Biological transportation networks: Modeling and simulation
Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.
2015-01-01
We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation
Biological transportation networks: Modeling and simulation
Albi, Giacomo
2015-09-15
We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.
Documentation of TRU biological transport model (BIOTRAN)
Energy Technology Data Exchange (ETDEWEB)
Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.
1980-01-01
Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text.
Documentation of TRU biological transport model (BIOTRAN)
International Nuclear Information System (INIS)
Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.
1980-01-01
Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text
Wang, Jia; Hong, Huasheng; Jiang, Yuwu; Chai, Fei; Yan, Xiao-Hai
2013-09-01
In order to understand the fate of nutrients in the Taiwan Strait during summer, we built a coupled physical-biological numerical ocean model, which can capture the basic hydrographic and biological features within the strait. The nutrient that we chose to model is dissolved inorganic nitrogen (DIN). The model includes individual reservoirs for nitrate (NO3) and ammonium (NH4). Both the observational evidence and model results show that NO3 in the strait originates primarily from the upwelling subsurface water in the northern South China Sea (SCS) that enters the strait via the eastern and western routes separated by the Taiwan Bank. The coupled physical and biological effects on the NO3 transport at these two routes are highlighted in the study. For the western route, the shallow topography and the coastal upwelling intensify the biological uptake of NO3 in the whole water column. Consequently, the nitrogenous contribution by this route is mainly in form of the particulate organic nitrogen (PON). In contrast, NO3 is transported conservatively below the nitricline at the deep eastern route, contributing the whole NO3 supply in the TWS. The model estimates the fluxes of DIN and PON into the TWS, from the northern SCS, are 1.8 and 4 kmol s-1, respectively. Over half (˜1 kmol s-1) of the DIN is synthesized into PON by the phytoplankton in the strait. Overall, this study estimates the physical and biological effects on the nutrient transport in the TWS during summer.
Physical and biological transport
International Nuclear Information System (INIS)
Marietta, M.G.
1979-01-01
In order to evaluate the feasibility of sub-seabed waste disposal, it is necessary to consider the results of leakage or accidental failure to emplace the canister within the deep-sea sediments. Such accidental release is possible for any waste disposal option, and the associated risks must be evaluated so that comparisons between options can be made. Therefore, one must be able to trace the migration of escaped radionuclides from the canister site within the sediments (or possibly elsewhere for various accident events), through the sediments, water column, and ecosystem to man. Only in this way can the environmental impact of sub-seabed nuclear waste disposal be quantitatively evaluated. A mathematical model which describes this migration of radionuclides through the various transport mechanisms of the sea must be written in order to quantify the release of a given amount of waste material. This model is directed towards answering two questions. What is the effect upon the marine environment, and what is the effect upon man. These questions require a predictive capability for the levels of radioactivity in the marine biota and for the dose to man
Directory of Open Access Journals (Sweden)
Eric S. Haag
2016-12-01
Full Text Available Quantitative modeling is not a standard part of undergraduate biology education, yet is routine in the physical sciences. Because of the obvious biophysical aspects, classes in anatomy and physiology offer an opportunity to introduce modeling approaches to the introductory curriculum. Here, we describe two in-class exercises for small groups working within a large-enrollment introductory course in organismal biology. Both build and derive biological insights from quantitative models, implemented using spreadsheets. One exercise models the evolution of anisogamy (i.e., small sperm and large eggs from an initial state of isogamy. Groups of four students work on Excel spreadsheets (from one to four laptops per group. The other exercise uses an online simulator to generate data related to membrane transport of a solute, and a cloud-based spreadsheet to analyze them. We provide tips for implementing these exercises gleaned from two years of experience.
