute to important processes in the marine boundary layer, including particle formation. Methyl iodide is commonly referred to as a biogenic gas, with both macroalgae and phytoplankton identified as important sources. On the other hand experimental and field data have shown the importance of photochemical production that is not necessarily associated directly with biological activity. During the Meteor cruise 55 along 11°N in the tropical Atlantic Ocean, a series of experiments were conducted to examine the biological vs. photochemical production of methyl iodide. A total of eight separate experiments were conducted. Production of CH3I in quartz glass flasks during 24 hour incubations (dark and natural sunlight) was measured under three experimental treatments: untreated seawater, filtered seawater (0.1 um pore size filter to exclude most phytoplankton and bacteria), and seawater that was poisoned with mercuric chloride. There were two clear findings from these experiments: (1) methyl iodide production was significantly higher in all the incubations that were exposed to the light than in the dark incubations; (2) there was no significant difference between CH3I production under the three experimental treatments. These results argue very strongly for the primary importance of photochemical production of CH3I as opposed to biogenic production at least for the tropical open ocean surface waters. Further experiments are required to investigate the reactants involved, their sources, the wavelength and depth dependence of production, etc. as well as (possibly related) sink processes.

  2. 21 CFR 310.4 - Biologics; products subject to license control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Biologics; products subject to license control... to license control. (a) If a drug has an approved license under section 351 of the Public Health.... (b) To obtain marketing approval for radioactive biological products for human use, as defined in...

  3. AN INFLUENCE OF SPONTANEOUS MICROFLORA OF FERMENTED HORSEMEAT PRODUCTS ON THE FORMATION OF BIOLOGICALLY ACTIVE PEPTIDES

    Directory of Open Access Journals (Sweden)

    I. M. Chernukha

    2017-01-01

    Full Text Available At present, different methods are used to accumulate functional peptides in meat raw materials, including the use of spontaneous microflora during autolysis, the use of the microbial enzymes (the application of starter cultures and the use of the non-microbial enzymes (enzymes of animals and plant origin. Each method has its own specific characteristics of an impact on raw materials, which requires their detail study. This paper examines an effect of spontaneous microflora of fermented meat products from horsemeat on formation of biologically active peptides. Using the T-RFLP analysis, it was established that in air dried and uncooked smoked sausages produced with the use of the muscle tissue of horsemeat as a raw material, a significant proportion of microflora was presented by lactic acid microorganisms. The highest content of lactic acid microflora was observed in sample 1 (52.45 %, and the least in sample 3 (29.62 %. Sample 2 had the medium percent content of microflora compared to samples 1 and 3 — 38.82 %. It is necessary to note that about 25 % of microflora was unculturable; i.e., it had metabolic processes but did not grow on culture media. In the samples, the representatives of Actinobacteria and Pseudomonadales were found. Pathogenic and conditionally pathogenic microflora was not detected. Not only quantitative but also qualitative changes were observed in the studied samples. For example, in samples 1 and 2, the fractions of amilo-1,6-glucosidase, fast-type muscle myosin-binding-protein C; glucose-6-phosphate isomerase; fast skeletal muscle troponin I, phosphoglycerate kinase, pyruvate kinase and skeletal muscle actin were found, which were absent or reduced in sample 3. Therefore, in the studied product, good preservation of the main spectra of muscle proteins was observed, and the identified fractions, apparently, can be sources of new functional peptides. Not only quantitative but also qualitative changes were observed in the

  4. 78 FR 60884 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-02

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... Immunoregulation, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics...

  5. 76 FR 44016 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-07-22

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research...

  6. 9 CFR 101.3 - Biological products and related terms.

    Science.gov (United States)

    2010-01-01

    ... as required by the regulations. (e) Released product. A finished product released for marketing after... total quantity of completed product which has been thoroughly mixed in a single container and identified... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Biological products and related terms...

  7. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  8. 77 FR 3780 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-01-25

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, FDA. The...

  9. [Cycloferon biological activity characteristics].

    Science.gov (United States)

    Utkina, T M; Potekhina, L P; Kartashova, O L; Vasilchenko, A S

    2014-01-01

    Study the effect of cycloferon in experimental and clinical conditions on persistence properties of aurococci as well as features of their morpho-functional reaction by atomic force microscopy. The study was carried out in 12 Staphylococcus aureus clones isolated from mucous membrane of nose anterior part of a resident carrier. The effect of cycloferon in vivo was evaluated in 26 resident staphylococci carriers under the control of anti-carnosine activity of staphylococci. Anti-carnosine activity was determined by O.V. Bukharin et al. (1999), biofilm formation -by G.A. O'Toole et al. (2000). Staphylococci treated with cycloferon were studied by atomic force microscopy in contact mode using scanning probe SMM-2000 microscope. The decrease of persistence properties of staphylococci under the effect of cycloferon in vitro and in vivo may be examined as one of the mechanisms of biological activity of the preparation. A significant increase of S. aureus surface roughness and changes in their morphology under the effect of cycloferon allow stating the disorder of barrier functions in the aurococci cell wall. The data obtained expand the understanding of cycloferon biological activity mechanisms.

  10. Biological activity of common mullein, a medicinal plant.

    Science.gov (United States)

    Turker, Arzu Ucar; Camper, N D

    2002-10-01

    Common Mullein (Verbascum thapsus L., Scrophulariaceae) is a medicinal plant that has been used for the treatment of inflammatory diseases, asthma, spasmodic coughs, diarrhea and other pulmonary problems. The objective of this study was to assess the biological activity of Common Mullein extracts and commercial Mullein products using selected bench top bioassays, including antibacterial, antitumor, and two toxicity assays--brine shrimp and radish seed. Extracts were prepared in water, ethanol and methanol. Antibacterial activity (especially the water extract) was observed with Klebsiella pneumonia, Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. Agrobacterium tumefaciens-induced tumors in potato disc tissue were inhibited by all extracts. Toxicity to Brine Shrimp and to radish seed germination and growth was observed at higher concentrations of the extracts.

  11. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    Directory of Open Access Journals (Sweden)

    Ranga Rao Ambati

    2014-01-01

    Full Text Available There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.

  12. Evaluating the biological activity of oil-polluted soils using a complex index

    Science.gov (United States)

    Kabirov, R. R.; Kireeva, N. A.; Kabirov, T. R.; Dubovik, I. Ye.; Yakupova, A. B.; Safiullina, L. M.

    2012-02-01

    A complex index characterizing the biological activity of soils (BAS) is suggested. It is based on an estimate of the level of activity of catalase; the number of heterotrophic and hydrocarbon oxidizing microorganisms, microscopic fungi, algae, and cyanobacteria; and the degree of development of higher plants and insects in the studied soil. The data on using the BAS coefficient for evaluating the efficiency of rehabilitation measures for oil-polluted soils are given. Such measures included introducing the following biological preparations: Lenoil based on a natural consortium of microorganisms Bacillus brevis and Arthrobacter sp.; the Azolen biofertilizer with complex action based on Azotobacter vinelandii; the Belvitamil biopreparation, which is the active silt of pulp and paper production; and a ready-mixed industrial association of aerobic and anaerobic microorganisms that contains hydrocarbon oxidizing microorganisms of the Arthrobacter, Bacillus, Candida, Desulfovibrio, and Pseudomonas genera.

  13. Marine products with anti-protozoal activity: a review.

    Science.gov (United States)

    García, Marley; Monzote, Lianet

    2014-01-01

    The marine organisms are a rich source of varied natural products with unique functionality. A variety of natural products of new molecular structures with diverse biological activities have been reported from marine flora and fauna for treatment and/or prevention of human diseases. The present review briefly illustrates current status of marine products as antiprotozoal agents. The in vitro and in vivo studies of marine algae, invertebrates and micro-organism against different protozoa parasites are included. The marine products studied, according to international criterions for selection of more promisory products in the different models reported, demonstrated their potentialities as antiprozoal agents. Herein, the interest of scientific community to search new alternatives from marine environment has been demonstrated.

  14. Comparison of growth methods and biological activities of brazilian marine Streptomyces

    Directory of Open Access Journals (Sweden)

    A. C. Granato

    2013-03-01

    Full Text Available The present work describes the study of the growth and the cytotoxic and antitumor activities of the extracts of the marine microorganisms Streptomyces acrymicini and Streptomyces cebimarensis, the latter a new strain. Both microorganisms were collected from coastal marine sediments of the north coast of São Paulo state. Growth was performed in a shaker and in a bioreactor using Gym medium and the broths of both microorganisms were extracted with ethyl acetate and n-butanol. Three extracts, two organic and one aqueous, from each microorganism were obtained and tested for cytotoxic and antitumor activity using the SF-295 (Central Nervous System, HCT-8 (Colon cell lines, and the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide method. The growth methods were compared and show that, although the shaker presented reasonable results, the bioreactor represents the best choice for growth of these microorganisms. The biological activity of the different extracts was evaluated and it was demonstrated that the growth methodology may influence the secondary metabolite production and the biological activity.

  15. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Maurizio Servili

    2013-12-01

    Full Text Available Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.

  16. Evolution of activities in international biological standardization since the early days of the Health Organisation of the League of Nations.

    Science.gov (United States)

    Sizaret, P

    1988-01-01

    The main activities in international biological standardization during the 18 years that followed the first international biological standardization meeting in London in 1921 were concerned with expressing the potencies of test preparations in comparison with reference materials. After the Second World War, however, it became clear that the testing of biological substances against international reference materials was only one among several measures for obtaining safe and potent products. The activities in international biological standardization were therefore widened so that, by the strict observance of specific manufacturing and control requirements, it was possible to gain further in safety and efficacy. At the end of 1987, 42 international requirements for biological substances were available and were being used as national requirements, sometimes after minor modification, by the majority of WHO's Member States. This is of utmost importance for the worldwide use of safe and potent biological products, including vaccines.

  17. Biocomes: new biological products for sustainable farming and forestry

    NARCIS (Netherlands)

    Teixidó, N.; Cal, de A.L.; Usall, J.; Guijarro, B.; Larena, I.; Torres, R.; Abadias, M.; Köhl, J.

    2016-01-01

    The growing interest in biological control has been reflected during last decades in a big number of scientific publications, books and symposia. However, biocontrol commercial application at a European level is limited and biological control products are not currently available for the control of

  18. Traditional Uses, Chemical Constituents, and Biological Activities of Bixa orellana L.: A Review

    Directory of Open Access Journals (Sweden)

    Daniela de Araújo Vilar

    2014-01-01

    Full Text Available Bixa orellana L., popularly known as “urucum,” has been used by indigenous communities in Brazil and other tropical countries for several biological applications, which indicates its potential use as an active ingredient in pharmaceutical products. The aim of this work was to report the main evidence found in the literature, concerning the ethnopharmacology, the biological activity, and the phytochemistry studies related to Bixa orellana L. Therefore, this work comprises a systematic review about the use of Bixa orellana in the American continent and analysis of the data collected. This study shows the well-characterized pharmacological actions that may be considered relevant for the future development of an innovative therapeutic agent.

  19. A study on biological activity of marine fungi from different habitats in coastal regions.

    Science.gov (United States)

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.

  20. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  1. Versatile and on-demand biologics co-production in yeast.

    Science.gov (United States)

    Cao, Jicong; Perez-Pinera, Pablo; Lowenhaupt, Ky; Wu, Ming-Ru; Purcell, Oliver; de la Fuente-Nunez, Cesar; Lu, Timothy K

    2018-01-08

    Current limitations to on-demand drug manufacturing can be addressed by technologies that streamline manufacturing processes. Combining the production of two or more drugs into a single batch could not only be useful for research, clinical studies, and urgent therapies but also effective when combination therapies are needed or where resources are scarce. Here we propose strategies to concurrently produce multiple biologics from yeast in single batches by multiplexing strain development, cell culture, separation, and purification. We demonstrate proof-of-concept for three biologics co-production strategies: (i) inducible expression of multiple biologics and control over the ratio between biologic drugs produced together; (ii) consolidated bioprocessing; and (iii) co-expression and co-purification of a mixture of two monoclonal antibodies. We then use these basic strategies to produce drug mixtures as well as to separate drugs. These strategies offer a diverse array of options for on-demand, flexible, low-cost, and decentralized biomanufacturing applications without the need for specialized equipment.

  2. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    Science.gov (United States)

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  3. Systems biology solutions for biochemical production challenges

    DEFF Research Database (Denmark)

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus

    2017-01-01

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics...... characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity...... compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains...

  4. 78 FR 20663 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-05

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function..., Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, FDA. FDA intends to...

  5. Biological risks associated with consumption of reptile products

    DEFF Research Database (Denmark)

    Magnino, S.; Colin, P.; Dei-Cas, E.

    2009-01-01

    recently increased in some areas of the world. Biological risks associated with the consumption of products from both farmed and wild reptile meat and eggs include infections caused by bacteria (Salmonella spp., Vibrio spp.). parasites (Spirometra, Trichinella, Gnathostoma, pentastomids), as well...... to increase the occurrence of biological hazards in reptile meat. Application of GHP, GMP and HACCP procedures, respectively at farm and slaughterhouse level, is crucial for controlling the hazards.......The consumption of a wide variety of species of reptiles caught from the wild has been an important source of protein for humans world-wide for millennia. Terrapins. snakes, lizards, crocodiles and iguanas are now farmed and the consumption and trade of their meat and other edible products have...

  6. A study on biological activity of marine fungi from different habitats in coastal regions

    OpenAIRE

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results show...

  7. ACTIVE PACKAGING SYSTEM FOR MEAT AND MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    Adriana Pavelková

    2012-10-01

    Full Text Available In the recent past, food packaging was used to enable marketing of products and to provide passive protection against environmental contaminations or influences that affect the shelf life of the products. However, unlike traditional packaging, which must be totally inert, active packaging is designed to interact with the contents and/or the surrounding environment. Interest in the use of active packaging systems for meat and meat products has increased in recent years. Active packaging systems are developed with the goal of extending shelf life for foods and increasing the period of time that the food is high quality. Developments in active packaging have led to advances in many areas, including delayed oxidation and controlled respiration rate, microbial growth, and moisture migration. Active packaging technologies include some physical, chemical, or biological action which changes interactions between a package, product, and/or headspace of the package in order to get a desired outcome. Active packaging systems discussed include oxygen scavengers, carbon dioxide scavengers and emitters, moisture control agents, flavour/odour absorbers and releasers  and antimicrobial packaging technologies. Active packaging is typically found in two types of systems; sachets and pads which are placed inside of packages, and active ingredients that are incorporated directly into packaging materials.  Recognition of the benefits of active packaging technologies by the food industry, development of economically viable packaging systems and increased consumer acceptance is necessary for commercial realisation of these packaging technologies.doi:10.5219/205

  8. In situ biomolecule production by bacteria; a synthetic biology approach to medicine.

    Science.gov (United States)

    Flores Bueso, Yensi; Lehouritis, Panos; Tangney, Mark

    2018-04-10

    The ability to modify existing microbiota at different sites presents enormous potential for local or indirect management of various diseases. Because bacteria can be maintained for lengthy periods in various regions of the body, they represent a platform with enormous potential for targeted production of biomolecules, which offer tremendous promise for therapeutic and diagnostic approaches for various diseases. While biological medicines are currently limited in the clinic to patient administration of exogenously produced biomolecules from engineered cells, in situ production of biomolecules presents enormous scope in medicine and beyond. The slow pace and high expense of traditional research approaches has particularly hampered the development of biological medicines. It may be argued that bacterial-based medicine has been "waiting" for the advent of enabling technology. We propose that this technology is Synthetic Biology, and that the wait is over. Synthetic Biology facilitates a systematic approach to programming living entities and/or their products, using an approach to Research and Development (R&D) that facilitates rapid, cheap, accessible, yet sophisticated product development. Full engagement with the Synthetic Biology approach to R&D can unlock the potential for bacteria as medicines for cancer and other indications. In this review, we describe how by employing Synthetic Biology, designer bugs can be used as drugs, drug-production factories or diagnostic devices, using oncology as an exemplar for the concept of in situ biomolecule production in medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Expression of biologically active murine interleukin-18 in Lactococcus lactis.

    Science.gov (United States)

    Feizollahzadeh, Sadegh; Khanahmad, Hossein; Rahimmanesh, Ilnaz; Ganjalikhani-Hakemi, Mazdak; Andalib, Alireza; Sanei, Mohammad Hossein; Rezaei, Abbas

    2016-11-01

    The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900. The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)-γ production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3-4 μg mL -1 and 0.6-0.7 ng mL -1 , respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Hormones in international meat production: biological, sociological and consumer issues.

    Science.gov (United States)

    Galbraith, Hugh

    2002-12-01

    Beef and its products are an important source of nutrition in many human societies. Methods of production vary and include the use of hormonal compounds ('hormones') to increase growth and lean tissue with reduced fat deposition in cattle. The hormonal compounds are naturally occurring in animals or are synthetically produced xenobiotics and have oestrogenic (oestradiol-17beta and its esters; zeranol), androgenic (testosterone and esters; trenbolone acetate) or progestogenic (progesterone; melengestrol acetate) activity. The use of hormones as production aids is permitted in North American countries but is no longer allowed in the European Union (EU), which also prohibits the importation of beef and its products derived from hormone-treated cattle. These actions have resulted in a trade dispute between the two trading blocs. The major concern for EU authorities is the possibility of adverse effects on human consumers of residues of hormones and metabolites. Methods used to assess possible adverse effects are typical of those used by international agencies to assess acceptability of chemicals in human food. These include analysis of quantities present in the context of known biological activity and digestive, absorptive, post-absorptive and excretory processes. Particular considerations include the low quantities of hormonal compounds consumed in meat products and their relationships to endogenous production particularly in prepubertal children, enterohepatic inactivation, cellular receptor- and non-receptor-mediated effects and potential for interference with growth, development and physiological function in consumers. There is particular concern about the role of oestradiol-17beta as a carcinogen in certain tissues. Now subject to a 'permanent' EU ban, current evidence suggests that certain catechol metabolites may induce free-radical damage of DNA in cell and laboratory animal test systems. Classical oestrogen-receptor mediation is considered to stimulate

  11. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology

    Directory of Open Access Journals (Sweden)

    Zhigang Xie

    2014-01-01

    Full Text Available In order to improve adsorption of macromolecular contaminants and promote the growth of microorganisms, active carbon for biological wastewater treatment or follow-up processing requires abundant mesopore and good biophile ability. In this experiment, biophile mesopore active carbon is produced in one-step activation with orange peel as raw material, and zinc chloride as activator, and the adsorption characteristics of orange peel active carbon is studied by static adsorption method. BET specific surface area and pore volume reached 1477 m2/g and 2.090 m3/g, respectively. The surface functional groups were examined by Fourier transform infrared spectroscopy (FT-IR. The surface of the as-prepared activated carbon contained hydroxyl group, carbonyl group, and methoxy group. The analysis based on X-ray diffraction spectrogram (XRD and three-dimensional fluorescence spectrum indicated that the as-prepared activated carbon, with smaller microcrystalline diameter and microcrystalline thickness and enhanced reactivity, exhibited enhanced adsorption performance. This research has a deep influence in effectively controlling water pollution, improving area water quality, easing orange peel waste pollution, and promoting coordinated development among society, economy, and environment.

  12. Entropy Production and Fluctuation Theorems for Active Matter

    Science.gov (United States)

    Mandal, Dibyendu; Klymko, Katherine; DeWeese, Michael R.

    2017-12-01

    Active biological systems reside far from equilibrium, dissipating heat even in their steady state, thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics. In this Letter, we have extended the emerging framework of stochastic thermodynamics to active matter. In particular, for the active Ornstein-Uhlenbeck model, we have provided consistent definitions of thermodynamic quantities such as work, energy, heat, entropy, and entropy production at the level of single, stochastic trajectories and derived related fluctuation relations. We have developed a generalization of the Clausius inequality, which is valid even in the presence of the non-Hamiltonian dynamics underlying active matter systems. We have illustrated our results with explicit numerical studies.

  13. The Biological Activities of Sesterterpenoid-Type Ophiobolins

    Directory of Open Access Journals (Sweden)

    Wei Tian

    2017-07-01

    Full Text Available Ophiobolins (Ophs are a group of tricarbocyclic sesterterpenoids whose structures contain a tricyclic 5-8-5 carbotricyclic skeleton. Thus far, 49 natural Ophs have been reported and assigned into A–W subgroups in order of discovery. While these sesterterpenoids were first characterized as highly effective phytotoxins, later investigations demonstrated that they display a broad spectrum of biological and pharmacological characteristics such as phytotoxic, antimicrobial, nematocidal, cytotoxic, anti-influenza and inflammation-promoting activities. These bioactive molecules are promising drug candidates due to the developments of their anti-proliferative activities against a vast number of cancer cell lines, multidrug resistance (MDR cells and cancer stem cells (CSCs. Despite numerous studies on the biological functions of Ophs, their pharmacological mechanism still requires further research. This review summarizes the chemical structures, sources, and biological activities of the oph family and discusses its mechanisms and structure–activity relationship to lay the foundation for the future developments and applications of these promising molecules.

  14. The Biological Activities of Sesterterpenoid-Type Ophiobolins.

    Science.gov (United States)

    Tian, Wei; Deng, Zixin; Hong, Kui

    2017-07-18

    Ophiobolins (Ophs) are a group of tricarbocyclic sesterterpenoids whose structures contain a tricyclic 5-8-5 carbotricyclic skeleton. Thus far, 49 natural Ophs have been reported and assigned into A-W subgroups in order of discovery. While these sesterterpenoids were first characterized as highly effective phytotoxins, later investigations demonstrated that they display a broad spectrum of biological and pharmacological characteristics such as phytotoxic, antimicrobial, nematocidal, cytotoxic, anti-influenza and inflammation-promoting activities. These bioactive molecules are promising drug candidates due to the developments of their anti-proliferative activities against a vast number of cancer cell lines, multidrug resistance (MDR) cells and cancer stem cells (CSCs). Despite numerous studies on the biological functions of Ophs, their pharmacological mechanism still requires further research. This review summarizes the chemical structures, sources, and biological activities of the oph family and discusses its mechanisms and structure-activity relationship to lay the foundation for the future developments and applications of these promising molecules.

  15. 76 FR 13646 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-03-14

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review...

  16. 76 FR 55397 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-09-07

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... Laboratory of Method Development, Division of Viral Products, Office of Vaccines Research and Review, Center...

  17. SYNBIOCHEM Synthetic Biology Research Centre, Manchester – A UK foundry for fine and speciality chemicals production

    Directory of Open Access Journals (Sweden)

    Le Feuvre RA

    2016-12-01

    Full Text Available The UK Synthetic Biology Research Centre, SYNBIOCHEM, hosted by the Manchester Institute of Biotechnology at the University of Manchester is delivering innovative technology platforms to facilitate the predictable engineering of microbial bio-factories for fine and speciality chemicals production. We provide an overview of our foundry activities that are being applied to grand challenge projects to deliver innovation in bio-based chemicals production for industrial biotechnology.

  18. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  19. Aloe vera: Potential candidate in health management via modulation of biological activities

    Science.gov (United States)

    Rahmani, Arshad H.; Aldebasi, Yousef H.; Srikar, Sauda; Khan, Amjad A.; Aly, Salah M.

    2015-01-01

    Treatment based on natural products is rapidly increasing worldwide due to the affordability and fewer side effects of such treatment. Various plants and the products derived from them are commonly used in primary health treatment, and they play a pivotal role in the treatment of diseases via modulation of biochemical and molecular pathways. Aloe vera, a succulent species, produces gel and latex, plays a therapeutic role in health management through antioxidant, antitumor, and anti-inflammatory activities, and also offers a suitable alternative approach for the treatment of various types of diseases. In this review, we summarize the possible mechanism of action and the therapeutic implications of Aloe vera in health maintenance based on its modulation of various biological activities. PMID:26392709

  20. The biological activities and chemical composition of Pereskia species (Cactaceae)--a review.

    Science.gov (United States)

    Pinto, Nícolas de Castro Campos; Scio, Elita

    2014-09-01

    The exploration of nature as a source of sustainable, novel bioactive substances continues to grow as natural products play a significant role in the search for new therapeutic and agricultural agents. In this context, plants of the genus Pereskia (Cactaceae) have been studied for their biological activities, and are evolving as an interesting subject in the search for new, bioactive compounds. These species are commonly used as human foodstuffs and in traditional medicine to treat a variety of diseases. This review focuses on the bioactivity and chemical composition of the genus Pereskia, and aims to stimulate further studies on the chemistry and biological potential of the genus.

  1. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    Science.gov (United States)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2010-01-01

    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.

  2. Systems biology solutions for biochemical production challenges.

    Science.gov (United States)

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J

    2017-06-01

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Ionizing radiation for sterilization of medical products and biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S K; Raghevendrarao, M K [Bhabha Atomic Research Centre, Bombay (India). Library and Technical Information Section

    1975-10-01

    The article reviews the deliberations of the International Symposium on Ionizing Radiation for Sterilization of Medical Products and Biological Tissues which was held during 9-13 December 1974 under the auspices of the IAEA at the Bhabha Atomic Research Centre, Bombay. 42 papers were presented in the following broad subject areas: (1) Microbiological Control aspects of radiation sterilization, (2) Dosimetry aspects of radiation sterilization practices, (3) Effects of sterilizing radiation dose on the constituents of medical products, (4) Application of radiation sterilization of medical products of biological origin, (5) Technological aspects of radiation sterilization facilities, (6) Radiation sterilization of pharmaceutical substances, (7) Reports on current status of radiation sterilization of medical products in IAEA member states and (8) Working group discussion on the revision of the IAEA recommended code of practice for radiation sterilization of medical products.

  4. Summary of diamino pyrazoles derived and study their biological activities

    International Nuclear Information System (INIS)

    Hagui, Marwa

    2016-01-01

    The work involves the synthesis of new heterocyclic structures diamino pyrazoles derivatives that are present in many natural products and products of pharmacological and therapeutic interests and study their biological activities. In order to develop a radiotracer interest and use in diagnostic nuclear medicine, we are interested to synthesis a pyrazole derivative with the precursor [Re(CO)5Br] and studying the antibacterial and antifungal activity of 3.5-diamino pyrazole and even thioamide complex rhenium. The objectives of our workout: 1/ Synthesis of molecules 3,5-diamino pyrazole and thioamide. 2/ Synthesis of 3,5-diamino pyrazole-rhenium complex. 3/ The in vitro study: Bacteriological Tests (Study of antibacterial and antifungal activity of 3,5-diamino pyrazole and thioamide). The first part of this work concerns the chemical synthesis of molecules such as: thioamide, Amp z1 Ampz2 and then we had synthesized the complex 3,5-diamino pyrazole-rhenium. Similarly we determined the physicochemical characteristics of the compounds synthesized by CLHP, CCM and RMN ( 1 H, 13 C). The second part is devoted to the study in vitro of biological activities of the synthesized molecules and complex 3,5 diaminopyrazole-rhenium with concentration 1 mg/mL and 2 mg/mL. The results allow us to say that the thioamide and Ampz2 have antibacterial activity against S. enterica and Ampz2 has low activity against S. aureus and P. aeruginossa. Other pyrazole derivatives have no significant antibacterial and antifungal activity. The results also show that the synthesized compounds of concentration 2 mg/mL in relation to the inhibition zones of amoxicillin and DMSO: 1/ Escherichia coli, there is antibacterial activity for thioamide, and the Amp z1-Re Ampz2 compound. 2/ Staphylococcus aureus, the complex Ampz 1-Re and the thioamide have significant antibacterial activity. 3/ Salmonella, we observe that the thioamide molecules, Ampz2 and Amp z1-Re have significant antibacterial activity

  5. Facile Chemical Access to Biologically Active Norcantharidin Derivatives from Biomass

    Directory of Open Access Journals (Sweden)

    Konstantin I. Galkin

    2017-12-01

    Full Text Available Reductive amination of 2,5-diformylfuran (DFF was used to implement the transition from bio-derived 5-hydroxymethylfurfural (HMF to pharmaceuticals. The synthesized bis(aminomethylfurans were utilized as building blocks for the construction of new derivatives with structural cores of naturally occurring biologically active compounds. Using the one-pot procedure, which included the Diels–Alder reaction followed by hydrogenation of the double bond, bio-derived analogues of the anticancer drug norcantharidin were obtained. The cyclization process was diastereoselective, and resulted in the formation of tricyclic products with the endo configuration. Analysis of cytotoxycity for the resulting tricyclic amine-containing compounds showed an increase of anticancer activity as compared with the unsubstituted norcantharimide.

  6. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  7. Crop production in salt affected soils: A biological approach

    Energy Technology Data Exchange (ETDEWEB)

    Malik, K A [National Inst. for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan)

    1995-01-01

    Plant are susceptible to various stresses, affecting growth productivity. Among the abiotic stresses, soil salinity is most significant and prevalent in both developed and developing countries. As a result, good productive lands are being desertified at a very high pace. To combat this problem various approaches involving soil management and drainage are underway but with little success. It seems that a durable solution of the salinity and water-logging problems may take a long time and we may have to learn to live with salinity and to find other ways to utilize the affected lands fruitfully. A possible approach could be to tailor plants to suit the deleterious environment. The saline-sodic soils have excess of sodium, are impermeable, have little or no organic matter and are biologically almost dead. Introduction of a salt tolerant crop will provide a green cover and will improve the environment for biological activity, increase organic matter and will improve the soil fertility. The plant growth will result in higher carbon dioxide levels, and would thus create acidic conditions in the soil which would dissolve the insoluble calcium carbonate and will help exchange sodium with calcium ions on the soil complex. The biomass produced could be used directly as fodder or by the use of biotechnological and other procedures it could be converted into other value added products. However, in order to tailor plants to suit these deleterious environments, acquisition of better understanding of the biochemical and genetic aspects of salt tolerance at the cellular/molecular level is essential. For this purpose model systems have been carefully selected to carry out fundamental basic research that elucidates and identifies the major factors that confer salt tolerance in a living system. With the development of modern biotechnological methods it is now possible to introduce any foreign genetic material known to confer salt tolerance into crop plants. (Abstract Truncated)

  8. Ethnobotanical and biological activities of Leptadenia pyrotechnica ...

    African Journals Online (AJOL)

    Conclusion: This review includes the substance of different ethnobotanical uses, phytochemistry and exclusive capability of this plant in the field of anti-microbial and human disease activities. Key words: Leptadenia pyrotechnica, Biological activities, Desert plant, Ethnobotanical, Phytochemical activity, phytochemistry.

  9. Bone Scan in Detection of Biological Activity in Nonhypertrophic Fracture Nonunion

    OpenAIRE

    Gandhi, Sunny J.; Rabadiya, Bhavdeep

    2017-01-01

    Biological activity of the fracture site is very important factor in treatment planning of fracture nonunion. If no biological activity is detected, then an autologous bone graft can be supplemented or osteogenic supplementations, such as bone morphogenetic protein is given. If biological activity is present, then secure fixation is sufficient to achieve bony union. Biological activity of nonunions is usually assessed by conventional radiographs. The presence of callus formation is usually as...

  10. Natural occurrence, biological activities and synthesis of eight-, nine-, and eleven-membered ring lactones

    Directory of Open Access Journals (Sweden)

    Helena M. C. Ferraz

    2008-01-01

    Full Text Available The natural occurrence, biological activities and synthetic approaches to natural eight-, nine-, and eleven-membered lactones is reviewed. These medium ring lactones are grouped according to ring size, and their syntheses are discussed. The structures of some natural products early identified as medium-ring lactones were revised after total synthesis.

  11. Effect of gamma irradiation on phenol content, antioxidant activity and biological activity of black maca and red maca extracts (Lepidium meyenii walp).

    Science.gov (United States)

    Zevallos-Concha, A; Nuñez, D; Gasco, M; Vasquez, C; Quispe, M; Gonzales, G F

    2016-01-01

    This study was performed to determine the effects of gamma irradiation on UV spectrum on maca, total content of polyphenols, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities and in vivo biological activities of red and black maca extracts (Lepidium meyenii). Adult mice of the strain Swiss aged 3 months and weighing 30-35 g in average were used to determine biological activities. Daily sperm production, effect on testosterone-induced prostate hyperplasia and forced swimming test were used to determine the effect of irradiation on biological activities of maca extracts. Irradiation did not show differences in UV spectrum but improves the amount of total polyphenols in red maca as well as in black maca extracts. In both cases, black maca extract has more content of polyphenols than red maca extract (p maca extract were administered to mice (p > 0.05). Black maca extract but not red maca extract has more swimming endurance capacity in the forced swimming test. Irradiation of black maca extract increased the swimming time to exhaustion (p maca extract (p > 0.05). Testosterone enanthate (TE) increased significantly the ventral prostate weight. Administration of red maca extract in animals treated with TE prevented the increase in prostate weight. Irradiation did not modify effect of red maca extract on prostate weight (p > 0.05). In conclusion, irradiation does not alter the biological activities of both black maca and red maca extracts. It prevents the presence of microorganisms in the extracts of black or red maca, but the biological activities were maintained.

  12. Biological activities of ENEA in Emilia-Romagna region; Attivita` in campo biologico dell`ENEA in Emilia-Romagna

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, A; Bortone, G; Bruni, S; Calamosca, M; D` Orazi, R; Malaguti, A; Pagano, P; Silingardi, D [ENEA, Centro Ricerche ` ` E. Clementel` ` Bologna (Italy). Dip. Ambiente; Bonassisa, L; Scarcella, E

    1995-12-01

    This report deals with the activities in the biologic field of the ENEA in the Emilia-Romagna region with some original papers of the Environmental Department researchers. These topics are treated: sewage purification and treatment; primary productivity in seas and lagoons; the trophic state of water in the valley of Comacchio; the biological research in the Brasimone ENEA centre; in vivo and in vitro inhalation toxicology.

  13. Physical activity and biological maturation: a systematic review

    Directory of Open Access Journals (Sweden)

    Eliane Denise Araújo Bacil

    2015-03-01

    Full Text Available OBJECTIVE: To analyze the association between physical activity (PA and biological maturation in children and adolescents. DATA SOURCE: We performed a systematic review in April 2013 in the electronic databases of PubMed/MEDLINE, SportDiscus, Web of Science and LILACS without time restrictions. A total of 628 potentially relevant articles were identified and 10 met the inclusion criteria for this review: cross-sectional or longitudinal studies, published in Portuguese, English or Spanish, with schoolchildren aged 9-15 years old of both genders. DATA SYNTHESIS: Despite the heterogeneity of the studies, there was an inverse association between PA and biological maturation. PA decreases with increased biological and chronological age in both genders. Boys tend to be more physically active than girls; however, when controlling for biological age, the gender differences disappear. The association between PA and timing of maturation varies between the genders. Variation in the timing of biological maturation affects the tracking of PA in early adolescent girls. This review suggests that mediators (BMI, depression, low self-esteem, and concerns about body weight can explain the association between PA and biological maturation. CONCLUSIONS: There is an association between PA and biological maturation. PA decreases with increasing biological age with no differences between genders. As for the timing of biological maturation, this association varies between genders.

  14. The Antibacterial Activity of Chitosan Products Blended with Monoterpenes and Their Biofilms against Plant Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Mohamed E. I. Badawy

    2016-01-01

    Full Text Available This study focuses on the biological activities of eleven chitosan products with a viscosity-average molecular weight ranging from 22 to 846 kDa in combination with the most active monoterpenes (geraniol and thymol, out of 10 tested, against four plant pathogenic bacteria, Agrobacterium tumefaciens, Erwinia carotovora, Corynebacterium fascians, and Pseudomonas solanacearum. The antibacterial activity was evaluated in vitro by the agar dilution technique as a minimum inhibitory concentration (MIC that was found to be dependent on the type of the microorganism tested. The most active product of chitosan was used for biofilm production enriched with geraniol and thymol (0.1 and 0.5% and the films were also evaluated against the tested bacteria. The biological bioactivities summarized here may provide novel insights into the functions of chitosan and some monoterpenes and potentially allow their use for food protection from microbial attack.

  15. 77 FR 42319 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-07-18

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Vaccines and Related Biological Products Advisory Committee. General Function of the Committee: To provide... consideration of the appropriateness of cell lines derived from human tumors for vaccine manufacture. FDA...

  16. 75 FR 59729 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-09-28

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... vaccines for a post-exposure prophylaxis indication using the animal rule. On November 17, 2010, the...

  17. Loranthus micranthus Linn.: Biological Activities and Phytochemistry

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2013-01-01

    Full Text Available Loranthus micranthus Linn. is a medicinal plant from the Loranthaceae family commonly known as an eastern Nigeria species of the African mistletoe and is widely used in folkloric medicine to cure various ailments and diseases. It is semiparasitic plant because of growing on various host trees and shrubs and absorbing mineral nutrition and water from respective host. Hence, the phytochemicals and biological activities of L. micranthus demonstrated strong host and harvesting period dependency. The leaves have been proved to possess immunomodulatory, antidiabetic, antimicrobial, antihypertensive, antioxidant, antidiarrhoeal, and hypolipidemic activities. This review summarizes the information and findings concerning the current knowledge on the biological activities, pharmacological properties, toxicity, and chemical constituents of Loranthus micranthus.

  18. Chemical constituents and biological activities of the genus Linaria (Scrophulariaceae).

    Science.gov (United States)

    Cheriet, Thamere; Mancini, Ines; Seghiri, Ramdane; Benayache, Fadila; Benayache, Samir

    2015-01-01

    This is a review on 95 references dealing with the genus Linaria (Scrophularioideae-Antirrhineae tribe), a known genus of the Scrophulariaceae family, which comprises about 200 species mainly distributed in Europe, Asia and North Africa. The use of some Linaria species in folk medicine has attracted the attention for chemical and biological studies. This report is aimed to be a comprehensive overview on the isolated or identified known and often new metabolites from the 41 Linaria species so far cited. It is organised presenting first the phytochemical classes of alkaloids, polyphenols including flavonoids, the latter being quite diffused and mostly present as flavones, flavonols and their glycosides, and terpenoids including iridoids and steroids. Second, the results from biological investigation on plant extracts, pure natural products isolated from Linaria species and some synthetic derivatives are reported, with antitumour, anti-acetylcholinesterase, anti-inflammatory and analgesic, antioxidant and antibacterial activities.

