WorldWideScience

Sample records for biological wastewater treatment

  1. Biological wastewater treatment in brewhouses

    OpenAIRE

    Voronov Yuriy Viktorovich; Bertsun Svetlana Petrovna

    2014-01-01

    In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste wate...

  2. Biological wastewater treatment in brewhouses

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich

    2014-03-01

    Full Text Available In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste water from the food companies have high concentration of various organic contaminants (fats, proteins, starch, sugar, etc.. For such wastewater, high rates of suspended solids, grease and other contaminants are characteristic. Wastewater food industry requires effective purification flowsheets using biological treatment facilities. At the moment methods for the anaerobic-aerobic purification are applied. One of such methods is the treatment of wastewater at ASB-reactor (methane reactor and the further tertiary treatment on the OSB-reactor (aeration. Anaerobic process means water treatment processes in anoxic conditions. The anaerobic treatment of organic contamination is based on the process of methane fermentation - the process of converting substances to biogas. The role of biological effluent treatment is discussed with special attention given to combined anaerobic/aerobic treatment. Combining anaerobic pre-treatment with aerobic post-treatment integrates the advantages of both processes, amongst which there are reduced energy consumption (net energy production, reduced biological sludge production and limited space requirements. This combination allows for significant savings for operational costs as compared to complete aerobic treatment without compromising the required discharge standards. Anaerobic treatment is a proven and energy efficient method to treat industrial wastewater effluents. These days, more and more emphasis is laid on low energy use, a

  3. Developments in Biological Treatment of Industrial Wastewaters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The characteristics and biological treatment technologies of several kinds of industrial wastewater are summarised. Biological treatment of industrial wastewater is a well-established system with applications going back for over a century. However, developments are still taking place but at the design stage, more emphasis will be placed on small "footprint" systems, odour control and minimization of excess sludge production.

  4. Enhancing Biological Wastewater Treatment with Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 陈东辉; 朱珺

    2003-01-01

    Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.

  5. Intermittent Aeration in Biological Treatment of Wastewater

    Directory of Open Access Journals (Sweden)

    H. Doan

    2009-01-01

    Full Text Available Problem statement: E-coating process is widely used to provide a protective coating layer on metal parts in the automotive and metal finishing industry. The wastewater from the coating process contains organic compounds that are used in the cleaning, pretreatment and coating steps. Organic pollutants can be removed biologically. In the aerobic biological treatment, water aeration accounts for a significant portion of the total operating cost of the treatment process. Intermittent aeration is thus of benefit since it would reduce the energy consumption in the wastewater treatment. In the present study, wastewater from an electro-coating process was treated biologically using a packed column as an aerator where the wastewater was aerated by a countercurrent air flow. The objective was to obtain an optimum aeration cycle. Approach: Intermittent aeration time was varied at different preset cycles. An operational optimum of the aeration time (or air-water contacting time in the column was determined from the BOD5 removal after a certain treatment period. For continuous aeration of the wastewater, the air-liquid contacting time in the column was 52 min for 24 h of treatment. A unit energy consumption for pumping liquid and air, which was defined as the energy consumption per percent BOD5 removed, was used as a criterion to determine the optimum contacting time. Results: Optimum air-liquid contacting times were found to be about 38, 26 and 22 min for the treatment times of 24, 48 and 72 h, consecutively. This indicates that 27-58% saving on the unit energy consumption can be achieved using intermittent aeration of the wastewater. On the basis of the overall BOD5 removal, 17% and 23% savings in energy were observed with the intermittent aeration as compared to the continuous aeration of the wastewater for 48 and 72 h. Conclusion: The results obtained indicate that an appropriate intermittent aeration cycle can bring about a substantial energy saving

  6. Biological Hazards in Sewage and Wastewater Treatment Plants

    Science.gov (United States)

    Biological Hazards in Sewage and Wastewater Treatment Plants Hazard Alert During construction and maintenance of sewage and wastewater plants, workers may be killed by drowning, trench collapses, falls, ...

  7. Intermittent Aeration in Biological Treatment of Wastewater

    OpenAIRE

    Doan, H.; Lohi, A.

    2009-01-01

    Problem statement: E-coating process is widely used to provide a protective coating layer on metal parts in the automotive and metal finishing industry. The wastewater from the coating process contains organic compounds that are used in the cleaning, pretreatment and coating steps. Organic pollutants can be removed biologically. In the aerobic biological treatment, water aeration accounts for a significant portion of the total operating cost of the treatment process. Intermittent aeration is ...

  8. Research Progress in Biological Package for Aquaculture Wastewater Treatment

    OpenAIRE

    Mu, Xi-Dong; Yin-chang Hu; Guang-jun Wang; Jun Chen; Jian-ren Luo

    2010-01-01

    The classification of biological package was reviewed in the present paper, and the application status of variousfillers for aquaculture wastewater treatment was introduced in detail. The developing direction of biologicalpackage in the field of aquaculture wastewater treatment was also presented.

  9. Dewatering in biological wastewater treatment: A review.

    Science.gov (United States)

    Christensen, Morten Lykkegaard; Keiding, Kristian; Nielsen, Per Halkjær; Jørgensen, Mads Koustrup

    2015-10-01

    Biological wastewater treatment removes organic materials, nitrogen, and phosphorus from wastewater using microbial biomass (activated sludge, biofilm, granules) which is separated from the liquid in a clarifier or by a membrane. Part of this biomass (excess sludge) is transported to digesters for bioenergy production and then dewatered, it is dewatered directly, often by using belt filters or decanter centrifuges before further handling, or it is dewatered by sludge mineralization beds. Sludge is generally difficult to dewater, but great variations in dewaterability are observed for sludges from different wastewater treatment plants as a consequence of differences in plant design and physical-chemical factors. This review gives an overview of key parameters affecting sludge dewatering, i.e. filtration and consolidation. The best dewaterability is observed for activated sludge that contains strong, compact flocs without single cells and dissolved extracellular polymeric substances. Polyvalent ions such as calcium ions improve floc strength and dewaterability, whereas sodium ions (e.g. from road salt, sea water intrusion, and industry) reduce dewaterability because flocs disintegrate at high conductivity. Dewaterability dramatically decreases at high pH due to floc disintegration. Storage under anaerobic conditions lowers dewaterability. High shear levels destroy the flocs and reduce dewaterability. Thus, pumping and mixing should be gentle and in pipes without sharp bends. PMID:25959073

  10. Biological treatment of shrimp production wastewater.

    Science.gov (United States)

    Boopathy, Raj

    2009-07-01

    Over the last few decades, there has been an increase in consumer demand for shrimp, which has resulted in its worldwide aquaculture production. In the United States, the stringent enforcement of environmental regulations encourages shrimp farmers to develop new technologies, such as recirculating raceway systems. This is a zero-water exchange system capable of producing high-density shrimp yields. The system also produces wastewater characterized by high levels of ammonia, nitrate, nitrite, and organic carbon, which make waste management costs prohibitive. Shrimp farmers have a great need for a waste management method that is effective and economical. One such method is the sequencing batch reactor (SBR). A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same reactor to take the place of multiple reactors in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor system. This is achieved through reactor operation in sequences, which includes fill, react, settle, decant, and idle. A laboratory scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentrations of carbon and nitrogen. By operating the reactors sequentially, namely, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon. Ammonia in the waste was nitrified within 4 days. The denitrification of nitrate was achieved by the anoxic process, and 100% removal of nitrate was observed within 15 days of reactor operation. PMID:19396482

  11. DEVELOPMENT OF TECHNOLOGY OF MODERNIZATION OF BIOLOGICAL WASTEWATER TREATMENT PLANTS

    OpenAIRE

    Gogina Elena Sergeevna; Kulakov Artem Alekseevich

    2012-01-01

    This paper addresses the biological treatment of wastewater associated with removal of nitrogen. Results of laboratory experiments that involve nitrification and denitrification are also presented and analyzed in the paper. Discharges of inadequately treated and untreated wastewater have a negative impact on the aquatic ecosystem. The biological treatment of the wastewater that includes denitrification is strongly influenced by external factors. They need thorough research at t...

  12. Biological Treatment of Wastewater by Sequencing Batch Reactors

    OpenAIRE

    Tsvetko Prokopov; Dasha Mihaylova; Nikolay Mihalkov

    2014-01-01

    In the present paper the operation of wastewater treatment plant (WWTP) in the town of Hisarya which includes a biological stage with aeration basins of cyclic type (SBR-method) was studied. The values of the standard indicators of input and output water from the wastewater treatment plant were evaluated. Moreover, the reached effects due to the biological treatment of the wastewater in terms of the COD (95.7%), BOD5 (96.6%), total nitrogen (81.3%), total phosphorus (53.7%) and suspended soli...

  13. Process engineering in biological aerobic waste-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilescu, M.; Macoveanu, M. [Technical Univ. Gh. Asachi, Iasi (Romania). Dept. of Environmental Engineering

    1999-11-01

    A non-comprehensive review of several technical developments in the field of aerobic biological waste-water treatment engineering is carried out, considering the active role the engineers have to play in this field. This paper brings together conventional and advanced problems in the field of aerobic biological waste-water treatment. Such an overview of biological waste-water treatment also precedes comments on some important aspects concerning the microorganisms responsible for waste-water treatment as well as consideration of the application of fundamentals and kinetics to the analysis of the biological processes used most commonly for aerobic biological waste-water treatment. A survey of the development of the biological activated-sludge process and some modifications are given. Some problems implied in the conventional activated-sludge waste-water treatment are analyzed, considering conventional processes and bioreactor models (the continuous stirred-tank reactor model and the plug-flow reactor models of the activated-sludge process) as well as aerated lagoons. Further, modifications of the activated-sludge process are presented. These include additional details on the bioreactor progress and applications, with emphasis on aspects concerning airlift bioreactors and their variants, deep-shaft bioreactors and reciprocating jet bioreactors which are considered as the third generation of bioreactors owing to their important advantages in design, operation and performance in waste-water treatment. Sequencing-batch reactors and aerobic digestion processes, including conventional aerobic digestion, high-purity oxygen digestion, thermophilic aerobic digestion and cryophylic aerobic digestion are also reviewed. Finally, some aspects regarding the operational factors that are involved in the selection of the reactor type are included. (orig.)

  14. United membrane biological reactor in the treatment of wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ji-ti; YAN Bin; DU Cui-hong; DONG Xiao-li

    2003-01-01

    The united membrane biological reactor(UMBR) was studied for the treatment of some simulate and municipal wastewater . The removal efficiency for COD and turbidity are greater than 80% and 99% respectively. Effluent COD is less than 100 mg/L while turbidity less than 5. The removal of LAS in bath wastewater is greater than 70%. In treatment of dinning-hall wastewater, removal of fatty oil is greater than 90%, and its concentration in effluent is less than 5 mg/L. The match of biological reactor and the membrane separation component were calculated. The stable performance of wastewater treatment can be maintained by the optimization of operation conditions and the cleanout of membranes.

  15. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    OpenAIRE

    Lopez-Vazquez, CM; Kubare, M.; Saroj, DP; Chikamba, C; Schwarz, J.; Daims, H.; Brdjanovic, D.

    2013-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biologic...

  16. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    OpenAIRE

    Rongjun Su; Guangshan Zhang; Peng Wang; Shixiong Li; Ryan M. Ravenelle; JOHN C. CRITTENDEN

    2015-01-01

    Rotating biological contactors (RBC) are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW). The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%....

  17. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  18. Biological Treatment of Wastewater by Sequencing Batch Reactors

    Directory of Open Access Journals (Sweden)

    Tsvetko Prokopov

    2014-04-01

    Full Text Available In the present paper the operation of wastewater treatment plant (WWTP in the town of Hisarya which includes a biological stage with aeration basins of cyclic type (SBR-method was studied. The values of the standard indicators of input and output water from the wastewater treatment plant were evaluated. Moreover, the reached effects due to the biological treatment of the wastewater in terms of the COD (95.7%, BOD5 (96.6%, total nitrogen (81.3%, total phosphorus (53.7% and suspended solids (95.7% were established. It was concluded that the indexes of the treated water were significantly below the emission limits specified in the discharge permit

  19. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  20. Biological treatment and nanofiltration of denim textile wastewater for reuse

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan; Uzal, Nigmet; Yetis, Ulku [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey); Dilek, Filiz B. [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey)], E-mail: fdilek@metu.edu.tr

    2008-05-30

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 {+-} 2% and 84 {+-} 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 {+-} 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 {mu}m pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m{sup 2}/h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria.

  1. Biological treatment and nanofiltration of denim textile wastewater for reuse

    International Nuclear Information System (INIS)

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 ± 2% and 84 ± 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 ± 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 μm pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m2/h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria

  2. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    A Mohseni-Bandpi, H Bazari

    2004-10-01

    Full Text Available A bench scale aerobic Sequencing Batch Reactor (SBR was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optimum dissolved oxygen in the reactor was 2 to 3 mg/l and MLVSS was around 3000 mg/l. Easy operation, low cost and minimal sludge bulking condition make the SBR system an interesting option for the biological medium strength industrial wastewater treatment. The study demonstrated the capability of aerobic SBR for COD removal from dairy industrial wastewater.

  3. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Rongjun Su

    2015-01-01

    Full Text Available Rotating biological contactors (RBC are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW. The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%. Microscopic observations illustrated that there were various active microorganisms displayed in the biofilms and their distribution changed from stage to stage. Compared with activated sludge, the biofilms in this study have higher content of dry matter and are easier to dehydrate and settle. Compared with current commercial incineration processes or advanced oxidation processes, RBC can greatly reduce the treatment cost. This research shows RBC is effective for such an inherently biorecalcitrant wastewater even at low ambient temperature.

  4. Rotating biological contactors for wastewater treatment - A review

    OpenAIRE

    Hassard, Francis; Biddle, Jeremy R.; Cartmell, Elise; Jefferson, Bruce; Tyrrel, Sean F.; Stephenson, Tom

    2014-01-01

    Rotating biological contactors (RBCs) for wastewater treatment began in the 1970s. Removal of organic matter has been targeted within organic loading rates of up to 120 g m−2 d−1 with an optimum at around 15 g m−2 d−1 for combined BOD and ammonia removal. Full nitrification is achievable under appropriate process conditions with oxidation rates of up to 6 g m−2 d−1 reported for municipal wastewater. The RBC process has been adapted for denitrification with reported removal rates of up to 14 g...

  5. Characteristics of integrated biological aerated filter in municipal wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    HE Qiang; ZHANG Yu-ping; XU Jian-bin

    2005-01-01

    In this paper, the characteristics of integrated biological aerated filter (IBAF) applied to municipal wastewater treatment were studied in a pilot scale experiment. The experimental results showed that IBAF has high efficiencies in removing organic pollutants, such as CODCr and SS, in municipal wastewater. The removal rates of CODCr and SS can reach over 90% and 80%, respectively, when COD and SS in the influent are 234 mg L-1 and 112 mg L-1, hydraulic retention time (HRT) is 8 h, and the aerated intensity is in the range of (0.5 to 0.6) L m-2 s-1.

  6. Kinetic coefficients for the biological treatment of tannery wastewater

    International Nuclear Information System (INIS)

    Determination of kinetic coefficients for a particular wastewater is imperative for the rational design of biological treatment-facilities. The present study was undertaken with the objective of finding out kinetic coefficients for tannery wastewater. A bench-scale model of aerated lagoon, consisting of an aeration tank and final clarifier, was use to conduct the studies. The model was operated continuously for 96 days, by varying the detention times from 3 to 9 days. Influent for the aerated lagoon was settled tannery wastewater. Biochemical oxygen demand (BOD) of the influent and effluent and the mixed-liquor suspended solids (MLSS) of aeration tank were determined at various detention-times so as to generate data for kinetic coefficients. The kinetic coefficients k, Ks, Y and Ed were found to be 3.125 day/sup -1/, 488 mg/L, 0.64 and 0.035 day/sup -1/ respectively. Overall rate-constant of BOD, removal 'K' was also determined and was found to be 1.43 day/sup -1/. Kinetic coefficients were determined, at mean reactor-temperature of 30.2 degree C. These coefficients may be utilized for the design of biological-treatment facilities for tannery wastewater. (author)

  7. Benchmarking Combined Biological Phosphorus and Nitrogen Removal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jørgensen, Sten Bay

    2004-01-01

    This paper describes the implementation of a simulation benchmark for studying the influence of control strategy implementations on combined nitrogen and phosphorus removal processes in a biological wastewater treatment plant. The presented simulation benchmark plant and its performance criteria...... conditions respectively, the definition of performance indexes that include the phosphorus removal processes, and the selection of a suitable operating point for the plant. Two control loops were implemented: one for dissolved oxygen control using the oxygen transfer coefficient K(L)a as manipulated variable...... are to a large extent based on the already existing nitrogen removal simulation benchmark. The paper illustrates and motivates the selection of the treatment plant lay-out, the selection of the biological process model, the development of realistic influent disturbance scenarios for dry, rain and storm weather...

  8. RESEARCHES RELATED TO THE BIOLOGICAL STAGE FROM WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    I.C MOGA

    2013-03-01

    Full Text Available In the present study a model for the oxygen concentration profiles in a mobile bed biofilm reactor (MBBR is proposed. By using a material with a large specific surface area (m2/m3 high biological activity can be maintained using a relatively small reactor volume. Small parts made of special materials with density close to the water density, are immersed in the bioreactors. The biofilm carriers are kept in suspension and even mixed with the help of air bubbles generated by the aeration system. Water oxygenation is a mass transfer process of oxygen from gas/air to the liquid mass. It can be used in wastewater treatment in order to remove the organic matter, in the biological stage. The functioning of aerobic processes depends on the availability of sufficient quantities of oxygen. In wastewater treatment plants, submerged bubbles aeration is most frequently accomplished by dispersing air bubbles in the liquid. The main purpose of this study is to determine the concentration of dissolved oxygen using mathematical modeling and numerical simulations. The aim of the study is to find the optimum dimension and position of the aeration pipes for maintaining the oxygen concentration in the limits indicated in the literature. Experimental determinations (measurements of the DO concentration have also been realized. The oxygen profile concentration, in a MBBR reactor, was determined.

  9. Oilfield wastewater treatment by combined microfiltration and biological processes.

    Science.gov (United States)

    Campos, J C; Borges, R M H; Oliveira Filho, A M; Nobrega, R; Sant'Anna, G L

    2002-01-01

    This work deals with the treatment of offshore oilfield wastewater from the Campos Basin (Rio de Janeiro State, Brazil). After coarse filtration, this high saline wastewater was microfiltrated through mixed cellulose ester (MCE) membranes, resulting in average removals of COD, TOC, O&G and phenols of 35%, 25%, 92% and 35%, respectively. The permeate effluent was fed into a 1-L air-lift reactor containing polystyrene particles of 2mm diameter, used as support material. This reactor was operated for 210 days, at three hydraulic retention times (HRT): 48, 24 and 12h. Even when operated at the lowest HRT (12 h), removal efficiencies of 65% COD, 80% TOC, 65% phenols and 40% ammonium were attained. The final effluent presented COD and TOC values of 230 and 55 mg/L, respectively. Results obtained by gas chromatography analyses and toxicity tests with Artemia salina showed that a significant improvement in the effluent's quality was achieved after treatment by the combined (microfiltration/biological) process. PMID:11767743

  10. Biological control and management of the detoxication wastewater treatment technologies

    Directory of Open Access Journals (Sweden)

    Topalova Yana

    2007-01-01

    Full Text Available Detoxication technologies require the combination of theoretical and practical knowledge of xenobiotic biodegradation, wastewater treatment technologies, and management rules. The purpose of this complicated combination is to propose specialized strategies for detoxication, based on lab- and pilot-scale modeling. These strategies include preliminary created algorithms for preventing the risk of water pollution and sediments. The technologies and algorithms are essentially important outcome, applied in the textile, pharmaceutical, cosmetic, woodtreating, and oiltreating industries. In this paper four rehabilitation technologies for pretreatment of water contaminated by pentachlorophenol (PCP have been developed in the frame of the European and Bulgarian National projects. Emphasize is put on the biological systems and their potential of detoxication management. The light and transmission electron microscopy of the reconstructed activated sludges the microbial, kinetic and enzymological indicators are presented and approved as critical points in the biocontrol.

  11. Micropollutant removal from municipal wastewater: from conventional treatments to advanced biological processes

    OpenAIRE

    Margot, Jonas

    2015-01-01

    Many micropollutants present in municipal wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs), and may generate adverse effects on aquatic life. The objective of this thesis was to study and develop various options to improve micropollutant removal from municipal wastewaters. Various technologies were investigated, from conventional biological treatments to advanced physico-chemical and biological processes such as ozonati...

  12. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    OpenAIRE

    Naresh eSinghal; Octavio ePerez-Garcia

    2016-01-01

    Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes...

  13. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  14. Electrochemical Oxidation Using BDD Anodes Combined with Biological Aerated Filter for Biotreated Coking Wastewater Treatment

    OpenAIRE

    Wang, C.R.; Hou, Z. F.; M. R. Zhang; J. Qi; Wang, J.

    2015-01-01

    Coking wastewater is characterized by poor biodegradability and high microorganism toxicity. Thus, it is difficult to meet Grade I of Integrated Wastewater Discharge Standard of China by biological treatment technology; specifically, COD cannot meet above standard due to containing refractory organics. A novel coupling reactor, electrochemical oxidation using BDD anodes and biological aerated filter (BAF), has been developed for carbon and nitrogen removal from biotreated coking wastewater, f...

  15. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    mechanical, chemical and biological agents. Mechanical methods are based on the effect of physical forces. Chemical agents are based on chemical processes. Biological measures are based on natural laws and activities of living beings. Water saving and its rational use are some of the most effective ways of saving water from pollution. Water treatment Water treatment is done in two ways: by sedimentation and filtration. Dirt falling on the bottom is called deposition. The passage of clean water through the material is called filtering. Water containing dissolved substances is purified by distillation. To improve the taste of distilled water, aeration should be performed. The sun’s ultraviolet rays destroy biological pollutants. Mechanical, biological and chemical methods are used for water purification. Mechanical methods Mechanical methods are based on the removal of physical impurities from water and the action of natural forces. For this purpose we use: grids and sieves, sedimentation, flotation, filtration, centrifugation, sand sedimentation tanks, grease traps, primary sedimentation tanks and flow equalization tanks. Wastewater aeration equipment is also used within these facilities. Grids and Sieves Larger, insoluble and floating substances in wastewater are removed with grids and sieves. Sedimentation The application of grids and sieves as well as sand sedimentation tanks and grease traps can be viewed as a process of deposition using certain infrastructure facilities intended for this type of separation of impurities. Infrastructure facilities are sedimentation tanks. There are vertical, horizontal and radial flow sedimentation tanks. Flotation Particle resurfacing with bubbles of air is called flotation. The best effect is achieved by aeration of bubbles of smaller diameters in a larger area. Filtration Filtration is a process used in water conditioning to remove insoluble substances. During filtration, water passes through a layer of granular material placed on a

  16. An iron-facilitated chemical and biological process for phosphorus removal and recovery during wastewater treatment

    OpenAIRE

    Zhao, Kang; 趙鈧

    2013-01-01

    Phosphorus (P) is an important pollutant of concern in wastewater that causes eutrophication and algal blooms in water body. On the other hand, P is a valuable natural resource for agricultural and industrial use. With the rapid depletion of mineral phosphorus on earth, there is a need to recover phosphorus from wastewater. In this study, a new chemical and biological process facilitated with iron dosing has been developed for P removal and recovery during wastewater treatment. The system con...

  17. Biological Treatment of tannery wastewater using activated sludge process

    International Nuclear Information System (INIS)

    A study was conducted to evaluate the feasibility of Activated Sludge Process (ASP) for the treatment of tannery wastewater and to develop a simple design criteria under local conditions. A bench scale model comprising of an aeration tank and final clarifier was used for this purpose. The model was operated continuously for 267 days. Settled tannery wastewater was used as influent to the aeration tank. Five days Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) of the influent and effluent were measured to find process efficiency at various mixed liquor volatile suspended solids (MLVSS) and hydraulic detention time. The results of the study demonstrated that an efficiency of above 90% and 80% for BOD5 and COD, respectively could be obtained if the ASP is operated at an MLVSS concentration of 3500 mg/L keeping an aeration time of 12 hours. (author)

  18. Wastewater Treatment in a Hybrid Biological Reactor (HBR) :Nitrification Characteristics

    Institute of Scientific and Technical Information of China (English)

    JIAN-LONG WANG; LI-BO WU

    2004-01-01

    To investigate the nitrifying characteristics of both suspended- and attached- biomass in a hybrid bioreactor. Methods The hybrid biological reactor was developed by introducing porous ceramic particles into the reactor to provide the surface for biomass attachment. Microorganisms immobilized on the ceramics were observed using scanning electron microscopy (SEM). All chemical analyses were performed in accordance with standard methods. Results The suspended- and attached-biomass had approximately the same nitrification activity. The nitrifying kinetic was independent of the initial biomass concentration, and the attached-biomass had a stronger ability to resist the nitrification inhibitor. Conclusion The attached biomass is superior to suspended-biomass for nitrifying wastewater, especially that containing toxic organic compounds. The hybrid biological reactor consisting of suspended- and attached-biomass is advantageous in such cases.

  19. Tracing the limits of organic micropollutant removal in biological wastewater treatment.

    Science.gov (United States)

    Falås, Per; Wick, Arne; Castronovo, Sandro; Habermacher, Jonathan; Ternes, Thomas A; Joss, Adriano

    2016-05-15

    Removal of organic micropollutants was investigated in 15 diverse biological reactors through short and long-term experiments. Short-term batch experiments were performed with activated sludge from three parallel sequencing batch reactors (25, 40, and 80 d solid retention time, SRT) fed with synthetic wastewater without micropollutants for one year. Despite the minimal micropollutant exposure, the synthetic wastewater sludges were able to degrade several micropollutants present in municipal wastewater. The degradation occurred immediately after spiking (1-5 μg/L), showed no strong or systematic correlation to the sludge age, and proceeded at rates comparable to those of municipal wastewater sludges. Thus, the results from the batch experiments indicate that degradation of organic micropollutants in biological wastewater treatment is quite insensitive to SRT increases from 25 to 80 days, and not necessarily induced by exposure to micropollutants. Long-term experiments with municipal wastewater were performed to assess the potential for extended biological micropollutant removal under different redox conditions and substrate concentrations (carbon and nitrogen). A total of 31 organic micropollutants were monitored through influent-effluent sampling of twelve municipal wastewater reactors. In accordance with the results from the sludges grown on synthetic wastewater, several compounds such as bezafibrate, atenolol and acyclovir were significantly removed in the activated sludge processes fed with municipal wastewater. Complementary removal of two compounds, diuron and diclofenac, was achieved in an oxic biofilm treatment. A few aerobically persistent micropollutants such as venlafaxine, diatrizoate and tramadol were removed under anaerobic conditions, but a large number of micropollutants persisted in all biological treatments. Collectively, these results indicate that certain improvements in biological micropollutant removal can be achieved by combining different

  20. Petrochemical wastewater treatment with a pilot-scale bioaugmented biological treatment system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In solving the deterioration of biological treatment system treating petrochemical wastewater under low temperatures,bioaugmentation technology was adopted by delivering engineering bacteria into a pilot-scale two-stage anoxic-oxic (A/O)process based on previous lab-scale study. Experimental results showed that when the concentrations of COD and NH4+-N of the influent were 370~910 mg/L and 10~70 mg/L, the corresponding average concentrations of those of effluent were about 80 mg/L and 8 mg/L respectively, which was better than the Level I criteria of the Integrated Wastewater Discharge Standard (GB8978-1996). According to GC-MS analysis of the effluents from both the wastewater treatment plant (WWTP) and the pilot system, there were 68 kinds of persistent organic pollutants in the WWTP effluent, while there were only 32 in that of the pilot system. In addition, the amount of the organics in the effluent of the pilot system reduced by almost 50% compared to that of the WWTP. As a whole, after bioaugmentation, the organic removal efficiency of the wastewater treatment system obviously increased.

  1. Treatment of linear alkylbenzene sulfonate (LAS) wastewater by internal electrolysis--biological contact oxidation process.

    Science.gov (United States)

    Cao, X Z; Li, Y M

    2011-01-01

    Surfactant wastewater is usually difficult to treat due to its toxicity and poor biodegradability. A separate physico-chemical or biochemical treatment method achieves a satisfactory effect with difficulty. In this study, treatment of the wastewater collected from a daily chemical plant by the combination processes of Fe/C internal electrolysis and biological contact oxidation was investigated. For the internal electrolysis process, the optimal conditions were: pH = 4-5, Fe/C = (10-15):1, air-water ratio = (10-20):1 and hydraulic retention time (HRT)= 2 h. For the biological contact oxidation process, the optimal conditions were: HRT = 12 h, DO = 4.0-5.0 mg/L. Treated by the above combined processes, the effluent could meet the I-grade criteria specified in Integrated Wastewater Discharge Standard of China (GB 8978-1996). The results provide valuable information for full-scale linear alkylbenzene sulfonate wastewater treatment. PMID:22053469

  2. Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities

    OpenAIRE

    Narayanasamy, Shaman; Muller, Emilie; Sheik, Abdul; Wilmes, Paul

    2015-01-01

    Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalitie...

  3. On the possibility of using biological toxicity tests to monitor the work of wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Zorić Jelena

    2008-01-01

    Full Text Available The aim of this study was to ascertain the possibility of using biological toxicity tests to monitor influent and effluent wastewaters of wastewater treatment plants. The information obtained through these tests is used to prevent toxic pollutants from entering wastewater treatment plants and discharge of toxic pollutants into the recipient. Samples of wastewaters from the wastewater treatment plants of Kragujevac and Gornji Milanovac, as well as from the Lepenica and Despotovica Rivers immediately before and after the influx of wastewaters from the plants, were collected between October 2004 and June 2005. Used as the test organism in these tests was the zebrafish Brachydanio rerio Hamilton - Buchanon (Cyprinidae. The acute toxicity test of 96/h duration showed that the tested samples had a slight acutely toxic effect on B. rerio, except for the sample of influent wastewater into the Cvetojevac wastewater treatment plant, which had moderately acute toxicity, indicating that such water should be prevented from entering the system in order to eliminate its detrimental effect on the purification process.

  4. Anaerobic procedures of wastewater treatment

    OpenAIRE

    Zupančič, Tadeja

    2013-01-01

    Highly polluted wastewater is formed in dairies, pig farms and slaughterhouses. Before released into watercourses, wastewater should be properly processed with different treatment procedures in wastewater treatment plants. The thesis deals with the descriptions of mechanical, physical and chemical, and biological wastewater treatment procedures and the description of the factors which affect the reactions in wastewater treatment plants. I give special emphasis on anaerobic wastewater treatmen...

  5. Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment.

    Science.gov (United States)

    Cruz, Ivonne; Bashan, Yoav; Hernàndez-Carmona, Gustavo; de-Bashan, Luz E

    2013-11-01

    Secondary treatment of municipal wastewater affects the mechanical stability of polymer Ca-alginate beads containing the microalgae Chlorella vulgaris that are jointly immobilized with Azospirillum brasilense as treating agents whose presence do not affect bead stability. Nine strains of potential alginate-degrading bacteria were isolated from wastewater and identified, based on their nearly complete 16S rDNA sequence. Still, their population was relatively low. Attempts to enhance the strength of the beads, using different concentrations of alginate and CaCl2 or addition of either of three polymers (polyvinylpyrrolidone, polyvinyl alcohol, carboxymethylcellulose), CaCO3, or SrCl2, failed. Beads lost their mechanical strength after 24 h of incubation but not the integrity of their shape for at least 96 h, a fact that sustained successful tertiary wastewater treatment for 48 h. In small bioreactors, removal of phosphorus was low under sterile conditions but high in unsterile wastewater. Alginate beads did not absorb PO4 (-3) in sterile wastewater, but in natural wastewater, they contained PO4 (-3). Consequently, PO4 (-3) content declined in the wastewater. A supplement of 10 % beads (w/v) was significantly more efficient in removing nutrients than 4 %, especially in a jointly immobilized treatment where >90 % of PO4 (-3) and >50 % ammonium were removed. Tertiary wastewater treatment in 25-L triangular, airlift, autotrophic bioreactors showed, as in small bioreactors, very similar nutrient removal patterns, decline in bead strength phenomena, and increase in total bacteria during the wastewater treatment only in the presence of the immobilized treatment agents. This study demonstrates that partial biological degradation of alginate beads occurred during tertiary wastewater treatment, but the beads survive long enough to permit efficient nutrient removal. PMID:23354446

  6. Treatment of textiles industrial wastewater by electron beam and biological treatment (sbr)

    International Nuclear Information System (INIS)

    Study of treating textiles industrial wastewater with combined of electron beam and Tower Style Biological Treatment (TSB) was investigated in Korea. In this project, textiles wastewater was also treated with electron beam, but hybrid with Sequencing Batch Reactor (SBR). The purpose of this research is to develop combined electron beam treatment with existing biological treatment facility (SBR), of textile industries in Malaysia. The objectives of this project are to determine the effective irradiation parameter for treatment and to identify effective total retention time in SBR system. To achieve the objective, samples fill in polypropyle tray were irradiated at 1 MeV, 20 mA and 1 MeV ,5 mA at doses 11, 20, 30, 40 and 50 kGy respectively. Raw effluent and two series of irradiated effluent at 1 MeV 20 mA (11, 20, 30, 40 and 50 kGy) and 1 MeV 5 mA (11, 20, 30, 40 and 50 kGy) were then treated in SBR system. Samples were analysed at 6, 14 and 20 hrs after aeration in the SBR. The results show that, average reduction in BOD was about 2-11% after irradiated at 5 mA, and the percentage increased to 21-73% after treatment in SBR system. At 20 mA, BOD reduced to 7-29% during irradiation and the value increased to 57-87% after treatment in SBR system. (Author)

  7. Chemical and biological treatment of fish canning wastewaters

    OpenAIRE

    Cristovão, Raquel; Botelho, Cidália; Martins, Ramiro; Boaventura, Rui

    2012-01-01

    he main environmental problems of fish canning industries are high water consumption and high organic matter, oil and grease and salt content in their wastewaters. This work aims to analyze the situation (water consumption, wastewater production, wastewater characterization, etc.) of different plants located north of Douro river, in Portugal, in order to propose various solutions to their problems. Thus, initially it was made an identification and implementation of prevent and control polluti...

  8. Biological Treatment of a Synthetic Dye Water and an Industrial Textile Wastewater Containing Azo Dye Compounds

    OpenAIRE

    Wallace, Trevor Haig

    2001-01-01

    In this research, the ability of anaerobic and aerobic biological sludges to reduce and stabilize azo dye compounds was studied. Synthetic dye solutions and an industrial textile wastewater were both treated using anaerobic and aerobic biomass, separately and in sequential step-treatment processes. The primary objective was to reduce the wastewater color to an intensity that complies with the Virginia Pollutant Discharge Elimination System (VPDES) permit level. This level is set at 300 Ame...

  9. Wastewater Treatment.

    Science.gov (United States)

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  10. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    Science.gov (United States)

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. PMID:23735721

  11. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    OpenAIRE

    A Mohseni-Bandpi, H Bazari

    2004-01-01

    A bench scale aerobic Sequencing Batch Reactor (SBR) was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optim...

  12. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.

    Science.gov (United States)

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment. PMID:24965093

  13. Combined biological and physico-chemical treatment of filtered pig manure wastewater : pilot investigations

    NARCIS (Netherlands)

    Kalyuzhnyi, S.; Sklyar, V.; Epov, A.; Archipchenko, I.; Barboulina, I.; Orlova, O.; Klapwijk, A.

    2002-01-01

    Combined biological and physico-chemical treatment of filtered pig manure wastewater has been investigated on the pilot installation operated under ambient temperatures (15-20°C) and included: i) UASB-reactor for elimination of major part of COD from the filtrate; (ii) stripper of CO2 fluidised bed

  14. Combined electron-beam and biological treatment of dyeing complex wastewater. Pilot plant experiments

    International Nuclear Information System (INIS)

    Pilot plant (output 1000 m3 day-1) with ELV electron accelerator (energy 1 MeV, beam power 40 kW) is in operation from October 1998. Combined electron-beam and biological treatment was used for purification of dyeing complex wastewater under continuous flow conditions. The main results of pilot-scale experiments consisted in the fact that decrease in total content of pollutants after biological treatment was substantially influenced by preliminary electron-beam treatment (mainly, because of radiolytic conversions of terephthalic acid being a main pollutant of the wastewater). Equal purification degree corresponded to 17 h of bio-treatment without preliminary irradiation and about 8 h of bio-treatment with preliminary electron-beam treatment at absorbed dose 1-2 kGy

  15. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter

    International Nuclear Information System (INIS)

    The aim of this work was to assess the effectiveness of a biological trickling filter for the treatment of wastewaters produced by a company manufacturing organic dyes and varnishes. The combined wastewater effluent was fed to a pilot-scale trickling filter in two feeding modes, continuously and as a sequencing batch reactor (SBR). The biodegradability of the diluted wastewaters that were subjected to physicochemical treatment, using Ca(OH)2 and FeSO4, was initially studied using a continuously operated trickling filter. The system efficiency ranged up to 60-70% for a hydraulic loading of 1.1 m3/m2 day and up to 80-85% for a hydraulic loading 0.6 m3/m2 day. A stable chemical oxygen demand (COD) removal efficiency of 60-70% was achieved even in the case of undiluted wastewater at a hydraulic loading of 1.1 m3/m2 day. The effectiveness of biological treatment of a mixture of the company's main wastewater streams was also examined. The microorganisms developed in the trickling filter were able to efficiently remove COD levels up to 36,000 mg/L, under aerobic conditions at pH values between 5.5 and 8.0. Depending on the operating conditions of the system, about 30-60% of the total COD removal was attributed to air stripping caused by the air supply at the bottom of the filter, whereas the rest of the COD was clearly removed through biological action. The proposed biological treatment process based on a trickling filter, which was operated either continuously or even better in an SBR mode, appears as a promising pretreatment step for coping with dye manufacturing wastewaters in terms of removing a significant portion of the organic content

  16. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation

    Directory of Open Access Journals (Sweden)

    Zou Haiming

    2015-12-01

    Full Text Available Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF system to further remove organic substances in terms of discharge requirement. The results showed that 97.6% of chemical oxygen demand (COD removal by the combination process was achieved at the optimum process parameters: pH of 3.5, H2O2 of 2.0 mL/L, Fe(II of 500 mg/L, 2.0 h treatment time in the Fenton’s oxidation process and hydraulic retention time (HRT of 5 h in the BAF system. Under these conditions, COD concentration of effluent was 72.6 mg/L whereas 3020 mg/L in the influent, thus meeting the requirement of treated dye wastewater discharge performed by Chinese government (less than 100 mg/L. These results obtained here suggest that the new process combining Fenton’s oxidation with biological oxidation may provide an economical and effective alternative for treatment of non-biodegradable industrial wastewater.

  17. Treatment of Slightly Polluted Wastewater in an Oil Refinery Using a Biological Aerated Filter Process

    Institute of Scientific and Technical Information of China (English)

    XIE Wenyu; ZHONG Li; CHEN Jianjun

    2007-01-01

    The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5the BAF process is a suitable and highly efficient method to treat the wastewater.

  18. Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion.

    Science.gov (United States)

    Wang, Dongbo; Chen, Yinguang

    2016-10-01

    Nanoparticles (NPs), with at least one dimension less than 100 nm, are substantially employed in consumer and industrial products due to their specific physical and chemical properties. The wide uses of engineered NPs inevitably cause their release into the environment, especially wastewater treatment plants. Therefore, it is essential to systematically assess their potential impact on biological wastewater treatment and subsequent sewage sludge digestion. This review aims to provide such support. First, this paper reviews the recent advances on the analytical developments and nano-bio interface of NPs in wastewater and sewage sludge treatment. The effects of NPs on biological wastewater treatment and sewage sludge digestion and related mechanisms are discussed in detail. Finally, the key questions that need to be answered in the future are pointed out, which include on-line revelation of the changes of NPs in sewage and sludge environments, in situ assessment of the variations of microorganisms involved in these biological systems after they are exposed to NPs. Differentiation of the contribution of individual toxicity mechanisms to these systems, and the identification of under what conditions the nanoparticle-induced toxicity will be increased or decreased are also considered. PMID:26036277

  19. Biological treatment of colored wastewater by Streptomyces fulvissimus CKS 7.

    Science.gov (United States)

    Buntić, A V; Pavlović, M D; Šiler-Marinković, S S; Dimitrijević-Branković, S I

    2016-01-01

    This study aims to investigate the biological processes related to the biodegradable potential of growing microbial cells for contaminated water treatment. Thus, the use of the Streptomyces fulvissimus CKS 7 (CKS7) has been evaluated for decolorizing efficiency of a solution containing a cationic triphenylmethane dye, crystal violet. The color reduction was monitored by UV-Vis spectroscopic analysis, through changes in their absorption spectrum and comparing the results with those of the respective controls. It was found that the CKS7 performed well and reached up to 100% effectiveness. The required process parameters have been apparently mild and include the reaction temperature of 27-30 °C, 10% inoculum size, under shaking conditions, whereas the time course of decolorization had been concentration dependent. A possible mechanism for removing dye from the working medium was accomplished in two steps: the binding of the dye on the bacterial cell surface, in addition to the dye biodegradation by the bacterial intracellular enzymes. After one cycle of the complete dye removal, the adapted culture was successfully reused for the same purpose. The phytotoxicity analysis revealed that non-toxic compounds were present in decolorized medium, indicating that the CKS7 bacteria seem to be a promising application for contaminated water treatment. PMID:27148725

  20. Advanced treatment of biologically pretreated coking wastewater by a bipolar three-dimensional electrode reactor.

    Science.gov (United States)

    Zhang, Chunhui; Lin, Hui; Chen, Jun; Zhang, Wenwen

    2013-01-01

    Electrochemical oxidation is a promising technology for the treatment ofbio-refractory wastewater. In this research, advanced treatment of coking wastewater which had previously undergone A/O (anaerobic-aerobic biological) treatment was investigated over Ti/RuO2 x IrO2 anode, stainless steel cathode and coke powder particle electrodes which were packed into the electrodes in a bipolar three-dimensional electrode reactor (BTDR). The results showed that the removal efficiency of COD and ammonia nitrogen increased with applied current density. The main influencing factors of BTDR were evaluated by an orthogonal test, including reaction time, plate distance, current density, plate amounts and aeration flow rate. With reaction time of 60 min, plate distance of 1.0 cm, current density of 20 mA/cm2 and plate amounts of four pairs, most of the contaminants in coking wastewater can be remediated by BTDR, which can then meet the discharge limit for coking wastewater in China. For organic pollutants, 12 kinds of organic pollutants can be completely removed, and the removal efficiencies of 11 kinds of organic pollutants are between 13.3 and 70.3% by advanced treatment with BTDR. We conclude that there is great potential for BTDR in engineering applications as a final treatment for coking wastewater. PMID:24350493

  1. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  2. The assessment of the coke wastewater treatment efficacy in rotating biological contractor.

    Science.gov (United States)

    Cema, G; Żabczyński, S; Ziembińska-Buczyńska, A

    2016-01-01

    Coke wastewater is known to be relatively difficult for biological treatment. Nonetheless, biofilm-based systems seem to be promising tool for such treatment. That is why a rotating biological contactor (RBC) system focused on the Anammox process was used in this study. The experiment was divided into two parts with synthetic and then real wastewater. It was proven that it is possible to treat coke wastewater with RBC but such a procedure requires a very long start-up period for the nitritation (190 days), as well as for the Anammox process, where stable nitrogen removal over 70% was achieved after 400 days of experiment. Interestingly, it was possible at a relatively low (20.2 ± 2.2 °C) temperature. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based monitoring of the bacterial community showed that its biodiversity decreased when the real wastewater was treated and it was composed mainly of GC-rich genotypes, probably because of the modeling influence of this wastewater and the genotypes specialization. PMID:26942544

  3. Treatment of uranium mining and milling wastewater using biological adsorbents

    International Nuclear Information System (INIS)

    Selected samples of waste microbial biomass originating from various industrial fermentation processes and biological treatment plants have been screened for biosorbent properties in conjunction with uranium, thorium and radium in aqueous solutions. Biosorption isotherms were used for the evaluation of biosorptive uptake capacity of the biomass. The biomass was also compared to synthetic adsorbents such as activated carbon. Determined uranium, thorium and radium biosorption isotherms were independent of the initial solution concentrations. Solution pH affected uptake. Rhizopus arrhizus at pH 4 exhibited the highest uranium and thorium biosorptive uptake capacity in excess of 180 Mg/g. It removed about 2.5 and 3.3 times more uranium than the ion exchange resin and activated carbon tested. Penicillium chrysogenum adsorbed 50000 pCi/g radium at pH 7 and at an equilibrium radium concentration of 1000 pCi/L. The most effective biomass types studied exhibited removals in excess of 99% of the radium in solution

  4. Treatment of Textile Wastewater by Combining Biological Processes and Advanced Oxidation

    OpenAIRE

    Punzi, Marisa

    2015-01-01

    Treatment of textile wastewater is challenging because the water contains toxic compounds that have low biodegradability. Dyes, detergents, surfactants, biocides and more are used to improve the textile process and to make the clothes resistant to physical, chemical and biological agents. New technologies have been developed in the last decades and in particular Advanced Oxidation Processes (AOPs) have shown considerable potential for treatment of industrial effluents. These pr...