Li, Ye; Miao, Xiaoqing; Chen, Tongkai; Yi, Xiang; Wang, Ruibing; Zhao, Haitao; Lee, Simon Ming-Yuen; Wang, Xueqing; Zheng, Ying
2017-08-01
With the wide application of nanotechnology to drug delivery systems, a simple, dynamic and visual in vivo model for high-throughput screening of novel formulations with fluorescence markers across biological barriers is desperately needed. In vitro cell culture models have been widely used, although they are far from a complimentary in vivo system. Mammalian animal models are common predictive models to study transport, but they are costly and time consuming. Zebrafish (Danio rerio), a small vertebrate model, have the potential to be developed as an "intermediate" model for quick evaluations. Based on our previously established coumarin 6 nanocrystals (C6-NCs), which have two different sizes, the present study investigates the transportation of C6-NCs across four biological barriers, including the chorion, blood brain barrier (BBB), blood retinal barrier (BRB) and gastrointestinal (GI) barrier, using zebrafish embryos and larvae as in vivo models. The biodistribution and elimination of C6 from different organs were quantified in adult zebrafish. The results showed that compared to 200nm C6-NCs, 70nm C6-NCs showed better permeability across these biological barriers. A FRET study suggested that intact C6-NCs together with the free dissolved form of C6 were absorbed into the larval zebrafish. More C6 was accumulated in different organs after incubation with small sized NCs via lipid raft-mediated endocytosis in adult zebrafish, which is consistent with the findings from in vitro cell monolayers and the zebrafish larvae model. C6-NCs could be gradually eliminated in each organ over time. This study demonstrated the successful application of zebrafish as a simple and dynamic model to simultaneously assess the transport of nanosized drug delivery systems across several biological barriers and biodistribution in different organs, especially in the brain, which could be used for central nervous system (CNS) drug and delivery system screening. Copyright © 2017 Elsevier B
Water versus DNA A new deal for proton transport modeling in biological matter
International Nuclear Information System (INIS)
Champion, C; Quinto, M A; Monti, J M; Galassi, M E; Fojón, O A; Hanssen, J; Rivarola, R D; Week, P F
2015-01-01
Water vapor is a common surrogate of DNA for modeling the proton-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, self-consistent quantum mechanical modeling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. (paper)
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-09-01
The availability and easy production of toxic chemical and biological agents by domestic and international terrorists pose a serious threat to US national security, especially to civilian populations in and around urban areas. To address this threat, the Department of Energy (DOE) has established the Chemical and Biological Nonproliferation Program (CBNP) with the goal of focusing the DOE`s technical resources and expertise on capabilities to deny, deter, mitigate and respond to clandestine releases of chemical and biological agents. With the intent to build on DOE core competencies, the DOE has established six technology thrust areas within the CBNP Program: Biological Information Resources; Point Sensor Systems; Stand-off Detection; Transport and Fate; Decontamination; and Systems Analysis and Integration. The purpose of the Transport and Fate Thrust is to accurately predict the dispersion, concentration and ultimate fate of chemical and biological agents released into the urban and suburban environments and has two major goals: (1) to develop an integrated and validated state-of-the-art atmospheric transport and fate modeling capability for chemical and biological agent releases within the complex urban environment from the regional scale down to building and subway interiors, and (2) to apply this modeling capability in a broad range of simulation case studies of chemical and biological agent release scenarios in suburban, urban and confined (buildings and subways) environments and provide analysis for the incident response user community. Sections of this report discuss subway transport and fate models; buildings interior transport and fate modeling; models for flow and transport around buildings; and local-regional meteorology and dispersion models.
Howard Brenner's Legacy for Biological Transport Processes
Nitsche, Johannes
2014-11-01
This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.
Mathematical modeling of biological processes
Friedman, Avner
2014-01-01
This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.
Lithium transport across biological membranes
DEFF Research Database (Denmark)
Holstein-Rathlou, N H
1990-01-01
Li+ is actively transported out of cells, and across different epithelia of both mammalian and amphibian origin. Due to the low affinity of the Na+/K(+)-ATPase for Li+, the transport is most likely energized by exchange and/or cotransport processes. The detailed mechanism by which Li+ is reabsorb...
Tavasszy, L.A.; Jong, G. de
2014-01-01
Freight Transport Modelling is a unique new reference book that provides insight into the state-of-the-art of freight modelling. Focusing on models used to support public transport policy analysis, Freight Transport Modelling systematically introduces the latest freight transport modelling
Kaznessis, Yiannis N
2007-11-06
Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.
Laboratory of Biological Modeling
Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to a...