  19. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    Science.gov (United States)

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  20. Synthetic and systems biology for microbial production of commodity chemicals.

    Science.gov (United States)

    Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J; Keasling, Jay D; Martín, Héctor García

    2016-01-01

    The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.

  1. 77 FR 63839 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-10-17

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Vaccines and Related Biological Products Advisory Committee. General Function of the Committee: To provide...) Virus Monovalent Vaccine manufactured by GlaxoSmithKline. On November 15, 2012, the committee will meet...

  2. 75 FR 2876 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-01-19

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Vaccines and Related Biological Products Advisory Committee. General Function of the Committee: To provide... virus vaccine for the 2010 - 2011 influenza season. FDA intends to make background material available to...

  3. 76 FR 3639 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-01-20

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Vaccines and Related Biological Products Advisory Committee. General Function of the Committee: To provide... the influenza virus vaccine for the 2011-2012 influenza season. The committee will also hear an update...

  4. 78 FR 5465 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-01-25

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Vaccines and Related Biological Products Advisory Committee. General Function of the Committee: To provide... virus vaccine for the 2013- 2014 influenza season. FDA intends to make background material available to...

  5. The biology and chemistry of the zoanthamine alkaloids.

    Science.gov (United States)

    Behenna, Douglas C; Stockdill, Jennifer L; Stoltz, Brian M

    2008-01-01

    Marine natural products have long played an important role in natural products chemistry and drug discovery. Mirroring the rich variety and complicated interactions of the marine environment, the substances isolated from sea creatures tend to be incredibly diverse in both molecular structure and biological activity. The natural products isolated from the polyps of marine zoanthids are no exception. The zoanthamine alkaloids, the first of which were isolated over 20 years ago, are of particular interest to the synthetic community because they feature a novel structural framework and exhibit a broad range of biological activities. In this Review, we summarize the major contributions to understanding the zoanthamine natural products with regard to their isolation and structure determination, as well as studies on their biological activity and total synthesis.

  6. Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity

    OpenAIRE

    Turner, David P.

    2015-01-01

    Low income, poor diet, obesity and a lack of exercise are inter-related lifestyle factors that can profoundly alter our biological make-up to increase cancer risk, growth and development. We recently reported a potential mechanistic link between carbohydrate derived metabolites and cancer which may provide a biological consequence of lifestyle that can directly impact tumor biology. Advanced glycation end-products (AGEs) are reactive metabolites produced as a by-product of sugar metabolism. F...

  7. The scientific production in health and biological sciences of the top 20 Brazilian universities

    Directory of Open Access Journals (Sweden)

    R. Zorzetto

    2006-12-01

    Full Text Available Brazilian scientific output exhibited a 4-fold increase in the last two decades because of the stability of the investment in research and development activities and of changes in the policies of the main funding agencies. Most of this production is concentrated in public universities and research institutes located in the richest part of the country. Among all areas of knowledge, the most productive are Health and Biological Sciences. During the 1998-2002 period these areas presented heterogeneous growth ranging from 4.5% (Pharmacology to 191% (Psychiatry, with a median growth rate of 47.2%. In order to identify and rank the 20 most prolific institutions in these areas, searches were made in three databases (DataCAPES, ISI and MEDLINE which permitted the identification of 109,507 original articles produced by the 592 Graduate Programs in Health and Biological Sciences offered by 118 public universities and research institutes. The 20 most productive centers, ranked according to the total number of ISI-indexed articles published during the 1998-2003 period, produced 78.7% of the papers in these areas and are strongly concentrated in the Southern part of the country, mainly in São Paulo State.

  8. Biological activities of red propolis: a rewiew

    Science.gov (United States)

    de Figueiredo, Sonia M; de Freitas, Marcia Christina Dornelas; de Oliveira, Daiana Teixeira; de Miranda, Marina Barcelos; Vieira-Filho, Sidney Augusto; Caligiorne, Rachel Basques

    2018-02-23

    • Background: The red propolis (RdProp) is a resin produced by Apis mellifera bees, which collect the reddish exudate on the surface of its botanic source, the species Dalbergiae castophyllum, popularly known in Brazil as "rabo de bugio". Considered as the 13th type of Brazilian propolis, this resin has been gaining prominence due to its natural composition, rich in bioactive substances not found in other types of propolis. • Objective: This review aims to address the most important characteristics of PV, its botanical origin, the main constituents, its biological properties and the patents related to this natural product. • Method: By means of the SciFinder, Google Patents, Patus® and Spacenet, scientific articles and patents involving the term "red propolis" were searched until August 2017 • Results: A number of biological properties, including antimicrobial, anti-inflammatory, antiparasitic, antitumor, antioxidant, metabolic and nutraceutical activities are attributed to RdProp, demonstrating the great potential of its use in the food, pharmaceutical and cosmetics industries. • Conclusion: The available papers are associated to pharmacological potential of RdProp, but the molecular mechanisms or bioactive compounds responsible for each activity have not yet been fully elucidated. The RdProp patents currently found are directed to components for the pharmaceutical industry (EP2070543A1; WO2014186851A1; FR3006589A1; CN1775277A; CN105797149A; CN1879859A), cosmetic (JP6012138B2; JP2008247830A; JP6012138B2) and food (JP5478392B2; CN101380052A; WO2006038690A1). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2016-12-01

    Full Text Available Traditional Chinese Medicine (TCM has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  10. Circulating biologically active oxidized phospholipids show on-going and increased oxidative stress in older male mice

    Directory of Open Access Journals (Sweden)

    Jinbo Liu

    2013-01-01

    Significance: Oxidatively modified phospholipids are increased in the circulation during common, mild oxidant stresses of aging, or in male compared to female animals. Turnover of these biologically active phospholipids by rapid transport into liver and kidney is unchanged, so circulating levels reflect continuously increased production.

  11. Protein aggregates as depots for the release of biologically active compounds.

    Science.gov (United States)

    Artemova, Natalya V; Kasakov, Alexei S; Bumagina, Zoya M; Lyutova, Elena M; Gurvits, Bella Ya

    2008-12-12

    Protein misfolding and aggregation is one of the most serious problems in cell biology, molecular medicine, and biotechnology. Misfolded proteins interact with each other or with other proteins in non-productive or damaging ways. However, a new paradigm arises that protein aggregation may be exploited by nature to perform specific functions in different biological contexts. From this consideration, acceleration of stress-induced protein aggregation triggered by any factor resulting in the formation of soluble aggregates may have paradoxical positive consequences. Here, we suggest that amorphous aggregates can act as a source for the release of biologically active proteins after removal of stress conditions. To address this concept, we investigated the kinetics of thermal aggregation in vitro of yeast alcohol dehydrogenase (ADH) as a model substrate in the presence of two amphiphilic peptides: Arg-Phe or Ala-Phe-Lys. Using dynamic light scattering (DLS) and turbidimetry, we have demonstrated that under mild stress conditions the concentration-dependent acceleration of ADH aggregation by these peptides results in formation of large but soluble complexes of proteins prone to refolding.

  12. Effect of gamma irradiation on biological activity of thyrotropin

    Energy Technology Data Exchange (ETDEWEB)

    Strbak, V; Macho, L; Sedlak, J; Hromadova, M

    1976-03-01

    The biological activity of thyrotropin (TSH) was tested after sterilization by 0.5 and 12.5 Mrad of gamma irradiation. It was found that the biological activity (McKenzie's assay) of TSH irradiated in dry state was not affected during the first month after sterilization by doses of 0.5 and 2.5 Mrad. However, substantial decrease of TSH biological activity was observed 3 to 5 months after the irradiation, the lower activity being after the former dose. The irradiation of TSH by 12.5 Mrad in dry state and by 0.5 and 2.5 Mrad in solution resulted in a decrease of biological activity already during first month. The structural changes in the molecule of TSH were apparently not very extensive, since a decrease of disulfide bonds from 0.96 to 0.77 M per 1M of TSH was found immediately after the irradiation, while uv absorbancy and electrophoretic mobility on polyacrylamide gel electrophoresis were unaffected. These changes were followed by the decrease of TSH stability during storage in dry state. It is hypothesized that TSH molecule may be affected in ..beta.. subunit or in its connection with ..cap alpha...

  13. Effect of gamma irradiation on biological activity of thyrotropin

    International Nuclear Information System (INIS)

    Strbak, V.; Macho, L.; Sedlak, J.; Hromadova, M.

    1976-01-01

    The biological activity of thyrotropin (TSH) was tested after sterilization by 0.5 and 12.5 Mrad of gamma radiation. It was found that the biological activity (McKenzie's assay) of TSH irradiated in dry state was not affected during the first month after sterilization by doses of 0.5 and 2.5 Mrad. However, substantial decrease of TSH biological activity was observed 3 to 5 months after the irradiation, the lower activity after the 0.5 Mrad dose. The irradiation of TSH by 12.5 Mrad in dry state and by 0.5 and 2.5 Mrad in solution resulted in decreased biological activity already during the first month. The structural changes in the TSH molecule were apparently not very extensive, as a decrease of disulfide bonds from 0.96 to 0.77 M per 1 M of TSH was found immediately after the irradiation, while UV absorbancy and electrophoretic mobility on polyacrylamide gel electrophoresis were unaffected. These changes were followed by a decrease of TSH stability during storage in dry state. It is hypothesized that a TSH molecule may be affected in a β subunit or in its connection with α. (author)

  14. Production of biological nanoparticles from bovine serum albumin ...

    African Journals Online (AJOL)

    Production of biological nanoparticles from bovine serum albumin for drug delivery. ... Bovine serum albumin (BSA) was used for generation of nanoparticles in a drug delivery system. ... The impact of protein concentration and additional rate of organic solvent (i.e. ethanol) upon the particle ... AJOL African Journals Online.

  15. Biological activity analysis of native and recombinant streptokinase using clot lysis and chromogenic substrate assay.

    Science.gov (United States)

    Mahboubi, Arash; Sadjady, Seyyed Kazem; Mirzaei Saleh Abadi, Mohammad; Azadi, Saeed; Solaimanian, Roya

    2012-01-01

    DETERMINATION OF STREPTOKINASE ACTIVITY IS USUALLY ACCOMPLISHED THROUGH TWO ASSAY METHODS: a) Clot lysis, b) Chromogenic substrate assay. In this study the biological activity of two streptokinase products, namely Streptase®, which is a native product and Heberkinasa®, which is a recombinant product, was determined against the third international reference standard using the two forementioned assay methods. The results indicated that whilst the activity of Streptase® was found to be 101 ± 4% and 97 ± 5% of the label claim with Clot lysis and Chromogenic substrate assay respectively, for Heberkinasa® the potency values obtained were 42 ± 5% and 92.5 ± 2% of the label claim respectively. To shed some light on the reason for this finding, the n-terminal sequence of the streptokinase molecules present in the two products was determined. The results showed slight differences in the amino acid sequence of the recombinant product in comparison to the native one at the amino terminus. This finding supports those of other workers who found that n-terminal sequence of the streptokinase molecule can have significant effect on the activity of this protein.

  16. Transport of biologically active material in laser cutting.

    Science.gov (United States)

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  17. Chemical constituents and biological activities of species of Justicia: a review

    Directory of Open Access Journals (Sweden)

    Geone M. Corrêa

    2012-02-01

    Full Text Available The Acanthaceae family is an important source of therapeutic drugs, and the ethnopharmacological knowledge of this family requires urgent documentation as several of its species are near extinction. Justicia is the largest genus of Acanthaceae, with approximately 600 species. The present work provides a review addressing the chemistry and pharmacology of the genus Justicia. In addition, the biological activities of compounds isolated from the genus are also covered. The chemical and pharmacological information in the present work may inspire new biomedical applications for the species of Justicia, considering atom economy, the synthesis of environmentally benign products without producing toxic by-products, the use of renewable sources of raw materials, and the search for processes with maximal efficiency of energy.

  18. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    Science.gov (United States)

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  19. Synthetic biology approaches for the production of plant metabolites in unicellular organisms.

    Science.gov (United States)

    Moses, Tessa; Mehrshahi, Payam; Smith, Alison G; Goossens, Alain

    2017-07-10

    Synthetic biology is the repurposing of biological systems for novel objectives and applications. Through the co-ordinated and balanced expression of genes, both native and those introduced from other organisms, resources within an industrial chassis can be siphoned for the commercial production of high-value commodities. This developing interdisciplinary field has the potential to revolutionize natural product discovery from higher plants, by providing a diverse array of tools, technologies, and strategies for exploring the large chemically complex space of plant natural products using unicellular organisms. In this review, we emphasize the key features that influence the generation of biorefineries and highlight technologies and strategic solutions that can be used to overcome engineering pitfalls with rational design. Also presented is a succinct guide to assist the selection of unicellular chassis most suited for the engineering and subsequent production of the desired natural product, in order to meet the global demand for plant natural products in a safe and sustainable manner. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Biological Activity of Curcuminoids Isolated from Curcuma longa

    Directory of Open Access Journals (Sweden)

    Simay Çıkrıkçı

    2008-04-01

    Full Text Available Curcumin is the most important fraction of turmeric which is responsible for its biological activity. In this study, isolation and biological assessment of turmeric and curcumin have been discussed against standard bacterial and mycobacterial strains such as E.coli , S.aureus, E.feacalis, P.aeuroginosa, M.smegmatis, M.simiae, M.kansasii, M. terrae, M.szulgai and the fungi Candida albicans. The antioxidant activity of curcumin and turmeric were also determined by the CUPRAC method.

  1. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha Sankar, P.C.; Ramakrishnan, Reshmi; Rosemary, M.J., E-mail: rosemarymj@lifecarehll.com

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. - Highlights: • Different amounts of silver nanoparticles (0.2 g–0.4 g/napkin) were added to cellulose pulp. • The silver nanoparticle incorporated cellulose pulp was proved to be antibacterial by JIS L 1902 method. • The minimum concentration of silver required for antibacterial activity with no cytotoxicity has been found out. • In-vivo vaginal irritation and intracutaneous reactivity studies confirmed the biocompatibility of the material.

  2. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products

    International Nuclear Information System (INIS)

    Kavitha Sankar, P.C.; Ramakrishnan, Reshmi; Rosemary, M.J.

    2016-01-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. - Highlights: • Different amounts of silver nanoparticles (0.2 g–0.4 g/napkin) were added to cellulose pulp. • The silver nanoparticle incorporated cellulose pulp was proved to be antibacterial by JIS L 1902 method. • The minimum concentration of silver required for antibacterial activity with no cytotoxicity has been found out. • In-vivo vaginal irritation and intracutaneous reactivity studies confirmed the biocompatibility of the material.

  3. Applications of short-lived activation products in neutron activation analysis of bio-environmental specimens

    International Nuclear Information System (INIS)

    1987-03-01

    This report discusses the advantages and disadvantages, special techniques, and actual and potential applications of neutron activation analysis (NAA) utilizing short-lived neutron-induced products, with special reference to the analysis of samples of biological and environmental origin. Attention is devoted mainly to products having half-lives in roughly the range of 10 milliseconds to 60 seconds, but with some discussion of the usefulness of even shorter-lived species, and ones with half-lives as long as a few minutes. Important aspects of the analytical methodology include sample preparation, irradiation/transfer systems, activity measurements, data processing and analytical quality assurance. It is concluded that several trace elements can be determined in bio-environmental samples (as well as in samples of industrial, geochemical and other origin). In particular, this method provides analytical possibilities for several elements (e.g. B, F, Li and V) that are difficult to determine in some matrices at trace levels by any other technique. These conclusions are illustrated in an annex by results of calculations in which the applicability of the techniques to the analysis of several biological and environmental reference materials is evaluated by means of an advance computer prediction program. The report concludes with an annotated bibliography of relevant publications (including abstracts, where available) taken from the INIS database. (author)

  4. Using Active Learning to Teach Concepts and Methods in Quantitative Biology.

    Science.gov (United States)

    Waldrop, Lindsay D; Adolph, Stephen C; Diniz Behn, Cecilia G; Braley, Emily; Drew, Joshua A; Full, Robert J; Gross, Louis J; Jungck, John A; Kohler, Brynja; Prairie, Jennifer C; Shtylla, Blerta; Miller, Laura A

    2015-11-01

    This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that active learning can improve students' outcomes in Science, Technology, Engineering and Math Education disciplines. We then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning and technology into their classrooms. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  5. The Use of Alternative Raw Material in Production of Pastry Products as a Progressive Direction in Creating the Products of High Biological Value

    Directory of Open Access Journals (Sweden)

    Janа Bachinska

    2017-02-01

    Full Text Available This paper examines the impact of the use of alternative vegetable raw materials in the manufacture of pastry products with high biological value; it presents the results of evaluation of commodity of the developed products and compares them with the main samples presented in Kharkiv trade network. The feasibility of using a mixture of fiber and pumpkin seeds in the technology of pastry production to extend the range of confectionery products of high biological value and products with reduced calories has been proved. Adding the mixture of fiber and pumpkin seeds to biscuits and cakes positively affected the chemical composition of the ready-made product, saturating it with useful and necessary to human body mineral elements, vitamins, dietary fiber.

  6. Ficus carica L. (Moraceae: Phytochemistry, Traditional Uses and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shukranul Mawa

    2013-01-01

    Full Text Available This paper describes the botanical features of Ficus carica L. (Moraceae, its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents.

  7. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends.

    Science.gov (United States)

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Khan, Haji; Ali, Gul Shad

    2017-11-01

    The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.

  8. A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction

    Science.gov (United States)

    Gardner, Joel; Belland, Brian R.

    2012-01-01

    Introductory biology courses form a cornerstone of undergraduate instruction. However, the predominantly used lecture approach fails to produce higher-order biology learning. Research shows that active learning strategies can increase student learning, yet few biology instructors use all identified active learning strategies. In this paper, we…

  9. Preparation of iodoinsulin with preserved biological activity. [/sup 125/I, /sup 127/I

    Energy Technology Data Exchange (ETDEWEB)

    Dominiczak, M [Akademia Medyczna, Gdansk (Poland)

    1978-01-01

    The paper presents a method of receiving iodoinsulin with preserved biological activity. As a raw material, recrystallized bovine insulin produced by ''Polfa'' was used. Chloramine T was used as an oxidizing agent in the iodide reaction. Insulin was labelled with /sup 125/I or /sup 127/I at a molar concentration of 0.6/n NaI to insulin. Obtained product contained about 0.3 iodine atoms per insulin molecule. Specific radioactivity of the iodoinsulin was between 77 and 147 ..mu..Ci/..mu..g. Such an insulin was over 95% precipitable with trichloroacetic acid. Its immunological reactivity varied from 89% to 100% while its biological activity, determined using the consumption of glucose by the fatty tissue of rat epididymis was 92% +- 24% of the native insulin activity. The half-life of /sup 125/I-insulin in the rat blood circulation was determined the clearance curve being biphasic. The half-life of the first phase (shorter one) was 0.64 +- 0.2 minute while the longer phase 8.89 +- 2.16 minutes.

  10. PERSPECTIVES FOR DEVELOPMENT OF THE BIOLOGIC PLUM PRODUCTION IN BULGARIA

    Directory of Open Access Journals (Sweden)

    Ivanka Vitanova

    2014-03-01

    Full Text Available The Bulgarian plum cultivars Gabrovska, Nevena, Strinava, Guliaeva and Balvanska slava, breeding in the Plum Experimental Station in the town of Dryanovo and the introduced cultivars Stanley, Chachanska lepotitsa, Opal, Malvazinka, Hramova renkloda, Tuleu timpuriu, Althan’s Gage, Pacific, Mirabell de Nancy, Anna Schpet and Jojo, what are high productive and are tolerant to sharka and other important economic plum diseases are suitable for the biologic plum production. The organic fertilization is a basic element of the technology for the biologic plum production. The fertilization with manure and the green manure with a winter green peas and with a peas-rye mix increased the humus content, influenced positive action on the supplying of the plum plants with the main nutrient macro elements, increased the yield and to be able apply successfully in the plum orchards and at not irrigation conditions.

  11. Common commercial and consumer products contain activators of the aryl hydrocarbon (dioxin receptor.

    Directory of Open Access Journals (Sweden)

    Bin Zhao

    Full Text Available Activation of the Ah receptor (AhR by halogenated aromatic hydrocarbons (HAHs, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin, can produce a wide variety of toxic and biological effects. While recent studies have shown that the AhR can bind and be activated by structurally diverse chemicals, how widespread of these AhR agonists are in environmental, biological and synthetic materials remains to be determined. Using AhR-based assays, we demonstrate the presence of potent AhR agonists in a variety of common commercial and consumer items. Solvent extracts of paper, rubber and plastic products contain chemicals that can bind to and stimulate AhR DNA binding and/or AhR-dependent gene expression in hepatic cytosol, cultured cell lines, human epidermis and zebrafish embryos. In contrast to TCDD and other persistent dioxin-like HAHs, activation of AhR-dependent gene expression by these extracts was transient, suggesting that the agonists are metabolically labile. Solvent extracts of rubber products produce AhR-dependent developmental toxicity in zebrafish in vivo, and inhibition of expression of the metabolic enzyme CYP1A, significantly increased their toxic potency. Although the identity of the responsible AhR-active chemicals and their toxicological impact remain to be determined, our data demonstrate that AhR active chemicals are widely distributed in everyday products.

  12. Biotransformation of Bicyclic Halolactones with a Methyl Group in the Cyclohexane Ring into Hydroxylactones and Their Biological Activity

    Directory of Open Access Journals (Sweden)

    Katarzyna Wińska

    2016-10-01

    Full Text Available The aim of this study was the chemical synthesis of a series of halo- and unsaturated lactones, as well as their microbial transformation products. Finally some of their biological activities were assessed. Three bicyclic halolactones with a methyl group in the cyclohexane ring were obtained from the corresponding γ,δ-unsaturated ester during a two-step synthesis. These lactones were subjected to screening biotransformation using twenty two fungal strains. These strains were tested on their ability to transform halolactones into new hydroxylactones. Among the six strains able to catalyze hydrolytic dehalogenation, only two (Fusarium equiseti, AM22 and Yarrowia lipolytica, AM71 gave a product in a high yield. Moreover, one strain (Penicillium wermiculatum, AM30 introduced the hydroxy group on the cyclohexane ring without removing the halogen atom. The biological activity of five of the obtained lactones was tested. Some of these compounds exhibited growth inhibition against bacteria, yeasts and fungi and deterrent activity against peach-potato aphid.

  13. Newer biological agents in rheumatoid arthritis: impact on health-related quality of life and productivity.

    Science.gov (United States)

    Strand, Vibeke; Singh, Jasvinder A

    2010-01-01

    Health-related quality of life (HR-QOL) in patients with rheumatoid arthritis (RA) is significantly impaired as a result of pain, deficits in physical function and fatigue associated with this disease. Decrements in HR-QOL are also associated with an increased probability of no longer working, absence from work due to RA-associated sickness, and reduced productivity while at work or in the home, all of which have consequences for the patient as well as society. HR-QOL and productivity are thus important components in the assessment of outcomes in RA, and assessment of HR-QOL is now recommended in clinical trials that assess the efficacy of new treatments for RA. Measures to assess HR-QOL include the Medical Outcomes Study Short Form 36 (SF-36), EuroQol (EQ-5D) and the Health Utilities Index - Mark 3 (HUI3); these measures not only provide an indication of the clinical (i.e. statistical) efficacy of a treatment, but also provide information on whether this efficacy is truly 'meaningful' from a patient's perspective. These measures have been utilized in clinical trials of biological agents in patients with RA, including tumour necrosis factor inhibitors (etanercept, infliximab, adalimumab, certolizumab pegol and golimumab), the co-stimulatory inhibitor molecule abatacept, the B-cell depletion agent rituximab and the interleukin-6 receptor antagonist tocilizumab, and have demonstrated that these agents can significantly improve HR-QOL. Assessment of work productivity in patients with RA and the impact of treatment is a practical way to measure disability from RA from individual and societal perspectives. As RA affects women three times more frequently than men, there is also a critical need for productivity assessment within the home as well as participation in family/social/leisure activities. Data from recent trials of biological agents demonstrate that these agents can reverse disease-related decrements in productivity and limitations in participation in family

  14. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  15. Isolation of Lactic Acid Bacteria with High Biological Activity from Local Fermented Dairy Products

    Directory of Open Access Journals (Sweden)

    B. Munkhtsetseg

    2009-12-01

    Full Text Available The thirty-two strains of lactic acid bacteria were isolated from the Mongolian traditional fermented dairy products, among them 25 strains show antimicrobial activity against test microorganisms including Escherichia coli , Staphylococcus aureus , Enterococcus faecalis , Pseudom о nas aeruginosa . Protease sensitivity assay demonstrated that the antimicrobial substances produced by isolates А 23, Т 2 are bacteriocins as their antibacterial activities were eliminated completely after treatment with protease. Identi fi cation of bacteria is being carried out. Among the isolates 22 strains show protease enzyme producing activity. The selected strains isolated from mare’s fermented milk (airag or kumis and yoghurt (tarag show the speci fi c protease activity from 7.9 μ g/ml to 11.9 μ g/ml. The strain T2, isolated from yoghurt exhibited the highest proteolytic activity.

  16. Biological activity of SV40 DNA

    International Nuclear Information System (INIS)

    Abrahams, P.J.

    1978-01-01

    This thesis deals with a study on the biological activity of SV40 DNA. The transforming activity of SV40 DNA and DNA fragments is investigated in order to define as precisely as possible the area of the viral genome that is involved in the transformation. The infectivity of SV40 DNA is used to study the defective repair mechanisms of radiation damages of human xeroderma pigmentosum cells. (C.F.)

  17. A Review of the Secondary Metabolites and Biological Activities of ...

    African Journals Online (AJOL)

    Review Article. A Review of the Secondary Metabolites and Biological. Activities of Tinospora crispa ... triterpenes have been isolated, some of which have also shown corresponding biological activities. The current review is an update on the .... were found to exhibit higher antioxidative potency than the synthetic antioxidant.

  18. Biologicals versus biosimilars the future ahead

    Directory of Open Access Journals (Sweden)

    A Singhal

    2015-01-01

    Full Text Available Biosimilars are highly similar versions of already authorized innovator biological therapies. They demonstrate no clinically meaningful difference with their innovator products in terms of efficacy, safety and quality characteristics and biological activity. Biosimilars have demonstrated growing acceptance and use, especially in the developing countries due to severe cost constraints. Global market for Indian non-innovator products is approximately worth USD 1.5 Billion/annum with an annual growth rate of 27%. Estimated exports of Indian biopharmaceutical products have been increasing at a rate of 47%. In India, there is a good acceptance of non-innovator healthcare products amongst healthcare professionals and patients. Several home grown biopharmaceutical industries are now actively developing and marketing non innovator products in India.

  19. Biological production of hydroxylated aromatics : Optimization strategies for Pseudomonas putida S12

    NARCIS (Netherlands)

    Verhoef, A.

    2010-01-01

    To replace environmentally unfriendly petrochemical production processes, the demand for bio-based production of organic chemicals is increasing. This thesis focuses on the biological production of hydroxylated aromatics from renewable substrates by engineered P. putida S12 including several cases

  20. 78 FR 19492 - Draft Guidance for Industry on Formal Meetings Between FDA and Biosimilar Biological Product...

    Science.gov (United States)

    2013-04-01

    ..., or Office of Communication, Outreach, and Development (HFM-40), Center for Biologics Evaluation and... biological product. This draft guidance describes the Agency's current thinking on how it intends to... review of biosimilar biological products. Because these meetings often will represent critical points in...

  1. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    Science.gov (United States)

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.

  2. Adapting to Biology: Maintaining Container-Closure System Compatibility with the Therapeutic Biologic Revolution.

    Science.gov (United States)

    Degrazio, Dominick

    . A packaging component within a container-closure system that is incompatible with the therapeutic biologic can potentially compromise patient safety, drug productivity, and product quality. Thus, each primary, parenteral packaging component within a container-closure system should be optimized to preserve the efficacy and therapeutic activity of a biologic. This review will examine the differences between small-molecule drugs and therapeutic biologics, lay a basic foundation for understanding the stability of therapeutic biologics, and demonstrate potential sources of container-closure system incompatibilities with therapeutic biologics at a mechanistic level. © PDA, Inc. 2015.

  3. Neutron activation analysis of biological substances

    International Nuclear Information System (INIS)

    Ordogh, M.

    1978-08-01

    A Bowen cabbage sample was used as a reference material for the neutron activation studies, and the method was checked by the analysis of other biological substances (blood or serum etc.). For nondestructive measurements also some non-trace elements were determined in order to decide whether the activation analysis is a useful means for such measurements. The new activation analysis procedure was used for biomedical studies as, e.g., for trace element determination in body fluids, and for the analysis of inorganic components in air samples. (R.P.)

  4. Waste water biological purification plants of dairy products industry and energy management

    Science.gov (United States)

    Stepanov, Sergey; Solkina, Olga; Stepanov, Alexander; Zhukova, Maria

    2017-10-01

    The paper presents results of engineering and economical comparison of waste water biological purification plants of dairy products industry. Three methods of purification are compared: traditional biological purification with the use of secondary clarifiers and afterpurification through granular-bed filters, biomembrane technology and physical-and-chemical treatment together with biomembrane technology for new construction conditions. The improvement of the biological purification technology using nitro-denitrification and membrane un-mixing of sludge mixture is a promising trend in this area. In these calculations, an energy management which is widely applied abroad was used. The descriptions of the three methods are illustrated with structural schemes. Costs of equipment and production areas are taken from manufacturers’ data. The research is aimed at an engineering and economical comparison of new constructions of waste water purification of dairy products industry. The experiment demonstrates advantages of biomembrane technology in waste water purification. This technology offers prospects of 122 million rubles cost saving during 25 years of operation when compared with of the technology of preparatory reagent flotation and of 13.7 million rubles cost saving compared to the option of traditional biological purification.

  5. Production of feline leukemia inhibitory factor with biological activity in Escherichia coli.

    Science.gov (United States)

    Kanegi, R; Hatoya, S; Tsujimoto, Y; Takenaka, S; Nishimura, T; Wijewardana, V; Sugiura, K; Takahashi, M; Kawate, N; Tamada, H; Inaba, T

    2016-07-15

    Leukemia inhibitory factor (LIF) is a cytokine which is essential for oocyte and embryo development, embryonic stem cell, and induced pluripotent stem cell maintenance. Leukemia inhibitory factor improves the maturation of oocytes in the human and the mouse. However, feline LIF (fLIF) cloning and effects on oocytes during IVM have not been reported. Thus, we cloned complete cDNA of fLIF and examined its biological activity and effects on oocytes during IVM in the domestic cat. The aminoacid sequence of fLIF revealed a homology of 81% or 92% with that of mouse or human. The fLIF produced by pCold TF DNA in Escherichia coli was readily soluble and after purification showed bioactivity in maintaining the undifferentiated state of mouse embryonic stem cells and enhancing the proliferation of human erythrocyte leukemia cells. Furthermore, 10- and 100-ng/mL fLIF induced cumulus expansion with or without FSH and EGF (P Feline LIF will further improve reproduction and stem cell research in the feline family. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust.

    Science.gov (United States)

    Raanan, Hagai; Felde, Vincent J M N L; Peth, Stephan; Drahorad, Sylvie; Ionescu, Danny; Eshkol, Gil; Treves, Haim; Felix-Henningsen, Peter; Berkowicz, Simon M; Keren, Nir; Horn, Rainer; Hagemann, Martin; Kaplan, Aaron

    2016-02-01

    Desert biological soil crusts (BSCs) are formed by adhesion of soil particles to polysaccharides excreted by filamentous cyanobacteria, the pioneers and main producers in this habitat. Biological soil crust destruction is a central factor leading to land degradation and desertification. We study the effect of BSC structure on cyanobacterial activity. Micro-scale structural analysis using X-ray microtomography revealed a vesiculated layer 1.5-2.5 mm beneath the surface in close proximity to the cyanobacterial location. Light profiles showed attenuation with depth of 1%-5% of surface light within 1 mm but also revealed the presence of 'light pockets', coinciding with the vesiculated layer, where the irradiance was 10-fold higher than adjacent crust parts at the same depth. Maximal photosynthetic activity, examined by O2 concentration profiles, was observed 1 mm beneath the surface and another peak in association with the 'light pockets'. Thus, photosynthetic activity may not be visible to currently used remote sensing techniques, suggesting that BSCs' contribution to terrestrial productivity is underestimated. Exposure to irradiance higher than 10% full sunlight diminished chlorophyll fluorescence, whereas O2 evolution and CO2 uptake rose, indicating that fluorescence did not reflect cyanobacterial photosynthetic activity. Our data also indicate that although resistant to high illumination, the BSC-inhabiting cyanobacteria function as 'low-light adapted' organisms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Specific methanogenic activity (SMA of industrial sludge from the aerobic and anaerobic biological treatment

    Directory of Open Access Journals (Sweden)

    Danieli Schneiders

    2013-08-01

    Full Text Available In this study, specific methanogenic activity (SMA tests were performed on textile sludge and food industry sludge. The textile sludge from an activated sludge was collected at the entrance of the secondary biologic clarifier and the food sludge was collected in a UASB reactor. Once collected, the sludges were characterized and tested for SMA. It was found that the microrganisms present in the food sludge had SMA of 0.17 gCOD-CH4 gSSV.d-1 and 337.05 mL of methane production, while the microrganisms of the textile sludge presented 0.10 gCOD-CH4 gSSV.d-1 of SMA and 3.04 mL of methane production. Therefore, the food sludge was more suitable to be used as a starting inoculum in UASB.

  8. Technical suitability mapping of feedstocks for biological hydrogen production

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Karaoglanoglou, L.S.; Koullas, D.P.; Bakker, R.R.; Claassen, P.A.M.; Koukios, E.G.

    2015-01-01

    The objective of this work was to map and compare the technical suitability of different raw materials for biological hydrogen production. Our model was based on hydrogen yield potential, sugar mobilization efficiency, fermentability and coproduct yield and value. The suitability of the studied

  9. A Review on Phytoconstituents and Biological activities of Cuscuta species.

    Science.gov (United States)

    Ahmad, Ateeque; Tandon, Sudeep; Xuan, Tran Dang; Nooreen, Zulfa

    2017-08-01

    The genus Cuscuta belonging to the Cuscutaceae family comprises of about 100-170 species spread around the world. Although several species have been studied for their phytochemical characterization and biological activities but still many species are yet unexplored till date. Cuscuta are parasitic plants generally of yellow, orange, red or rarely green color. The Cuscuta species were reported rich in flavonoid and glycosidic constituents along with alkaloids, fatty acids, fixed oil, minerals, essential oil and others phytomolecules also etc. Flavonoids and other molecules of Cuscuta species were reported for different types of biological activities such as antiproliferative activity, antioxidant activity, anti-inflammatory, hepatoprotective, antimicrobial and anxiolytic activity, while some other flavonoids have exhibited potential antiviral and anticancer especially in ovarian and breast cancer activities. This review is an attempt to compile all the available data for the 24 different of Cuscuta species on the basis of different types of phytochemical constituents and biological studies as above. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. 37 CFR 1.779 - Calculation of patent term extension for a veterinary biological product.

    Science.gov (United States)

    2010-07-01

    ... period beginning on the date the authority to prepare an experimental biological product under the Virus... diligence; (iii) One-half the number of days remaining in the period defined by paragraph (c)(1) of this... experimental biological product under the Virus-Serum-Toxin Act was submitted before November 16, 1988, by— (A...

  11. Effect of gamma irradiation on the pigments and the biological activities of methanolic extracts from leaves of centipedegrass (Eremochloa ophiuroides Munro)

    International Nuclear Information System (INIS)

    Lee, Eun Mi; Lee, Seung Sik; Bai, Hyoung-Woo; Cho, Jae-Young; Kim, Tae Hoon; Chung, Byung Yeoup

    2013-01-01

    Extracts from centipedegrass (Eremochloa ophiuroides Munro) have been previously identified as having beneficial effects medically and cosmetically. In this study, the effects of gamma irradiation on pigment removal and biological activities of centipedegrass extracts to promote industrial application were investigated. The methanolic extracts were exposed to gamma irradiation at dose ranging from 2 to 20 kGy. The major pigments of centipedegrass extracts, cyanidin-3-O-glucoside and cyanidin-3-O-(6″-malonyl-)glucoside, were found to be effectively removed by gamma irradiation above 10 kGy. Although the reddish-orange color of the cyanidins was markedly decreased by gamma irradiation, the biological activities were relatively unaffected. The biological activities such as 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, inhibition of tyrosinase activity, and inhibition of elastase activity in methanolic extracts were modulated from 50.5% to 70.2%, from 50.9% to 65.8% and from 65.6% to 94.0%, respectively. Surprisingly, the biological activities have the highest activities after 6–8 kGy of gamma irradiation. These results indicate that despite pigment degradation, biological activities were maintained or increased by gamma irradiation. Based on these results, gamma irradiation may be a useful tool to remove the undesirable reddish-orange color present in centipedegrass without any loss of biological activities, thereby promoting its utility in industrial applications such as manufacturing of cosmetic products. - Highlights: • The pigments of centipedegrass extracts were decreased by gamma irradiation. • The contents of maysin and its derivatives were slightly changed by gamma irradiation. • The biological activities of centipedegrass extracts were retained or increased by gamma irradiation

  12. Ultratrace determination of platinum in biological materials via neutron activation and radiochemical separation

    International Nuclear Information System (INIS)

    Zeisler, R.; Greenberg, R.R.