  5. Characteristics and transformations of dissolved organic nitrogen in municipal biological nitrogen removal wastewater treatment plants

    Science.gov (United States)

    Huo, Shouliang; Xi, Beidou; Yu, Honglei; Qin, Yanwen; Zan, Fengyu; Zhang, Jingtian

    2013-12-01

    Dissolved organic nitrogen (DON) represents most of the dissolved nitrogen in the effluent of biological nitrogen removal (BNR) wastewater treatment plants (WWTPs). The characteristics of wastewater-derived DON in two different WWTPs were investigated by several different methods. The major removals of DON and biodegradable dissolved organic nitrogen (BDON) along the treatment train were observed in the anaerobic process. Dissolved combined amino acids (DCAA) and dissolved free amino acids (DFAA) in the effluent accounted approximately for less than 4% and 1% of the effluent DON, respectively. Approximately half of wastewater-derived DON was capable of passing through a 1 kDa ultrafilter, and low MW DON cannot effectively be removed by BNR processes. More than 80% of effluent DON was composed of hydrophilic compounds, which stimulate algal growth. The study provided important information for future upgrading of WWTPs or the selection of DON removal systems to meet more demanding nitrogen discharge limits.

  6. Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater

    OpenAIRE

    Ferrando Climent, Laura; Cruz Morató, Carles; Marco Urrea, Ernest; Vicent, Teresa; Sarrà i Adroguer, Montserrat; Rodríguez Mozaz, Sara; Barceló i Cullerés, Damià

    2015-01-01

    This work presents a study about the elimination of anticancer drugs, a group of pollutants considered recalcitrant during conventional activated sludge wastewater treatment, using a biological treatment based on the fungus Trametes versicolor. A 10-L fluidized bed bioreactor inoculated with this fungus was set up in order to evaluate the removal of 10 selected anticancer drugs in real hospital wastewater. Almost all the tested anticancer drugs were completely removed from the wastewater at ...

  7. Treatment of Municipal Wastewater by using Rotating Biological Contractors (Rbc’s

    Directory of Open Access Journals (Sweden)

    Prashant A.Kadu

    2013-01-01

    Full Text Available The rotating biological contactor process offers the specific advantages of a biofilm system in treatment of wastewater for removal of soluble organic substances. It is a unique adaptation of the movingmedium biofilm system which facilitates easy and effective oxygen transfer. Media in the form of several large flat or corrugated discs with biofilm attached to the surface is mounted on a common shaft partially submerged in the wastewater and rotated through contoured tanks in which wastewater flows on a continuous basis. The compactness of the system and its economical operation makes it a viable option specially suited for decentralized wastewater treatment technologies. The process optimisation and adaptability under different environmental conditions and influent characteristics remain challenging tasks for the efficient use of this technology. Oxygen is accepted to be one of the most important and often limiting substrates in an aerobic treatment process. Oxygen transfer through the water film developed on a rotating disc revealed that the oxygen transfer coefficient varies with the rotational speed and the location on the exposed disc surface. Increase of ambient temperature resulted in decrease of the oxygen mass transfer rate. The biofilm model was implemented for a three stage rotating biological contactor based on a laboratory-scale experimental set-up. The process kinetics was adopted from the Activated Sludge which represents a mixed culture biomass environment.

  8. Combined oxidative and biological treatment of separated streams of tannery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, G.; Nieto, J. [Environmental Science Center EULA - Chile, Univ. of Concepcion, Concepcion (Chile); Mansilla, H.D. [Lab. of Renewable Resources, Univ. of Concepcion, Concepcion (Chile); Bornhardt, C. [Chemical Engineering Dept., Univ. of La Frontera, Temuco (Chile)

    2003-07-01

    Leather tanning effluents are a source of severe environmental impacts. In particular, the unhairing stage, belonging to the beamhouse processes, generates an alkaline wastewater with high concentrations of organic matter, sulphides, suspended solids, and salts, which shows significant toxicity. The objective of this work was to evaluate the biodegradation of this industrial wastewater by combined oxidative and biological treatments. An advanced oxidation process (AOP) with Fenton's reagent was used as batch pre-treatment. The relationships of H{sub 2}O{sub 2}/Fe{sup 2+} and H{sub 2}O{sub 2}/COD were 9 and 4, respectively, reaching an organic matter removal of about 90%. Subsequently, the oxidised beamhouse effluent was fed to an activated sludge system, at increasing organic load rates (OLR), in the range of 0.4 to 1.6 g COD/L.d. The biological organic matter removal of the pre-treated wastewater ranged between 35% and 60% for COD, and from 60% to 70% for BOD. Therefore, sequential AOP pretreatment and biological aerobic treatment increased the overall COD removal up to 96%, compared to 60% without pretreatment. Bioassays with D. magna and D. pulex showed that this kind of treatment achieves only a partial toxicity removal of the tannery effluent. (orig.)

  9. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination--a review.

    Science.gov (United States)

    Oller, I; Malato, S; Sánchez-Pérez, J A

    2011-09-15

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment. PMID:20956012

  10. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    International Nuclear Information System (INIS)

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  11. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review.

    Science.gov (United States)

    Sheng, Guo-Ping; Yu, Han-Qing; Li, Xiao-Yan

    2010-01-01

    A review concerning the definition, extraction, characterization, production and functions of extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment reactors is given in this paper. EPS are a complex high-molecular-weight mixture of polymers excreted by microorganisms, produced from cell lysis and adsorbed organic matter from wastewater. They are a major component in microbial aggregates for keeping them together in a three-dimensional matrix. Their characteristics (e.g., adsorption abilities, biodegradability and hydrophilicity/hydrophobicity) and the contents of the main components (e.g., carbohydrates, proteins, humic substances and nucleic acids) in EPS are found to crucially affect the properties of microbial aggregates, such as mass transfer, surface characteristics, adsorption ability, stability, the formation of microbial aggregates etc. However, as EPS are very complex, the knowledge regarding EPS is far from complete and much work is still required to fully understand their precise roles in the biological treatment process. PMID:20705128

  12. Recycling of waste bread as culture media for efficient biological treatment of wastewater

    International Nuclear Information System (INIS)

    Possibilities of recycling of waste bread as culture media for efficient biological treatment of wastewater were investigated. In order to get the highest growth of microorganism for increased contaminants' removal efficiency of the system, different compositions of waste bread and skim milk with and without adding Powdered Activated Carbon (PAC) were tested. Mixed waste bread compositions with added PAC showed relatively higher number of microorganisms than the compositions without added PAC. A composition of 40% mixed waste bread and 60% skim milk produced highest number of microorganisms with subsequent increased contaminants' removal efficiency of the system. 'Contrast' alone showed lower contaminants' removal efficiency than mixed bread compositions. Use of waste bread in the composition of skim milk reduced cost of using foreign source of nutrients in biological treatment of wastewater and also facilitated waste bread management through recycling. (author)

  13. State of the art of biological processes for coal gasification wastewater treatment.

    Science.gov (United States)

    Zhao, Qian; Liu, Yu

    2016-01-01

    The treatment of coal gasification wastewater (CGW) poses a serious challenge on the sustainable development of the global coal industry. The CGW contains a broad spectrum of high-strength recalcitrant substances, including phenolic, monocyclic and polycyclic aromatic hydrocarbons, heterocyclic nitrogenous compounds and long chain aliphatic hydrocarbon. So far, biological treatment of CGW has been considered as an environment-friendly and cost-effective method compared to physiochemical approaches. Thus, this reviews aims to provide a comprehensive picture of state of the art of biological processes for treating CGW wastewater, while the possible biodegradation mechanisms of toxic and refractory organic substances were also elaborated together with microbial community involved. Discussion was further extended to advanced bioprocesses to tackle high-concentration ammonia and possible options towards in-plant zero liquid discharge. PMID:27364381

  14. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants:Influence of Mathematical Model Assumptions

    OpenAIRE

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant was compared for a series of model assumptions. Three different model approaches describing BNR are considered. In the reference case, the original model implementations are used to simulate WWTP...

  15. Biological treatment of industrial wastewater for biogas production

    OpenAIRE

    Gomez, Erica M.

    2011-01-01

    Anaerobic biodegradation is a method of degradation that converts approximately 90% of the available chemical energy (in the form of organic material), into gas methane. Apart from the economic value of the methane gas produced, anaerobic treatment has many advantages over traditional aerobic treatment processes, such as less biomass produced per unit of substrate utilized; higher organic loadings are possible as anaerobic processes are not limited by oxygen transfer rates, and the lower cons...

  16. Cocurrent biological nitrification and denitrification in wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Spector, M.

    1998-11-01

    Repetitive conditioning of recycle activated sludge (RAS) under strict anaerobic conditions gradually changes the products of ammonia oxidation from nitrite and nitrate to nitrous oxide (N{sub 2}O) and nitrogen (N{sub 2}). Nitrite inhibits oxygen respiration of anaerobically conditioned sludge; biochemical oxygen demand (BOD) is then oxidized by nitrite, which is reduce to N{sub 2}O and N{sub 2}. When anaerobic RAS conditioning is initially imposed on a nitrifying system, Nitrobacter species continue to oxidize nitrite to nitrate and thus reduce the nitrite available to oxidize BOD. However, Nitrobacter in the mixed liquor gradually tend to wash out because the sole source of Nictrobacter energy, the oxidation of nitrite to nitrate, is diminished to the extent that nitrite is reduced. Incorporation of an RAS conditioning zone to the activate-sludge process results in evolution of a nonfilamentous biomass, which affects both cocurrent biological nitrification and denitrification (CBND) and biological phosphorus removal (BPR). The initial feed zone may be either aerobic or anaerobic. A final anoxic denitrification zone is desirable for removal of residual nitrite plus nitrate (NO{sub x}) from aeration effluent. Nitrous oxide, the main reaction product of CBND, promotes both global warming and destruction of the stratospheric ozone layer.

  17. Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant.

    Science.gov (United States)

    Hu, Tai-Ho; Whang, Liang-Ming; Liu, Pao-Wen Grace; Hung, Yu-Ching; Chen, Hung-Wei; Lin, Li-Bin; Chen, Chia-Fu; Chen, Sheng-Kun; Hsu, Shu Fu; Shen, Wason; Fu, Ryan; Hsu, Romel

    2012-06-01

    This study evaluated biological treatment of TMAH in a full-scale methanogenic up-flow anaerobic sludge blanket (UASB) followed by an aerobic bioreactor. In general, the UASB was able to perform a satisfactory TMAH degradation efficiency, but the effluent COD of the aerobic bioreactor seemed to increase with an increased TMAH in the influent wastewater. The batch test results confirmed that the UASB sludge under methanogenic conditions would be favored over the aerobic ones for TMAH treatment due to its superb ability of handling high strength of TMAH-containing wastewaters. Based on batch experiments, inhibitory chemicals present in TFT-LCD wastewater like surfactants and sulfate should be avoided to secure a stable methanogenic TMAH degradation. Finally, molecular monitoring of Methanomethylovorans hollandica and Methanosarcina mazei in the full-scale plant, the dominant methanogens in the UASB responsible for TMAH degradation, may be beneficial for a stable TMAH treatment performance. PMID:22456234

  18. Biological and Irradiation Treatment of Mix Industrial Wastewater in Flood Mitigation Pond at Prai Industrial Zone

    International Nuclear Information System (INIS)

    In this work, activated sludge process and E-Beam was used to treat mixed industrial waste water from mitigation pond A. The objectives of this study to analyze the effect of mix liquor volatile suspended solid (MLVSS) concentration on the properties of wastewater and duration of time taken to achieve steady stage condition for biological treatment. Besides that, effect of electron beam energy on the characteristic of wastewater after irradiation with electron beam machine EPS 3000 was studied as well. The result shows removal percentage of COD, suspended solid and color was linearly proportional with MLVSS. Maximum reduction values recorded for COD, suspended solid and color removal was 69.4, 73.0 and 43.7 % respectively with 3500 mg/l MLVSS at 48 h HRT. In irradiation treatment, significant reduction of COD was obtained with the increase of electron beam energy but the results for suspended solid and color was not favorable. (author)

  19. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation.

    Science.gov (United States)

    Xu, Xiaoyi; Cheng, Yao; Zhang, Tingting; Ji, Fangying; Xu, Xuan

    2016-06-01

    The synthesis of steroid hormones produces wastewater that is difficult to manage and characterize due to its complex components and high levels of toxicity and bio-refractory compounds. In this work, interior micro-electrolysis (IME) and Fenton oxidation-coagulation (FOC) were investigated as wastewater pretreatment processes in combination with biological treatments using a hydrolysis acidification unit (HA) and two-stage biological contact oxidation (BCO) in laboratory and field experiments. In laboratory experiments with an average initial COD load of about 15,000 mg/L, pH of 4, Fe-C/water (V/V) ratio of 1:1, air/water ratio of 10, and reaction time of 180 min, IME achieved a COD removal efficiency of 31.8% and a 1.7-fold increase in the BOD5/COD (B/C) ratio of wastewater. The Fe(2+) concentration of 458.5 mg/L in the IME effluent meets the requirements of the Fenton oxidation (FO) process. FOC further reduced the COD with an efficiency of 30.1%, and the B/C ratio of the wastewater reached 0.59. Excitation-emission matrix (EEM) analysis showed that complex higher molecular weight organic compounds in the wastewater were degraded after the pretreatment process. In addition, a field experiment with a continuous flow of 96 m(3)/d was conducted for over 90 d. The combined process system operated steadily, though the Fe-C fillings should be soaked in a sulfuric acid solution (5‰) for 12 h to recover activity every two weeks. The COD and BOD5 concentrations in the final effluent were less than 90 mg/L and 15 mg/L, respectively. PMID:26953729

  20. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation

    OpenAIRE

    Zou Haiming; Ma Wanzheng; Wang Yan

    2015-01-01

    Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF) system to further remove organic substances in terms of dischar...

  1. Bioluminescent reporter bacterium for toxicity monitoring in biological wastewater treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, C.J.; Lajoie, C.A.; Layton, A.C.; Sayler, G.S.

    1999-01-01

    Toxic shock due to certain chemical loads in biological wastewater treatment systems can result in death of microorganisms and loss of floc structure. To overcome the limitations of existing approaches to toxicity monitoring, genes encoding enzymes for light production were inserted to a bacterium (Shk 1) isolated from activated sludge. The Shk 1 bioreporter indicated a toxic response to concentrations of cadmium, 2,4-dinitrophenol, and hydroquinone by reductions in initial levels of bioluminescence on exposure to the toxicant. The decrease in bioluminescence was more severe with increasing toxicant concentration. Bioluminescence did not decrease in response to ethanol concentrations up to 1,000 mg/L or to pH conditions between 6.1 and 7.9. A continuous toxicity monitoring system using this bioreporter was developed for influent wastewater and tested with hydroquinone. The reporter exhibited a rapid and proportional decrease in bioluminescence in response to increasing hydroquinone concentrations.

  2. Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist V.; Jeppsson, Ulf

    2012-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...... reactive settler: (1) increases the hydrolysis of particulates; (2) increases the overall plant's denitrification efficiency by reducing the SNOx concentration at the bottom of the clarifier; (3) increases the oxidation of COD compounds; (4) increases XOHO and XANO decay; and, finally, (5) increases the...

  3. Biological treatment of textile mill wastewater in the. presence of activated carbon

    International Nuclear Information System (INIS)

    The main goal of this study was to find out effectiveness of biological treatment for the reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD) of the textile processing industrial wastewater in the absence and presence of granular activated carbon (GAC) in shake flask experiment. To check the pollution level, physio-chemical analysis of effluent from Amtex industry (Faisalabad) was carried out. The outlet effluent contained high value of COD (1100 mg/l), BOD (309 mg/l) with pH 9.2, electrical conductivity (Ec) 3.7 mS/m, total dissolved solids (TDS) (2640 mg/l), total solids (TS) (3060 mg/l), total suspended solids (TSS) (420 19/l) and phenol (.34 mg/l). After initial period of activated sludge adaptation to wastewater, shake flask batch cultures (with and without activated carbon) were operated on lab scale. The COD and BOD were noted after very 12 hours for 3 days. The maximum reduction in COD (82%) and BOD (90%) was observed biological treatment in presence of activated carbon at retention time of 72 hours. (author)

  4. Enhanced biological phosphorus removal in the wastewater treatment plant of Bunnik

    Energy Technology Data Exchange (ETDEWEB)

    Vries, H.P. de; Rensink, J.H.

    1989-02-01

    At several sewage treatment plants in the Netherlands there has been continuously found a remarkable high phosphorus removal rate, without using chemical additions. In Bunnik this is up to 90%. In the effluent we will mostly find less than 1 mg P/l. At the Bunnik plant we deal with biological excess phosphorus removal. Biological phosphorus removal is based on the luxury uptake of phosphorus by some bacteria. On certain circumstances micro-organisms of the genius Acinetobacter stored excess amounts of phosphates in their cells. In 1984 a project started, financed by the institute for inland waters and wastewater treatment (DBW/RIZA). The purpose of this research project was to find factors which were, responsible for the remarkable enhanced phosphorus removal in the Bunnik plant.

  5. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    Science.gov (United States)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  6. Integrated physicochemical and biological treatment process for fluoride and phosphorus removal from fertilizer plant wastewater.

    Science.gov (United States)

    Gouider, Mbarka; Mlaik, Najwa; Feki, Mongi; Sayadi, Sami

    2011-08-01

    The phosphate fertilizer industry produces highly hazardous and acidic wastewaters. This study was undertaken to develop an integrated approach for the treatment of wastewaters from the phosphate industry. Effluent samples were collected from a local phosphate fertilizer producer and were characterized by their high fluoride and phosphate content. First, the samples were pretreated by precipitation of phosphate and fluoride ions using hydrated lime. The resulting low- fluoride and phosphorus effluent was then treated with the enhanced biological phosphorus removal (EBPR) process to monitor the simultaneous removal of carbon, nitrogen, and phosphorus. Phosphorus removal included a two-stage anaerobic/aerobic system operating under continuous flow. Pretreated wastewater was added to the activated sludge and operated for 160 days in the reactor. The operating strategy included increasing the organic loading rate (OLR) from 0.3 to 1.2 g chemical oxygen demand (COD)/L.d. The stable and high removal rates of COD, NH4(+)-N, and PO4(3-)-P were then recorded. The mean concentrations of the influent were approximately 3600 mg COD/L, 60 mg N/L, and 14 mg P/L, which corresponded to removal efficiencies of approximately 98%, 86%, and 92%, respectively. PMID:21905410

  7. Pilot scale application of anaerobic baffled reactor for biologically enhanced primary treatment of raw municipal wastewater.

    Science.gov (United States)

    Hahn, Martha J; Figueroa, Linda A

    2015-12-15

    A four-cell anaerobic baffled reactor (ABR) was operated for two years treating raw municipal wastewater at ambient water and air temperatures of 12-23 °C and -10 to 35 °C, respectively. The 1000-L pilot reactor operated at a 12-h hydraulic residence time and was located in the Headworks building of the Plum Creek Water Reclamation Authority. The average influent was TSS = 510 ± 400 mg/L, BOD5 = 320 ± 80 mg/L and the average removal of TSS and BOD5 was 83 ± 10% and 47 ± 15%, respectively. The TSS and BOD removal exceeded that of conventional primary clarification, with no wasting of the settled solids over the two-years and stoichiometric production of methane. The estimated energy content of the biogas produced per unit volume of wastewater treated averaged 0.45 kWh/m(3). The TSS and total COD removal in the first cell averaged 75 ± 15% and 43 ± 14%, respectively, but methane production was only 20% of the total observed for the full ABR. The performance of the ABR relative to the extent of solids hydrolysis and methane production can be varied by the number of cells and hydraulic residence time. The anaerobic baffled reactor is an energy-positive technology that can be used for biologically enhanced primary treatment of raw municipal wastewater in cold climates. PMID:26414605

  8. Reduction of overestimation in interval arithmetic simulation of biological wastewater treatment processes

    Science.gov (United States)

    Rauh, Andreas; Kletting, Marco; Aschemann, Harald; Hofer, Eberhard P.

    2007-02-01

    A novel interval arithmetic simulation approach is introduced in order to evaluate the performance of biological wastewater treatment processes. Such processes are typically modeled as dynamical systems where the reaction kinetics appears as additive nonlinearity in state. In the calculation of guaranteed bounds of state variables uncertain parameters and uncertain initial conditions are considered. The recursive evaluation of such systems of nonlinear state equations yields overestimation of the state variables that is accumulating over the simulation time. To cope with this wrapping effect, innovative splitting and merging criteria based on a recursive uncertain linear transformation of the state variables are discussed. Additionally, re-approximation strategies for regions in the state space calculated by interval arithmetic techniques using disjoint subintervals improve the simulation quality significantly if these regions are described by several overlapping subintervals. This simulation approach is used to find a practical compromise between computational effort and simulation quality. It is pointed out how these splitting and merging algorithms can be combined with other methods that aim at the reduction of overestimation by applying consistency techniques. Simulation results are presented for a simplified reduced-order model of the reduction of organic matter in the activated sludge process of biological wastewater treatment.

  9. Micropollutant removal during biological wastewater treatment and a subsequent ozonation step

    Energy Technology Data Exchange (ETDEWEB)

    Schaar, Heidemarie, E-mail: hschaar@iwag.tuwien.ac.a [Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna (Austria); Clara, Manfred; Gans, Oliver [Umweltbundesamt, Spittelauer Lande 5, 1090 Vienna (Austria); Kreuzinger, Norbert [Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna (Austria)

    2010-05-15

    The design criteria for wastewater treatment plants (WWTP) and the sludge retention time, respectively, have a significant impact on micropollutant removal. The upgrade of an Austrian municipal WWTP to nitrogen removal (best available technology, BAT) resulted in increased elimination of most of the analyzed micropollutants. Substances, such as bisphenol-A, 17alpha-ethinylestradiol and the antibiotics erythromycin and roxithromycin were only removed after the upgrade of the WWTP. Nevertheless, the BAT was not sufficient to completely eliminate these compounds. Thus, a pilot scale ozonation plant was installed for additional treatment of the effluent. The application of 0.6 g O{sub 3} g DOC{sup -1} increased the removal of most of the micropollutants, especially for compounds that were not degraded in the previous biological process, as for example carbamazepine and diclofenac. These results indicated that the ozonation of WWTP effluent is a promising technology to further decrease emissions of micropollutants from the treatment process. - SRT is an important criterion for micropollutant removal in wastewater treatment and the application of ozone is suitable for further removal of micropollutants.

  10. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  11. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  12. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit o

  13. Wastewater treatment pilot

    OpenAIRE

    Paraskevopoulos, Christos Alkiviadis

    2016-01-01

    The aim of this thesis was to investigate the functionality of the wastewater treatment pilot and produce a learning manual-handout, as well as to define the parameters of wastewater clarification by studying the nutrient removal and the effluent clarification level of the processed wastewater. As part of the Environmental Engineering studies, Tampere University of Applied Sciences has invested on a Wastewater Treatment Pilot. The pilot simulates the basic wastewater treatment practices u...

  14. Fate of dissolved organic nitrogen during biological nutrient removal wastewater treatment processes.

    Science.gov (United States)

    Liu, Bing; Lin, Huirong; Yu, Guozhong; Zhang, Shenghua; Zhao, Chengmei

    2013-04-01

    Due to its potential to form toxic nitrogenous disinfection byproducts (N-DBPs), dissolved organic nitrogen (DON) is considered as one of the most important parameters in wastewater treatment plants (WWTP). This study describes a comprehensive investigation of variations in DON levels in orbal oxidation ditches. The results showed that DON increased gradually from 0.71 to 1.14 mg I(-1) along anaerobic zone, anoxic zone, aerobic zone 1 and aerobic 2. Molecular weight fractionation of DON in one anaerobic zone and one aerobic zone (aerobic zone 2) was performed. We found that the proportion of small molecular weight ( 20 kDa) showed opposite trend. This variation may have been caused due to the release of different types of soluble microbial products (SMPs) during biological processes. These SMPs contained both tryptophan protein-like and aromatic protein-like substances, which were confirmed by three-dimensional excitation-emission matrix (EEM) analysis. PMID:24620601

  15. Uranium accumulation in mixed-liquor suspended solids during biological wastewater treatment

    International Nuclear Information System (INIS)

    The accumulation of uranium by mixed liquor suspended solids (MLSS) has been of growing interest to regulatory officials and governmental agencies which process radioactive materials, especially in light of more stringent environmental standards and increasing liability concerns. Uranium uptake by MLSS can be significant, potentially creating a problem for disposal of the waste activated sludge. The goal of this research was to determine bioconcentration factors under different wastewater treatment operating conditions using continuous flow, stirred tank reactors with recycle. Wastewater, consisting of approximately 95% domestic sewage and 5% industrial waste which contained trace amounts of uranium, was used to study uranium build-up by the MLSS. A total of six biological reactors were included in the study, with three reactors operated at 20C and three reactors operated at 5C. Sludge ages of ∼ 5, 15, and 20 days were established in the reactors at the two operating temperatures. Uranium accumulation by the sludge solids was evaluated under different temperatures and sludge ages. Mixed-liquor samples were collected and separated into solid and supernatant fractions by centrifugation before uranium analysis. Uranium (both total and U235) was sequestered by the MLSS from the subject wastewater in all reactors during the study. Uranium uptake capacities ranged from 5-30μg/g dry solids, and distribution coefficients ranged from approximately 1,300 to 5,800 cm3/g . Due to higher than optimum pH and extremely low uranium concentration gradients, the observed specific uranium uptake capacities were much lower than those reported in the literature for laboratory biosorption experiments conducted at optimum pH values and large uranium concentration gradients. Total suspended solids concentration and sludge age influenced the specific uranium uptake as well as the total uranium sorbed

  16. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    International Nuclear Information System (INIS)

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD−1 d−1 for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD−1 d−1. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2

  17. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlaja, O.O., E-mail: oogunlaj@uwaterloo.ca; Parker, W.J., E-mail: wjparker@uwaterloo.ca

    2015-05-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD{sup −1} d{sup −1} for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD{sup −1} d{sup −1}. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2.

  18. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    International Nuclear Information System (INIS)

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  19. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    Energy Technology Data Exchange (ETDEWEB)

    Venglovsky, J.; Sasokova, N.; Juris, P.; Papajova, I.; Vargova, M.; Ondrasovicova, O.; Ondrasovic, M.

    2009-07-01

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  20. Development of biological treatment known as SBR process for supporting radiation treatment of industrial wastewater using electron beam

    International Nuclear Information System (INIS)

    Electron beam irradiation of wastewater is capable of degrading stable non-biodegradable compound. However it requires high dose and in turn increase the cost of operation. A combination of irradiation and biological treatment is expected to overcome this problem. In this study, the treatment system will use a biological process known as Sequencing Batch Reactor (SBR). The SBR will be developed in a series and each series consist of reaction tank and clarifier tank. Filling and reaction step will occur in reaction tank while settling, decanting and idling step will ensue in the clarifier tank. The process is designed as such to enable rapid and simultaneous analysis on treated sample in order to achieve reliable results. (Author)

  1. Biological treatment of nitrogen-rich refinery wastewater by partial nitritation (SHARON) process.

    Science.gov (United States)

    Milia, S; Cappai, G; Perra, M; Carucci, A

    2012-01-01

    Wastewater discharges containing high nitrogen levels can be toxic to aquatic life and cause eutrophication. In this study, the application of the SHARON (Single reactor for High activity Ammonium Removal Over Nitrite) process for the treatment of refinery wastewater (sour water) was evaluated, in view of its coupling with the ANAMMOX (ANaerobic AMMonium OXidation) process. A Continuous Flow Stirred Tank Reactor was initially fed with a synthetic medium, and the applied NH4-N concentration and wastewater/synthetic medium ratio were progressively increased up to 2000 mgN/L and 100%, respectively. Despite the high potential toxic effect of the real wastewater, overall SHARON performance did not decrease with the increasing real wastewater/synthetic medium ratio, and biomass showed progressive acclimation to the toxic compounds in the real wastewater, as demonstrated by toxicity assessments. NH4-N and dissolved organic carbon removal efficiency were around 50% and 65%, respectively. Moreover, the effluent was characterized by a NO2-N/NH4-N ratio of 0.9 +/- 0.01 and low nitrate concentration (<30 mgN/L), in line with the requirements for the subsequent treatment by the ANAMMOX process. PMID:22988604

  2. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    Science.gov (United States)

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved. PMID:27003628

  3. A New Development in Biological Process for Wastewater Treatment to Produce Renewable Fuel

    Directory of Open Access Journals (Sweden)

    Kadhum M. Shabeeb

    2010-01-01

    Full Text Available Problem statement: Hydrogen is a clean energy source. Bio-conversion of biomass to generate hydrogen has been achieved using anaerobic fermentation of some well-defined materials, in wastewater. No data available on hydrogen yielded from wastewater using inoculum extracted from Iraqi municipal wastewater treatment plant. Approach: This study investigated the effects of substrate concentration, initial pH and process temperature on biohydrogen production from surgery wastewater using anaerobic batch reactor. Batch tests are carried out in a 2.0 L batch reactor under different temperatures of 34, 36, 38and 40°C, various initial pH of 4.5, 5.5 and 6.5 and substrate concentrations of 5, 10 and 15%. The raw seed was compost sludge obtained from municipal wastewater treatment plant in Baghdad (Al-Restomia plant. The volume of evolved gas was measured at room temperature by the water displacement method. Results: The maximum hydrogen production 160 mL L-1 is obtained at an optimum temperature of 38°C, optimum pH of 5.5 and substrate concentration 15%. Conclusion: The results indicated that the use of compost of Al-Restomia plant as a seed in anaerobic fermentation process has given excellent biogas production under applied conditions.

  4. Advanced low carbon-to-nitrogen ratio wastewater treatment by electrochemical and biological coupling process.

    Science.gov (United States)

    Deng, Shihai; Li, Desheng; Yang, Xue; Zhu, Shanbin; Xing, Wei

    2016-03-01

    Nitrogen pollution in ground and surface water significantly affects the environment and its organisms, thereby leading to an increasingly serious environmental problem. Such pollution is difficult to degrade because of the lack of carbon sources. Therefore, an electrochemical and biological coupling process (EBCP) was developed with a composite catalytic biological carrier (CCBC) and applied in a pilot-scale cylindrical reactor to treat wastewater with a carbon-to-nitrogen (C/N) ratio of 2. The startup process, coupling principle, and dynamic feature of the EBCP were examined along with the effects of hydraulic retention time (HRT), dissolved oxygen (DO), and initial pH on nitrogen removal. A stable coupling system was obtained after 51 days when plenty of biofilms were cultivated on the CCBC without inoculation sludge. Autotrophic denitrification, with [Fe(2+)] and [H] produced by iron-carbon galvanic cells in CCBC as electron donors, was confirmed by equity calculation of CODCr and nitrogen removal. Nitrogen removal efficiency was significantly influenced by HRT, DO, and initial pH with optimal values of 3.5 h, 3.5 ± 0.1 mg L(-1), and 7.5 ± 0.1, respectively. The ammonia, nitrate, and total nitrogen (TN) removal efficiencies of 90.1 to 95.3 %, 90.5 to 99.0 %, and 90.3 to 96.5 % were maintained with corresponding initial concentrations of 40 ± 2 mg L(-1) (NH3-N load of 0.27 ± 0.01 kg NH3-N m(-3) d(-1)), 20 ± 1 mg L(-1), and 60 ± 2 mg L(-1) (TN load of 0.41 ± 0.02 kg TN m(-3) d(-1)). Based on the Eckenfelder model, the kinetics equation of the nitrogen transformation along the reactor was N e  = N 0 exp (-0.04368 h/L(1.8438)). Hence, EBCP is a viable method for advanced low C/N ratio wastewater treatment. PMID:26564190

  5. Radiation treatment of wastewater, (11)

    International Nuclear Information System (INIS)

    High-energy electron treatment of wastewaters from dyeing factories (in Kiryu city, Gunma Prefecture) was investigated in a series on wastewater treatment by radiation. Experiments were made on decoloration f printing and dip dyeing wastewaters using a dual-tube bubbling column reactor. Changes in absorption spectra and pH of irradiated solutions and influence of dissolved oxygen on decoloration were examined. Water soluble dyes were decolored at low doses, but disperse dyes were not easily decolored. Although the wastewaters included number of different additives such as sizing stuff, surfactant and other chemicals, the decoloration was not influenced by these substances under the experimental conditions. The irradiation cost by electron beams was estimated as a function of plant capacity. A hybrid system of biological and radiation processes to reduce BOD and color in the wastewaters is presented, with this treatment cost also estimated. (author)

  6. Optimization of a full-scale Unitank wastewater treatment plant for biological phosphorus removal.

    Science.gov (United States)

    Zhou, Zhen; Xing, Can; Wu, Zhichao; Tong, Fei; Wang, Junru

    2014-01-01

    The Unitank process combines the advantages of traditional continuous-flow activated sludge processes and sequencing batch reactors, and has been extensively employed in many wastewater treatment plants (WWTPs) in China. Biological phosphorus removal (BPR) of a full-scale Unitank WWTP was optimized by increasing anaerobic time from 80 to 120 min in an operation cycle of 360 min and reducing solid retention time (SRT) from 21.3 to 13.1 d. The BPR efficiency of the full-scale Unitank system increased from 63.8% (SRT of 21.3 d) to 83.2% for a SRT of 13.1 d. When the anaerobic time increased from 80 to 120 min, the net anaerobic phosphorus release amount increased from 0.25 to 1.06 mg L(-1), and sludge phosphorus content rose from 13.8 to 15.0 mgP x (gSS)(-1). During half an operation cycle, the average specific phosphorus release rate increased from 0.097mgP x (gVSS x h)(-1) in 0-40 min to 0.825 mgP x (gVSS x h)(-1) in 40-60 min. Reducing SRT and increasing anaerobic time account for 84.6% and 15.4% in the total increment of phosphorus removal of 1.15 mgL(-1). PMID:24645458

  7. Coking wastewater treatment for industrial reuse purpose: combining biological processes with ultrafiltration, nanofiltration and reverse osmosis.

    Science.gov (United States)

    Jin, Xuewen; Li, Enchao; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian

    2013-08-01

    A full-scale plant using anaerobic, anoxic and oxic processes (A1/A2/O), along with a pilot-scale membrane bioreactor (MBR), nanofiltration (NF) and reverse osmosis (RO) integrated system developed by Shanghai Baosteel Chemical Co. Ltd., was investigated to treat coking wastewater for industrial reuse over a period of one year. The removals reached 82.5% (COD), 89.6% (BOD), 99.8% (ammonium nitrogen), 99.9% (phenol), 44.6% (total cyanide (T-CN)), 99.7% (thiocyanide (SCN-)) and 8.9% (fluoride), during the A1/A2/O biological treatment stage, and all parameters were further reduced by over 96.0%, except for fluoride (86.4%), in the final discharge effluent from the currently operating plant. The pilot-scale MBR process reduced the turbidity to less than 0.65 NTU, and most of the toxic organic compounds were degraded or intercepted by the A1/A2/O followed MBR processes. In addition, parameters including COD, T-CN, total nitrogen, fluoride, chloride ion, hardness and conductivity were significantly reduced by the NF-RO system to a level suitable for industrial reuse, with a total water production ratio of 70.7%. However, the concentrates from the NF and RO units were highly polluted and should be disposed of properly or further treated before being discharged. PMID:24520694

  8. Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater.

    Science.gov (United States)

    Sklyar, Vladimir; Epov, Andrey; Gladchenko, Marina; Danilovich, Dmitrii; Kalyuzhnyi, Sergey

    2003-01-01

    A combined biologic and chemical treatment of high-strength (total chemical oxygen demand [CODtot] up to 20 g/L), strong nitrogenous (total N up to 1 g/L), and phosphoric (total P up to 0.4 g/L) starch industry wastewater was investigated at laboratory-scale level. As a principal step for COD elimination, upflow anaerobic sludge bed reactor performance was investigated at 30 degrees C. Under hydraulic retention times (HRTs) of about 1 d, when the organic loading rates were higher than 15 g of COD/(L.d), the CODtot removal varied between 77 and 93%, giving effluents with a COD/N ratio of 4-5:1, approaching the requirements of subsequent denitrification. The activated sludge reactor operating in aerobic-anoxic regime (HRT of about 4 d, duration of aerobic and anoxic phases of 30 min each) was able to remove up to 90% of total nitrogen and up to 64% of COD tot from the anaerobic effluents under 17-20 degrees C. The coagulation experiments with Fe(III) showed that 1.4 mg of resting hardly biodegradable COD and 0.5 mg of phosphate (as P) could be removed from the aerobic effluents by each milligram of iron added. PMID:12794298

  9. Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants.

    Science.gov (United States)

    Barat, R; Serralta, J; Ruano, M V; Jiménez, E; Ribes, J; Seco, A; Ferrer, J

    2013-01-01

    This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via nitrite, apart from nitrite oxidizing bacteria two groups of ammonium oxidizing organisms (AOO) have been considered since different sets of kinetic parameters have been reported for the AOO present in activated sludge systems and SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) reactors. Due to the new processes considered, BNRM2 allows an accurate prediction of wastewater treatment plant performance in wider environmental and operating conditions. PMID:23552235

  10. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

    OpenAIRE

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-01-01

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher ph...

  11. Spatial Distribution of Total, Ammonia-Oxidizing, and Denitrifying Bacteria in Biological Wastewater Treatment Reactors for Bioregenerative Life Support

    OpenAIRE

    Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.

    2002-01-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project—Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the ...

  12. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant

    OpenAIRE

    Sauder, L.A.; Peterse, F.; Schouten, S; Neufeld, J. D.

    2012-01-01

    The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidizing populations in nitrifying rotating biological contactors (RBCs) from a municipal wastewater treatment plant. Individual RBC stages are arranged in series, with nitrification at each stage creat...

  13. Biological Treatment of Edible Oil Refinery Wastewater using Activated Sludge Process and Sequencing Batch Reactors - A Review

    OpenAIRE

    Devendra Dohare; Rahul Meshram

    2014-01-01

    This review paper intends to provide an overall vision of ASP and SBR technology as an alternative method for biological treatment of edible oil refinery wastewater. Edible oil refinery effluent is considered the most harmful waste for the environment if discharged untreated. Edible oil effluent is a yellowish liquid that contains high Dissolved Solids, Oil and Grease, high COD and BOD values, low pH, Total Kjeldahl Nitrogen, Ammonia Nitrogen, and Total Phosphorus. The activated s...

  14. Application of heterogeneous catalytic ozonation as a tertiary treatment of effluent of biologically treated tannery wastewater.

    Science.gov (United States)

    Huang, Guangdao; Pan, Feng; Fan, Guofeng; Liu, Guoguang

    2016-07-01

    The present study employed a Mn-Cu/Al2O3 heterogeneous catalytic ozonation process for tertiary treatment of actual tannery wastewater, focusing on its feasibility in that application. The primary factors affecting the removal efficiency of organic pollutants were investigated, including catalyst dosage, ozone dosage, and initial pH value. The experimental results showed that the addition of a Mn-Cu/Al2O3 catalyst improved the removal efficiency of chemical oxygen demand (COD) during ozonation, which initiated a 29.3% increase for COD removal, compared to ozonation alone after 60 min. The optimum pH, catalyst dosage, and ozone dosage were determined to be 7.0, 2.0 g/L, and 0.3 g/h, respectively. Under these conditions, following 60 min of reaction, the COD removal efficiency and the concentration in effluent were 88%, and 17 mg/L, respectively. In addition, the presence of tert-butanol (a well known hydroxyl radical scavenger) strongly inhibited COD removal via Mn-Cu/Al2O3 catalytic ozonation, indicating that the Mn-Cu/Al2O3 catalytic ozonation process follows a hydroxyl radical (OH·) reaction mechanism. The Mn-Cu/Al2O3 catalyst exhibited good stability and reusability. Finally, the kinetic analysis revealed that the apparent reaction rate constant of COD removal with the Mn-Cu/Al2O3 catalytic ozonation system (0.0328 min(-1)) was 2.3 times that of an ozonation system alone (0.0141 min(-1)). These results demonstrated that the catalytic ozonation using Mn-Cu/Al2O3 is an effective and promising process for tertiary treatment of tannery effluent in biological systems. PMID:27088814

  15. Mathematical Modeling of Hollow-Fiber Membrane System in Biological Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jian PENG

    2006-02-01

    Full Text Available A set of mathematical models were derived based on the bio-kinetics and material balance principles to describe the performance of membrane system in this research. A synthetic wastewater and a meat packing wastewater were processed through a lab-scale membrane bioreactor system to generate experimental data for calibration and verification of the derived models. For the synthetic wastewater treatment, a high and stable Total Organic Carbon (TOC removal was achieved with volumetric organic loading from 0.2 to 24.2 kg TOC/m3ƒ(d. It was found that the derived system models fit the experimental data well. The bio-kinetic coefficients of k, Ks, Y and kd in the models were found to be 0.16 d-1, 1.0 mg/L, 1.75 mg Mixed Liquor Volatile Suspended Solids (MLVSS/mg TOC and 0.11 d-1, respectively. For the meat packing wastewater treatment, the bio-kinetic coefficients of k, Ks, Y and kd were found to be 0.48 d-1, 56.3 mg/L, 0.53 mg MLVSS/mg COD and 0.04 d-1, respectively. F/M ratio of 0.08 was found to be the proper operating condition for the system. Based on the proposed system models, the optimum MLSS concentration and F/M ratio can be computed to yield minimum cost of a membrane bioreactor system without excess biomass production.

  16. Study of the aerobic biological treatment of slaughterhouse wastewater by membrane process

    International Nuclear Information System (INIS)

    The objective of this work is to study the performance of aerobic treatment of slaughterhouse wastewater by a side-stream membrane bioreactor (MBR) with semi-frontal filtration and to evaluate the sludge production generated by this system treatment. The MBR was fed with a flow rate of 5 L/d. The wastewater used in this study was collected from the WWTP Ellouhoum following pretreatment operations. They are characterized by an average total COD concentration of approximately 2 g/L. The mass load applied to the system was 0.18 g COD/gVSS.d. The results show that COD and total nitrogen removal efficiencies are respectively estimated at 90.66 pour cent and 92.86 pour cent. Treatment with MBR also allows a total elimination of TSS, fecal coliforms and pathogens. With a total biomass recycling, low sludge yield (Yobs) of 0.106 gTSS/g COD eliminated was obtained.

  17. Electrocoagulation in Wastewater Treatment

    OpenAIRE

    Mohammed Suleiman Al Ahmad; Ruth Yu-Li Yeh; Yung-Tse Hung; Erick Butler

    2011-01-01

    A review of the literature published in from 2008 to 2010 on topics related to electrochemical treatment within wastewater was presented. The review included several sections such as optimization, modeling, various wastewater treatment techniques, analytical and instrumentation, and comparison with other treatment methods.

  18. Electrocoagulation in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Mohammed Suleiman Al Ahmad

    2011-04-01

    Full Text Available A review of the literature published in from 2008 to 2010 on topics related to electrochemical treatment within wastewater was presented. The review included several sections such as optimization, modeling, various wastewater treatment techniques, analytical and instrumentation, and comparison with other treatment methods.

  19. Development of Combined Biological Technology for Treatment of High-strength Organic Wastewater and Results of Case Studies

    Institute of Scientific and Technical Information of China (English)

    REN Nanqi; WANG Aijie; HAN Hongjun; MA Fang; DING Jie; SHI Yue; ZHAO Dan

    2006-01-01

    Our study group has developed a unique combined biological technology to treat high-strength organic wastewaters from the industries of dyestuff, pharmaceutical, chemical engineering and zymolysis by using the principles of anaerobic ecological niche and bio-phase separation. The study obtained five national invention patents and eight patent equipments.This technology contains four kernel processes - two-phase anaerobic-aerobic process, hydrolysis-acidification-oxidation process, UASBAF-oxidation process, and internal cycling-hydrolysis-oxidation process. Fifteen pilot projects were accomplished in the basins of Tai Lake, Huai River, Liao River and Songhua River, and their total capital investment reached 185.214million Yuan (RMB). Compared to conventional wastewater treatment technology, the innovative technology is more costeffective for high-strength organic wastewater treatment, can save capital investment by 15% -30%, lessen land usage by 20% to 40% and decrease the operating cost by 10% to 25%. The operating cost of treatment per cubic meter industrial wastewater could be below 0.6 to 1.4 Yuan (RMB).

  20. [Treatment effect of biological filtration and vegetable floating-bed combined system on greenhouse turtle breeding wastewater].