Continuum Modeling of Biological Network Formation
Albi, Giacomo; Burger, Martin; Haskovec, Jan; Markowich, Peter A.; Schlottbom, Matthias
2017-01-01
We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes
International Nuclear Information System (INIS)
McGraw, M.
2000-01-01
The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations
Stochastic transport processes in discrete biological systems
Frehland, Eckart
1982-01-01
These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio logical 'transport systems can be complex. For example, the tr...
Estimation of light transport parameters in biological media using ...
Indian Academy of Sciences (India)
Estimation of light transport parameters in biological media using coherent backscattering ... backscattered light for estimating the light transport parameters of biological media has been investigated. ... Pramana – Journal of Physics | News.
Workshop Introduction: Systems Biology and Biological Models
As we consider the future of toxicity testing, the importance of applying biological models to this problem is clear. Modeling efforts exist along a continuum with respect to the level of organization (e.g. cell, tissue, organism) linked to the resolution of the model. Generally,...
Modelling of transport phenomena
International Nuclear Information System (INIS)
Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.
1993-09-01
In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs
Biologically inspired water purification through selective transport
International Nuclear Information System (INIS)
Freeman, E C; Soncini, R M; Weiland, L M
2013-01-01
Biologically inspired systems based on cellular mechanics demonstrate the ability to selectively transport ions across a bilayer membrane. These systems may be observed in nature in plant roots, which remove select nutrients from the surrounding soil against significant concentration gradients. Using biomimetic principles in the design of tailored active materials allows for the development of selective membranes for capturing and filtering targeted ions. Combining this biomimetic transport system with a method for reclaiming the captured ions will allow for increased removal potential. To illustrate this concept, a device for removing nutrients from waterways to aid in reducing eutrophication is outlined and discussed. Presented is a feasibility study of various cellular configurations designed for this purpose, focusing on maximizing nutrient uptake. The results enable a better understanding of the benefits and obstacles when developing these cellularly inspired systems. (paper)
International Nuclear Information System (INIS)
Eckerman, K.F.; Watson, S.B.; Nelson, C.B.; Nelson, D.R.; Richardson, A.C.B.; Sullivan, R.E.
1984-12-01
This report presents revised values for the radioactivity concentration guides (RCGs), based on the 1960 primary radiation protection guides (RPGs) for occupational exposure (FRC 1960) and for underground uranium miners (EPA 1971a) using the updated dosimetric models developed to prepare ICRP Publication 30. Unlike the derived quantities presented in Publication 30, which are based on limitation of the weighted sum of doses to all irradiated tissues, these RCGs are based on the ''critical organ'' approach of the 1960 guidance, which was a single limit for the most critically irradiated organ or tissue. This report provides revised guides for the 1960 Federal guidance which are consistent with current dosimetric relationships. 2 figs., 4 tabs
Issues in Biological Shape Modelling
DEFF Research Database (Denmark)
Hilger, Klaus Baggesen
This talk reflects parts of the current research at informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations, modifications, and applications of the elements of constructing models of shape or appear......This talk reflects parts of the current research at informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations, modifications, and applications of the elements of constructing models of shape...
Transport of biologically active material in laser cutting.
Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P
1988-01-01
The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.
Mesoscopic models of biological membranes
DEFF Research Database (Denmark)
Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.
2006-01-01
Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...
Garcia, F; Arruda-Neto, J D; Manso, M V; Helene, O M; Vanin, V R; Rodriguez, O; Mesa, J; Likhachev, V P; Filho, J W; Deppman, A; Perez, G; Guzman, F; de Camargo, S P
1999-10-01
A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data.