    1982-01-01

    A neutron activation analysis scheme based upon a radiochemical separation of the activation products has been developed. The method utilizes the inherent sensitivity of the activation reaction 198 Pt(n,ν) 199 Pt and counting of the daughter nuclide 199 Au. This nuclide is radiochemically separated from interfering activities by homogeneous precipitation as elemental gold. The remaining interference of the secondary reaction 197 Au(n,ν) 198 Au(n,ν) 199 Au from gold in the samples is quantitatively assessed and corrected. During this process accurate gold concentrations in the samples are obtained at ultratrace levels. The analysis scheme is applied to gold and platinum determinations in biological Standard Reference Materials and human liver specimens. Gold and platinum are determined at concentrations of 5x10 - 11 g/g, and at higher levels. (author)

  13. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    Science.gov (United States)

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Recent progress in synthetic biology for microbial production of C3-C10 alcohols

    Directory of Open Access Journals (Sweden)

    Edna N. Lamsen

    2012-06-01

    Full Text Available The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. While microbial ethanol production is well established, higher chain alcohols possess chemical properties that are more similar to gasoline. Unfortunately, these alcohols (except 1-butanol are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. Synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of these advanced biofuels. This review concentrates on recent developments in synthetic biology to produce higher-chain alcohols as viable renewable replacements for traditional fuel.

  15. Natural product synthesis at the interface of chemistry and biology

    Science.gov (United States)

    2014-01-01

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences. PMID:25043880

  16. The half-lives of biological activity of some pesticides in water

    OpenAIRE

    Kyaw Myint Oo,

    2001-01-01

    In the absence of analytical methods, the half-lives of biological activity of pesticides can be estimated by bioassays. To determine the half-lives of biological acivity of pesticides to fish, static bioassays were conducted in the laboratory with ten different formulations of pesticides using Labeo rohita as a bio-indicator. The half-lives of biological activity for ten different pesticides in soft water at pH 7.5 and 27░C, ranged from 4.6 days to 11.8 days. The half-life of biological acti...

  17. Isolation of Lactic Acid Bacteria with High Biological Activity from Local Fermented Dairy Products

    OpenAIRE

    B. Munkhtsetseg; M. Margad-Erdene; B. Batjargal

    2009-01-01

    The thirty-two strains of lactic acid bacteria were isolated from the Mongolian traditional fermented dairy products, among them 25 strains show antimicrobial activity against test microorganisms including Escherichia coli , Staphylococcus aureus , Enterococcus faecalis , Pseudom о nas aeruginosa . Protease sensitivity assay demonstrated that the antimicrobial substances produced by isolates А 23, Т 2 are bacterio...

  18. Soil biological activity as affected by tillage intensity

    Science.gov (United States)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  19. Biological effects induced by low amounts of nuclear fission products

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.; Shishkin, V.F.; Khudyakova, N.V.

    1991-01-01

    The review deals with the problem of biological hazard of low radiation doses for animals and human beings taking into the danger of internal and external irradiation by nuclear fission products under conditions of enhancing anthropogenic radiation contamination of biosphere. An attention is paid to the estimation of life span carcinogenesis, genetic and delayed effects. A conclusion is made on a necessity of multiaspect investigation of biological importance of low radiation doses taking into account modifying effects of other environmental factors

  20. Biological Activities and Phytochemical Profiles of Extracts from Different Parts of Bamboo (Phyllostachys pubescens

    Directory of Open Access Journals (Sweden)

    Akinobu Tanaka

    2014-06-01

    Full Text Available Besides being a useful building material, bamboo also is a potential source of bioactive substances. Although some studies have been performed to examine its use in terms of the biological activity, only certain parts of bamboo, especially the leaves or shoots, have been studied. Comprehensive and comparative studies among different parts of bamboo would contribute to a better understanding and application of this knowledge. In this study, the biological activities of ethanol and water extracts from the leaves, branches, outer culm, inner culm, knots, rhizomes and roots of Phyllostachys pubescens, the major species of bamboo in Japan, were comparatively evaluated. The phytochemical profiles of these extracts were tentatively determined by liquid chromatography-mass spectrometry (LC-MS analysis. The results showed that extracts from different parts of bamboo had different chemical compositions and different antioxidative, antibacterial and antiallergic activities, as well as on on melanin biosynthesis. Outer culm and inner culm were found to be the most important sources of active compounds. 8-C-Glucosylapigenin, luteolin derivatives and chlorogenic acid were the most probable compounds responsible for the anti-allergy activity of these bamboo extracts. Our study suggests the potential use of bamboo as a functional ingredient in cosmetics or other health-related products.

  1. Sustained climate warming drives declining marine biological productivity

    Science.gov (United States)

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois; Britten, Gregory L.; Lindsay, Keith; Long, Matthew; Doney, Scott C.; Mahowald, Natalie; Hoffman, Forrest; Randerson, James T.

    2018-03-01

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.

  2. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics

    International Nuclear Information System (INIS)

    Kandhasamy, Subramani; Ramanathan, Giriprasath; Muthukumar, Thangavelu; Thyagarajan, SitaLakshmi; Umamaheshwari, Narayanan; Santhanakrishnan, V P; Sivagnanam, Uma Tiruchirapalli; Perumal, Paramasivan Thirumalai

    2017-01-01

    The nanomaterial with the novel biologically active compounds has been actively investigated for application in cancer research. Substantial use of nanofibrous scaffold for cancer research with potentially bioactive compounds through electrospinning has not been fully explored. Here, we describe the series of fabrication of nanofibrous scaffold loaded with novel potential biologically active hydroxybenzo[a]phenazine pyrazol-5(4H)-one derivatives were designed, synthesized by a simple one-pot, two step four component condensation based on Michael type addition reaction of lawsone, benzene-1,2-diamine, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one as the substrates. The heterogeneous solid state catalyst (Fe (III) Y-Zeolite) could effectively catalyze the reaction to obtain the product with high yield and short reaction time. The synthesized compounds (5a–5p) were analyzed by NMR, FTIR and HRMS analysis. Compound 5c was confirmed by single crystal XRD studies. All the compounds were biologically evaluated for their potential inhibitory effect on anticancer (MCF-7, Hep-2) and microbial (MRSA, MTCC 201 and FRCA) activities. Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines. Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. In addition, molecular docking (PDB ID: (1T46)) studies were performed to predict the binding affinity of ligand with receptor. Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. The in vitro apoptotic potential of the PHB-PCL-BPP nanofibrous scaffold was assessed against MCF-7, Hep-2 cancerous cells and fibroblast cells at 12, 24 and 48 h respectively. The nanofibrous scaffold with BPP can induce apoptosis and also suppress the

  3. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics

    Energy Technology Data Exchange (ETDEWEB)

    Kandhasamy, Subramani [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India); Ramanathan, Giriprasath [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Muthukumar, Thangavelu [Department of Clinical and Experimental Medicine (IKE), Division of Neuro and Inflammation Sciences (NIV), Linkoping University (Sweden); Thyagarajan, SitaLakshmi [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Umamaheshwari, Narayanan [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India); Santhanakrishnan, V P [Department of Plant Biotechnology, TNAU, Coimbatore, Tamilnadu (India); Sivagnanam, Uma Tiruchirapalli, E-mail: suma67@gmail.com [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Perumal, Paramasivan Thirumalai, E-mail: ptperumal@gmail.com [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India)

    2017-05-01

    The nanomaterial with the novel biologically active compounds has been actively investigated for application in cancer research. Substantial use of nanofibrous scaffold for cancer research with potentially bioactive compounds through electrospinning has not been fully explored. Here, we describe the series of fabrication of nanofibrous scaffold loaded with novel potential biologically active hydroxybenzo[a]phenazine pyrazol-5(4H)-one derivatives were designed, synthesized by a simple one-pot, two step four component condensation based on Michael type addition reaction of lawsone, benzene-1,2-diamine, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one as the substrates. The heterogeneous solid state catalyst (Fe (III) Y-Zeolite) could effectively catalyze the reaction to obtain the product with high yield and short reaction time. The synthesized compounds (5a–5p) were analyzed by NMR, FTIR and HRMS analysis. Compound 5c was confirmed by single crystal XRD studies. All the compounds were biologically evaluated for their potential inhibitory effect on anticancer (MCF-7, Hep-2) and microbial (MRSA, MTCC 201 and FRCA) activities. Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines. Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. In addition, molecular docking (PDB ID: (1T46)) studies were performed to predict the binding affinity of ligand with receptor. Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. The in vitro apoptotic potential of the PHB-PCL-BPP nanofibrous scaffold was assessed against MCF-7, Hep-2 cancerous cells and fibroblast cells at 12, 24 and 48 h respectively. The nanofibrous scaffold with BPP can induce apoptosis and also suppress the

  4. Increasing the biological value of dietary cutlets

    OpenAIRE

    SYZDYKOVA L.S.; DIKHANBAYEVA F.T.; BAZYLHANOVA E.CH

    2015-01-01

    Relevance of work: meat products are the main source of the proteins, necessary for activity of the person. In this article is determined the biological value of the cutlets with dietary properties. The purpose of this work is development of the production technology of dietary cutlets in branches of public catering and determination of their biological value. As a result of work dietary cutlets with the increased biological value due to addition of oatmeal are received.

  5. Biological activity of selected plants with adaptogenic effect

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2016-05-01

    Full Text Available The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diffusion method against three species of Gram-negative bacteria: Escherichia coli CCM 3988, Salmonella enterica subsp. enterica CCM 3807, Yersinia enterocolitica CCM 5671 and two Gram-positive bacteria: Bacillus thuringiensis CCM 19, Stapylococcus aureus subsp. aureus CCM 2461. Results showed that plants with adaptogenic effect are rich for biologically active substances. The highest antioxidant activity by DPPH method was determined in the sample of Eleuterococcus senticosus (3.15 mg TEAC – Trolox equivalent antioxidant capacity per g of sample and by phosphomolybdenum method in the sample of Codonopsis pilosulae (188.79 mg TEAC per g of sample. In the sample of Panax ginseng was measured the highest content of total polyphenols (8.10 mg GAE – galic acid equivalent per g of sample and flavonoids (3.41 μg QE – quercetin equivalent per g of sample. All samples also showed strong antimicrobial activity with the best results in Panax ginseng and Withania somnifera in particular for species Yersinia enterocolitica CCM 5671 and Salmonella enterica subsp. enterica CCM 3807. The analyzed species of plant with high value of biological activity can be used more in the future, not only in food, but also in cosmetics and pharmaceutical industries.

  6. Effect of biologically active fraction of Nardostachys jatamansi on cerulein-induced acute pancreatitis

    Science.gov (United States)

    Bae, Gi-Sang; Kim, Min-Sun; Park, Kyoung-Chel; Koo, Bon Soon; Jo, Il-Joo; Choi, Sun Bok; Lee, Dong-Sung; Kim, Youn-Chul; Kim, Tae-Hyeon; Seo, Sang-Wan; Shin, Yong Kook; Song, Ho-Joon; Park, Sung-Joo

    2012-01-01

    AIM: To determine if the fraction of Nardostachys jatamansi (NJ) has the potential to ameliorate the severity of acute pancreatitis (AP). METHODS: Mice were administered the biologically active fraction of NJ, i.e., the 4th fraction (NJ4), intraperitoneally, and then injected with the stable cholecystokinin analogue cerulein hourly for 6 h. Six hours after the last cerulein injection, the pancreas, lung, and blood were harvested for morphological examination, measurement of cytokine expression, and examination of neutrophil infiltration. RESULTS: NJ4 administration attenuated the severity of AP and lung injury associated with AP. It also reduced cytokine production and neutrophil infiltration and resulted in the in vivo up-regulation of heme oxygenase-1 (HO-1). Furthermore, NJ4 and its biologically active fraction, NJ4-2 inhibited the cerulein-induced death of acinar cells by inducing HO-1 in isolated pancreatic acinar cells. CONCLUSION: These results suggest that NJ4 may be a candidate fraction offering protection in AP and NJ4 might ameliorate the severity of pancreatitis by inducing HO-1 expression. PMID:22783046

  7. Application of activation techniques to biological analysis

    International Nuclear Information System (INIS)

    Bowen, H.J.M.

    1981-01-01

    Applications of activation analysis in the biological sciences are reviewed for the period of 1970 to 1979. The stages and characteristics of activation analysis are described, and its advantages and disadvantages enumerated. Most applications involve activation by thermal neutrons followed by either radiochemical or instrumental determination. Relatively little use has been made of activation by fast neutrons, photons, or charged particles. In vivo analyses are included, but those based on prompt gamma or x-ray emission are not. Major applications include studies of reference materials, and the elemental analysis of plants, marine biota, animal and human tissues, diets, and excreta. Relatively little use of it has been made in biochemistry, microbiology, and entomology, but it has become important in toxicology and environmental science. The elements most often determined are Ag, As, Au, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, Hg, I, K, Mn, Mo, Na, Rb, Sb, Sc, Se, and Zn, while few or no determinations of B, Be, Bi, Ga, Gd, Ge, H, In, Ir, Li, Nd, Os, Pd, Pr, Pt, Re, Rh, Ru, Te, Tl, or Y have been made in biological materials

  8. Evolution of approaches to viral safety issues for biological products.

    Science.gov (United States)

    Lubiniecki, Anthony S

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) Approaches to viral safety issues for biological products have evolved during the past 50+ years. The first cell culture products (viral vaccines) relied largely on the use of in vitro and in vivo virus screening assays that were based upon infectivity of adventitious viral agents. The use of Cohn fractionation and pasteurization by manufacturers of plasma derivatives introduced the concepts that purification and treatment with physical and chemical agents could greatly reduce the risk of viral contamination of human albumin and immunoglobulin products. But the limitations of such approaches became clear for thermolabile products that were removed early in fractionation such as antihemophilic factors, which transmitted hepatitis viruses and HIV-1 to some product recipients. These successes and limitations were taken into account by the early developers of recombinant DNA (rDNA)-derived cell culture products and by regulatory agencies, leading to the utilization of cloning technology to reduce/eliminate contamination due to human viruses and purification technologies to physically remove and inactivate adventitious and endogenous viruses, along with cell banking and cell bank characterization for adventitious and endogenous viruses, viral screening of biological raw materials, and testing of cell culture harvests, to ensure virus safety. Later development and incorporation of nanofiltration technology in the manufacturing process provided additional assurance of viral clearance for safety of biotechnology products. These measures have proven very effective at preventing iatrogenic infection of recipients of biotechnology products; however, viral contamination of production cell cultures has

  9. Biological activity and photostability of biflorin micellar nanostructures.

    Science.gov (United States)

    Santana, Edson R B; Ferreira-Neto, João P; Yara, Ricardo; Sena, Kêsia X F R; Fontes, Adriana; Lima, Cláudia S A

    2015-05-13

    Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR) and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9%) and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS). The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures' photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  10. Biological Activity and Photostability of Biflorin Micellar Nanostructures

    Directory of Open Access Journals (Sweden)

    Edson R. B. Santana

    2015-05-01

    Full Text Available Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9% and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS. The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures’ photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  11. Biological activation of carbon filters.

    Science.gov (United States)

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  12. Liposomal packaging generates Wnt protein with in vivo biological activity.

    Directory of Open Access Journals (Sweden)

    Nathan T Morrell

    2008-08-01

    Full Text Available Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  13. Organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds

    International Nuclear Information System (INIS)

    Maltsev, O V; Beletskaya, Irina P; Zlotin, Sergei G

    2011-01-01

    Recent applications of organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds: natural products, pharmaceutical agents and plant protection agents are reviewed. The key mechanisms of stereoinduction, types of organocatalysts and reagents used in these reactions are considered. The material is classified according to the type of newly formed bonds incorporating the asymmetric carbon atom, and the information for the most numerous C–C coupling reactions is systematized according to the natures of the electrophile and the nucleophile. The bibliography includes 433 references.

  14. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].

    Science.gov (United States)

    Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L

    2016-01-01

    Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.

  15. Marine natural flavonoids: chemistry and biological activities.

    Science.gov (United States)

    Martins, Beatriz T; Correia da Silva, Marta; Pinto, Madalena; Cidade, Honorina; Kijjoa, Anake

    2018-05-04

    As more than 70% of the world's surface is covered by oceans, marine organisms offer a rich and unlimited resource of structurally diverse bioactive compounds. These organisms have developed unique properties and bioactive compounds that are, in majority of them, unparalleled by their terrestrial counterparts due to the different surrounding ecological systems. Marine flavonoids have been extensively studied in the last decades due to a growing interest concerning their promising biological/pharmacological activities. The most common classes of marine flavonoids are flavones and flavonols, which are mostly isolated from marine plants. Although most of flavonoids are hydroxylated and methoxylated, some marine flavonoids possess an unusual substitution pattern, not commonly found in terrestrial organisms, namely the presence of sulphate, chlorine, and amino groups. This review presents, for the first time in a systematic way, the structure, natural occurrence, and biological activities of marine flavonoids.

  16. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  17. Human IgE is efficiently produced in glycosylated and biologically active form in lepidopteran cells

    DEFF Research Database (Denmark)

    Bantleon, Frank; Wolf, Sara; Seismann, Henning

    2016-01-01

    the recombinant production of the highly complex IgE isotype in insect cells. Recombinant IgE (rIgE) was efficiently assembled and secreted into the supernatant in yields of >30 mg/L. Purification from serum free medium using different downstream processing methods provided large amounts of rIgE. This exhibited...... a highly specific interaction with its antigen, therapeutic anti-IgE and its high affinity receptor, the FcεRI. Lectins and glyco-proteomic analyses proved the presence of prototypic insect type N-glycans on the epsilon heavy chain. Mediator release assays demonstrated a biological activity of the r......IgE comparable to IgE derived from mammalian cells. In summary the expression in insect cells provides rIgE with variant glycosylation pattern, but retained characteristics and biological activity. Therefore our data contribute to the understanding of functional and structural aspects and potential use of the Ig...

  18. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    D'Imporzano, Giuliana; Crivelli, Fernando; Adani, Fabrizio

    2008-01-01

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O 2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O 2 concentration in the biomass free air space (FAS) was kept optimal (O 2 > 140 ml l -1 , v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O 2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O 2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R 2 = 0.991; R 2 CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  19. Circumventing furin enhances factor VIII biological activity and ameliorates bleeding phenotypes in hemophilia models

    OpenAIRE

    Siner, Joshua I.; Samelson-Jones, Benjamin J.; Crudele, Julie M.; French, Robert A.; Lee, Benjamin J.; Zhou, Shanzhen; Merricks, Elizabeth; Raymer, Robin; Nichols, Timothy C.; Camire, Rodney M.; Arruda, Valder R.

    2016-01-01

    Processing by the proprotein convertase furin is believed to be critical for the biological activity of multiple proteins involved in hemostasis, including coagulation factor VIII (FVIII). This belief prompted the retention of the furin recognition motif (amino acids 1645–1648) in the design of B-domain–deleted FVIII (FVIII-BDD) products in current clinical use and in the drug development pipeline, as well as in experimental FVIII gene therapy strategies. Here, we report that processing by fu...

  20. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  1. Aspartate and glutamate mimetic structures in biologically active compounds.

    Science.gov (United States)

    Stefanic, Peter; Dolenc, Marija Sollner

    2004-04-01

    Glutamate and aspartate are frequently recognized as key structural elements for the biological activity of natural peptides and synthetic compounds. The acidic side-chain functionality of both the amino acids provides the basis for the ionic interaction and subsequent molecular recognition by specific receptor sites that results in the regulation of physiological or pathophysiological processes in the organism. In the development of new biologically active compounds that possess the ability to modulate these processes, compounds offering the same type of interactions are being designed. Thus, using a peptidomimetic design approach, glutamate and aspartate mimetics are incorporated into the structure of final biologically active compounds. This review covers different bioisosteric replacements of carboxylic acid alone, as well as mimetics of the whole amino acid structure. Amino acid analogs presented include those with different distances between anionic moieties, and analogs with additional functional groups that result in conformational restriction or alternative interaction sites. The article also provides an overview of different cyclic structures, including various cycloalkane, bicyclic and heterocyclic analogs, that lead to conformational restriction. Higher di- and tripeptide mimetics in which carboxylic acid functionality is incorporated into larger molecules are also reviewed. In addition to the mimetic structures presented, emphasis in this article is placed on their steric and electronic properties. These mimetics constitute a useful pool of fragments in the design of new biologically active compounds, particularly in the field of RGD mimetics and excitatory amino acid agonists and antagonists.

  2. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is why active learning is such an effective instructional tool and the limits of this instructional method’s ability to influence performance. This dissertation builds a case in three steps for why active learning is an effective instructional tool. In step one, I assessed the influence of different types of active learning (clickers, group activities, and whole class discussions) on student engagement behavior in one semester of two different introductory biology courses and found that active learning positively influenced student engagement behavior significantly more than lecture. For step two, I examined over four semesters whether student engagement behavior was a predictor of performance and found participation (engagement behavior) in the online (video watching) and in-class course activities (clicker participation) that I measure were significant predictors of performance. In the third, I assessed whether certain active learning satisfied the psychological needs that lead to students’ intrinsic motivation to participate in those activities when compared over two semesters and across two different institutions of higher learning. Findings from this last step show us that student’s perceptions of autonomy, competency, and relatedness in doing various types of active learning are significantly higher than lecture and consistent across two institutions of higher learning. Lastly, I tie everything together, discuss implications of the research, and address future directions for research on biology student motivation and behavior.

  3. Biomedicines—Moving Biologic Agents into Approved Treatment Options

    Directory of Open Access Journals (Sweden)

    Kenneth Cornetta

    2013-03-01

    Full Text Available The development of biologic agents for therapeutic purposes, or biomedicines, has seen an active area of research both at the bench and in clinical trials. There is mounting evidence that biologic products can provide effective therapy for diseases that have been unresponsive to traditional pharmacologic approaches. Monoclonal antibody therapy for cancer and rheumatologic diseases has become a well accepted part of disease treatment plans. Gene therapy products have been approved in China and Europe. Bioengineering of new agents capitalizing on microRNA biology, nanoparticle technology, stem cell biology, and an increasing understanding of immunology predict a rich future for product development. [...

  4. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles

    2011-01-01

    on N2O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO2– participates as final electron acceptor compared to the oxic pathway. Among......Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...

  5. Biological activity of anthocyanins and their phenolic degradation products and metabolites in human vascular endothelial cells

    OpenAIRE

    Edwards, Michael

    2013-01-01

    Human, animal, and in vitro data indicate significant vasoprotective activity of anthocyanins. However, few studies have investigated the activity of anthocyanin degradation products and metabolites which are likely to mediate bioactivity in vivo. The present thesis therefore examined the vascular bioactivity in vitro of anthocyanins, their phenolic degradants, and the potential for interactions between dietary bioactive compounds. Seven treatment compounds (cyanidin-, peonidin-, petunidin- &...

  6. Biotransformation of Lactones with Methylcyclohexane Ring and Their Biological Activity

    Directory of Open Access Journals (Sweden)

    Katarzyna Wińska

    2016-12-01

    Full Text Available The aim of the study was to obtain biological active compounds during biotransformation. Three bicyclic halolactones with methylcyclohexane ring (2-chloro-4-methyl-9-oxabicyclo-[4.3.0]nonan-8-one, 2-bromo-4-methyl-9-oxabicyclo[4.3.0]nona- -8-one and 2-iodo-4-methyl-9-oxabicyclo[4.3.0]nonan-8-one obtained from the corresponding γ,δ-unsaturated acid were subjected to a screening biotransformation using 22 fungal strains. Two of these strains (Cunninghamella japonica AM472 and Fusarium culmorum AM10 were able to transform halolactones into 2-hydroxy-4-methyl-9-oxabicyclo[4.3.0]nonan-8-one by hydrolytic dehalogenation with good yield. The biotransformation product was structurally different from its synthetically prepared analog. All halolactones and hydroxylactones were tested for their biological activity. The chlorolactone inhibited growth of Staphylococcus aureus (max ΔOD = 0, Escherichia coli (max ΔOD = 0.3 and Candida albicans (max ΔOD = 0 strains. Bromolactone caused inhibition of growth of Staphylococcus aureus (max ΔOD = 0 and Fusarium linii (max ΔOD = 0 strains. Iodolactone limited growth of Staphylococcus aureus (max ΔOD = 0, Escherichia coli (max ΔOD = 0.25, Candida albicans (max ΔOD = 0.45 and Pseudomonas fluorescens (max ΔOD = 0.42 strains. Hydroxylactone caused inhibition of growth of Staphylococcus aureus (max ΔOD = 0.36 and Pseudomonas fluorescens (max ΔOD = 0.39 strains only. The test performed on aphids Myzus persicae (Sulz. showed that chloro- and bromolactone exhibited deterrent activity after 24 h (ID = 0.5 and 0.4, respectively, while hydroxylactone was a weak attractant (ID = −0.3.

  7. Exploring rhizosphere bacteria of Eichhornia crassipes for metal tolerance and biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Gomez, S.; Ribeiro, M.; Deshpande, S.A.; Singh, K.S.; DeSouza, L.

    Cl3, They were further screened for antibiotic sensitivity and biological activity according to Kirby-Bauer disc diffusion method The MTB under metal stress condition showed significant biological activity against clinical pathogens, fouling...

  8. Comparative study of biological activity of glutathione, sodium ...

    African Journals Online (AJOL)

    Glutathione (GSH) and sodium tungstate (Na2WO4) are important pharmacological agents. They provide protection to cells against cytotoxic agents and thus reduce their cytotoxicity. It was of interest to study the biological activity of these two pharmacological active agents. Different strains of bacteria were used and the ...

  9. Biological activity of antitumoural MGBG: the structural variable.

    Science.gov (United States)

    Marques, M P M; Gil, F P S C; Calheiros, R; Battaglia, V; Brunati, A M; Agostinelli, E; Toninello, A

    2008-05-01

    The present study aims at determining the structure-activity relationships (SAR's) ruling the biological function of MGBG (methylglyoxal bis(guanylhydrazone)), a competitive inhibitor of S-adenosyl-L-methionine decarboxylase displaying anticancer activity, involved in the biosynthesis of the naturally occurring polyamines spermidine and spermine. In order to properly understand its biochemical activity, MGBG's structural preferences at physiological conditions were ascertained, by quantum mechanical (DFT) calculations.

  10. Stereodivergent Synthesis of 1,3-Syn-Polyol Natural Product for Stereochemical-Based Structure Activity Relationship Studies

    Science.gov (United States)

    Zheng, Jiamin

    The 1,3-syn-diol functionality is very common in many natural products. An important class containing this moiety are the 1,3-syn-polyol/pyranone natural products, which have been isolated from a variety of plant sources, and possess biological activities like plant growth inhibition as well as antifeedant, antifungal, antibacterial, and antitumor properties. The feature of this class is a 6-membered lactone where the lactoe oxygen is part of a 1,3-syn-diol motif. To pursue the 1,3-syn-polyol/pyranone natural products, an iterative hydration of polyene strategy was utilized to provide the 1,3- syn-diol functionality, and asymmetric synthetic strategies were explored to form the requisite stereochemistry. The versatility of the asymmetric approach was demonstrated in the synthesis of eupatorium pyranone and also in an ongoing project aimed at the synthesis of SIA7248. As an outgrowth of our work on the total syntheses of 1,3-syn -polyol natural products inspired a stereo-divergent synthesis of 1,3-syn-polyol natural products and their analogs for stereochemical-based structure-activity relationship (SSAR) studies. To identify the key structural factors important for the anticancer activity of the 1,3-syn-polyol/pyranones, a stereo-divergent 16-member library of pyranone/polyol congeners was designed, synthesized and tested with variations in both stereochemistry and numbers of polyol repeat units. Having access to stereochemical isomers of the biologically active natural products allowed us to design experiments that help illustrate their mechanisms of action.

  11. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    Science.gov (United States)

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  12. Systems Biology of Microbial Exopolysaccharides Production.

    Science.gov (United States)

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran.

  13. Systems biology of microbial exopolysaccharides production

    Directory of Open Access Journals (Sweden)

    Ozlem eAtes

    2015-12-01

    Full Text Available Exopolysaccharides (EPS produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture and medicine. EPSs are mainly associated with high-value applications and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore a systems-based approach constitutes an important step towards understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan and dextran.

  14. Bio-templated CdSe quantum dots green synthesis in the functional protein, lysozyme, and biological activity investigation

    International Nuclear Information System (INIS)

    Wang, Qisui; Li, Song; Liu, Peng; Min, Xinmin

    2012-01-01

    Bifunctional fluorescence (CdSe Quantum Dots) – protein (Lysozyme) nanocomposites were synthesized at room temperature by a protein-directed, solution-phase, green-synthetic method. Fluorescence (FL) and absorption spectra showed that CdSe QDs were prepared successfully with Lyz. The average particle size and crystalline structure of QDs were investigated by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), respectively. With attenuated total reflection-fourier transform infrared (ATR-FTIR) spectra and thermogravimetric (TG) analysis, it was confirmed that there is interaction between QDs and amide I, amide II groups in Lyz. FL polarization was measured and FL imaging was done to monitor whether QDs could be responsible for possible changes in the conformation and activity of Lyz. Interestingly, the results showed Lyz still retain the biological activity after formation of QDs, but the secondary structure of the Lyz was changed. And the advantage of this synthesis method is producing excellent fluorescent QDs with specifically biological function. -- Highlights: ► Lysozyme-directed green synthesis of CdSe quantum dots. ► Lysozyme still retain the biological activity after formation of CdSe. ► The method is the production of fluorescent QDs with highly specific and functions.

  15. Implementation of Plasma Fractionation in Biological Medicines Production

    OpenAIRE

    Mousavi Hosseini, Kamran; Ghasemzadeh, Mehran

    2016-01-01

    Context The major motivation for the preparation of the plasma derived biological medicine was the treatment of casualties from the Second World War. Due to the high expenses for preparation of plasma derived products, achievement of self-sufficiency in human plasma biotechnological industry is an important goal for developing countries. Evidence Acquisition The complexity of the blood plasma was first revealed by the Nobel Prize laureate, Arne Tiselius and Theodor Svedberg, which resulted in...

  16. Activation Product Inverse Calculations with NDI

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Mark Girard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-27

    NDI based forward calculations of activation product concentrations can be systematically used to infer structural element concentrations from measured activation product concentrations with an iterative algorithm. The algorithm converges exactly for the basic production-depletion chain with explicit activation product production and approximately, in the least-squares sense, for the full production-depletion chain with explicit activation product production and nosub production-depletion chain. The algorithm is suitable for automation.

  17. Phytochemical Analysis and Biological Activities of Cola nitida Bark

    Directory of Open Access Journals (Sweden)

    Durand Dah-Nouvlessounon

    2015-01-01

    Full Text Available Kola nut is chewed in many West African cultures and is used ceremonially. The aim of this study is to investigate some biological effects of Cola nitida’s bark after phytochemical screening. The bark was collected, dried, and then powdered for the phytochemical screening and extractions. Ethanol and ethyl acetate extracts of C. nitida were used in this study. The antibacterial activity was tested on ten reference strains and 28 meat isolated Staphylococcus strains by disc diffusion method. The antifungal activity of three fungal strains was determined on the Potato-Dextrose Agar medium mixed with the appropriate extract. The antioxidant activity was determined by DPPH and ABTS methods. Our data revealed the presence of various potent phytochemicals. For the reference and meat isolated strains, the inhibitory diameter zone was from 17.5±0.7 mm (C. albicans to 9.5±0.7 mm (P. vulgaris. The MIC ranged from 0.312 mg/mL to 5.000 mg/mL and the MBC from 0.625 mg/mL to >20 mg/mL. The highest antifungal activity was observed with F. verticillioides and the lowest one with P. citrinum. The two extracts have an excellent reducing free radical activity. The killing effect of A. salina larvae was perceptible at 1.04 mg/mL. The purified extracts of Cola nitida’s bark can be used to hold meat products and also like phytomedicine.

  18. Parameters of biological activity in colorectal cancer

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Š.; Topolčan, O.; Holubec jr., L.; Levý, M.; Pecen, Ladislav; Svačina, Š.

    2011-01-01

    Roč. 31, č. 1 (2011), s. 373-378 ISSN 0250-7005 Institutional research plan: CEZ:AV0Z10300504 Keywords : colorectal cancer * biological activity * prognosis * tumor markers * angiogenetic factors * metalloproteinases * adhesion molecules Subject RIV: FD - Oncology ; Hematology Impact factor: 1.725, year: 2011

  19. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  20. Very-large-scale production of antibodies in plants: The biologization of manufacturing.

    Science.gov (United States)

    Buyel, J F; Twyman, R M; Fischer, R

    2017-07-01

    Gene technology has facilitated the biologization of manufacturing, i.e. the use and production of complex biological molecules and systems at an industrial scale. Monoclonal antibodies (mAbs) are currently the major class of biopharmaceutical products, but they are typically used to treat specific diseases which individually have comparably low incidences. The therapeutic potential of mAbs could also be used for more prevalent diseases, but this would require a massive increase in production capacity that could not be met by traditional fermenter systems. Here we outline the potential of plants to be used for the very-large-scale (VLS) production of biopharmaceutical proteins such as mAbs. We discuss the potential market sizes and their corresponding production capacities. We then consider available process technologies and scale-down models and how these can be used to develop VLS processes. Finally, we discuss which adaptations will likely be required for VLS production, lessons learned from existing cell culture-based processes and the food industry, and practical requirements for the implementation of a VLS process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: extensions to the general ASM models.

    Science.gov (United States)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer-Nàcher, Carles; Smets, Barth F

    2011-09-15

    Nitrous oxide (N(2)O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N(2)O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N(2)O dynamics during both nitrification and denitrification in biological N removal. Six additional processes and three additional reactants, all involved in known biochemical reactions, have been added. The validity and applicability of the model is demonstrated by comparing simulations with experimental data on N(2)O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO(2)(-) participates as final electron acceptor compared to the oxic pathway. Among the four denitrification steps, the last one (N(2)O reduction to N(2)) seems to be inhibited first when O(2) is present. Overall, N(2)O production can account for 0.1-25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we provide a modeling structure, which adequately captures N(2)O dynamics in autotrophic nitrification and heterotrophic denitrification driven biological N removal processes and which can form the basis for ongoing refinements.

  2. Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater.

    Science.gov (United States)

    Sbardella, Luca; Comas, Joaquim; Fenu, Alessio; Rodriguez-Roda, Ignasi; Weemaes, Marjoleine

    2018-04-28

    Through their release of effluents, conventional wastewater treatment plants (WWTPs) represent a major pollution point sources for pharmaceutically active compounds (PhACs) in water bodies. The combination of a biological activated carbon (BAC) filter coupled with an ultrafiltration (UF) unit was evaluated as an advanced treatment for PhACs removal at pilot scale. The BAC-UF pilot plant was monitored for one year. The biological activity of the biofilm that developed on the granular activated carbon (GAC) particles and the contribution of this biofilm to the overall removal of PhACs were evaluated. Two different phases were observed during the long-term monitoring of PhACs removal. During the first 9200 bed volumes (BV; i.e., before GAC saturation), 89, 78, 83 and 79% of beta-blockers, psychiatric drugs, antibiotics and a mix of other therapeutic groups were removed, respectively. The second phase was characterized by deterioration of the overall performances during the period between 9200 and 13,800 BV. To quantify the respective contribution of adsorption and biodegradation, a lab-scale setup was operated for four months and highlighted the essential role played by GAC in biofiltration units. Physical adsorption was indeed the main removal mechanism. Nevertheless, a significant contribution due to biological activity was detected for some PhACs. The biofilm contributed to the removal of 22, 25, 30, 32 and 35% of ciprofloxacin, bezafibrate, ofloxacin, azithromycin and sulfamethoxazole, respectively. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Biological activity of selected plants with adaptogenic effect

    OpenAIRE

    Eva Ivanišová; Miroslava Kačániová; Jana Petrová; Radka Staňková; Lucia Godočíková; Tomáš Krajčovič; Štefan Dráb

    2016-01-01

    The aim of this study was to determine biological activity of plants with adaptogenic effect: Panax ginseng Mayer., Withania somnifera L., Eleuterococcus senticosus Rupr. et Maxim., Astragallus membranaceus Fisch. and Codonopsis pilosulae Franch. The antioxidant activity was detected by DPPH and phosphomolybdenum method, total polyphenol content with Folin – Ciocalteu reagent, flavonoids content by aluminium chloride method. The detection of antimicrobial activity was carried out by disc diff...

  4. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    Science.gov (United States)

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  5. PCMO L01-Setting Specifications for Biological Investigational Medicinal Products.

    Science.gov (United States)

    Krause, Stephan O

    2015-01-01

    This paper provides overall guidance and best practices for the setting of specifications for clinical biological drug substances and drug products within the framework of ICH guidelines on pharmaceutical development [Q8(R2) and Q11], quality risk management (Q9), and quality systems (Q10). A review is provided of the current regulatory expectations for the specification setting process as part of a control strategy during product development, pointing to existing challenges for the investigational new drug/investigational medicinal product dossier (IND/IMPD) sponsor. A case study illustrates how the investigational medicinal product specification revision process can be managed within a flexible quality system, and how specifications can be set and justified for early and late development stages. This paper provides an overview for the setting of product specifications for investigational medicinal products used in clinical trials. A case study illustrates how product specifications of investigational medicinal products can be justified and managed within a modern product quality system. © PDA, Inc. 2015.

  6. Radiation biology for the non-biologist

    International Nuclear Information System (INIS)

    Myers, D.K.

    1978-06-01

    This colloquium introduces some of the general concepts used in cell biology and in the study of the effects of ionizing radiation on living organisms. The present research activities in radiation biology in the Biology Branch at the Chalk River Nuclear Laboratories cover a broad range of interests in the entire chain of events by which the initial radiation-induced changes in the living cell are translated into significant biological effects, including the eventual production of cancers and hereditary defects. The main theme of these research activities is an understanding of the mechanisms by which radiation damage to DNA (the carrier of hereditary information in all living organisms) can be actively repaired by the living cell. Advances in our understanding of these processes have broad implications for other areas of biology but also bear directly on the assessment of the biological hazards of ionizing radiation. The colloquium concludes with a brief discussion of the hazards of low-level radiation. (author)

  7. Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity.