    Science.gov (United States)

    Chen, Chong-Jun; Zhang, Rui; Xiang, Kun; Wu, Wei-Xiang

    2014-08-01

    Unorganized discharge of greenhouse turtle breeding wastewater has brought several negative influences on the ecological environment in the rural area of Yangtze River Delta. Biological filtration and vegetable floating-bed combined system is a potential ecological method for greenhouse turtle breeding wastewater treatment. In order to explore the feasibility of this system and evaluate the contribution of vegetable uptake of nitrogen (N) and phosphorus (P) in treating greenhouse turtle breeding wastewater, three types of vegetables, including Ipomoea aquatica, lettuce and celery were selected in this study. Results showed the combined system had a high capacity in simultaneous removal of organic matter, N and P. The removal efficiencies of COD, NH4(+)-N, TN and TP from the wastewater reached up to 93.2%-95.6%, 97.2%-99.6%, 73.9%-93.1% and 74.9%-90.0%, respectively. System with I. aquatica had the highest efficiencies in N and P removal, followed by lettuce and celery. However, plant uptake was not the primary pathway for TN arid TP removal in the combined system. The vegetable uptake of N and P accounted for only 9.1%-25.0% of TN and TP removal from the wastewater while the effect of microorganisms would be dominant for N and P removal. In addition, the highest amounts of N and P uptake in I. aquatica were closely related with the biomass of plant. Results from the study indicated that the biological filtration and vegetable floating-bed combined system was an effective approach to treating greenhouse turtle breeding wastewater in China. PMID:25509094

  1. Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions.

    Science.gov (United States)

    Flores-Alsina, Xavier; Gernaey, Krist V; Jeppsson, Ulf

    2012-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant was compared for a series of model assumptions. Three different model approaches describing BNR are considered. In the reference case, the original model implementations are used to simulate WWTP1 (ASM1 & 3) and WWTP2 (ASM2d). The second set of models includes a reactive settler, which extends the description of the non-reactive TSS sedimentation and transport in the reference case with the full set of ASM processes. Finally, the third set of models is based on including electron acceptor dependency of biomass decay rates for ASM1 (WWTP1) and ASM2d (WWTP2). The results show that incorporation of a reactive settler: (1) increases the hydrolysis of particulates; (2) increases the overall plant's denitrification efficiency by reducing the S(NOx) concentration at the bottom of the clarifier; (3) increases the oxidation of COD compounds; (4) increases X(OHO) and X(ANO) decay; and, finally, (5) increases the growth of X(PAO) and formation of X(PHA,Stor) for ASM2d, which has a major impact on the whole P removal system. Introduction of electron acceptor dependent decay leads to a substantial increase of the concentration of X(ANO), X(OHO) and X(PAO) in the bottom of the clarifier. The paper ends with a critical discussion of the influence of the different model assumptions, and emphasizes the need for a model user to understand the significant differences in simulation results that are obtained when applying different combinations of 'standard' models. PMID:22466599

  2. Biological Treatment of Edible Oil Refinery Wastewater using Activated Sludge Process and Sequencing Batch Reactors - A Review

    Directory of Open Access Journals (Sweden)

    Devendra Dohare

    2014-12-01

    Full Text Available This review paper intends to provide an overall vision of ASP and SBR technology as an alternative method for biological treatment of edible oil refinery wastewater. Edible oil refinery effluent is considered the most harmful waste for the environment if discharged untreated. Edible oil effluent is a yellowish liquid that contains high Dissolved Solids, Oil and Grease, high COD and BOD values, low pH, Total Kjeldahl Nitrogen, Ammonia Nitrogen, and Total Phosphorus. The activated sludge process is used to treat waste stream that are high in organic loading and biodegradable compounds. It is most widely used biological process for the treatment of edible oil refinery wastewater. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat edible oil refinery wastewater. The same can be successfully treated by sequencing batch reactor process.The advantages of SBR technology are single-tank configuration, easily expandable, flexibility in operation, feasibility of operation at low retention time, control over microbial population and various reactor configuration. Their studies resulted in very high percentage removal of BOD, COD, Total Dissolved Solids and Suspended Solids respectively. The review discusses some of the published works in addition to experiences of the authors.

  3. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination...

  4. Instability of biological nitrogen removal in a cokes wastewater treatment facility during summer

    International Nuclear Information System (INIS)

    Failure in nitrogen removal of cokes wastewater occurs occasionally during summer season (38 deg. C) due to the instability of nitrification process. The objective of this study was to examine why the nitrification process is unstable especially in summer. Various parameters such as pH, temperature, nutrients and pollutants were examined in batch experiments using activated sludge and wastewater obtained from a full-scale cokes wastewater treatment facility. Batch experiments showed that nitrification rate of the activated sludge was faster in summer (38 deg. C) than in spring or autumn (29 deg. C) and the toxic effects of cyanide, phenol and thiocyanate on nitrification were reduced with increasing temperature. Meanwhile, experiment using continuous reactor showed that the reduction rate in nitrification efficiency was higher at 38 deg. C than at 29 deg. C. In conclusion, the instability of full-scale nitrification process in summer might be mainly due to washing out of nitrifiers by fast growth of competitive microorganisms at higher temperature under increased concentrations of phenol and thiocyanate

  5. Performance of water quenched slag particles (WQSP) for municipal wastewater treatment in a biological aerated filter (BAF)

    International Nuclear Information System (INIS)

    Water quenched slag particles (WQSP) and haydite were applied to treat municipal wastewater in two lab-scale up-flow biological aerated filters (BAF) to compare their abilities to act as biofilm supports. The results showed that WQSP reactor brought a relative superiority to haydite reactor in terms of chemical oxygen demand (CODcr) and ammonia nitrogen (NH3-N) removal when hydraulic retention time (HRT) ranged from 1 h to 5 h.Compared with haydite, WQSP had higher total porosity, larger total surface area and lower bulk and apparent density. Tests of heavy metal elements in lixivium proved that WQSP were safe for wastewater treatment. In addition, the detection of the amount of hetero bacteria and nitrobacteria of two biological aerated filters in three HRTs also showed that WQSP medium was more suitable to the attached growth of nitrobacteria, which is helpful to the improvement of nitrification performance in WQSP BAF. Therefore, WQSP is a potential material for use as the filter media of BAF for wastewater treatment. WQSP application, as a novel process of treating wastes with waste, provides a promising way to use water quenched slag (WQS). -- Highlights: ► Novel filter media-water quenched slag particles (WQSP) were prepared. ► Two upflow BAFs were applied to treat municipal wastewater. ► WQSP reactor brought a relative superiority to haydite reactor. ► WQSP medium was more suitable to the attached growth of nitrobacteria. ► The application provided a promising way in water quenched slag waste material utilization.

  6. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors

    DEFF Research Database (Denmark)

    Stadler, Lauren B.; Su, Lijuan; Moline, Christopher J.;

    2015-01-01

    We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox...... condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated...... their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss....

  7. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  8. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    Science.gov (United States)

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. PMID:27017195

  9. Wetlands for Wastewater Treatment.

    Science.gov (United States)

    Jiang, Yi; Martinez-Guerra, Edith; Gnaneswar Gude, Veera; Magbanua, Benjamin; Truax, Dennis D; Martin, James L

    2016-10-01

    An update on the current research and development of the treatment technologies, which utilize natural processes or passive components in wastewater treatment, is provided in this paper. The main focus is on wetland systems and their applications in wastewater treatment (as an advanced treatment unit or decentralized system), nutrient and pollutant removal (metals, industrial and emerging pollutants including pharmaceutical compounds). A summary of studies involving the effects of vegetation, wetland design and modeling, hybrid and innovative systems, storm water treatment and pathogen removal is also included. PMID:27620086

  10. Combined biological and physico-chemical treatment of baker's yeast wastewater.

    Science.gov (United States)

    Kalyuzhnyi, S; Gladchenko, M; Starostina, E; Shcherbakov, S; Versprille, A

    2005-01-01

    The UASB reactor (35 degrees C) was quite efficient for removal of bulk COD (52-74%) from the raw and diluted cultivation medium from the first separation process of baker's yeasts (the average organic loading rates varied in the range 3.7-16 g COD/I/d). The aerobic-anoxic biofilter (19-23 degrees C) can be used for removal of remaining BOD and ammonia from anaerobic effluents; however, it had insufficient COD to fulfil the denitrification requirements. To balance COD/N ratio, some bypass of raw wastewater (approximately 10%) should be added to the biofilter feed. The application of iron (III)-, aluminium- or calcium-induced coagulation for post-treatment of aerobic effluents can fulfil the limits for discharge to sewerage (even for colour mainly exerted by hardly biodegradable melanoidins), however, the required amounts of coagulants were relatively high. PMID:16180425

  11. Mosquito development and biological control in a macrophyte-based wastewater treatment plant.

    Science.gov (United States)

    Kengne Noumsi, I M; Akoa, A; Atangana Eteme, R; Nya, J; Ngniado, P; Fonkou, T; Brissaud, F

    2005-01-01

    A one-year study of the proliferation of mosquito in a Pistia stratiotes-based waste stabilization ponds in Cameroon revealed that Mansonia and Culex were the main breeding genera with about 55% and 42% of the total imagoes respectively. Though the ponds represent a favorable breeding ground for mosquitoes, only 0.02% of captured imagoes was Anopheles gambiae, suggesting that this wastewater treatment plant does not significantly contribute to the development of the malaria vector in the area. Gambusia sp. introduced to control mosquito population in the ponds acclimatized relatively well in most of the ponds (B3-B7) and their feeding rate without any diet ranged from 15.0 to 50.2 larvae/day for a single fish. PMID:16114683

  12. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Lauren B., E-mail: lstadler@umich.edu [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States); Su, Lijuan, E-mail: lijuansu@buffalo.edu [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Moline, Christopher J., E-mail: christopher.moline@hdrinc.com [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States); Ernstoff, Alexi S., E-mail: alexer@dtu.dk [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States); Aga, Diana S., E-mail: dianaaga@buffalo.edu [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Love, Nancy G., E-mail: nglove@umich.edu [Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, EWRE, Ann Arbor, MI 48109 (United States)

    2015-01-23

    Highlights: • Pharmaceutical fate was studied in SBRs operated at different redox conditions. • Stable carbon oxidation and nitrification occurred under microaerobic conditions. • Losses of atenolol and trimethoprim were highest under fully aerobic conditions. • Loss of sulfamethoxazole was highest under microaerobic conditions. • Deconjugation occurred during treatment to form sulfamethoxazole and desvenlafaxine. - Abstract: We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated under different redox conditions: fully aerobic, anoxic/aerobic, and microaerobic (DO concentration ≈0.3 mg/L). Among the pharmaceuticals that were tracked during this study (atenolol, trimethoprim, sulfamethoxazole, desvenlafaxine, venlafaxine, and phenytoin), overall loss varied between them and between redox environments. Losses of atenolol and trimethoprim were highest in the aerobic reactor; sulfamethoxazole loss was highest in the microaerobic reactors; and phenytoin was recalcitrant in all reactors. Transformation products of sulfamethoxazole and desvenlafaxine resulted in the reformation of their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss.

  13. Effect of redox conditions on pharmaceutical loss during biological wastewater treatment using sequencing batch reactors

    International Nuclear Information System (INIS)

    Highlights: • Pharmaceutical fate was studied in SBRs operated at different redox conditions. • Stable carbon oxidation and nitrification occurred under microaerobic conditions. • Losses of atenolol and trimethoprim were highest under fully aerobic conditions. • Loss of sulfamethoxazole was highest under microaerobic conditions. • Deconjugation occurred during treatment to form sulfamethoxazole and desvenlafaxine. - Abstract: We lack a clear understanding of how wastewater treatment plant (WWTP) process parameters, such as redox environment, impact pharmaceutical fate. WWTPs increasingly install more advanced aeration control systems to save energy and achieve better nutrient removal performance. The impact of redox condition, and specifically the use of microaerobic (low dissolved oxygen) treatment, is poorly understood. In this study, the fate of a mixture of pharmaceuticals and several of their transformation products present in the primary effluent of a local WWTP was assessed in sequencing batch reactors operated under different redox conditions: fully aerobic, anoxic/aerobic, and microaerobic (DO concentration ≈0.3 mg/L). Among the pharmaceuticals that were tracked during this study (atenolol, trimethoprim, sulfamethoxazole, desvenlafaxine, venlafaxine, and phenytoin), overall loss varied between them and between redox environments. Losses of atenolol and trimethoprim were highest in the aerobic reactor; sulfamethoxazole loss was highest in the microaerobic reactors; and phenytoin was recalcitrant in all reactors. Transformation products of sulfamethoxazole and desvenlafaxine resulted in the reformation of their parent compounds during treatment. The results suggest that transformation products must be accounted for when assessing removal efficiencies and that redox environment influences the degree of pharmaceutical loss

  14. Effect of chaotic mixing on enhanced biological growth and implications for wastewater treatment: A test case with Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Mixing patterns and modes have a great influence on the efficiency of biological treatment systems. A series of laboratory experiments was conducted with a controlled, small-scale analog of a pilot wastewater aeration tank, consisting of two eccentrically placed cylinders. By controlling the rotation direction and speed of the two cylinders, it has been possible to develop chaotic flow fields in the space between the walls of the cylinders. Our experiments utilized Saccharomyces cerevisiae as the biological oxidation organism and air bubbles as the mixing agent supplied by a large fine pore diffuser to the cells in their exponential growth phase. The effect of various mixing patterns on cell growth was studied at different cylinder eccentricities, rotation directions and speeds. It was found that chaotic advection flow patterns: (a) enhanced growth, and (b) sped up the onset of maximal growth of the organism by 15-18% and 14-20%, respectively

  15. Computing the resilience of a wastewater treatment bioreactor

    OpenAIRE

    Mabrouk, N.; Mathias, J.D.; Deffuant, G.

    2010-01-01

    International audience Biological wastewater treatment reactor are designed to reduce the pollutant content of a wastewater to an acceptable level often fixed by wastewater discharge regulations. The reactor design is often based on average wastewater flow and composition patterns. However, industrial wastewater treatment reactors are often subject to unexpected perturbations (variations in wastewater flow, composition or shift in the microbial communities). Hence the capacity of the react...

  16. Treatment of paper and board mill wastewater by biological- filtration-coagulation pilot scale reactor

    International Nuclear Information System (INIS)

    A combined biological-filtration-coagulation pilot scale reactor was designed and used for the treatment of effluent from a paper and board mill that had Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD) in the range of 2,054-3,021 mg/L, and 668-1195 mg/L, respectively. Biological treatment by Fed Batch Reactor (FBR) and Sequencing Batch Reactor (SBR) processes resulted in reduction of Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD) about 49-60% and 74-78% respectively. Biological treatment by FBR operation, sand filtration (SF) and Alum (AL) treatment resulted total of 93-95% and 96-97% COD and BOD reduction, respectively. In case of SBR processes, followed by SF and AL treatment, 91 and 92% COD and BOD reduction was observed, respectively. Both of the untreated effluents were found toxic while, treated were not toxic when exposed to the fish even for 72 hours. The resultant effluent from FBR-SF-AL treatment met National Environmental Quality Standards (NEQS) of Pakistan and could be discharged into the environment without any risk. (author)

  17. Microbial mats as a biological treatment approach for saline wastewaters: the case of produced water from hydraulic fracturing.

    Science.gov (United States)

    Akyon, Benay; Stachler, Elyse; Wei, Na; Bibby, Kyle

    2015-05-19

    Treatment of produced water, i.e. wastewater from hydraulic fracturing, for reuse or final disposal is challenged by both high salinity and the presence of organic compounds. Organic compounds in produced water may foul physical-chemical treatment processes or support microbial corrosion, fouling, and sulfide release. Biological approaches have potential applications in produced water treatment, including reducing fouling of physical-chemical treatment processes and decreasing biological activity during produced water holding; however, conventional activated sludge treatments are intolerant of high salinity. In this study, a biofilm treatment approach using constructed microbial mats was evaluated for biodegradation performance, microbial community structure, and metabolic potential in both simulated and real produced water. Results demonstrated that engineered microbial mats are active at total dissolved solids (TDS) concentrations up to at least 100,000 mg/L, and experiments in real produced water showed a biodegradation capacity of 1.45 mg COD/gramwet-day at a TDS concentration of 91,351 mg/L. Additionally, microbial community and metagenomic analyses revealed an adaptive microbial community that shifted based upon the sample being treated and has the metabolic potential to degrade a wide array of contaminants, suggesting the potential of this approach to treat produced waters with varying composition. PMID:25867284

  18. Filamentous fungi in Indah Water Konsortium (IWK) sewage treatment plant for biological treatment of domestic wastewater sludge.

    Science.gov (United States)

    Fakhrul-Razi, A; Alam, M Zahangir; Idris, Azni; Abd-Aziz, Suraini; Molla, Abul H

    2002-03-01

    A study was carried out to isolate and identify filamentous fungi for the treatment of domestic wastewater sludge by enhancing biodegradability, settleability and dewaterability of treated sludge using liquid state bioconversion process. A total of 70 strains of filamentous fungi were isolated from three different sources (wastewater, sewage sludge and leachate) of IWK's (Indah Water Konsortium) sewage treatment plant, Malaysia. The isolated strains were purified by conventional techniques and identified by microscopic examination. The strains isolated belonged to the genera of Penicillium, Aspergillus, Trichoderma, Spicaria and Hyaloflorae The distribution of observed isolated fungi were 41% in sewage sludge followed by 39% in wastewater and 20% in leachate. The predominant fungus was Penicillium (39 strains). The second and third most common isolates were Aspergillus (14 strains) and Trichoderma (12 strains). The other isolates were Spicaria (3 strains) and Hyaloflorae (2 strains). Three strains (WWZP1003, LZP3001, LZP3005) of Penicillium (P. corylophilum, P. waksmanii, and P. citrinum respectively), 2 strains (WWZA1006 and SS2017) of Aspergillus (A. terrues and A. flavus respectively) and one strain (SSZT2008) of Trichoderma (T. harzianum) were tentatively identified up to species level and finally verified by CABI Bioscience Identification Services, UK. PMID:11929070

  19. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. PMID:25936898

  20. Advanced treatment of biologically pretreated coking wastewater by intensified zero-valent iron process (IZVI) combined with anaerobic filter and biological aerated filter (AF/BAF)

    Institute of Scientific and Technical Information of China (English)

    潘碌亭; 韩悦; 吴锦峰

    2015-01-01

    Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process (IZVI) and anaerobic filter and biological aerated filter (AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total nitrogen (TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum (GC/MS) and gel permeation chromatography (GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.

  1. Separation, Characterization and Fouling Potential of Sludge Waters from Different Biological Wastewater Treatment Processes

    KAUST Repository

    Xue, Jinkai

    2011-07-01

    The major limitation, which hinders the wider application of membrane technology and increases the operating costs of membranes involved in wastewater treatment plants, is membrane fouling induced by organic matter. Extracellular polymeric products (EPS) and soluble microbial products (SMP) are the two most mentioned major foulants in publications, for which the debate on precise definitions seems to be endless. Therefore, a concept of sludge water, which conceptually covers both EPS and SMP, has been developed in this research. A standard procedure of sludge water separation, which is centrifugation at 4000g for 15 min followed by 1.2μm glass fiber filter filtration, was established based on separation experiments with membrane tank sludge from the KAUST MBR wastewater treatment plant. Afterwards, sludge waters from the KAUST MBR WWTP anoxic tank, aerobic tank and membrane tank as well as sludge waters from the Jeddah WWTP anoxic tank, aerobic tank and secondary effluent were produced through the previously developed standard procedure. The obtained sludge water samples were thereafter characterized with TOC/COD, LC-­‐OCD and F-­‐EEM, which showed that KAUST anoxic/ aerobic /membrane tank sludge waters had similar characteristics for all investigated parameters, yet the influent naturally had a higher DOC and biopolymer concentration. Moreover, lower TOC/COD, negligible biopolymers and low levels of humics were found in KAUST effluent. Compared with the KAUST MBR WWTP, the Jeddah WWTP’s sludge waters generally had higher DOC and biopolymer concentrations. To investigate sludge water fouling potential, the KAUST membrane tank sludge water as well as the Jeddah secondary effluent were filtrated through a membrane array consisting of an ultrafiltration (UF) Millipore RC10kDa at the first step followed by a nanofiltration (NF) KOCH Acid/Base stable NF200 at the second step. It was found that cake layer and standard blocking occurred simultaneously during both

  2. Uncertainty assessment of a model for biological nitrogen and phosphorus removal: Application to a large wastewater treatment plant

    Science.gov (United States)

    Mannina, Giorgio; Cosenza, Alida; Viviani, Gaspare

    In the last few years, the use of mathematical models in WasteWater Treatment Plant (WWTP) processes has become a common way to predict WWTP behaviour. However, mathematical models generally demand advanced input for their implementation that must be evaluated by an extensive data-gathering campaign, which cannot always be carried out. This fact, together with the intrinsic complexity of the model structure, leads to model results that may be very uncertain. Quantification of the uncertainty is imperative. However, despite the importance of uncertainty quantification, only few studies have been carried out in the wastewater treatment field, and those studies only included a few of the sources of model uncertainty. Seeking the development of the area, the paper presents the uncertainty assessment of a mathematical model simulating biological nitrogen and phosphorus removal. The uncertainty assessment was conducted according to the Generalised Likelihood Uncertainty Estimation (GLUE) methodology that has been scarcely applied in wastewater field. The model was based on activated-sludge models 1 (ASM) and 2 (ASM2). Different approaches can be used for uncertainty analysis. The GLUE methodology requires a large number of Monte Carlo simulations in which a random sampling of individual parameters drawn from probability distributions is used to determine a set of parameter values. Using this approach, model reliability was evaluated based on its capacity to globally limit the uncertainty. The method was applied to a large full-scale WWTP for which quantity and quality data was gathered. The analysis enabled to gain useful insights for WWTP modelling identifying the crucial aspects where higher uncertainty rely and where therefore, more efforts should be provided in terms of both data gathering and modelling practises.

  3. Effects of shear and mixing on a continuously-fed stirred tank reactor for aerobic, biological wastewater treatment

    OpenAIRE

    Berry, Alice L.

    2002-01-01

    Treatment of domestic wastewater in a 9 L well defined conventional biotechnology type reactor was investigated over a range of stirrer speeds (8.3 to 16.7 s-1) and retention times (8 to 12 h). Parameters of reactor oxygen transfer coefficient and shear were found to be close to conditions used for pure cell culture in industrial applications rather than typical wastewater treatment conditions. The major treatment effects measured were carbonaceous load removal and nitrifica...

  4. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  5. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m3/day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  6. Supernatant Sludge Treatment on the Ljubljana Wastewater Treatment Plant

    OpenAIRE

    Vrbančič, Mojca

    2013-01-01

    Supernatant, generated from mechanical compaction previously anaerobically stabilized sludge at the wastewater treatment plant, is heavily loaded with ammonium nitrogen. Usually is leaded to an inflow of wastewater treatment plant and represents approximately 30 % of the additional nitrogen load in the biological treatment stage. To avoid this problem and due to increasingly stringent regulations, which has in recent years heavily limited emissions of nitrogen in the effluent from wastewater...

  7. Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Merkey, Brian;

    2010-01-01

    Discharge of nitrogenous components to water bodies can cause eutrophication, deterioration of water quality, toxicity to aquatic life, and pose a potential hazard to human and animal health. Biological nitrogen removal can remove nitrogenous components via conversion to harmless nitrogen gas...... with high efficiency and relative low costs. However, the removal of nitrogen from domestic wastewater with a low carbon/nitrogen (C/N) ratio can often be limited in municipal wastewater plants (WWTPs) because organic carbon is a limiting factor for denitrification. The present work reviews innovative......-effective nitrogen removal from low C/N ratio domestic wastewater can be obtained in the near future....

  8. Microalgal biofilms for wastewater treatment

    OpenAIRE

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scenario analysis. Then biofilms were grown on wastewater treatment plant effluent in horizontal flow cells under different nutrient loads to determine the maximum uptake capacity of the biofilms for N...

  9. Coke dust enhances coke plant wastewater treatment.

    Science.gov (United States)

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. PMID:25113994

  10. Integration of an innovative biological treatment with physical or chemical disinfection for wastewater reuse.

    Science.gov (United States)

    De Sanctis, Marco; Del Moro, Guido; Levantesi, Caterina; Luprano, Maria Laura; Di Iaconi, Claudio

    2016-02-01

    In the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively. Lower removal efficiency was observed for phosphorus with an average concentration in the effluent of 3 mg/L. Plant effluent was also characterized by an average electrical conductivity and sodium adsorption ratio of 680 μS/cm and 2.9, respectively. Therefore, according to these gross parameters, the SBBGR effluent was conformed to the national standards required in Italy for agricultural reuse. Moreover, disinfection performances of the SBBGR was higher than that of conventional municipal wastewater treatment plants and met the quality criteria suggested by WHO (Escherichia colitreatment by SBBGR removed 3.8±0.4 log units of Giardia lamblia, 2.8±0.8 log units of E. coli, 2.5±0.7 log units of total coliforms, 2.0±0.3 log units of Clostridium perfringens, 2.0±0.4 log units of Cryptosporidium parvum and 1.7±0.7 log units of Somatic coliphages. The investigated disinfection processes (UV and peracetic acid) resulted very effective for total coliforms, E. coli and somatic coliphages. In particular, a UV radiation and peracetic acid doses of 40 mJ/cm(2) and 1 mg/L respectively reduced E. coli content in the effluent below the limit for agricultural reuse in Italy (10 CFU/100 mL). Conversely, they were both ineffective on C.perfringens spores. PMID:26584070

  11. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  12. Treatment of electroplating wastewater

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To study the feasibility of treated water being used as rinsing water with CP/ED (chemical precipitation/electrodialysis) system, the relation between concentration of Cr (VI) and conductivity of water is investigated, the effect of electrodialysis (ED) for different wastewater is also studied. And several parameters of importance that are relevant to the process are identified. Analysis of ICP (Inductively coupled plasma) and IC (Ion chromatography) shows that the main reason of conductivity increase in CP treated water is the increase of Na+ and Cl- ions. The 93.8%-100% of ions from wastewater both in ED and CP/ED systems was removed successfully. The results of experiments indicate that the CP/ED system is a feasible method for electroplating wastewater treatment, the CP/ED system used as a way of wastwater is not only in favour of environment, but also economic beneficial to achieve.

  13. Genome Sequence of "Candidatus Microthrix parvicella" Bio17-1, a Long-Chain-Fatty-Acid-Accumulating Filamentous Actinobacterium from a Biological Wastewater Treatment Plant

    OpenAIRE

    Muller, Emilie; Pinel, Nicolás; Gillece, John D.; Schupp, James M.; Lance B Price; Engelthaler, David M.; Levantesi, Caterina; Tandoi, Valter; Luong, Kkai; Baliga, Nitin S.; Korlach, Jonas; Keim, Paul S.; Wilmes, Paul

    2012-01-01

    “Candidatus Microthrix” bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for foaming and bulking. Here, we report the first draft genome sequence of a strain from this genus: “Candidatus Microthrix parvicella” strain Bio17-1.

  14. Biomembranes for wastewater treatment

    OpenAIRE

    Aznar Jiménez, Antonio

    2008-01-01

    Engineering laboratory for wastewater treatment of UC3M (Spain), optimizes the set-up and the design of membrane bioreactors (MBR), advised for higher quality of the treated water or to increase the treatment capacity. MBR system is a versatile method that achieves a fast depuration of biodegradable water, where nitrogen and phosphorous removal can be integrated in a simple way. Companies interested in applying or developing this technology or micro and ultra filtration membrane produc...

  15. Monitoring the effects of wastewater treatment strategies.

    Science.gov (United States)

    de-la-Ossa-Carretero, J A; Del-Pilar-Ruso, Y; Giménez-Casalduero, F; Sánchez-Lizaso, J L

    2016-02-01

    Wastewater disposal in coastal waters causes widespread environmental problems. Secondary treatment is expected to reduce the adverse effects of insufficiently treated wastewater. The environmental impact of sewage disposal via 18 wastewater treatment plants was analysed using the benthic opportunistic polychaetes and amphipods (BOPA) index. In previous studies this index proved to be an effective tool for monitoring sewage pollution. The impact of these discharges was highly related to treatment level, which ranged from pre-treatment to biological, as well as to flow rates and outfall position. Locations affected by pre-treated wastewater showed environmental degradation, especially marked near outfalls with higher flow rates. At most locations, biologically treated wastewater did not cause a significant impact and an improvement in ecological integrity was detected after this secondary treatment had been implemented. The impact of discharge was highly related to chemical oxygen demand (COD), suspended solids and nutrient concentrations, which are all lower in biologically treated wastewater. A 'moderate' ecological status was observed not only near sewage outfalls with high wastewater flow rates (>1,500,000 m(3)/month) with a COD over 200 mg/l but also near those with lower flow rates but with a COD over 400 mg/l. To reduce the impact of sewage disposal, it is necessary to carry out adequate treatment, have site outfalls deep enough, and implement water recycling. PMID:26801153

  16. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of Indian Creek, Johnson County, Kansas, June 2004 through June 2013

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.

    2014-01-01

    Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was

  17. Identification of transformation products of antiviral drugs formed during biological wastewater treatment and their occurrence in the urban water cycle.

    Science.gov (United States)

    Funke, Jan; Prasse, Carsten; Ternes, Thomas A

    2016-07-01

    The fate of five antiviral drugs (abacavir, emtricitabine, ganciclovir, lamivudine and zidovudine) was investigated in biological wastewater treatment. Investigations of degradation kinetics were accompanied by the elucidation of formed transformation products (TPs) using activated sludge lab experiments and subsequent LC-HRMS analysis. Degradation rate constants ranged between 0.46 L d(-1) gSS(-1) (zidovudine) and 55.8 L d(-1) gSS(-1) (abacavir). Despite these differences of the degradation kinetics, the same main biotransformation reaction was observed for all five compounds: oxidation of the terminal hydroxyl-moiety to the corresponding carboxylic acid (formation of carboxy-TPs). In addition, the oxidation of thioether moieties to sulfoxides was observed for emtricitabine and lamivudine. Antiviral drugs were detected in influents of municipal wastewater treatment plants (WWTPs) with concentrations up to 980 ng L(-1) (emtricitabine), while in WWTP effluents mainly the TPs were found with concentration levels up to 1320 ng L(-1) (carboxy-abacavir). Except of zidovudine none of the original antiviral drugs were detected in German rivers and streams, whereas the concentrations of the TPs ranged from 16 ng L(-1) for carboxy-lamivudine up to 750 ng L(-1) for carboxy-acyclovir. These concentrations indicate an appreciable portion from WWTP effluents present in rivers and streams, as well as the high environmental persistence of the carboxy-TPs. As a result three of the carboxylic TPs were detected in finished drinking water. PMID:27082694

  18. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview.

    Science.gov (United States)

    Huang, Jinhui; Shi, Yahui; Zeng, Guangming; Gu, Yanling; Chen, Guiqiu; Shi, Lixiu; Hu, Yi; Tang, Bi; Zhou, Jianxin

    2016-08-01

    Quorum sensing (QS) is a communication process between cells, in which bacteria secrete and sense the specific chemicals, and regulate gene expression in response to population density. Quorum quenching (QQ) blocks QS system, and inhibits gene expression mediating bacterial behaviors. Given the extensive research of acyl-homoserine lactone (AHL) signals, existences and effects of AHL-based QS and QQ in biological wastewater treatments are being subject to high concern. This review summarizes AHL structure, synthesis mode, degradation mechanisms, analytical methods, environmental factors, AHL-based QS and QQ mechanisms. The existences and roles of AHL-based QS and QQ in biomembrane processes, activated sludge processes and membrane bioreactors are summarized and discussed, and corresponding exogenous regulation strategy by selective enhancement of AHL-based QS or QQ coexisting in biological wastewater treatments is suggested. Such strategies including the addition of AHL signals, AHL-producing bacteria as well as quorum quenching enzyme or bacteria can effectively improve wastewater treatment performance without killing or limiting bacterial survival and growth. This review will present the theoretical and practical cognition for bacterial AHL-based QS and QQ, suggest the feasibility of exogenous regulation strategies in biological wastewater treatments, and provide useful information to scientists and engineers who work in this field. PMID:27213243

  19. Experiences with the biological treatment of phenolic and furan resin wastewaters

    International Nuclear Information System (INIS)

    Wastewaters with a high organic pollutant load from phenolic and furan resin manufacture can be purified by means of an especially adapted microbioenosis. The core of the plant consists of two rows of bioreactors connected in series which work according to the airlift principle with sludge recirculation. The activateed sludge is supplied with air and small quantities of nutrient salts in the form of phosphoric and sulphuric compounds. An optimal pH is obtained by means of NaOH dosage and excess foaming is suppressed by admixing a defoaming solution. COD elimination is above 95% on average and overall efficiency for removal of furfuraly tetrahydrofurfuryl and furfuryl alcohol, and phenol reaches 99% and more. The process is ca 50% more cost-effective than the combustion of the wastewater constituents. (MBS)

  20. Electron beam treatment of textile dyeing wastewater

    International Nuclear Information System (INIS)

    A pilot plant with e-beam for treating 1,000m3/day of dyeing wastewater were constructed and started in operation from 1998, together with the biological treatment facility. The wastewater from various stages of the existing purification process can be treated with electron beam in this plant, and it will give rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam treatment results in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Commercial plants for treating over 10,000m3/day each, based upon this pilot experimental result, will start in construction from 2001 by the support of IAEA and Korean Government. (author)

  1. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    . Wastewater contains a variety of substances, including anthropogenic pollutants, residues of pharmaceuticals and personal care products (PPCPs), pathogenic microorganisms and parasites as well as antibiotic resistant bacteria that can be harmful for the environment as well as human health. Due...... or water saving toilets. This opens up for co-treatment of organic waste fractions. Freezing and thawing has also been recognised as being a cost-effective wastewater treatment method in cold regions. Thus it was chosen to concentrate on the effect of the mentioned processes, namely freezing, anaerobic...... alternative could be to use small and simple biogas plants, followed by dewatering of the degassed biomass, either by utilizing possible surplus of energy from the biogas plant or natural freezing, which might be a more cost-effective way. After dewatering the liquid part can be treated by filtration...

  2. Evaluation of Natural Materials as Exogenous Carbon Sources for Biological Treatment of Low Carbon-to-Nitrogen Wastewater

    Science.gov (United States)

    Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel; Vázquez-Rodríguez, Gabriela

    2015-01-01

    In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4+, NO2−, and NO3−, and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents. PMID:26495313

  3. Inhibitory Effects of Silver Nanoparticles on Removal of Organic Pollutants and Sulfate in an Anaerobic Biological Wastewater Treatment Process.

    Science.gov (United States)

    Rasool, Kashif; Lee, Dae Sung

    2016-05-01

    The increasing use of silver nanoparticles (AgNPs) in commercial products and industrial processes raises issues regarding the toxicity of sludge biomass in biological wastewater treatment plants, due to potential antimicrobial properties. This study investigated the effects of AgNPs on removal of organic pollutants and sulfate in an anaerobic biological sulfate reduction process. At AgNPs concentrations of up to 10 mg/L, no significant inhibition of sulfate and COD removal was observed. However, at higher concentrations (50-200 mg/L) sulfate and COD removal efficiencies were significantly decreased to 51.8% and 33.6%, respectively. Sulfate and COD reduction followed first-order kinetics at AgNPs concentrations of up to 10 mg/L and second-order kinetics at AgNPs concentrations of 50-200 mg/L. Lactate dehydrogenase release profiles showed increases in cytotoxicity at AgNPs concentrations greater than 50 mg/L suggesting cell membrane disruption. Analysis of extracellular polymeric substances (EPS) from sulfidogenic sludge biomass and of Fourier transform infrared (FT-IR) spectra showed a decrease in concentrations of carbohydrates, proteins, humic substances, and lipids in the presence of AgNPs. Moreover, the interaction of AgNPs with sludge biomass and the damage caused to cell walls were confirmed through scanning electron microscopy with energy dispersive X-ray spectroscopy. PMID:27483773

  4. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

    Science.gov (United States)

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-02-01

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher phosphorus removal efficiency than the conventional four-step (i.e., anaerobic/oxic/anoxic/oxic) biological nutrient removal process (41 +/- 7% versus 30 +/- 5% in abundance of PAOs and 97 +/- 0.73% versus 82 +/- 1.2% in efficiency of phosphorus removal). It was found that this new process increased pH value but decreased nitrite accumulation, resulting in the decreased FNA generation. Further experiments showed that the new process could alleviate the inhibition of FNA on the metabolisms of PAOs even under the same FNA concentration.

  5. Efficiency of domestic wastewater treatment plant for agricultural reuse

    OpenAIRE

    Claudinei Fonseca Souza; Reinaldo Gaspar Bastos; Marcus Paulo de Moraes Gomes; André Arashiro Pulschen

    2015-01-01

    The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP) physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic ...

  6. Wastewater treatment with algae

    Energy Technology Data Exchange (ETDEWEB)

    Wong Yukshan [Hong Kong Univ. of Science and Technology, Kowloon (China). Research Centre; Tam, N.F.Y. [eds.] [City Univ. of Hong Kong, Kowloon (China). Dept. of Biology and Chemistry

    1998-05-01

    Immobilized algal technology for wastewater treatment purposes. Removal of copper by free and immobilized microalga, Chlorella vulgaris. Biosorption of heavy metals by microalgae in batch and continuous systems. Microalgal removal of organic and inorganic metal species from aqueous solution. Bioaccumulation and biotransformation of arsenic, antimony and bismuth compounds by freshwater algae. Metal ion binding by biomass derived from nonliving algae, lichens, water hyacinth root and spagnum moss. Metal resistance and accumulation in cyanobacteria. (orig.)

  7. Treatment of wastewater with the constructed wetland

    International Nuclear Information System (INIS)

    Constructed wetland is an environmental sound, actual and economic solution for the treatment of wastewater. The use of these constructed wetlands increased in the last few years, principally in developed countries. However there is not much information about the performance of these biological systems in tropical and subtropical climates. In these review the state of art of these technology is given, and also the advantage of the use of the constructed wetland for the wastewater treatment in our country

  8. Size fractionation of wood extractives, lignin and trace elements in pulp and paper mill wastewater before and after biological treatment.

    Science.gov (United States)

    Leiviskä, Tiina; Rämö, Jaakko; Nurmesniemi, Hannu; Pöykiö, Risto; Kuokkanen, Toivo

    2009-07-01

    Integrated kraft pulp and paper mill wastewater was characterized before (influent) and after (effluent) the activated sludge process by microfiltration (8, 3, 0.45 and 0.22 microm) and ultrafiltration (100, 50, 30 and 3 kDa) into different size fractions. Wood extractives, lignin, suspended solids and certain trace elements were determined in each fraction. Forty four percent of the resin and fatty acids in the influent (12.8 mg/L) occurred in particles (>0.45 microm), 20% as colloids (0.45 microm-3 kDa) and 36% in the resin and fatty acids (1.45 mg/L) and sterols (0.26 mg/L) were mainly present in the Lignin in the influent was mainly in the colloidal and lignin in the biological treatment was concentrated on the colloidal fraction. In the influent, Mn, Zn and Si were mainly present in the <3 kDa fraction, whereas a significant proportion of Fe and Al were found also in the particle and colloidal fractions. In the effluent, Fe and Al were mainly present in the colloidal fraction; in contrast, Mn, Zn and Si were mainly in the <3 kDa fraction. The results indicated that the release of certain compounds and elements into the environment could be significantly decreased or even prevented simply by employing microfiltration as a final treatment step or by enhancing particle removal in the secondary clarifier. PMID:19524281

  9. Advanced treatment of oilfield production wastewater by an integration of coagulation/flotation, catalytic ozonation and biological processes.

    Science.gov (United States)

    Chen, Ke-Yong; Zhang, Xiao-Bing; Li, Jun

    2016-10-01

    In this study, advanced treatment of heavily polluted oilfield production wastewater (OPW) was investigated employing the combination of coagulation/dissolved air flotation, heterogeneous catalytic ozonation and sequencing batch reactor (SBR) processes. Two SBR reactors were separately set up before and after the ozonation unit. The results show that microbubble flotation was more efficient than macrobubble flotation in pollutant removal. Catalytic ozonation with the prepared Fe/activated carbon catalyst significantly enhanced pollutant removal in the second SBR by improving wastewater biodegradability and reducing wastewater microtoxicity. The treatment technique decreased oil, chemical oxygen demand and NH3-N by about 97%, 88% and 91%, respectively, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real OPW. PMID:26936286

  10. Application of Chemically Modified and Unmodified Waste Biological Sorbents in Treatment of Wastewater

    Directory of Open Access Journals (Sweden)

    John Kanayochukwu Nduka

    2012-01-01

    Full Text Available Protein wastes (feathers, goat hair and cellulosic wastes (corn cob, coconut husks were collected and washed with detergent solution, thoroughly rinsed and sun dried for 2 days before drying in an oven, and then ground. One-half of ground material was carbonized at a maximum temperature of 500°C after mixing with H2SO4. The carbonized parts were pulverized; both carbonized and uncarbonized sorbents were sieved into two particle sizes of 325 and 625 μm using mechanical sieve. Sorbents of a given particle size were packed into glass column.Then, textile wastewater that had its physicochemical parameters previously determined was eluted into each glass column and a contact time of 60 and 120 mins was allowed before analysis. Results showed 48.15–99.98 percentage reduction of NO3−, EC, Cl−, BOD, COD, DO, TSS, and TDS, 34.67–99.93 percentage reduction of NO3−, EC, Cl−, BOD, COD, DO, TSS, and TDS, 52.83–97.95 percentage reduction of Pb2+, Ni2+, Cr3+ and Mn2+ and 34.59–94.87 percentage reduction of Pb2+, Ni2+, Cr3+ and Mn2+. Carbonization, small particle, size and longer contact time enhanced the sorption capabilities of the sorbents. These show that protein and cellulosic wastes can be used to detoxify wastewater.

  11. Influence of pH and biological metabolism on dissolved phosphorus during biological treatment of piggery wastewater

    OpenAIRE

    Daumer, M.L.; Béline, F.; Guiziou, F.; Spérandio, M

    2007-01-01

    In areas with intensive animal farming, phosphorus from livestock waste contributes to the eutrophication of surface water. To increase the phosphorus recycling potential, mineral phosphorus products have to be obtained not only from the liquid but also from the solid phase of piggery wastewater needing new physicochemical processes to be investigated. Discarding phosphorus from organic matter by a previous solubilisation of phosphorus improves the potential recycling yield. In this aim, evol...

  12. Wastewater evaluation by analytical and biological procedures

    Directory of Open Access Journals (Sweden)

    M. Carballo

    2002-06-01

    Full Text Available Some procedures, based on analytical and biological methods, are useful tools for risk assessment of treatment plant wastewater. In fact, urban effluents, called “complex mixtures” due to their nature, origin and toxicologic and environmental variability, need a more realistic evaluation. In this study, 11 municipal wastewater effluents were studied. Chemical analysis (GC/MS and biological methods (acute and chronic toxicity bioassays and estrogenicity, mutagenity and teratogeny tests were carried out to identify the most frequent organic compounds and toxic effluents. Results showed 7 effluents with acute toxicity, 3 with chronic toxicity and 4, with estrogenic effects. When toxicity and analytical results were compared, it was observed that in effluents with estrogenic effects, at least 3 estrogenic substances were identified. Attending all these results, the inclusion of combined methodologies must be considered to get more realistic information about these situations.

  13. Biological treatment of phenolic wastewater in an anaerobic continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Firozjaee Taghizade Tahere

    2013-01-01

    Full Text Available In the present study, an anaerobic continuous stirred tank reactor (ACSTR with consortium of mixed culture was operated continuously for a period of 110 days. The experiments were performed with three different hydraulic retention times and by varying initial phenol concentrations between 100 to 1000 mg/L. A maximum phenol removal was observed at a hydraulic retention time (HRT of 4 days, with an organic loading rate (OLR of 170.86 mg/L.d. At this condition, phenol removal rate of 89% was achieved. In addition, the chemical oxygen demand (COD removal corresponds to phenol removal. Additional operating parameters such as pH, MLSS and biogas production rate of the effluents were also measured. The present study provides valuable information to design an anaerobic ACSTR reactor for the biodegradation of phenolic wastewater.

  14. Physicochemical and biological treatability study of textile dye wastewater

    OpenAIRE

    Gorgone, Christine Ann

    1995-01-01

    The textile industry discharges a highly colored wastewater characterized by high organic levels. Industrial wastewater with these characteristics can be harmful to receiving streams and municipal plants, and must be treated prior to discharge. In this project, a yam dyeing facility was studied that uses biological treatment followed by chemical coagulation to treat their highly colored wastewater prior to discharging to the local river. Occasionally, color, organic, and metal ...