International Nuclear Information System (INIS)
Garcia, F.; Manso, M.V.; Rodriguez, O.; Mesa, J.; Arruda-Neto, J.D.T.; Helene, O.M.; Vanin, V.R.; Likhachev, V.P.; Pereira Filho, J.W.; Deppman, A.; Perez, G.; Guzman, F.; Camargo, S.P. de
1999-01-01
A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data. (author)
Mathematical models in biological discovery
Walter, Charles
1977-01-01
When I was asked to help organize an American Association for the Advancement of Science symposium about how mathematical models have con tributed to biology, I agreed immediately. The subject is of immense importance and wide-spread interest. However, too often it is discussed in biologically sterile environments by "mutual admiration society" groups of "theoreticians", many of whom have never seen, and most of whom have never done, an original scientific experiment with the biolog ical materials they attempt to describe in abstract (and often prejudiced) terms. The opportunity to address the topic during an annual meeting of the AAAS was irresistable. In order to try to maintain the integrity ;,f the original intent of the symposium, it was entitled, "Contributions of Mathematical Models to Biological Discovery". This symposium was organized by Daniel Solomon and myself, held during the 141st annual meeting of the AAAS in New York during January, 1975, sponsored by sections G and N (Biological and Medic...
Stochastic models of intracellular transport
Bressloff, Paul C.
2013-01-09
The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.
Modelling Ballast Water Transport
Digital Repository Service at National Institute of Oceanography (India)
Jayakumar, S.; Babu, M.T.; Vethamony, P.
Ballast water discharges in the coastal environs have caused a great concern over the recent periods as they account for transporting marine organisms from one part of the world to the other. The movement of discharged ballast water as well...
Modelling an Ammonium Transporter with SCLS
Directory of Open Access Journals (Sweden)
Angelo Troina
2009-10-01
Full Text Available The Stochastic Calculus of Looping Sequences (SCLS is a recently proposed modelling language for the representation and simulation of biological systems behaviour. It has been designed with the aim of combining the simplicity of notation of rewrite systems with the advantage of compositionality. It also allows a rather simple and accurate description of biological membranes and their interactions with the environment.In this work we apply SCLS to model a newly discovered ammonium transporter. This transporter is believed to play a fundamental role for plant mineral acquisition, which takes place in the arbuscular mycorrhiza, the most wide-spread plant-fungus symbiosis on earth. Due to its potential application in agriculture this kind of symbiosis is one of the main focuses of the BioBITs project. In our experiments the passage of NH3 / NH4+ from the fungus to the plant has been dissected in known and hypothetical mechanisms; with the model so far we have been able to simulate the behaviour of the system under different conditions. Our simulations confirmed some of the latest experimental results about the LjAMT2;2 transporter. The initial simulation results of the modelling of the symbiosis process are promising and indicate new directions for biological investigations.
Continuum Modeling of Biological Network Formation
Albi, Giacomo
2017-04-10
We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.
Probabilistic transport models for fusion
International Nuclear Information System (INIS)
Milligen, B.Ph. van; Carreras, B.A.; Lynch, V.E.; Sanchez, R.
2005-01-01
A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by probability distributions. We design a simple model that includes a critical mechanism to switch between two transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of probabilistic transport might provide a framework for the description of a range of unusual transport phenomena observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way. (author)
Time lags in biological models
MacDonald, Norman
1978-01-01
In many biological models it is necessary to allow the rates of change of the variables to depend on the past history, rather than only the current values, of the variables. The models may require discrete lags, with the use of delay-differential equations, or distributed lags, with the use of integro-differential equations. In these lecture notes I discuss the reasons for including lags, especially distributed lags, in biological models. These reasons may be inherent in the system studied, or may be the result of simplifying assumptions made in the model used. I examine some of the techniques available for studying the solution of the equations. A large proportion of the material presented relates to a special method that can be applied to a particular class of distributed lags. This method uses an extended set of ordinary differential equations. I examine the local stability of equilibrium points, and the existence and frequency of periodic solutions. I discuss the qualitative effects of lags, and how these...
System Convergence in Transport Modelling
DEFF Research Database (Denmark)
Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.
2010-01-01
A fundamental premise of most applied transport models is the existence and uniqueness of an equilibrium solution that balances demand x(t) and supply t(x). The demand consists of the people that travel in the transport system and on the defined network, whereas the supply consists of the resulting...... level-of-service attributes (e.g., travel time and cost) offered to travellers. An important source of complexity is the congestion, which causes increasing demand to affect travel time in a non-linear way. Transport models most often involve separate models for traffic assignment and demand modelling...... iterating between a route-choice (demand) model and a time-flow (supply) model. It is generally recognised that a simple iteration scheme where the level-of-service level is fed directly to the route-choice and vice versa may exhibit an unstable pattern and lead to cyclic unstable solutions. It can be shown...