    Science.gov (United States)

    Turner, David P

    2015-05-15

    Low income, poor diet, obesity, and a lack of exercise are interrelated lifestyle factors that can profoundly alter our biologic make up to increase cancer risk, growth, and development. We recently reported a potential mechanistic link between carbohydrate-derived metabolites and cancer, which may provide a biologic consequence of lifestyle that can directly affect tumor biology. Advanced glycation end-products (AGE) are reactive metabolites produced as a by-product of sugar metabolism. Failure to remove these highly reactive metabolites can lead to protein damage, aberrant cell signaling, increased stress responses, and decreased genetic fidelity. Critically, AGE accumulation is also directly affected by our lifestyle choices and shows a race-specific, tumor-dependent pattern of accumulation in cancer patients. This review will discuss the contribution of AGEs to the cancer phenotype, with a particular emphasis on their biologic links with the socioeconomic and environmental risk factors that drive cancer disparity. Given the potential benefits of lifestyle changes and the potential biologic role of AGEs in promoting cancer, opportunities exist for collaborations affecting basic, translational, epidemiologic, and cancer prevention initiatives. ©2015 American Association for Cancer Research.

  8. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities

    Directory of Open Access Journals (Sweden)

    Mireille Fouillaud

    2016-03-01

    Full Text Available Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi′s productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.

  9. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities.

    Science.gov (United States)

    Fouillaud, Mireille; Venkatachalam, Mekala; Girard-Valenciennes, Emmanuelle; Caro, Yanis; Dufossé, Laurent

    2016-03-25

    Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.

  10. Production of high specific activity silicon-32

    International Nuclear Information System (INIS)

    Phillips, D.R.; Brzezinski, M.A.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development Project (LDRD) at Los Alamos National Laboratory (LANL). There were two primary objectives for the work performed under this project. The first was to take advantage of capabilities and facilities at Los Alamos to produce the radionuclide 32 Si in unusually high specific activity. The second was to combine the radioanalytical expertise at Los Alamos with the expertise at the University of California to develop methods for the application of 32 Si in biological oceanographic research related to global climate modeling. The first objective was met by developing targetry for proton spallation production of 32 Si in KCl targets and chemistry for its recovery in very high specific activity. The second objective was met by developing a validated field-useable, radioanalytical technique, based upon gas-flow proportional counting, to measure the dynamics of silicon uptake by naturally occurring diatoms

  11. A consilience model to describe N2O production during biological N removal

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Smets, Barth F.

    2016-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, is produced during biological nitrogen conversion in wastewater treatment operations. Complex mechanisms underlie N2O production by autotrophic and heterotrophic organisms, which continue to be unravelled. Mathematical models that describe nitric oxide...... (NO) and N2O dynamics have been proposed. Here, a first comprehensive model that considers all relevant NO and N2O production and consumption mechanisms is proposed. The model describes autotrophic NO production by ammonia oxidizing bacteria associated with ammonia oxidation and with nitrite reduction......, followed by NO reduction to N2O. It also considers NO and N2O as intermediates in heterotrophic denitrification in a 4-step model. Three biological NO and N2O production pathways are accounted for, improving the capabilities of existing models while not increasing their complexity. Abiotic contributions...

  12. Synthesis and Antiplatelet Activity of Antithrombotic Thiourea Compounds: Biological and Structure-Activity Relationship Studies

    Directory of Open Access Journals (Sweden)

    André Luiz Lourenço

    2015-04-01

    Full Text Available The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations.

  13. Application of Asian pumpkin (Cucurbita ficifolia) serine proteinase for production of biologically active peptides from casein.

    Science.gov (United States)

    Dąbrowska, Anna; Szołtysik, Marek; Babij, Konrad; Pokora, Marta; Zambrowicz, Aleksandra; Chrzanowska, Józefa

    2013-01-01

    The main objective of this study was to determine potential application of a serine proteinase derived from Asian pumpkin for obtaining biologically active peptides from casein. The course of casein hydrolysis by three doses of the enzyme (50, 150, 300 U/mg of protein) was monitored for 24 hours by the determinations of: hydrolysis degree DH (%), free amino group content (μmole Gly/g), RP HPLC peptide profiles and by polyacrylamide gel electrophoresis. In all hydrolyzates analyzed antioxidant activities were determined using three tests: the ability to reduce iron ions in FRAP test, the ability to scavenge free radicals in DPPH test, and Fe(2+) chelating activity. The antimicrobial activity of obtained peptide fractions was determined as the ability to inhibit the growth of Escherichia coli, Bacillus cereus and Pseudomonas fluorescens in a diffusion plate test. The deepest degradation, expressed as the DH [%] and the free amino group content (67% and 7528 µmole Gly/mg, respectively), was noted in samples hydrolyzed with 300 U/ml of enzyme for 24 hours, while in other samples the determined values were about three and two times lower. The results were in agreement with the peptide profiles obtained by RP HPLC. The highest antioxidative activities determined in all tests were seen for the casein hydrolysate obtained with 300 U/mg protein of serine proteinase after 24 h of reaction (2.15 µM Trolox/mg, 96.15 µg Fe(3+)/mg, 814.97 µg Fe(2+)/mg). Antimicrobial activity was presented in three preparations. In other samples no antimicrobial activity was detected.

  14. Biologic activity of porphyromonas endodontalis complex lipids.

    Science.gov (United States)

    Mirucki, Christopher S; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E; Clark, Robert B; Nichols, Frank C

    2014-09-01

    Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis and evaluate their capacity to promote proinflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Constituent lipids of both organisms were fractionated by high-performance liquid chromatography and were structurally characterized using electrospray mass spectrometry or electrospray-mass spectrometry/mass spectrometry. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. P. endodontalis total lipids were shown to promote tumor necrosis factor alpha secretion from RAW 264.7 cells, and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells, but osteoblast differentiation in culture was inhibited and appeared to be dependent on Toll-like receptor 2 expression. These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Natural products from Cuscuta reflexa Roxb. with antiproliferation activities in HCT116 colorectal cell lines.

    Science.gov (United States)

    Riaz, Muhammad; Bilal, Aishah; Ali, Muhammad Shaiq; Fatima, Itrat; Faisal, Amir; Sherkheli, Muhammad Azhar; Asghar, Adnan

    2017-03-01

    Parasitic Cuscuta reflexa Roxb. possesses many medicinal properties and is a rich source of a variety of biologically relevant natural products. Natural products are the prime source of leads, drugs, and drug templates, and many of the anticancer and antiviral drugs are either based on natural product or derived from them. Cancer is a devastating disease and one of the leading causes of death worldwide despite improvements in patient survival during the past 50 years; new and improved treatments for cancer are therefore actively sought. Colorectal cancer is the fourth most prevalent cancer worldwide and is responsible for nearly 9% of all cancer deaths. Our search for anticancer natural products from C. reflexa has yielded four natural products: Scoparone (1), p-coumaric acid (2), stigmasta-3,5-diene (3) and 1-O-p-hydroxycinnamoylglucose (4) and among them 1-O-p-hydroxycinnamoyldlucose (4) showed promising antiproliferative activities in HCT116 colorectal cell lines, whereas compounds 1-3 showed moderate activities.

  16. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    Science.gov (United States)

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  17. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  18. RESEARCHES CONCERNING THE ECONOMIC EFFICIENCY ACHIEVED SUCCESSIVE TO THE APPLICATION OF BIOLOGICALLY-ACTIVE PRODUCTS IN SMOOTH BROME CROP

    Directory of Open Access Journals (Sweden)

    ELENA PEł

    2008-05-01

    Full Text Available Within any branch of material production, the supervision of the economic effects caused by the applied technologies is an essential requirement. Not only related to the productive activity, but also related to scientific research, designing and other fields of activity, the final goal is represented by the achievement of immediate or far off economic effects. The introduction and generalization into production of the newest technologies of forage production must rely upon calculations of economic efficiency, too. The objective of these calculations is to offer to any producer the possibility to choose among the optimal technologic variants, with great productions per surface unit, of high quality and low costs. The calculations of economic efficiency were carried out during the three years of experimentation. The economic efficiency obtained after the application of biostimulants in smooth brome during the first year of production is expressed through the achievement of a profit per surface unit of 75.85 – 127.00 €/ha. Successive to the calculations of economic efficiency, during the second year of production, the profit per surface unit recorded values between 79.10 – 153.10 €/ha depending upon the applied biostimulant, and during the third year of production the profit obtained per surface unit was 211.05 – 270.70 €/ha.

  19. Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity

    Science.gov (United States)

    Andrade, Joana M; Faustino, Célia; Garcia, Catarina; Ladeiras, Diogo; Reis, Catarina P; Rijo, Patrícia

    2018-01-01

    The worldwide interest in the use of medicinal plants has been growing, and its beneficial effects being rediscovered for the development of new drugs. Based on their vast ethnopharmacological applications, which inspired current research in drug discovery, natural products can provide new and important leads against various pharmacological targets. This work pioneers an extensive and an updated literature review on the current state of research on Rosmarinus officinalis L., elucidating which compounds and biological activities are the most relevant. Therefore, a search was made in the databases PubMed, ScienceDirect and Web of Science with the terms ‘rosemary’, ‘Rosmarinus officinalis’, ‘rosmarinic acid’ ‘carnosol’ and ‘carnosic acid’, which included 286 articles published since 1990 about rosemary's pharmacological activities and their isolated compounds. According to these references, there has been an increasing interest in the therapeutic properties of this plant, regarding carnosic acid, carnosol, rosmarinic acid and the essential oil. The present manuscript provides an updated review upon the most reported activities on R. officinalis and its active constituents. PMID:29682318

  20. Biologically Active Compounds of Plant Foods: Prospective Impact ...

    African Journals Online (AJOL)

    On the other hand, other biologically active compounds impair health by ... of essential elements through different mechanisms and giving astringent taste, odor, ... The health benefits of selected substances from Ethiopian food crops need to ...

  1. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine.

    Science.gov (United States)

    Egorova, Ksenia S; Gordeev, Evgeniy G; Ananikov, Valentine P

    2017-05-24

    Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.

  2. Interactive influences of bioactive trace metals on biological production in oceanic waters

    International Nuclear Information System (INIS)

    Bruland, K.W.; Donat, J.R.; Hutchins, D.A.

    1991-01-01

    The authors present an overview of the oceanic chemistries of the bioactive trace metals, Mn, Fe, Co, Ni, Cu, and Zn; the authors combine field data with results from laboratory phytoplankton culture-trace metal studies and speculate on the potential influences of these trace metals on oceanic plankton production and species composition. Most field studies have focused on the effects of single metals. However, they propose that synergistic and antagonistic interactions between multiple trace metals could be very important in the oceans. Trace metal antagonisms that may prove particularly important are those between Cu and the potential biolimiting metals Fe, Mn, and Zn. These antagonistic interactions could have the greatest influence on biological productivity in areas of the open ocean isolated from terrestrial inputs, such as the remote high nutrient regions of the Pacific and Antarctic Oceans. The emerging picture of trace metal-biota interactions in these oceanic areas is one in which biology strongly influences distribution and chemical speciation of all these bioactive trace metals. It also seems likely that many of these bioactive trace metals and their speciation may influence levels of primary productivity, species composition, and trophic structure. Future investigations should give more complete consideration to the interactive effects of biologically important trace metals

  3. Silychristin: Skeletal Alterations and Biological Activities

    Czech Academy of Sciences Publication Activity Database

    Biedermann, David; Buchta, M.; Holečková, Veronika; Sedlák, David; Valentová, Kateřina; Cvačka, Josef; Bednárová, Lucie; Křenková, Alena; Kuzma, Marek; Škuta, Ctibor; Peikerová, Žaneta; Bartůněk, Petr; Křen, Vladimír

    2016-01-01

    Roč. 79, č. 12 (2016), s. 3086-3092 ISSN 0163-3864 R&D Projects: GA ČR(CZ) GA15-03037S; GA MZd(CZ) NV16-27317A; GA MŠk LO1220; GA MŠk LM2015063; GA MŠk(CZ) LD15081 Institutional support: RVO:61388971 ; RVO:68378050 ; RVO:61388963 Keywords : Silychristin * skeletal alterations * biological activities Subject RIV: CC - Organic Chemistry Impact factor: 3.281, year: 2016

  4. Biological activity of soils strongly polluted with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Krol, M; Maliszewska, W; Siuta, J

    1972-01-01

    Studies were carried out on soils strongly polluted with sulfur and acidified (to pH 1.4). The soils were subjected to an intensive liming. In field and pot experiments, the authors determined: the total quantity of bacteria, actinomycetes, fungi, azotobacter, nitrifiers, proteolytic activity of microorganisms, activity of ammonifiers and the number of sulfur-oxidizing and sulfate-reducing bacteria. It was found that intensive liming of sulfur-affected soils restored their biological activity. 8 references, 5 figures, 1 table.

  5. Radiometallating antibodies and biologically active peptides

    International Nuclear Information System (INIS)

    Mercer-Smith, J.A.; Roberts, J.C.; Lewis, D.; Newmyer, S.L.; Schulte, L.D.; Burns, T.P.; Mixon, P.L.; Jeffery, A.L.; Schreyer, S.A.; Cole, D.A.; Figard, S.D.; Lennon, V.A.; Hayashi, M.; Lavallee, D.K.

    1990-01-01

    We have developed methods to radiolabel large molecules, using porphyrins as bifunctional chelating agents for radiometals. The porphyrins are substituted with an N-benzyl group to activate them for radiometallation under mild reaction conditions. Porphyrins that have on functional group for covalent attachment to other molecules cannot cause crosslinking. We have examined the labeling chemistry for antibodies, and we have also developed methods to label smaller biologically active molecules, such as autoantigenic peptides. The autoantigenic peptides, fragments of the acetylcholine receptor, are under investigation for myasthenia gravis research. The methods of covalent attachment of these bifunctional chelating agents to large molecules and the radiometallation chemistry will be discussed

  6. Continuous downstream processing for high value biological products: A Review.

    Science.gov (United States)

    Zydney, Andrew L

    2016-03-01

    There is growing interest in the possibility of developing truly continuous processes for the large-scale production of high value biological products. Continuous processing has the potential to provide significant reductions in cost and facility size while improving product quality and facilitating the design of flexible multi-product manufacturing facilities. This paper reviews the current state-of-the-art in separations technology suitable for continuous downstream bioprocessing, focusing on unit operations that would be most appropriate for the production of secreted proteins like monoclonal antibodies. This includes cell separation/recycle from the perfusion bioreactor, initial product recovery (capture), product purification (polishing), and formulation. Of particular importance are the available options, and alternatives, for continuous chromatographic separations. Although there are still significant challenges in developing integrated continuous bioprocesses, recent technological advances have provided process developers with a number of attractive options for development of truly continuous bioprocessing operations. © 2015 Wiley Periodicals, Inc.

  7. Biologically active substances from Zanthoxylum capense(thumb.) Harv.

    CSIR Research Space (South Africa)

    Steyn, PS

    1998-08-01

    Full Text Available A chemical investigation into the composition of Zanthoxylum capense yielded several biologically active compounds, including pellitorine. A convenient HPLC method was developed to determine the presence of pellitorine in crude extracts from plants...

  8. Biological waste by-production costs in forest management and possibilities for their reduction

    Directory of Open Access Journals (Sweden)

    Jiří Kadlec

    2004-01-01

    Full Text Available Biological wastes in forestry were observed from view of their by-production in silvicultural and logging operations. There were identified points where biological waste was produced in this paper, waste costs ratio for silvicultural and logging operations and were made suggestions for reduction of these costs. Biological waste costs give 34.4% of total costs of silvicultural operations and 30% of total costs of logging operations. Natural regeneration and minor forest produce operations are opportunities for reduction of these costs.

  9. Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC.

    Science.gov (United States)

    Lightfoot, J Timothy; DE Geus, Eco J C; Booth, Frank W; Bray, Molly S; DEN Hoed, Marcel; Kaprio, Jaakko; Kelly, Scott A; Pomp, Daniel; Saul, Michael C; Thomis, Martine A; Garland, Theodore; Bouchard, Claude

    2018-04-01

    Physical activity unquestionably maintains and improves health; however, physical activity levels globally are low and not rising despite all the resources devoted to this goal. Attention in both the research literature and the public policy domain has focused on social-behavioral factors; however, a growing body of literature suggests that biological determinants play a significant role in regulating physical activity levels. For instance, physical activity level, measured in various manners, has a genetic component in both humans and nonhuman animal models. This consensus article, developed as a result of an American College of Sports Medicine-sponsored round table, provides a brief review of the theoretical concepts and existing literature that supports a significant role of genetic and other biological factors in the regulation of physical activity. Future research on physical activity regulation should incorporate genetics and other biological determinants of physical activity instead of a sole reliance on social and other environmental determinants.

  10. On the mechanism of biological activation by tritium.

    Science.gov (United States)

    Rozhko, T V; Badun, G A; Razzhivina, I A; Guseynov, O A; Guseynova, V E; Kudryasheva, N S

    2016-06-01

    The mechanism of biological activation by beta-emitting radionuclide tritium was studied. Luminous marine bacteria were used as a bioassay to monitor the biological effect of tritium with luminescence intensity as the physiological parameter tested. Two different types of tritium sources were used: HTO molecules distributed regularly in the surrounding aqueous medium, and a solid source with tritium atoms fixed on its surface (tritium-labeled films, 0.11, 0.28, 0.91, and 2.36 MBq/cm(2)). When using the tritium-labeled films, tritium penetration into the cells was prevented. The both types of tritium sources revealed similar changes in the bacterial luminescence kinetics: a delay period followed by bioluminescence activation. No monotonic dependences of bioluminescence activation efficiency on specific radioactivities of the films were found. A 15-day exposure to tritiated water (100 MBq/L) did not reveal mutations in bacterial DNA. The results obtained give preference to a "non-genomic" mechanism of bioluminescence activation by tritium. An activation of the intracellular bioluminescence process develops without penetration of tritium atoms into the cells and can be caused by intensification of trans-membrane cellular processes stimulated by ionization and radiolysis of aqueous media. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Biological activities of Curcuma longa L.

    Directory of Open Access Journals (Sweden)

    Araújo CAC

    2001-01-01

    Full Text Available There are several data in the literature indicating a great variety of pharmacological activities of Curcuma longa L. (Zingiberaceae, which exhibit anti-inflammatory, anti-human immunodeficiency virus, anti-bacteria, antioxidant effects and nematocidal activities. Curcumin is a major component in Curcuma longa L., being responsible for its biological actions. Other extracts of this plant has been showing potency too. In vitro, curcumin exhibits anti-parasitic, antispasmodic, anti-inflammatory and gastrointestinal effects; and also inhibits carcinogenesis and cancer growth. In vivo, there are experiments showing the anti-parasitic, anti-inflammatory potency of curcumin and extracts of C. longa L. by parenteral and oral application in animal models. In this present work we make an overview of the pharmacological activities of C. longa L., showing its importance.

  12. Novel synthesis on poly (vinyl alcohol): characterization, complexation a biological activity

    International Nuclear Information System (INIS)

    El-Sawy, N.M.; Elassar, A.Z.; Al-Fulaij, O.

    2002-01-01

    Poly(vinyl alcohol), PVA, readily condensed with phenyl hydrazine and malononitrile in basic medium to give the hydrazone and pyran derivatives, respectively. PVA reacted with chloroacetonitrile, biuet and thiophene carbonyl chloride to give modified polymeric materials. While addition of PVA to acrylonitrile and phenyl isothiocyanate gives the ether and thiocarbamate ester derivatives, respectively. Hydroxylamine hydrochloride reacted with the modified, carbonitrile containing, polymer to give the amidoxime derivative. The amidoximated products of PVA and carbamate ester of polymeric material were complexed with CUCL2 solution. The complex materials were confirmed by using UV and ESDS measurements. The morphology of PVA and complex with CUII was observed by SEM. Biological activity of some of the prepared compounds was investigated toward bacteria and fungi

  13. Correlation between the dielectric properties and biological activities of human ex vivo hepatic tissue

    International Nuclear Information System (INIS)

    Wang, Hang; You, Fusheng; Fu, Feng; Dong, Xiuzhen; Shi, Xuetao; He, Yong; Yang, Min; Yan, Qingguo

    2015-01-01

    Dielectric properties are vital biophysical features of biological tissues, and biological activity is an index to ascertain the active state of tissues. This study investigated the potential correlation between the dielectric properties and biological activities of human hepatic tissue with prolonged ex vivo time through correlation and regression analyses. The dielectric properties of 26 cases of normal human hepatic tissue at 10 Hz to 100 MHz were measured from 15 min after isolation to 24 h at 37 °C with 90% humidity. Cell morphologies, including nucleus area (NA) and alteration rate of intercellular area (ICAR), were analyzed as indicators of biological activities. Conductivity, complex resistivity, and NA exhibited opposing changes 1 h after isolation. Relative permittivity and ex vivo time were not closely correlated (p > 0.05). The dielectric properties measured at low frequencies (i.e. <1 MHz) were more sensitive than those measured at high frequencies in reflecting the biological activity of ex vivo tissue. Highly significant correlations were found between conductivity, resistivity and the ex vivo time (p < 0.05) as well as conductivity and the cell morphology (p < 0.05). The findings indicated that establishing the correlation between the dielectric properties and biological activities of human hepatic tissue is of great significance for promoting the role of dielectric properties in biological science, particularly in human biology. (paper)

  14. The effect of biologically active feed additives of humilid substances on the antioxidant system in liver mitochondria of gerbils

    Directory of Open Access Journals (Sweden)

    O. O. Dyomshina

    2017-04-01

    Full Text Available Mitochondria are organelles that are most sensitive to the action of stressors on any cell of the entire organism and exposure to chemicals which can cause its dysfunction and cell death in general. Especially sensitive to adverse conditions are liver mitochondria, where the processes of biotransformation of endogenous and exogenous metabolites are formed, not only in the liver, but also in other organs and tissues. Mitochondrial dysfunction can cause instant hepatic cytolysis and steatosis. Therefore, early detection of mitochondrial toxicity is important during preclinical studies of new pharmacological agents, as this will help avoid remote negative effects. The biologically active feed additive Humilid, a complex of humic acids known for their antidiarrheal, analgesic, immune-stimulating, and antimicrobial properties; shows a corrective effect on the activity of the lysosomal cathepsin; enhances the positive effect of hematopoiesis on hemoglobin and its quality indicators consisting of red blood cells; and activates the synthesis and accumulation of fibronectin expression that takes part in the formation of immunological protection of animals. The objective of our experiment was to determine the effect of complex biologically active feed additives based on humic substances on the biochemical indicators of the liver mitochondrial antioxidant system of Mongolian gerbils (Meriones unguiculatus Milne-Edwards, 1867. The experiment was conducted on mature (6 months Mongolian gerbils. The data obtained showing the influence of the biologically active feed additives Humilid, alone or in combination with ascorbate and Eco-impulse Animal, on the antioxidant defense system of liver mitochondria of gerbils are presented in this article. The proven antioxidant effect of humic substances in the mitochondrial fraction of the liver which inhibits the accumulation of oxidized products in the cells is shown, confirmed by the decrease in the number of TBA-active

  15. Antioxidant, antimicrobial activity and mineral composition of low-temperature fractioning products of Malus domestica Borkh (common Antonovka

    Directory of Open Access Journals (Sweden)

    Elena Kuznetsova

    2017-01-01

    Full Text Available The low-temperature fractionation of fruit Malus domestica Borkh (Common Antonovka has been performed. We obtained by fractionation the biologically active products that are the dehydrated concentrate of juice and the powder of pomace fibers. Use of low temperature minimizes biological value losses during processing. These fractions of fruit Malus domestica Borkh (Common Antonovka are experimentally studied. It is found that the fractions have high antioxidant activity and include bioflavonoids and organic and phenol carboxylic acids. Analysis of chromatograms showed availability of the identical compounds in the products of low-temperature fractionation. Sodium and potassium are part of the cells of biological systems as highly mobile ionic forms. Therefore, these elements prevail in the concentrated juice. Iron, manganese, copper, and zinc are biogenic trace elements or components of enzyme systems and are evenly distributed as in plant cell walls as well in protoplasm. It follows from the results of the study of the mineral composition that the products of the low-temperature fractioning can be used for a functional food as a result of its high content of magnesium and iron. The low-temperature fractionation of fruit Malus domestica Borkh (Common Antonovka has antimicrobial activity against the standard strains of spoilage: Bacillus subtilis VKM-B-501, Micrococcus luteus VKM-As-2230, Aspergillus flavus VKM-F-1024, Penicillium expansion VKM-F-275, Mucor mucedo VKM- F-1257, Rhizopus stolonifer VKM- F-2005. Experimental data show that the products of low-temperature fractioning of Malus domestica Borkh (Common Antonovka inhibit microorganism's growth. The detected composition of Malus domestica Borkh (Common Antonovka fractions allows using these products as natural additives in food technology to maintain and increase period of storage and also for preventive nutrition.

  16. Protein stability and enzyme activity at extreme biological temperatures

    International Nuclear Information System (INIS)

    Feller, Georges

    2010-01-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 0 C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  17. Adamantoylated biologically active small peptides and glycopeptides structurally related to the bacterial peptidoglycan.

    Science.gov (United States)

    Frkanec, Ruža; Vranešić, Branka; Tomić, Srdjanka

    2013-01-01

    A large number of novel synthetic compounds representing smaller parts of original peptidoglycan molecules have been synthesized and found to possess versatile biological activity, particularly immunomodulating properties. A series of compounds containing the adamantyl residues coupled to peptides and glycopeptides characteristic for bacterial peptidoglycan was described. The new adamantylpeptides and adamantylglycopeptides were prepared starting from N-protected racemic adamantylglycine and dipeptide L-Ala-D-isoglutamine. The adamantyl glycopeptides were obtained by coupling the adamantyltripeptides with alpha-D-mannose moiety through spacer molecule of fixed chirality. Since the starting material was D,L-(adamantyl-glycine) the condensation products with the dipeptide were mixtures of diastereoisomers. The obtained diastereoisomers were separated, characterized, and tested for immunostimulating activity. An HPLC method for purity testing was developed and adapted for the particular compounds.

  18. Biological activities of xanthatin from Xanthium strumarium leaves.

    Science.gov (United States)

    Nibret, Endalkachew; Youns, Mahamoud; Krauth-Siegel, R Luise; Wink, Michael

    2011-12-01

    The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC(50) value of 2.63 µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE(2) synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100 µg/mL and 97 µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC(50) values of 26.04 µg/mL and 44.70 µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6 h of treatment with 100 µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE(2) synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Total Synthesis of Natural Products of Microbial Origins(Recent Topics of the Agricultunal Biological Science in Tohoku University)

    OpenAIRE

    Hiromasa, KIYOTA; Shigefumi, KUWAHARA; Laboratory of Applied Bioorganic Chemistry, Division of Bioscience & Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University; Laboratory of Applied Bioorganic Chemistry, Division of Bioscience & Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University

    2008-01-01

    Microorganisms are an important rich source of secondary metabolites, which could be useful leads to valuable agrochemicals and/or medicinal drugs. This mini-review describes our recent achievements on the total synthesis of biologically active natural products of microbial origins: pteridic acids A and B (strong plant growth promoters), epoxyquinols A and B (anti-angiogenic compounds), communiols A-F, G, and H, and macrotetrolide α (antibiotics), pyricuol and tabtoxinine-β-lactam (phytotoxin...

  20. Biological activities of some Fluoroquinolones-metal complexes

    African Journals Online (AJOL)

    McRoy

    Background: Metal ions play a vital role in the design of more biologically active drugs. Aim: The paper reviewed the .... 2H2O by direct reaction of copper(II) sulphate pentahydrate with ciprofloxacin in distilled water. ... membered ring and the chloride ion completes the seven coordination around the Ca2+ion.[37-39].

  1. The influence of marine microbial activities on aerosol production: A laboratory mesocosm study

    Science.gov (United States)

    Alpert, Peter A.; Kilthau, Wendy P.; Bothe, Dylan W.; Radway, JoAnn C.; Aller, Josephine Y.; Knopf, Daniel A.

    2015-09-01

    The oceans cover most of the Earth's surface, contain nearly half the total global primary biomass productivity, and are a major source of atmospheric aerosol particles. Here we experimentally investigate links between biological activity in seawater and sea spray aerosol (SSA) flux, a relationship of potential significance for organic aerosol loading and cloud formation over the oceans and thus for climate globally. Bubbles were generated in laboratory mesocosm experiments either by recirculating impinging water jets or glass frits. Experiments were conducted with Atlantic Ocean seawater collected off the eastern end of Long Island, NY, and with artificial seawater containing cultures of bacteria and phytoplankton Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Changes in SSA size distributions occurred during all phases of bacterial and phytoplankton growth, as characterized by cell concentrations, dissolved organic carbon, total particulate carbon, and transparent exopolymer particles (gel-forming polysaccharides representing a major component of biogenic exudate material). Over a 2 week growth period, SSA particle concentrations increased by a factor of less than 2 when only bacteria were present and by a factor of about 3 when bacteria and phytoplankton were present. Production of jet-generated SSA particles of diameter less than 200 nm increased with time, while production of all particle diameters increased with time when frits were used. The implications of a marine biological activity dependent SSA flux are discussed.

  2. Aquatic biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  3. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Loubette, N.; Junker, M.

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  4. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Nicolas Loubette; Michel Junker

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water bio-photolysis, photo-fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are explained. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  5. National experience in radiosterelization or radiodescontamination of biological products

    International Nuclear Information System (INIS)

    Padron, E.; Romay, Z.; Otero, I.; Chavez, A.; Prieto, E.; Sainz, D.; Rodriguez, R.; Diaz, D.

    1997-01-01

    The ionizing radiations are especially important when other chemical and physical methods can't be used, or they don't give the result required, for which the employment of advanced technologies for the sterilization is found in ascent at world level. To such effect, the International Atomic Energy Agency has, sponsored a coordinated program for the radiosterilization of medical and biological products in Latin America, in which Cuba participates. (author) [es

  6. Mucoralean fungi for sustainable production of bioethanol and biologically active molecules.

    Science.gov (United States)

    Satari, Behzad; Karimi, Keikhosro

    2018-02-01

    Mucoralean fungi are suitable microorganisms for the sustainable production of food, fodder, and fuels from inexpensive natural resources. Ethanol-producing Mucorales are particularly advantageous for second-generation ethanol production in comparison to the conventional ethanolic yeasts and bacteria. They are able to ferment a wide range of sugars to a range of valuable products, while they are typically resistance against the inhibitors available in different substrates, including untreated lignocellulosic hydrolysates. In addition to a high ethanol yield, the fungi produce several commercially valuable by-products, including chitosan, microbial oil (mainly polyunsaturated fatty acids), and protein. Moreover, the fungal extracts can replace the expensive nutrients required in fermentation. Besides, their morphologies can be altered from filamentous to yeast like and are adjustable based on the process requirement. The focus of this review is on applying Mucorales in producing ethanol and the biomass by-products thereof.

  7. 21 CFR 610.68 - Exceptions or alternatives to labeling requirements for biological products held by the Strategic...

    Science.gov (United States)

    2010-04-01

    ... requirements for biological products held by the Strategic National Stockpile. 610.68 Section 610.68 Food and... requirements for biological products held by the Strategic National Stockpile. (a) The appropriate FDA Center... Strategic National Stockpile. (b)(1)(i) A Strategic National Stockpile official or any entity that...

  8. Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey.

    Science.gov (United States)

    Athira, Syamala; Mann, Bimlesh; Saini, Prerna; Sharma, Rajan; Kumar, Rajesh; Singh, Ashish Kumar

    2015-11-01

    Cheese whey is a rich by-product in nutritional terms, possessing components with high biological value, excellent functional properties, and an inert flavour profile. In the present study, mozzarella cheese whey was ultra-filtrated to remove lactose and mineral. The retentate was hydrolysed with food-grade enzyme alcalase and the hydrolysis conditions (pH, temperature and time) were optimised for maximum antioxidant activity using response surface methodology. Whey protein hydrolysed for 8 h at pH 9 and 55 °C showed a maximum antioxidant activity of 1.18 ± 0.015 µmol Trolox mg(-1) protein. The antioxidant peptides were further enriched by ultra-filtration through a 3 kDa membrane. Seven peptides - β-Lg f(123-131), β-Lg f(122-131), β-Lg f(124-131), β-Lg f(123-134), β-Lg f(122-131), β-Lg f(96-100) and β-Lg f(94-100) - were identified by LC-MS/MS in the 3 kDa permeate of the hydrolysate. The incorporation of whey protein hydrolysate (WPH) in lemon whey drink (5-10 g L(-1)) increased the antioxidant activity from 76% to 90% as compared to control. Hydrolysis of ultra-filtrated retentate of whey can be an energy- and cost-effective method for the direct production of WPH from whey compared to the industrial production of WPH from whey protein concentrate. This study suggests that WPH with good nutritional and biological properties can be effectively used in health-promoting foods as a biofunctional ingredient. © 2014 Society of Chemical Industry.

  9. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof...... biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae. We describe......-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic...

  10. Objectives of research activities in Biology Branch, Chalk River Nuclear Laboratories, 1976

    International Nuclear Information System (INIS)

    1977-03-01

    The primary responsibility assigned to the Biology Branch within the framework of CRNL has been an active engagement in basic research related to the assessment of radiation hazards, particularly those to be expected after exposure to relatively low doses of radiation delivered at low dose-rates. The present group is characterized by a broad interest in the entire chain of events by which the initial radiation-induced changes in the living cell are translated into biological effects, with a special focus of attention on the mechanisms by which the initial damage can be largely repaired and by which the risks to man are modified under different circumstances. The basic concepts in radiation biology and risk estimates are reviewed in the light of recent literature on these topics. The current and proposed research activities of the Biology Branch are described. General and specific recommendations for future activities are given. (author)

  11. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems

    Directory of Open Access Journals (Sweden)

    Javad Sharifi-Rad

    2017-01-01

    Full Text Available Essential oils are complex mixtures of hydrocarbons and their oxygenated derivatives arising from two different isoprenoid pathways. Essential oils are produced by glandular trichomes and other secretory structures, specialized secretory tissues mainly diffused onto the surface of plant organs, particularly flowers and leaves, thus exerting a pivotal ecological role in plant. In addition, essential oils have been used, since ancient times, in many different traditional healing systems all over the world, because of their biological activities. Many preclinical studies have documented antimicrobial, antioxidant, anti-inflammatory and anticancer activities of essential oils in a number of cell and animal models, also elucidating their mechanism of action and pharmacological targets, though the paucity of in human studies limits the potential of essential oils as effective and safe phytotherapeutic agents. More well-designed clinical trials are needed in order to ascertain the real efficacy and safety of these plant products.

  12. New Synthetic Methods for Hypericum Natural Products

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Insik [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Organic chemistry has served as a solid foundation for interdisciplinary research areas, such as molecular biology and medicinal chemistry. An understanding of the biological activities and structural elucidations of natural products can lead to the development of clinically valuable therapeutic options. The advancements of modern synthetic methodologies allow for more elaborate and concise natural product syntheses. The theme of this study centers on the synthesis of natural products with particularly challenging structures and interesting biological activities. The synthetic expertise developed here will be applicable to analog syntheses and to other research problems.

  13. Potential of chicken by-products as sources of useful biological resources

    International Nuclear Information System (INIS)

    Lasekan, Adeseye; Abu Bakar, Fatimah; Hashim, Dzulkifly

    2013-01-01

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications

  14. Potential of chicken by-products as sources of useful biological resources

    Energy Technology Data Exchange (ETDEWEB)

    Lasekan, Adeseye [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abu Bakar, Fatimah, E-mail: fatim@putra.upm.edu.my [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hashim, Dzulkifly [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2013-03-15

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.

  15. Identification and biological activity of potential probiotic bacterium isolated from the stomach mucus of breast-fed lamb

    Directory of Open Access Journals (Sweden)

    H. Kiňová Sepov��

    2011-09-01

    Full Text Available The lactic acid bacterium E isolated from the stomach mucus of breast-fed lamb was identified by sequencing of 16S rDNA fragment and species-specific PCR as Lactobacillus reuteri. Its potential antimicrobial activity and ability to modulate immune system in vitro and in vivo was determined. The growth inhibition of potential pathogens decreased from Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica ser. Minnesota to Escherichia coli. The lowest inhibition activity was observed in the case of Candida albicans. The ability of L. reuteri E to modulate biological activities of human and mouse mononuclear cells was estimated in vitro and in vivo, respectively. The production of IL-1β by monocytes in vitro was significantly induced by L. reuteri E (relative activity 2.47. The ability to modulate biological activities of mononuclear cells by living L. reuteri E cells in vitro in comparison to disintegrated L. reuteri E cells in vivo differed. For example lysozyme activity in vitro was inhibited while in vivo was stimulated (relative activities 0.30 and 1.83, respectively. The peroxidase activity in vitro was stimulated while in vivo was inhibited (relative activities 1.53 and 0.17, respectively. Obtained results indicate that L. reuteri E is potential candidate to be used in probiotic preparations for animals and/or human.

  16. Biological Production of 3-Hydroxypropionic Acid: An Update on the Current Status

    Directory of Open Access Journals (Sweden)

    Leonidas Matsakas

    2018-02-01

    Full Text Available The production of high added-value chemicals from renewable resources is a necessity in our attempts to switch to a more sustainable society. 3-Hydroxypropionic acid (3HP is a promising molecule that can be used for the production of an important array of high added-value chemicals, such as 1,3-propanediol, acrylic acid, acrylamide, and bioplastics. Biological production of 3HP has been studied extensively, mainly from glycerol and glucose, which are both renewable resources. To enable conversion of these carbon sources to 3HP, extensive work has been performed to identify appropriate biochemical pathways and the enzymes that are involved in them. Novel enzymes have also been identified and expressed in host microorganisms to improve the production yields of 3HP. Various process configurations have also been proposed, resulting in improved conversion yields. The intense research efforts have resulted in the production of as much as 83.8 g/L 3HP from renewable carbon resources, and a system whereby 3-hydroxypropionitrile was converted to 3HP through whole-cell catalysis which resulted in 184.7 g/L 3HP. Although there are still challenges and difficulties that need to be addressed, the research results from the past four years have been an important step towards biological production of 3HP at the industrial level.