  15. Sequential electrochemical/biological treatment for the removal of 2,6-dichlorophenol from synthetic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, A.M.; Palmas, S.; Lallai, A. [Cagliari Univ., Cagliari (Italy). Dipt. di Ingegneria Chmica e Materiali

    2001-04-01

    The paper examines the effect of chloride on the oxidation of 2,6-dichlorophenol (DCP) performed at TiO{sub 2}/RuO{sub 2} DSA (Registered) anodes, which are specific catalysts for chlorine evolution. The results indicate that chlorine/hypochlorite originating from chloride oxidation in certain favourable conditions reacts with the organic substrate at the diffusion layer near the anode, accelerating the mass transfer of the reactant towards the electrode surface. When the bulk concentration of organic substrate has become very low, the oxidising, species can accumulate in the bulk solution where the accomplishment of the oxidation of residual reactant and of its intermediates takes place. Solutions which also contained glucose were electrolysed in order to verify the high level of selectivity of DCP oxidation with respect to a biodegradable substrate: glucose was found to be unchanged up to nearly complete elimination of DCP. The toxicity of the solution was sufficiently reduced to reach values compatible with the subsequent biological treatment. [Italian] Il lavoro esamina l'influenza della presenza di cloruri nella ossidazione del 2,6-diclorofenolo (DCP) su anodi di DSA (Registered) a base di TiO{sub 2}/RuO{sub 2}, specifici catalizzatori dell'evoluzione del cloro. I risultati indicano che i prodotti di ossidazione del cloruro che si ottengono in adatte condizioni sperimentali, reagiscono con il substrato organico nello strato di diffusione adiacente all'anodo, accelerando il trasferimento di materia dell'organico verso la superficie dell'elettrodo. Quando la concentrazione di DCP nella massa e' diventata molto bassa l'ossidante prodotto puo' accumularsi nella massa della soluzione dove ha luogo il completamento dell'ossidazione del DCP residuo e degli intermedi prodotti. Sono state inoltre sottoposte ad elettrolisi alcune soluzioni di DCP contenenti anche glucosio. I risultati hanno permesso di verificare che il

  16. Biological Behavior of Anammox Process for Municipal Wastewater Treatment: Effect of Ammonia Removal and Other Parameters

    Directory of Open Access Journals (Sweden)

    R. Nabizadeh

    2012-09-01

    Full Text Available Historically, nitrogen compound due to major environmental and public health problems have been considered. Anaerobic ammonium oxidation processes were proposed by many advantages such as; novelty, promising method and cost-effective. In this work, we used of anommax process for a wastewater with high C:N ratios and the main parameter likes pH; temperature, NO2/NH4 ratio and behavior of COD, ammonium and nitrite during operation time of 55 days were evaluated. High efficiency in nitrite and ammonium removal is observed at pH values between 7.5 to 8 and operation times between 9 to 23 days. Furthermorethe variation of the nitrite/ammonium ratio done dependence to pH, and a higher ratio was associated with higher pH values. And lower values of NO2/NH4 ratio have occurred with decrease of pH at third phase of anommax process. The average elimination efficiency of COD was occurred about 89.22%, but the removal efficiency of COD in anommax reactor was obtained about 49.5%. Furthermorethe removal efficiency of ammonium and nitrite were provided about 50% for each.

  17. Biological treatment of para-chlorophenol containing synthetic wastewater using rotating brush biofilm reactor

    International Nuclear Information System (INIS)

    A novel rotating brush biofilm reactor (RBBR) was used for para-chlorophenol (4-chlorophenol, 4-CP), COD and toxicity removal from synthetic wastewater containing different concentrations of 4-CP. Effects of major operating variables such as the feed 4-CP and COD concentrations and A/Q (biofilm surface area/feed flow rate) ratio on the performance of the biofilm reactor were investigated. A Box-Wilson statistical experiment design method was used by considering the feed 4-CP (0-1000 mg l-1), COD (2000-6000 mg l-1) and A/Q ratio (73-293 m2 day m-3) as the independent variables while the 4-CP, COD and toxicity removals were the objective functions. The results were correlated by a response function and the coefficients were determined by regression analysis. Percent 4-CP, COD and toxicity removals determined from the response functions were in good agreement with the experimental results. 4-CP, COD and toxicity removals increased with decreasing feed 4-CP and increasing A/Q ratio. Optimum conditions resulting in maximum COD, 4-CP and toxicity removals were found to be A/Q ratio of nearly 180 m2 day m-3, feed COD of nearly 4000 mg l-1 and feed 4-CP of less than 205 mg l-1

  18. Integrated biological and advanced oxidation based treatment of hexamine bearing wastewater: Effect of cow-dung as a co-substrate.

    Science.gov (United States)

    Gupta, Mandeep Kumar; Mittal, Atul K

    2016-05-01

    This work examines the treatment of hexamethylenetetramine (HMT) bearing effluent from N, N-dinitroso pentamethylene tetra-mine producing industrial plants in India. Chemical treatment using Fenton's reagent and aerobic treatment using batch reactors with co-substrate were investigated. Aerobic batch reactors integrated with advanced oxidation process of Fenton's reagent provides effective treatment of HMT effluents. Influence of Fenton's reagent dose reaction/contact and effect of varying co-substrate with effluent initial concentration was observed. Higher dose 100 mL of Fenton's reagent with higher reaction time 20 h resulted better degradation (34.88%) of wastewater. HMT hydrolyzes in acidic environment to ammonia and formaldehyde. Formaldehyde under normal conditions is toxic for biological treatment processes. When hydrolysis and acidification in the reactors are accompanied by low pH, aerobic batch reactors with use of co-substrates glucose, sucrose, and cow-dung extract separately in different proportion to wastewater ranging from 0.67 to 4.00, degraded wastewater effectively. Higher proportion of co-substrate to wastewater resulted better degradation. The relationships between nitrate, pH, turbidity and COD are discussed. PMID:26855186

  19. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...

  20. Constructed Wetlands for Wastewater Treatment

    OpenAIRE

    Jan Vymazal

    2010-01-01

    The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating); hydrology (free water surface and subsurface flow); and subsurface flow wetlands can be further classified accordi...

  1. Identification of microorganisms involved in nitrogen removal from wastewater treatment systems by means of molecular biology techniques

    International Nuclear Information System (INIS)

    The identification of the main bacteria populations present in the granular biomass from a biological reactor treating wastewater has been performed by applying two different molecular biology techniques. By means of the DGGE technique five different genera of heterotrophic bacteria (Thiothrix, Thauera, Cloroflexi, Comamonas y Zoogloea) and one of ammonia oxidizing bacteria (Nitrosomanas) were identified. The FISH technique, based on microscopy, allowed the in situ visualization and quantification of those microorganisms. Special attention was paid to filamentous bacteria distribution (Thiothrix and Cloroflexi) which could exert a structural function in aerobic granular sludge. (Author) 26 refs.

  2. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support

    Science.gov (United States)

    Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.; Janes, H. W. (Principal Investigator)

    2002-01-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.

  3. A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater.

    Science.gov (United States)

    Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun

    2015-11-01

    A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications. PMID:26227570

  4. Biological Treatment of Ammonia-Rich Wastewaters by Natural Microbial Communities in the ATOXIC/ASSET Purification System

    Energy Technology Data Exchange (ETDEWEB)

    Vishnivetskaya, Tatiana A [ORNL; Fisher, L. Suzanne [Tennessee Valley Authority (TVA); Brodie, Greg A [Tennessee Valley Authority (TVA); Phelps, Tommy Joe [ORNL

    2013-01-01

    Analyses of bacterial and archaeal 16S rRNA genes along with high throughput 454 pyrosequencing technology were used to identify microbial communities present at a novel passive wastewater treatment system designed to remove ammonium, nitrate, and heavy metals from fossil plant effluents. Seasonal changes in microbial community composition were observed, however significant (p=0.001) changes were detected in bacterial and archaeal communities consistent with ammonium removal throughout the treatment systems. Phylogenetic analysis of 16S rRNA gene sequences revealed presence of potential ammonium-oxidizing bacteria (AOB), Nitrosomonas, Nitrosococcus, Planctomycetes, and OD1. Other bacteria, such as Nitrospira, Nitrococcus, Nitrobacter, Thiobacillus, -Proteobacteria, Firmicutes, Acidobacteria, which play roles in nitrification and denitrification, were also detected. The relative abundance of the potential ammonium-oxidizing archaea (AOA) (Thermoprotei within the phylum Crenarchaeota) increased with ammonium availability at the splitter box and zero-valent iron extraction trenches even though AOB removed half of the ammonium in the trickling filters at the beginning of the treatment system. The microbial community removed the ammonium from the wastewater within both pilot-scale treatment systems, thus the treatment system components provided an effective environment for the treatment of ammonium enriched wastewater from coal burning power plants equipped with selective catalytic reducers for nitrogen oxide removal.

  5. Advanced wastewater treatment system (SEADS)

    International Nuclear Information System (INIS)

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a wastewater treatment technology identified as the Advanced Wastewater Treatment System Inc.'s Superior Extended Aerobic Digester System (SEADS). SEADS is an advanced miniaturized wastewater treatment plant that can meet advanced wastewater treatment standards for effluent public reuse. SEADS goes beyond primary and secondary treatment operations to reduce nutrients such as nitrogen and phosphorus, which are typically found in excessive quantities in traditional wastewater treatment effluent. The objective of this evaluation will be to verify the performance and reliability of the SEADS to treat wastewater from a variety of sources, including domestic wastewater and commercial industrial wastewater. SEADS utilizes remote telemetry equipment to achieve added reliability and reduces monitoring costs as compared to many package wastewater treatment plants. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the SEADS technology evaluation will address its ability to treat low flows-from remote individual and clustered housing applications, and individual commercial applications in lieu of a main station conventional wastewater treatment plant. The unneeded reliance on particular soil types for percolation and the improved effluent water quality over septic systems alone look to make these types of package treatment plants a viable option for rural communities, small farms, and other low-flow remote settings. Added benefits to be examined

  6. Thermal Treatment of Industrial Wastewater

    OpenAIRE

    Vysokomornaya Olga V.; Balakhnina Julia E.; Shikhman M. V.

    2015-01-01

    The paper provides an overview on the major methods of thermal wastewater treatment in the power industry. Here, we present the main advantages and disadvantages of methods based on the concentration of inorganic substances (evaporation or distillation) or the burning of organic compounds (combustion neutralization). The study suggests the possible future directions for the development of thermal wastewater treatment.

  7. Wastewater Treatment I. Instructor's Manual.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment Plants."…

  8. Mathematical Modeling and Evaluation of Ifas Wastewater Treatment Processes for Biological Nitrogen and Phosphorus Removal

    OpenAIRE

    Sriwiriyarat, Tongchai

    2002-01-01

    The hybrid activated sludge-biofilm system called Integrated Fixed Film Activated Sludge (IFAS) has recently become popular for enhanced nitrification and denitrification in aerobic zones because it is an alternative to increasing the volume of treatment plant units to accomplish year round nitrification and nitrogen removal. Biomass is retained on the fixed-film media and remains in the aerobic reactor, thus increasing the effective mean cell resident time (MCRT) of the biomass and providin...

  9. Electrochemical treatment of COD in biologically pretreated coking wastewater using Ti/RuO2-IrO2 electrodes combined with modified coke

    Institute of Scientific and Technical Information of China (English)

    HE Xu-wen; LIU Li-yuan; GONG Jing-wen; WANG Jian-bing; QIN Qiang; WANG Hao

    2011-01-01

    The electrochemical treatment of COD contained in biologically pretreated coking wastewater treated by a three-dimensional electrode system with modified coke as the particle electrode was investigated.And the electrochemical perfomance of the coke modified with various active components was studied.The results show that the coke modified with Fe(NO3)2 has the lowest energy consumption and higher COD removal rate under the same condition,and the modified coke has better surface characteristics for the purpose of this study.In addition,the kinetic constant was also calculated.The study shows that the three-dimensional electrode system with Fe(NO3)2-modified coke can give a satisfactory solution in biologically pretreated coking wastewater.

  10. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.

    Science.gov (United States)

    Gu, April Z; Saunders, A; Neethling, J B; Stensel, H D; Blackall, L L

    2008-08-01

    The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis. PMID:18751532

  11. Integrated biological (anaerobic-aerobic) and physico-chemical treatment of baker's yeast wastewater.

    Science.gov (United States)

    Kalyuzhnyi, S; Gladchenko, M; Starostina, E; Shcherbakov, S; Versprille, B

    2005-01-01

    The UASB reactor (35 degrees C) was quite efficient for removal of bulk COD (52-74%) from simulated (on the basis of cultivation medium from the first separation process) general effluent of baker's yeast production (the average organic loading rates varied from 8.1 to 16 g COD/l/d). The aerobic-anoxic biofilter (19-23 degrees C) can be used for removal of remaining BOD and ammonia from anaerobic effluents; however, it suffered from COD-deficiency to fulfil denitrification requirements. To balance COD/N ratio, some bypass (approximately 10%) of anaerobically untreated general effluent should be added to the biofilter feed. The application of iron (III)-, aluminium- or calcium-induced coagulation for post-treatment of aerobic-anoxic effluents can fulfil the limits for discharge to sewerage (even for colour mainly exerted by hardly biodegradable melanoidins), however, the required amounts of coagulants were relatively high. PMID:16459801

  12. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  13. APPLICATION OF ANAEROBIC BIOTECHNOLOGY FOR PHARMACEUTICAL WASTEWATER TREATMENT

    OpenAIRE

    Shreeshivadasan Chelliapan and Paul J. Sallis

    2011-01-01

    The wastewater generated from pharmaceutical industry generally contain high organic load and the treatment is primarily carried out using two major types of biological methods; aerobic and anaerobic. However, due to high strength, it is infeasible to treat some pharmaceutical wastewater using aerobic biological processes. As an alternative, an anaerobic process is preferred to remove high strength organic matter. Anaerobic wastewater treatment is considered as the most cost effective solutio...

  14. Indigenous microalgae-activated sludge cultivation system for wastewater treatment

    OpenAIRE

    Anbalagan, Anbarasan

    2016-01-01

    The municipal wastewater is mainly composed of water containing anthropogenic wastes that are rich in nutrients such as carbon, nitrogen and phosphorous. The cost for biological treatment of wastewater is increasing globally due to the population growth in urban cities. In general, the activated sludge (AS) process is a biological nutrient removal process used in wastewater treatment plants (WWTPs). The AS is composed of different microorganisms in which bacteria play a crucial role in wastew...

  15. Biologic treatment of wastewater from cassava flour production using vertical anaerobic baffled reactor (VABR

    Directory of Open Access Journals (Sweden)

    Gleyce T Correia

    2008-08-01

    Full Text Available The estimate cassava production in Brazil in 2007 was of 25 million tons (= 15% of the world production and most of it is used in the production of flour. During its processing, waste that can cause environmental inequality is generated, if discharged inappropriately. One of the liquid waste generated, manipueira, is characterized by its high level of organic matter. The anaerobic treatment that uses a vertical anaerobic baffled reactor (VABR inoculated with granulated sludge, is one of the ways of treating this effluent. The anaerobic biodigestion phases are separated in this kind of reactor, allowing greater stability and resistance to load shocks. The VABR was built with a width/height rate of 1:2. The pH, acidity, alkalinity, turbidity and COD removal were analyzed in 6 different regions of the reactor, which was operated with an increasing feeding from ? 2000 to ? 10000 mg COD L?¹ and HRT between 6.0 and 2.5 days. The VABR showed decreasing acidity and turbidity, an increase in alkalinity and pH, and 96% efficiency in COD removal with 3-day HRT and feeding of 3800 mg COD L?¹.

  16. Kinetic study for aerobic treatment of phenolic wastewater

    OpenAIRE

    Athar Hussain; Shashi Kant Dubey; Vinay Kumar

    2015-01-01

    Conventional physico-chemical treatment of industrial wastewater containing compounds such as phenol encounters difficulties due to low substrate level, additional use of chemicals, and generation of hazardous by products along with increased process cost. Biological treatment appears to be a solution for treatment of such industrial wastewater. In the present study an aerobic sequential batch reactor (SBR) has been used for treatment of synthetic wastewater containing phenol. The effects of ...

  17. WASTEWATER TREATMENT BY ARTIFICIAL WETLANDS

    Science.gov (United States)

    Studies of artificial wetlands at Santee, California demonstrated the capacity of wetlands systems for integrated secondary and advanced treatment of municipal wastewaters. When receiving a blend of primary and secondary wastewaters at a blend ratio of 1:2 (6 cm per day: 12 cm pe...

  18. Combined biological and physico-chemical treatment of baker's yeast wastewater including removal of coloured and recalcitrant to biodegradation pollutants.

    Science.gov (United States)

    Gladchenko, M; Starostina, E; Shcherbakov, S; Versprille, B; Kalyuzhnyi, S

    2004-01-01

    The UASB reactor (35 degrees C) was quite efficient for removal of bulk COD (62-67%) even for such high strength and recalcitrant wastewater as the cultivation medium from the first separation process of baker'syeasts (the average organic loading rates varied from 3.7 to 10.3 g COD/l/d). The aerobic-anoxic biofilter (20 degrees C) can be used for removal of remaining BOD and ammonia from strong nitrogenous anaerobic effluents; however, it suffered from COD-deficiency to fulfil denitrification requirements. To balance the COD/N ratio, some bypass of raw wastewater should be added to the biofilter feed. The application of iron chloride coagulation for post-treatment of aerobic effluents may fulfil the discharge limits (even for colour mainly exerted by hardly biodegradable melanoidins) under iron concentrations around 200 mg/l. PMID:15497831

  19. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW. PMID:25934578

  20. Constructed Wetlands for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jan Vymazal

    2010-08-01

    Full Text Available The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating; hydrology (free water surface and subsurface flow; and subsurface flow wetlands can be further classified according to the flow direction (vertical or horizontal. In order to achieve better treatment performance, namely for nitrogen, various types of constructed wetlands could be combined into hybrid systems.

  1. Wastewater Mass Rates as a Sustainable Wastewater Treatment Plant Indicator

    OpenAIRE

    Neilands, R; Govša, J; Gjunsburgs, B

    2012-01-01

    his article presents a methodology for wastewater treatment plant sustainability consideration and process evaluation in to the selection of wastewater treatment process improvement options. For illustration, the indicator approach is applied to a case study of the Jurmala town wastewater treatment plant in Latvia.

  2. High power accelerators and wastewater treatment

    International Nuclear Information System (INIS)

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant water pollution. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Therefore, cost-effective treatment of the municipal and industrial wastewater containing refractory pollutant with electron beam is actively studied in EB TECH Co.. Electron beam treatment of wastewater is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis (hydrated electron, OH free radical and H atom). However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW∼1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for wastewater treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with ozonation, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment for the wastewater purification. (author)

  3. Treatment of coffee wastewater by gamma radiation

    International Nuclear Information System (INIS)

    Radiation energy can be an important resource in the treatment of wastewaters from different industries both directly and in combination with other processes to improve economics. The aim of this study was to evaluate the effect of an ionizing radiation on coffee wastewater in order to decompose chemical organic refractory substances which cannot be degradated by biological treatment. One of the approaches employed in the survey was the chemical treatment followed by the irradiation of the samples since no nuclear changes of the coagulant solution or wastewater samples were expected. Irradiation is a high cost treatment although it has increased its applications nowadays. The method is safe, fast and effective and it does not generate any pollution

  4. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    OpenAIRE

    Basim Yalda; Farzadkia Mahdi; Jaafarzadeh Nematollah; Hendrickx Tim

    2012-01-01

    Abstract Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahva...

  5. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio

    International Nuclear Information System (INIS)

    Treatment of hydrocarbon-rich industrial wastewater in bioreactors using heterotrophic microorganisms is often associated with various operational problems. In this study, a consortium of phototrophic microorganisms and a bacterium is developed on the discs of a rotating biological contactor (RBC) for treatment of wastewater containing diesel oil. The reactor was fed with oil degrading bacterium, Burkholderia cepacia and oil tolerant phototrophic microorganisms. After biofilm formation and acclimatization to 0.6% (v/v) diesel, continuous-mode operation was initiated at 21 h hydraulic retention time (HRT). Residual diesel in the effluent was 0.003%. Advantages of this system include good total petroleum hydrocarbon (TPH) removal, no soluble carbon source requirement and good settleability of biosolids. Biofilm observations revealed the predominance of B. cepacia and cyanobacteria (Phormidium, Oscillatoria and Chroococcus). The N:P ratio affected the relative dominance of the phototrophic microorganisms and bacterial culture. This ratio was a critical factor in determining the performance efficiency of the reactor. At 21 h HRT and organic loading of 27.33 g TPH/m2 d, the N:P ratio 28.5:1 and 38:1 both yielded high and almost comparable TPH and COD removal efficiencies. This study presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries

  6. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio

    Energy Technology Data Exchange (ETDEWEB)

    Chavan, Anal [Centre for Environmental Science and Engineering (CESE), Indian Institute of Technology (Bombay), Powai, Mumbai 400076 (India); Mukherji, Suparna [Centre for Environmental Science and Engineering (CESE), Indian Institute of Technology (Bombay), Powai, Mumbai 400076 (India)], E-mail: mitras@iitb.ac.in

    2008-06-15

    Treatment of hydrocarbon-rich industrial wastewater in bioreactors using heterotrophic microorganisms is often associated with various operational problems. In this study, a consortium of phototrophic microorganisms and a bacterium is developed on the discs of a rotating biological contactor (RBC) for treatment of wastewater containing diesel oil. The reactor was fed with oil degrading bacterium, Burkholderia cepacia and oil tolerant phototrophic microorganisms. After biofilm formation and acclimatization to 0.6% (v/v) diesel, continuous-mode operation was initiated at 21 h hydraulic retention time (HRT). Residual diesel in the effluent was 0.003%. Advantages of this system include good total petroleum hydrocarbon (TPH) removal, no soluble carbon source requirement and good settleability of biosolids. Biofilm observations revealed the predominance of B. cepacia and cyanobacteria (Phormidium, Oscillatoria and Chroococcus). The N:P ratio affected the relative dominance of the phototrophic microorganisms and bacterial culture. This ratio was a critical factor in determining the performance efficiency of the reactor. At 21 h HRT and organic loading of 27.33 g TPH/m{sup 2} d, the N:P ratio 28.5:1 and 38:1 both yielded high and almost comparable TPH and COD removal efficiencies. This study presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  7. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    Science.gov (United States)

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  8. Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system

    International Nuclear Information System (INIS)

    In this study, methane (CH4) and nitrous oxide (N2O) emission dynamics of a plug–flow bioreactor located in a municipal full-scale wastewater treatment plant were monitored during a period of 10 weeks. In general, CH4 and N2O gas emissions from the bioreactor accounted for 0.016% of the influent chemical oxygen demand (COD) and 0.116% of the influent total Kjeldahl nitrogen (TKN) respectively. In order to identify the emission patterns in the different zones, the bioreactor was divided in six different sampling sites and the gas collection hood was placed for a period of 2–3 days in each of these sites. This sampling strategy also allowed the identification of different process perturbations leading to CH4 or N2O peak emissions. CH4 emissions mainly occurred in the first aerated site, and were mostly related with the influent and reject wastewater flows entering the bioreactor. On the other hand, N2O emissions were given along all the aerated parts of the bioreactor and were strongly dependant on the occurrence of process disturbances such as periods of no aeration or nitrification instability. Dissolved CH4 and N2O concentrations were monitored in the bioreactor and in other parts of the plant, as a contribution for the better understanding of the transport of these greenhouse gases across the different stages of the treatment system. - Highlights: • Monitoring of CH4 and N2O emissions from a full-scale activated sludge bioreactor • Process perturbations leading to CH4 and N2O peak emissions were identified. • Peak emissions increased severely the overall emission account of the bioreactor. • CH4 emissions were related with the inflow of influent and reject wastewater. • N2O was generated as consequence of nitrification imbalances

  9. Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system.

    Science.gov (United States)

    Rodriguez-Caballero, A; Aymerich, I; Poch, M; Pijuan, M

    2014-09-15

    In this study, methane (CH4) and nitrous oxide (N2O) emission dynamics of a plug-flow bioreactor located in a municipal full-scale wastewater treatment plant were monitored during a period of 10 weeks. In general, CH4 and N2O gas emissions from the bioreactor accounted for 0.016% of the influent chemical oxygen demand (COD) and 0.116% of the influent total Kjeldahl nitrogen (TKN) respectively. In order to identify the emission patterns in the different zones, the bioreactor was divided in six different sampling sites and the gas collection hood was placed for a period of 2-3 days in each of these sites. This sampling strategy also allowed the identification of different process perturbations leading to CH4 or N2O peak emissions. CH4 emissions mainly occurred in the first aerated site, and were mostly related with the influent and reject wastewater flows entering the bioreactor. On the other hand, N2O emissions were given along all the aerated parts of the bioreactor and were strongly dependant on the occurrence of process disturbances such as periods of no aeration or nitrification instability. Dissolved CH4 and N2O concentrations were monitored in the bioreactor and in other parts of the plant, as a contribution for the better understanding of the transport of these greenhouse gases across the different stages of the treatment system. PMID:24954560

  10. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process.

    Science.gov (United States)

    Rasool, Kashif; Mahmoud, Khaled A; Lee, Dae Sung

    2015-12-15

    This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB. PMID:26241771

  11. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.

    2010-01-01

    The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological

  12. Treatment of Phenolic Wastewater by Combining UV-Fenton Oxidation with Biological Oxidation%UV-Fenton氧化-生化法联合处理含酚废水

    Institute of Scientific and Technical Information of China (English)

    刘琼玉; 刘君侠; 刘延湘

    2011-01-01

    Phenolic wastewater was treated by combined process of UV-Fenton oxidation-biological oxidation. Treatment efficiency of phenolic wastewater by single UV-Fenton oxidation,single biological oxidation and combined process were compared. Results indicated that effective degradation of coal-gas phenolic wastewater was observed by UV-Fenton process,but complete degradation of phenolic wastewater need to consume large numbers of H2O2 with high cost,which is uneconomical. Direct biological oxidation cannot efficient treat coal-gas phenolic wastewater due to low ratio of BODs/COD.UV-Fenton preoxidation is effective at enhancing biodegradability of coal-gas phenolic wastewater,and the biodegradability of wastewater enhanced obviously with increasing dosage of H2O2 in UV-Fenton preoxidation. When H2O2 was added only 21.6% of stoichiometric calculated quantities,COD would reduce from 1,306 mg/L to 121 mg/L and phenol reduced from 193.5 mg/L to 0.43 mg/L,both COD and phenol of coal-gas phenolic wastewater can satisfy national control standard by combined process of UV-Fenton oxidation-biological oxidation. Experimental results showed that 75% H2O2 were saved by combined process of UV-Fenton oxidation-biological oxidation, comparing with single UV-Fenton process.%采用UV-Fenton氧化-生化法联合处理煤气含酚废水,比较了单独UV-Fenton氧化法、单独生化法和UV-Fenton氧化-生化法联合工艺对煤气含酚废水的处理效果.结果表明,UV-Fenton氧化体系可有效降解含酚废水,但废水完全降解所需的H2O2用量大,处理成本高.煤气含酚废水的BOD5/COD比值较低,直接采用生化处理的效果不理想,通过UV-Fenton氧化预处理可明显提高煤气含酚废水的生物降解性,随着H2O2投加量的增加,废水的BOD5/COD比值逐渐增大,生物降解性明显增强.当UV/Fenton氧化过程H2O2用量为21.6%理论投加量时,采用UV-Fenton氧化-生化法联合工艺可使煤气含酚废水的COD由1306mg

  13. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  14. CHANGES IN THE MICROBIAL COMPOSITION OF MUNICIPAL WASTEWATER TREATED IN BIOLOGICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Aleksandra Jolanta Bawiec

    2016-07-01

    Full Text Available Municipal wastewater is characterized by diverse microbial content, largely dependent on their sources as well as many other factors like condition and health of their producer, but also environmental factors. The number and share of individual bacterial population in wastewater is changing during the process of their treatment in wastewater treatment plants. The microbial content of treated wastewater is significantly affected by the type of technology used for wastewater treatment. The paper presents the results of the species composition of bacteria present in the wastewater at various stages of treatment for the two different technologies. Samples of wastewater from hydroponic wastewater treatment plant and from the plant which technology is based on biofilters were analysed. A key mechanism for wastewater treatment in both cases is biological treatment, using microbial activity that decomposes pollutants in the wastewater, which significantly contributes to changes in the species composition of bacteria comparing to microbiological composition of sewage flowing into the treatment plant. Analyses of microbial composition showed that in the objects consisting of preliminary tank and biofilter, composition of bacteria species is changing, but many species isolated from raw sewage is also found in treated wastewater. In the plant with hydroponic lagoon after wastewater treatment throughout the process system, bacteria present in raw sewage or in wastewater after biological treatment were not identified in the outlet.

  15. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    OpenAIRE

    Hey, G.; Grabic, R.; Ledin, A.; la Cour Jansen, J; Andersen, H R

    2012-01-01

    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended nitrogen removal (low COD) and one without (high COD). About one third of the tested APIs resisted degradation even at the highest ClO2 dose (20mg/L), while others were reduced by more than 90% at the l...

  16. Analysis of bacteria, parasites, and heavy metals in lettuce (Lactuca sativa) and rocket salad (Eruca sativa L.) irrigated with treated effluent from a biological wastewater treatment plant.

    Science.gov (United States)

    Nikaido, Meire; Tonani, Karina A A; Julião, Fabiana C; Trevilato, Tânia M B; Takayanagui, Angela M M; Sanches, Sérgio M; Domingo, José L; Segura-Muñoz, Susana I

    2010-06-01

    This study aimed to evaluate the viability of using treated residuary water from the Biological Wastewater Treatment Plant of Ribeirão Preto to grow vegetables, through the characterization and quantification of parasites, coliforms, and heavy metals. Three equal cultivation areas were prepared. The first was irrigated with treated/chlorinated (0.2 mg L(-1)) wastewater, the second one with treated wastewater without chlorination, and the third site with potable water, which was the control group. The presence of Hymenolepis nana, Enterobius vermicularis, nematode larvae, and Entamoeba coli was verified in lettuce (Lactuca sativa) samples. Although nematode larvae were observed in rocket salad (Eruca sativa L.), no significant differences were found between the number of parasites and type of irrigation water used. No significant differences were found between the number of fecal coliforms in vegetables and the different types of irrigation. However, the vegetables irrigated with treated effluent without chlorination showed higher levels of fecal coliforms. The risk of pathogens is reduced with bleach addition to the treated effluent at 0.2 mg/L. Concentration of heavy metals in vegetables does not mean significant risks to human health, according with the parameters recommended by the World Health Organization. PMID:19639268

  17. Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Caballero, A.; Aymerich, I. [Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H_2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona (Spain); Poch, M. [Laboratory of Chemical and Environmental Engineering (LEQUIA-UdG), Institute of the Environment, University of Girona, Campus Montilivi s/n, E-17071 Girona (Spain); Pijuan, M., E-mail: mpijuan@icra.cat [Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H_2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona (Spain)

    2014-09-15

    In this study, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emission dynamics of a plug–flow bioreactor located in a municipal full-scale wastewater treatment plant were monitored during a period of 10 weeks. In general, CH{sub 4} and N{sub 2}O gas emissions from the bioreactor accounted for 0.016% of the influent chemical oxygen demand (COD) and 0.116% of the influent total Kjeldahl nitrogen (TKN) respectively. In order to identify the emission patterns in the different zones, the bioreactor was divided in six different sampling sites and the gas collection hood was placed for a period of 2–3 days in each of these sites. This sampling strategy also allowed the identification of different process perturbations leading to CH{sub 4} or N{sub 2}O peak emissions. CH{sub 4} emissions mainly occurred in the first aerated site, and were mostly related with the influent and reject wastewater flows entering the bioreactor. On the other hand, N{sub 2}O emissions were given along all the aerated parts of the bioreactor and were strongly dependant on the occurrence of process disturbances such as periods of no aeration or nitrification instability. Dissolved CH{sub 4} and N{sub 2}O concentrations were monitored in the bioreactor and in other parts of the plant, as a contribution for the better understanding of the transport of these greenhouse gases across the different stages of the treatment system. - Highlights: • Monitoring of CH{sub 4} and N{sub 2}O emissions from a full-scale activated sludge bioreactor • Process perturbations leading to CH{sub 4} and N{sub 2}O peak emissions were identified. • Peak emissions increased severely the overall emission account of the bioreactor. • CH{sub 4} emissions were related with the inflow of influent and reject wastewater. • N{sub 2}O was generated as consequence of nitrification imbalances.

  18. 厌氧-好氧生物工艺对制药废水处理研究%Anaerobic -aerobic biological treatment of pharmaceutical wastewater

    Institute of Scientific and Technical Information of China (English)

    谢红

    2013-01-01

    At present , the majority of pharmaceutical wastewater treatment research direction is the treatment of antibiotic pharmaceutical wastewater , and lack of research on wastewater treatment technology of nutritional types of pharmaceutical , through the research on wastewater treatment technology of nutrient drug , can draw the wastewater treatment related parameters .In this paper , anaerobic and aerobic wastewater treatment process as the main process of pharmaceutical wastewater treatment , especially to analyze the nutritional foundation of pharmaceutical wastewater , experimental study is made on the sewage treatment plant production conditions , operating parameters .%目前,大多数制药废水处理研究的方向是处理抗生素制药废水,缺乏对营养类型制药废水处理工艺方面的研究,通过对营养型制药废水处理工艺研究,可以得出废水处理相关的参数。在本文中,厌氧-好氧法废水处理工艺作为制药废水处理的最主要工艺,重点对营养型基础制药废水做出分析,对污水处理厂生产条件、运行参数进行实验研究。

  19. Oxidation of Mixed Active Pharmaceutical Ingredients in Biologically Treated Wastewater by ClO2

    DEFF Research Database (Denmark)

    Moradas, Gerly; Fick, Jerker; Ledin, Anna;

    2011-01-01

    Biologically treated wastewater containing a mixture of 53 active pharmaceutical ingredients (APIs)was treated with 0-20 mg/l chlorine dioxide (ClO2) solution. Wastewater effluents were taken from two wastewater treatment plants in Sweden, one with (low COD) and one without (high COD) extended...

  20. Biological treatment of chemical industry wastewater having toxic components; Degradazione per via biologica di reflui a componenti tossiche prodotti da una industria farmaceutica

    Energy Technology Data Exchange (ETDEWEB)

    Fabbricino, M.; Pepe, G. [Naples Univ. Federico 2., Naples (Italy). Dipt. di Ingegneria Idraulica ed Ambientale Girolamo Ippolito; Scevola, D. [Novartis Farma SpA, Torre Annunziata, NA (Italy); Fiorillo, S. [Impianto di depurazione di Cuma, Napoli Ovest, Licola di Pozzuoli, NA (Italy)

    2001-09-01

    In order to understand the capacity of an existing biomass to front the variations of wastewater influent characteristics and to evaluate the possibility of toxic components removal using biological processes, it is single out the intervention required to obtain the envisage efficiency of the activated sludge phase, following the arrival of toxic components. Together with experimental results on pilot scale, the performance of the industrial treatment plant is presented too, showing the effectiveness of activated carbon dosage in the biological phase to preserve the efficiency of the process despite of influent wastewater toxicity. [Italian] Il lavoro presenta l'indagine sperimentale condotta per rilevare la capacita' di adattamento della biomassa dell'impianto di depurazione di una industria farmaceutica a seguito della variazione delle caratteristiche del liquame influente, e la possibilita' di degradazione, per via biologica, delle componenti tossiche presenti nel refluo. Attraverso prove in scala pilota vengono evidenziati gli effetti causati dall'arrivo di tali componenti su di un impianto di ossidazione a fanghi attivi a regime, e vengono individuati gli interventi da apportare per garantire il raggiungimento degli standard richiesti nell'effluente. I risultati ottenuti vengono estesi all'impianto a scala reale di cui vengono illustrati i rendimenti depurativi in termini di abbattimento del carico inquinante.

  1. Wastewater Treatment: The Natural Way

    Science.gov (United States)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  2. Characterization of Bacterial Biofilms for Wastewater Treatment

    OpenAIRE

    Andersson, Sofia

    2009-01-01

    Research performed at the Division of Environmental Microbiology has over the last years resulted in the isolation of possible bacterial key-organisms with efficient nutrient removal properties (Comamonas denitrificans, Brachymonas denitrificans, Aeromonas hydrophila). Effective use of these organisms for enhanced nutrient removal in wastewater treatment applications requires the strains to be retained, to proliferate and to maintain biological activity within theprocess. This can be achieved...

  3. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m3 day-1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  4. Sustainability of municipal wastewater treatment.

    NARCIS (Netherlands)

    Roeleveld, P.J.; Klapwijk, A.; Eggels, P.G.; Rulkens, W.H.; Starkenburg, van W.

    1997-01-01

    n this study the insustainability of the treatment of municipal wastewater is evaluated with the LCA-methodology. Life-Cycle Assessments (LCA) analyze and assess the environmental profile over the entire life cycle of a product or process. The LCA-methodology proved to be a proper instrument to eval

  5. Wastewater Treatment I. Student's Guide.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  6. Stabilisation of Biological Phosphorus Removal from Municipal Wastewater

    DEFF Research Database (Denmark)

    Krühne, Ulrich

    The biological phosphorus removal (BPR) from wastewater has developed considerably during the last decades and is applied in many present wastewater treatment plants (WWTP) all over the world. The process performance and the control of the BPR are under the influences of daily and seasonal...... variations of the influent wastewater concentrations and are not yet always guaranteed. Even though the scientific knowledge and practical experience has reached a high level of understanding of the involved key-processes it is still necessary to apply chemical precipitation of phosphorus during the time...... have been performed on an alternating pilot plant, receiving municipal wastewater. The pilot plant is equipped with an automatic measurement system based on the flow injection analysis (FIA) principle. Continuos analysis of the ammonium (NH4-N), nitrate (as NOx-N) and phosphorus (PO4-P) was performed...

  7. Application of radiation for wastewater treatment

    International Nuclear Information System (INIS)

    predominant type of transformation-reduction, oxidation, addition or removal of functional groups, aggregation, disintegration etc. However, in general, pollutant transformation involves the chain oxidation, formation of insoluble compounds, coagulation of colloids, and Enhancement of pollutant biodegradability. Due to the great variety of wastewaters generated by different industries, a universal treatment process is currently not available for industrial wastewater. The focus of radiation processing is to convert non-biodegradable pollutants into biodegradable species. Extensive studies have been carried out on the purification of industrial wastewater by radiation processing, although generally on the laboratory and, to a lesser extent, the pilot plant scale. Full-scale application is combined electron beam (1 MeV, 40 kW) and biological treatment in Daegu, Korea. Operation of pilot plant (1000m3/d) from 1998 showed the electron beam treatment of textile dyeing wastewater to be a prospective means for its purification. The improvements result in decolorizing and destructive oxidation of organic impurities with low doses (1-2 kGy). Convinced of feasibility via a pilot plant, an industrial plant for treating 10,000 m3/d of textile dyeing wastewater with electron beam (1 MeV, 400 kW) has been constructed and operated continuously since 2005. This plant demonstrated a reduction of chemical reagent consumption and the reduction in retention time with the increase in efficiency of removal of CODCr and BOD5 up to 30-40%. Increase in removal efficiency after radiation treatment is due to radiolytical transformation of biodegradable compounds to more readily digestible forms. (authors)

  8. Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds*

    OpenAIRE

    Li, Bing-zhi; Xu, Xiang-Yang; Zhu, Liang

    2010-01-01

    A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-c...

  9. Biological effects and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in high-back crucian carp exposed to wastewater treatment plant effluents

    International Nuclear Information System (INIS)

    Endocrine disrupting chemicals (EDCs) found in wastewater treatment plant (WWTP) effluents have been shown to cause adverse effects, but the uptake of EDCs from effluents (measured in fish muscle) are not known. In this study, the biological effects and bioaccumulation of steroidal and phenolic EDCs were assessed in high-back crucian carp (Carassius auratus) exposed to WWTP effluents for 141 days. Compared with fish controls caged in Dianchi Lake, a significant reduction in gonadosomatic index (GSI) and increase in hepatosomatic index (HSI) and plasma vitellogenin (VTG) levels were observed in effluent-exposed fish. The concentrations of steroids and phenols in effluent-exposed fish showed time-dependent increase during the exposure. In addition, bioconcentration factors (BCFs) for steroids and phenols were between 17 and 59 on day 141. The results confirm that steroids and phenols bioconcentrate in fish muscle and this accumulation may account for the biological effects associated with exposures to WWTP effluents. - Highlights: ► We assess the potential risk of WWTP effluents to fish. ► We investigate the biological responses of EDCs in fish exposed to effluents. ► We estimate the uptake of EDCs originating from WWTP effluents in fish. ► The bioaccumulation of EDCs may account for the biological effects of effluents. - Bioaccumulation of endocrine disrupting chemicals in WWTP effluent-exposed fish.

  10. Pricing Wastewater Treatment In China

    OpenAIRE

    Fan Zhang

    1999-01-01

    One of the most pressing environmental problems facing Asia's cities is a lack of effective wastewater treatment. In particular, urban areas in China, which have experienced very rapid industrialization, are facing a pollution crisis as water-borne wastes pour relatively unchecked into rivers and lakes. To find solutions to this problem, this study investigated water collection and treatment in Wuxi City, Jiangsu province. The research found that the waste management scheme currently under co...

  11. Adaptive model based control for wastewater treatment plants

    OpenAIRE

    Niet, de, A.; Vrugt, van de, Noëlle Maria; Korving, Hans; Boucherie, Richard J.; Savic, D.A.; Kapelan, Z.; Butler, D.

    2011-01-01

    In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge. The process requires oxygen input via aeration of the activated sludge tank. Aeration is responsible for about 60% of the energy consumption of a treatment plant. Hence optimization of aeration can contribute considerably to the increase of energy-efficiency in wastewater treatment. To this end, we introduce an adaptive model based control strategy for aeration called adaptive WOMBAT. The strategy is...

  12. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2016-11-01

    Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. PMID:27568982

  13. Orientation to Municipal Wastewater Treatment. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  14. Fugitive green-house gas emissions during biological wastewater treatment: investigating sources and mitigation strategies in laboratory and full-scale systems

    OpenAIRE

    Rodríguez-Caballero, Adrián

    2015-01-01

    The exponential increase of the atmospheric concentration of green-house gases due to human activities is responsible for the acceleration of global warming and climate change. Recently, scientific studies have pointed at wastewater treatment systems as relevant sources of fugitive green-house gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). Nitric oxide (NO) can also be emitted during wastewater treatment, and it is a potent ozone-depleting compound and a precursor ...

  15. Fate of Radionuclides in Wastewater Treatment Plants

    OpenAIRE

    Shabani Samgh Abadi, Farzaneh

    2013-01-01

    In the western United States and in many arid regions, wastewater reclamation is becoming a common way of increasing water supplies. More and more wastewater is being reclaimed for non-potable uses such as irrigation, but reclamation for potable use is also being practiced. One of the concerns for wastewater reclamation is the distribution of contaminants that are not removed by either the wastewater treatment plant or the water treatment plant in the case of potable reclamation. The recent a...

  16. Biodiversity and secretion of enzymes with potential utility in wastewater treatment

    OpenAIRE

    Evanguedes Kalapothakis; Júnia Maria Netto Victória; Tatiana Moura Barroca; Susanne Facchin; Priscila Divina Diniz Alves; Flávia de Faria Siqueira

    2013-01-01

    The main organic contaminants in municipal wastewater are proteins, polysaccharides, and lipids, which must be hydrolyzed to smaller units. A high concentration of oil and grease in wastewater affects biological wastewater treatment processes by forming a layer on the water surface, which decreased the oxygen transfer rate into the aerobic process. Microbial proteases, lipases, amylases, and celullases should play essential roles in the biological wastewater treatment process. The present st...

  17. Modification treatment of printing and dyeing wastewater from woolen mill with biological aerated filter process%曝气生物滤池工艺在毛纺印染废水升级提标改造中的应用

    Institute of Scientific and Technical Information of China (English)

    纪逸之

    2011-01-01

    The modification treatment of printing and dying wastewater from woolen mill with biological aerated filter (BAF) process is described. The design treatment capacity is 3 000 m3 per day. The results show that the wastewater can reach the Discharge Standard of Main Water Pollutants for Municipal Wastewater Treatment Plant & Key Industries of Taihu Area (DB32/T1072-2007)after the treatment.%介绍了曝气生物滤池(BAF)工艺在太湖地区毛纺印染废水升级提标改造中的应用,设计处理规模为3 000 m3/d.实践证明,通过该工艺改造后,毛纺印染废水出水水质达到(DB32/T1072-2007)的要求.

  18. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  19. [Method for Simultaneous Determination of 11 Veterinary Antibiotics in Piggery Wastewater and Sludge and Its Application in Biological Treatment].

    Science.gov (United States)

    Ding, Jia-li; Liu, Rui; Zheng, Wei; Yu, Wei-juan; Ye, Zhao-xia; Chen, Lu-jun; Zhang, Yong-ming

    2015-10-01

    In order to determine eleven commonly used veterinary antibiotics (including four tetracyclines, two sulfonamides, three quinolones and two macrolides) in piggery wastewater and activated sludge in the Yangtze River Delta region, the conditions of solid phase extraction and high performance liquid chromatography-tandem mass spectrometry were optimized. The recovery rate and relative standard deviations of the method were confirmed as 73% - 105.2%, 3.1% - 10.2% for piggery wastewater (n = 3) and 57.4% - 104.6%, 1.9% - 10.9% (n = 3) respectively for the activated sludge. Removal of antibiotics was then studied in a membrane bioreactor. The results showed that antibiotics of both tetracycline and sulfonamide species took a large portion in the wastewater, while tetracycline species were the dominant in the sludge. Tetracycline species in the wastewater were removed by 85.2%, mainly through biodegradation (51.9%) and secondly by sludge adsorption (33.2%). By comparison, sulfonamide species was removed by 95.8%, almost all through biodegradation while little by sludge adsorption. Flask tests suggested that the accumulated antibiotics in the sludge give no significant influence on the microbial removal of organics and ammonium. PMID:26841632

  20. Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater-treatment plant.