Transport modelling for ergodic configurations
International Nuclear Information System (INIS)
Runov, A.; Kasilov, S.V.; McTaggart, N.; Schneider, R.; Bonnin, X.; Zagorski, R.; Reiter, D.
2004-01-01
The effect of ergodization, either by additional coils like in TEXTOR-dynamic ergodic divertor (DED) or by intrinsic plasma effects like in W7-X, defines the need for transport models that are able to describe the ergodic configuration properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors. For these coordinates the appropriate full metric tensor has to be known. To study the transport in complex edge geometries (in particular for W7-X) two possible methods are used. First, a finite-difference discretization of the transport equations on a custom-tailored grid in local magnetic coordinates is used. This grid is generated by field-line tracing to guarantee an exact discretization of the dominant parallel transport (thus also minimizing the numerical diffusion problem). The perpendicular fluxes are then interpolated in a plane (a toroidal cut), where the interpolation problem for a quasi-isotropic system has to be solved by a constrained Delaunay triangulation (keeping the structural information for magnetic surfaces if they exist) and discretization. All toroidal terms are discretized by finite differences. Second, a Monte Carlo transport model originally developed for the modelling of the DED configuration of TEXTOR is used. A generalization and extension of this model was necessary to be able to handle W7-X. The model solves the transport equations with Monte Carlo techniques making use of mappings of local magnetic coordinates. The application of this technique to W7-X in a limiter-like configuration is presented. The decreasing dominance of parallel transport with respect to radial transport for electron heat, ion heat and particle transport results in increasingly steep profiles for the respective quantities within the islands. (author)
Frontiers in Cancer Nanomedicine: Directing Mass Transport through Biological Barriers
Ferrari, Mauro
2010-01-01
The physics of mass transport within body compartments and across biological barriers differentiates cancers from healthy tissues. Variants of nanoparticles can be manufactured in combinatorially large sets, varying only one transport-affecting design parameter at a time. Nanoparticles can also be used as building blocks for systems that perform sequences of coordinated actions, in accordance to a prescribed logic. These are referred to as Logic-Embedded Vectors “(LEV)” in the following. Nanoparticles and LEVs are ideal probes for the determination of mass transport laws in tumors, acting as imaging contrast enhancers, and can be employed for the lesion-selective delivery of therapy. Their size, shape, density and surface chemistry dominate convective transport in the blood stream, margination, cell adhesion, selective cellular uptake, as well as sub-cellular trafficking and localization. As argued here, the understanding of transport differentials in cancer, termed ‘transport oncophysics’ unveils a new promising frontier in oncology: the development of lesion-specific delivery particulates that exploit mass transport differentials to deploy treatment of greater efficacy and reduced side effects. PMID:20079548
Modelling of Transport Projects Uncertainties
DEFF Research Database (Denmark)
Salling, Kim Bang; Leleur, Steen
2009-01-01
This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenario-grid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario......-based graphs which function as risk-related decision support for the appraised transport infrastructure project....
Modelling dust transport in tokamaks
International Nuclear Information System (INIS)
Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.
2008-01-01
The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)
Methods for testing transport models
International Nuclear Information System (INIS)
Singer, C.; Cox, D.
1991-01-01
Substantial progress has been made over the past year on six aspects of the work supported by this grant. As a result, we have in hand for the first time a fairly complete set of transport models and improved statistical methods for testing them against large databases. We also have initial results of such tests. These results indicate that careful application of presently available transport theories can reasonably well produce a remarkably wide variety of tokamak data
Track structure in biological models.
Curtis, S B
1986-01-01
High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.
Integrating systems biology models and biomedical ontologies.
Hoehndorf, Robert; Dumontier, Michel; Gennari, John H; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L; Gkoutos, Georgios V
2011-08-11
Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.