  17. Physio-chemical evaluation and biological activity of Ajuga ...

    African Journals Online (AJOL)

    Physio-chemical evaluation and biological activity of Ajuga bracteosa wall and Viola odoroto Linn. Anwar Ali Shad, M. Zeeshan, Hina Fazal, Hamid Ullah Shah, Shabir Ahmed, Hasem Abeer, E. F. Abd_Allah, Riaz Ullah, Hamid Afridi, Akash tariq, Muhammad Adnan Asma ...

  18. Students’ learning activities while studying biological process diagrams

    NARCIS (Netherlands)

    Kragten, M.; Admiraal, W.; Rijlaarsdam, G.

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students’ learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each

  19. Occurrence, biological activity and synthesis of drimane sesquiterpenoids

    NARCIS (Netherlands)

    Jansen, B.J.M.; Groot, de Æ.

    2004-01-01

    In this review the names, structures and occurrence of all new drimanes and rearranged drimanes, which have been published between January 1990 and January 2003 have been collected. Subjects that have been treated are biosynthesis, analysis, biological activities, with special attention to cytotoxic

  20. Biological fermentative hydrogen production from olive pulp at 35 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Koutrouli, E.C.; Gavala, H.N.; Skiadas, I.V.; Lyberatos, G. [Patras Univ., Patras (Greece). Dept. of Chemical Engineering

    2004-07-01

    In response to energy security and environmental concerns, there is renewed interest in the use of hydrogen gas as a renewable energy source. However, many processes for generating hydrogen are extremely energy intensive and costly. This study focused on biological production of hydrogen from wastewater or other biomass. Photosynthetic and fermentation processes were outlined, but the main focus of this paper was on continuous anaerobic fermentation of low cost substrates such as olive pulp at 35 degrees C. This process is linked to the acidogenic stage of anaerobic digestion where carbohydrates are the preferred carbon source. Volatile fatty acids and alcohols are produced simultaneously with the hydrogen gas. An added advantage is that the effluent from the fermentation process can be further used by methanogenesis due to its rich organic acids content. Batch experiments with olive pulp resulted in 2.5 mmole of hydrogen per gram of total carbohydrates. It was noted that more research is required to maximize hydrogen production in a continuous process. It was suggested that hydrogen production could be optimized through hydrolysis of the non-soluble carbohydrates. This could be accomplished through physicochemical or biological pretreatments. 7 refs., 3 tabs., 1 fig.

  1. Evaluation of biological attributes of soil type latossol under agroecological production

    Directory of Open Access Journals (Sweden)

    Marisol Rivero Herrada

    2016-10-01

    Full Text Available Biological soil attributes have shown to be good indicators of soil changes as a result of the management function. The aim of this study was to evaluate the effect of using cover crops, as well as planting and tillage systems on the biological attributes of a yellowish red latosol soil. Soil samples were taken at 0 to 0.10 m depth, seven days before the bean harvest. Microbial biomass carbon and nitrogen, basal soil respiration, metabolic ratio and total enzyme activity were evaluated in this study. The best agroecological management was achieved under the association of the ground cover with millet and in direct seeding because they showed higher soil microbial biomass carbon and nitrogen content and lower metabolic quotient, being pork bean the best plant coverage. All biological soil attributes were sensitive to the tillage system, which showed the best results of the total enzyme activity and of the soil metabolic quotient which resulted to be the most efficient.

  2. Effects of biology teachers' professional knowledge and cognitive activation on students' achievement

    Science.gov (United States)

    Förtsch, Christian; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.

    2016-11-01

    This study examined the effects of teachers' biology-specific dimensions of professional knowledge - pedagogical content knowledge (PCK) and content knowledge (CK) - and cognitively activating biology instruction, as a feature of instructional quality, on students' learning. The sample comprised 39 German secondary school teachers whose lessons on the topic neurobiology were videotaped twice. Teachers' instruction was coded with regard to cognitive activation using a rating manual. Multilevel path analysis results showed a positive significant effect of cognitive activation on students' learning and an indirect effect of teachers' PCK on students' learning mediated through cognitive activation. These findings highlight the importance of PCK in preservice biology teachers' education. Items of the rating manual may be used to provide exemplars of concrete teaching situations during university seminars for preservice teacher education or professional development initiatives for in-service teachers.

  3. Determining and Accounting of Fair Value in Agricultural Activities

    Directory of Open Access Journals (Sweden)

    Ahmet GÖKGÖZ

    2012-12-01

    Full Text Available Biological assets and agricultural products bring about the subject of agricultural production. Having biological transformation of biological assets and agricultural products via the cases such as growth, reproduction, deterioration, decay; makes the valuation of agricultural activities important. The Fair Value Approach is adopted in TAS 41, the Agricultural Activities Standard regulating agricultural activities, about the valuation of biological assets and agricultural products. In the study; determining process of biological assets and agricultural products’ fair value adopted by TAS 41 is explained. Afterwards; recording of increase and decrease, occured due to the valuation by the framework of TAS 41, through the accounts offered to the Uniform Chart of Accounts.

  4. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    Science.gov (United States)

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  5. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  6. Biological Activity Alterations of Human Amniotic Membrane Pre and Post Irradiation Tissue Banking.

    Science.gov (United States)

    Nemr, Waleed; Bashandy, A S; Araby, Eman; Khamiss, O

    Innate immunity of Human Amniotic Membrane (HAM) and its highly active secretome that rich with various types of growth factors and anti-inflammatory substances proposed it as a promising material for many medical studies and applications. This study evaluate the biological activity of cultivated HAM pre and post tissue banking process in which freeze-dried HAM was sterilized by 25 KGray (kGy) dose of γ radiation. The HAM's antimicrobial activity, viability, growth of isolated human amniotic epithelial cells (HAECs), hematopoietic stimulation of co-cultivated murine bone marrow cells (mammalian model), scaffold efficiency for fish brain building up (non-mammalian model) and self re-epithelialization after trypsin denuding treatment were examined as supposed biological activity features. Native HAM revealed viability indications and was active to kill all tested microorganisms; 6 bacterial species (3 Gram-positive and 3 Gram-negative) and Candida albicans as a pathogenic fungus. Also, HAM activity promoted colony formation of murine hematopoietic cells, Tilapia nilotica brain fragment building-up and self re-epithelialization after trypsin treatment. In contrary, radiation-based tissue banking of HAM caused HAM cellular death and consequently lacked almost all of examined biological activity features. Viable HAM was featured with biological activity than fixed HAM prepared by irradiation tissue banking.

  7. Detection of biologically active diterpenoic acids by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Talian, Ivan; Orinak, Andrej; Efremov, Evtim V.

    2010-01-01

    Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy is not su......Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy...... few enhanced Raman lines. SERS spectra with 514-nm excitation with Ag colloids were also relatively weak. The best SERS spectrawere obtained with 785-nm excitation on a novel nanostructured substrate, 'black silicon' coated with a 400-nm gold layer. The spectra showed clear differences...

  8. Minimizing activated carbons production cost

    International Nuclear Information System (INIS)

    Stavropoulos, G.G.; Zabaniotou, A.A.

    2009-01-01

    A detailed economic evaluation of activated carbons production process from various raw materials is undertaken using the conventional economic indices (ROI, POT, and NPV). The fundamental factors that affect production cost were taken into account. It is concluded that for an attractive investment in activated carbons production one should select the raw material with the highest product yield, adopt a chemical activation production scheme and should base product price on product-surface area (or more generally on product adsorption capacity for the adsorbate in consideration). A raw material that well meets the above-mentioned criteria is petroleum coke but others are also promising (charcoals, and carbon black). Production cost then can be optimized by determining its minimum value of cost that results from the intercept between the curves of plant capacity and raw material cost - if any. Taking into account the complexity of such a techno-economic analysis, a useful suggestion could be to start the evaluations from a plant capacity corresponding to the break-even point, i. e. the capacity at which income equals production cost. (author)

  9. Protease activated receptors (PARS) mediation in gyroxin biological activity

    International Nuclear Information System (INIS)

    Silva, Jose Alberto Alves da

    2009-01-01

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH 2 , respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  10. Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa)

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Maheswaran, P.A.; Jyothibabu, R.; Sunil, V.; Revichandran, C.; Balasubramanian, T.; Gopalakrishnan, T.C.; Nair, K.K.C.

    COMMUNICATIONS CURRENT SCIENCE, VOL. 82, NO. 12, 25 JUNE 2002 *For correspondence. (e - mail: madhu@niokochi.org) Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa) N. V. Madhu*, P. A. Maheswaran, R... in the world?s oceans typically have duration of only a few days, but the physical and biological effects due to this perturbation can last up to several weeks 1 ? 4 . The integrated effect from these storm events has the potential to account for a...

  11. SYNTHESIS, REACTIVITY AND BIOLOGICAL ACTIVITY OF QUINOXALIN-2-ONE DERIVATIVES

    OpenAIRE

    El Mokhtar Essassi; R. Bouhfid; Y. Kandri Rodi; S. Ferfra; H. Benzeid; Y. Ramli

    2010-01-01

    Quinoxalines have a great interest in various fields and particularly in chemistry, biology and pharmacology. It enabled the researchers to develop many methods for their preparations and to seek new fields of application. In this review, we’ll expose different methods of synthesis of the quinoxalin-2-one, its reactivity and finally we’ll discuss the various biological activities of its derivatives.

  12. Plants from The Genus Daphne: A Review of its Traditional Uses, Phytochemistry, Biological and Pharmacological Activity

    Directory of Open Access Journals (Sweden)

    Sovrlić Miroslav M.

    2017-03-01

    Full Text Available Plants have an important role in maintaining people’s health and improving the quality of human life. They are an important component of people’s diet, but they are also used in other spheres of human life as a therapeutic resources, ingredients of cosmetic products, paints and others. The Daphne genus belongs to family Thymeleaceae which includes 44 families with approximately 500 herbal species. The plant species of the genus Daphne are used in the traditional medicine in China and tropical part of Africa for the treatment of various conditions. Previous studies showed significant biological potential of these species as a source of pharmacologically active compounds. This indicates that this genus possess a broad spectrum of biological activity including antimicrobial, antioxidant, analgesic, anti-inflammatory, cytotoxic, anti-ulcerogenic, abortive, hypocholesterolemic and hemostatic effects. Additionally, Daphne plants are the source of valuable bioactive phytochemicals such as coumarins, flavonoids, lignans, steroids and different classes of terpenes. Different parts of the Daphne plants contain specific bioactive metabolites and can represent a source of new, natural, pharmacologically active compounds, which may potentially be used in pharmaceutical, cosmetic and food industries.

  13. Biomedicines?Moving Biologic Agents into Approved Treatment Options

    OpenAIRE

    Cornetta, Kenneth

    2013-01-01

    The development of biologic agents for therapeutic purposes, or biomedicines, has seen an active area of research both at the bench and in clinical trials. There is mounting evidence that biologic products can provide effective therapy for diseases that have been unresponsive to traditional pharmacologic approaches. Monoclonal antibody therapy for cancer and rheumatologic diseases has become a well accepted part of disease treatment plans. Gene therapy products have been approved in China and...

  14. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    Directory of Open Access Journals (Sweden)

    Nocerino N

    2014-03-01

    Full Text Available Nunzia Nocerino,1 Andrea Fulgione,1 Marco Iannaccone,1 Laura Tomasetta,1 Flora Ianniello,1 Francesca Martora,1 Marco Lelli,2 Norberto Roveri,2 Federico Capuano,3 Rosanna Capparelli1 1Department of Agriculture Special Biotechnology Center Federico II, CeBIOTEC Biotechnology, University of Naples Federico II, Naples, 2Department of Chemistry, G Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, 3Department of Food Inspection IZS ME, Naples, Italy Abstract: The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA. We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. Keywords: lactoferrin, hydroxyapatite nanocrystals, biomimetism, biological activity, drug delivery

  15. Activation product analysis in a mixed sample containing both fission and neutron activation products

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Samuel S.; Clark, Sue B.; Eggemeyer, Tere A.; Finn, Erin C.; Hines, C. Corey; King, Mathew D.; Metz, Lori A.; Morley, Shannon M.; Snow, Mathew S.; Wall, Donald E.; Seiner, Brienne N.

    2017-11-02

    Activation analysis of gold (Au) is used to estimate neutron fluence resulting from a criticality event; however, such analyses are complicated by simultaneous production of other gamma-emitting fission products. Confidence in neutron fluence estimates can be increased by quantifying additional activation products such as platinum (Pt), tantalum (Ta), and tungsten (W). This work describes a radiochemical separation procedure for the determination of these activation products. Anion exchange chromatography is used to separate anionic forms of these metals in a nitric acid matrix; thiourea is used to isolate the Au and Pt fraction, followed by removal of the Ta fraction using hydrogen peroxide. W, which is not retained on the first anion exchange column, is transposed to an HCl/HF matrix to enhance retention on a second anion exchange column and finally eluted using HNO3/HF. Chemical separations result in a reduction in the minimum detectable activity by a factor of 287, 207, 141, and 471 for 182Ta, 187W, 197Pt, and 198Au respectively, with greater than 90% recovery for all elements. These results represent the highest recoveries and lowest minimum detectable activities for 182Ta, 187W, 197Pt, and 198Au from mixed fission-activation product samples to date, enabling considerable refinement in the measurement uncertainties for neutron fluences in highly complex sample matrices.

  16. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    Science.gov (United States)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  17. Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches.

    Science.gov (United States)

    Mašković, Pavle Z; Veličković, Vesna; Đurović, Saša; Zeković, Zoran; Radojković, Marija; Cvetanović, Aleksandra; Švarc-Gajić, Jaroslava; Mitić, Milan; Vujić, Jelena

    2018-01-01

    Lavatera thuringiaca L. is herbaceous perennial plant from Malvaceae family, which is known for its biological activity and richness in polyphenolic compounds. Despite this, the information regarding the biological activity and chemical profile is still insufficient. Aim of this study was to investigate biological potential and chemical profile of Lavatera thuringiaca L., as well as influence of applied extraction technique on them. Two conventional and four non-conventional extraction techniques were applied in order to obtain extracts rich in bioactive compound. Extracts were further tested for total phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins contents using spectrophotometric assays. Polyphenolic profile was established using HPLC-DAD analysis. Biological activity was investigated regarding antioxidant, cytotoxic and antibacterial activities. Four antioxidant assays were applied as well as three different cell lines for cytotoxic and fifteen bacterial strain for antibacterial activity. Results showed that subcritical water extraction (SCW) dominated over the other extraction techniques, where SCW extract exhibited the highest biological activity. Study indicates that plant Lavatera thuringiaca L. may be used as a potential source of biologically compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Evaluation of the biological activity of sunflower hull extracts

    Energy Technology Data Exchange (ETDEWEB)

    Taha, F. S.; Wagdy, S. M.; Hassanein, M. M. M.; Hamed, S. F.

    2012-11-01

    This work was planned with the aim of adding value to sunflower seed hulls, a waste product of the oil industry by preparing a sunflower hull phenolic extract rich in chlorogenic acid (CGA). In order to fulfill this goal, the optimization for the extraction of a phenolic extract from the hulls was investigated. The parameters studied were: type of solvent, solvent to water ratio and hull to solvent ratio. In addition, the solvent mixtures were also studied. The resulting phenolic extracts were evaluated for their biological activities. This included phenolic content determination, evaluation of the antioxidant and antimicrobial activities. Chlorogenic acid was determined in two chosen hull extracts using the UV spectrophotometric method and HPLC analysis. The anti carcinogenic activity of the two chosen extracts was tested on seven different cell line carcinomas. The results revealed that all the phenolic extracts of sunflower hull studied contain between 190-312.5 mg phenolics/ 100 g hulls. The highest phenolic extraction was achieved with 80% methanol (1:30, hull to solvent, w/v ratio) and methanol to ethanol to water (7:7:6 v/v/v) mixture with values of 312.5 and 306.5 mg phenolics/100 g hulls, respectively. The free radical scavenging activity and antioxidant activity of all the samples ranged from 33.6-72.6%. The highest antioxidant activity and free radical scavenging activity were achieved by the same extracts that possessed the highest phenolic content, namely methanol to ethanol to water extract and 80% methanol with values 71.8 and 72.6%, 68.2 and 70.9% respectively, compared to 77.9 and 76.9% respectively for TBHQ. All the phenolic extracts possessed antimicrobial activity but to different levels against different pathogenic bacteria. The two chosen extracts also possessed anti carcinogenic activity, which differed among varying cell line carcinomas. The HPLC analysis indicated that chlorogenic acid was the main phenolic acid in the extract. Thus it can

  19. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. SYNTHESIS, REACTIVITY AND BIOLOGICAL ACTIVITY OF QUINOXALIN-2-ONE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    El Mokhtar Essassi

    2010-04-01

    Full Text Available Quinoxalines have a great interest in various fields and particularly in chemistry, biology and pharmacology. It enabled the researchers to develop many methods for their preparations and to seek new fields of application. In this review, we’ll expose different methods of synthesis of the quinoxalin-2-one, its reactivity and finally we’ll discuss the various biological activities of its derivatives.

  1. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2

    Directory of Open Access Journals (Sweden)

    Mi Huaiyu

    2015-06-01

    Full Text Available The Systems Biological Graphical Notation (SBGN is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD, Entity Relationship (ER and Activity Flow (AF, allow for the representation of different aspects of biological and biochemical systems at different levels of detail.

  2. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Mingji; Borodina, Irina

    2015-02-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae We describe computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  3. Biological relevance and synthesis of C-substituted morpholine derivatives

    NARCIS (Netherlands)

    Wijtmans, R.; Vink, M.K.S.; Schoemaker, H.E.; Delft, F.L. van; Blaauw, R.H.; Rutjes, F.P.J.T.

    2004-01-01

    C-Functionalized morpholines are found in a variety of natural products and biologically active compounds, but have also for other reasons been applied in organic synthesis. This review deals with the biological relevance of C-substituted morpholines, their synthesis and important applications in

  4. Phytotoxicity of vulpia residues: III. Biological activity of identified allelochemicals from Vulpia myuros.

    Science.gov (United States)

    An, M; Pratley, J E; Haig, T

    2001-02-01

    Twenty compounds identified in vulpia (Vulpia myuros) residues as allelochemicals were individually and collectively tested for biological activity. Each exhibited characteristic allelochemical behavior toward the test plant, i.e., inhibition at high concentrations and stimulation or no effect at low concentrations, but individual activities varied. Allelopathins present in large quantities, such as syringic, vanillic, and succinic acids, possessed low activity, while those present in small quantities, such as catechol and hydrocinnamic acid, possessed strong inhibitory activity. The concept of a phytotoxic strength index was developed for quantifying the biological properties of each individual allelopathin in a concise, comprehensive, and meaningful format. The individual contribution of each allelopathin, assessed by comparing the phytotoxic strength index to the overall toxicity of vulpia residues, was variable according to structure and was influenced by its relative proportion in the residue. The majority of compounds possessed low or medium biological activity and contributed most of the vulpia phytotoxicity, while compounds with high biological activity were in the minority and only present at low concentration. Artificial mixtures of these pure allelochemicals also produced phytotoxicity. There were additive/synergistic effects evident in the properties of these mixtures. One such mixture, formulated from allelochemicals found in the same proportions as occur in vulpia extract, produced stronger activity than another formulated from the same set of compounds but in equal proportions. These results suggest that the exploration of the relative composition of a cluster of allelopathins may be more important than simply focusing on the identification of one or two compounds with strong biological activity and that synergism is fundamental to the understanding of allelopathy.

  5. Biological activities of Rumex dentatus L: Evaluation of methanol ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... of different the extracts of R. dentatus effectively inhibited tumor ... Plants contain thousands of biologically active mole- .... The vials were kept open over night with .... between prokaryotic and eukaryotic cells (Stachel and.

  6. [Evaluation of the total biological activity and allergenic composition of allergenic extracts].

    Science.gov (United States)

    Lombardero, M; González, R; Duffort, O; Juan, F; Ayuso, R; Ventas, P; Cortés, C; Carreira, J

    1986-01-01

    In the present study, a complete procedure is presented in order to standardize allergenic extracts, the meaning of which is the measurement of the total allergenic activity and the determination of the allergenic composition. The measurement of the biological activity comprises 2 steps: Preparation of Reference Extracts and determination of their "in vivo" activity. Evaluation of the total allergenic activity of extracts for clinical use. Reference extracts were prepared from the main allergens and their "in vivo" biological activity was determined by a quantitative skin prick test in a sample of at least 30 allergic patients. By definition, the protein concentration of Reference Extract that produces, in the allergic population, a geometric mean wheal of 75 mm.2 has an activity of 100 biological units (BUs). The determination of the biological activity of a problem extract is made by RAST inhibition. The sample is compared with the corresponding Reference Extract by this technique and, from this comparison, it is possible to quantify the activity of the problem extract in biologic units (BUs) with clinical significance. Likewise, different techniques have been used to determine the allergenic composition of extracts. These techniques comprise 2 steps: Separation of the components of the extract. Identification of the components that bind specific human IgE. The separation of the components of the extract has been carried out by isoelectric focusing (IEF) and electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE). In order to identify the allergenic components, an immunoblotting technique has been employed. The separated components in the IEF gel or SDS-PAGE gel are transferred to a nitrocellulose sheet and later on, this membrane is overlaid with a serum pool from allergic patients and a mouse monoclonal anti-human IgE, labelled with 125I. Finally, the autoradiography of the nitrocellulose membrane is obtained. In this way it is possible to compare

  7. Euphorbia neriifolia L.: Review on botany, ethnomedicinal uses, phytochemistry and biological activities.

    Science.gov (United States)

    Mali, Prashant Y; Panchal, Shital S

    2017-05-01

    The present review is intended to provide information on botany, ethnomedicinal uses, phytochemistry and biological activities of various parts of Euphorbia neriifolia (E. neriifolia). E. neriifolia has several ethnomedicinal uses. The latex of E. neriifolia is used as laxative, purgative, rubefacient, carminative and expectorant as well as in treatment of whooping cough, gonorrhoea, leprosy, asthma, dyspepsia, jaundice, enlargement of the spleen, tumours, stone in the bladder, abdominal troubles and leucoderma. Leaves are brittle, heating, carminative, and good for improving the appetite and treatment of tumours, pains, inflammations, abdominal swellings and bronchial infections. Roots are used as symptomatic treatment of snake bite, scorpion sting and antispasmodic. Various plant parts or whole E. neriifolia extract and its isolates have been reported scientifically using various in-vivo and in-vitro experimental methods for anaesthetic, analgesic, anti-anxiety, anti-convulsant, anti-psychotic, anti-arthritis, anti-carcinogenic, antidiabetic, anti-diarrhoeal, anti-inflammatory, anti-thrombotic, antimicrobial, antioxidant, antiulcer, cytotoxic, death-receptor expression enhancing, dermal irritation, diuretic, haemolytic, immunomodulatory, radioprotective, scorpion venom and wound healing properties. It is reported to have chemical constituents like, neriifolin-S, neriifolin, neriifoliene, euphol, neriifolione, cycloartenol, nerifoliol, lectin, euphonerins A-G, 3-O-acetyl-8-O-tigloylingol, taraxerol, antiquorin, etc. Identified chemical constituents are still required to be explored for their advanced isolation techniques and biological activities. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  8. Ozonisation of model compounds as a pretreatment step for the biological wastewater treatment

    International Nuclear Information System (INIS)

    Degen, U.

    1979-11-01

    Biological degradability and toxicity of organic substances are two basic criteria determining their behaviour in natural environment and during the biological treatment of waste waters. In this work oxidation products of model compounds (p-toluenesulfonic acid, benzenesulfonic acid and aniline) generated by ozonation were tested in a two step laboratory plant with activated sludge. The organic oxidation products and the initial compounds were the sole source of carbon for the microbes of the adapted activated sludge. The progress of elimination of the compounds was studied by measuring DOC, COD, UV-spectra of the initial compounds and sulfate. Initial concentrations of the model compounds were 2-4 mmole/1 with 25-75ion of sulfonic acids. As oxidation products of p-toluenesulfonic acid the following compounds were identified and quantitatively measured: methylglyoxal, pyruvic acid, oxalic acid, acetic acid, formic acid and sulfate. With all the various solutions with different concentrations of initial compounds and oxidation products the biological activity in the two step laboratory plant could maintain. p-Toluenesulfonic acid and the oxidation products are biologically degraded. The degradation of p-toluenesulfonic acid is measured by following the increasing of the sulfate concentration after biological treatment. This shows that the elimination of p-toluenesulfonic acid is not an adsorption but a mineralization step. At high p-toluenesulfonic acid concentration and low concentration of oxidation products p-toluenesulfonic acid is eliminated with a high efficiency (4.3 mole/d m 3 = 0.34 kg p-toluenesulfonic acid/d m 3 ). However at high concentration of oxidation products p-toluenesulfonic acid is less degraded. The oxidation products are always degraded with an elimination efficiency of 70%. A high load of biologically degradable oxidation products diminished the elimination efficiency of p-toluenesulfonic acid. (orig.) [de

  9. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  10. The antioxidant activity and nitric oxide production of extracts obtained from the leaves of Chenopodium quinoa Willd.

    Science.gov (United States)

    Chen, Hsiao-Ling; Lan, Xiang-Zhen; Wu, Yan-Yi; Ou, Yu-Wen; Chen, Tsung Chi; Wu, Wen-Tzu

    2017-12-01

    Most reports have indicated the antioxidant capacity of quinoa seeds. However, the leaves of Quinoa (Chenopodium quinoa Willd.) are usually worthless and little known about their biological activities. In this study, the antioxidant and immunomodulatory potential of the quinoa leaf extracts were explored. The crude leaf extracts of quinoa were extracted using water, 50% ethanol or 95% ethanol as solvent, denoted WQL, 50% EQL and 95% EQL, respectively. The antioxidant activities of quinoa leaf extracts were assessed by the ability of 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging and iron chelating. The total phenolic content was determined. Inhibition of nitric oxide (NO) production in the lipopolysaccharide (LPS)-induced murine macrophage RAW 264.7 cells was examined to gauge the anti-inflammatory activity. The 95% EQL showed a higher level of total phenolic content (569.5 mg GAE/g extract) and better DPPH scavenging activity. The WQL exhibited a better iron chelating capacity (28.9% at 10 mg/ml). The iron chelating activity of the 95% EQL increased in a concentration-dependent manner, which ranged from 10.9% up to 53.9%. The 50% EQL and 95% EQL significantly inhibited NO production in the LPSstimulated RAW 264.7 cells. We demonstrate that the extracts of quinoa leaves possess the biological activities of antioxidant and anti-inflammatory. Our finding suggests that the leaf extract of quinoa has potential to be utilized for natural health products. © Author(s) 2017. This article is published with open access by China Medical University.

  11. Synthetic Approaches and Biological Activities of 4-Hydroxycoumarin Derivatives

    Directory of Open Access Journals (Sweden)

    Oee-Sook Park

    2009-11-01

    Full Text Available The main purpose of this review is to summarize recent chemical syntheses and structural modifications of 4-hydroxycoumarin and its derivatives, of interest due to their characteristic conjugated molecular architecture and biological activities.

  12. Spectroscopic study of biologically active glasses

    Science.gov (United States)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  13. Recent Advances in Momordica charantia: Functional Components and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shuo Jia

    2017-11-01

    Full Text Available Momordica charantia L. (M. charantia, a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.

  14. Recent Advances in Momordica charantia: Functional Components and Biological Activities.

    Science.gov (United States)

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-11-28

    Momordica charantia L. ( M. charantia ), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia .

  15. Designing and testing a classroom curriculum to teach preschoolers about the biology of physical activity: The respiration system as an underlying biological causal mechanism

    Science.gov (United States)

    Ewing, Tracy S.

    The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.

  16. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Matsuhashi, S.

    2000-01-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48 V and 62 Zn. (author)

  17. Suitable activated stable nuclide tracer technique and its applications in biology and medicine

    International Nuclear Information System (INIS)

    Zhang Weicheng

    1989-01-01

    Stable isotopes as tracers in biology and medicine have been more extensively used. Mass spectrometry has been a classic technique in the analysis of stable isotopes because it is very sensitive and precise. Activation analysis has recently been introduced as an analytical tool. Its fast speed and simplicity is a great advantage for handling large batches of samples in isotopic tracer experiments. The combination of enriched stable isotope tracer studies and activation analysis techniques has become an ideal and reliable technique, especially in the fields of biology and medicine. This paper presents a survey of the fundamental principle, the character and the applications in biology and medicine for the suitable activated stable isotope tracer techniques

  18. High biological productivity in the central Arabian Sea during the summer monsoon driven by Ekman pumping and lateral advection

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Madhupratap, M.; DileepKumar, M.; Muraleedharan, P.M.; DeSouza, S.N.; Gauns, M.; Sarma, V.V.S.S.

    Open oceans are generally oligotrophic and support less biological production. Results from the central Arabian Sea show that it may be an exception to this. We provide the observational evidence of fairly high biological production (up to 1700 mg C...

  19. Biological activity of phenolic compounds present in buckwheat plants

    Czech Academy of Sciences Publication Activity Database

    Kalinová, J.; Tříska, Jan; Vrchotová, Naděžda

    2005-01-01

    Roč. 16, č. 1 (2005), s. 123-129 ISSN 0971-4693 Institutional research plan: CEZ:AV0Z60870520 Keywords : biological activity, extract, Fagopyrum esculenthum Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.686, year: 2005

  20. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  1. Determination of biologically active phenols and polyphenols in various objects by chromatographic techniques

    International Nuclear Information System (INIS)

    Kochetova, M V; Semenistaya, E N; Larionov, Oleg G; Revina, A A

    2007-01-01

    Chromatographic techniques for determination of biologically active phenols and polyphenols are considered. Various methods for sample preparation and detection are compared. The advantages of high performance liquid chromatography with spectrophotometric detection for determination of antioxidants are demonstrated. Data on determination of biologically active phenols and polyphenols published in the period from 1995 to 2005 are analysed.

  2. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  3. Charged particle activation analysis of phosphorus in biological materials

    International Nuclear Information System (INIS)

    Masumoto, K.; Yagi, M.

    1983-01-01

    Charged particle activation analysis of phosphorus in biological materials using the 31 P(α,n) sup(34m)Cl reaction has been studied. Since sup(34m)Cl is also produced by the 32 S(α,pn) and the 35 Cl(α,α'n) reactions, the thick-target yield curves on phosphorus, sulfur and chlorine were determined in order to choose the optimum irradiation conditions. As a result, it was found that the activation analysis for phosphorus without interferences from sulfur and chlorine is possible by bombarding with less than 17 MeV alphas. The applicability of this method to biological samples was then examined by irradiating several standard reference materials. It was confirmed that phosphorus can readily be determined at the detection limit of 1μg free from interferences due to the matrix elements. (author)

  4. Biological activities and medicinal properties of Cajanus cajan (L Millsp.

    Directory of Open Access Journals (Sweden)

    Dilipkumar Pal

    2011-01-01

    Full Text Available Cajanus cajan (L Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur (family: Fabaceae is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  5. Biological activities and medicinal properties of Cajanus cajan (L) Millsp.

    Science.gov (United States)

    Pal, Dilipkumar; Mishra, Pragya; Sachan, Neetu; Ghosh, Ashoke K

    2011-10-01

    Cajanus cajan (L) Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur) (family: Fabaceae) is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  6. Reactions of 3-Formylchromone with Active Methylene and Methyl Compounds and Some Subsequent Reactions of the Resulting Condensation Products

    Directory of Open Access Journals (Sweden)

    M. Lácova

    2005-08-01

    Full Text Available This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the γ-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reaction activation in the synthesis of condensation products is described and the biological activity of some chromone derivatives is noted.

  7. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  8. Aktivitas Biologis Imunoglobulin Yolk Anti Parvovirus Setelah Perlakuan Suhu (BIOLOGY ACTIVITIES OF IgY PARVOVIRUS AFTER HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Agung Suartini

    2016-02-01

    Full Text Available This study aims to determine the effect of temperature on the biological activity of various crude and precipitate specific Immunoglobulin (IgY Canine parvovirus (CPV. Hiperimun serum conducted on Isa Brown chickens injected with antigen CPV. Crude yolk Ig preparations derived from chicken serum without purification while the yolk Ig preparations precipitates obtained by the chicken serum was precipitated with ammonium sulfate and dialyzed. Both types of Ig yolk given treatment temperature 50ºC, 60ºC, 70ºC, and 80ºC for 15 minutes. To test Gel Precipitation Test (AGPT is performed to determine whether there is a specific IgY CPV in the serum of chickens. Biological activity of both types of Ig detected with Barriers Haemagglutination test (HI. The design used in this study is completely randomized design factorial. The results of this study indicate that the temperature was highly significant on the activities of IgY crude and precipitates. Activities IgY crude and precipitate down to the treatment temperature of 50ºC, 60ºC, 70ºC, and 80ºC. Geometric Mean Titer crude IgY respectively - were 26.67, 26, 25.33, and <2º Unit HI while IgY precipitates are respectively 26.33, 25.67, 24, and <2º Unit HI. Based on the results of this study concluded that the biological activity of crude IgY better than IgY precipitates after treatment of a wide range of temperatures.

  9. Microbial Consortium with High Cellulolytic Activity (MCHCA for enhanced biogas production.

    Directory of Open Access Journals (Sweden)

    Krzysztof ePoszytek

    2016-03-01

    Full Text Available The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used.The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate.Over one hundred strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, sixteen strains (representatives of Bacillus, Providencia and Ochrobactrum genera were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants.The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic Microbial Consortium with High Cellulolytic Activity has a great potential for application on industrial scale in agricultural biogas plants.

  10. Improvements in algal lipid production: a systems biology and gene editing approach.

    Science.gov (United States)

    Banerjee, Avik; Banerjee, Chiranjib; Negi, Sangeeta; Chang, Jo-Shu; Shukla, Pratyoosh

    2018-05-01

    In the wake of rising energy demands, microalgae have emerged as potential sources of sustainable and renewable carbon-neutral fuels, such as bio-hydrogen and bio-oil. For rational metabolic engineering, the elucidation of metabolic pathways in fine detail and their manipulation according to requirements is the key to exploiting the use of microalgae. Emergence of site-specific nucleases have revolutionized applied research leading to biotechnological gains. Genome engineering as well as modulation of the endogenous genome with high precision using CRISPR systems is being gradually employed in microalgal research. Further, to optimize and produce better algal platforms, use of systems biology network analysis and integration of omics data is required. This review discusses two important approaches: systems biology and gene editing strategies used on microalgal systems with a focus on biofuel production and sustainable solutions. It also emphasizes that the integration of such systems would contribute and compliment applied research on microalgae. Recent advances in microalgae are discussed, including systems biology, gene editing approaches in lipid bio-synthesis, and antenna engineering. Lastly, it has been attempted here to showcase how CRISPR/Cas systems are a better editing tool than existing techniques that can be utilized for gene modulation and engineering during biofuel production.

  11. An insight into the biological activities of heterocyclic-fatty acid hybrid molecules.

    Science.gov (United States)

    Venepally, Vijayendar; Reddy Jala, Ram Chandra

    2017-12-01

    Heterocyclic compounds are the interesting core structures for the development of new bioactive compounds. Fatty acids are derived from renewable raw materials and exhibit various biological activities. Several researchers are amalgamating these two bioactive components to yield bioactive hybrid molecules with some desirable features. Heterocyclic-fatty acid hybrid derivatives are a new class of heterocyclic compounds with a broad range of biological activities and significance in the field of medicinal chemistry. Over the last few years, many research articles emphasized the significance of heterocyclic-fatty acid hybrid derivatives. The present review article focuses the developments in designing and biological evaluation of heterocyclic-fatty acid hybrid molecules. Copyright © 2017. Published by Elsevier Masson SAS.

  12. Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Madhavan, Aravind [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum (India); Rajiv Gandhi Centre for Biotechnology, Trivandrum (India); Jose, Anju Alphonsa; Binod, Parameswaran; Sindhu, Raveendran, E-mail: sindhurgcb@gmail.com; Sukumaran, Rajeev K. [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum (India); Pandey, Ashok [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum (India); Center for Innovative and Applied Bioprocessing, Mohali, Punjab (India); Castro, Galliano Eulogio [Dpt. Ingeniería Química, Ambiental y de los Materiales Edificio, Universidad de Jaén, Jaén (Spain)

    2017-04-25

    The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools’ development and application should focus on unexplored non-conventional yeast species.

  13. Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

    Directory of Open Access Journals (Sweden)

    Raveendran Sindhu

    2017-04-01

    Full Text Available The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools’ development and application should focus on unexplored non-conventional yeast species.

  14. Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

    International Nuclear Information System (INIS)

    Madhavan, Aravind; Jose, Anju Alphonsa; Binod, Parameswaran; Sindhu, Raveendran; Sukumaran, Rajeev K.; Pandey, Ashok; Castro, Galliano Eulogio

    2017-01-01

    The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools’ development and application should focus on unexplored non-conventional yeast species.

  15. Trends in biological activity research of wild-growing aromatic plants from Central Balkans

    Directory of Open Access Journals (Sweden)

    Džamić, A.M.