    Science.gov (United States)

    Zhao, Jian-Liang; Jiang, Yu-Xia; Yan, Bo; Wei, Chaohai; Zhang, Li-Juan; Ying, Guang-Guo

    2014-09-01

    Coking wastewater contributes approximately 5% of the total discharge volume of industrial wastewaters every year in China. The toxicity of coking wastewater to aquatic organisms is still unknown. The authors evaluated the toxicity of wastewater from different treatment stages in a coking wastewater treatment plant, South China, using 5 test species belonging to different trophic levels: luminous bacteria, green alga, a crustacean, duckweed, and zebrafish embryos. The raw influent displayed the highest toxicity to the test species, with toxic units ranging from 16.2 to 1176. The toxicity in the wastewater was then gradually removed by sequential primary treatment, biological fluidized-bed treatment, and secondary clarifier treatment. The toxic unit of the final effluent was reduced to 2.26 for the green alga (Pseudokirchneriella subcapitata) and to 0 for the other 4 organisms. Quantitative analysis of metals and polycyclic aromatic hydrocarbons (PAHs) and qualitative scanning by gas chromatography-mass spectrometry showed the presence of a variety of pollutants in the coking wastewaters. Multivariate statistical analysis revealed that the toxicity in the coking wastewater was correlated to the chemical oxygen demand, total nitrogen, ammonia nitrogen, volatile phenols, sulfide, metals (Cr, As, Sb, Hg, Pb, and Ni), and ΣPAHs. Based on the results, it is required to set a safety emission limit value for the discharge of coking wastewater to protect aquatic organisms in the receiving water bodies. PMID:25042296

  1. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without the...... devoted into detailed analysis of almost fifty full-scale treatment plants (Microbial Database over Danish Wastewater Treatment Plants.) in order to learn more about the activated sludge communities and the rules that govern their presence and growth. This is one of the first such comprehensive long......-term investigations of the microbial community in full-scale wastewater treatment plants, where conventional identification, molecular identification by quantitative Fluorescent In Situ Hybridization and extensive process information related to treatment plant design and process performance have been compiled. The...

  2. Possibilities of implementing nitrogen removal at Swedish wastewater treatment plants

    International Nuclear Information System (INIS)

    Problems related to eutrophication and oxygen consumption have been considered as the major factors in deterioration of the water quality in Swedish lakes, rivers and coastal areas. Technical solutions to reduce oxygen-consuming materials and eutrophication have up to now been directed towards the removal of biochemical oxygen demand (BOD) and phosphorus. Thus, biological and chemical treatment of municipal wastewater is usually prescribed, and at present about 90% of the municipal wastewater from Swedish urban areas is treated both biologically and chemically. Most plants are designed for post-precipitation, although the treatment plants may now be operated in a modified way, for example, with the use of preprecipitation, two-point precipitation or recirculation of chemical sludges. Hultman and Moore (1982) have presented an overview of Swedish practice in municipal wastewater treatment. Although Swedish treatment of municipal wastewater concentrates on the removal of biochemical oxygen demand and phosphorus, the environmental and operational effects of nitrogen have been discussed for many years

  3. Improving sewage wastewater characteristics using radiation treatment

    International Nuclear Information System (INIS)

    Raw and treated sewage wastewater, collected from El-Gabal El-Asfar wastewater treatment plant (WWTP), irradiated and non-irradiated, were tested in order to determine the lethal radiation dose for total coliform and the effect of radiation on biological oxygen demand (BOD) and chemical oxygen demand (COD). Various gamma radiation and electron beam doses (0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 KGy) were used in this study. A negative relationship between the radiation dose and the total coliform population was recorded. The increase in the radiation dose was accompanied by a decrease in total coliform count. The lethal doses of gamma radiation for total coliform in raw and treated sewage wastewater were 1.5 and 1.0 KGy, respectively, whereas the lethal doses of the electron beam for total coliform in raw and treated sewage wastewater were 3.0 and 2.0 KGy, respectively. Gamma radiation resulted in a reduction of BOD and COD by about 70% whereas the electron beam resulted in 55% reduction in BOD and COD at a dose of 4 KGy. The different sources of radiation (gamma and electron beam) used in this study caused variations in the magnitude of total coliform elimination. At any radiation dose received, gamma radiation proved to be more efficient than electron beam in total coliform elimination

  4. Bacterial communities in full-scale wastewater treatment systems

    OpenAIRE

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-01-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in...

  5. Photocatalysis as a tertiary treatment for petroleum refinery wastewaters

    OpenAIRE

    F. V. Santos; E. B. Azevedo; G. L. Sant'Anna Jr; M. Dezotti

    2006-01-01

    Photocatalysis has been used as tertiary treatment for petroleum refinery wastewaters to comply with the regulatory discharge limits and to oxidize persistent compounds that had not been oxidized in the biological treatment. The wastewater is generated by the refinery and directly discharged into the Guanabara Bay (Rio de Janeiro). Although BOD removal is high, a residual and persistent COD, besides a somewhat high phenol content remains. Three photocatalysts were tested - TiO2 (Aldrich), ZnO...

  6. Screening of lipid degrading microorganisms for wastewater treatment

    OpenAIRE

    Sarmurzina, Z. S.; Kozhakhmetov, S. S.; Anuarbekova, S. S.; Shaikhin, S. M.; Almagambetov, K. K.

    2013-01-01

    Aims: Fats, oils and greases (FOG) are poorly removable materials in wastewater treatment systems. The aim of this work is to find the most suitable strain(s) for a biological treatment technology of FOGs polluted wastewaters. Methodology and results: The 142 microorganisms from polluted environment were screened for lipase activity (LA) by sequentially using assays on agar-Tween 80, agar-fats, and turbidimetrically measuring the quantity of calcium salts with fatty acids. The isolates G23, G...

  7. The Impact of Microbial Ecology and Chemical Profile on the Enhanced Biological Phosphorus Removal (EBPR) Process: A Case Study of Northern Wastewater Treatment Works, Johannesburg

    OpenAIRE

    Ilunga Kamika; Martie Coetzee; Bhekie Brilliance Mamba; Titus Msagati; Momba, Maggy N.B.

    2014-01-01

    The impact of polyphosphate-accumulating organism (PAO) and glycogen-accumulating organism (GAO) populations as well as of the chemical profile on the performance of Unit-3 (open elutriation tanks) and Unit-5 (covered elutriation tank) of the City of Johannesburg Northern Wastewater Treatment Works was determined. Physicochemical parameters of wastewater samples were measured using standard methods. Bacterial diversity was determined using 16S rRNA gene amplicon pyrosequencing of the variabl...

  8. Treatment of municipal and industrial wastewater by reed bed technology: A low cost treatment approach

    OpenAIRE

    Bansari M. Ribadiya; Mehali J. Mehta

    2014-01-01

    Reed bed system for wastewater treatment has been proven to be effective and sustainable alternative for conventional wastewater treatment technologies. Use of macrophytes to treat wastewater is also categorized in this method. This new approach is based on natural processes for the removal of different aquatic macrophytes such as floating, submerged and emergent. Macrophytes are assumed to be the main biological components of wetlands. These techniques are reported to be cost eff...

  9. Winery Wastewater Treatment Applying Aerated Submerged

    Directory of Open Access Journals (Sweden)

    Alessandra Pellizzaro Bento

    2010-06-01

    Full Text Available The winery wastewater usually shows conditions of low pH, high organic loads and concentrations of carbon, nitrogen and phosphorus that are inappropriate for biologic treatment. The purpose of this research was to apply the technology of aerated submerged biofilter (ASB for the winery effluent treatment during the harvest (ASB 1 and non harvest (ASB 2 at lab scale. Therefore, two up flow biofilter built on glass (5 liters volume were installed. The nutrient balance of the winery wastewater was adjusted and the correction of the pH was done by oyster shell used as filter material. The efficiency removal (COD for the harvest reactor was 90% while for the non harvest was 82%. The oyster shells contributed to an increase on average of 180 mg/L of alkalinity to the BAS 1 and 318 mg/L for the BAS 2. As regards the metals, the average values in the treated effluent to meet iron and zinc is permitted by the environmental standards of Santa Catarina. Under the experimental conditions applied in this research, this kind of reactor has presented potential for the treatment of winery wastewater. However, operational improvements would be required in the reactors to adequate them to the specific management into the wineries.

  10. 生物法处理制药废水的研究进展%Research Progress in Biological Treatment of Pharmaceutical Wastewater

    Institute of Scientific and Technical Information of China (English)

    赵红阳; 张金辉; 杨双春

    2014-01-01

    制药工业废水的种类较多,主要包括抗生素生产废水、合成药物废水、中成药生产废水以及各种制剂生产过程所产生的洗涤水和冲洗废水。特点是成分复杂、有机物含量高、毒性较大、色度深和含盐量较高,尤其是生化性很差,且间歇排放,属难处理的工业废水。介绍了SBR法、UASB法、水解酸化、膜生物等技术在制药废水处理方面的研究现状,幵对今后的研究方向提出了建议。%The pharmaceutical industry wastewaterincludesantibiotic production wastewater, synthetic drug production wastewater,Chinesepatent medicineproduction wastewater andwashing water.Pharmaceutical industry wastewater, as a kind of refractory wastewater,hasthepropertiesofcomplex components,high toxicity,deep chromaticity,high salt contentand poorbiodegradability.Inthisarticle, application progress ofSBR method, UASB, hydrolytic acidification and membrane biological technology in the pharmaceutical wastewater treatmentwere reviewed, and some suggestions about the future development wereput forward.

  11. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...... for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena and to...... model, plant layout, controllers, sensors, performance criteria and test procedures, i.e. a complete benchmarking protocol....

  12. Livestock wastewater treatment: ammonia removal

    International Nuclear Information System (INIS)

    Livestock wastewater contains high concentration of ammonia. Removal of this inorganic species of nitrogen could be achieved through nitrification and de-nitrification. Nitrification process was conducted in the laboratory using activated sludge process with HRT of three and five days. After wastewater undergone nitrification process at Livestock Wastewater Treatment Plant the concentration of influent for N-NH4+ reduced from 400 mg/l to 0 mg/l and concentration of N-NO3- increased from 11 mg/l to 300 mg/l. Nitrification using lab-scale activated sludge process also recorded similar result. Concentration of N-NH4+ reduced from 400 mg/l to 2 mg/l and 380 mg/l to 1.1 mg/l for HRT=5 days and HRT=3 days respectively. N-NO3- was increased from 11 mg/l to 398 mg/l and 14 mg/l to 394 mg/l for HRT=5 days and HRT=3 days, respectively. However changes of N-NH4+ and N=NO3- were not observed using gamma irradiation. The combination of gamma irradiation with activated sludge process indicated difference and its contribution is still investigated

  13. Combined treatment of dyeing wastewater by a new sequential bi-cycling biological fluidized bed%新型生物流化床处理印染废水的序批式组合工艺研究

    Institute of Scientific and Technical Information of China (English)

    徐功娣

    2006-01-01

    A new wastewater treatment equipment, the bi-external recycling biological fluidized bed (BRBFB), which is an effective equipment, was investigated. Anaerobic digestion, aerobic aeration and settlement processes with a fixed sequential procedure were compacted into this reactor. By five different treatment courses, the optimization of the combined operation procedure in the system was determined to be a 12-hour cycle including an inflow process, a 4 h anaerobic digestion process, a 4 h aerobic aeration process, a 2 h settlement process and a 2 h recess process including effluent discharge process. By utilizing BRBFB to treat a synthetic dyeing wastewater, 90% of CODCr is removed for a higher-concentration water (CODCr 1 000-1 200 mg/L), and 82% of CODCr is removed for a lower-concentration water (CODCr 400-600 mg/L). Near 100% color is removal and discharging standards for industry wastewater are achieved.

  14. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  15. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  16. A Technology of Wastewater Sludge Treatment

    Science.gov (United States)

    Gizatulin, R. A.; Senkus, V. V.; Valueva, A. V.; Baldanova, A. S.; Borovikov, I. F.

    2016-04-01

    At many communities, industrial and agricultural enterprises, treatment and recycling of wastewater sludge is an urgent task as the sludge is poured and stored in sludge banks for many years and thus worsens the ecology and living conditions of the region. The article suggests a new technology of wastewater sludge treatment using water-soluble binder and heat treatment in microwave ovens.

  17. Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters.

    Science.gov (United States)

    Balabanič, Damjan; Hermosilla, Daphne; Merayo, Noemí; Klemenčič, Aleksandra Krivograd; Blanco, Angeles

    2012-01-01

    There is increasing concern about chemical pollutants that have the ability to mimic hormones, the so-called endocrine-disrupting compounds (EDCs). One of the main reasons for concern is the possible effect of EDCs on human health. EDCs may be released into the environment in different ways, and one of the most significant sources is industrial wastewater. The main objective of this research was to evaluate the treatment performance of different wastewater treatment procedures (biological treatment, filtration, advanced oxidation processes) for the reduction of chemical oxygen demand and seven selected EDCs (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, bisphenol A and nonylphenol) from wastewaters from a mill producing 100 % recycled paper. Two pilot plants were running in parallel and the following treatments were compared: (i) anaerobic biological treatment followed by aerobic biological treatment, ultrafiltration and reverse osmosis (RO), and (ii) anaerobic biological treatment followed by membrane bioreactor and RO. Moreover, at lab-scale, four different advanced oxidation processes (Fenton reaction, photo-Fenton reaction, photocatalysis with TiO(2), and ozonation) were applied. The results indicated that the concentrations of selected EDCs from paper mill wastewaters were effectively reduced (100 %) by both combinations of pilot plants and photo-Fenton oxidation (98 %), while Fenton process, photocatalysis with TiO(2) and ozonation were less effective (70 % to 90 %, respectively). PMID:22571523

  18. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    International Nuclear Information System (INIS)

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  19. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens

    1995-01-01

    The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch ...

  20. Optimization of biological phosphorus and ammonia removal in a combined fixed and suspended growth wastewater treatment system: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This project was conducted to optimize design and operational criteria for enhanced biological phosphorus removal and nitrification of ammonia in the fixed growth reactor-suspended growth reactor (FGR-SGR) process. The research completed the investigation of optimum hydraulic retention times for biological phosphorus removal in both the unaerated and aerated phases of the suspended growth components of the FGR-SGR system, including an assessment of the possibility of reducing suspended growth aeration requirements by using oxidized forms of nitrogen rather than dissolved oxygen for biological phosphorus uptake; investigated the effects on biological phosphorus removal and nitrification of varying the internal recycle flow rates; and investigated the optimum solids retention time, or the optimum operating mixed liquor suspended solids concentration, in the suspended growth component of the system for biological phosphorus removal and nitrification-denitrification.

  1. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    Science.gov (United States)

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the

  2. Modelling of Activated Sludge Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kurtanjeka, Ž.

    2008-02-01

    Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge

  3. Floating treatment wetlands for domestic wastewater treatment.

    Science.gov (United States)

    Faulwetter, J L; Burr, M D; Cunningham, A B; Stewart, F M; Camper, A K; Stein, O R

    2011-01-01

    Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO(3)-N. Complete removal of NO(3)-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment. PMID:22105133

  4. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    J. Kalka

    2012-01-01

    Full Text Available Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms.

  5. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Irena Kania-Surowiec

    2014-10-01

    Full Text Available In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the right concept and a prototype for a particular processing plant, plastic processing plant. It is possible to determine the parameters that will increase the efficiency of sewage treatment while minimizing the financial effort on the part of the Company. Selection methods of wastewater treatment is also associated with the environmental strategy of the country at the enterprise level specified in the Environmental Policy. This is an additional argument for the use of biological methods in the treatment of industrial waste water.

  6. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    DEFF Research Database (Denmark)

    Hey, G.; Grabic, R.; Ledin, A.;

    2012-01-01

    nitrogen removal (low COD) and one without (high COD). About one third of the tested APIs resisted degradation even at the highest ClO2 dose (20mg/L), while others were reduced by more than 90% at the lowest ClO2 level (0.5mg/L). In the low COD effluent, more than half of the APIs were oxidized at 5mg/L Cl......Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended......O2, while in high COD effluent a significant increase in API oxidation was observed after treatment with 8mg/L ClO2. This study illustrates the successful degradation of several APIs during treatment of wastewater effluents with chlorine dioxide....

  7. A Study on the Wastewater Treatment from Antibiotic Production

    OpenAIRE

    Jayati Chatterjee; Neena Rai; Santosh K. Sar

    2014-01-01

    Wastewater from cephalosporin antibiotic production with high bio-toxicity is hard to degrade, and could cause great harm to environment and human being. In the present paper, wastewater from cephalosporin production was processed with biochemical treatments as hydrolytic acidification, Up-flow Anaerobic Sludge Bed(UASB), Sequencing Batch Reactor Activated Sludge Process(SBR), biological activated carbon process(BAC). Among them, hydrolytic acidification could efficaciously enhance the biodeg...

  8. Psychrophilic anaerobic treatment of low strength wastewaters.

    OpenAIRE

    Rebac, S.

    1998-01-01

    The main objective of this thesis was to design a high-rate anaerobic system for the treatment low strength wastewaters under psychrophilic conditions.Psychrophilic (3 to 20 °C) anaerobic treatment of low strength synthetic and malting wastewater was investigated using a single and two stage expanded granular sludge bed (EGSB) reactor system. The chemical oxygen demand (COD) removal efficiencies found in the experiments with synthetic wastewater exceeded 90 % in the single stage reactor at im...

  9. Treatment and characterisation of oily wastewaters

    OpenAIRE

    Karhu, M. (Maiju)

    2015-01-01

    Abstract Oily wastewaters are heterogeneous, containing various types of oils, surfactants from detergents, metals etc. Oily wastewaters are produced from a wide range of industries such as metalworking, petroleum refineries, the petrochemical industry, transportation as well as the textile and food industries. Oily wastewaters, especially those containing stable oil-in-water emulsions, require advanced treatment as conventional treatment methods have their limitations to meet ever-stricte...

  10. Evaluation of toxicity to the biological treatment and removal of recalcitrant organic compounds from oil refineries wastewaters; Avaliacao da toxicidade ao tratamento biologico e remocao de compostos organicos recalcitrantes existentes em efluentes de refinarias de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Barros Junior, Laerte M.; Macedo, Gorete R.; Bezerra, Marcio S.; Pereira, Franklin M.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Schmidell, Willibaldo [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2004-07-01

    Oil industry waste water usually contains recalcitrant chemical compounds, like phenol, benzene, toluene, xylene, naphthalene and acenaphthene. The respirometry, determination of respiration rate of an active biomass, is an adequate methodology for quantification of aerobic activity biological. This study aims evaluate the inhibition effect of phenol in the oxidation capacity of an industrial sludge. This work also intends to study the phenol removal through biological and photochemical-biological processes. The respirometry was carried out with synthetic solution, using sludge from an oil processing industry. The phenol degradation experiments were carried out in an activated sludge unit and in a photochemical reactor. This work suggests the potential of photochemical-biological treatment use, in relation to the biological process with a no-acclimated sludge, in the removal of refractory organic compounds from oil industry wastewaters. The characterization of biomass using the respirometry methodology showed which is a useful tool in evaluation of phenol toxicity to biological treatment. (author)

  11. Performance of a hybrid-loop bioreactor system in biological treatment of 2,4,6-tri-chlorophenol containing synthetic wastewater: Effects of hydraulic residence time

    International Nuclear Information System (INIS)

    A hybrid-loop bioreactor system consisting of a packed column biofilm and an aerated tank bioreactor with effluent recycle was used for biological treatment of 2,4,6-tri-chlorophenol (TCP) containing synthetic wastewater. Effects of hydraulic residence time (HRT) on COD, TCP and toxicity removal performance of the reactor were investigated for the HRT values between 5 and 30 h, while the feed COD (2700 ± 100 mg l-1), TCP (300 ± 10 mg l-1) and the solids retention time (sludge age, SRT, 20 d) were constant. Percent TCP, COD and toxicity removals increased with increasing HRT resulting in more than 90% COD, TCP and toxicity removals at HRT values above 25 h. Biomass concentrations in the packed column and in the aeration tank increased with increasing HRT resulting in low reactor TCP concentrations and therefore high TCP, COD and toxicity removals at high HRT values. Volumetric and specific rates of TCP and COD removals decreased with increasing HRT due to increased biomass and decreased flow rates at high HRT levels. Volumetric and specific removal rates of COD and TCP were maximum at an HRT of 5 h

  12. Adaptive model based control for wastewater treatment plants

    NARCIS (Netherlands)

    Niet, de Arie; Vrugt, van de Maartje; Korving, Hans; Boucherie, Richard J.; Savic, D.A.; Kapelan, Z.; Butler, D.

    2011-01-01

    In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge. The process requires oxygen input via aeration of the activated sludge tank. Aeration is responsible for about 60% of the energy consumption of a treatment plant. Hence optimization of aeration can contribu

  13. Electron beam treatment plant for textile dyeing wastewater

    International Nuclear Information System (INIS)

    Daegu Dyeing Industrial Complex (DDIC) includes about hundred factories occupying the area of 600,000m2 with 13,000 employees in total. The production requires high consumption of water (90,000m3/day), steam, and electric power, being characterized by large amount of highly colored industrial wastewater. Because of increase in productivity and increased assortment of dyes and other chemicals, substantial necessity appears in re-equipment of purification facilities by application of efficient methods of wastewater treatment. The results of laboratory investigations showed the application of electron beam treatment of wastewater to be perspective for its purification The most significant improvements result in decolorizing and destructive oxidation of organic impurities in wastewater. Installation of the radiation treatment on the stage of chemical treatment or immediately before biological treatment may results in appreciable reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Being convinced with the feasibility of laboratory scale tests, a pilot plant for a large-scale test (flow rate of 1,000m3 per day) of wastewater has constructed and is now under operation with the electron accelerator of 1MeV, 40kW. The size of extraction window is 1500mm in width and Titanium foil is used for window material. For the uniform irradiation of water, nozzle type injector with the width of 1500mm was introduced. The wastewater is injected under the e-beam irradiation area through the injector to obtain the adequate penetration depth. The speed of injection could be varied upon the dose and dose rate. Once the wastewater has passed under the irradiation area, then directly into the biological treatment system. On the evaluation of economies and efficiency of pilot plant, industrial plant for treating textile dyeing wastewater is under construction from 2003 for decreasing the amount of

  14. Biological phosphorus removal during high-rate, low-temperature, anaerobic digestion of wastewater

    OpenAIRE

    Ciara eKeating; Chin, Jason P.; Dermot eHughes; Panagiotis eManesiotis; Denise eCysneiros; Therese eMahony; Smith, Cindy J; John W McGrath; Vincent eO'Flaherty

    2016-01-01

    We report, for the first time, extensive biologically-mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis reve...

  15. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater

    OpenAIRE

    Keating, Ciara; Chin, Jason P.; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J; John W McGrath; O’Flaherty, Vincent

    2016-01-01

    We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis reve...

  16. Effect of Mecoprop (RS)-MCPP on the biological treatment of synthetic wastewater in an anaerobic membrane bioreactor.

    Science.gov (United States)

    Yuzir, Ali; Abdullah, Norhayati; Chelliapan, Shreeshivadasan; Sallis, Paul

    2013-04-01

    The effects of Mecoprop (RS)-MCPP were investigated in an anaerobic membrane bioreactor (AnMBr) fed with synthetic wastewater containing stepwise increases in Mecoprop concentration, 5-200 mg L(-1) over 240 days. Effects were observed in terms of soluble chemical oxygen demand (COD) removal efficiency, volatile fatty acid (VFA) production, and methane yield. Soluble COD removal efficiency was stable at Mecoprop concentrations below 200 (±3) mg L(-1), with an average of 98 (±0.7)% removal. However, at 200 (±3) mg L(-1) Mecoprop, the COD removal efficiency decreased gradually to 94 (±1.5)%. At 5 mg L(-1) Mecoprop, acetic and propionic acid concentrations increased by 60% and 160%, respectively. In contrast, when Mecoprop was increased to 200 (±3) mg L(-1), the formation and degradation of acetate was unaffected by the higher Mecoprop concentration, acetate remaining below 35 mg L(-1). Increases in the Mecoprop specific utilization rate were observed as Mecoprop was increased stepwise between 5 and 200 mg L(-1). PMID:23422308

  17. APPLICATION OF ANAEROBIC BIOTECHNOLOGY FOR PHARMACEUTICAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Shreeshivadasan Chelliapan and Paul J. Sallis

    2011-01-01

    Full Text Available The wastewater generated from pharmaceutical industry generally contain high organic load and the treatment is primarily carried out using two major types of biological methods; aerobic and anaerobic. However, due to high strength, it is infeasible to treat some pharmaceutical wastewater using aerobic biological processes. As an alternative, an anaerobic process is preferred to remove high strength organic matter. Anaerobic wastewater treatment is considered as the most cost effective solution for organically polluted industrial waste streams. In particular the development of high rate systems, in which hydraulic retention times (HRT are uncoupled from solids retention times (SRT, has led to a worldwide acceptance of anaerobic wastewater treatment. In this paper, literature on anaerobic digestion, anaerobic reactor technology and existing anaerobic treatment of pharmaceutical wastewater are presented. In addition, fate of pharmaceuticals in the environment was also discussed in brief. A case study of a laboratory investigation into the treatment of pharmaceutical wastewater containing the antibiotic Tylosin in an anaerobic reactor was also given. Specifically, it was determined whether the anaerobic reactor could be used as a pre-treatment system at an existing pharmaceutical production plant. The performance of the reactor treating real pharmaceutical wastewater at various organic loading rate (OLR was investigated and showed efficient substrate removal at low OLRs (0.43 – 1.86 kg COD.m-3.d-1 by promoting efficient chemical oxygen demand (COD reduction (70 – 75%. Under these conditions, an average of 95% Tylosin reduction was achieved in the UASR. However, increasing the OLRs to 3.73 kg COD.m-3.d-1 by reducing the hydraulic retention time (HRT (4 – 2 d reduced the COD removal efficiency (45%. Changes in the organic loading affected the treatment performance of the anaerobic reactor, and at high OLRs, it was not able to withstand the short

  18. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during n

  19. Treatment and recycling of textile wastewaters

    International Nuclear Information System (INIS)

    The results of an experimental campaign involving the treatment of textile wastewaters for recycle by mean of an absorption resins pilot plant are briefly described. The case study concerned the treatment and reuse of yarns dyeing wastewaters. Results obtained indicate the possibility of an industrial scale implementation of the technique

  20. Wastewater treatment after reactive printing

    OpenAIRE

    Šostar-Turk, Sonja; Simonič, Marjana; Petrinić, Irena

    2012-01-01

    Membrane filtration of wastewater after textile printing with reactive dyes isdescribed. The wastewater from a Slovenian factory, whose output is approx. 80% reactive dyes printed and dyed on cotton, was studied. In particular, the presence of urea, sodium alginate, oxidation agent and reactive dyes, used forthe printing paste preparation, in the wastewater was studied. Chemical analyses of actual, non-purified, wastewater showed that many Slovenian regulations were exceeded. The study of mem...

  1. Influence of Strong Diurnal Variations in Sewage Quality on the Performance of Biological Denitrification in Small Community Wastewater Treatment Plants (WWTPs

    Directory of Open Access Journals (Sweden)

    Giordano Urbini

    2013-08-01

    Full Text Available The great diurnal variation in the quality of wastewater of small communities is an obstacle to the efficient removal of high nitrogen with traditional activated sludge processes provided by pre-denitrification. To verify this problem, the authors developed a pilot plant, in which the domestic wastewater of community of 15,000 inhabitants was treated. The results demonstrate that average and peak nitrogen removal efficiencies of over 60% and 70%, respectively, are difficult to obtain because of the strong variations in the BOD5/NO3-N ratios and the unexpected abnormal accumulation of dissolved oxygen during denitrification when the BOD5 load is low. These phenomena cause inhibitory effects and BOD5 deficiency in the denitrification process. The results demonstrate the need for a more complex approach to designing and managing small wastewater treatment plants (WWTPs provided with denitrification than those usually adopted for medium- and large-size plants.

  2. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  3. [Ecological security of wastewater treatment processes: a review].

    Science.gov (United States)

    Yang, Sai; Hua, Tao

    2013-05-01

    Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward. PMID:24015572

  4. Radiotracer Applications in Wastewater Treatment Plants

    International Nuclear Information System (INIS)

    Wastewater containing pollutants resulting from municipal and industrial activities are normally collected in wastewater treatment plants (WWTPs) for processing before discharge to the environment. The WWTPs are the last barrier against contamination of downstream surface waters such as rivers, lakes and sea. Treated wastewater is reused for irrigation, particularly in arid and semi-arid countries. Therefore, it is very important to maintain optimal operating conditions of WWTPs to eliminate or reduce environmental pollution. Wastewater treatment plants are complicated systems, where the processes of mixing, separation, aeration, biological and chemical reactions occur. A WWTP is basically a multiphase system, and the efficiency of an installation strongly depends on liquid, solid and gas phase flow structures and their residence time distributions (RTDs). However, the fluid dynamic properties of such systems are not yet completely understood, rendering difficult the theoretical prediction of important process parameters such as flow rates, phase distributions, mixing and sediment characteristics. Tracer techniques are very useful tools to investigate the efficiency of purification in WWTPs, aiding both their design and performance optimization. There are many kinds of tracers. Radioactive tracers are the most sensitive and are largely used for on-line diagnosis of various operations in WWTPs. The success of radiotracer applications rests upon their extremely high detection sensitivity, and the strong resistance against severe process conditions. During the last few decades, many radiotracer studies have been conducted worldwide for investigation of various installations for wastewater treatment, such as mixer, aeration tank, clarifiers, digester, filter, wetland and oxidation units. Various radiotracer methods and techniques have been developed by individual tracer groups. However, the information necessary for the preservation of knowledge and transfer of

  5. Application of Ultrasound/Electrocatalysis Combined with Biological Oxidation Process for Treatment of Pharmaceutical and Chemical Wastewater%声电与生物氧化联合处理医药化工废水

    Institute of Scientific and Technical Information of China (English)

    宋欣欣; 应乐; 朱润晔; 王家德

    2011-01-01

    采用声电协同法作为预处理工艺,联合生物法处理医药化工废水,处理规模为1 000m3/d.运行实践表明,声电工艺与生物法联用,可提高废水的生物降解性.整个系统对COD的去除率达到99.26%,出水pH值为8.2、COD为233 mg/L,达到《污水综合排放标准》(GB 8978-1996)的三级标准.%The coupling ultrasound and electrocatalysis process as a pretreatment, combined with biological treatment was adopted to treat pharmaceutical and chemical wastewater. The wastewater treatment capacity is 1 000 m3/d. The running practice shows that the ultrasound/electrocatalysis combined with biological oxidation process can improve the wastewater biodegradability. The removal rate of COD by the whole system can reach 99. 26% , the effluent pH is 8. 2, and COD is 233 mg/L, the effluent quality meets the third class criteria specified in the Integrated Wastewater Discharge Standard (GB 8978 -1996).

  6. IC+BIOLOGICAL CONTACT OXIDATION AND FLOCCULATION TREATMENT OF CHINESE PATENT MEDICINES IN PHARMACEUTICAL WASTEWATER TREATMENT%IC+生物接触氧化+絮凝沉淀处理中成药制药废水实例

    Institute of Scientific and Technical Information of China (English)

    杨德龙; 张晓东; 朱乐辉; 张亮

    2013-01-01

    中成药制药废水成分复杂、有机物含量高、毒性大、色度深、含盐量高且可生化性差,采用IC厌氧工艺加生物接触氧化加絮凝沉淀工艺处理某中成药制药厂生产废水,使出水水质达污水综合排放标准(GB 8978-1996)一级标准,运行结果表明,COD、NH3-N、SS、色度平均去除率分别达99.25%、89%、88%、99%,采用该工艺处理中成药生产废水,可满足中成药制药废水水量、水质波动大的要求,在技术和经济上可行.%Pharmaceutical wastewater with complex components, high content of organic matter, high toxicity, deep chroma, high salt content and poor biodegradability. In order to satisfy the integrated wastewater discharge standard (GB 8978 -1996) standard level, pharmaceutical factory production wastewater is treated by using IC anaerobic process with biological contact oxidation and flocculation sedimentation process. The results show that: average removal rate of COD, NH,-N, SS, chroma were 99.25%, 89%, 88% and 99%, respectively. The process for the treatment of wastewater from the production of Chinese patent medicine can meet the requirements of pharmaceutical waste water and water quality fluctuation of large requirements, which feasible in technology and economy.

  7. Microelectrolysis / plate setter / biological contact oxidation process for treatment of printed circuit board wastewater%EGSB-CASS-生物滤池工艺处理天然橡胶加工废水

    Institute of Scientific and Technical Information of China (English)

    姚颋; 江丹丹; 李杰

    2012-01-01

    根据某天然橡胶加工企业生产废水的水质特点,采用EGSB-CASS-生物滤池工艺处理天然橡胶加工废水。工程运行结果表明,该工艺对CODCr、氨氮、SS平均去除率分别达到97%,94%,90%,出水水质符合GB8978-1996《污水综合排放标准》一级标准。%The wastewater from a plant of printed circuit board were collected and treated separately according to the wastewater quality. The integrated wastewater was treated by microelectrolysis/plate setter/biological contact oxidation process. The operation results showed that the effluent quality reached the first class of "Integrated Wastewater Discharge Standard" (GB8978-1996). This research obtained a feasible approach for PCB wastewater treatment.

  8. Microelectrolysis/plate setter/biological contact oxidation process for treatment of printed circuit board wastewater%微电解/斜板沉淀/生物接触氧化处理印刷电路板废水

    Institute of Scientific and Technical Information of China (English)

    姚颋; 王宏; 李杰

    2011-01-01

    根据某印刷电路板企业生产废水的水质特点,对废水进行分类收集处理后,采用微电解/斜板沉淀/生物接触氧化工艺处理综合废水。工程运行结果表明,该工艺处理效果稳定,出水水质符合《污水综合排放标准》(GB8978-1996)的一级排放标准。%The wastewater from a plant of printed circuit board were collected and treated separately according tothe wastewater quality. The integrated wastewater was treated by microelectrolysis/plate setter/biological contact oxidation process. The operation results showed that the effluent quality reached the first class of "Integrated Wastewater Discharge Standard" (GB8978-1996).This research obtained a feasible approach for PCB wastewater treatment.

  9. Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal

    DEFF Research Database (Denmark)

    Lee, N.; Jansen, J.l.C.; Aspegren, H.;

    2002-01-01

    The population dynamics of activated sludge in a pilot plant with two activated sludge systems, both designed for enhanced biological phosphorus removal (EBPR), but one of them with (BNP) and the other without (BP) nitrogen removal, was monitored during a period of 2.5 years. The influent water...... to the pilot plant was periodically manipulated by external addition of phosphorus (P), acetate and glucose, respectively. The population dynamics and the in situ physiology were monitored by quantitative fluorescence in situ hybridization (FISH) and microautoradiography. Significant P removal was observed...... in both systems throughout the whole period, with significant increases of the P removal when substrates were dosed. The activated sludge in both systems contained large amounts of dense clusters of gram-negative, methylene-blue staining coccoid rods during the whole period. A large part of the clusters...

  10. Improvement of a manageability of biological nitrogen and phosphorus removal plant using a wastewater treatment process simulator; Gesui shori purosesu shimyureta no riyo ni yoru seibutsuteki chisso/rin jokyo puranto no kanrisei no kojo

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, G. [Toyohashi Univ. of Technology, Aichi (Japan). Faculty of Engineering; Tsumura, K. [Kyoto Univ., Kyoto (Japan). Graduate School; Yamamoto, Y. [Osaka Prefectural Inst. of Public Health, Osaka (Japan)

    1997-02-10

    In this paper, a method for executing a stable management of wastewater treatment process is examined by using a wastewater treatment process simulator with the facilities adopting intermittently aerated 2-tank activated sludge process as the object. The following results are obtained from said examination. Based on a fact that the treatment efficiency is influenced greatly by the comparatively miner parts of the process in biological nitrogen and phosphorus removal, a wastewater treatment process simulator, by which the intrinsic process flow, restricting conditions and behaviors of controlling system of each facility can be dealt with, is developed by using object-directional model. As the results of this development, not only the effects approximate to those of actual process can be obtained, but also the trial error and alternation of process flow can be realized in a short time. The serious influence of disappearance of dissolvable organic substance in flow-adjusting tank upon the deterioration of biological phosphorus removal is clarified by the results of the simulation based on the investigation of flowing-in water quality. 12 refs., 13 figs., 4 tabs.

  11. Influence of operating parameters on the biodegradation of steroid estrogens and nonylphenolic compounds during biological wastewater treatment processes

    OpenAIRE

    Chiu, TY; Boobis, AR; Scrimshaw, MD; Bagnall, JP; Soares, A.; Pollard, S; Cartmell, E; Lester, JN

    2009-01-01

    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Environmental Science & Technology, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/es901612v. This study investigated operational factors influencing the removal of steroid estrogens and nonylphenolic compounds in two sewage treatment works, one a nitrifying/denitrifying act...

  12. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    International Nuclear Information System (INIS)

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H2O2/ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H2O2) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H2O2), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H2O2) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  13. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    Energy Technology Data Exchange (ETDEWEB)

    Azabou, Samia [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Najjar, Wahiba [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Bouaziz, Mohamed [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Ghorbel, Abdelhamid [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia)

    2010-11-15

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H{sub 2}O{sub 2}/ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H{sub 2}O{sub 2}) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H{sub 2}O{sub 2}), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H{sub 2}O{sub 2}) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  14. Electron beam treatment of wastewater

    International Nuclear Information System (INIS)

    Supernatant comes from dewaterization of sewage sludge, and contains biologically nondegradable organics so that it is hard to be treated by conventional activated sludge. By electron beam (EB) irradiation, any kinds of organics in water can be oxidized to biodegradable organic acids. We studied the treatment of supernatant by application of this effect. The direct irradiation of the original supernatant was found not to be so effective to decrease COD. In order to increase the irradiation effect, supernatant was pretreated biologically to decrease the biodegradable organics in it. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were decreased from 800 and 910 mg/L to 78 and 5 mg/L by this pretreatment, respectively. This pretreated supernatant was irradiated by EB of 2 MeV using a batch type reactor. The COD was gradually decreased with dose. In contrast, BOD was increased markedly, indicating increase in biodegradability. The irradiated sample water was treated biologically again. After the final biological treatment, COD was decreased below 30 mg/L in the case of 10 - 12 kGy irradiation. Finally, the initial COD of 800 mg/L was decreased below 30 mg/L by the combination of EB irradiation and biological treatment. The cost of irradiation for this process was evaluated preliminarily. (author)

  15. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    Science.gov (United States)

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  16. Fungal treatment: a prospective process for eco-friendly bioremediation of wastewater sludge

    Energy Technology Data Exchange (ETDEWEB)

    Molla, A. H.; Fakhru' l-Razi, A.

    2009-07-01

    None of the conventional techniques is safe and environmental friendly for wastewaters/sludge disposal. A sustainable, safe and environmental friendly biological technique is a great apprehension to the relevant scientists. Since the fungal treatment was exercised to evaluate its potentially for sustainable bioseparation and bioremediation of wastewater. Bioseparation and bioremediation of wastewater sludge by fungal inoculation implied the decreasing of bio solids, total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and specific resistance to filtration (SRF) of wastewater. (Author)

  17. Fungal treatment: a prospective process for eco-friendly bioremediation of wastewater sludge

    International Nuclear Information System (INIS)

    None of the conventional techniques is safe and environmental friendly for wastewaters/sludge disposal. A sustainable, safe and environmental friendly biological technique is a great apprehension to the relevant scientists. Since the fungal treatment was exercised to evaluate its potentially for sustainable bioseparation and bioremediation of wastewater. Bioseparation and bioremediation of wastewater sludge by fungal inoculation implied the decreasing of bio solids, total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and specific resistance to filtration (SRF) of wastewater. (Author)

  18. Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater.

    Science.gov (United States)

    Fan, Jun; Li, Haibo; Shuang, Chendong; Li, Wentao; Li, Aimin

    2014-08-01

    This study investigated the removal of dissolved organic matter (DOM) from real dyeing bio-treatment effluents (DBEs) with the use of a novel magnetic anion exchange resin (NDMP). DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight (MW) (50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254 absorbance (SUVA254), and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon (DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon (PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%, whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC, NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants, with selected concentrations of 10% NaCl (m/m)/1% NaOH (m/m), could improve desorption efficiency. PMID:25108712

  19. Nitrification Processes in Tehran Wastewater Treatment Plant

    OpenAIRE

    S. A. Sadrnejad

    2011-01-01

    A wastewater treatment plant is designed to daily treat 450000 m3 of wastewater collected from the city of Tehran. The wastewater treatment plant is located at the south of Shahr-Ray in southern Tehran with the area of 110 hectares. The treatment plant effluent will be transferred to Varamin agricultural lands to be used for the irrigation of crops. A conventional activated sludge for carbon removal and a high-rate trickling filter for nitrification of ammonia to nitrate are designed and cons...

  20. Operation and control of SBR processes for enhanced biological nutrient removal from wastewater

    OpenAIRE

    Puig Broch, Sebastià

    2008-01-01

    In the last decades, the awareness of environmental issues has increased in society considerably. There is an increasing need to improve the effluent quality of domestic wastewater treatment processes. This thesis describes the application of the Sequencing Batch Reactor (SBR) technology for Biological Nutrient Removal (BNR) from the wastewater. In particular, the work presented evolves from the nitrogen removal to the biological nutrient removal (i.e. nitrogen plus phosphorous removal) with ...

  1. Phthalates, Nonylphenols and LAS in Roskilde Wastewater Treatment Plant

    DEFF Research Database (Denmark)

    Fauser, P.; Sørensen, P. B.; Carlsen, L.;

    The steady-state compartment description of the biological reactors and settlers in wastewater treatment plants that is used in SimpleTreat has been evaluated with respect to an alternately operated WWTP situated in Roskilde, Denmark. The effect of substituting a complex discontinuous operation...

  2. Investigation on Advanced Oxidation-Biological Processes in Pharmaceutical Wastewater Treatment%高级氧化与生物联用技术处理制药废水的研究

    Institute of Scientific and Technical Information of China (English)

    申晓辉; 申婷婷; 李小明; 岳秀; 柳娴; 唐玉芳

    2011-01-01

    制药工业废水成分复杂,有机污染物种类多,难于降解,毒性大。高级氧化技术处理制药废水尚处于实验研究阶段,然而将其与生物法联合具有良好的应用前景。重点介绍了各类高级氧化技术的原理和特点,讨论了高级氧化及生物联用技术运用于制药废水的处理现状、存在的问题及未来发展方向。%Pharmaceutical industrial wastewater contained high concentration of organic matters and was characterized by extremely poor biodegradability and toxicity.Although advanced oxidation processes(AOPs) used in the pharmaceutical wastewater treatment was generally at the batch experiment stage,yet it had bright application prospect in combining with biological treatment.The elaboration of the principle and characteristics of various advanced oxidation processes as well as the present situation were focused on,and the existing problems and future development direction of advanced oxidation-biological processes in pharmaceutical wastewater treatment were discussed.

  3. Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: photolysis and catalytic wet oxidation.

    Science.gov (United States)

    Rueda-Márquez, J J; Sillanpää, M; Pocostales, P; Acevedo, A; Manzano, M A

    2015-03-15

    In this paper the feasibility of a multi-barrier treatment (MBT) for the regeneration of synthetic industrial wastewater (SIWW) was evaluated. Industrial pollutants (orange II, phenol, 4-chlorophenol and phenanthrene) were added to the effluent of municipal wastewater treatment plant. The proposed MBT begins with a microfiltration membrane pretreatment (MF), followed by hydrogen peroxide photolysis (H2O2/UVC) and finishing, as a polishing step, with catalytic wet peroxide oxidation (CWPO) using granular activated carbon (GAC) at ambient conditions. During the microfiltration step (0.7 μm) the decrease of suspended solids concentration, turbidity and Escherichia coli in treated water were 88, 94 and 99%, respectively. Also, the effluent's transmittance (254 nm) was increased by 14.7%. Removal of more than 99.9% of all added pollutants, mineralization of 63% of organic compounds and complete disinfection of total coliforms were reached during the H2O2/UVC treatment step (H2O2:TOC w/w ratio = 5 and an UVC average dose accumulated by wastewater 8.80 WUVC s cm(-2)). The power and efficiency of the lamp, the water transmittance and photoreactor geometry are taken into account and a new equation to estimate the accumulated dose in water is suggested. Remaining organic pollutants with a higher oxidation state of carbon atoms (+0.47) and toxic concentration of residual H2O2 were present in the effluent of the H2O2/UVC process. After 2.3 min of contact time with GAC at CWPO step, 90 and 100% of total organic carbon and residual H2O2 were removed, respectively. Also, the wastewater toxicity was studied using Vibrio fischeri and Sparus aurata larvae. The MBT operational and maintenance costs (O&M) was estimated to be 0.59 € m(-3). PMID:25600300

  4. Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment

    Science.gov (United States)

    Zhang, Liang; Lin, Xiaojuan; Wang, Jinting; Jiang, Feng; Wei, Li; Chen, Guanghao; Hao, Xiaodi

    2016-01-01

    Biological sulfate-reducing bacteria (SRB) may be effective in removing toxic lead and mercury ions (Pb(II) and Hg(II)) from wet flue gas desulfurization (FGD) wastewater through anaerobic sulfite reduction. To confirm this hypothesis, a sulfite-reducing up-flow anaerobic sludge blanket reactor was set up to treat FGD wastewater at metal loading rates of 9.2 g/m3-d Pb(II) and 2.6 g/m3-d Hg(II) for 50 days. The reactor removed 72.5 ± 7% of sulfite and greater than 99.5% of both Hg(II) and Pb(II). Most of the removed lead and mercury were deposited in the sludge as HgS and PbS. The contribution of cell adsorption and organic binding to Pb(II) and Hg(II) removal was 20.0 ± 0.1% and 1.8 ± 1.0%, respectively. The different bioavailable concentration levels of lead and mercury resulted in different levels of lethal toxicity. Cell viability analysis revealed that Hg(II) was less toxic than Pb(II) to the sludge microorganisms. In the batch tests, increasing the Hg(II) feeding concentration increased sulfite reduction rates. In conclusion, a sulfite-reducing reactor can efficiently remove sulfite, Pb(II) and Hg(II) from FGD wastewater. PMID:27455890

  5. Characterization of broad-spectrum antibiotic resistance genes in wastewater treatment reactors through metagenomic approaches

    OpenAIRE

    Yang, Ying; 楊穎

    2014-01-01

    The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have attracted great concerns worldwide. Wastewater treatment plants (WWTPs) are reservoirs of ARGs while wastewater/sludge treatment processes are considered as important means to control these emerging biological pollutants. However, the full profiles of ARGs in WWTPs or the removal efficiency of ARGs by wastewater/sludge treatment process was not well characterized yet. Thus, the major tasks in this st...