Spatial Modeling Tools for Cell Biology
National Research Council Canada - National Science Library
Przekwas, Andrzej; Friend, Tom; Teixeira, Rodrigo; Chen, Z. J; Wilkerson, Patrick
2006-01-01
.... Scientific potentials and military relevance of computational biology and bioinformatics have inspired DARPA/IPTO's visionary BioSPICE project to develop computational framework and modeling tools for cell biology...
A multiscale description of growth and transport in biological tissues
Directory of Open Access Journals (Sweden)
Grillo A.
2007-01-01
Full Text Available We study a growing biological tissue as an open biphasic mixture with mass exchange between phases. The solid phase is identified with the matrix of a porous medium, while the fluid phase is comprised of water, together with all the dissolved chemical substances coexisting in the pore space. We assume that chemical substances evolve according to transport mechanisms determined by kinematical and constitutive relations, and we propose to consider growth as a process able to influence transport by continuously varying the thermo-mechanic state of the tissue. By focusing on the case of anisotropic growth, we show that such an influence occurs through a continuous rearrangement of the tissue material symmetries. In order to illustrate this interaction, we restrict ourselves to diffusion-dominated transport, and we assume that the time-scales associated with growth and the transport process of interest are largely separated. This allows for performing an asymptotic analysis of the "field equations" of the system. In this framework, we provide a formal solution of the transport equation in terms of its associated Green's function, and we show how the macroscopic concentration of a given chemical substance is "modulated" by anisotropic growth. .
Modelling of Transport Projects Uncertainties
DEFF Research Database (Denmark)
Salling, Kim Bang; Leleur, Steen
2012-01-01
This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenario-grid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario......-based graphs which functions as risk-related decision support for the appraised transport infrastructure project. The presentation of RSF is demonstrated by using an appraisal case concerning a new airfield in the capital of Greenland, Nuuk....
Directory of Open Access Journals (Sweden)
Košťál Michal
2016-01-01
Full Text Available A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1–10 MeV and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1. Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.
Variational multiscale models for charge transport.
Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin
2012-01-01
This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle
Variational multiscale models for charge transport
Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin
2012-01-01
This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle
Understanding transport barriers through modelling
International Nuclear Information System (INIS)
Rozhansky, V
2004-01-01
Models of radial electric field formation are discussed and compared with the results of numerical simulations from fluid transport codes and Monte Carlo codes. A comparison of the fluid and Monte Carlo codes is presented. A conclusion is arrived at that all the simulations do not predict any bifurcation of the electric field, i.e. no bifurcation of poloidal rotation from low to high Mach number values is obtained. In most of the simulations, the radial electric field is close to the neoclassical electric field. The deviation from neoclassical electric field at the separatrix due to the existence of a transitional viscous layer is discussed. Scalings for the shear of the poloidal rotation are checked versus simulation results. It is demonstrated that assuming the critical shear to be of the order of 10 5 s -1 , it is possible to obtain a L-H transition power scaling close to that observed in the experiment. The dependence of the threshold on the magnetic field direction, pellet injection, aspect ratio and other factors are discussed on the basis of existing simulations. Transport codes where transport coefficients depend on the turbulence level and scenario simulations of L-H transition are analysed. However, the details of gyrofluid and gyrokinetic modelling should be discussed elsewhere. Simulations of internal transport barrier (ITB) formation are discussed as well as factors responsible for ITB formation
Olbrant, Edgar; Frank, Martin
2010-12-01
In this paper, we study a deterministic method for particle transport in biological tissues. The method is specifically developed for dose calculations in cancer therapy and for radiological imaging. Generalized Fokker-Planck (GFP) theory [Leakeas and Larsen, Nucl. Sci. Eng. 137 (2001), pp. 236-250] has been developed to improve the Fokker-Planck (FP) equation in cases where scattering is forward-peaked and where there is a sufficient amount of large-angle scattering. We compare grid-based numerical solutions to FP and GFP in realistic medical applications. First, electron dose calculations in heterogeneous parts of the human body are performed. Therefore, accurate electron scattering cross sections are included and their incorporation into our model is extensively described. Second, we solve GFP approximations of the radiative transport equation to investigate reflectance and transmittance of light in biological tissues. All results are compared with either Monte Carlo or discrete-ordinates transport solutions.