    2016-12-01

    Full Text Available Flowering plants consists of more than 300.000 species around the world, out of which a small percentage has been sufficiently investigated from phytochemical and biological activity aspects. Plant diversity of the Balkans is very rich, but still poorly investigated. The aim of this paper is survey of current status and trends in research of wild-growing aromatic plants from Central Balkans. Many aromatic plants are investigated from morphological, physiological, ecological, systematic and phytochemical aspects. However, traditionally used medicinal and aromatic plants can also be considered from applicative aspects, concerning their health effects, and from wide range of usage in cosmetics, and as food, agrochemical and pharmaceutical products. In order to achieve all planned objectives, following methodology has been applied: field research, taxonomic authentication and, comparative biologically assayed phytochemical investigations. The total herbal extracts, postdistillation waste (deodorized extracts, essential oils and individual compounds of some autochthonous plants have been considered as potential source of antibacterial, antifungal, anti-biofilm, antioxidant and cytotoxic agents. In this manuscript, composition of essential oils and extracts were evaluated in a number of species, from the Apiaceae, Lamiaceae, Rosaceae and Asteraceae families. Extracts which were rich in phenols mostly of flavonoids, often showed high antioxidant potential. Also, phenolic compounds identified in essential oils and extracts were mostly responsible for expected antimicrobial activity. Current worldwide demand is to reduce or, if possible, eliminate chemically synthesized food additives. Plant-produced compounds are becoming of interest as a source of more effective and safe substances than synthetically produced antimicrobial agents (as inhibitors, growth reducers or even inactivators that control growth of microorganisms. Many different pathogens have

  16. Degeneration of penicillin production in ethanol-limited chemostat cultivations of Penicillium chrysogenum : A systems biology approach

    NARCIS (Netherlands)

    Douma, Rutger D.; Batista, Joana M.; Touw, Kai M.; Kiel, Jan A. K. W.; Zhao, Zheng; Veiga, Tania; Klaassen, Paul; Bovenberg, Roel A. L.; Daran, Jean-Marc; van Gulik, Walter M.; Heijnen, J.J.; Krikken, Arjen

    2011-01-01

    Background: In microbial production of non-catabolic products such as antibiotics a loss of production capacity upon long-term cultivation (for example chemostat), a phenomenon called strain degeneration, is often observed. In this study a systems biology approach, monitoring changes from gene to

  17. A Tryptoline Ring-Distortion Strategy Leads to Complex and Diverse Biologically Active Molecules from the Indole Alkaloid Yohimbine.

    Science.gov (United States)

    Paciaroni, Nicholas G; Ratnayake, Ranjala; Matthews, James H; Norwood, Verrill M; Arnold, Austin C; Dang, Long H; Luesch, Hendrik; Huigens, Robert W

    2017-03-28

    High-throughput screening (HTS) is the primary driver to current drug-discovery efforts. New therapeutic agents that enter the market are a direct reflection of the structurally simple compounds that make up screening libraries. Unlike medically relevant natural products (e.g., morphine), small molecules currently being screened have a low fraction of sp 3 character and few, if any, stereogenic centers. Although simple compounds have been useful in drugging certain biological targets (e.g., protein kinases), more sophisticated targets (e.g., transcription factors) have largely evaded the discovery of new clinical agents from screening collections. Herein, a tryptoline ring-distortion strategy is described that enables the rapid synthesis of 70 complex and diverse compounds from yohimbine (1); an indole alkaloid. The compounds that were synthesized had architecturally complex and unique scaffolds, unlike 1 and other scaffolds. These compounds were subjected to phenotypic screens and reporter gene assays, leading to the identification of new compounds that possessed various biological activities, including antiproliferative activities against cancer cells with functional hypoxia-inducible factors, nitric oxide inhibition, and inhibition and activation of the antioxidant response element. This tryptoline ring-distortion strategy can begin to address diversity problems in screening libraries, while occupying biologically relevant chemical space in areas critical to human health. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Part A. Neutron activation analysis of selenium and vanadium in biological matrices. Part B. Isomeric transition activation in aqueous solutions of alkyl bromides

    International Nuclear Information System (INIS)

    Ebrahim, A.

    1988-01-01

    Several procedures were evaluated for determination of selenium in biological fluids and vanadium in biological tissues by neutron activation analysis (NAA) employing 77m Se and 52 V isotopes, respectively. Procedures for determination of total selenium, trimethylselenonium (TMSe) ion and selenite (SeO 3 2- ) ion in urine and serum and for total selenoamino acids in urine were developed by utilizing anion exchange chromatography and molecular NAA. A pre-column derivatization of selenoamino acids with o-phthalaldehyde was necessary for their determination. Also an analytical approach was developed for determination of trace vanadium in liver samples from normal and diabetic rats as well as human and cow. Reactions of bromine-80 activated by radiative neutron capture and bromine-82 activated by isomeric transition were investigated in aqueous solutions of bromomethane and 1-bromobutane. Bromine-80 organic yields decreased with decreasing solute concentrations. The tendency for aggregation of the solute molecules diminished as the solute concentration approached zero where the probable state of the solute approached a monomolecular dispersion. Unlike reactions of 80 Br born by 79 Br(n,γ) 80 Br reaction, the total organic product yields resulting from the 82m Br(I.T.) 82 Br process showed no solute concentration dependence

  19. Isolation and biological activity of triglycerides of the fermented mushroom of Coprinus Comatus

    Directory of Open Access Journals (Sweden)

    Ren Jun

    2012-04-01

    Full Text Available Abstract Background Although many physiological functions of Coprinus comatus have been reported, there has been no report on the antinociceptive activity of Coprinus comatus. Therefore, the objective of the present study is to demonstrate the production, isolation, and biological properties of triglycerides (TFC of the fermented mushroom of Coprinus comatus. Methods The effects of TFC on cytokines levels, total antioxidant activity, antinociceptive effects in vivo, LD50 and tactile hyperalgesia were analyzed respectively. Results TFC treatment decreased the levels of cytokines and total antioxidant status (TAOS and inhibited the acetic acid-induced abdominal constrictions in mice. In addition, TFC reduced CFA-induced tactile hyperalgesia in a dose-dependent manner and the LD50 of TFC was determined to be 400 mg/kg. However, TFC did not significantly inhibit the reaction time to thermal stimuli in the hot-plate test. Conclusions TFC showed anti-inflammatory, antioxidant, peripheral antinociceptive and antihyperalgesic activity in various models of inflammatory pain. The data suggest that TFC may be a viable treatment option for inflammatory pain.

  20. Spectral parameters and biological activity of macromolecular compounds of humic etiology

    Directory of Open Access Journals (Sweden)

    M. V. Zykova

    2017-01-01

    Full Text Available Materials and methods. 18 native humic acids (HAs were received from nine representative types of peat of the Tomsk region. Two extraction methods were used: sodium hydroxide and sodium pyrophosphate. Molecular structure parameters were investigated by IR-spectroscopy. The assessement of qualitative and quantitative features of the IR-spectra of 18 different humic acids was made. When HAs with mouse macrophages were cultured their ability to influence the NO-stimulation was determined. Thus, the biological activity of HAs and its dependence on the parameters of the molecular structure were studied.Results. The results of infrared spectroscopy showed that the HAs of upland types of peat contain more carbonyl, carboxyl, and ester groups, and HAs of lowland types of peat contain more aromatic carbon, phenolic and alcoholic hydroxyl, ether and carbohydrate fragments. The results of biological activity showed that HAs from upland types of peat induce the formation of nitrogen oxide, wherein the cell activation decreases with HAs obtained by alkali. All types of HAs from lowland types of peat contain an admixture of endotoxin. Some HAs obtained by sodium pyrophosphate have higher immunotropic activity; the HAs can cause antigen-specific stimulation of cells. The activity of HAs does not depend on endotoxin admixture. The results of molecular spectroscopy showed that the most biologically active HAs have higher aromaticity and higher concentration of oxygen-containing functional groups. This result can be used as a marker factor in the standardization of HAs. 

  1. Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat

    International Nuclear Information System (INIS)

    Kenney, S.; Kamine, J.; Markovitz, D.; Fenrick, R.; Pagano, J.

    1988-01-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses

  2. Implications of the use of experimental activities in biology education in public schools

    Directory of Open Access Journals (Sweden)

    Vânia Cardoso da Silva Morais

    2016-04-01

    Full Text Available This study aimed to verify the influence of a didactic sequence with experimental activities on student motivation in relation to the subject matter Biology and check the possibility of applying such a result having as input the cultural-historical perspective and the dynamic of the three pedagogical moments. The work is part of a Master Degree research developed with 70 students from a high school in Patos de Minas city. The analysis of the data collected through observation, questionnaires, reports, testimonies of students, filming and photography of biology classes, points out that the use of experimental activities in Biology classes contributed to the increase of student motivation relating to Biology classes favoring the teaching-learning process and also to promote a converge between the scientific knowledge and reality of the students besides encourage their self-esteem and investigative sense. The results also indicate that it is possible to develop at school a didactic sequence based on the complementarity of two different theoretical lines like the dynamics of the three moments and in the historical and cultural perspective. Based on above considerations, we believe that the use of experimental activities following didactics positively influences student motivation in relation to Biology, favoring the teaching and learning of Biology. However, it is the whole of this, as the theory and the posture of motivating teachers, allowed approximation between scientific knowledge and reality of the students, enabling greater learning of biological concepts.

  3. Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies

    Directory of Open Access Journals (Sweden)

    Matteo Rinaldi

    2010-01-01

    Full Text Available One of the most important natural aerosol systems at the global level is marine aerosol that comprises both organic and inorganic components of primary and secondary origin. The present paper reviews some new results on primary and secondary organic marine aerosol, achieved during the EU project MAP (Marine Aerosol Production, comparing them with those reported in the recent literature. Marine aerosol samples collected at the coastal site of Mace Head, Ireland, show a chemical composition trend that is influenced by the oceanic biological activity cycle, in agreement with other observations. Laboratory experiments show that sea-spray aerosol from biologically active sea water can be highly enriched in organics, and the authors highlight the need for further studies on the atmospheric fate of such primary organics. With regard to the secondary fraction of organic aerosol, the average chemical composition and molecular tracer (methanesulfonic-acid, amines distribution could be successfully characterized by adopting a multitechnique analytical approach.

  4. Biological Aspects of Emerging Benzothiazoles: A Short Review

    Directory of Open Access Journals (Sweden)

    Ruhi Ali

    2013-01-01

    Full Text Available In recent years heterocyclic compounds analogues and derivatives have attracted wide attention due to their useful biological and pharmacological properties. Benzothiazole is among the usually occurring heterocyclic nuclei in many marine as well as natural plant products. Benzothiazole is a privileged bicyclic ring system with multiple applications. It is known to exhibit a wide range of biological properties including anticancer, antimicrobial, and antidiabetic, anticonvulsant, anti-inflammatory, antiviral, antitubercular activities. A large number of therapeutic agents are synthesized with the help of benzothiazole nucleus. During recent years there have been some interesting developments in the biological activities of benzothiazole derivatives. These compounds have special significance in the field of medicinal chemistry due to their remarkable pharmacological potentialities. This review is mainly an attempt to present the research work reported in the recent scientific literature on different biological activities of benzothiazole compounds.

  5. Biological treatment of textile mill wastewater in the. presence of activated carbon

    International Nuclear Information System (INIS)

    Liaquat, F.; Hassan, M.; Mahboob, S.; Rehman, A.; Liaquat, S.; Khalid, Z.M.

    2005-01-01

    The main goal of this study was to find out effectiveness of biological treatment for the reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD) of the textile processing industrial wastewater in the absence and presence of granular activated carbon (GAC) in shake flask experiment. To check the pollution level, physio-chemical analysis of effluent from Amtex industry (Faisalabad) was carried out. The outlet effluent contained high value of COD (1100 mg/l), BOD (309 mg/l) with pH 9.2, electrical conductivity (Ec) 3.7 mS/m, total dissolved solids (TDS) (2640 mg/l), total solids (TS) (3060 mg/l), total suspended solids (TSS) (420 19/l) and phenol (.34 mg/l). After initial period of activated sludge adaptation to wastewater, shake flask batch cultures (with and without activated carbon) were operated on lab scale. The COD and BOD were noted after very 12 hours for 3 days. The maximum reduction in COD (82%) and BOD (90%) was observed biological treatment in presence of activated carbon at retention time of 72 hours. (author)

  6. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  7. Characterization of persistent colors and decolorization of effluent from biologically treated cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Liu, Junfeng; Yu, Yanling; Ambuchi, John J; Feng, Yujie

    2016-05-01

    The high chroma of cellulosic ethanol production wastewater poses a serious environmental concern; however, color-causing compounds are still not fully clear. The characteristics of the color compounds and decolorization of biologically treated effluent by electro-catalytic oxidation were investigated in this study. Excitation-emission matrix (EEM), fourier transform infrared spectrometer (FTIR), UV-Vis spectra, and ultrafiltration (UF) fractionation were used to analyze color compounds. High chroma of wastewater largely comes from humic materials, which exhibited great fluorescence proportion (67.1 %) in the biologically treated effluent. Additionally, the color compounds were mainly distributed in the molecular weight fractions with 3-10 and 10-30 kDa, which contributed 53.5 and 34.6 % of the wastewater color, respectively. Further decolorization of biologically treated effluent by electro-catalytic oxidation was investigated, and 98.3 % of color removal accompanied with 97.3 % reduction of humic acid-like matter was achieved after 180 min. The results presented herein will facilitate the development of a well decolorization for cellulosic ethanol production wastewater and better understanding of the biological fermentation.

  8. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  9. Refolding Techniques for Recovering Biologically Active Recombinant Proteins from Inclusion Bodies

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamaguchi

    2014-02-01

    Full Text Available Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  10. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Young [Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-714 (Korea, Republic of); Department of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Nam Deuk [Department of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Gi-Young [Department of Marine Life Sciences, Jeju National University, Jeju 690-756 (Korea, Republic of); Hwang, Hye Jin [Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714 (Korea, Republic of); Department of Food and Nutrition, College of Human Ecology, Dongeui University, Busan 614-714 (Korea, Republic of); Kim, Byung-Woo [Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714 (Korea, Republic of); Department of Life Science and Biotechnology, College of Natural Science, Dongeui University, Busan 614-714 (Korea, Republic of); Department of Biomaterial Control, Graduate School, Dongeui University, Busan 614-714 (Korea, Republic of); Kim, Wun Jae [Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Choi, Yung Hyun, E-mail: choiyh@deu.ac.kr [Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-714 (Korea, Republic of); Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714 (Korea, Republic of); Department of Biomaterial Control, Graduate School, Dongeui University, Busan 614-714 (Korea, Republic of)

    2012-07-15

    Diallyl disulfide (DADS), a main organosulfur component responsible for the diverse biological effects of garlic, displays a wide variety of internal biological activities. However, the cellular and molecular mechanisms underlying DADS' anti-inflammatory activity remain poorly understood. In this study, therefore, the anti-inflammatory effects of DADS were studied to investigate its potential therapeutic effects in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that pretreatment with DADS prior to treatment with LPS significantly inhibited excessive production of nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) in a dose-dependent manner. The inhibition was associated with down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. DADS also attenuated the production of pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) by suppressing the expression of mRNAs for these proteins. The mechanism underlying this protective effect might be related to the inhibition of nuclear factor-kappaB, Akt and mitogen-activated protein kinase signaling pathway activation in LPS-stimulated microglial cells. These findings indicated that DADS is potentially a novel therapeutic candidate for the treatment of various neurodegenerative diseases. -- Highlights: ► DADS attenuates production of NO and PGE2 in LPS-activated BV2 microglia. ► DADS downregulates levels of iNOS and COX-2. ► DADS inhibits production and expression of inflammatory cytokines and chemokine. ► DADS exhibits these effects by suppression of NF-κB, PI3K/Akt and MAPKs pathways.

  11. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics.

    Science.gov (United States)

    Zou, Xuan; Wang, Lianrong; Li, Zhiqiang; Luo, Jie; Wang, Yunfu; Deng, Zixin; Du, Shiming; Chen, Shi

    2018-01-01

    Antibiotic production is often governed by large gene clusters composed of genes related to antibiotic scaffold synthesis, tailoring, regulation, and resistance. With the expansion of genome sequencing, a considerable number of antibiotic gene clusters has been isolated and characterized. The emerging genome engineering techniques make it possible towards more efficient engineering of antibiotics. In addition to genomic editing, multiple synthetic biology approaches have been developed for the exploration and improvement of antibiotic natural products. Here, we review the progress in the development of these genome editing techniques used to engineer new antibiotics, focusing on three aspects of genome engineering: direct cloning of large genomic fragments, genome engineering of gene clusters, and regulation of gene cluster expression. This review will not only summarize the current uses of genomic engineering techniques for cloning and assembly of antibiotic gene clusters or for altering antibiotic synthetic pathways but will also provide perspectives on the future directions of rebuilding biological systems for the design of novel antibiotics. © 2017 Wiley Periodicals, Inc.

  12. Using Active Learning in a Studio Classroom to Teach Molecular Biology

    Science.gov (United States)

    Nogaj, Luiza A.

    2013-01-01

    This article describes the conversion of a lecture-based molecular biology course into an active learning environment in a studio classroom. Specific assignments and activities are provided as examples. The goal of these activities is to involve students in collaborative learning, teach them how to participate in the learning process, and give…

  13. Tests of biological activity of metabolites from Penicillium expansum (Link Thom various isolates

    Directory of Open Access Journals (Sweden)

    Halina Borecka

    2013-12-01

    Full Text Available Aqrobacterium tumefaciens and cucumber, mustard and linseeds were compared as test organisms for evaluation of the biological activity of patulin. It was found that the reaction of cucumber seeds and linseed to the patulin concentrations was more pronounced than that of mustard and Aqrobacterium tumefaciens. The activity of metabolites produced by Penicillium expansum was investigated with the use of cucumber seeds. As measure of activity served the percentage of radicule growth inhibition was compared with the growth in control seeds. The biological activity of the metabolites was specific for the isolates, those from apples being more active. Thirty two isolates from pears and 34 from apples were examined.

  14. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  15. Extraction, Identification and Biological Activities of Saponins in Sea Cucumber Pearsonothuria graeffei.

    Science.gov (United States)

    Khattab, Rafat Afifi; Elbandy, Mohamed; Lawrence, Andrew; Paget, Tim; Rae-Rho, Jung; Binnaser, Yaser S; Ali, Imran

    2018-01-01

    Secondary metabolism in marine organisms produces a diversity of biologically important natural compounds that are not present in terrestrial species. Sea cucumbers belong to the invertebrate Echinodermata and are famous for their nutraceutical, medical and food values. They are known for possession triterpenoid glycosides (saponins) with various ecological roles. The current work aimed to separate, identify and test various biological activities (antibacterial, antifungal, antileishmanial and anticancer properties) of saponins produced by the holothurian Pearsonothuria graeffei from the Red Sea, Egypt. The structures were identified by 1D and 2D NMR (1H, 13C, TOCSY, COSY, HSQC, HMBC, and ROESY) experiments and acid hydrolysis. The crude and purified fractions was analyzed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)/MS to identify saponins and characterize their molecular structures. Partially purified fraction, mainly containing compounds 1 and 2, was screened for its antifungal activity against three clinical isolates of Candida albicans (Candida 580 (1), Candida 581(2) and Candida MEO47228. Antileishmanial activity against Leishmania major and toxicity on colon cell-line were also evaluated. Two lanostane type sulfated triterpene monoglycosides were isolated from the Holothurian Pearsonothuria graeffei from the Red Sea, Egypt. Holothurin A (1) and echinoside A (2) triterpene saponins were separated by reversed phase semi-preparative HPLC. LC50 values (µg/mL); calculated for the fraction containing saponins 1 and 2 as major constituents; against Candida albicans, Leishmania major and colon cell-line were 10, 20 and 0.50, respectively. Consequently, this study demonstrated the potential use of sea cucumber Pearsonothuria graeffei not only as appreciated functional food or nutraceuticals but also as the source of functional ingredients for pharmaceutical products with antifungal, antileishmanial and anticancer properties

  16. Zoanthid mucus as new source of useful biologically active proteins.

    Science.gov (United States)

    Guarnieri, Míriam Camargo; de Albuquerque Modesto, Jeanne Claíne; Pérez, Carlos Daniel; Ottaiano, Tatiana Fontes; Ferreira, Rodrigo da Silva; Batista, Fabrício Pereira; de Brito, Marlon Vilela; Campos, Ikaro Henrique Mendes Pinto; Oliva, Maria Luiza Vilela

    2018-03-01

    Palythoa caribaeorum is a very common colonial zoanthid in the coastal reefs of Brazil. It is known for its massive production of mucus, which is traditionally used in folk medicine by fishermen in northeastern Brazil. This study identified biologically active compounds in P. caribaerum mucus. Crude mucus was collected during low tides by the manual scraping of colonies; samples were maintained in an ice bath, homogenized, and centrifuged at 16,000 g for 1 h at 4 °C; the supernatant (mucus) was kept at -80 °C until use. The enzymatic (proteolytic and phospholipase A 2 ), inhibitory (metallo, cysteine and serine proteases), and hemagglutinating (human erythrocyte) activities were determined. The results showed high levels of cysteine and metallo proteases, intermediate levels of phosholipase A 2 , low levels of trypsin, and no elastase and chymotrypsin like activities. The mucus showed potent inhibitory activity on snake venom metalloproteases and cysteine proteinase papain. In addition, it showed agglutinating activity towards O + , B + , and A + erythrocyte types. The hemostatic results showed that the mucus prolongs the aPTT and PT, and strongly inhibited platelet aggregation induced by arachidonic acid, collagen, epinephrine, ADP, and thrombin. The antimicrobial activity was tested on 15 strains of bacteria and fungi through the radial diffusion assay in agar, and no activity was observed. Compounds in P. caribaeorum mucus were analyzed for the first time in this study, and our results show potential pharmacological activities in these compounds, which are relevant for use in physiopathological investigations. However, the demonstration of these activities indicates caution in the use of crude mucus in folk medicine. Furthermore, the present or absent activities identified in this mucus suggest that the studied P. caribaeorum colonies were in thermal stress conditions at the time of sample collection; these conditions may precede the bleaching

  17. Improvement of biomass production and glucoamylase activity by Candida famata using factorial design.

    Science.gov (United States)

    Mosbah, Habib; Aissa, Imen; Hassad, Nahla; Farh, Dhaker; Bakhrouf, Amina; Achour, Sami

    2016-07-01

    To improve biomass production and glucoamylase activity (GA) by Candida famata, culture conditions were optimized. A 2(3) full factorial design (FFD) with a response surface model was used to evaluate the effects and interactions of pH (X1 ), time of cultivation (X2 ), and starch concentration (X3 ) on the biomass production and enzyme activity. A total of 16 experiments were conducted toward the construction of an empiric model and a first-order equation. It was found that all factors (X1 , X2 , and X3 ) and their interactions were significant at a certain confidence level (P production and GA of C. famata. Under this optimized medium, the experimental biomass production and GA obtained were 1.8 ± 0.54 g/L and 0.078 ± 0.012 µmol/L/Min, about 1.5- and 1.8-fold, respectively, higher than those in basal medium. The (R(2) ) coefficients obtained were 0.997 and 0.990, indicating an adequate degree of reliability in the model. Approximately 99% of validity of the predicted value was achieved. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  18. European activities in space radiation biology and exobiology

    International Nuclear Information System (INIS)

    Horneck, G.

    1996-01-01

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  19. Biological Activities and Phytochemicals of Swietenia macrophylla King

    Directory of Open Access Journals (Sweden)

    Habsah Abdul Kadir

    2013-08-01

    Full Text Available Swietenia macrophylla King (Meliaceae is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance.

  20. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery.

    Science.gov (United States)

    Simm, Jaak; Klambauer, Günter; Arany, Adam; Steijaert, Marvin; Wegner, Jörg Kurt; Gustin, Emmanuel; Chupakhin, Vladimir; Chong, Yolanda T; Vialard, Jorge; Buijnsters, Peter; Velter, Ingrid; Vapirev, Alexander; Singh, Shantanu; Carpenter, Anne E; Wuyts, Roel; Hochreiter, Sepp; Moreau, Yves; Ceulemans, Hugo

    2018-05-17

    In both academia and the pharmaceutical industry, large-scale assays for drug discovery are expensive and often impractical, particularly for the increasingly important physiologically relevant model systems that require primary cells, organoids, whole organisms, or expensive or rare reagents. We hypothesized that data from a single high-throughput imaging assay can be repurposed to predict the biological activity of compounds in other assays, even those targeting alternate pathways or biological processes. Indeed, quantitative information extracted from a three-channel microscopy-based screen for glucocorticoid receptor translocation was able to predict assay-specific biological activity in two ongoing drug discovery projects. In these projects, repurposing increased hit rates by 50- to 250-fold over that of the initial project assays while increasing the chemical structure diversity of the hits. Our results suggest that data from high-content screens are a rich source of information that can be used to predict and replace customized biological assays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Biological activities (anti-inflammatory and anti-oxidant) of fractions ...

    African Journals Online (AJOL)

    Biological activities (anti-inflammatory and anti-oxidant) of fractions and methanolic extract of Philonotis hastate (Duby Wijk & MargaDant). ... The fractions and methanolic extract exhibited moderate antioxidant potentials with various models. The flavonoid contents of the methanol extract and fractions ranged between 1.70 ...

  2. Proximate composition, phytochemical screening, GC-MS studies of biologically active cannabinoids and antimicrobial activities of Cannabis indica

    Directory of Open Access Journals (Sweden)

    Muhammad Saqib Isahq

    2015-11-01

    Full Text Available Objective: To investigate the proximate composition, minerals analysis, phytochemical screening, gas chromatography-mass spectrometry (GC-MS studies of active cannabinoids and antimicrobial activities of Cannabis indica (C. indica leaves, stems, and seeds. Methods: Standard qualitative protocols of phytochemical screening were accomplished for the identification of biologically active phytochemicals. Minerals in plant samples were analyzed by using atomic absorption spectrophotometer. The resins of C. indica were analyzed for medicinally active cannabinoid compounds by GC-MS. The sample for GC-MS study was mixed with small quantity of n-hexane and 30 mL of acetonitrile solution for the identification of cannabinoids. Agar well diffusion method was used for antibacterial activity. For antifungal activity, the tested fungal strains were sub-cultured on Sabouraud’s dextrose agar at 28 °C. Results: Mineral analysis revealed the presence of sodium, potassium, magnesium and some other minerals in all parts of C. indica. Phytochemical investigation showed the presence of alkaloids, saponins, tannins, flavonoids, sterols and terpenoids. C. indica divulged wide spectrum of antibacterial activities against Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, and Proteus mirabilis. The extracts of plant leaves, seeds and stems showed significant antifungal activities against Aspergillus niger, Aspergillus parasiticus, and Aspergillus oryzae. The biologically active cannabinoids of delta-9-tetrahydrocannabinol (25.040% and cannabidiol (resorcinol, 2-p-mentha-1,8-dien-4-yl-5-pentyl (50.077% were found in Cannabis resin in high percentage. Conclusions: The findings of the study suggested that the existence of biologically active remedial cannabinoids in elevated concentrations and antimicrobial bioassays of C. indica make it a treasured source to be used in herbal preparation for various ailments.

  3. Effects of heat on the biological activity of wild Cordyceps sinensis

    Directory of Open Access Journals (Sweden)

    Pengkai Wu

    2015-01-01

    Conclusions: These results suggested that heat treatment does not adversely affect SOD or DNase activity, polysaccharide content, or cordycepin dissolution. Thus, heat treatment might be a safe processing method to extend the storage time of wild C. sinensis without compromising biological activity.

  4. Biological activities of the natural imidazole-containing peptidomimetics n-acetylcarnosine, carcinine and L-carnosine in ophthalmic and skin care products.

    Science.gov (United States)

    Babizhayev, Mark A

    2006-04-11

    Apart from genetically programmed cell aging, different external aggressors related to oxidative stress and lipid peroxidation (LPO) can accelerate the skin aging phenomenon. Oxidative stress associated with the formation of lipid peroxides is suggested to contribute to pathological processes in aging and systemic diseases known as the risk factors for cataract. Despite the fact that L-carnosine-related peptidomimetics N-acetylcarnosine (N-acetyl-beta-alanyl-L-histidine) (NAC) and carcinine (beta-alanylhistamine) are metabolically related to L-carnosine and have been demonstrated to occur in tissues of many vertebrates, including humans, these compounds were shown resistant toward enzymatic hydrolysis. A series of related biocompatible imidazole-containing peptidomimetics were synthesized in order to confer resistance to enzymatic hydrolysis and ex vivo improvement of protective antioxidative properties related to L-carnosine. The included findings revealed a greater role of N-acetylcarnosine (NAC) and carcinine ex vivo in the prolongation and potentiation of physiological responses to the therapeutical and cosmetics treatments with L-carnosine as antioxidant. 3-D molecular conformation studies proposed the antioxidant activity of peptidomimetics (carcinine, L-prolylhistamine, N-acetylcarnosine, L-carnosine) for metal ion binding, quenching of a number free radicals, and binding of hydroperoxide or aldehyde (including dialdehyde LPO products) in an imidazole-peroxide adducts. NAC can act as a time release (carrier) stable version of L-carnosine during application in ophthalmic pharmaceutical and cosmetics formulations which include lubricants. Carcinine, L-prolylhistamine show efficient deactivation of lipid hydroperoxides monitored by HPLC and protection of membrane phospholipids and water soluble proteins from the lipid peroxides-induced damages. This activity is superior over the lipophilic antioxidant vitamin E. The biologically significant applications of

  5. In vitro gamma irradiation of some purified polypeptide hormones and their biological and radioimmunological activity

    International Nuclear Information System (INIS)

    Hromadova, M.; Macho, L.; Strbak, V.; Vigas, M.; Mikulaj, L.

    1979-01-01

    Some polypeptide hormones (adrenocorticotropin - ACTH, human and bovine growth hormone - GH, human menopausal gonadotropin - HMG, human luteinizing hormone - LH, and bovine thyrotropin - TSH) were irradiated either with 2.5 or 12.5 Mrad (1.1 Mrad/h) or both and their biological activity or immunoreactivity was tested within few days or 3 to 5 months after irradiation. Biological activity of irradiated ACTH (estimation of corticosterone released into medium by incubated adrenals - Saffran and Schally 1955) was not decreased in both time intervals tested. Ten days after irradiation of bovine GH no changes in biological activity (tibia test - Wilhelmi 1973) were found. No decrease of biological activity of irradiated HMG (augmentation of ovarian and uterine weight - Butt 1973) was found 4 months after irradiation and, finaly, no decrease of bovine TSH activity (radioiodine release from prelabelled thyroid in mice - McKenzie 1958) was found 2 to 30 days after irradiation with 2.5 Mrad, while a decrease was observed after 12.5 Mrad. Three to five months after irradiation, however, there was a decrease of biological activity after both doses. The immunological reactivity of irradiated HMG and LH did not differ from that of nonirradiated samples. The same was found with human GH after 2.5 Mrad, while a decrease of reactivity after 12.5 Mrad was detected. It was concluded that, in most of cases, the sterilizing dose of gamma radiation (2.5 Mrad) did not affect the biological activity of polypeptide hormones and that their sensitivity to irradiation appears to differ. (author)

  6. Operationalising UN security council resolution 1540: an overview of select practical activities in the chemical and biological weapon-related areas

    International Nuclear Information System (INIS)

    Hart, J.

    2009-01-01

    The UN member states are continuing to take measures to inter alia establish and effectively implement controls to prevent the proliferation of nuclear, biological and chemical weapons and their means of delivery in accordance with United Nations Security Council Resolution 1540 (2004). The resolution also encourages enhanced international cooperation on such efforts, including by working through the 1540 Committee. Most analyses on the implementation of the resolution have focused on nuclear issues. This presentation provides an overview of select practical activities in the chemical and biological weapon-related areas, including chemical product classification and identification, biosafety and biosecurity practices and criminal prosecutions for unauthorised chemical transfers.(author)

  7. Biofuel production in Escherichia coli. The role of metabolic engineering and synthetic biology

    Energy Technology Data Exchange (ETDEWEB)

    Clomburg, James M. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Gonzalez, Ramon [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Rice Univ., Houston, TX (United States). Dept. of Bioengineering

    2010-03-15

    The microbial production of biofuels is a promising avenue for the development of viable processes for the generation of fuels from sustainable resources. In order to become cost and energy effective, these processes must utilize organisms that can be optimized to efficiently produce candidate fuels from a variety of feedstocks. Escherichia coli has become a promising host organism for the microbial production of biofuels in part due to the ease at which this organism can be manipulated. Advancements in metabolic engineering and synthetic biology have led to the ability to efficiently engineer E. coli as a biocatalyst for the production of a wide variety of potential biofuels from several biomass constituents. This review focuses on recent efforts devoted to engineering E. coli for the production of biofuels, with emphasis on the key aspects of both the utilization of a variety of substrates as well as the synthesis of several promising biofuels. Strategies for the efficient utilization of carbohydrates, carbohydrate mixtures, and noncarbohydrate carbon sources will be discussed along with engineering efforts for the exploitation of both fermentative and nonfermentative pathways for the production of candidate biofuels such as alcohols and higher carbon biofuels derived from fatty acid and isoprenoid pathways. Continued advancements in metabolic engineering and synthetic biology will help improve not only the titers, yields, and productivities of biofuels discussed herein, but also increase the potential range of compounds that can be produced. (orig.)

  8. Apple biological and physiological disorders in the orchard and in postharvest according to production system

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Martins

    2013-03-01

    Full Text Available The study aimed to evaluate the incidence of biological and physiological disorders in the field and postharvested apples cvs. Gala, Fuji and Catarina grown in four production systems: conventional, organic transition, integrated and organic. Apples were evaluated for damages related to biological and physiological disorders in the orchard and after harvest. The greatest damages were attributed to pests, especially Anastrepha fraterculus in the organic system and Grapholita molesta in the organic transition. Apples produced in organic orchards had higher damage levels caused by postharvest physiological disorders than those grown in other production systems. For apples becoming from organic orchards most of the damage was due to lenticels breakdown and degeneration ('Gala', and bitter pit ('Fuji' and 'Catarina'. The incidence of postharvest rot was not influenced by apple production system.

  9. Preparation of biologically active 32P-labeled human relaxin. Displaceable binding to rat uterus, cervix, and brain

    International Nuclear Information System (INIS)

    Osheroff, P.L.; Ling, V.T.; Vandlen, R.L.; Cronin, M.J.; Lofgren, J.A.

    1990-01-01

    Relaxin is a member of the insulin family of polypeptide hormones and is known to exert its biological effects on various parts of the mammalian reproductive system. Biologically active human relaxin has been chemically synthesized based on the nucleotide sequence obtained from an ovarian cDNA clone. In the present study synthetic human relaxin was radiolabled by phosphorylation with cAMP-dependent protein kinase and [gamma-32P]ATP to a specific activity of 5000 Ci/mmol. The phosphorylated relaxin was purified on cation exchange high performance liquid chromatography and was shown to co-migrate with relaxin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mass spectrometry revealed a single phosphorylated site on the B chain of relaxin. The 32P-relaxin was able to bind to a goat anti-relaxin antibody, and this binding could be displaced by unlabeled relaxin in a concentration-dependent manner. A comparison of the concentration responses of cellular cAMP production stimulated by relaxin and phosphorylated relaxin in a primary human uterine cell line showed that phosphorylation did not affect the in vitro biological efficacy of relaxin. This made it suitable for in situ autoradiographic localization of relaxin binding sites in rat uterine, cervical, and brain tissue sections. Displacement of the binding of 100 pM 32P-relaxin by 100, 10, and 3 nM unlabeled relaxin, but not by 100 nM insulin, insulin-like growth factor-I, and an insulin-like growth factor-I analog, demonstrated the high affinity and specificity of such binding. We conclude that 32P-labeled human relaxin is biologically and immunologically active and that this novel probe binds reversibly and with high affinity to classical (e.g. uterus) and unpredicted (e.g. brain) tissues

  10. Biological risks associated with consumption of reptile products.

    Science.gov (United States)

    Magnino, Simone; Colin, Pierre; Dei-Cas, Eduardo; Madsen, Mogens; McLauchlin, Jim; Nöckler, Karsten; Maradona, Miguel Prieto; Tsigarida, Eirini; Vanopdenbosch, Emmanuel; Van Peteghem, Carlos

    2009-09-15

    The consumption of a wide variety of species of reptiles caught from the wild has been an important source of protein for humans world-wide for millennia. Terrapins, snakes, lizards, crocodiles and iguanas are now farmed and the consumption and trade of their meat and other edible products have recently increased in some areas of the world. Biological risks associated with the consumption of products from both farmed and wild reptile meat and eggs include infections caused by bacteria (Salmonella spp., Vibrio spp.), parasites (Spirometra, Trichinella, Gnathostoma, pentastomids), as well as intoxications by biotoxins. For crocodiles, Salmonella spp. constitute a significant public health risk due to the high intestinal carrier rate which is reflected in an equally high contamination rate in their fresh and frozen meat. There is a lack of information about the presence of Salmonella spp. in meat from other edible reptilians, though captive reptiles used as pets (lizards or turtles) are frequently carriers of these bacteria in Europe. Parasitic protozoa in reptiles represent a negligible risk for public health compared to parasitic metazoans, of which trichinellosis, pentastomiasis, gnathostomiasis and sparganosis can be acquired through consumption of contaminated crocodile, monitor lizard, turtle and snake meat, respectively. Other reptiles, although found to harbour the above parasites, have not been implicated with their transmission to humans. Freezing treatment inactivates Spirometra and Trichinella in crocodile meat, while the effectiveness of freezing of other reptilian meat is unknown. Biotoxins that accumulate in the flesh of sea turtles may cause chelonitoxism, a type of food poisoning with a high mortality rate in humans. Infections by fungi, including yeasts, and viruses widely occur in reptiles but have not been linked to a human health risk through the contamination of their meat. Currently there are no indications that natural transmissible spongiform

  11. Expression and fast preparation of biologically active recombinant human coagulation factor VII in CHO-K1 cells.

    Science.gov (United States)

    Xiao, W; Li, C Q; Xiao, X P; Lin, F Z

    2013-12-16

    Human coagulation factor VII (FVII) plays an important role in the blood coagulation process and exists in micro amounts in human plasma; therefore, any attempt at the large-scale production of FVII in significant quantities is challenging. The purpose of this study was to express and obtain biologically active recombinant FVII (rFVII) from Chinese hamster ovary K1 (CHO-K1) cells. The full-length FVII cDNA was isolated from a HepG2 cell line and then subcloned in pcDNA3.1 to construct an expression vector, pcDNA-FVII. CHO-K1 cells were transfected with 1 µg pcDNA-FVII. The cell line that stably expressed secretory FVII was screened using 900 µg/mL G418. The FVII copy number in CHO-K1 cells was detected by quantitative polymerase chain reaction (qPCR). The rFVII was purified in ligand affinity chromatography medium. The purified protein was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The biological activity of the purified FVII protein was determined by a prothrombin time assay. Three cell lines that permanently expressed rFVII were screened. The qPCR results demonstrated that each CHO-K1 cell harbored two FVII DNA copies. The SDS-PAGE and Western blot analysis showed that the purified protein was about 50 kDa. The purity of the target protein was 95%. The prothrombin time assay indicated that the FVII-specific activity of rFVII was 2573 ± 75 IU/mg. This method enabled the fast preparation of high-purity rFVII from CHO-K1 cells, and the purified protein had good biological activity.