  6. Respiratory Disorders Associated with Occupational Inhalational Exposure to Bioaerosols among Wastewater Treatment Workers of Petrochemical Complexes

    OpenAIRE

    Jahangiri, M; Neghab, M; G Nasiri; M Aghabeigi; V Khademian; Rostami, R.; V Kargar; J Rasooli

    2015-01-01

    Background: Workers in wastewater treatment plants are exposed to a wide range of chemicals as well as biological contaminants.Objective: To ascertain whether exposure to bio-aerosols under the normal working conditions in wastewater treatment plants is associated with any significant changes in the prevalence of respiratory symptoms and lung function capacities.Methods: 198 employees of wastewater treatment plants and 99 unexposed persons were studied. American thoracic society (ATS) standar...

  7. Assessing the sustainability of wastewater treatment technologies in the petrochemical industry

    OpenAIRE

    Meerholz, A.; A C Brent, A. C.

    2013-01-01

    Selecting the most suitable industrial wastewater treatment technology is not only about providing the best technical solution at the lowest cost: it is also about sustainability (including social and environmental acceptance) and institutional feasibility. This paper demonstrates and evaluates a method that may be used for wastewater treatment technology assessment and selection in an industrial context, with a specific focus on biological wastewater treatment in a petrochemical company. The...

  8. Application of electron beam to treatment of wastewater from papermill

    International Nuclear Information System (INIS)

    Electron-beam treatment of wastewater from a papermill has been studied in combination with conventional methods (coagulation+flocculation and biological). It has been found that such combination (the required dose is about 1 kGy) allows one to decrease chemical oxygen demand and total organic carbon values of wastewater to the value below 25 ppm and, as a consequence, to increase the recirculation rate of wastewater from 20-30% up to 70-80%. The design of commercial plant equipped with three electron accelerators (total beam power 300 kW) for the purification of wastewater from a papermill in Cheongwon (Republic of Korea) has been developed. Its planned output is equal to 15,000 m3/day

  9. Gravity separation for oil wastewater treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar

    2010-01-01

    In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.

  10. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  11. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    OpenAIRE

    J. Kalka

    2012-01-01

    Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate ...

  12. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  13. Air Flotation/Hydrolysis Acidification/Biological Contact Oxidation/BAF Process for Soft Drink-processing Wastewater Treatment%气浮/水解酸化/接触氧化/BAF工艺处理饮料生产废水

    Institute of Scientific and Technical Information of China (English)

    潘登; 王娟; 周俊强; 贾莹莹

    2013-01-01

    The wastewater from a soft drink-processing enterprise was characterized with high concentration of SS and good biodegradability. Air flotation/hydrolysis acidification/biological contact oxidation/biological aerated filter process was used to treat the wastewater. High treatment efficiency was a-chieved, and the effluent quality met the first level A criteria specified in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant ( GB 18918 - 2002 ) .%某饮料生产企业废水具有悬浮物含量较高、可生化性较好的特点,采用气浮/水解酸化/生物接触氧化/曝气生物滤池多级工艺处理,取得了较好的处理效果,出水水质达到了《城镇污水处理厂污染物排放标准》(GB 18918-2002)的一级A标准.

  14. Application of chemical oxidation processes for the removal of pharmaceuticals in biologically treated wastewater

    OpenAIRE

    Hey, Gerly

    2013-01-01

    The discharge of effluents from wastewater treatment plants (WWTPs) is considered to be the major source of residual pharmaceuticals frequently found in aquatic environments. The complex nature of such compounds tends to make conventional biological treatments aimed at their removal ineffective. The present thesis concerns the removal of 62 different active pharmaceutical ingredients commonly detected in Swedish wastewater effluents by means of chemical oxidation techniques. Techniques wit...

  15. Wastewater Treatment in Kathmandu : Management, Treatment and Alternative

    OpenAIRE

    Regmi, Shakil

    2013-01-01

    Main aim of this thesis was to understand the wastewater situation in Kathmandu, Nepal and its impact in natural water stream, how it is managed and treated. After understanding the scenario of wastewater treatment in Kathmandu, a suitable alternative wastewater treatment system is recommended for future use. Technical as well as managerial problem exists in Kathmandu, thus from my experience in Mikkeli, Finland I came up with the model that is handled by the municipality itself because skill...

  16. Aerobic biological treatment of olive mill wastewater previously treated by an ozonization stage; Tratamiento biologico aerobico del alpechin depurado previamente con ozono

    Energy Technology Data Exchange (ETDEWEB)

    Beltran de Heredia Alonso, J.; Torregrosa Anton, J.; Garcia Rodriguez, J.; Ramos Viseas, M. P.; Dominguez Vargas, J. R. [Universidad de Extremadura. Badajoz (Spain)

    2000-07-01

    In the present work, the degradation of olive mill wastewaters previously treated by an ozonation stage has been studied by an aerobic biological oxidation. The substrate evolution (based on chemical oxygen demand), biomass (measured as volatile suspended solids) and total polyphenolic contents were followed during each experiment. A kinetic study is performed by using the Contois model, which applied to the experimental data, provides the specific kinetic parameters of this model. The deduced kinetic equation for the consume of substrate is q=17.0 S/(18.2 X + So X) g COD/ gVSS day. Moreover, others interesting biological parameters like the cellular yied coefficient and the kinetic rate constant for the endogenous metabolism were determined, obtaining a values of 0.214 g VSS/g COD and 0.167 day''-1, respectively. (Author) 29 refs.

  17. Domestic wastewater treatment as a net energy producer--can this be achieved?

    Science.gov (United States)

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today. PMID:21749111

  18. Industrial wastewater treatment with electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho [Central Research Institute of Samsung Heavy Industries Co., Taejon (Korea)

    2001-03-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m{sup 3}/day of wastewater from 80,000m{sup 3}/day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  19. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m3/day of wastewater from 80,000m3/day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  20. Hydrogen production as a novel process of wastewater treatment - studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Heguang Zhu [Tongji Univ., Shanghai (China). Inst. of Environmental Science; Ueda, Shunsaku [Utsunomiya Univ. (Japan). Dept. of Biological Productive Science; Asada, Yasio [Nihon Univ., Chiba (Japan). College of Science and Technology; Miyake, Jun [National Inst. for Advanced Interdisciplinary Research, Ibaraki (Japan)

    2002-12-01

    Attention is focusing on hydrogen production from wastewater, not only because hydrogen is a clean energy but also because it can be a process for wastewater treatment. In this paper, the characteristics of biological hydrogen production as a process of wastewater treatment is discussed by a comparison with methane production. The hydrogen production from tofu wastewater by anoxygenic phototrophic bacteria and its potential for wastewater treatment are reported. The possibility of co-cultivation with heterotrophic anaerobic bacteria was also investigated. As a solution to overcome the repressive effect of NH{sub 4}{sup +} on hydrogen production by anoxygenic phototrophic bacteria, a study was done using glutamine auxotroph which was obtained by chemical mutagenesis. To confirm that the mutation had occurred in DNA molecular level, the glutamine synthetase gene was cloned and sequenced. (Author)

  1. Meta-omics approaches to understand and improve wastewater treatment systems

    OpenAIRE

    Rodríguez, Elisa; García-Encina, Pedro A.; Stams, A.J.M.; Maphosa, Farai; Sousa, D.Z.

    2015-01-01

    Biological treatment of wastewaters depends on microbial processes, usually carried out by mixed microbial communities. Environmental and operational factors can affect microorganisms and/or impact microbial community function, and this has repercussion in bioreactor performance. Novel high-throughput molecular methods (metagenomics, metatranscriptomics, metaproteomics, metabolomics) are providing detailed knowledge on the microorganisms governing wastewater treatment systems and on their met...

  2. Detoxification and recycling of wastewater by solar-catalytic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Freudenhammer, H.; Geissen, S.-U.; Vogelpohl, A. [Technische Univ. Clausthal, Inst. fuer Thermische Verfahrenstechnik, Clausthal-Zellerfeld (Germany); Bahnemann, D.; Siemon, U. [Institut fuer Solarenergieforschung GmbH, Hannover (Germany); Bousselmi, L.; Ghrabi, A. [Institut National de Recherche Scientifique et Technique, Cite Mahrajene Tunis (Tunisia); Saleh, F. [Damascus Univ., Chemistry Dept., Damascus (Syrian Arab Republic); Si-Salah, A. [Institut Algerien du Petrole, Boumerdes (Algeria)

    1997-12-31

    An introduction to a joint research project is given which deals with the technical application of solar photocatalysis for wastewater detoxification. A non-concentrating thin-film fixed-bed reactor (TFFBR) is used to study application and areas where a solar-catalytic treatment or recycling of wastewater is possible. This reactor excels by its low cost and an easy-to-build construction using molecular oxygen in air as the oxidising agent. The design parameters of the reactor as well as the process itself have been determined from the reaction kinetics of a model substance, the hydrodynamics and the mass transfer. The treatment of different real wastewaters was successfully carried out, and biologically pre-treated textile wastewater maximum solar degradation rate was about 3{sub g} COD h{sup -1} m{sup -2}. A comparison of reaction rates with artificial and solar illumination shows the necessity of outdoor experiments. Due to the reaction rates observed, photocatalysis is suitable as the final stage of purification of biologically or physically pretreated wastewater and will offer a great opportunity for sunrich areas. (Author)

  3. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  4. Physico-chemical treatment of wastewater from clusters of small scale cotton textile units.

    Science.gov (United States)

    Pathe, P P; Biswas, A K; Rao, N N; Kaul, S N

    2005-03-01

    Small scale industries can not own individual wastewater treatment facility due to non-availability of land and skilled manpower for operation and maintenance of wastewater treatment plants. A centralized wastewater treatment facility for clusters of small scale industries is appropriate. This concept is gaining popularity in recent years. In India, various textile process operations are undertaken by individual small scale units. The wastewater generated at these units is conveyed to a common effluent treatment facility comprising of equalization, flocculation-clarification, activated sludge process, secondary clarification and finally discharge into inland surface water bodies. The wastewater from small scale cotton textile processing units was highly coloured and alkaline with average BOD and COD concentration of 205 and 790 mg l(-1), respectively. Due to the presence of several dyes, particularly reactive dyes, the biological treatment is often found less effective. Therefore, applicability of various physico-chemical treatment methods needs to be investigated in pursuit of an alternative to biological treatment of textile wastewater. A physico-chemical treatment scheme, involving chemical coagulation-sedimentation, dual media filtration, activated carbon adsorption followed by chemical oxidation was investigated in this paper. The quality of final treated wastewater in terms of BOD and COD was 18-24 and 230-240 mg l(-1), respectively through this scheme. A scheme of treatment comprising coagulation-sedimentation, dual media filtration, activated carbon, chemical oxidation may be considered as an alternative to biological treatment of textile wastewater. PMID:15881028

  5. Treatment of phenolic wastewater in suspended and fixed bed bioreactors

    OpenAIRE

    Bajaj, Mini

    2009-01-01

    Phenol and chlorophenols are among the most important class of raw materials in chemical industry. These compounds also list among priority pollutants. The main problem in treating phenol or chlorophenol containing wastewater is the toxicity it exerts to the microbial flora in biological treatment plants. This may lead to partial or complete treatment plant failure, when the microbial flora is not adapted to phenol concentrations in the influent. The purpose of this thesis was to adapt the mi...

  6. Mechanisms implied in Escherichia coli removal during wastewater treatment

    OpenAIRE

    Arana Basabe, María Inés; Garaizabal Ruiz, Idoia; Oruño Beltrán, Maite; Bravo, A.; Parada, C.; Barcina López, María Isabel

    2011-01-01

    Poster presentado 12th Symposium on Aquatic Microbial Ecology (SAME12) August 28 – September 02, 2011 Germany , Rostock–Warnemünde The wastewater treatment reduces the assimilable organic fraction and the number of microorganisms of the effluents due to biological treatment and to the concentration of bacteria in sludge after settling. Recycling of sludge as an organic fertilizer is environment friendly but some pathogens could be concentrated in it. To make an integral tracing...

  7. Wastewater Treatment Optimization for Fish Migration Using Harmony Search

    OpenAIRE

    Zong Woo Geem; Jin-Hong Kim

    2014-01-01

    Certain types of fish migrate between the sea and fresh water to spawn. In order for them to swim without any breathing problem, river should contain enough oxygen. If fish is passing along the river in municipal area, it needs sufficient dissolved oxygen level which is influenced by dumped amount of wastewater into the river. If existing treatment methods such as settling and biological oxidation are not enough, we have to consider additional treatment methods such as microscreening filtrati...

  8. Selection of technologies for municipal wastewater treatment

    OpenAIRE

    Juan Pablo Rodríguez Miranda; César Augusto García Ubaque; Janneth Pardo Pinzón

    2015-01-01

    In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, econom...

  9. Land treatment of nitroguanidine wastewater

    International Nuclear Information System (INIS)

    Nitroguanidine (NQ) wastewaters contain nitroguianidine, guanidine nitrate (GN), ammonia, nitrate, and sulfate. Simulated NQ wastewater is being applied to continuous and perfusion soil columns, with continuous flow column influent and effluent samples being analyzed for wastewater components and transformation products (nitrosoguanidine, guanidine, cyanamide, melamine, and cyanoguanidine). Whey, molasses, and glucose are being tested as carbon supplements. Mineralization rate experiments are being conducted using 14-C-NQ and 14-C-Gn as test substrates. The number of microbes capable of degrading NQ and GN is being determined, as is microflora acclimation. Preliminary data indicate that carbon supplements facilitate NG degradation after 70 days of application in continuous flow soil column. Batch mineralization experiments generally support these findings. To date, cyanamide is the only transformation product detected in significant quantities. 9 refs., 1 tab

  10. Biological Nutrient Removal in a Full Scale Anoxic/Anaerobic/Aerobic/Pre-anoxic-MBR Plant for Low C/N Ratio Municipal Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    胡香; 谢丽; 张善发; 杨殿海

    2014-01-01

    A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and 4NH+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1︰1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A2O-MBR process.

  11. Electrochemical oxidation as a final treatment of synthetic tannery wastewater.

    Science.gov (United States)

    Panizza, Marco; Cerisola, Giacomo

    2004-10-15

    Vegetable tannery wastewaters contain high concentrations of organics and other chemicals that inhibit the activity of microorganisms during biological oxidations, so biorefractory organics that are not removed by biological treatment must be eliminated by a tertiary or advanced wastewater treatment. In this paper, the applicability of electrochemical oxidation as a tertiary treatment of a vegetable tannery wastewater was investigated by performing galvanostatic electrolysis using lead dioxide (Ti/PbO2) and mixed titanium and ruthenium oxide (Ti/TiRuO2) as anodes under different experimental conditions. The experimental results showed that both the electrodes performed complete mineralization of the wastewater. In particular, the oxidation took place on the PbO2 anode by direct electron transfer and indirect oxidation mediated by active chlorine, while it occurred on the Ti/TiRuO2 anode only by indirect oxidation. Furthermore, the Ti/PbO2 gave a somewhat higher oxidation rate than that observed for the Ti/TiRuO2 anode. Although the Ti/TiRuO2 required almost the same energy consumption for complete COD removal, it was more stable and did not release toxic ions, so it was the best candidate for industrial applications. With the Ti/TiRuO2 anode, the rate of tannery wastewater oxidation increased with the current density, pH, and temperature of the solution. These results strongly indicate that electrochemical methods can be applied effectively as a final treatment of vegetable tannery wastewater allowing the complete removal of COD, tannin, and ammonium and decolorization. PMID:15543753

  12. Biological treatment for sewage

    OpenAIRE

    Xintai, Wang; Luc Sanya, Eric

    2007-01-01

    The sewage treatment is by no means insignificant in our world, and for many sewage treatment plants, the biological treatment is the best choice to eliminate the nutrients and organic compounds in the waste water. Today, in most waste water treatment plants, there are two main kinds of biological waste water treatment – the active sludge method and the biofilm method. Each of these two methods have their own advantages and disadvantages. For different towns or cities, the waste water treatme...

  13. CFD for wastewater treatment: an overview.

    Science.gov (United States)

    Samstag, R W; Ducoste, J J; Griborio, A; Nopens, I; Batstone, D J; Wicks, J D; Saunders, S; Wicklein, E A; Kenny, G; Laurent, J

    2016-01-01

    Computational fluid dynamics (CFD) is a rapidly emerging field in wastewater treatment (WWT), with application to almost all unit processes. This paper provides an overview of CFD applied to a wide range of unit processes in water and WWT from hydraulic elements like flow splitting to physical, chemical and biological processes like suspended growth nutrient removal and anaerobic digestion. The paper's focus is on articulating the state of practice and research and development needs. The level of CFD's capability varies between different process units, with a high frequency of application in the areas of final sedimentation, activated sludge basin modelling and disinfection, and greater needs in primary sedimentation and anaerobic digestion. While approaches are comprehensive, generally capable of incorporating non-Newtonian fluids, multiphase systems and biokinetics, they are not broad, and further work should be done to address the diversity of process designs. Many units have not been addressed to date. Further needs are identified throughout, but common requirements include improved particle aggregation and breakup (flocculation), and improved coupling of biology and hydraulics. PMID:27508360

  14. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    International Nuclear Information System (INIS)

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government

  15. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    International Nuclear Information System (INIS)

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  16. Applications of nanotechnology in wastewater treatment--a review.

    Science.gov (United States)

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed. PMID:24730286

  17. Electron beam treatment plant for textile dyeing wastewater

    International Nuclear Information System (INIS)

    A pilot plant for treating 1,000 m3 of textile dyeing wastewater per day with electron beam has constructed and operated continuously in Daegu, Korea since 1998. This plant is combined with biological treatment system and it shows the reduction of chemical reagent consumption, and also the reduction in retention time with the increase in removal efficiencies of CODCr and BOD5 up to 30∼40%. Increase in biodegradability after radiation treatment of aqueous-organic systems is due to radiolytical conversions of non-biodegradable compounds. On the basis of data obtained from pilot plant operation, construction of actual industrial scale plant has started in 2003, and will be finished by 2005. This plant is located on the area of existing wastewater treatment facility (Daegu Dyeing Industrial Complex) and to have treatment capacity 10,000 m3 of wastewater per day using one 1 MeV, 400 kW accelerator, and combined with existing bio- treatment facility. The overall construction cost and the operation cost in the radiation processing, when compared to other conventional and advanced oxidation techniques, are more cost-effective and convenient for wastewater treatment. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government. (author)

  18. FGD wastewater treatment still has a way to go

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, T.; Givens, S.; Sandy, T. [CH2M Hill (United States)

    2008-01-15

    The power industry should jointly address questions about FGD water treatment and share the lessons it has learned so far. The article describes a scheme developed by CH2M Hill to treat FGD wastewater and remove heavy metals. The process desaturates the waste water of sulfates and removes the bulk of the insoluble suspended solids prior to tertiary treatment of heavy metals using a chemical/physical treatment process. Additional treatment could be provided (for example, anoxic biological treatment) for selenium, nitrates and organics. 2 figs.

  19. Emergency Planning for Municipal Wastewater Treatment Facilities.

    Science.gov (United States)

    Lemon, R. A.; And Others

    This manual for the development of emergency operating plans for municipal wastewater treatment systems was compiled using information provided by over two hundred municipal treatment systems. It covers emergencies caused by natural disasters, civil disorders and strikes, faulty maintenance, negligent operation, and accidents. The effects of such…

  20. Development of chemical flocculant for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C {approx} -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 {approx} 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD.

  1. Development of chemical flocculant for wastewater treatment

    International Nuclear Information System (INIS)

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C ∼ -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 ∼ 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD

  2. Biological treatment of a synthetic dairy wastewater in a sequencing batch biofilm reactor: Statistical modeling using optimization using response surface methodology

    Directory of Open Access Journals (Sweden)

    Zinatizadeh A.A.L.

    2011-01-01

    Full Text Available In this study, the interactive effects of initial chemical oxygen demand (CODin, biomass concentration and aeration time on the performance of a lab-scale sequencing batch biofilm reactor (SBBR treating a synthetic dairy wastewater were investigated. The experiments were conducted based on a central composite design (CCD and analyzed using response surface methodology (RSM. The region of exploration for treatment of the synthetic dairy wastewater was taken as the area enclosed by the influent comical oxygen demand (CODin (1000, 3000 and 5000 mg/l, biomass concentration (3000, 5000 and 7000 mg VSS/l and aeration time (2, 8 and 18 h boundaries. Two dependent parameters were measured or calculated as response. These parameters were total COD removal efficiency and sludge volume index (SVI. The maximum COD removal efficiencies (99.5% were obtained at CODin, biomass concentration and aeration time of 5000 mg COD/l, 7000 mg VSS/l and 18 h, respectively. The present study provides valuable information about interrelations of quality and process parameters at different values of the operating variables.

  3. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors.

    Science.gov (United States)

    Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun

    2010-09-01

    The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater. PMID:20705321

  4. LAW CAPACITY WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-01-01

    Full Text Available The question of small water users having no centralized wastewater collecting, cleaning and discharging system is of maximal actuality in Romania. Therefor economically efficient solutions are looked for. For disperse mountain villages, farms, or detached households traditional systems, with high maintenance expences because of long networks for small flows, can be economicaly not advantageos. Very small capacity treatement plants are a solution for such cases. The aim of the experimental part of the present work is to simulate situations, damages which can occur during running of a low capacity wastewater treatement plant. Low capacity hosehold wastewater treatement plants are economic alternatives which remove the disadvantages of emptyable basins namely the high costs, the frequvent empying operations, with unpleasant smelling, continous danger of groundwater infection, need for massive and expensive concrete buildings. The proposed plants are based on a classical treatement technology and need emptying of the exess mud only once or twice a year. In opposition with the case of classical plants, the mixture extracted from the proposed low cost systems does not smell and has a relatively low content of solid matter.

  5. Testing Ballast Water Treatment at a Municipal Wastewater Treatment Plant

    OpenAIRE

    Cohen, Andrew N.

    2001-01-01

    The main goal of the project was to investigate the feasibility of treating ships' ballast water in existing municipal wastewater treatment plants (= publicly-owned treatment works or POTWs). The main objectives included identifying and characterizing the limiting factors that could restrict the volume of ballast water that can be treated at POTWs; and test, in a series of laboratory experiments, the effectiveness of standard municipal wastewater treatment in removing or killing ballast water...

  6. Oxidation of Mixed Active Pharmaceutical Ingredients in Biologically Treated Wastewater by ClO2

    OpenAIRE

    Moradas, Gerly; Fick, Jerker; Ledin, Anna; Jansen, Jes la Cour; Andersen, Henrik Rasmus

    2011-01-01

    Biologically treated wastewater containing a mixture of 53 active pharmaceutical ingredients (APIs)was treated with 0-20 mg/l chlorine dioxide (ClO2) solution. Wastewater effluents were taken from two wastewater treatment plants in Sweden, one with (low COD) and one without (high COD) extended nitrogen removal. The removal of the APIs varied from no significant removal at the highest dose of ClO2 (20 mg/l) to 90% removal at a dose of 0.5 mg/l of the oxidant. From the low COD effluent, only 4 ...

  7. PHYSICAL/CHEMICAL TREATMENT OF TEXTILE FINISHING WASTEWATER FOR PROCESS REUSE

    Science.gov (United States)

    The report describes a demonstration of multimedia filtration as an effective tertiary treatment for biologically treated textile wastewaters from two adjacent plants involved in dyeing and finishing fabrics of man-made fibers. Adding alum, polyelectrolytes, and powdered activate...

  8. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.;

    2009-01-01

    wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model......This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation of a...

  9. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  10. The synergistic effects of dissolved oxygen and pH on N2O production in biological domestic wastewater treatment under nitrifying conditions.

    Science.gov (United States)

    Li, Pengzhang; Wang, Shuying; Peng, Yongzhen; Liu, Yue; He, Janzhong

    2015-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas, which is produced during nitrifying and denitrifying processes. Some factors and mechanisms affecting N2O emission have been reported in previous literature, but wastewater biological nitrification is accompanied by a dynamic process of dissolved oxygen (DO) consumption and pH reduction, it is more meaningful to study the synergistic effects between DO and pH on N2O production. In this study, the synergistic effects between DO and pH on N2O production were investigated with real domestic wastewater. The results showed that high DO levels and a high pH could improve the oxidation ratio of NH4+-N and the production ratio of NO2--N, while effectively reducing the accumulation ratio of N2O. The NH4+-N was a prerequisite for nitrifier denitrification; when NH4+-N was oxidized completely, there would be no N2O production and an even higher concentration of NO2- The pH factor is shown to directly affect N2O emission, although free ammonia and free nitrous acid which changed with pH had no correlation with N2O emission. There were two reasons: (1) pH can influence the flow direction of electrons afforded by NH2OH oxidation; at high pH, electrons were mainly used for combining H+ and O2 (O2+4H++4e-=2H2O), the accumulation of NO2- cannot be a result of denitrification, and a higher DO can get more electrons to prefer NO2- and (2) NH4+ was the prerequisite for NH2OH oxidation, since NH2OH oxidation process was the way to provide electrons for nitrifier denitrification. PMID:25619120

  11. Improvement on filterability in the aerobic treatment of carboxymethyl cellulose (CMC) wastewater

    OpenAIRE

    Qing Pei Ye; Hui Chen Dong; Ming Zhou Gong; Qin Lu; Qiang Ma Ji

    2014-01-01

    CMC is chemically modified from natural cellulose and widely applied in various industries. CMC wastewater consists mainly of sodium glycolate, sodium chloride and water. With extremely high COD and salinity, high concentration CMC wastewater can’t be biologically treated, but with COD and salinity around 15000 mg/L and 30000 mg/L respectively, low concentration CMC wastewater can be aerobically treated. In a CMC factory, the treatment of low concentration ...

  12. Effectiveness of Urban Wastewater Treatment Policies in Selected Countries

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Smith, Carey; Kristensen, Peter;

    This pilot study examines the effectiveness of wastewater policies and measures in six Member States in order to identify and understand the reasons for both the successes and the shortfalls in implementation. Two of these countries have almost fully implemented the directive, two have yet to do ......-effectiveness. The report focuses on the extension of sewage plants with appropriate levels of treatment (biological or advanced) and trends in discharges to surface waters....

  13. Cost assessment of e-beam wastewater treatment

    International Nuclear Information System (INIS)

    Electron beam treatment of wastewater leads to purification by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom. Sometimes such reactions are accompanied by the other processes, and the synergistic effect upon the use of combined methods such as electron beam with biological treatment, adsorption and others improves the effect of electron beam treatment of the wastewater purification. In the process of electron-beam treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. The key to the successful implementation of electron beam process in environmental protection depends on how to manage the economics in its application. To compete with other processes in economic evaluation, the electron beam system should be operated with cost-effective manners. To result in complete decomposition of the pollutants, sufficiently high absorbed doses are required. However, in real conditions of rather high content of pollutants in wastewater, high absorbed doses are not economically acceptable, and it is better to utilize the partial decomposition of pollutant as well as transformations of pollutant molecules that result in improving subsequent purification stages. To apply electron beam process to the treatment of industrial wastewater and disinfection of effluent from municipal wastewater plant, we accomplished the cost assessment together with the laboratory irradiation experiments. Cost assessments of industrial e-beam treatment plant for treating textile dyeing wastewater were carried out for the treatment capacity of 10 000 m3 per day. The total construction cost for this plant was USD 4M and the operation cost was not more than USD 1M per year and it was about USD 0.3 per each m3 of wastewater. Another study on the disinfection plant designed for the flow rate of 100 000 m3 effluent per day showed the

  14. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Basim Yalda

    2012-08-01

    Full Text Available Abstract Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm. The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. The average sludge reductions were obtained as 32% (run 1 and 33% (run 2 in worm reactor and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blank conditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  15. Sludge Reduction by Lumbriculus Variegatus in Ahvaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Tim Hendrickx

    2012-08-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensivehealth hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm.The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. Theaverage sludge reductions were obtained as 33% (run 2 and 32% (run 1 in worm reactor,and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blankconditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  16. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant.

    Science.gov (United States)

    Basim, Yalda; Farzadkia, Mahdi; Jaafarzadeh, Nematollah; Hendrickx, Tim

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm). The effects of changes in dissolved oxygen (DO) concentration up to 3 mg/L (run 1) and up to 6 mg/L (run 2) were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. The average sludge reductions were obtained as 32% (run 1) and 33% (run 2) in worm reactor and 16% (run 1) and 12% (run 2) in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blank conditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing. PMID:23369451

  17. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  18. Winery wastewater treatment monitored using planted wetland common reed bed

    Directory of Open Access Journals (Sweden)

    Daouda MAMA

    2012-08-01

    Full Text Available Agro businesses use a great amount of water in the production processes. Consequently they are very concerned with wastewater treatment before any discharge. Wastewater from agribusinesses contains elevated concentration of organic matters and nitrogen. Winery wastewater gets high salinity, and depending on the daily, monthly or yearly production, it is characterized by a very variable flow. Physico-chemical ways of wastewater treatment use chemicals that can turn out be to pollutants or which can generate hazardous byproducts whereas biological treatment is more environmentally friendly by fitting into the landscape and not producing any potentially dangerous products. The constructed wetland with reed beds is the only biological treatment which can be both ecologically and costly efficient. Therefore an experimental constructed wetlandwith vertical flow reed beds was built to treat wastewater from BARDET’s vinery in France. The experience was run for 7 weeks. For average input concentrations of: TSS (335,4 mg/L, TKN (26,3 mg/L and TP (6 mg/Lthe output concentrations were the following: TSS (43,2 mg/L, TKN (11,1 mg/L and TP (2,1 mg/L . The average removal rates were: TSS (86,5%, TKN (61,8% and TP (62,9%. The treated water had concentrations that were in line with the regulation set forth in the 02/02/98 decree which set the output concentration in a river at: TSS (100 mg/L, GN (30 mg/L and TP (10 mg/L.

  19. Closed DHS system to prevent dissolved methane emissions as greenhouse gas in anaerobic wastewater treatment by its recovery and biological oxidation.

    Science.gov (United States)

    Matsuura, N; Hatamoto, M; Sumino, H; Syutsubo, K; Yamaguchi, T; Ohashi, A

    2010-01-01

    Anaerobic wastewater treatment has been focused on its eco-friendly nature in terms of the improved energy conservation and reduction in carbon dioxide emissions. However, the anaerobic process discharges unrecovered methane as dissolved methane. In this study, to prevent the emission of dissolved methane from up-flow anaerobic sludge blanket (UASB) reactors used to treat sewage and to recover it as useful gas, we employed a two-stage down-flow hanging sponge (DHS) reactor as a post-treatment of the UASB reactor. The closed DHS reactor in the first stage was intended for the recovery of dissolved methane from the UASB reactor effluent; the reactor could successfully recover an average of 76.8% of the influent dissolved methane as useful gas (containing methane over 30%) with hydraulic retention time of 2 h. During the experimental period, it was possible to maintain the recovered methane concentrations greater than 30% by adjusting the air supply rate. The remaining dissolved methane after the first stage was treated by the next step. The second closed DHS reactor was operated for oxidation of the residual methane and polishing of the remaining organic carbons. The reactor had a high performance and the influent dissolved methane was mostly eliminated to approximately 0.01 mgCOD L(-1). The dissolved methane from the UASB reactor was completely eliminated--by more than 99%--by the post-treatment after the two-stage closed DHS system. PMID:20418639

  20. Wastewater treatment and pollution control in Indonesia

    International Nuclear Information System (INIS)

    Present status of radiation facilities for Co-60 gamma ray irradiation and electron beam irradiation in Indonesia is first presented. Wastewater treatment is explained: kinds of waste, industrial, agricultural, municipal and nuclear. Each liquid wastewater containing various kinds of contaminants, radioactive or non-radioactive is differently treated by waste treatment industries. On-going project is use of electron beams in which combination with ozone to reduce chlorinated solvent, disinfected sludge from sewage treatment containing organic and inorganic components for soil fertilizer, and high color river water for water supplying. The cost factor and the effect of combined treatment are being examined. Other on-going projects are applications of electron beams for vulcanization of natural rubber latex and flue gas treatment by BATAN. (S. Ohno)

  1. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding are

  2. Electrocatalysis in wastewater treatment: recent mechanism advances

    OpenAIRE

    Carlos A. Martínez-Huitle; Leonardo S. Andrade

    2011-01-01

    Over 50 years, several scientists and industries have developed new alternatives for wastewater treatment and remediation. Recently, electrochemical technology has been largely developed mainly because of its versatility and environmental compatibility. Scientific contributions about role of the electrode material have allowed determining that the influence of material in the selectivity is an important parameter. However, to interpret this behavior, comprehensive physical chemistry models fo...

  3. Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities.

    Science.gov (United States)

    Jamaly, Sanaa; Giwa, Adewale; Hasan, Shadi Wajih

    2015-11-01

    Oily wastewater poses significant threats to the soil, water, air and human beings because of the hazardous nature of its oil contents. The objective of this review paper is to highlight the current and recently developed methods for oily wastewater treatment through which contaminants such as oil, fats, grease, and inorganics can be removed for safe applications. These include electrochemical treatment, membrane filtration, biological treatment, hybrid technologies, use of biosurfactants, treatment via vacuum ultraviolet radiation, and destabilization of emulsions through the use of zeolites and other natural minerals. This review encompasses innovative and novel approaches to oily wastewater treatment and provides scientific background for future work that will be aimed at reducing the adverse impact of the discharge of oily wastewater into the environment. The current challenges affecting the optimal performance of oily wastewater treatment methods and opportunities for future research development in this field are also discussed. PMID:26574084

  4. Developing Anammox for mainstream municipal wastewater treatment

    OpenAIRE

    Lotti, T

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding area. Only across the EU, there are 16000 WWTPs that consume around 10000 GWh year-1 of electricity. Furthermore, the volume of wastewater treated in WWTPs in the EU is increasing with a rate of aroun...

  5. Wastewater Treatment Optimization for Fish Migration Using Harmony Search

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2014-01-01

    Full Text Available Certain types of fish migrate between the sea and fresh water to spawn. In order for them to swim without any breathing problem, river should contain enough oxygen. If fish is passing along the river in municipal area, it needs sufficient dissolved oxygen level which is influenced by dumped amount of wastewater into the river. If existing treatment methods such as settling and biological oxidation are not enough, we have to consider additional treatment methods such as microscreening filtration and nitrification. This study constructed a wastewater treatment optimization model for migratory fish, which considers three costs (filtration cost, nitrification cost, and irrigation cost and two environmental constraints (minimal dissolved oxygen level and maximal nitrate-nitrogen concentration. Results show that the metaheuristic technique such as harmony search could find good solutions robustly while calculus-based technique such as generalized reduced gradient method was trapped in local optima or even divergent.

  6. Treatment of Biodiesel Wastewater by Electrocoagulation Process

    Directory of Open Access Journals (Sweden)

    Anchalee Srirangsan

    2009-07-01

    Full Text Available The objective of this research was to determine the optimum conditions for biodiesel wastewater treatment using an electrocoagulation process. Wastewater samples were obtained from a small-scale, commercial biodiesel production plant that employs an alkali-catalyzed tranesterification process. The wastewater was characterized by the high contents of alkali and high oil content of 6,020 mg/L. Tested operational conditions included types of electrode, current density, retention time and initial pH. The tested electrode materials for electrocoagulation were aluminum (Al, iron (Fe and graphite (C. Five tested pairs of anode and cathode materials included Fe-Fe, Fe-C, Al-Al, Al-C, C-C. Results show that the optimum conditions were achieved by using the electrodes of Al-C, applying the current density of 8.32 mA/cm2 to the wastewater with an initial pH value of 6 for 25 min. The removal efficiency was found to be 97.8 % for grease & oil (G&O, 96.9 % for SS and 55.4 % for COD. Moreover, the small amount of produced sludge was readily to remove from the treated wastewater.

  7. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik;

    2008-01-01

    As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment...... with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances...... of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regards to removal of heavy metals. Key words | advanced wastewater treatment, life cycle assessment, MBR, ozone treatment, sand...

  8. Anaerobic membrane bioreactors for municipal wastewater treatment

    OpenAIRE

    Fawehinmi, Folasade

    2006-01-01

    Anaerobic treatment has historically been considered unsuitable for the treatment of domestic wastewaters. The work presented in this thesis focuses on the incorporation of membranes into the anaerobic bioreactor to uncouple solid retention time and hydraulic retention time. This in turn prevents biomass washout and allows sufficient acclimatisation periods for anaerobes. However, the exposure of membranes to anaerobic biomass comes with its own inherent problems namely fouling. Fouling w...

  9. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  10. SELF-DESIGNED WASTEWATER TREATMENT SYSTEM FOR DOMESTIC WASTEWATER : Wastewater treatment in areas outside sewer networks in Kokkola

    OpenAIRE

    Xiao, Yao

    2012-01-01

    This thesis is related to the Finnish government decree on treating domestic wastewater in areas outside sewer networks (542/2003). The aim of this thesis was to design a simple, cheap and effective domestic wastewater treatment system and build its model. The thesis includes not only the theoretical explanations of methods for removing nitrogen, phosphorus and BOD7, engineering designed and building processes of model, but also the experimental processes of running the model and results...

  11. Treatment of wastewater by lemna minor

    International Nuclear Information System (INIS)

    The aim of the present study was to study the performance of bio-treatment ponds after one year of functioning at National Agricultural Research Center, Islamabad, Pakistan. The physical parameters (colour, pH, EC, TDS, turbidity) and chemical parameters (Zn, Cu, Cd, Ni, Mn, Fe and Pb) are with in the limits which are not sub-lethal for fish rearing. Lemna accumulates higher concentration of heavy metals as compared to wastewater and best for phyto remediation purpose. The treated wastewater is currently used for rearing of fish and irrigation of crops and plants. The plants around the bio-treatment ponds are healthy, green and showing enough production. The present investigation indicates that in future it would be possible to construct bio-treatment ponds in polluted areas of Pakistan. (author)

  12. COMPARATIVE STUDY OF TERTIARY WASTEWATER TREATMENT BY COMPUTER SIMULATION

    Directory of Open Access Journals (Sweden)

    Stefania Iordache

    2010-01-01

    Full Text Available The aim of this work is to asses conditions for implementation of a Biological Nutrient Removal (BNR process in theWastewater Treatment Plant (WWTP of Moreni city (Romania. In order to meet the more increased environmentalregulations, the wastewater treatment plant that was studied, must update the actual treatment process and have tomodernize it. A comparative study was undertaken of the quality of effluents that could be obtained by implementationof biological nutrient removal process like A2/O (Anaerobic/Anoxic/Oxic and VIP (Virginia Plant Initiative aswastewater tertiary treatments. In order to asses the efficiency of the proposed treatment schemata based on the datamonitored at the studied WWTP, it were realized computer models of biological nutrient removal configurations basedon A2/O and VIP process. Computer simulation was realized using a well-known simulator, BioWin by EnviroSimAssociates Ltd. The simulation process allowed to obtain some data that can be used in design of a tertiary treatmentstage at Moreni WWTP, in order to increase the efficiency in operation.

  13. Characterization of the variability of settling in wastewater treatment

    International Nuclear Information System (INIS)

    The processes of biological treatment of wastewater in activated sludge are complex dynamic processes are difficult to manage. The ability of the sludge settling is a key parameter for the overall effectiveness of pollution control process and for preserving the quality of the receiving environment. So for better management of wastewater treatment plants, a study of interactions between the couple reactor clarifier is necessary. A new management technique must notify the operator to problems related to sludge mainly to the loss of the sludge blanket which will have adverse effects on the environment. The approach is widely adopted and applied an approach aims to identify factors that may explain the observed phenomena in order to draw strategies that could improve the sludge settling on an industrial scale. The widely used approach is based on measuring Mohlman index and gives an impression, on the ability of the mud settling, but does not prevent the operator to anomalies that have places in the decanter.

  14. Wastewater treatment by adsorption onto micro-particles of dried Withania frutescens Plant as new adsorbent

    International Nuclear Information System (INIS)

    Several industrial wastewater streams may contain heavy metals such as Cd(II), Cr(III), Cr(VI), Cu(II), Pb(II), Zn(II), etc. including the waste liquids generated by metal finishing or the mineral processing industries. The toxic metals must be effectively treated/removed from the wastewaters. If the wastewaters were discharged directly into natural waters, it will constitute a great risk for the aquatic ecosystem, whilst the direct discharge into the sewerage system may affect negatively the subsequent biological wastewater treatment. (Author)

  15. Wastewater treatment by adsorption onto micro-particles of dried Withania frutescens Plant as new adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chiban, M.; Soudani, A.; Sinan, F.; Persin, M.

    2009-07-01

    Several industrial wastewater streams may contain heavy metals such as Cd(II), Cr(III), Cr(VI), Cu(II), Pb(II), Zn(II), etc. including the waste liquids generated by metal finishing or the mineral processing industries. The toxic metals must be effectively treated/removed from the wastewaters. If the wastewaters were discharged directly into natural waters, it will constitute a great risk for the aquatic ecosystem, whilst the direct discharge into the sewerage system may affect negatively the subsequent biological wastewater treatment. (Author)

  16. Development of a wastewater treatment system based on a fixed-film, anaerobic bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Genung, R.K.; Pitt, W.W. Jr.; Davis, G.M.; Koon, J.H.

    1980-01-01

    An energy-conserving wastewater treatment system based on a fixed-film anaerobic bioreactor is being developed. The treatment process is based on passing wastewaters upward through the bioreactor for continuous treatment by gravitational settling, biophysical filtration, and biological decomposition. A 2-year pilot plant project using a bioreactor designed to treat 5000 gpd has beed conducted using raw wastewater on a municipal site in Oak Ridge, Tennessee. It is estimated that hydraulic loading rates of 0.2 gpm/ft/sup 2/ and hydraulic residence times of 10 h could be used in designing such bioreactors for the secondary treatment of municipal wastewaters. Conceptual designs for total treatment systems processing up to 1.0 million gallons of wastewater per day (mgd of wastewater) were developed based on the performance of the pilot-plant bioreactor. These systems were compared to activated sludge treatment systems also operating under secondary treatment requirements and were found to consume as little as 30% of the energy required by the activated sludge systems. The economic advantages of the process result from the elimination of operating energy requirements associated with the aeration of aerobic-based processes and with the significant decrease of sludge-handling costs required with conventional activated-sludge treatment systems. Methane produced by anaerobic fermentation processes occurring during the biological decomposition of carbonaceous wastes also represented a significant and recoverable energy production term as wastewater flow rates approached 1.0 mgd.

  17. Quorum sensing in water and wastewater treatment biofilms.

    Science.gov (United States)

    Feng, Lin; Wu, Zhuoying; Yu, Xin

    2013-04-01

    Fixed film processes and activated sludge processes are two main families of wastewater treatment systems which all refer to the heterogeneous microbial communities. Meanwhile, biofilms in drinking water distribution systems (DWDS) and biofouling in membrane systems are significant problems in the water and wastewater treatment which reduce the microbial quality of drinking water and limit the development of membrane system respectively. Since biofilms and quorum sensing (QS) as two microbial social behaviors have been inextricably linked, a number of studies have focused on the role of QS signaling and QS inhibition in the processes of water and wastewater treatment, which will help us engineer these biological treatment processes successfully and develop promising approaches for control of microbial adhesion, colonization and biofilm formation. This review gives a summary of recent known QS mechanisms and their role in biofilm formation for different species. Particular attentions are dedicated to the signaling molecules involved in some microbial granulation processes and the potential applications by some of their natural and synthetic analogues in the treatment of membrane biofouling. PMID:24620615

  18. Sustainable Optimization for Wastewater Treatment System Using PSF-HS

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2016-03-01

    Full Text Available The sustainability in a river with respect to water quality is critical because it is highly related with environmental pollution, economic expenditure, and public health. This study proposes a sustainability problem of wastewater treatment system for river ecosystem conservation which helps the healthy survival of the aquatic biota and human beings. This study optimizes the design of a wastewater treatment system using the parameter-setting-free harmony search algorithm, which does not require the existing tedious value-setting process for algorithm parameters. The real-scale system has three different options of wastewater treatment, such as filtration, nitrification, and diverted irrigation (fertilization, as well as two existing treatment processes (settling and biological oxidation. The objective of this system design is to minimize life cycle costs, including initial construction costs of those treatment options, while satisfying minimal dissolved oxygen requirements in the river, maximal nitrate-nitrogen concentration in groundwater, and a minimal nitrogen requirement for crop farming. Results show that the proposed technique could successfully find solutions without requiring a tedious setting process.