Methods for testing transport models
International Nuclear Information System (INIS)
Singer, C.; Cox, D.
1993-01-01
This report documents progress to date under a three-year contract for developing ''Methods for Testing Transport Models.'' The work described includes (1) choice of best methods for producing ''code emulators'' for analysis of very large global energy confinement databases, (2) recent applications of stratified regressions for treating individual measurement errors as well as calibration/modeling errors randomly distributed across various tokamaks, (3) Bayesian methods for utilizing prior information due to previous empirical and/or theoretical analyses, (4) extension of code emulator methodology to profile data, (5) application of nonlinear least squares estimators to simulation of profile data, (6) development of more sophisticated statistical methods for handling profile data, (7) acquisition of a much larger experimental database, and (8) extensive exploratory simulation work on a large variety of discharges using recently improved models for transport theories and boundary conditions. From all of this work, it has been possible to define a complete methodology for testing new sets of reference transport models against much larger multi-institutional databases
Stochastic models of intracellular transport
Bressloff, Paul C.; Newby, Jay M.
2013-01-01
mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually
A biological compression model and its applications.
Cao, Minh Duc; Dix, Trevor I; Allison, Lloyd
2011-01-01
A biological compression model, expert model, is presented which is superior to existing compression algorithms in both compression performance and speed. The model is able to compress whole eukaryotic genomes. Most importantly, the model provides a framework for knowledge discovery from biological data. It can be used for repeat element discovery, sequence alignment and phylogenetic analysis. We demonstrate that the model can handle statistically biased sequences and distantly related sequences where conventional knowledge discovery tools often fail.
Advanced transport modeling of toroidal plasmas with transport barriers
International Nuclear Information System (INIS)
Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.
2005-01-01
Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)
Biological transport of curium-243 in dairy animals
International Nuclear Information System (INIS)
Sutton, W.W.; Patzer, R.G.; Hahn, P.B.; Potter, G.D.
1979-04-01
Lactating cows and goats were used to examine the biological transport of curium-243 in dairy animals. After either single oral or intravenous nuclide doses were administered, samples of milk, urine, blood, and feces were taken over a 144-hr priod, and the curium concentrations were determined by gamma counting. Gastrointestinal uptake of curium was estimated to be 0.02 and 0.006% of the oral dose for cows and goats, respectively. The cumulative percentage of oral dose transported to milk and urine was 4.6 x 10 -4 and 1.9 x 10 -3 , respectively, for a cow and 2.7 x 10 -4 and 1.6 x 10 -4 , respectively, for goats. Plasma concentrations of curium decreased rapidly following all intravenous injections. The average percentage of injected curium transferred to milk, urine, and feces was 2, 8, and 1, respectively, for a cow and 2, 5, and 5, respectively, for goats. All animals were sacrificed one week after dosing. Bovine bone retained the greatest fraction of the administered dose and the next highest was the liver. However, in all three intravenously dosed goats the liver contained the greatest amount of curium. Nuclide deposition in bone and liver was essentially equal for two of the three orally dosed goats while the skeleton contained the most curium in the other animal. Comparisons are presented between curium-243 and americium-241 transport in dairy cows
The binding, transport and fate of aluminium in biological cells.
Exley, Christopher; Mold, Matthew J
2015-04-01
Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the 'silent' pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion. Copyright © 2014 Elsevier GmbH. All rights reserved.
LASL models for environmental transport of radionuclides in forests
International Nuclear Information System (INIS)
Gallegos, A.F.; Smith, W.J.; Johnson, L.J.
1978-01-01
The Los Alamos Scientific Laboratory has been developing techniques for evaluating the adequacy of shallow land radioactive disposal sites to contain disposed radionuclides. This report discusses developments in applying a Biological Transport Model to simulate the cycling of plutonium in pinyon-juniper, and ponderosa pine forest ecosystems through serial stage developments using plant growth dynamics created in the model
Genetics of traffic assignment models for strategic transport planning
Bliemer, M.C.J.; Raadsen, M.P.H.; Brederode, L.J.N.; Bell, M.G.H.; Wismans, Luc Johannes Josephus; Smith, M.J.