  12. Review of the genus Ipomoea: traditional uses, chemistry and biological activities

    Directory of Open Access Journals (Sweden)

    Marilena Meira

    Full Text Available Approximately 600-700 species of Ipomoea, Convolvulaceae, are found throughout tropical and subtropical regions of the world. Several of those species have been used as ornamental plants, food, medicines or in religious ritual. The present work reviews the traditional uses, chemistry and biological activities of Ipomoea species and illustrates the potential of the genus as a source of therapeutic agents. These species are used in different parts of the world for the treatment of several diseases, such as, diabetes, hypertension, dysentery, constipation, fatigue, arthritis, rheumatism, hydrocephaly, meningitis, kidney ailments and inflammations. Some of these species showed antimicrobial, analgesic, spasmolitic, spasmogenic, hypoglycemic, hypotensive, anticoagulant, anti-inflammatory, psychotomimetic and anticancer activities. Alkaloids, phenolics compounds and glycolipids are the most common biologically active constituents from these plant extracts.

  13. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  14. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  15. Some aspects of biological production and fishery resources of the EEZ of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bhargava, R.M.S.

    Region and season-wise biological production in the Exclusive Economic Zone (EEZ) of India has been computed from the data of more than twenty years available at the Indian National Oceanographic Data Centre of the National Institute of Oceanography...

  16. Synthesis, Physical Characterization and Biological Activity of Some Schiff Base Complexes

    Directory of Open Access Journals (Sweden)

    R. Rajavel

    2008-01-01

    Full Text Available Structural modification of organic molecule has considerable biological relevance. Further, coordination of a biomolecules to the metal ions significantly alters the effectiveness of the biomolecules. In view of the antimicrobial activity ligand [bis-(2-aminobenzaldehyde] malonoyl dihydrazone], metal complexes with Cu(II, Ni(II, Zn(II and oxovanadium(IV have been synthesized and found to be potential antimicrobial agents. An attempt is also made to correlate the biological activities with geometry of the complexes. The complexes have been characterized by elemental analysis, molar conductance, spectra and cyclicvoltammetric measurements. The structural assessment of the complexes has been carried out based on electronic, infrared and molar conductivity values.

  17. Isolation and characterization of biologically active venom protein from sea snake Enhydrina schistosa.

    Science.gov (United States)

    Damotharan, Palani; Veeruraj, Anguchamy; Arumugam, Muthuvel; Balasubramanian, Thangavel

    2015-03-01

    The present study is designed to investigate the isolation and characterization of biological and biochemical active venom protein from sea snake, Enhydrina schistosa. The highest purification peaks in ion-exchange chromatography on DEAE-cellulose column were obtained for fraction numbers 39-49 when eluted with 0.35-0.45 M NaCl. Eighty per cent purity was obtained in the final stage of purification, and a single protein band of about 44 kDa was visualized in SDS-polyacrylamide gel under reducing condition. Purified venom protein expressed as haemolytic, cytotoxicity and proteolytic activities with lethal concentration (LC50 ) at 2.0 μg/mL. Venom protein exhibits enzymatic activity and hydrolyzed casein and gelatin. Gelatinolytic activity was optimal at pH 5-9. In conclusion, the present results suggested that the sea snake venom might be feasible sources for biologically active substances. Thus, this low molecular weight component of the venom protein could be used in potentially serve biological and pharmaceutical aspects. © 2014 Wiley Periodicals, Inc.

  18. Yellow-Cedar, Callitropsis (Chamaecyparis) nootkatensis, Secondary Metabolites, Biological Activities, and Chemical Ecology.

    Science.gov (United States)

    Karchesy, Joseph J; Kelsey, Rick G; González-Hernández, M P

    2018-05-01

    Yellow-cedar, Callitropsis nootkatensis, is prevalent in coastal forests of southeast Alaska, western Canada, and inland forests along the Cascades to northern California, USA. These trees have few microbial or animal pests, attributable in part to the distinct groups of biologically active secondary metabolites their tissues store for chemical defense. Here we summarize the new yellow-cedar compounds identified and their biological activities, plus new or expanded activities for tissues, extracts, essential oils and previously known compounds since the last review more than 40 years ago. Monoterpene hydrocarbons are the most abundant compounds in foliage, while heartwood contains substantial quantities of oxygenated monoterpenes and oxygenated sesquiterpenes, with one or more tropolones. Diterpenes occur in foliage and bark, whereas condensed tannins have been isolated from inner bark. Biological activities expressed by one or more compounds in these groups include fungicide, bactericide, sporicide, acaricide, insecticide, general cytotoxicity, antioxidant and human anticancer. The diversity of organisms impacted by whole tissues, essential oils, extracts, or individual compounds now encompasses ticks, fleas, termites, ants, mosquitoes, bacteria, a water mold, fungi and browsing animals. Nootkatone, is a heartwood component with sufficient activity against arthropods to warrant research focused toward potential development as a commercial repellent and biopesticide for ticks, mosquitoes and possibly other arthropods that vector human and animal pathogens.

  19. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Forough Nazarpour

    2013-01-01

    Full Text Available Rubberwood (Hevea brasiliensis, a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%. The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.

  20. WebBio, a web-based management and analysis system for patient data of biological products in hospital.

    Science.gov (United States)

    Lu, Ying-Hao; Kuo, Chen-Chun; Huang, Yaw-Bin

    2011-08-01

    We selected HTML, PHP and JavaScript as the programming languages to build "WebBio", a web-based system for patient data of biological products and used MySQL as database. WebBio is based on the PHP-MySQL suite and is run by Apache server on Linux machine. WebBio provides the functions of data management, searching function and data analysis for 20 kinds of biological products (plasma expanders, human immunoglobulin and hematological products). There are two particular features in WebBio: (1) pharmacists can rapidly find out whose patients used contaminated products for medication safety, and (2) the statistics charts for a specific product can be automatically generated to reduce pharmacist's work loading. WebBio has successfully turned traditional paper work into web-based data management.

  1. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  2. Screening of some marine plants from the Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Solimabi; Kamat, S.Y.; DeSouza, L.; Reddy, C.V.G.; Bhakuni, D.S.; Dhawan, B.N.

    Extracts of twenty five seaweeds from Indian coast have been put through a broad biological screen which includes tests for antiviral, antibacterial, antifungal, antiprotozoal, antifertility activities and a wide range of pharmacological activities...

  3. Certification of biological reference materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lanjewar, Mamata R.; Lanjewar, R.B.

    2014-01-01

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 21 minor and trace elements in two standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques ,Czechoslovakia. Also some biological standards such as Bowen's kale, cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of Reference Materials of Biological Matrices. (author)

  4. Biological activities of extracts from Chenopodium ambrosioides Lineu and Kielmeyera neglecta Saddi

    Directory of Open Access Journals (Sweden)

    Sousa Zulane

    2012-07-01

    Full Text Available Abstract Background Chenopodium ambrosioides and Kielmeyera neglecta are plants traditionally used in Brazil to treat various infectious diseases. The study of the biological activities of these plants is of great importance for the detection of biologically active compounds. Methods Extracts from these plants were extracted with hexane (Hex, dichloromethane (DCM, ethyl acetate (EtOAc and ethanol (EtOH and assessed for their antimicrobial properties, bioactivity against Artemia salina Leach and antifungal action on the cell wall of Neurospora crassa. Results Extracts from C. ambrosioides (Hex, DCM and EtOH and K. neglecta (EtOAc and EtOH showed high bioactivity against A. salina (LD50 C. ambrosioides Hex and DCM showed specific activity against yeasts, highlighting the activity of hexanic extract against Candida krusei (MIC = 100 μg/mL. By comparing the inhibitory concentration of 50% growth (IC 50% with the growth control, extracts from K. neglecta EtOAc and EtOH have shown activities against multidrug-resistant bacteria (Enterococcus faecalis ATCC 51299 and Staphylococcus aureus ATCC 43300, with IC 50% of 12.5 μg/mL The assay carried out on N. crassa allowed defining that extracts with antifungal activity do not have action through inhibition of cell wall synthesis. Conclusions Generally speaking, extracts from C. ambrosioides and K. neglecta showed biological activities that have made the search for bioactive substances in these plants more attractive, illustrating the success of their use in the Brazilian folk medicine.

  5. Manufacturing of curd products of increased biological value for the elderly from dried components.

    Science.gov (United States)

    Zabodalova, Ludmila A; Belozerova, Maria S; Evstigneeva, Tatiana N

    2018-01-01

    In recent years, the number of elderly people has increased, and the diseases that arise in old age are associated, amongst other factors, with malnutrition. In the elderly, the need for primary nutrients and energy changes, so the development of food products intended for this particular group of people is becom- ing increasingly important. The purpose of this research is to work out the composition of and technology for producing low-fat curd products from raw milk and vegetable components. The developed products can be used for their gerodietetic properties, because nutritional and energy needs in the elderly were taken into account when designing the product. The curd product was manufactured from skimmed dried milk (SDM), soy isolate protein (SIP) and spelt grain. Optimal conditions for the recombination of SIP were determined. The influence of mass fraction of SIP on the properties of the clot and the end product was studied. The degree of dispersion of the grain component was determined, from the organoleptic evaluation of samples of the mixture, and the optimum method of addition was chosen. The method of adding cooked spelt into the clot after pressing was chosen. Harrington’s generalized desirability function was used for the calculation of the optimum mass frac- tion of the grain component in the end product. The formulation and technology for a curd product based on dry ingredients were determined. The amino acid composition and content of essential components in the developed product were determined, and the biological and nutritional value were calculated. The use of dry ingredients for the production of a curd product makes it possible to manufac- ture the product in the absence of raw milk. The formulation of the product is designed taking into account the needs of the body in old age. The incorporation of spelt increases the biological value of the curd product to 81.5%.

  6. Industrial systems biology and its impact on synthetic biology of yeast cell factories

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-01-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools......, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex...... regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal...

  7. Neutron activation analysis of biological material

    International Nuclear Information System (INIS)

    Kucera, J.; Simkova, M.; Obrusnik, I.

    1985-01-01

    The possibilities are briefly summed up of usino. NAA (neutron activation analysis) for determining element traces in foodstuffs and their intake by organisms, for monitoring changes in the content of important trace elements in tissues and body fluids owing to environmental pollution, for verifying the results of other analytical techniques and for certifying the content of element traces in reference materials. Examples are given of the use of NAA, and the results are summed up of the determination of Cd, Mn and Zn in biological reference materials NBS SRM-1577, Bovine Liver, Bowen's Kale, IAEA Milk Powder A-11 and IAEA Animal Muscle H-4. (E.S.)

  8. Electrochemical Behavior of Biologically Important Indole Derivatives

    Directory of Open Access Journals (Sweden)

    Cigdem Karaaslan

    2011-01-01

    Full Text Available Voltammetric techniques are most suitable to investigate the redox properties of a new drug. Use of electrochemistry is an important approach in drug discovery and research as well as quality control, drug stability, and determination of physiological activity. The indole nucleus is an essential element of a number of natural and synthetic products with significant biological activity. Indole derivatives are the well-known electroactive compounds that are readily oxidized at carbon-based electrodes, and thus analytical procedures, such as electrochemical detection and voltammetry, have been developed for the determination of biologically important indoles. This paper explains some of the relevant and recent achievements in the electrochemistry processes and parameters mainly related to biologically important indole derivatives in view of drug discovery and analysis.

  9. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities.

    Science.gov (United States)

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-01-01

    Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.

  10. Investigating Biological Activity Spectrum for Novel Styrylquinazoline Analogues

    Directory of Open Access Journals (Sweden)

    Jaroslaw Polanski

    2009-10-01

    Full Text Available In this study, series of ring-substituted 2-styrylquinazolin-4(3H-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.

  11. Biological productivity and potential resources of the exclusive economic zone (EEZ) of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    An assessment of the biological production and the potential fishery resources has been made based on the data collected over a period of 15 years (1976-1991). The entire Exclusive Economic Zone (EEZ), measuring 2.02 million km sup(2) was divided...

  12. In vitro comparison of the biological activity of alumina ceramic and titanium particles associated with aseptic loosening

    International Nuclear Information System (INIS)

    Ding Yue; Qin Chuqiang; Xu Jie; Huang Dongsheng; Fu Yuru

    2012-01-01

    Prosthetic wear particles are thought to play a central role in the initiation and development of periprosthetic osteolysis, leading to aseptic loosening of prostheses. This study aimed to compare the biological activity of ceramic and titanium particles that are associated with particle-induced, aseptic joint loosening. Different sizes of alumina-ceramic particles and titanium particles were prepared to stimulate murine macrophage cells RAW 264.7, of which the expressions of tumor necrosis factor alpha (TNF-alpha) and receptor activator of nuclear factor-κB ligand (RANKL) were measured by qPCR and ELISA at various time points. In the presence of all particles, the expression of TNF-alpha increased in a time-dependent manner, whereas the expression of RANKL showed no regular expression patterns. Notably, particles of smaller sizes provoked significantly higher levels of TNF-alpha and RANKL than those of larger sizes. Compared to the titanium particles, the ceramic particles provoked a significantly lower production of TNF-alpha. Thus, the bioactivities of titanium and alumina ceramic particles were inversely proportional to the sizes of the particles, and the expression of RANKL was not parallel to that of TNF-alpha. The successful outcome of ceramic-on-ceramic artificial joint prostheses may be attributed to the low biological activity of ceramic particles, as evidenced here. (paper)

  13. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    Science.gov (United States)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  14. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2016-07-01

    Full Text Available Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding and quantitative (for predicting mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD as the revived precursor for comparative molecular field analyses (CoMFA and comparative molecular similarity indices analysis (CoMSIA; all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy-methyl]-6-(phenylthiothymine congeners’ (HEPT ligands antiviral activity against Human Immunodeficiency Virus of first type (HIV-1 and new pharmacophores in treating severe genetic disorders (like depression and psychosis, respectively, all involving 3D pharmacophore interactions.

  15. Biological regeneration of phenol-loaded activated carbon (up flow system)

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.J.; Mirajuddin; Martin, R.J.

    1995-01-01

    This paper represents the report on the biological regeneration of totally activated carbon following the experimental studies carried out at the University of Birmingham, U.K. Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon. This study deals with in situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration for a given adsorbate were studied. The research investigated the extent of bio regeneration for phenol of concentration 50 mg/l. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initialing exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the duration of regeneration for a fixed initial biomass content of the bioreactor. The regenerated phenol loaded GAC bed had nearly gained its original adsorption after the 5-day period of regeneration. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  16. Biological control and sustainable food production

    NARCIS (Netherlands)

    Bale, J.S.; Lenteren, van J.C.; Bigler, F.

    2008-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control).

  17. BIOLOGICALLY ACTIVE SUBSTANCES OF LAVANDULA X INTERMEDIA EMERIC EX LOISEL (LAMIACEAE

    Directory of Open Access Journals (Sweden)

    A. E. Paliy

    2016-01-01

    Full Text Available Data about qualitative and quantitative composition of biologically active substances (volatile and phenolic compounds in water- ethanol extract of Lavandula x intermedia Emeric ex Loisel (Lamiaceae cv. ‘Bora’ bred in Nikitsky Botanical Garden are presented in the article. Concentration of volatile compounds in Lavandin extract was 398 mg/dm3 and 51 components were identified. Main volatiles in Lavandin cv. «Bora» extract were linalyl acetate (36,9% and linalool (33,5%. Content of phenolic compounds in water- ethanol extract of Lavandin was 945 mg/dm3 and 14 components were found out. Among the variety of Lavandin cv. ‘Bora’ phenolic compounds luteolin-7-O-glycoside and п-coumaric acid are predominated. The conclusion about possible use of Lavandin cv. ‘Bora’ for creation of food, cosmetic, therapeutic and preventive products is made.

  18. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.

    Science.gov (United States)

    Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung

    2016-01-01

    In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Activation analysis of biological materials at the Activation Analysis Centre

    International Nuclear Information System (INIS)

    Kukula, F.; Obrusnik, I.; Simkova, M.; Kucera, J.; Krivanek, M.

    1976-01-01

    A review is presented of the work of the Activation Analysis Centre of the Nuclear Research Institute for different fields of the Czechoslovak economy, aimed primarily at analyzing biological materials with the purpose of determining the contents of the so-called vital trace elements and of elements which already have a toxic effect on the organism in trace concentrations. Another important field of research is the path of trace elements from the environment to the human organism. A destructive method for the simultaneous determination of 12 trace elements in 11 kinds of human tissue has been studied. (Z.M.)

  20. Biological Activities of Hominis Placenta Herbal Acupuncture prepared by Hydrochloric Acid Hydrolysis

    Directory of Open Access Journals (Sweden)

    Geun-young Seo

    2010-06-01

    Full Text Available Reactive Oxygen Species(ROS are continuously produced at a high rate as a by-product of aerobic metabolism. Since tissue damage by free radical increases with age, the reactive oxygen species(ROS such as hydrogen peroxide(H2O2, nitric oxide(NO. Several lines of evidence provided that ROS appears to cause to develop aging-related various diseases such as cancer, arthritis, cardiovascular disease. In this study, we have conducted to investigate the biological activities of Hominis Placenta Herbal Acupuncture by measuring total polyphenol content, DPPH radical scavenging, ABTS radical scavenging, Superoxide dismutase(SOD-like activity, Nitrite scavenging ability in vitro. The total polyphenol contents of Hominis Placenta Herbal Acupuncture was 24.6㎖/㎖. Elctron donation ability on DPPH was 49.4%. The 2,2'-azinobis-3-ehtlbezothiazoline-6-sulfonic acid radical decolorization (ABTS was 50.01%, similar to the DPPH free radical scavenging. The superoxide dismutase (SOD-like activities of hominis placenta herbal acupuncture was 50.876%. The nitrite scavenging abilities at pH 1.5, pH 3.0, pH 6.0 were 52.8%, 29.4%, 15.4%, respectively; these abilities decreased as pH increased. We conclude that Hominis Placenta Herbal Acupuncture may be useful as potential sources of antioxidant.

  1. Determination of chromium in biological matrices by neutron activation

    International Nuclear Information System (INIS)

    McClendon, L.T.

    1978-01-01

    Chromium is recognized to be an essential trace element in several biological systems. It exists in many biological materials in a variety of chemical forms and very low concentration levels which cause problems for many analytical techniques. Both instrumental and destructive neutron activation analysis were used to determine the chromium concentration in Orchard Leaves, SRM 1571, Brewers Yeast, SRM 1569, and Bovine Liver, SRM 1577. Some of the problems inherent with determining chromium in certain biological matrices and the data obtained here at the National Bureau of Standards using this technique are discussed. The results obtained from dissolution of brewers yeast in a closed system as described in the DNAA procedure are in good agreement with the INAA results. The same phenomenon existed in the determination of chromium in bovine liver. The radiochemical procedure described for chromium (DNAA) provides the analyst with a simple, rapid and selective technique for chromium determination in a variety of matrices. (T.G.)

  2. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa.

    Science.gov (United States)

    Kimura, Takashi

    2013-01-01

    Sparassis crispa, also known as cauliflower mushroom, is an edible mushroom with medicinal properties. Its cultivation became popular in Japan about 10 years ago, a phenomenon that has been attributed not only to the quality of its taste, but also to its potential for therapeutic applications. Herein, I present a comprehensive summary of the pharmacological activities and mechanisms of action of its bioactive components, such as beta-glucan, and other physiologically active substances. In particular, the immunomodulatory mechanisms of the beta-glucan components are presented herein in detail.

  3. Natural Products and Biological Activity of the Pharmacologically Active Cauliflower Mushroom Sparassis crispa

    Directory of Open Access Journals (Sweden)

    Takashi Kimura

    2013-01-01

    Full Text Available Sparassis crispa, also known as cauliflower mushroom, is an edible mushroom with medicinal properties. Its cultivation became popular in Japan about 10 years ago, a phenomenon that has been attributed not only to the quality of its taste, but also to its potential for therapeutic applications. Herein, I present a comprehensive summary of the pharmacological activities and mechanisms of action of its bioactive components, such as beta-glucan, and other physiologically active substances. In particular, the immunomodulatory mechanisms of the beta-glucan components are presented herein in detail.

  4. Efficacy from Different Extractions for Chemical Profile and Biological Activities of Rice Husk

    Directory of Open Access Journals (Sweden)

    Truong Ngoc Minh

    2018-04-01

    Full Text Available Rice husk is a by-product produced abundantly in rice production but it has low commercial value and causes environmental pollution. This study was conducted to examine different extracting solvents and conditions to optimize the efficacy of antioxidant and antimicrobial potentials, and chemical components in rice husk. By the use of distilled water at 100 °C, the ethyl acetate (EtOAc extract was potent in both total phenolic content (TPC, total flavonoid content (TFC, and DPPH scavenging activity. The treatment of either ethyl acetate (100 °C, 1 h, combined with MeOH 100%, showed the highest percent of lipid peroxidation inhibition (LPI (86%, meaning that the strongest antioxidant activity was by the β-carotene bleaching method. The treatment of distilled water at room temperature possessed the strongest antioxidant activity in the assay of the reducing power. The use of dried samples at 100 °C for 2 h, combined with methanol (MeOH 10%, provided the most potent antimicrobial activities against Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Bacillus subtilis, and Proteus mirabilis. The results suggested that the EtOAc extract from rice husk could be a potential source of natural antioxidants. In general, the use of temperature 100 °C for 2 h, combined with either EtOAc or 10% MeOH, can optimize chemical components and antioxidant and antimicrobial capacities in rice husk. Principal constituents putatively identified by gas chromatography–mass spectrometry (GC–MS revealed the presence of momilactones A and B (MA and MB, respectively, phenols, phenolic acids, and long-chain fatty acids, although yields of these compounds varied among extracts. The bioactive MA and MB were found in most of the extracts, except distilled water and MeOH ≤ 50%, at any temperature. Findings of this study provided optimal conditions for future production at an industrial scale for rice husk to exploit its potent biological properties. It

  5. Low Water Activity Induces the Production of Bioactive Metabolites in Halophilic and Halotolerant Fungi

    Directory of Open Access Journals (Sweden)

    Nina Gunde-Cimerman

    2010-12-01

    Full Text Available The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice, for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity.

  6. Myricetin: A Dietary Molecule with Diverse Biological Activities

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Semwal

    2016-02-01

    Full Text Available Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson’s and Alzheimer’s. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound’s ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities.

  7. The genus Scrophularia: a source of iridoids and terpenoids with a diverse biological activity.

    Science.gov (United States)

    Pasdaran, Ardalan; Hamedi, Azadeh

    2017-12-01

    Scrophularia genus (Scrophulariaceae) includes about 350 species commonly known as figwort. Many species of this genus grow wild in nature and have not been cultivated yet. However, some species are in danger of extinction. This paper reviews the chemical compounds, biological activities and the ethnopharmacology of some Scrophularia species. All information was obtained through reported data on bibliographic database such as Scopus, United States National Agricultural Library, Biological Abstracts, EMBASE, PubMed, MedlinePlus, PubChem and Springer Link (1934-2017). The information in different Pharmacopoeias on this genus was also gathered from 1957 to 2007. The structures of 204 compounds and their biological activity were presented in the manuscript: glycoside esters, iridoid glycosides and triterpenoids are the most common compounds in this genus. Among them, scropolioside like iridoids have shown potential for anti-inflammatory, hepatoprotective and wound healing activity. Among the less frequently isolated compounds, resin glycosides such as crypthophilic acids have shown potent antiprotozoal and antimicrobial activities. The Scrophularia genus seems to be a rich source of iridoids and terpenoids, but isolation and identification of its alkaloids have been a neglected area of scientific study. The diverse chemical compounds and biological activities of this genus will motivate further investigation on Scrophularia genus as a source of new therapeutic medications.

  8. Biological control of Alternaria radicina in seed production of carrots with Ulocladium atrum

    NARCIS (Netherlands)

    Köhl, J.; Langerak, C.J.; Meekes, E.T.M.; Molhoek, W.M.L.

    2004-01-01

    Black rot of carrots is caused by seed-borne Alternaria radicina. Biological control of seed infestation by treatments applied to plants in flower during seed production with the fungal antagonist Ulocladium atrum was investigated in laboratory and field experiments resulting in a reduction of seed

  9. Biological activities and biomedical potential of sea cucumber (Stichopus japonicus: a review

    Directory of Open Access Journals (Sweden)

    Gun-Woo Oh

    2017-11-01

    Full Text Available Abstract Members of the phylum Echinodermata, commonly known as echinoderms, are exclusively marine invertebrates. Among the Echinodermata, sea cucumber belongs to the family Holothuroidea. The sea cucumber Stichopus (Apostichous japonicus (Selenka is an invertebrate animal inhabiting the coastal sea around Korean, Japan, China, and Russia. Sea cucumber has a significant commercial value, because it contains valuable nutrients such as vitamins and minerals. They possess a number of distinctive biologically and pharmacologically important compounds. In particular, the body wall of sea cucumber is a major edible part. It consists of peptide, collagen, gelatin, polysaccharide, and saponin, which possess several biological activities such as anti-cancer, anti-coagulation, anti-oxidation, and anti-osteoclastogenesis. Furthermore, the regenerative capacity of sea cucumber makes it a medically important organism. This review presents the various biological activities and biomedical potential of sea cucumber S. japonicus.

  10. 78 FR 65904 - Permanent Discontinuance or Interruption in Manufacturing of Certain Drug or Biological Products

    Science.gov (United States)

    2013-11-04

    ... Manufacturing of Certain Drug or Biological Products AGENCY: Food and Drug Administration, HHS. ACTION: Proposed.... The Fabrazyme shortage resulted from contamination at the manufacturing [[Page 65910

  11. The yeast stands alone: the future of protein biologic production.

    Science.gov (United States)

    Love, Kerry R; Dalvie, Neil C; Love, J Christopher

    2017-12-22

    Yeasts are promising alternative hosts for the manufacturing of recombinant protein therapeutics because they simply and efficiently meet needs for both platform and small-market drugs. Fast accumulation of biomass and low-cost media reduce the cost-of-goods when using yeast, which in turn can enable agile, small-volume manufacturing facilities. Small, tractable yeast genomes are amenable to rapid process development, facilitating strain and product quality by design. Specifically, Pichia pastoris is becoming a widely accepted yeast for biopharmaceutical manufacturing in much of the world owing to a clean secreted product and the rapidly expanding understanding of its cell biology as a host organism. We advocate for a near term partnership spanning industry and academia to promote open source, timely development of yeast hosts. Copyright © 2017. Published by Elsevier Ltd.

  12. Determination of rare earth elements in the biological reference materials Pine Needles and Spruce Needles by neutron activation analysis

    International Nuclear Information System (INIS)

    Machado, C.N.; Maria, S.P.; Saiki, M.; Figueiredo, A.M.G.

    1998-01-01

    Instrumental neutron activation analysis was applied to determine La, Ce, Nd, Sm, Eu, Tb, Yb, Lu and Sc in two biological reference materials: NIST 1575 Pine Needles and BCR-CRM 101 Spruce Needles. The purpose was to contribute to the reference data for these two reference materials. The results were obtained with a good precision (relative standard deviations less than 15%). For the Pine Needles reference material there are already some proposed values and our results showed, in general, a good agreement with the data published. The contribution of uranium fission products to La, Ce, Nd and Sm was evaluated and considered in the determination of these elements. Interferences in the determination of rare earth elements in biological materials are also discussed. (author)

  13. Using cereal rye (catch crop) and dehydrogenase activity as indicators of the residual fertility effects of anaerobic soil disinfestation and other biological soil management practices following field tomato production

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD) and other biological soil management practices employing carbon-rich and/or biologically-active ingredients help contribute to overall soil suppressiveness in crop disease management. However, their roles in soil fertility tended to be overshadowed by disease cont...

  14. Polysaccharies of higher fungi: Biological role, structure and antioxidative activity

    NARCIS (Netherlands)

    Kozarski, M.S.; Klaus, A.; Niksic, M.; Griensven, van L.J.L.D.; Vrvic, M.M.; Jakovljevic, D.M.

    2014-01-01

    The fungal polysaccharides attract a lot of attention due to their multiple challenging bio-logical properties, such as: anti-tumor, anti-viral, anticomplementary, anticoagulant, hypo-lipidemic, immunomodulatory and immune-stimulatory activities, which all together make them suitable for application

  15. Preparation and characterization of new biologically active polyurethane foams.

    Science.gov (United States)

    Savelyev, Yuri; Veselov, Vitali; Markovskaya, Ludmila; Savelyeva, Olga; Akhranovich, Elena; Galatenko, Natalya; Robota, Ludmila; Travinskaya, Tamara

    2014-12-01

    Biologically active polyurethane foams are the fast-developed alternative to many applications of biomedical materials. Due to the polyurethane structure features and foam technology it is possible to incorporate into their structure the biologically active compounds of target purpose via structural-chemical modification of macromolecule. A series of new biologically active polyurethane foams (PUFs) was synthesized with polyethers (MM 2500-5000), polyesters MM (500-2200), 2,4(2,6) toluene diisocyanate, water as a foaming agent, catalysts, foam stabilizers and functional compounds. Different functional compounds: 1,4-di-N-oxy-2,3-bis-(oxymethyl)-quinoxaline (DOMQ), partial sodium salt of poly(acrylic acid) and 2,6-dimethyl-N,N-diethyl aminoacetatanilide hydrochloride were incorporated into the polymer structure/composition due to the chemical and/or physical bonding. Structural peculiarities of PUFs were studied by FTIR spectroscopy and X-ray scattering. Self-adhesion properties of PUFs were estimated by measuring of tensile strength at break of adhesive junction. The optical microscopy method was performed for the PUF morphology studies. Toxicological estimation of the PUFs was carried out in vitro and in vivo. The antibacterial action towards the Gram-positive and Gram-negative bacteria (Escherichia coli ATC 25922, E. coli ATC 2150, Klebsiella pneumoniae 6447, Staphylococcus aureus 180, Pseudomonas aeruginosa 8180, Proteus mirabilis F 403, P. mirabilis 6054, and Proteus vulgaris 8718) was studied by the disc method on the solid nutrient. Physic-chemical properties of the PUFs (density, tensile strength and elongation at break, water absorption and vapor permeability) showed that all studied PUFs are within the operational requirements for such materials and represent fine-cellular foams. Spectral studies confirmed the incorporation of DOMQ into the PUF's macrochain. PUFs are characterized by microheterogeneous structure. They are antibacterially active, non

  16. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  17. Dietary Polyphenols and Their Biological Significance

    Directory of Open Access Journals (Sweden)

    Hongxiang Lou

    2007-09-01

    Full Text Available Dietary polyphenols represent a wide variety of compounds that occur in fruits,vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products. They aremostly derivatives and/or isomers of flavones, isoflavones, flavonols, catechins andphenolic acids, and possess diverse biological properties such as antioxidant, antiapoptosis,anti-aging, anticarcinogen, anti-inflammation, anti-atherosclerosis, cardiovascularprotection, improvement of the endothelial function, as well as inhibition of angiogenesisand cell proliferation activity. Most of these biological actions have been attributed to theirintrinsic reducing capabilities. They may also offer indirect protection by activatingendogenous defense systems and by modulating cellular signaling processes such asnuclear factor-kappa B (NF-кB activation, activator protein-1(AP-1 DNA binding,glutathione biosynthesis, phosphoinositide 3 (PI3-kinase/protein kinase B (Akt pathway,mitogen-activated protein kinase (MAPK proteins [extracellular signal-regulated proteinkinase (ERK, c-jun N-terminal kinase (JNK and P38 ] activation, and the translocationinto the nucleus of nuclear factor erythroid 2 related factor 2 (Nrf2. This paper covers themost recent literature on the subject, and describes the biological mechanisms of action andprotective effects of dietary polyphenols.

  18. ChemProt: a disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Nielsen, Sonny Kim; Audouze, Karine Marie Laure

    2011-01-01

    Systems pharmacology is an emergent area that studies drug action across multiple scales of complexity, from molecular and cellular to tissue and organism levels. There is a critical need to develop network-based approaches to integrate the growing body of chemical biology knowledge with network...... biology. Here, we report ChemProt, a disease chemical biology database, which is based on a compilation of multiple chemical-protein annotation resources, as well as disease-associated protein-protein interactions (PPIs). We assembled more than 700 000 unique chemicals with biological annotation for 30...... evaluation of environmental chemicals, natural products and approved drugs, as well as the selection of new compounds based on their activity profile against most known biological targets, including those related to adverse drug events. Results from the disease chemical biology database associate citalopram...

  19. In search of new biological activities of isolates from Odontoglossum Harvengtense 'Tutu'.

    Science.gov (United States)

    Suzuki, Ryuichiro; Tanaka, Tomohiro; Yamamoto, Miki; Sakagami, Hiroshi; Tomomura, Mineko; Tomomura, Akito; Satoh, Kazue; Shirataki, Yoshiaki

    2012-01-01

    In the current study, we isolated four known compounds, two phenanthrenes, 2,5-dihydroxy-4,9-dimethoxy phenanthrene [1] and 4-methoxyphenanthrene-2,7-diol (flavanthrinin) [2], one phenanthrenequinone, 5-hydroxy-2,3-dimethoxy-1,4-phenanthrenequinone [3], and one flavone, 3,5,7-trihydroxyflavone (galangin) [4], from the ethyl acetate (EtOAc) extract of Odontoglossum Harvengtense 'Tutu' through bioassay-guided fractionation, and investigated their biological activities. The isolated compounds were identified with spectroscopic analysis and through comparison to literature values. Cytotoxic activity towards human tumor and normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Nitric oxide (NO) was determined by the Griess method. Radical scavenging activity was determined by electron spin resonance (ESR) spectroscopy. Osteoclastogenesis was monitored by tartrate-resistant acid phosphatase (TRAP) activity. The compounds had slightly higher cytotoxicity towards human oral squamous cell carcinoma and leukemia cell lines as compared with human normal oral cells, yielding a tumor specificity value of 1.1-2.7. Among these four compounds, 1 most potently inhibited the lipopolysaccharide (LPS)-stimulated NO production and the receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclastogenesis by mouse macrophage-like RAW264.7 cells. Micromolar concentrations of 1 scavenged the NO radical produced from 1-hydroxy-2-oxo-3-(N-3-methyl-3-aminopropyl)-3-methyl-1-triazene. The present study demonstrated, for the first time, that 1 inhibited both macrophage activation and osteoclast differentiation, suggesting its possible anti-inflammatory action.

  20. Dendritic cells for active immunotherapy: optimizing design and manufacture in order to develop commercially and clinically viable products.

    Science.gov (United States)

    Nicolette, C A; Healey, D; Tcherepanova, I; Whelton, P; Monesmith, T; Coombs, L; Finke, L H; Whiteside, T; Miesowicz, F

    2007-09-27

    Dendritic cell (DC) active immunotherapy is potentially efficacious in a broad array of malignant disease settings. However, challenges remain in optimizing DC-based therapy for maximum clinical efficacy within manufacturing processes that permit quality control and scale-up of consistent products. In this review we discuss the critical issues that must be addressed in order to optimize DC-based product design and manufacture, and highlight the DC based platforms currently addressing these issues. Variables in DC-based product design include the type of antigenic payload used, DC maturation steps and activation processes, and functional assays. Issues to consider in development include: (a) minimizing the invasiveness of patient biological material collection; (b) minimizing handling and manipulations of tissue at the clinical site; (c) centralized product manufacturing and standardized processing and capacity for commercial-scale production; (d) rapid product release turnaround time; (e) the ability to manufacture sufficient product from limited starting material; and (f) standardized release criteria for DC phenotype and function. Improvements in the design and manufacture of DC products have resulted in a handful of promising leads currently in clinical development.

  1. The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones.

    Science.gov (United States)

    du Toit, Karen; Drewes, Siegfried E; Bodenstein, Johannes

    2010-03-01

    This work reviews the four basic structural types of homoisoflavanones. The relationships between the various structures of homoisoflavanones and their plant origins, ethnobotany and biological activities are put into perspective.