  19. Influence of Strong Diurnal Variations in Sewage Quality on the Performance of Biological Denitrification in Small Community Wastewater Treatment Plants (WWTPs)

    OpenAIRE

    Giordano Urbini; Massimo Raboni; Vincenzo Torretta

    2013-01-01

    The great diurnal variation in the quality of wastewater of small communities is an obstacle to the efficient removal of high nitrogen with traditional activated sludge processes provided by pre-denitrification. To verify this problem, the authors developed a pilot plant, in which the domestic wastewater of community of 15,000 inhabitants was treated. The results demonstrate that average and peak nitrogen removal efficiencies of over 60% and 70%, respectively, are difficult to obtain because ...

  20. Sediment microbial fuel cells for wastewater treatment: challenges and opportunities

    OpenAIRE

    Xu, Bojun; Ge, Zheng; He, Zhen

    2015-01-01

    Sediment microbial fuel cells (SMFCs) have been intensively investigated for the harvest of energy from natural sediment, but studies of their application for wastewater treatment mainly occurred in the past 2-3 years. SMFCs with simple structures can generate electrical energy while decontaminating wastewater. Most SMFCs used for wastewater treatment contain plants to mimic constructed wetlands. Both synthetic and real wastewaters have been used as substrates in SMFCs that achieved satisfact...

  1. Sludge from pulp and paper mills for biogas production : Strategies to improve energy performance in wastewater treatment and sludge management

    OpenAIRE

    Hagelqvist, Alina

    2013-01-01

    The production of pulp and paper is associated with the generation of large quantities of wastewater that has to be purified to avoid severe pollution of the environment. Wastewater purification in pulp and paper mills combines sedimentation, biological treatment, chemical precipitation, flotation and anaerobic treatment, and the specific combination of techniques is determined by the local conditions. Wastewater treatment generates large volumes of sludge that after dewatering can be inciner...

  2. Treatment of Distillery Wastewater by Anaerobic Methods

    Directory of Open Access Journals (Sweden)

    Vandana Patyal

    2015-12-01

    Full Text Available One of the major environmental problems faced by the world is management of wastes. Industrial processes create a wide range of wastewater pollutants; which are not only difficult but costly to treat. Characteristics of wastewater and level of pollutants vary significantly from industry to industry. To control this problem today emphasis is laid on waste minimization and revenue generation through by-product and energy recovery. Pollution prevention focuses on preventing the harmful effect of generated wastewater on the environment, while waste minimization refers to reducing the volume or toxicity of hazardous wastes by water recycling and reuse, process modifications and by by-product recovery. Production of ethyl alcohol in distilleries based on cane sugar molasses constitutes a major industry in Asia and South America. The world’s total production of alcohol from cane molasses is more than13 million m3 /annum. The aqueous distillery effluent stream known as spent wash is a dark brown highly organic effluent and is approximately 12-15 times by volume of the product alcohol. This highly aqueous, organic soluble containing residue is considered a troublesome and potentially polluting waste due to its extremely high BOD and COD values. Because of the high concentration of organic load, distillery spent wash is a potential source of renewable energy. The paper reviews the possibility of anaerobic treatment of the distillery wastewater.

  3. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted or...... residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled, and...

  4. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted or...... residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled, and...

  5. Nanoparticles in Constanta-North Wastewater Treatment Plant

    Science.gov (United States)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of

  6. Treatment of acid mine wastewaters

    International Nuclear Information System (INIS)

    Acid mine drainage often results from the oxidation sulfide minerals to form sulfuric acid. As a consequence, high concentrations of metals in the both the suspended and dissolved state result from the low pH water. This paper discusses several of the more common treatment methods for acid mine drainage including the use of chemical precipitation agents, pH correction agents, filtration methods, and biodegradation methods. Advanced treatment technologies are also briefly described and include microfiltration, reverse osmosis, ion exchange, and electrodialysis

  7. Toxicity Evaluation of Wastewater Treatment Plant Effluents Using Daphnia magna

    Directory of Open Access Journals (Sweden)

    H Movahedian, B Bina, GH Asghari

    2005-04-01

    Full Text Available Toxicity evaluation is an important parameter in wastewater quality monitoring as it provides the complete response of test organisms to all compounds in wastewater. The water flea Daphnia magna straus is the most commonly used zooplankton in toxicological tests. The objective of this study was to evaluate the acute toxicity of effluents from different units of Isfahan Wastewater Treatment Plant (IWTP. The samples were taken from four different physical and biological units. The acute toxicity tests were determined using Daphnia magna. The immobility of Daphnia was determined after 48h. Toxicity results showed that 48h-LC50 and ATU values for raw wastewater were 30% (v/v and 3.33, respectively. It was also found that LC50 values after 48 h for preliminary, primary, and secondary effluents were 32%, 52% and 85% (v/v, respectively. The ATU values for these effluents were 3.1, 1.9, and 1.8, correspondingly. The efficiency levels of preliminary, primary, and secondary units for removal of toxicity were found as 6%, 38.9% and 8%, in that order. Overall, the present investigation indicated that toxicity removal by up to 50% might be achieved in IWPT. Based on the obtained results and regarding the improvement of water quality standards, coupled with public expectations in Iran, it is necessary to consider more stringent water quality policies for regular monitoring and toxicity assessment.

  8. Advanced Treatment of Electroplating Wastewater by Biological Aerated Filter%曝气生物滤池用于电镀废水深度处理的研究

    Institute of Scientific and Technical Information of China (English)

    左鸣; 汪晓军; 李达宁

    2011-01-01

    Quality of electroplating wastewater from industrial park in Qingyuan City, Guangdong Province is complex, and wastewater quantity increases continuously, which is more than the original design value, resulting in the effluent quality can not meet the discharge standards. The biological aerated filter ( B AF) process was applied in advanced treatment of electroplating wastewater. The results show that when the ratio of air to water is 5 : 1 and the working volume of the reactor is 3 L, the optimum influent flow rate is 2 L/h namely the hydraulic retention time (HRT) of BAF is 1. 5 h. Under the conditions of that HRT, the removal rates of CN " and COD are more than 80% and about 60% respectively. When the influent concentrations of CN ~ and COD are equal to or less than 1.5 mg/L and 200 mg/L respectively , the effluent quality can reach the Emission Standard of Pollutants for Electroplating ( GB 21900 -2008). Based on the small-scale test, two sets of BAF are added after the existing process. Since the BAF system is put into operation for 2 months, it has stable treatment effect of the electroplating wastewater. The average removal rates of COD and CN" are 50% and 75% respectively. The cost of wastewater treatment is about 0. 3 yuan/m3. The BAF system has very wide application prospect in thetreatment of the electroplating wastewater.%广东省清远市某电镀工业园排放的废水水质复杂,且水量不断增加,较原设计值超出很多,导致处理后的出水水质达不到相关标准的要求.为此,采用曝气生物滤池(BAF)工艺对现有设施出水进行深度处理.试验结果表明,当气水比为5:1,BAF的有效容积为3L时,最佳的进水流量为2 L/h,即水力停留时间为1.5 h.在此条件下,对CN一的去除率达到80%左右,对COD的去除率稳定在60%左右,当进水CN-浓度≦1.5 mg/L、COD≦200 mg/L时,均可保证出水水质达到(GB 21900-2008).在小试的基础上于现有工艺后增加了2组BAF,工程正常运行2

  9. Municipal wastewater treatment plant aeration systems and their comparison at WWTP Ljutomer and Murska Sobota

    OpenAIRE

    Kolbl, Sabina

    2009-01-01

    Graduation thesis discusses aeration systems at wastewater treatment plants (WWTP), and compares the operation of the WWTPs at Ljutomer and Murska Sobota. The first four chapters cover the theoretical fundamentals of WWTP aeration and aeration systems. In the introductory section of thesis, the biological treatment of wastewater and its basic processes are briefly discussed. According to the DVWK-ATV-A 131E standards, fundamental equations are discussed for both the rate of consumption and th...

  10. Characterization of livestock wastewater at various stages of wastewater treatment plant

    International Nuclear Information System (INIS)

    A characterization study has been conducted at Gongju Livestock Wastewater Treatment Plant, Gongju, South Korea. It is owned and operated by the government with treatment capacity of 250 tons per day. Livestock wastewater was collected from individual farmer and treated at the treatment plant. The centralized livestock wastewater treatment plant has various treatment processes namely pre-treatment, anaerobic digestion, nitrification, de-nitrification , chemical treatment, sand filtration and ozonization. The livestock wastewater was characterized by high COD, SS, T-N and T-P with concentration of 20600 mg/l, 6933 mg/l, 2820 mg/l and 700 mg/ l, respectively. After the wastewater has undergone various treatment processes it was discharged to waterways with concentration of COD, SS, T-N and T-P at 105 mg/l, 73 mg/l, 2.1 mg/l and 9 mg/l, respectively. This is part of the study to investigate the potential of irradiation to be applied at the centralized livestock wastewater treatment plant. Although livestock wastewater can be potentially applied to crop as source of nutrients it also affect the water quality due to runoff and leaching. When the wastewater applied at the rates in excess of crop uptake rates, the excess wastewater could potentially enter surface and groundwater and polluted them. (author)

  11. The impact of microbial ecology and chemical profile on the enhanced biological phosphorus removal (EBPR) process: a case study of Northern Wastewater Treatment Works, Johannesburg.

    Science.gov (United States)

    Kamika, Ilunga; Coetzee, Martie; Mamba, Bhekie Brilliance; Msagati, Titus; Momba, Maggy N B

    2014-03-01

    The impact of polyphosphate-accumulating organism (PAO) and glycogen-accumulating organism (GAO) populations as well as of the chemical profile on the performance of Unit-3 (open elutriation tanks) and Unit-5 (covered elutriation tank) of the City of Johannesburg Northern Wastewater Treatment Works was determined. Physicochemical parameters of wastewater samples were measured using standard methods. Bacterial diversity was determined using 16S rRNA gene amplicon pyrosequencing of the variable region V1-3. Results showed soluble COD concentrations from settled sewage for Unit-3 at 192.8 mg COD/L and for Unit-5 at 214.6 mg COD/L, which increased to 301.8 mg COD/L and 411.6 mg COD/L in the overflow from elutriation tanks and decreased to 170.9 mg COD/L and 256.3 mg COD/L at the division boxes, respectively. Both long-chain volatile fatty acids (heptanoic acid, isobutyric acid, 3-methylbutanoic acid, pentanoic acid, 4-methylpentanoic acid, methylheptanoic acid) and short-chain volatile fatty acids (acetic acid, propionic acid, isobutyric acid) were present within concentration ranges of 17.19 mg/L to 54.98 mg/L and 13.64 mg/L to 87.6 mg/L for Unit 3 and 38.61 mg/L to58.85 mg/L and 21.63 mg/L to 92.39 mg/L for Unit 5, respectively. In the secondary settling tanks, the phosphate-removal efficiency in Unit-5 appeared to be slightly higher (0.08 mg P/L) compared to that of Unit-3 (0.11 mg P/L). The average DO concentrations (2.1 mg/L and 2.2 mg/L) as well as the pH values (pH 7 to pH 7.5) were found to be slightly higher in Unit-5 in the aerobic zones. The high presence of PAOs in the bioreactors (Unit-5: Dechloromonas (14.96%), Acinetobacter (6.3%), Zoogloea (4.72%) in the anaerobic zone and Dechloromonas (22.37 %) in the aerobic zone; Unit-3: Dechloromonas (37.25%) in the anaerobic zone and Dechloromonas (23.97%) in the aerobic zone) confirmed the phosphate-removal efficiencies of both units. Negligible GAOs were found in the aerobic zones (Defluviicoccus spp.: 0.33% for

  12. The Impact of Microbial Ecology and Chemical Profile on the Enhanced Biological Phosphorus Removal (EBPR Process: A Case Study of Northern Wastewater Treatment Works, Johannesburg

    Directory of Open Access Journals (Sweden)

    Ilunga Kamika

    2014-03-01

    Full Text Available The impact of polyphosphate-accumulating organism (PAO and glycogen-accumulating organism (GAO populations as well as of the chemical profile on the performance of Unit-3 (open elutriation tanks and Unit-5 (covered elutriation tank of the City of Johannesburg Northern Wastewater Treatment Works was determined. Physicochemical parameters of wastewater samples were measured using standard methods. Bacterial diversity was determined using 16S rRNA gene amplicon pyrosequencing of the variable region V1-3. Results showed soluble COD concentrations from settled sewage for Unit-3 at 192.8 mg COD/L and for Unit-5 at 214.6 mg COD/L, which increased to 301.8 mg COD/L and 411.6 mg COD/L in the overflow from elutriation tanks and decreased to 170.9 mg COD/L and 256.3 mg COD/L at the division boxes, respectively. Both long-chain volatile fatty acids (heptanoic acid, isobutyric acid, 3-methylbutanoic acid, pentanoic acid, 4-methylpentanoic acid, methylheptanoic acid and short-chain volatile fatty acids (acetic acid, propionic acid, isobutyric acid were present within concentration ranges of 17.19 mg/L to 54.98 mg/L and 13.64 mg/L to 87.6 mg/L for Unit 3 and 38.61 mg/L to58.85 mg/L and 21.63 mg/L to 92.39 mg/L for Unit 5, respectively. In the secondary settling tanks, the phosphate-removal efficiency in Unit-5 appeared to be slightly higher (0.08 mg P/L compared to that of Unit-3 (0.11 mg P/L. The average DO concentrations (2.1 mg/L and 2.2 mg/L as well as the pH values (pH 7 to pH 7.5 were found to be slightly higher in Unit-5 in the aerobic zones. The high presence of PAOs in the bioreactors (Unit-5: Dechloromonas (14.96%, Acinetobacter (6.3%, Zoogloea (4.72% in the anaerobic zone and Dechloromonas (22.37 % in the aerobic zone; Unit-3: Dechloromonas (37.25% in the anaerobic zone and Dechloromonas (23.97% in the aerobic zone confirmed the phosphate-removal efficiencies of both units. Negligible GAOs were found in the aerobic zones (Defluviicoccus spp.: 0

  13. Commissioning of a Small-Scale Wastewater Treatment Plant

    OpenAIRE

    Shunova, Kristina

    2016-01-01

    The thesis is dedicated to the wastewater treatment process study, while providing commissioning of a small-scale wastewater treatment plant on the territory of a national park in Sochi, Russia. The objective of the study was to conduct a commissioning as well as research ways to increase the oxidation capacity of the wastewater treatment facility. The effluent quality from the treatment facility was to correspond with standards issued by Russian authorities. Research was based on ...

  14. Anaerobic on-site wastewater treatment at low temperatures

    OpenAIRE

    Luostarinen, Sari

    2005-01-01

    Anaerobic on-site wastewater treatment at low temperaturesAnaerobic treatment stabilises the treated waste(water), and enables production of renewable energy (methane, hydrogen), and preservation of valuable resources (nutrients). Decentralised, on-site application of anaerobic treatment for communities or individual households may thus provide combined waste(water) management, energy production, and nutrient recovery. Two-phased UASB-septic tanks were feasible for treatment of synthetic blac...

  15. Monitoring of total metal concentration in sludge samples: Case study for the mechanical–biological wastewater treatment plant in Velika Gorica, Croatia

    International Nuclear Information System (INIS)

    In this paper, monitoring of total metal concentration in sludge samples from wastewater treatment process is elaborated. The presented results summarize the analyses of sludge samples in a period from 2008 to 2012. Possible sources of pollutions are given. Primarily, waste solid samples were collected from different pretreatment steps: (A) coarse grid, (B) fine grid and (C) aerated sand grease grid. Samples of A and B followed a repeatable pattern in 2008 and 2010. According to the results from 2008, samples of C contained measurable concentration of the following metals (mg/kg dry matter): Zn (21), Ni (1.05) and Ba (14.9). Several types of sludge samples were analyzed: fresh raw sludge (PS; 6–12 hour old), the sludge from the digester for anaerobic sludge treatment (DS; 48–72 hour old), samples from lagoons where the sludge is temporarily deposited (DOS and DOSold; 30–120 days) and sludge samples from agricultural areas (AA; aged over 180 days). Additionally, samples of dehydrated sludge (DEHS and DEHSold; 90–180 days) were collected upon construction of equipment for sludge dehydration in 2011. An analysis of total metal concentrations for Cu, Zn, Cr, Pb, Ni, Hg, Cd, Ba, As, Se, Sb, Co, Mo, Fe and Mn was performed by flame atomic absorption spectrometry (FAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES). The most recent results (year 2011) indicated a high concentration of heavy metals in PS samples, exceeding the MCLs (mg/kg dry matter): Cu (2122), Zn (5945), Hg (13.67) and Cd (6.29). In 2012 (until July), only a concentration of Cu exceeded MCL (928.75 and 1230.5 in DS and DEHS, respectively). A composition of sludge was variable through time, offering the limited possibility for future prediction. The sludge is being considered as a hazardous waste and a subject of discussion regarding disposal. - Highlights: ► Summarized 5-year monitoring data for heavy metals in sludge ► Partially determined sources of pollution by

  16. Mapping Thermal Energy Resource Potentials from Wastewater Treatment Plants

    OpenAIRE

    Georg Neugebauer; Florian Kretschmer; René Kollmann; Michael Narodoslawsky; Thomas Ertl; Gernot Stoeglehner

    2015-01-01

    Wastewater heat recovery via heat exchangers and heat pumps constitutes an environmentally friendly, approved and economically competitive, but often underestimated technology. By introducing the spatial dimension in feasibility studies, the results of calculations change considerably. This paper presents a methodology to estimate thermal energy resource potentials of wastewater treatment plants taking spatial contexts into account. In close proximity to settlement areas, wastewater energy ca...

  17. Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention

    OpenAIRE

    Campos, J. L.; Valenzuela-Heredia, D.; Pedrouso, A.; Val del Río, A.; M. Belmonte; Mosquera-Corral, A.

    2016-01-01

    The operation of wastewater treatment plants results in direct emissions, from the biological processes, of greenhouse gases (GHG) such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), as well as indirect emissions resulting from energy generation. In this study, three possible ways to reduce these emissions are discussed and analyzed: (1) minimization through the change of operational conditions, (2) treatment of the gaseous streams, and (3) prevention by applying new configu...

  18. Research trends in electrochemical technology for water and wastewater treatment

    Science.gov (United States)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2015-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  19. Bacterial communities in full-scale wastewater treatment systems.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal. PMID:26931606

  20. Proposal to optimize ecotoxicological evaluation of wastewater treated by conventional biological and ozonation processes.

    Science.gov (United States)

    Wigh, Adriana; Devaux, Alain; Brosselin, Vanessa; Gonzalez-Ospina, Adriana; Domenjoud, Bruno; Aït-Aïssa, Selim; Creusot, Nicolas; Gosset, Antoine; Bazin, Christine; Bony, Sylvie

    2016-02-01

    A mixture of urban and hospital effluents (50% v/v) was evaluated for ecotoxicity with an advanced bioassay battery. Mixed effluents were tested before any treatment, after biological treatment alone, and after biological treatment followed by a tertiary ozonation (15 mg O3/L). Laying a high value on the continuance of organisms' fitness, essential to preserve a healthy receiving ecosystem, the main objective of this study was to combine normalized bioassays with newly developed in vivo and in vitro tests in order to assess alteration of embryo development, growth and reproduction, as well as genotoxic effects in aquatic organisms exposed to complex wastewater effluents. Comparison of the bioassays sensitivity was considered. Contrary to the lack of toxicity observed with normalized ecotoxicity tests, endpoints measured on zebrafish embryos such as developmental abnormalities and genotoxicity demonstrated a residual toxicity in wastewater both after a biological treatment followed or not by a tertiary O3 treatment. However, the ozonation step allowed to alleviate the residual endocrine disrupting potential measure in the biologically treated effluent. This study shows that normalized bioassays are not sensitive enough for the ecotoxicological evaluation of wastewaters and that there is a great need for the development of suitable sensitive bioassays in order to characterize properly the possible residual toxicity of treated effluents. PMID:26400245

  1. Flue gas desulfurization wastewater treatment primer

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, T.E.; Sandy, A.T.; Givens, S.W.

    2009-03-15

    Purge water from a typical wet flue gas desulfurization system contains myriad chemical constituents and heavy metals whose mixture is determined by the fuel source and combustion products as well as the stack gas treatment process. A well-designed water treatment system can tolerate upstream fuel and sorbent arranged in just the right order to produce wastewater acceptable for discharge. This article presents state-of-the-art technologies for treating the waste water that is generated by wet FGD systems. 11 figs., 3 tabs.

  2. Treatment of municipal and industrial wastewater by reed bed technology: A low cost treatment approach

    Directory of Open Access Journals (Sweden)

    Bansari M. Ribadiya

    2014-12-01

    Full Text Available Reed bed system for wastewater treatment has been proven to be effective and sustainable alternative for conventional wastewater treatment technologies. Use of macrophytes to treat wastewater is also categorized in this method. This new approach is based on natural processes for the removal of different aquatic macrophytes such as floating, submerged and emergent. Macrophytes are assumed to be the main biological components of wetlands. These techniques are reported to be cost effective compared to other methods. Various contaminants like total suspended solids, dissolved solids, electrical conductivity, hardness, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, nitrogen, phosphorous, heavy metals, and other contaminants have been minimized using aquatic microphytes. In this paper, role of these plant species, origin and their occurrence, ecological factors and their efficiency in reduction of different water contaminants have been presented.

  3. Influence of southern sewage treatment plant on the wastewater quality of southern part of Hyderabad city

    International Nuclear Information System (INIS)

    The wastewater from southern part of Hyderabad city is pumped towards Southern Sewage Treatment Plant (SSTP), but most of the wastewater is leaked for agricultural purpose and a little wastewater reaches up to SSTP. SSTP has three facultative ponds followed by three maturation ponds with the total capacity of 6 million gallon per day (MGD). The wastewater after some biological treatment is again diverted for agriculture purposes. Six samples, three from different sewage stations pumping towards SSTP and three from SSTP were collected and analyzed for 30 different physico-chemical parameters. The sampling scheme was repeated 6 times during November 1999 to May 2000 at an interval of 4 to 5 weeks. The obtained results were analyzed on the statistical basis and a significant improvement was noticed in water quality for chemical oxygen demand (COD), dissolved oxygen (D.O), Kjeldahl nitrogen, organic nitrogen and residues after biological treatment at SSTP. (author)

  4. Photochemical Wastewater Treatment for Potential Agricultural Use

    Directory of Open Access Journals (Sweden)

    Sandra García

    2014-12-01

    Full Text Available The urban wastewaters after advanced primary treatment (APT are again discharged into the river without any use. In the present research in a soilless culture system where maize seedlings were tested three different treatments were planted: 1. Obtained from the effluent water of an APT, 2. Photochemically treated wastewater (PCT and 3. Urban water network (UW. A block randomly distributed design was tested, with five repetitions where the experimental unit was formed by a 36 cavities filled with Peat Moss and the useful plot was considered by 16 central plants for each experimental unit. Irrigations were scheduled since the first time of the planting, employed 27 mL/cavity. The removal of the organic contaminants present into the water was conducted by the employment of a Batch photoreactor, adapted with a recirculation system (UV/H2O2/O3, evaluated to determine UV-Vis spectra, pH, color and turbidity parameters initial and final samples. Measurements of height and percentage of germination in plants, where is determined that the seedlings irrigated with water PCT were reached the highest average compared to APT and UW irrigated; After the 50 cm growing plant, a determination of the presence of heavy metal, via atomic absorption method, were carried on analyzing the leaves, roots and stalks of the samples. Concluding that the presences of heavy metals into the APT were higher than PCT treatments, it can be an impediment for the normal growing of the plants. Therefore, the application of the photochemical treatment using (UV/H2O2/O3 system, represent a viable alternative for the wastewater treatment after the APT process to possible use of irrigation.

  5. A novel bioaugmentation treatment approach using a confined microbial environment: a case study in a Membrane Bioreactor wastewater treatment plant.

    Science.gov (United States)

    Menashe, Ofir; Kurzbaum, Eyal

    2016-06-01

    A novel bioaugmentation treatment approach, the Small-Bioreactor Platform (SBP) technology, was developed to increase the biological stabilization process in the treatment of wastewater in order to improve wastewater processing effectiveness. The SBP microfiltration membrane provides protection against the natural selection forces that target exogenous bacterial cultures within wastewater. As a result, the exogenous microorganisms culture adapt and proliferate, thus providing a successful bioaugmentation process in wastewater treatment. The new bioaugmentation treatment approach was studied in a full configuration Membrane Bioreactor (MBR) plant treating domestic wastewater. Our results present the potential of this innovative technology to eliminate, or reduce, the intensity of stress events, as well as shortening the recovery time after stress events, consequently elevating the treatment effectiveness. The effective dose of SBP capsules per cubic metre per day of wastewater was achieved during the addition of 3000 SBP capsules (1.25 SBP capsules per cubic metre per day), which provided approximately 4.5 L of high concentration exogenous biomass culture within the SBP capsules internal medium. This study demonstrates an innovative treatment capability which provides an effective bioaugmentation treatment in an MBR domestic wastewater treatment plant. PMID:26581124

  6. Bio aerosol Generation at wastewater treatment plants: Identification of main bio aerosols sources

    International Nuclear Information System (INIS)

    Typical operations taking place at wastewater treatment plants, especially those involving aeration and mechanical agitation of raw wastewater, represent one of the main sources of bio aerosols that, if inhaled, could pose a biologic hazard to site workers and local residents. Six different wastewater treatment plants from southeast Spain were monitories in order to identify the main bio aerosol sources and to evaluate the airborne microorganisms levels to which workers may be exposed to. Air samples were taken from selected locations by using a single stage impactor. (Author)

  7. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    Science.gov (United States)

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials. PMID:26513317

  8. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    Science.gov (United States)

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same. PMID:25863578

  9. Controlling the Influent Load to Wastewater Treatment Plants

    OpenAIRE

    Bolmstedt, Jon

    2004-01-01

    The need for control of the influent load to a wastewater treatment plant (WWTP) is becoming more important. One reason for this is that there are a number of things that cannot be achieved with plant-focused control. For instance it is hard to avoid sludge loss as a result of poor settling or reducing a too high influent flow rate by in-plant control actions. It is also difficult to reduce the effects of a toxin in the influent, if the entire influent is to be biologically ...

  10. Nanofiltration for water and wastewater treatment – a mini review

    OpenAIRE

    Shon, H. K.; S. Phuntsho; D. S. Chaudhary; Vigneswaran, S.; Cho, J.

    2013-01-01

    The application of membrane technology in water and wastewater treatment is increasing due to stringent water quality standards. Nanofiltration (NF) is one of the widely used membrane processes for water and wastewater treatment in addition to other applications such as desalination. NF has replaced reverse osmosis (RO) membranes in many applications due to lower energy consumption and higher flux rates. This paper briefly reviews the application of NF for water and wastewater treatment inclu...

  11. Improvement on filterability in the aerobic treatment of carboxymethyl cellulose (CMC wastewater

    Directory of Open Access Journals (Sweden)

    Qing Pei Ye

    2014-01-01

    Full Text Available CMC is chemically modified from natural cellulose and widely applied in various industries. CMC wastewater consists mainly of sodium glycolate, sodium chloride and water. With extremely high COD and salinity, high concentration CMC wastewater can’t be biologically treated, but with COD and salinity around 15000 mg/L and 30000 mg/L respectively, low concentration CMC wastewater can be aerobically treated. In a CMC factory, the treatment of low concentration wastewater with aerobic MBR was successful except for one serious problem: poor filterability. Two trial solutions: adding micronutrients and applying MBBR were expected to improve the filterability. In the experiment, adding micronutrients was achieved by mixing filtered natural water into the wastewater, rather than dosing chemicals into it. The treatment efficiency of both solutions was close, but adding micronutrients showed distinguished performance in improving filterability, which includes higher filtration flux and slighter membrane fouling. Adding micronutrients also effectively improved the filterability under severe salinity shock.

  12. Hydrogen production by supercritical water gasification of wastewater from food waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Gu [Korea Institute of Energy Research (Korea, Republic of)

    2010-07-01

    Korean food wastes have high moisture content (more than 85 wt%) and their major treatment processes such as drying or biological fermentations generate concentrated organic wastewater (CODs of about 100,000 mgO{sub 2}/L). For obtaining both wastewater treatment and hydrogen production from renewable resources, supercritical water gasification (SCWG) of the organic wastewater was carried out in this work. The effect of catalyst, reaction temperature, and reactor residence time on COD destruction and composition of gas products was examined. As a result, a SCWG of the wastewater over Ni- Y/activated charcoal at 700 C, 28 MPa yielded 99 % COD destruction and hydrogen-rich gas production (45 vol% H{sub 2}). A liquid-phase thermal pretreatment to destroy solid particles from the wastewater was proposed for more effective operation of the SCWG system. (orig.)

  13. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  14. Biological treatment of Crohn's disease

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Bjerrum, Jacob Tveiten; Seidelin, Jakob Benedict;

    2012-01-01

    Introduction of biological agents for the treatment of Crohn's disease (CD) has led to a transformation of the treatment paradigm. Several biological compounds have been approved for patients with CD refractory to conventional treatment: infliximab, adalimumab and certolizumab pegol (and...

  15. Application of Combined Process of Chemical and Biological Technologies to Penicillin Wastewater Treatment%生物/化学组合工艺处理青霉素废水

    Institute of Scientific and Technical Information of China (English)

    艾恒雨; 赵丽萌; 闫长春

    2012-01-01

    The combined process of chemical and biological technologies was used for penicillin wastewater treatment in a pharmaceutical factory. The capacity of the combined process was 10 000 m3/ d. The operation practice showed that the combined process consisted of hydrolysis acidification, CASS aerobic tank, Fenton oxidation, BAF filter and flocculation-sedimentation had good effects on penicillin wastewater treatment. The average removal rates of COD, BOD5, NH3 - N and SS reached 96% , 98.2% , 90.5% and 94.7% respectively. The effluent quality met the requirements of the second class criteria specified in the Comprehensive Discharge Standard of Water Pollutants along the Line in Shandong Section of South to North Water Diversion Project (DB 37/599 -2006).%采用生物/化学组合工艺处理某制药厂的青霉素废水,处理规模为10 000 m3/d.运行实践表明,青霉素废水经过水解酸化/CASS池好氧处理/Fenton氧化/生物滤池/混凝沉淀等生物化学组合工艺的处理,对COD、BOD5 NH3 -N、SS的平均去除率分别可达96%、98.2%、90.5%、94.7%,处理效果良好,出水水质符合《山东省南水北调沿线水污染物综合排放标准》(DB 37/599-2006)的二级标准.

  16. Photocatalysis as a tertiary treatment for petroleum refinery wastewaters

    Directory of Open Access Journals (Sweden)

    F. V. Santos

    2006-12-01

    Full Text Available Photocatalysis has been used as tertiary treatment for petroleum refinery wastewaters to comply with the regulatory discharge limits and to oxidize persistent compounds that had not been oxidized in the biological treatment. The wastewater is generated by the refinery and directly discharged into the Guanabara Bay (Rio de Janeiro. Although BOD removal is high, a residual and persistent COD, besides a somewhat high phenol content remains. Three photocatalysts were tested - TiO2 (Aldrich, ZnO (Aldrich, and TiO2 (P25, Degussa - the third being the most active. The optimized conditions obtained with an experimental design were 3.0 g L-1 TiO2 and pH 6.3. The use of hydrogen peroxide (H2O2 showed no beneficial effect. Removal of 93% of phenols, 63% of dissolved organic carbon (DOC, and more than 50% of oil and grease (OG were achieved in the photocatalytic process, improving the quality of the treated wastewater.

  17. CHANGES IN THE MICROBIAL COMPOSITION OF MUNICIPAL WASTEWATER TREATED IN BIOLOGICAL PROCESSES

    OpenAIRE

    Aleksandra Jolanta Bawiec; Katarzyna Pawęska; Anna Jarząb

    2016-01-01

    Municipal wastewater is characterized by diverse microbial content, largely dependent on their sources as well as many other factors like condition and health of their producer, but also environmental factors. The number and share of individual bacterial population in wastewater is changing during the process of their treatment in wastewater treatment plants. The microbial content of treated wastewater is significantly affected by the type of technology used for wastewater treatment. The pap...

  18. Determination of Biological Treatability Processes of Textile Wastewater and Implementation of a Fuzzy Logic Model

    Directory of Open Access Journals (Sweden)

    Harun Akif Kabuk

    2015-01-01

    Full Text Available This study investigated the biological treatability of textile wastewater. For this purpose, a membrane bioreactor (MBR was utilized for biological treatment after the ozonation process. Due to the refractory organic contents of textile wastewater that has a low biodegradability capacity, ozonation was implemented as an advanced oxidation process prior to the MBR system to increase the biodegradability of the wastewater. Textile wastewater, oxidized by ozonation, was fed to the MBR at different hydraulic retention times (HRT. During the process, color, chemical oxygen demand (COD, and biochemical oxygen demand (BOD removal efficiencies were monitored for 24-hour, 12-hour, 6-hour, and 3-hour retention times. Under these conditions, 94% color, 65% COD, and 55% BOD removal efficiencies were obtained in the MBR system. The experimental outputs were modeled with multiple linear regressions (MLR and fuzzy logic. MLR results suggested that color removal is more related to COD removal relative to BOD removal. A surface map of this issue was prepared with a fuzzy logic model. Furthermore, fuzzy logic was employed to the whole modeling of the biological system treatment. Determination coefficients for COD, BOD, and color removal efficiencies were 0.96, 0.97, and 0.92, respectively.

  19. Behaviour of pharmaceuticals and psychotic drugs in conventional and advanced wastewater treatments

    International Nuclear Information System (INIS)

    The occurrence of various pharmaceuticals and psychotic drugs in wastewater and their removal rates in a conventional wastewater treatment plant has been investigated. The psychoactive drugs are poorly removed in the biological step. However, most pharmaceuticals except of carbamazepine, are significantly biodegraded depending the removal degree on the type of compound and on the sludge retention time of the biological treatment. Also, the removal efficiency of conventional tertiary treatments and ultrafiltration and nano filtration membranes using two pilot plants was examined. the effects of retaining pharmaceuticals with ultrafiltration and nano filtration membranes do not greatly differ despite the difference in their pore size. (Author) 25 refs.

  20. Chemical water and wastewater treatment II

    International Nuclear Information System (INIS)

    An analysis of the present situation in water supply, wastewater disposal, and pollution control shows that due to a high population density in many areas environmental quality is endangered. Therefore, nearly all countries face the problem of developing and/or improving control strategies, i.e. building new treatment plants, upgrading overloaded or outdated installations and designing new operating and controlling measures for improved plant performance. In view of limited resources and stringent timing requirements there is a great need for concepts that allow stepwise realisation. (orig./UT)

  1. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  2. Wastewater treatment in relation to marine disposal

    DEFF Research Database (Denmark)

    Harremoës, Poul

    2002-01-01

    water is not lost (non-consumptive uses); but it is heavily polluted. Water treatment can be interpreted as the means by which to purify the water from any degree of impurity to any degree of purity that fits the desired use. Marine discharge may violate quality required for use of the marine waters...... receiving the discharge. The EU has decided on regulation of wastewater treament by enforcing effluent standards. This is interpreted in relation to basic EU-principles and discussed with regard to an ethical framework of thinking. The conclusion is that basically different concepts are difficult to...

  3. Ultrafiltration fouling trend simulation of a municipal wastewater treatment plant effluent with model wastewater

    OpenAIRE

    TORA GRAU, MIRIAM; Soler Cabezas, José Luis; Vincent Vela, Maria Cinta; Mendoza Roca, José Antonio; Martínez Francisco, Francisco Juan

    2015-01-01

    Secondary treatment effluents from Municipal Wastewater Treatment Plants require tertiary treatments to be reused in agriculture. Among tertiary treatment technologies, ultrafiltration has been proven to be a reliable reclamation process. Nevertheless this technique has an important disadvantage: membrane fouling. This phenomenon causes decline in permeate flux with time and increases the operational costs. Due to the fact that secondary effluents from Municipal Wastewater Treatment Plants co...

  4. Electrocatalysis method for wastewater treatment using a novel beta-lead dioxide anode

    Institute of Scientific and Technical Information of China (English)

    吴祖成; 周明华; 黄志玮; 汪大翬

    2002-01-01

    A novel β-PbO2 anode modified with fluorine resin was developed for typical pollutant electrocatalytic degradation and wastewater treatment. Various operating parameters such as applied voltage (3.5-10.5 V), pH (2-6), salinity of the electrolyte (0.5-2 g/L K2SO4) and initial phenol concentration (100-400 mg/L) were investigated to explore the electrocatalytic ability of the anode by taking phenol as sample. A preliminary study on dyeing wastewater treatment by this method indicated that the biodegradability could be increased to suit subsequent biological treatment. The stability of the anode has been proved to be high against acidity. The anode showed promising application for treatment of wastewater, especially of high salinity and high acidity wastewater.

  5. Wastewater treatment using gamma irradiation: Tetouan pilot station, Morocco

    International Nuclear Information System (INIS)

    The increasing demand on limited water supplies has accelerated the wastewater reuse and reclamation. We investigated gamma irradiation effects on wastewater by measuring differences in the legislated parameters, aiming to reuse the wastewater. Effluents samples were collected at the urban wastewater treatment station of Tetouan and were irradiated at different doses ranging from 0 to 14 kGy using a Co60 gamma source. The results showed an elimination of bacterial flora, a decrease of biochemical and chemical oxygen demand, and higher conservation of nutritious elements. The results of this study indicated that gamma irradiation might be a good choice for the reuse of wastewater for agricultural activities.

  6. Treatment of hazardous wastewater contaminated by nitrocellulose.

    Science.gov (United States)

    El-Diwani, G; El-Ibiari, N N; Hawash, S I

    2009-08-15

    Based on successful preliminary bench scale experimental studies for treatment of industrial wastewater contaminated by nitrocellulose, a pilot plant is constructed for results assessment. Bench scale experimental work proved 55%, 73% recovery of nitrocellulose without and with chemical addition respectively within 10 min flotation compared to 35%, 69% recovery within 2-0.5h settling respectively. The treatment process aims the recovery of nitrocellulose through an efficient dissolved air flotation (DAF) unit. Different operating conditions have been studied for different effluent characteristics with and without flocculating agent. Nitrocellulose recovery reached 80% by flotation without chemical, which is increased to 87% using cationic polymer, but both exploring suitable pathways to solve the recovery problem.The experimental results are considered suitable basis for full scale design of the industrial treatment unit. PMID:19237246

  7. A small scale hydroponics wastewater treatment system under Swedish conditions.

    Science.gov (United States)

    Norström, A; Larsdotter, K; Gumaelius, L; la Cour Jansen, J; Dalhammar, G

    2003-01-01

    A treatment plant using conventional biological treatment combined with hydroponics and microalgae is constructed in a greenhouse in the area of Stockholm, Sweden. The treatment plant is built for research purposes and presently treats 0.559 m3 of domestic wastewater from the surrounding area per day. The system uses anoxic pre-denitrification followed by aerobic tanks for nitrification and plant growth. A microalgal step further reduces phosphorus, and a final sand filter polishes the water. During a three week period in July 2002 the treatment capacity of this system was evaluated with respect to removal of organic matter, phosphorus and nitrogen. 90% COD removal was obtained early in the system. Nitrification and denitrification was well established with total nitrogen reduction of 72%. Phosphorus was removed by 47% in the process. However, higher phosphorus removal values are expected as the microalgal step will be further developed. The results show that acceptable treatment can be achieved using this kind of system. Further optimisation of the system will lead to clean water as well as valuable plants to be harvested from the nutrient rich wastewater. PMID:14753532

  8. Screening of lipid degrading microorganisms for wastewater treatment

    Directory of Open Access Journals (Sweden)

    Sarmurzina, Z. S.

    2013-01-01

    Full Text Available Aims: Fats, oils and greases (FOG are poorly removable materials in wastewater treatment systems. The aim of this work is to find the most suitable strain(s for a biological treatment technology of FOGs polluted wastewaters. Methodology and results: The 142 microorganisms from polluted environment were screened for lipase activity (LA by sequentially using assays on agar-Tween 80, agar-fats, and turbidimetrically measuring the quantity of calcium salts with fatty acids. The isolates G23, G30, and Zb32 showed highest units of LA and were identified by sequence analysis of 16S rRNA genes. Lipid masses were determined gravimetrically after chloroform/ethyl alcohol extraction. In the model solutions with animal fats the strain Pseudomonas aeruginosa G23 reduced mass fractions of mutton fat, beef tallow, and lard by 79±5%, 88±4%, and 80±6% respectively. Under the same conditions Aeromonas punctata G30 reduced: 65±3%, 60±8%, and 75±4%, and P. aeruginosa Zb32 reduced: 47±5%, 52±6% and 73±7%. In the model solutions with FOGs trap specimens as a carbon source from the local cafeteria the strains P. aeruginosa G23, A. punctata G30, and P. aeruginosa Zb32 reduced a lipid mass fraction by 61.5±7%, 45.2±5%, and 37.5±3% respectively.Conclusion, significance and impact of study: The strain P. aeruginosa G23 is the most effective lipid-degrading microorganism and the best candidate to use in biological treatment technology of FOGs polluted wastewater in Kazakhstan.

  9. The effect of tannic compounds on anaerobic wastewater treatment.

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensi

  10. Cationic Starch Synthesis, Development, and Evaluation for Harvesting Microalgae for Wastewater Treatment

    OpenAIRE

    Anthony, Renil John

    2013-01-01

    In the quest for a feedstock for the production of biofuels, microalgae are showing potential. High photosynthetic efficiency, combined with high lipid content and low fresh water requirement, has contributed to the 'biofuels feedstock' status of microalgae. In some communities, microalgae have also been cultivated in wastewater in facultative lagoons to remove phosphorus and nitrogen through the growth of microalgae. With such systems in place, complete biological wastewater treatment can be...

  11. Emergy evaluations for constructed wetland and conventional wastewater treatments

    Science.gov (United States)

    Zhou, J. B.; Jiang, M. M.; Chen, B.; Chen, G. Q.

    2009-04-01

    Based on emergy synthesis, this study presents a comparative study on constructed wetland (CW) and conventional wastewater treatments with three representative cases in Beijing. Accounting the environmental and economic inputs and treated wastewater output based on emergy, different characteristics of two kinds of wastewater treatments are revealed. The results show that CWs are environment-benign, less energy-intensive despite the relatively low ecological waste removal efficiency (EWRE), and less cost in construction, operation and maintenance compared with the conventional wastewater treatment plants. In addition, manifested by the emergy analysis, the cyclic activated sludge system (CASS) has the merit of higher ecological waste elimination efficiency.

  12. Modification of Wastewater Treatment Technology at Cottonseed Oil Plant

    OpenAIRE

    Alshabab Mary Shick; Andrianova Maria; Alsalloum Dergham

    2016-01-01

    Wastewaters from cottonseed oil producing plant in Syria were studied in laboratory experiments. Aim of the study was to suggest modification of wastewater treatment technology in order to increase its efficiency. Concentration of pollutants in wastewaters was controlled by measurement of COD. According to the results of experiments it was suggested to decrease significantly (8-20 times) dosages of reagents (acidifier, coagulant, flocculant) in several actual stages of treatment (acidificatio...

  13. A summary of studies on mine wastewater treatment

    International Nuclear Information System (INIS)

    The composition of mine wastewater is complicated and is harmful to the environment. The mine wastewater treatment methods include mainly neutralization, constructed wetland and microorganism methods. The three methods are summarized, with focus on the microorganism method. The mechanisms, characteristics and influencing factors of the sulfate reducing bacteria and the iron oxidizing bacteria are described in detail. The treatment methods of uranium mine wastewater are presented. (authors)

  14. Treatment of Wastewater from Backwashing Process Sand Filters

    OpenAIRE

    Miletić, S.; Panjkret, V.; Zečević, N.

    2011-01-01

    In the process of raw water treatment for use in the petrochemical industry, one of the most important treatments is the filtration process with process sand filters. A by-product of the filtration process of raw water is wastewater. The wastewater results from the technological process of backwashing process sand filters. Wastewater from backwashing sand filters is unsuitable for further use, since it is contaminated with residual suspended matter and chemical compounds that are added in the...

  15. Nanofiltration for water and wastewater treatment – a mini review

    OpenAIRE

    Shon, H. K.; S. Phuntsho; D. S. Chaudhary; Vigneswaran, S.; Cho, J.

    2013-01-01

    The application of membrane technology in water and wastewater treatment is increasing due to stringent water quality standards. Nanofiltration (NF) is one of the widely used membrane processes for water and wastewater treatment in addition to other applications such as desalination. NF has replaced reverse osmosis (RO) membranes in many applications due to lower energy consumption and higher flux rates. This paper briefly reviews the application of NF for water and wastewat...