  2. Detection of biologically active isomers of conjugated linoleic acid in kaymak

    Directory of Open Access Journals (Sweden)

    Ökten, Sevtap

    2005-12-01

    Full Text Available Numerous physiological effects are attributed to conjugated linoleic acids (CLA. Biologically active isomers of CLA ( cis -9, trans -11 (C18:2 and trans- 10, cis- 12 (C18:2 have been reported to have anticarcinogenic, antioxidative and antiatherosclerotic properties. Relatively rich sources of CLA include milk fat-containing foods such as kaymak. Kaymak is a kind of concentrated cream which is traditionally manufactured from buffalo or cow's milk mainly in Turkey . The objective of this study was to determine CLA concentrations during kaymak production. Kaymak was manufactured from cow's milk which was enriched with unfermented cream. Biologically active isomers of CLA in raw milk, cream and kaymak were analyzed using gas chromatography. The method was quick, repeatable and sensitive for the CLA determination of samples. Significant differences were found among the concentrations of both isomer and total CLA during the production process (pNumerosos efectos fisiológicos se atribuyen a los ácidos linoleico conjugados (CLA. Así los isómeros biológicamente activos ( cis -9, trans -11 (C18:2 y trans- 10, cis del ácido linoleico han sido descritos con propiedades anticarcinogénicas, antioxidantes y antiarterioscleróticas. Fuentes relativamente ricas de CLA incluyen alimentos con grasas lácteas tales como el kaymak. El kaymak es una crema concentrada elaborada de leche de búfalo o vaca principalmente en Turquía. El objetivo de este estudio fue la determinación de la concentración de CLA durante la producción de kaymak. El kaymak objeto de estudio fue elaborado a partir de leche de vaca que fue enriquecida con crema no fermentada. Los isómeros biológicamente activos del CLA fueron analizados por cromatografía gaseosa en leche cruda, crema y kaymak. El método empleado fue rápido, reproducible y sensible. Se encontraron diferencias significativas en las concentraciones de ambos isómeros y de CLA total durante el proceso de producci

  3. Biological Activities of Three Essential Oils of the Lamiaceae Family

    Directory of Open Access Journals (Sweden)

    Gema Nieto

    2017-08-01

    Full Text Available Herbs and spices have been used since ancient times to improve the sensory characteristics of food, to act as preservatives and for their nutritional and healthy properties. Herbs and spices are generally recognized as safe (GRAS and are excellent substitutes for chemical additives. Essential oils are mixtures of volatile compounds obtained, mainly by steam distillation, from medicinal and aromatic plants. They are an alternative to synthetic additives for the food industry, and they have gained attention as potential sources for natural food preservatives due to the growing interest in the development of safe, effective, natural food preservation. Lamiaceae is one of the most important families in the production of essential oils with antioxidants and antimicrobial properties. Aromatic plants are rich in essential oils and are mainly found in the Mediterranean region, where the production of such oils is a profitable source of ecological and economic development. The use of essential oils with antimicrobial and antioxidant properties to increase the shelf life of food is a promising technology, and the essential oils of the Lamiaceae family, such as rosemary, thyme, and sage, have been extensively studied with respect to their use as food preservatives. Regarding the new applications of essential oils, this review gives an overview of the current knowledge and recent trends in the use of these oils from aromatic plants as antimicrobials and antioxidants in foods, as well as their biological activities, future potential, and challenges.

  4. Biological Activities of Three Essential Oils of the Lamiaceae Family.

    Science.gov (United States)

    Nieto, Gema

    2017-08-23

    Herbs and spices have been used since ancient times to improve the sensory characteristics of food, to act as preservatives and for their nutritional and healthy properties. Herbs and spices are generally recognized as safe (GRAS) and are excellent substitutes for chemical additives. Essential oils are mixtures of volatile compounds obtained, mainly by steam distillation, from medicinal and aromatic plants. They are an alternative to synthetic additives for the food industry, and they have gained attention as potential sources for natural food preservatives due to the growing interest in the development of safe, effective, natural food preservation. Lamiaceae is one of the most important families in the production of essential oils with antioxidants and antimicrobial properties. Aromatic plants are rich in essential oils and are mainly found in the Mediterranean region, where the production of such oils is a profitable source of ecological and economic development. The use of essential oils with antimicrobial and antioxidant properties to increase the shelf life of food is a promising technology, and the essential oils of the Lamiaceae family, such as rosemary, thyme, and sage, have been extensively studied with respect to their use as food preservatives. Regarding the new applications of essential oils, this review gives an overview of the current knowledge and recent trends in the use of these oils from aromatic plants as antimicrobials and antioxidants in foods, as well as their biological activities, future potential, and challenges.

  5. Design, Synthesis, and Biological Evaluation of Isothiosemicarbazones with Antimycobacterial Activity

    Czech Academy of Sciences Publication Activity Database

    Novotná, E.; Waisser, K.; Kuneš, J.; Palát, K.; Skálová, L.; Szotáková, B.; Buchta, V.; Stolaříková, J.; Ulmann, V.; Pávová, Marcela; Weber, Jan; Komrsková, J.; Hašková, P.; Vokřál, I.; Wsól, V.

    2017-01-01

    Roč. 350, č. 8 (2017), č. článku e1700020. ISSN 0365-6233 Institutional support: RVO:61388963 Keywords : biological activity * cytotoxicity * isocitrate lyase * isothiosemicarbazone * tuberculosis Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.994, year: 2016

  6. The growing role of biologics and biosimilars in the United States: Perspectives from the APhA Biologics and Biosimilars Stakeholder Conference.

    Science.gov (United States)

    Crespi-Lofton, Judy; Skelton, Jann B

    The American Pharmacists Association (APhA) convened the Biologics and Biosimilars Stakeholder Conference on November 30, 2016, in Washington DC. The objectives of the Conference were to determine the key issues and challenges within the marketplace for biologics, follow-on biologics (FOBs), and biosimilars, identify potential roles and responsibilities of pharmacists regarding biologic and biosimilar medications, and identify actions or activities that pharmacists may take to optimize the safe and cost-effective use of biologics and biosimilars. National thought leaders and stakeholder representatives, including individuals from the Food and Drug Administration, Centers for Medicare and Medicaid Services, a private third-party payer, manufacturers, and several national organizations of health care professionals, participated in the conference. Information shared by this group was supplemented with relevant legal and regulatory information and published literature. Biologics play a valuable role in the treatment of numerous health conditions, but their associated costs, which tend to be greater than those of small-molecule drugs, place a burden on the health care system. Biosimilars (both noninterchangeable and interchangeable) are highly similar copies of the originator biologic and offer the potential to reduce costs and improve patient access to biological products by increasing treatment options and creating a more competitive market. Despite the potential benefits of biosimilars, certain factors may limit their uptake. The conference participants explored issues that different stakeholders think influence the use of biologics, including biosimilars, in the United States. Barriers included technology, prescriber-pharmacist communication, legislation and regulations, limited patient and health care practitioner knowledge of biological products, patient and health care practitioner perceptions of biosimilars, and evolving science or lack of long-term data. After

  7. Euclea undulata Thunb.: Review of its botany, ethnomedicinal uses, phytochemistry and biological activities.

    Science.gov (United States)

    Maroyi, Alfred

    2017-11-01

    Euclea undulata (E. undulata) is traditionally used for the treatment of body pains, chest complaints, cough, diabetes, diarrhoea, headaches, heart diseases and toothaches in southern Africa. This study was aimed at reviewing the botany, ethnopharmacology and biological activities of E. undulata in southern Africa. Results presented in this study are based on review of literature using search engines such as Science Direct, Springerlink, Scopus, PubMed, Web of Science, BioMed Central and Google Scholar. Herbal medicine is prepared from the decoctions of the roots, bark and leaves, and extracts of these plant parts have demonstrated anticholinesterase, anti-inflammatory, antimicrobial, antimycobacterial, antiplasmodial, antioxidant and hypoglycaemic activities. Multiple classes of phytochemical compounds such alkaloids, diterpenes, fatty acids, flavonoids, glycosides, naphthoquinones, phenolics, phytosterols, reducing sugars, saponins and tannins have been isolated from the species. E. undulata has a lot of potential as herbal medicine in tropical Africa, and advanced research is required aimed at correlating its medicinal uses with the phytochemistry and pharmacological properties. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  8. Radiometric microbiologic assay for the biologically active forms of niacin

    International Nuclear Information System (INIS)

    Kertcher, J.A.; Guilarte, T.R.; Chen, M.F.; Rider, A.A.; McIntyre, P.A.

    1979-01-01

    A radiometric microbiologic assay has been developed for the determination of niacin in biologic fluids. Lactobacillus plantarum produced 14 CO 2 from L-[U- 14 C] malic acid in quantities proportional to the amount of niacin present. The assay is specific for the biologically active forms of niacin in humans. Thirty normal hemolysates were analyzed and the values ranged from 13.0 to 17.8 μg niacin/ml RBC (mean = 15.27 +- 1.33 s.d.). Good recovery and reproducibility studies were obtained with this assay. On thirty blood samples, correlation was excellent between the radiometric and the conventional turbidimetric assays

  9. Rational screening of peroxisome proliferator-activated receptor-γ agonists from natural products: potential therapeutics for heart failure.

    Science.gov (United States)

    Chen, Rui; Wan, Jing; Song, Jing; Qian, Yan; Liu, Yong; Gu, Shuiming

    2017-12-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Activation of PPARγ pathway has been shown to enhance fatty acid oxidation, improve endothelial cell function, and decrease myocardial fibrosis in heart failure. Thus, the protein has been raised as an attractive target for heart failure therapy. This work attempted to discover new and potent PPARγ agonists from natural products using a synthetic strategy of computer virtual screening and transactivation reporter assay. A large library of structurally diverse, drug-like natural products was compiled, from which those with unsatisfactory pharmacokinetic profile and/or structurally redundant compounds were excluded. The binding mode of remaining candidates to PPARγ ligand-binding domain (LBD) was computationally modelled using molecular docking and their relative binding potency was ranked by an empirical scoring scheme. Consequently, eight commercially available hits with top scores were selected and their biological activity was determined using a cell-based reporter-gene assay. Four natural product compounds, namely ZINC13408172, ZINC4292805, ZINC44179 and ZINC901461, were identified to have high or moderate agonistic potency against human PPARγ with EC 50 values of 0.084, 2.1, 0.35 and 5.6 μM, respectively, which are comparable to or even better than that of the approved PPARγ full agonists pioglitazone (EC 50  =   0.16 μM) and rosiglitazone (EC 50  =   0.034 μM). Hydrophobic interactions and van der Waals contacts are the primary chemical forces to stabilize the complex architecture of PPARγ LBD domain with these agonist ligands, while few hydrogen bonds, salt bridges and/or π-π stacking at the complex interfaces confer selectivity and specificity for the domain-agonist recognition. The integrated in vitro-in silico screening strategy can be successfully applied to rational discovery of

  10. Rectal Cancer Survivors' Participation in Productive Activities.

    Science.gov (United States)

    Hornbrook, Mark C; Grant, Marcia; Wendel, Christopher; Bulkley, Joanna E; Mcmullen, Carmit K; Altschuler, Andrea; Temple, Larissa Kf; Herrinton, Lisa J; Krouse, Robert S

    2017-01-01

    Rectal cancer and its treatment impair survivors' productivity. To assess determinants of market and nonmarket employment, job search, volunteering, and homemaking among survivors five years or longer after diagnosis. We mailed questionnaires to 1063 survivors who were members of Kaiser Permanente (Northern California, Northwest) during 2010 and 2011. Productive activities, functional health status, and bowel management at the time of the survey. Response rate was 60.5% (577/953). Higher comorbidity burdens were associated with lower productivity for men and women rectal cancer survivors. Productive survivors were younger and had lower disease stage and age at diagnosis, higher household income and educational attainment, and fewer comorbidity burdens and workplace adjustments than did nonproductive survivors (p < 0.05 each; 2-sided). Productive rectal cancer survivors were evenly split by sex. Staying productive is associated with better mental health for rectal cancer survivors. Rectal cancer survivors with multiple chronic conditions, higher disease stage, lower productive activities, and older age need better access to medical care and closer monitoring of the quality of their care, including self-care. To capture the full extent of the involvement of survivors in all types of productive activities, research should routinely include measures of employment, searching for employment, homemaking, and volunteering. Counting market and nonmarket productive activities is innovative and recognizes the continuum of contributions survivors make to families and society. Health care systems should routinely monitor rectal cancer survivors' medical care access, comorbidities, health-related quality of life, and productive activities.

  11. Binding of ferric ions is essential for the biological activity of glycine-extended gastrin

    International Nuclear Information System (INIS)

    Baldwin, G.S.; Pannequin, J.; Hollande, F.; Shulkes, A.

    2002-01-01

    Full text: Non-amidated gastrins, such as glycine-extended gastrin17 (Ggly), are now known to be biologically active. Ggly stimulates cell proliferation and migration, and was recently shown to bind two ferric ions with high affinity. The objective of the present work was to define the structure of Ggly for the first time, and to investigate the role of ferric ions in biological activity. Methods: The structure of Ggly, and the identity of the ammo acids that act as ferric ion ligands, were determined by NMR and fluorescence spectroscopy. The effect on the gastric epithelial cell line IMGE-5 of Ggly fragments, and of Ggy mutants with some or all of the five consecutive glutamate residues replaced by alanine, was measured in terms of cell proliferation, cell migration and phosphorylation of focal adhesion kinase. Results: Ggly adopts a well-defined loop stabilised by hydrophobic interactions between Leu5, Tyrl2, Trp 14 and Phe17. Studies with Ggly fragments indicated that ferric ions bind via the pentaglutamate sequence, which is necessary but not sufficient for full activity Selective replacement of some or all of the glutamates results in a reduction in ferric ion binding, and complete loss of biological activity. Conclusion: Our results are consistent with the hypothesis that ferric ion binding is necessary for biological activity

  12. In-vivo biological activity and glycosylation analysis of a biosimilar recombinant human follicle-stimulating hormone product (Bemfola compared with its reference medicinal product (GONAL-f.

    Directory of Open Access Journals (Sweden)

    Renato Mastrangeli

    Full Text Available Recombinant human follicle-stimulating hormone (r-hFSH is widely used in fertility treatment. Although biosimilar versions of r-hFSH (follitropin alfa are currently on the market, given their structural complexity and manufacturing process, it is important to thoroughly evaluate them in comparison with the reference product. This evaluation should focus on how they differ (e.g., active component molecular characteristics, impurities and potency, as this could be associated with clinical outcome. This study compared the site-specific glycosylation profile and batch-to-batch variability of the in-vivo bioactivity of Bemfola, a biosimilar follitropin alfa, with its reference medicinal product GONAL-f. The focus of this analysis was the site-specific glycosylation at asparagine (Asn 52 of the α-subunit of FSH, owing to the pivotal role of Asn52 glycosylation in FSH receptor (FSHR activation/signalling. Overall, Bemfola had bulkier glycan structures and greater sialylation than GONAL-f. The nominal specific activity for both Bemfola and GONAL-f is 13,636 IU/mg. Taking into account both the determined potency and the nominal amount the average specific activity of Bemfola was 14,522 IU/mg (105.6% of the nominal value, which was greater than the average specific activity observed for GONAL-f (13,159 IU/mg; 97.3% of the nominal value; p = 0.0048, although this was within the range stated in the product label. A higher batch-to-batch variability was also observed for Bemfola versus GONAL-f (coefficient of variation: 8.3% vs 5.8%. A different glycan profile was observed at Asn52 in Bemfola compared with GONAL-f (a lower proportion of bi-antennary structures [~53% vs ~77%], and a higher proportion of tri-antennary [~41% vs ~23%] and tetra-antennary structures [~5% vs <1%]. These differences in the Asn52 glycan profile might potentially lead to differences in FSHR activation. This, together with the greater bioactivity and higher batch-to-batch variability

  13. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A Review on Chemical Constituents and Biological Activities of the ...

    African Journals Online (AJOL)

    The current review is aimed to deliver some updates on the ethnobotany, phytochemistry and biological activities of Beilschmiedia species in order to throw more light on their therapeutic potentials and future research priorities. Phytochemical studies on Beilschmiedia genus yielded essential oils, endiandric acid ...

  16. Secondary Metabolites from Inula britannica L. and Their Biological Activities

    Directory of Open Access Journals (Sweden)

    Yoon-Ha Kim

    2010-03-01

    Full Text Available Inula britannica L., family Asteraceae, is used in traditional Chinese and Kampo Medicines for various diseases. Flowers or the aerial parts are a rich source of secondary metabolites. These consist mainly of terpenoids (sesquiterpene lactones and dimmers, diterpenes and triterpenoids and flavonoids. The isolated compounds have shown diverse biological activities: anticancer, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities. This review provides information on isolated bioactive phytochemicals and pharmacological potentials of I. britannica.

  17. Electro-activation of sweet defatted whey: Impact on the induced Maillard reaction products and bioactive peptides.

    Science.gov (United States)

    Kareb, Ourdia; Gomaa, Ahmed; Champagne, Claude P; Jean, Julie; Aïder, Mohammed

    2017-04-15

    Electro-activation was used to add value to sweet defatted whey. This study aimed to investigate and to characterize the bioactive compounds formed under different electro-activation conditions by molecular and proteomic approaches. The effects of electric current intensity (400, 500 or 600mA) and whey concentration (7, 14 or 21% (w/v)) as a function of the electro-activation time (0, 15, 30 or 45min) were evaluated. The targeted dependent variables were the formation of Maillard reaction products (MRPs), protein hydrolysates and glycated compounds. It was shown that the MRPs derived from electro-activated whey at a concentration of 14% had the highest potential of biological activity. SDS-PAGE analyses indicated the formation of hydrolysates and glycated compounds with different molecular weight distributions. FTIR indicated the predominance of intermediate MRPs, such as the Schiff base compounds. LC-MS/MS and proteomics analysis showed the production of multi-functional bioactive peptides due to the hydrolysis of whey proteins. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  18. Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2012-01-01

    The main objective of this study was to use the fermentability test to investigate the feasibility of applying various dilute acids in the pretreatment of barley straw for biological hydrogen production. At a fixed acid loading of 1% (w/w dry matter) 28-32% of barley straw was converted to soluble

  19. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  20. Gifted and Talented Students' Views about Biology Activities in a Science and Art Center

    Science.gov (United States)

    Özarslan, Murat; Çetin, Gülcan

    2018-01-01

    The aim of the study was to determine gifted and talented students' views about biology activities in a science and art center. The study was conducted with 26 gifted and talented students who studied at a science and art center in southwestern Turkey. Students studied animal and plant genus and species in biology activities. Data were collected…

  1. Biological activities and phytochemical profile of Passiflora mucronata from the Brazilian restinga

    Directory of Open Access Journals (Sweden)

    Marlon H. de Araujo

    Full Text Available ABSTRACT In general, Passiflora species have been reported for their folk medicinal use as sedative and anti-inflammatory. However, P. caerulea has already been reported to treat pulmonary diseases. Severe pulmonary tuberculosis, generally caused by Mycobacterium tuberculosis strains resistant to multiple drugs, can lead to deleterious inflammation and high mortality, encouraging new approaches in drug discovery. Thus, the aim of this work was to evaluate the Passiflora mucronata Lam., Passifloraceae, potential for tuberculosis treatment. Specifically, related to antimycobacterial activity and anti-inflammatory related effects (based on inhibition of nitric oxide, tumor necrosis factor-alpha production and antioxidant potential, as well as the chemical profile of P. mucronata. High performance liquid chromatography coupled with diode-array ultraviolet and mass spectrometer analyses of crude hydroalcoholic extract and ethyl acetate fraction showed the presence of flavonoids. Ethyl acetate fraction showed to be as antioxidant as Ginkgo biloba standard extract with EC50 of 14.61 ± 1.25 µg/ml. One major flavonoid isolated from ethyl acetate fraction was characterized as isoorientin. The hexane fraction and its main isolated compound, the triterpene β-amyrin, exhibited significant growth inhibitory activity against Mycobacterium bovis BCG (MIC50 1.61 ± 1.43 and 3.93 ± 1.05 µg/ml, respectively. In addition, Passiflora mucronata samples, specially hexane and dichloromethane fractions, as well as pure β-amyrin, showed a dose-related inhibition of lipopolysaccharide (LPS-induced nitric oxide production. In conclusion, Passiflora mucronata presented relevant biological potential and should be considered for further studies using in vivo pulmonary tuberculosis model.

  2. The prospects of synthetic biology for the production of fuel from biomass

    International Nuclear Information System (INIS)

    Schaechter, V.

    2013-01-01

    When applied to engineering the metabolism of microorganisms, synthetic biology produces a broad spectrum of biomolecules from carbohydrates and, in the near future, from the biomass in general. The markets for biofuels and for chemicals are thus hooked up through a common technological core. Synthetic biology also opens new possibilities for switching from different types of biomass to different products, thus allowing for more flexibility in development strategies and eventually in industrial operations. This opening is welcomed even though the economic and societal environments hardly favors biofuels. A few more years of research and development are needed to bring these new possibilities to industrial maturity. Advanced biofuels will pass the threshold at which they become profitable and will no longer need subsidies. (author)

  3. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    Science.gov (United States)

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  4. NEW DERIVATIVES OF 2-R1-N-(5-R-1,3,4-THIADIAZOL-2-YL-BENZOLSULFONAMIDES: SYNTHESIS, PHYSICOCHEMICAL PROPERTIES AND BIOLOGICAL ACTIVITY PREDICTION

    Directory of Open Access Journals (Sweden)

    Sych I.V.

    2015-12-01

    Full Text Available Introduction: The analysis of modern literature, including overseas one, showed that a lot of the scientific researches is devoted to finding and creating biologically active compounds on base 1,3,4-thiadiazole. Derivatives of 1,3,4-thiadiazole are the large group of heterocyclic compounds with high rates of antimicrobial, antituberculosis, antidiabetic, antineoplastic and anticonvulsant activity. Material and methods: The purpose of this study was the expansion of sulfone derivatives substituted nitrogen-containing heterocyclic systems through the synthesis of 2-R1-N (5-R-1,3,4-thiadiazol-2-ilbenzolsulfonamides and prediction their pharmacological activity for future planning pharmacological screening. Synthesis of semi-products 2-amino-5-R-1,3,4-thiadiazoles was carried out by cyclization thiosemicarbazide and substituted derivatives of carboxylic acids in the presence of concentrated sulfuric acid. The synthesis of target compounds 2-R1-N(5-R-1,3,4-thiadiazol-2-ylbenzolsulfon-amides was carried out by N-acylation of 2-amino-5R-1,3,4-thiadiazole substituted benzolsul-fochlorides in the presence of anhydrous pyridine. The reaction proceeds by the classic SN2-mechanism. The resulting compounds are white crystalline substances, soluble in alcohol, chloroform and acetone, difficult to dissolve in water. Yields of obtained compounds was satisfactory (76-84%. The purity of the obtained compounds was determined by TLC. The structure of the obtained compounds was proved by elemental analysis, IR methods and 1H NMR spectroscopy. NMR 1H spectra were recorded at Bruker WM spectrometer (200 MHz; solvent DMSO-d6; chemical shifts were in ppm, internal standard (TMS (tetramethylsilane was used. The prognosis of biological activity for obtained compounds were carried out using the program PASS (Prediction of Activity Spectra for Substances in order to plan the further pharmacological screening. The program PASS predicts more than 500 kinds of biological

  5. Study On DPPH Free Radical - Scavenging Activity Of Antioxidant Compounds In Plants Composing BIN-5 Biological Active Preparation

    Directory of Open Access Journals (Sweden)

    Purevjav Urjintseren

    2015-08-01

    Full Text Available Recently there has been common trend among people to refuse from food and medications produced via synthetic method but try to consume natural products as much as possible instead. In this regard wild berries and medicinal plants are considered to be highly essential for human health as these kinds of plants serve as rich sources of biological active substances-phenol compounds. As a result of conducting research on source and spread of herbs which are commonly used as anti-diabetic medication we have developed a technological method to extract preparations from medicinal herbs such as Peony Paeonia lactiflora Pall Dandelion Taraxacum officinalis Wigg. Huckleberry Vaccinium myrtillus L Blueberry Vaccinium uliginosum L Cranberry Vaccinium vitisidaea L and Stinging nettles Urtica dioica accordingly studied chemical composition and antioxidant activity and conducted pharmacological study. With the use of Folin Denis amp Folin Ciocalteu reagent methodit was determined that the content of polyphenol compounds was 4.14-5.17 and 27.5 101.5mgml. The study was also aimed to investigate DPPH free radical-scavenging activity in connection with term temperature and concentration to identify the most rational technological procedure. As a result of study it was identified that free radical-scavenging activity of herbs selected for the study was generally estimated at 564.25-1750.00 mcgml whereas antioxidant activity of solvents with 2-10 mgml concentration was 417.20-1750.00 mcg ml respectively. This shows that such activity is dependent on concentration. However in temperature of 30 1000amp1057 degrees their activity has slowly been decreased by 1750 mcgml 476.7mcgml depending on temperature. Regarding the stinging nettles the activity was grown directly dependent from temperature. DPHH free radical-scavenging activity was gradually increased in 1-10 minutes but was relatively stable and active in 11-16 minutes.

  6. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Science.gov (United States)

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  7. Influence of basin-scale and mesoscale physical processes on biological productivity in the Bay of Bengal during the summer monsoon

    Science.gov (United States)

    Muraleedharan, K. R.; Jasmine, P.; Achuthankutty, C. T.; Revichandran, C.; Dinesh Kumar, P. K.; Anand, P.; Rejomon, G.

    2007-03-01

    Physical forcing plays a major role in determining biological processes in the ocean across the full spectrum of spatial and temporal scales. Variability of biological production in the Bay of Bengal (BoB) based on basin-scale and mesoscale physical processes is presented using hydrographic data collected during the peak summer monsoon in July-August, 2003. Three different and spatially varying physical processes were identified in the upper 300 m: (I) anticyclonic warm gyre offshore in the southern Bay; (II) a cyclonic eddy in the northern Bay; and (III) an upwelling region adjacent to the southern coast. In the warm gyre (>28.8 °C), the low salinity (33.5) surface waters contained low concentrations of nutrients. These warm surface waters extended below the euphotic zone, which resulted in an oligotrophic environment with low surface chlorophyll a (0.12 mg m -3), low surface primary production (2.55 mg C m -3 day -1) and low zooplankton biovolume (0.14 ml m -3). In the cyclonic eddy, the elevated isopycnals raised the nutricline upto the surface (NO 3-N > 8.2 μM, PO 4-P > 0.8 μM, SiO 4-Si > 3.5 μM). Despite the system being highly eutrophic, response in the biological activity was low. In the upwelling zone, although the nutrient concentrations were lower compared to the cyclonic eddy, the surface phytoplankton biomass and production were high (Chl a - 0.25 mg m -3, PP - 9.23 mg C m -3 day -1), and mesozooplankton biovolume (1.12 ml m -3) was rich. Normally in oligotrophic, open ocean ecosystems, primary production is based on ‘regenerated’ nutrients, but during episodic events like eddies the ‘production’ switches over to ‘new production’. The switching over from ‘regenerated production’ to ‘new production’ in the open ocean (cyclonic eddy) and establishment of a new phytoplankton community will take longer than in the coastal system (upwelling). Despite the functioning of a cyclonic eddy and upwelling being divergent (transporting of

  8. Allobetulin and Its Derivatives: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Talgat S. Seitembetov

    2011-03-01

    Full Text Available This review covers the chemistry of allobetulin analogs, including their formation by rearrangement from betulin derivatives, their further derivatisation, their fusion with heterocyclic rings, and any further rearrangements of allobetulin compounds including ring opening, ring contraction and ring expansion reactions. In the last part, the most important biological activities of allobetulin derivatives are listed. One hundred and fifteen references are cited and the relevant literature is covered, starting in 1922 up to the end of 2010.

  9. Solid recovered fuel production through the mechanical-biological treatment of wastes

    OpenAIRE

    Velis, C. A.

    2010-01-01

    This thesis is concerned with the production of solid recovered fuel (SRF) from municipal solid waste using mechanical biological treatment (MBT) plants. It describes the first in-depth analysis of a UK MBT plant and addresses the fundamental research question: are MBT plants and their unit operations optimised to produce high quality SRF in the UK? A critical review of the process science and engineering of MBT provides timely insights into the quality management and standa...

  10. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  11. Cadmium determination in biological samples using neutron activation analysis with radiochemical separations

    International Nuclear Information System (INIS)

    Munoz A, Luis; Gras R, Nuri

    2005-01-01

    Chile has 7500 km of coastline on the Southern Pacific ocean,with about 4500 km of continental coastline that contains a variety of different geographical zones.This variety means that there is a great diversity of marine resources such as fish, shellfish and seaweeds. The utilization of these resources has been increasing in recent years making this sector an economically important one. The catch as of May 2002 came to 1.9 million tons and exports of the different species amounted to US$611.5 million as of April.But this important economic resource is being threatened by the technical demands imposed by importing countries, mainly the specific requirements for sanitary certification for fishery export products, depending on the markets of destination. The chemical element cadmium is one of the most strictly controlled elements due some shellfish accumulate a large amount of this element and to its high toxicity. The Chilean standard's analytical procedures for cadmium determination in hydro biological products, which must be met by laboratories that certify and control these products for export, are now being evaluated. Through its Chemical Metrology Unit, the Chilean Nuclear Energy Commission is strongly supporting this sector by preparing the secondary reference or control materials, and it has developed and implemented nuclear analytical methods for the certification of these materials, which will be used mostly in collaborative studies. This work describes the methodology developed for the determination of cadmium in biological samples, particularly in shellfish and fish. The method is based on neutron activation analysis with radiochemical separations, using the radioisotopes 115 Cd and 115m In, generated in the samples by bombarding with neutrons in a nuclear reactor. The samples were digested at 110 o C with H 2 SO 4 and H 2 O 2 and then the radioactive cadmium element was separated from the other elements present in the samples using a Bio Rad AG 2-X8

  12. Influence of radiation on the content of biologically active substances in herbal raw materials. Pharmacological activity of herbal drugs after microbiological decontamination by irradiation

    International Nuclear Information System (INIS)

    Migdal, W.; Owczarczyk, H.B.

    2005-01-01

    Several thousand tons of medical herbs are produced annually by pharmaceutical industry in Poland. This product should be of highest quality and microbial purity. Recently chemical methods of decontamination are recognized as less safe, thus irradiation technique was chosen to replace them in use. In the Institute of Nuclear Chemistry and Technology research work on microbiological decontamination of herbal raw materials and herbal drugs by irradiation has been carried out since 1996. It was shown that using ionizing radiation (a dose 10 kGy) can obtain satisfactory results of microbiological decontamination of these products. The content of biologically substances such a essential oils, flavonoids, glycosides, anthocyans, antra-compounds, poliphenoloacids, triterpene saponins, oleanosides and plants mucus did not change significantly after irradiation. Pharmacological activity of herbal drugs has been found satisfactory after microbiological decontamination by irradiation. (author)

  13. Expression and biological activity of the cystine knot bioinsecticide PA1b (Pea Albumin 1 Subunit b.

    Directory of Open Access Journals (Sweden)

    Vanessa Eyraud

    Full Text Available The PA1b (Pea Albumin 1, subunit b peptide is an entomotoxin extract from Legume seeds with lethal activity on several insect pests, such as mosquitoes, some aphids and cereal weevils. This 37 amino-acid cysteine-rich peptide has been, until now, obtained by biochemical purification or chemical synthesis. In this paper, we present our results for the transient production of the peptide in Nicotiana benthamiana by agro-infiltration, with a yield of about 35 µg/g of fresh leaves and maximum production 8 days after infiltration. PA1b is part of the PA1 gene which, after post-translational modifications, encodes two peptides (PA1b and PA1a. We show that transforming tobacco with the PA1b cDNA alone does not result in production of the toxin and, in fact, the entire cDNA is necessary, raising the question of the role of PA1a. We constructed a PA1-cassette, allowing for the quick "cut/paste" of different PA1b mutants within a conserved PA1 cDNA. This cassette enabled us to produce the six isoforms of PA1b which exist in pea seeds. Biological tests revealed that all the isoforms display similar activity, with the exception of one which is inactive. The lack of activity in this isoform led us to conclude that the amphiphilic nature of the peptide is necessary for activity. The possible applications of this expression system for other cysteine-rich biomolecules are discussed.

  14. Serpins in arthropod biology

    OpenAIRE

    Meekins, David A.; Kanost, Michael R.; Michel, Kristin

    2016-01-01

    Serpins are the largest known family of serine proteinase inhibitors and perform a variety of physiological functions in arthropods. Herein, we review the field of serpins in arthropod biology, providing an overview of current knowledge and topics of interest. Serpins regulate insect innate immunity via inhibition of serine proteinase cascades that initiate immune responses such as melanization and antimicrobial peptide production. In addition, several serpins with anti-pathogen activity are ...

  15. Metabolism and biological activity of 24,25-dihydroxyvitamin D3 in the chick

    International Nuclear Information System (INIS)

    Holick, M.F.; Baxter, L.A.; Schraufrogel, P.K.; Tavela, T.E.; DeLuca, H.F.

    1976-01-01

    The vitamin, 24R,24,25-dihydroxyvitamin D 3 , is capable of inducing a minimal intestinal calcium transport response in chicks when compared to an equal amount of 25-hydroxyvitamin D 3 . 1,24,25-Trihydroxyvitamin D 3 is also less active than 1,25-dihydroxyvitamin D 3 , and its activity is much shorter lived than that of 1,25-dihydroxyvitamin D 3 . A comparison of the metabolism of 25-hydroxy[26,27- 3 H]vitamin D 3 and 24,25-dihydroxy[26,27- 3 H]vitamin D 3 in the rat and chick shows that 24,25-dihydroxyvitamin D 3 and 1,24,25-trihydroxyvitamin D 3 disappear at least 10 times more rapidly from the blood and intestine of chicks. Furthermore, examination of the excretory products from both of these species demonstrates that chicks receiving a single dose of 24,25-dihydroxy[26,27- 3 H]vitamin D 3 excrete 66% of the total radioactivity by 48 hours, whereas rats receiving the same dose excrete less than one-half that amount. These results demonstrate that 24,25-dihydroxyvitamin D 3 is considerably less biologically active in the chick than in the rat, probably due to more rapid metabolism and excretion

  16. Radiometric microbiologic assay for the biologically active forms of niacin

    Energy Technology Data Exchange (ETDEWEB)

    Kertcher, J.A.; Guilarte, T.R.; Chen, M.F.; Rider, A.A.; McIntyre, P.A.

    1979-05-01

    A radiometric microbiologic assay has been developed for the determination of niacin in biologic fluids. Lactobacillus plantarum produced /sup 14/CO/sub 2/ from L-(U-/sup 14/C) malic acid in quantities proportional to the amount of niacin present. The assay is specific for the biologically active forms of niacin in humans. Thirty normal hemolysates were analyzed and the values ranged from 13.0 to 17.8 ..mu..g niacin/ml RBC (mean = 15.27 +- 1.33 s.d.). Good recovery and reproducibility studies were obtained with this assay. On thirty blood samples, correlation was excellent between the radiometric and the conventional turbidimetric assays.

  17. Biogeosystem technique as a method to overcome the Biological and Environmental Hazards of modern Agricultural, Irrigational and Technological Activities

    Science.gov (United States)

    Kalinitchenko, Valery; Batukaev, Abdulmalik; Zinchenko, Vladimir; Zarmaev, Ali; Magomadov, Ali; Chernenko, Vladimir; Startsev, Viktor; Bakoev, Serojdin; Dikaev, Zaurbek

    2014-05-01

    Modern challenge for humanity is to replace the paradigm of nature use and overcome environmental hazards of agronomy, irrigation, industry, and other human activities in biosphere. It is utterly reasonable to stop dividing biosphere on shares - the human habitat and the environment. In the 21st century it is an outdated anthropocentrism. Contradicting himself to biosphere Humankind has the problems. The new paradigm of biosphere control by methods of Biogeosystem technique is on agenda of Humankind. Key directions of Biogeosystem technique. Tillage. Single rotary milling 20…30-50…60 sm soil layer optimizes the evolution and environment of soil, creates a favorable conditions for the rhizosphere, increases the biological productivity of biosphere by 30-50% compared to the standard agricultural practices for the period up to 40 years. Recycle material. Recycling of mineral and organic substances in soil layer of 20…30-50…60 sm in rotary milling soil processing provides wastes clean return to biosphere. Direct intrasoil substances synthesis. Environmentally friendly robot wasteless nanotechnology provides direct substances synthesis, including fertilizers, inside the soil. It eliminates the prerequisites of the wastes formation under standard industrial technologies. Selective substance's extraction from soil. Electrochemical robotic nanotechnology provides selective substances extraction from soil. The technology provides recovery, collection and subsequent safe industrial use of extracted substances out of landscape. Saving fresh water. An important task is to save fresh water in biosphere. Irrigation spends water 4-5 times more of biological requirements of plants, leads to degradation of soil and landscape. The intrasoil pulse continuous-discrete paradigm of irrigation is proposed. It provides the soil and landscape conservation, increases the biological productivity, save the fresh water up to 10-20 times. The subsurface soil rotary processing and

  18. Physical Activity: A Tool for Improving Health (Part 1--Biological Health Benefits)

    Science.gov (United States)

    Gallaway, Patrick J.; Hongu, Nobuko

    2015-01-01

    Extension educators have been promoting and incorporating physical activities into their community-based programs and improving the health of individuals, particularly those with limited resources. This article is the first of a three-part series describing the benefits of physical activity for human health: 1) biological health benefits of…

  19. Applied research and development of neutron activation analysis - The study on human health and environment by neutron activation analysis of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Yeon; Yoo, Jong Ik; Lee, Jae Kwang; Lee, Sung Jun; Lee, Sang Sun; Jeon, Ki Hong; Na, Kyung Won; Kang, Sang Hun [Yonsei University, Seoul (Korea)

    2000-04-01

    With the development of the precise quantitative analytical method for the analysis of trace elements in the various biological samples such as hair and food, evaluation in view of health and environment to the trace elements in various sources which can be introduced inside human body was done. The trace elemental distribution in Korean total diet and representative food stuff was identified first. With the project the elemental distributions in supplemental healthy food and Korean and Chinese origin oriental medicine were identified. The amount of trace elements ingested with the hair analysis of oriental medicine takers were also estimated. The amounts of trace elements inhaled with the analysis of foundry air, blood and hair of foundry workers were also estimated. The basic estimation method in view of health and environment with the neutron activation analysis of biological samples such as foods and hair was established with the result. Nationwide usage system of the NAA facility in Hanaro in many different and important areas of biological area can be initiated with the results. The output of the project can support public heath, environment, and medical research area. The results can be applied for the process of micronutrients enhanced health food production and for the health safety and health status enhancement with the additional necessary data expansion and the development of various evaluation technique. 19 refs., 7 figs., 23 tabs. (Author)

  20. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization

    Science.gov (United States)

    Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.

    2013-01-01

    Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296