  16. Membrane-based treatment for tanning wastewaters 

    OpenAIRE

    Catarino, Justina; Mendonça, E.; Picado, Ana; Lança, Ana; Silva, Luís Manuel; Pinho, Maria

    2013-01-01

    Tanning wastewater was subjected to different unit operations to select the best treatment sequences. Textile membrane filtration (TMF), microfiltration (MF), and ultrafiltration (UF) were complemented by screening, flocculation or flotation operations. The general chemical characterization determined that the wastewater had a high organic load. The ecotoxicological study classified the wastewater as highly ecotoxic. The sequence of screening–TMF – UF was found to be the optimal treatment...

  17. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    OpenAIRE

    A.H Mahvi

    2008-01-01

    Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical ...

  18. Occurence and fate of triclosan and tetracycline in full-scale wastewater treatment plants

    OpenAIRE

    Winkler, Gunrun

    2005-01-01

    Pharmaceutical residues gain importance as they are emitted in a vast array and quantity into the aquatic environment. The main source for most pharmaceuticals are the discharges of wastewater treatment plants. Within this study four WTPs were selected with different biological treatment processes, such as rotating biological contactor (RBC), trickling filter (TF), activated sludge plant (ASP) and oxidation ditch (OD). Samples were taken each possible treatment step and analyse...

  19. Treatment of tannery wastewater by electrocoagulation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Treatment of tannery wastewater by electrocoagulation with low cell current (≤ 1A) and soluble electrodes (mild steel electrodes and aluminum electrodes) was studied. Compared with aluminum electrodes, mild steel electrodes were more effective for the removal of sulfide, with a removal efficiency of over 90%. But during the treatment process, black color precipitate typical to iron(II) sulfides was produced. While aluminum electrodes were effective to eliminate the colority of the effluent, the removal efficiency of sulfide was lower than 12%. The mechanisms of the removal of chemical oxygen demand, ammonia, total organic carbon, sulfide and colority with different soluble electrodes (mild steel electrodes and aluminum electrodes) were discussed in detail. In order to exert the predominance of diffenent types of electrodes, the tannery wastewater was treated using mild steel electrodes first (electrocoagulation time: 20 min, cell current: 1 A) followed by the filter and finally by the aluminum electrodes (electrocoagulation time: 20 min, cell current: 1 A), the elimination rates of chemical oxygen demand, ammonia, total organic carbon, sulfide and colority were 68.0%, 43.1%, 55.1%, 96.7% and 84.3%, respectively, with the initial concentrations 2413.1 mg/L, 223.4 mg/L, 1000.4 mg/L, 112.3 mg/L and 256 dilution times, respectively. The absorbance spectra and energy consumption during electrocoagulation process were also discussed.

  20. Pharmaceutical wastewater treatment: a physicochemical study

    International Nuclear Information System (INIS)

    A physicochemical study for the treatment of pharmaceutical wastewater was performed. Objective of the laboratory investigation was to study the removal of color, Total Dissolved Solids (TDS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), turbidity and phenol and bring them up to the allowable limits for reuse purposes. Efficiency of coagulation, flocculation, sedimentation, sand filtration followed by activated carbon adsorption was determined. It was found that tested coagulants (alum, ferric chloride, and ferrous sulphate) are not much effective and required high dosage for the removal; of TSS, BOD, COD and turbidity. Alum was found to be more effective among tested coagulants and reduce TSS, BOD, COD and turbidity 79.6%, 34.8, 48.6% and 69.2% respectively. Sand filtration further reduced the studied parameters 97.7%, 95.7%, 93.9% and 76.9% respectively. As the concentration of phenol in the studied pharmaceutical wastewater was 100 mg/l, granular activated carbon was used to remove phenol up to the allowable limit for reuse purpose. Activated carbon adsorption further reduces phenol, TDS, TSS, BOD, and COD up to 99.9%, 99.1%, 21.4%, 81.3% and 71.1% respectively. High removal of color observed after activated carbon adsorption. It was concluded that the suggested treatment scheme is suitable to bring the effluent quality up to the water quality standards. (author)

  1. Electron beam wastewater treatment in Brazil

    International Nuclear Information System (INIS)

    Experiments were performed at laboratory scale and at pilot plant scale to study the efficiency on using EB to remove and degrade toxic and refractory pollutants mainly from industrial origins. An upflow stream hydraulic system that governs the efficiency of the EB energy transferred to the stream was developed. Two different sources of samples were used to treat industrial effluents from a pharmaceutical chemical industry located in Sao Paulo and from a Governmental Wastewater Treatment Plant (WWTP) in Sao Paulo State, which receives the major quantity of industrial wastewater. Using samples from this WWTP, studies to combine EB irradiation process with conventional treatment were carried out with experimentation doses of 5 kGy, 10 kGy and 20 kGy and the irradiation effects were evaluated in the following parameters: COD, BOD, solids, TOC, THMs. PCE, TCE, BTX and concentration of organic acids by-products. Toxicity studies were also carried out for different sites and industrial activities showing significant removal of acute toxicity by increasing values of the EC-50 for most of the experiments. The economic aspects of this technology were evaluated and the estimated processing costs for some values of delivered doses and operation are reported here. (author)

  2. Wastewater Treatment Using Horizontal Subsurface Flow Constructed Wetland

    Directory of Open Access Journals (Sweden)

    S. Sarafraz

    2009-01-01

    Full Text Available The last few decades witnessed sharp focus on environment pollution and its impact on life in nature. Wetlands can be used for biological treatment of wastewater. Problem statement: Scarcity of water is considered as a global problem and Iran is one the countries which is facing water shortage problem. Pollution of water bodies restrict the availability of water for various uses. Treatment of waste water before disposal contributes to water conservation efforts. Constructed wetlands are techniques aim to polish water quality and reduce the harmful effect of effluent. Approach: In this study, four horizontal subsurface flow wetlands (HSSF were constructed at the Research Station of Tehran University, located in Karaj, Iran. The study was carried out from April to September, 2007. Gravel and zeoilte were used in this study as substrate. Gravel-beds with and without plants (called GP and G and gravel-beds mixed with (10% zeolite, with and without plants (called ZP and Z were examined to investigate the feasibility of treating synthetic wastewater which was specifically produced and modified to imitate agricultural wastewater. Results: The results of this study indicated that the system had acceptable pollutant removal efficiency and that both plants were found to be tolerant under the tested conditions. The wetland system could achieve the NO3-N removal of (79% in ZP, (86% in Z, (82% in GP and finally (87.94% in G. As for the P removal, the efficiencies of 93, 89, 81 and 76% were respectively achieved for ZP, GP, Z and G. The outflow concentrations of Pb and Cd were found to be under the detection limit; however, as for Zn, the removal efficiencies of 99.9, 99.76, 99.71 and 99.52% were concluded for ZP, Z, GP and G respectively. Conclusions/Recommendations: It can be concluded that constructed wetlands are efficient in removing Zn, Pb and Cd from agricultural wastewater. Plants types such as Phragmites Australis and Juncus Inflexus can contribute

  3. Continuous treatment of flotation collector wastewater using a membrane bioreactor.

    Science.gov (United States)

    Lin, Weixiong; Dai, Yongkang; Wu, Chun; Xu, Pingting; Ren, Jie; Sun, Shuiyu; Li, Biao

    2016-01-01

    Aniline aerofloat (DDA) is a widely used material in China and has become a main pollutant in floatation wastewater. In this study, a membrane reactor (MBR) was constructed to continuously treat simulated wastewater contaminated with DDA. The study investigated the hydraulic retention time (HRT) and the impact of influent DDA concentration on MBR performance, and analyzed intermediates from the DDA biodegradation pathway and activated sludge transfer pathway. The results showed that a 3 h HRT was an efficient and economical time period for MBR to remove 95 ± 5 mg/L DDA from the simulated wastewater; the chemical oxygen demand reduction rate was 89.9%. DDA concentration negatively impacted MBR performance. MBR performance fluctuated slightly when HRT was 3 h, dissolved oxygen ranged from 4.8 to 5.3 mg/L, pH was between 6.5 and 7.0, and DDA concentrations were at 95 ± 5 mg/L DDA. The transfer pathway in the activated sludge of DDA was through soluble microbial products, loosely bound extracellular polymeric substances, tightly bound extracellular polymeric substances, and finally cell biodegradation. DDA initially degraded to aniline; the aniline was further biodegraded to other organic compounds and was finally mineralized through the tricarboxylic acid cycle. This study offers a new continuous biological treatment technology to address DDA. PMID:27120645

  4. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    Science.gov (United States)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  5. 水解/接触氧化/消毒工艺处理医院污水并回用%Hydrolysis Acidification/Biological Contact Oxidation/NaCIO Disinfection Process for Treatment and Reuse of Hospital Wastewater

    Institute of Scientific and Technical Information of China (English)

    庞维亮; 冯丽霞; 张志扬; 孟建丽

    2011-01-01

    The combined process of hydrolysis acidification, biological contact oxidation, fibrous filtration and NaClO disinfection is used to treat domestic sewage from a hospital. The treatment capacity is 500 m3/d, in which 300 m3/d effluent quality can reach the second criteria specified in Integrated Wastewater Discharge Standard ( GB 8978 - 1996 ) , and other 200 m3/d effluent, after advanced treatment, can reach the requirement of Reuse of Urban Recycling Water-Water Quality Standard for Urban Miscellaneous Water Consumption (GB/T 18920 -2002) , being used for toilet flushing and greening.%采用水解酸化/生物接触氧化/纤维球过滤/次氯酸钠消毒工艺处理医院污水.处理规模为500 m3/d,其中300 m3/d出水水质可以达到(GB 8978-1996)的二级标准,其余200 m3/d经深度处理后达到(GB/T 18920-2002)标准,可用作冲厕、绿化用水.

  6. Evaluation of treatment efficiency of processes for petroleum refinery`s wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kee, Kean Chin [National Univ. of Singapore, Kent Ridge (Singapore). Dept. of Civil Engineering

    1993-12-31

    Processes used in the treatment of a petroleum refinery wastewater included initial API oil separator to be followed by dissolved air flotation and extended aeration system. The use of extended aeration biological system proved to be an improvement but not a solution yet in such kind of treatment. 2 refs., 2 tabs.

  7. Phylogeny and FISH probe analysis of the “Candidatus Competibacter”-lineage in wastewater treatment systems

    DEFF Research Database (Denmark)

    Nittami, Tadashi; McIlroy, Simon Jon; Kanai, Eri;

    Our understanding of the microbial ecology of enhanced biological phosphorus removal (EBPR) wastewater treatment systems has been greatly advanced through the application of molecular methods such as fluorescence in situ hybridization (FISH). Considerable attention has been directed at the...

  8. Application of molybdenum and phosphate modified kaolin in electrochemical treatment of paper mill wastewater

    International Nuclear Information System (INIS)

    Pulp and paper mill wastewater is characterized by very high chemical oxygen demand (COD) values that inhibit the activity of microorganisms during biological oxidations. The electrochemical degradation of pulp and paper mill wastewater catalyzed by molybdenum and phosphate (Mo-P) modified kaolin with graphite as anode and cathode was investigated. The catalyst was characterized by XRD, XPS and SEM spectra and the effects of pH, metal ion and introduction of NaCl on the efficiency of the electrochemical degradation process were also studied. It was found out that the modified kaolin loaded with Fe3+ had higher electrochemical catalytic activity in the electrochemical degradation of paper mill wastewater at pH 4. A 96% COD removal efficiency was obtained in 40 min of electrochemical treatment of the wastewater at current density 30 mA cm-2. A possible mechanism for degradation of the mill wastewater constituents was also proposed

  9. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik;

    2007-01-01

    As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment...... with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances...... of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regard to the removal of heavy metals....

  10. The effect of key process operational conditions on enhanced biological phosphorus removal from wastewater

    OpenAIRE

    Carvalheira, Mónica Isabel Gonçalves

    2014-01-01

    Enhanced biological phosphorus removal (EBPR) is the most economic and sustainable option used in wastewater treatment plants (WWTPs) for phosphorus removal. In this process it is important to control the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), since EBPR deterioration or failure can be related with the proliferation of GAOs over PAOs. This thesis is focused on the effect of operational conditions (volatile fatty acid (VFA) c...

  11. Nitrate Removal from Wastewater through Biological Denitrification with OGA 24 in a Batch Reactor

    OpenAIRE

    Federico Rossi; Oriana Motta; Simona Matrella; Antonio Proto; Giovanni Vigliotta

    2014-01-01

    Nitrates pollution of waters is a worldwide problem and its remediation is a big challenge from the technical and the scientific point of view. One of the most used and promising cleaning techniques is the biological treatment of wastewaters operated by denitrifying bacteria. In this paper we begin a thorough study of denitrifying performances of the bacterium Azospira sp. OGA 24, recently isolated from the highly polluted Sarno river in the south of Italy. Here, the kinetics of nitrates co...

  12. Electron beam processing programme: Wastewater and sludge treatment in Brazil

    International Nuclear Information System (INIS)

    The Institute for Energetic and Nuclear Research, working on environmental applications, has an extensive research programme using high energy electron beam in treating industrial wastewater and sludge. The experiments are being conducted in a pilot plant using an industrial electron beam 1.5MeV, 25mA, where the streams are presented to the scanned electron beam in counter flow. This pilot plant is designed to process approximately 3.0m3/h with an average dose 5kGy and the absorbed dose measurement is performed continuously by calorimetric system in real time. Combined biological and radiation treatment of domestic sewage and sludge were carried out to investigate disinfestation and removal of organic matter. The experiments showed that total and fecal coliforms were decreased by about 5 logs cycles with a 3.0kGy radiation dose in raw sewage and biological effluents, respectively. Concerning the industrial wastewater in the first stage of the programme, the irradiation was conducted using batch systems with samples originating from a Governmental Wastewater Treatment Plant. The data showed a significant color reduction effect when delivered dose was increased, and the opposite was noted for turbidity and total suspended solids. Other experiments were focused to process real industrial effluents from one of the most important chemical and pharmaceutical industries in Brazil. A special transport truck was used to transfer the liquid waste from the Industry to the Electron Beam Pilot Plant. Large quantities of liquid waste were irradiated with and without air addition with the doses from 2kGy to 20kGy. Such experiences performed in association with the Industry demonstrated that this technology has a great potential to be transferred and to contribute with a permanent cleanup alternative for hazardous wastes

  13. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    NARCIS (Netherlands)

    Basim, Y.; Farzadkia, M.; Jaafarzadeh, N.; Hendrickx, T.L.G.

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aqua

  14. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated. The tr

  15. Optimization model for the design of distributed wastewater treatment networks

    OpenAIRE

    Ibrić Nidret; Ahmetović Elvis; Suljkanović Midhat

    2012-01-01

    In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The ...

  16. Influence of the waste oil concentration in water on the efficiency of the aeration process in refinery wastewater treatment:

    OpenAIRE

    PAVLOVIĆ, Milan; Simić, Stojan N.; Stanojević, Miroslav; Ševaljević, Mirjana

    2008-01-01

    Process, aeration system and aeration method for biological treatment of wastewater with activated sludge in bio-aeration tanks are chosen based on theflow parameters, composition of the wastewater and required characteristicsof the purified water. Choosing an aeration system is a very complex question, as the capacity of oxygen introduced into the wastewater should correspond to the oxygen consumption in order to achieve the most efficient purification. This paper presents the results of exp...

  17. Comparative Studies of Oleaginous Fungal Strains (Mucor circinelloides and Trichoderma reesei) for Effective Wastewater Treatment and Bio-Oil Production

    OpenAIRE

    Bhanja, Anshuman; Minde, Gauri; Magdum, Sandip; V. Kalyanraman

    2014-01-01

    Biological wastewater treatment typically requires the use of bacteria for degradation of carbonaceous and nitrogenous compounds present in wastewater. The high lipid containing biomass can be used to extract oil and the contents can be termed as bio-oil (or biodiesel or myco-diesel after transesterification). The separate experiments were conducted on actual wastewater samples with 5% v/v inoculum of Mucor circinelloides MTCC1297 and Trichoderma reesei NCIM992 strains. The observed reduction...

  18. Development and application of some renovated technologies for municipal wastewater treatment in China

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; WEN Xianghua; HUANG Xia

    2007-01-01

    China has been experiencing fast economic development in recent decades at the cost of serious environmental deterioration.Wastewater discharge,especially municipal wastewater discharge,and non-point pollution sources are becoming the major water pollution source and research focus.Great efforts have been made on water pollution control and a number of renovated technologies and processes for municipal wastewater treatment and reclamation as well as non-point pollution control have been developed and applied in China.This paper discusses the development and application of the appropriate technologies,including natural treatment systems,anaerobic biological treatment,biofilm reactors and wastewater reclamation technologies,for water pollution control in the country.

  19. Development of the Inverted anaerobic sludge blanket reactor: a novel technology for the treatment of industrial wastewater containing fat

    OpenAIRE

    Picavet, M. A.

    2012-01-01

    Tese de doutoramento em Engenharia Química e Biológica Lipids are ubiquitous in industrial wastewater produced in the food industry, yet practically no biological treatment systems are available on the market that are capable of directly treating wastewater containing lipids. In general, lipids are considered a nuisance and are normally removed prior to biological treatment. Lipids are however compounds with a high calorific value and therefore highly interesting for conversion...

  20. COMPARISON OF THE FRACTIONS OF COD IN RAW WASTEWATER INFLUENT FOR SMALL AND LARGE SEWAGE TREATMENT

    OpenAIRE

    Joanna Smyk; Katarzyna Ignatowicz

    2016-01-01

    The article presents a comparison of the share fraction of COD in raw wastewater in treatment plants which flow in a small amount of wastewater and the sewage treatment with high flow. Compared the constructed wetlands with an average capacity of 4 dm3/m,, the treatment plant with biological deposits with an average capacity of 8 dm3/m, and a sewage treatment plant with activated sludge in Bialystok with a capacity of about 70 000 dm3/m. The lowest percentages of dissolved fraction of sol...

  1. Concentration of Norovirus during Wastewater Treatment and Its Impact on Oyster Contamination

    OpenAIRE

    Flannery, John; Keaveney, Sinéad; Rajko-Nenow, Paulina; O’Flaherty, Vincent; Doré, William

    2012-01-01

    The concentrations of Escherichia coli, F-specific RNA bacteriophage (FRNA bacteriophage), and norovirus genogroup I (NoV GI) and norovirus genogroup II (NoV GII) in wastewater were monitored weekly over a 1-year period at a wastewater treatment plant (WWTP) providing secondary wastewater treatment. A total of 49 samples of influent wastewater and wastewater that had been treated by primary and secondary wastewater treatment processes (primary and secondary treated wastewater) were analyzed. ...

  2. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  3. Occurrence and treatment of wastewater-derived organic nitrogen.

    Science.gov (United States)

    Chen, Baiyang; Kim, Youngil; Westerhoff, Paul

    2011-10-01

    Dissolved organic nitrogen (DON) derived from wastewater effluent can participate in reactions that lead to formation of nitrogenous chlorination by-products, membrane fouling, eutrophication, and nitrification issues, so management of DON is important for both wastewater reuse applications and nutrient-sensitive watersheds that receive discharges from treated wastewater. This study documents DON occurrence in full-scale water/wastewater (W/WW) treatment plant effluents and assesses the removal of wastewater-derived DON by several processes (biodegradation, coagulation, softening, and powdered activated carbon [PAC] adsorption) used for advanced treatment in wastewater reuse applications. After varying levels of wastewater treatment, the dominant aqueous nitrogenous species shifts from ammonia to nitrate after aerobic processes and nitrate to DON in tertiary treatment effluents. The fraction of DON in total dissolved nitrogen (TDN) accounts for at most 52% in tertiary treated effluents (median=13%) and 54% in surface waters impacted by upstream wastewater discharges (median=31%). The 5-day biodegradability/bioavailability of DON (39%) was higher, on average, than that of dissolved organic carbon (DOC, 26%); however, upon chlorination, the DON removal (3%) decreased significantly. Alum coagulation (with ≥8 mg/L alum per mg/L DOC) and lime softening (with pH 11.3-11.5) removedPAC adsorption preferentially removed more DOC than DON by 10% on average. The results provided herein hence shed light on approaches for reducing organic nitrogen content in treated wastewater. PMID:21741064

  4. ABR-生物接触氧化法处理果汁废水实验分析%Study on Juice Wastewater Treatment by ABR-Biological Contact Oxidation Process

    Institute of Scientific and Technical Information of China (English)

    王晓玉; 樊萍; 芦艳

    2011-01-01

    Anaerobic Baffled Reactor (ABR) is a new and high-efficiency anaerobic reactor with many advantages such as straightforward process, low construction costs, convenient operation and management, effective solid-liquid separation, highquality outlet water, stable and reliable operation, strong adaptability to toxic substances, etc. It is a new technology for biological wastewater treatment and has vast foreground on development and application. The most important feature of ABR is set next baffled in the direction of flow turn into a series of chambers so that the microbial populations along the length direction of achieving different compartment acid production and the production of methane phase separation. The reactor is simple in structure, strong in sludge retaining ability, stable treatme.nt system and easy in operation and management. This paper summarized the application of ABR and the combination of ABR with other processes in juice wastewater treatment.%厌氧式折流反应器(Anaerobic Baffled Reactor,简称ABR)是一种新型高效厌氧反应器,具有工艺技术简单、建设投资费用低、运行管理方便、固液分离效果好、出水水质好、运行稳定可靠、对有毒物质适应性强等优点,是一种极具开发应用前景的废水生物处理新技术。ABR最大的特点是在反应器中设置上下折流板而在水流方向上形成依次串联的隔室,从而使其中的微生物种群沿长度方向的不同隔室实现产酸和产甲烷相的分离。该反应器具有结构简单,截留污泥能力强,系统处理效果稳定,运行管理方便等优点。分析了ABR及ABR与其它工艺的联合在果汁废水处理方面的应用。

  5. Anaerobic wastewater treatment of high salinity wastewaters: impact on bioactivity and biomass retention

    OpenAIRE

    S. Ismail

    2013-01-01

    Anaerobic sludge bed reactor systems like the upflow anaerobic sludge blanket (UASB) and expended granular sludge bed (EGSB) reactors are currently the mostly applied high-rate reactor systems for anaerobic wastewater treatment. The success of both systems has changed the world conception of wastewater treatment with energy recovery being an intrinsic part of the treatment process, avoidance of excess sludge problems and extremely low space requirement. Nevertheless, while broadening the UASB...

  6. Study of Salt Wash Water Toxicity on Wastewater Treatment

    OpenAIRE

    Hashad, Mostafa F.; Sharma, Surabhi; Nies, Loring F.; Alleman, James E.

    2006-01-01

    This research effort focused on evaluating the toxicity of the saline waste water generated from washing of Indiana Department of Transportation (INDOT) deicing trucks and to study the feasibility of discharging it into wastewater treatment plants. Performance of activated sludge treating wastewater under varying levels of salt concentration was studied by measuring the Chemical Oxygen Demand (COD), activated sludge oxygen uptake rate (OUR) and Turbidity. For the COD tests, wastewater was tes...

  7. Nitrate Removal from Wastewater through Biological Denitrification with OGA 24 in a Batch Reactor

    Directory of Open Access Journals (Sweden)

    Federico Rossi

    2014-12-01

    Full Text Available Nitrates pollution of waters is a worldwide problem and its remediation is a big challenge from the technical and the scientific point of view. One of the most used and promising cleaning techniques is the biological treatment of wastewaters operated by denitrifying bacteria. In this paper we begin a thorough study of denitrifying performances of the bacterium Azospira sp. OGA 24, recently isolated from the highly polluted Sarno river in the south of Italy. Here, the kinetics of nitrates consumption operated by bacteria in a specifically devised batch bioreactor, in anoxic condition and with acetate as the organic substrate, has been characterized. Experimental data were then used in a simplified model of a real wastewater treatment plant to find that OGA 24 can clean water with efficiency up to 90%. The denitrifying performances of OGA 24 match the requirements of Italian laws and make the bacterium suitable for its employment in treatment plants.

  8. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment.

    Science.gov (United States)

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. treatment. PMID:22819886

  9. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  10. Biological nitrate removal from wastewater of a metal-finishing industry

    International Nuclear Information System (INIS)

    An upflow packed bed reactor at laboratory scale has been operated for a continuous period of 5 months to investigate the technical feasibility of biological nitrate removal applied to the effluent of the coagulation-sedimentation wastewater of a metal-finishing industry. The reactor was fed with industrial wastewater in a five-fold dilution to reproduce the global spill in the factory (20/80, industrial wastewater/domestic wastewater) with a concentration of nitrate between 141 and 210 g NO3-N/m3. Methanol was added as a carbon source for denitrification. Inlet flow rate was progressively increased from 9 to 40 L/day (nitrogen input load from 45 to 250 g NO3-N/(m3 h)). The highest observed denitrification rate was 135 g NO3-N/(m3 h) at a nitrate load of 250 g NO3-N/(m3 h), and removal efficiencies higher than 90% were obtained for loads up to 100 g NO3-N/(m3 h). A mass relation between COD consumed and NO3-N removed around 3.31 was observed. Better results were achieved in a previous stage using tap water with nitrate added as a sole pollutant as a synthetic feed (critical load of 130 g NO3-N/(m3 h) and denitrification rate of 200 g NO3-N/(m3 h) at a nitrate load of 250 g NO3-N/(m3 h)). This fact could indicate that the chemical composition of the industrial source hinders to some extent the performance of the biological process. Whatever case, results demonstrated the viability of the denitrification process for the global industrial wastewater. A simple model based on Monod kinetics for substrate consumption, and constant biomass concentration was applied to model the industrial wastewater treatment, and a reasonably good fitting was obtained

  11. Which chemicals drive biological effects in wastewater and recycled water?

    Science.gov (United States)

    Tang, Janet Y M; Busetti, Francesco; Charrois, Jeffrey W A; Escher, Beate I

    2014-09-01

    Removal of organic micropollutants from wastewater during secondary treatment followed by reverse osmosis and UV disinfection was evaluated by a combination of four in-vitro cell-based bioassays and chemical analysis of 299 organic compounds. Concentrations detected in recycled water were below the Australian Guidelines for Water Recycling. Thus the detected chemicals were considered not to pose any health risk. The detected pesticides in the wastewater treatment plant effluent and partially advanced treated water explained all observed effects on photosynthesis inhibition. In contrast, mixture toxicity experiments with designed mixtures containing all detected chemicals at their measured concentrations demonstrated that the known chemicals explained less than 3% of the observed cytotoxicity and less than 1% of the oxidative stress response. Pesticides followed by pharmaceuticals and personal care products dominated the observed mixture effects. The detected chemicals were not related to the observed genotoxicity. The large proportion of unknown toxicity calls for effect monitoring complementary to chemical monitoring. PMID:24874944

  12. Treatment of oilfield wastewater by Fenton's process.

    Science.gov (United States)

    Gao, Y X; Yang, M; Zhang, Y; Hu, J Y

    2004-01-01

    A combination of coagulation and Fenton's process was used for the removal of total oxygen carbon (TOC) from oilfield wastewater. Compared with aluminium sulfate, ferric coagulant had better TOC removal efficiency at the same mass dosage. In Fenton's process, the effect of H2O2 and Fe2+ dose on the removal of TOC was studied. The optimum conditions required for TOC removal were an Fe3+ concentration of 40-50 mg/L, an H2O2 dose of 50 mmol/L and an Fe2+ concentration of 1.0 mmol/L. GC-MS chromatographic analysis indicated that most of the alkyl hydrocarbons of carbon numbers < 21 were removed in the first minute of Fenton's process mainly through adsorption. Alkyl hydrocarbons and phenols were oxidized almost completely following 120 min of treatment. The pathway of newly formed intermediates in Fenton's process was proposed on the basis of the GC/MS chromatogram. PMID:15077956

  13. Evaluation of photocatalytic treatment of industrial wastewater using solar energy

    International Nuclear Information System (INIS)

    Wastewater of a chemical industry was treated in a photocatalytic process, using a solar photo-reactor made of glass corrugated flat plates that had been set in cascade and using Titanium Dioxide (Degussa p-25) as photocatalyst that is supported on each one of them in film form. the influence of three variables in the decontamination efficiency were studied: amount of H2O2, volume of water and amount of dispersed TiO2, by means of the accomplishment of fifteen experiments carried out in discontinuous operation mode by a period of 5 hours for each test. The obtained results allow establishing that the FH is a viable technology of treatment like previous stage to a biological treatment since percentage of reduction in the DQO varies between 6 and 46% and was managed to reach a biodegradable effluent in all tests

  14. The effect of tannic compounds on anaerobic wastewater treatment.

    OpenAIRE

    Field, J. A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensitivity of the anaerobic bacteria (ie. methanogenic bacteria) to toxic compounds. The anaerobic technologies were initially developed for the treatment of non-toxic organic wastewaters. As the techn...

  15. Pre-treatment of high oil and grease pet food industrial wastewaters using immobilized lipase hydrolyzation

    International Nuclear Information System (INIS)

    Wastewaters generating from pet food industries contain high concentration of oil and grease (O and G), which is difficult to treat through conventional biological treatment systems. In this study, the hydrolysis of O and G originating from pet food industrial wastewater was evaluated. Candida rugosa lipase was immobilized in calcium alginate beads and applied in the hydrolysis experiment. Results showed that approximately 50% of the O and G was hydrolyzed due to the enzyme activity. A significant increment in COD and VFA production was also observed. The immobilized lipase activity was confirmed with p-nitrophenyl palmitate (pNPP) before and after O and G hydrolysis. During the 3-day experiment, approximately 65% of the beads were recovered and after the hydrolysis, approximately 70% of the enzyme activity remained in the beads. This study shows the potential of immobilized lipase as a pre-treatment step in biological treatment of pet food manufacturing wastewater

  16. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  17. ANAEROBIC-AEROBIC TREATMENT OF TEXTILE WASTEWATER IN A SEQUENCING BATCH REACTOR

    Directory of Open Access Journals (Sweden)

    IBTISSAM KANBOUCHI

    2014-04-01

    Full Text Available In this work, the treatment of synthetic textile wastewater using sequential batch reactor (SBR was studied. This in order to predict the effectiveness of biological treatment on wastewater containing dyes while minimizing the aeration cost. Laboratory tests were performed on synthetic wastewater containing filtered urban wastewater (source of bacteria and dyes solutions. This promotes the biomass development in the mixture, capable of degrading organic matter properly. The results indicate that the increasing of anaerobic phase (16 hours allows removal of 77 % and 80 % of COD and colour, respectively. The sludge age did not affect markedly dyes biodegradability. However, the biodegradability is strongly influenced by the dyes concentration. Indeed, for the lowest dyes contents, improved biodegradability was observed, while it decreases when the dyes concentration increases.

  18. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    OpenAIRE

    Tong Zhang; Xiaoguang Wang; Xiwang Zhang

    2014-01-01

    The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs). We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In t...

  19. Occurrence and reduction of pharmaceuticals in the water phase at Swedish wastewater treatment plants

    DEFF Research Database (Denmark)

    Falås, Per; La Cour Jansen, Jes; Ledin, Anna;

    2012-01-01

    During the last decade, several screening programs for pharmaceuticals at Swedish wastewater treatment plants (WWTPs) have been conducted by research institutes, county councils, and wastewater treatment companies. In this study, influent and effluent concentrations compiled from these screening...... programs were used to assess the occurrence and reduction of non-antibiotic pharmaceuticals for human usage. The study is limited to full-scale WWTPs with biological treatment. Based on the data compiled, a total of 70 non-antibiotic pharmaceuticals have been detected, at concentrations ranging from a few...

  20. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide......-arsenate precipitates. This work evaluates the feasibility of EC as a treatment process at various stages during conventional copper smelter wastewater treatment - with a focus on arsenic. The reactor used is a batch airlift electrocoagulator. The results showed that raw copper smelter wastewater was difficult to treat...... for arsenic and heavy metals with EC, mainly due to the very low pH. On the other hand, after a preliminary Ca(OH)2 treatment for sulphate and heavy metal removal, arsenic could be removed totally by EC. In addition, EC could also be applied as a final remediation control tool for arsenic since the...

  1. EM-TECHNOLOGY APPLICATION FOR MUNICIPAL WASTEWATERS PURIFICATION FROM BIOLOGICAL POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Oksana Vovk

    2011-03-01

    Full Text Available Abstract. This article is devoted to the problem of municipal waste waters purification. The present daysituation with waste water treatment facilities in Ukraine, existed methods of waste waters purification andsearch for new ones are described. Much attention is paid to such kind of pollutants as microbiological andbacterial. A comparatively new method of sewage waters purification from biological contaminants andpossibilities to apply this method in Ukraine is presented in the article.Keywords: biological pollutants, disinfection, effective microorganisms, EM-technology, treatmentfacilities, wastewaters.

  2. Anaerobic treatment of municipal wastewater using the UASB-technology.

    Science.gov (United States)

    Urban, I; Weichgrebe, D; Rosenwinkel, K-H

    2007-01-01

    The anaerobic treatment of municipal wastewater enables new applications for the reuse of wastewater. The effluent could be used for irrigation as the included nutrients are not affected by the treatment. Much more interesting now are renewable energies and the retrenchment of CO(2) emission. With the anaerobic treatment of municipal wastewater, not only can the CO(2) emission be reduced but "clean" energy supply can be gained by biogas. Most important for the sustainability of this process is the gathering of methane from the liquid effluent of the reactor, because the negative climate-relevant effect from the degassing methane is much higher than the positive effect from saving CO(2) emission. In this study, UASB reactors were used with a flocculent sludge blanket for the biodegradation of the carbon fraction in the wastewater with different temperatures and concentrations. It could be shown that the positive effect is much higher for municipal wastewater with high concentrations in hot climates. PMID:18048975

  3. COMPARISON OF THE FRACTIONS OF COD IN RAW WASTEWATER INFLUENT FOR SMALL AND LARGE SEWAGE TREATMENT

    Directory of Open Access Journals (Sweden)

    Joanna Smyk

    2016-06-01

    Full Text Available The article presents a comparison of the share fraction of COD in raw wastewater in treatment plants which flow in a small amount of wastewater and the sewage treatment with high flow. Compared the constructed wetlands with an average capacity of 4 dm3/m,, the treatment plant with biological deposits with an average capacity of 8 dm3/m, and a sewage treatment plant with activated sludge in Bialystok with a capacity of about 70 000 dm3/m. The lowest percentages of dissolved fraction of soluble organic non-biodegradable substances SI was reported in raw sewage in small sewage treatment plants. Based on the available data wasn’t found significant correlation between the factions XI, SS, XS in raw sewage and the amount of wastewater.

  4. Microbial aggregates in anaerobic wastewater treatment.

    Science.gov (United States)

    Kosaric, N; Blaszczyk, R

    1990-01-01

    sludge. Methanogenic bacterial aggregates have been successfully applied in many full scale installations, especially for sugar beet, potato, pulp and paper mill, and other soluble wastes. The UASB reactors used for these treatments are simple in construction and handling which result in rather low total costs. A further and wider application of UASB reactors and methanogenic aggregates for various industrial wastewaters is expected. PMID:2291438

  5. STUDY ON WASTEWATER TREATMENT SYSTEMS IN HOSPITALS OF IRAN

    Directory of Open Access Journals (Sweden)

    M. Majlesi Nasr, A. R. Yazdanbakhsh

    2008-07-01

    Full Text Available Nowadays, water resources shortage is one of the most important issues for environmental engineers and managers as well as its conservation due to population growth and ever-increasing water demands. Besides, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components. In this paper, physical and chemical specifications of produced wastewater in hospitals of Iran were investigated experiments. Results were compared with the effluent parameters of wastewater standards of Iranian Department of the Environment. 70 governmental hospitals from different provinces of Iran were selected by purposive (non-random sampling method. For data analysis, SPSS and EXCEL softwares were applied. The findings of the study showed that 52% of the surveyed hospitals were not equipped and 48% were equipped with wastewater treatment systems. The mean of Biochemical Oxygen Demand, Chemical Oxygen Demand and Total Suspended Solids of the effluent of wastewater treatment systems were reported as 113, 188 and 99 mg/L respectively. Comparison of the indicators between effluents of wastewater treatment systems and the standards of Departments of the Environment, showed the inefficiency in these systems and it was concluded that despite the recent improvements in hospital wastewater treatment systems, they should be upgraded based on the remarks in this paper.

  6. Treatment of Municipal Wastewater by Anaerobic Membrane Bioreactor Technology

    NARCIS (Netherlands)

    Ozgun, H.

    2013-01-01

    Reclamation and reuse of wastewater for various purposes such as landscape and agricultural irrigation are increasingly recognized as essential strategies in the world, especially for the areas suffering from water scarcity. Wastewater treatment and reuse have two major advantages including the redu

  7. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    Science.gov (United States)

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  8. Treatment of Municipal Wastewater by Anaerobic Membrane Bioreactor Technology

    OpenAIRE

    Ozgun, H.

    2013-01-01

    Reclamation and reuse of wastewater for various purposes such as landscape and agricultural irrigation are increasingly recognized as essential strategies in the world, especially for the areas suffering from water scarcity. Wastewater treatment and reuse have two major advantages including the reduction of the environment contamination and hence the health risks and saving of the huge freshwater amounts.

  9. Decision support for redesigning wastewater treatment technologies.

    Science.gov (United States)

    McConville, Jennifer R; Künzle, Rahel; Messmer, Ulrike; Udert, Kai M; Larsen, Tove A

    2014-10-21

    This paper offers a methodology for structuring the design space for innovative process engineering technology development. The methodology is exemplified in the evaluation of a wide variety of treatment technologies for source-separated domestic wastewater within the scope of the Reinvent the Toilet Challenge. It offers a methodology for narrowing down the decision-making field based on a strict interpretation of treatment objectives for undiluted urine and dry feces and macroenvironmental factors (STEEPLED analysis) which influence decision criteria. Such an evaluation identifies promising paths for technology development such as focusing on space-saving processes or the need for more innovation in low-cost, energy-efficient urine treatment methods. Critical macroenvironmental factors, such as housing density, transportation infrastructure, and climate conditions were found to affect technology decisions regarding reactor volume, weight of outputs, energy consumption, atmospheric emissions, investment cost, and net revenue. The analysis also identified a number of qualitative factors that should be carefully weighed when pursuing technology development; such as availability of O&M resources, health and safety goals, and other ethical issues. Use of this methodology allows for coevolution of innovative technology within context constraints; however, for full-scale technology choices in the field, only very mature technologies can be evaluated. PMID:25225855

  10. Treatment of Traditional Cloth Wastewater by Electrocoagulation Using Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Rusdianasari Rusdianasari

    2014-01-01

    Full Text Available The existence of the textile industry in Indonesia is not only included in the category of large and medium scale industries, but also in small-scale and some even in the household (home industry. This led to the pollution caused by the textile industry, especially as a result of the presence of the textile dyeing not only occur in industrial areas but also occurs in densely populated settlements. To overcome the problem of environmental pollution that occurs, it needs treatment of the textile wastewater. Treatment of traditional cloth wastewater by electrocoagulation using aluminum electrode material has been investigated in this paper. The effect of relevant wastewater characteristics such as pH and conductivity, and important process variables such as applied voltage and operating time on the chemical oxygen demand (COD, biological oxygen demand (BOD, turbidity, total suspended solid (TSS and total dissolved solid (TDS.  The processing time is used 60, 75, 90, 105, 120 minutes and for the variation of the applied voltage is 6 V, 12 V, 18 V, and 24 V. The best conditions and the effectiveness of electrocoagulation for each parameter varies with the voltage is in the range between 6 V– 18 V with the processing time between 90-120 minutes. The effectiveness of electrocoagulation method to decrease the turbidity value 99.634%; TSS 49.679%; TDS 17.243%; BOD 91.778%; COD 97.260% and to decrease the conductivity value of 23.631% and the increase in pH from 6.34 to 7.79.

  11. Identification of microorganisms involved in nitrogen removal from wastewater treatment systems by means of molecular biology techniques; Identificacion de microorganismos implicados en la eliminacion de nitrogeno en sistemas de tratamiento de aguas residuales mediante tecnicas de biologia molecular

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, M.; Alonso-Gutierrez, J.; Campos, J. L.; Mendez, R.; Mosquera-Corral, A.

    2010-07-01

    The identification of the main bacteria populations present in the granular biomass from a biological reactor treating wastewater has been performed by applying two different molecular biology techniques. By means of the DGGE technique five different genera of heterotrophic bacteria (Thiothrix, Thauera, Cloroflexi, Comamanas y Zoogloea) and one of ammonia oxidizing bacteria (Nitrosomanas) were identified. The FISH technique, based on microscopy, allowed the in situ visualization and quantification of those microorganisms. Special attention was paid to filamentous bacteria distribution (Thiothrix and Cloroflexi) which could exert a structural function in aerobic granular sludge. (Author) 26 refs.

  12. Anaerobic ponds for domestic wastewater treatment in temperate climates

    OpenAIRE

    Cruddas, Peter

    2014-01-01

    Energy demand, greenhouse gas emissions, and operational costs are continuing to rise year on year in the wastewater treatment sector, with traditional treatment options unable to provide sustainable solutions to increasing volumes and tightening quality standards. Current processes produce inherent fugitive greenhouse gas (GHG) emissions, whilst also generating large quantities of sludge for disposal. Anaerobic ponds (APs) are natural wastewater treatment processes that have t...

  13. Factors influencing antibiotic resistance burden in municipal wastewater treatment plants

    OpenAIRE

    Novo, Ana; Manaia, Célia M.

    2010-01-01

    Municipal wastewater treatment plants are recognized reservoirs of antibiotic-resistant bacteria. Three municipal wastewater treatment plants differing on the dimensions and bio-treatment processes were compared for the loads of amoxicillin-, tetracycline-, and ciprofloxacinresistant heterotrophic bacteria, enterobacteria, and enterococci in the raw inflow and in the treated effluents. The sewage received by each plant, in average, corresponded to 85,000 inhabitant equ...

  14. Optimization model for the design of distributed wastewater treatment networks

    Directory of Open Access Journals (Sweden)

    Ibrić Nidret

    2012-01-01

    Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.

  15. Wastewater Treatment and Reuse: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2015-09-01

    Full Text Available This paper provides an overview of the Special Issue on Wastewater Treatment and Reuse: Past, Present, and Future. The papers selected for publication include advanced wastewater treatment and monitoring technologies, such as membrane bioreactors, electrochemical systems; denitrifying biofilters, and disinfection technologies. The Issue also contains articles related to best management practices of biosolids, the influence of organic matter on pathogen inactivation and nutrient removal. Collectively, the Special Issue presents an evolution of technologies, from conventional through advanced, for reliable and sustainable wastewater treatment and reuse.

  16. Nanofiltration for water and wastewater treatment – a mini review

    Directory of Open Access Journals (Sweden)

    H. K. Shon

    2013-06-01

    Full Text Available The application of membrane technology in water and wastewater treatment is increasing due to stringent water quality standards. Nanofiltration (NF is one of the widely used membrane processes for water and wastewater treatment in addition to other applications such as desalination. NF has replaced reverse osmosis (RO membranes in many applications due to lower energy consumption and higher flux rates. This paper briefly reviews the application of NF for water and wastewater treatment including fundamentals, mechanisms, fouling challenges and their controls.

  17. Nanofiltration for water and wastewater treatment – a mini review

    Directory of Open Access Journals (Sweden)

    H. K. Shon

    2013-03-01

    Full Text Available The application of membrane technology in water and wastewater treatment is increasing due to stringent water quality standards. Nanofiltration (NF is one of the widely used membrane processes for water and wastewater treatment in addition to other applications such as desalination. NF has replaced reverse osmosis (RO membranes in many applications due to lower energy consumption and higher flux rates. This paper briefly reviews the application of NF for water and wastewater treatment including fundamentals of membrane process in general, mechanisms of NF process including few basic models. fouling challenges and their control mechanisms adopted.

  18. Developing of effective treatment technology of the phenolic wastewater

    OpenAIRE

    Klymenko, Irina; Yelatontsev, Dmytro; Ivanchenko, Anna; Dupenko, Olga; Voloshyn, Nikolay

    2016-01-01

    It is found that a high degree of purification from emulsified coal tar is achieved in the phenolic wastewater treatment using 88 mg/dm3 of sodium bentonite with the addition of 8 mg/dm3 of cationic flocculant in conditions the closest to industrial. This innovative method of phenolic wastewater treatment is cost­effective because of the low cost of bentonite. It is shown that the deposit formed during the wastewater treatment with bentonite floats to the liquid surface and can be separated b...

  19. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available.......Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...

  20. Mathematical Modelling of Cassava Wastewater Treatment Using Anaerobic Baffled Reactor

    OpenAIRE

    A.O. Ibeje

    2013-01-01

    The performance of an anaerobic baffled reactor (ABR) was evaluated in the treatment of cassava wastewater as a pollutant residue. An ABR divided in four equal volume compartments (total volume 4L) and operated at 35°C was used in cassava wastewater treatment. Feed tank chemical oxygen demand (COD) was varied from 2000 to 7000mg L-1. The objective of the study was to formulate an improved mathematical model to describe cassava wastewater treatment without taking into account its inhibition ch...