2016-01-01
This paper presents a review and classification of traffic assignment models for strategic transport planning purposes by using concepts analogous to genetics in biology. Traffic assignment models share the same theoretical framework (DNA), but differ in capability (genes). We argue that all traffic
The biological transport of radionuclides in grassland and freshwater ecosystems
International Nuclear Information System (INIS)
Rudge, S.A.
1989-12-01
This thesis examines the biological transport of radionuclides through terrestrial and aquatic ecosystems, with particular reference to radiocaesium. The semi-natural grassland habitat was located at Drigg, W. Cumbria, contaminated primarily by radioactive fallout, from several sources over the past decade. Advantage was made of the deposition of radionuclides from the Chernobyl reactor incident, which occurred during the early stages of the investigation. The study examined the distribution of radiocaesium for the major components of the grassland ecosystem, within the soil-plant-invertebrate-small mammal food chain. Data concerning temporal fluctuation of radionuclide transfer factors between food chain components are presented. The final section examines the spatial distribution of radiocaesium in sediment and the freshwater eel (Anguilla anguilla) in a small stream contaminated by radioactive effluent. The relationship between activity levels in eels and the sediments in which they rest and forage was investigated. Factors influencing uptake of radiocaesium in freshwater fish were also examined. (author)
Modelling of radon transport in porous media
van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M
1998-01-01
This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport
Directions in Radiation Transport Modelling
Directory of Open Access Journals (Sweden)
P Nicholas Smith
2016-12-01
More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.
Piecewise deterministic processes in biological models
Rudnicki, Ryszard
2017-01-01
This book presents a concise introduction to piecewise deterministic Markov processes (PDMPs), with particular emphasis on their applications to biological models. Further, it presents examples of biological phenomena, such as gene activity and population growth, where different types of PDMPs appear: continuous time Markov chains, deterministic processes with jumps, processes with switching dynamics, and point processes. Subsequent chapters present the necessary tools from the theory of stochastic processes and semigroups of linear operators, as well as theoretical results concerning the long-time behaviour of stochastic semigroups induced by PDMPs and their applications to biological models. As such, the book offers a valuable resource for mathematicians and biologists alike. The first group will find new biological models that lead to interesting and often new mathematical questions, while the second can observe how to include seemingly disparate biological processes into a unified mathematical theory, and...
Toward synthesizing executable models in biology.
Fisher, Jasmin; Piterman, Nir; Bodik, Rastislav
2014-01-01
Over the last decade, executable models of biological behaviors have repeatedly provided new scientific discoveries, uncovered novel insights, and directed new experimental avenues. These models are computer programs whose execution mechanistically simulates aspects of the cell's behaviors. If the observed behavior of the program agrees with the observed biological behavior, then the program explains the phenomena. This approach has proven beneficial for gaining new biological insights and directing new experimental avenues. One advantage of this approach is that techniques for analysis of computer programs can be applied to the analysis of executable models. For example, one can confirm that a model agrees with experiments for all possible executions of the model (corresponding to all environmental conditions), even if there are a huge number of executions. Various formal methods have been adapted for this context, for example, model checking or symbolic analysis of state spaces. To avoid manual construction of executable models, one can apply synthesis, a method to produce programs automatically from high-level specifications. In the context of biological modeling, synthesis would correspond to extracting executable models from experimental data. We survey recent results about the usage of the techniques underlying synthesis of computer programs for the inference of biological models from experimental data. We describe synthesis of biological models from curated mutation experiment data, inferring network connectivity models from phosphoproteomic data, and synthesis of Boolean networks from gene expression data. While much work has been done on automated analysis of similar datasets using machine learning and artificial intelligence, using synthesis techniques provides new opportunities such as efficient computation of disambiguating experiments, as well as the ability to produce different kinds of models automatically from biological data.
Towards Synthesizing Executable Models in Biology
Directory of Open Access Journals (Sweden)
Jasmin eFisher
2014-12-01
Full Text Available Over the last decade, executable models of biological behaviors have repeatedly provided new scientific discoveries, uncovered novel insights, and directed new experimental avenues. These models are computer programs whose execution mechanistically simulates aspects of the cell’s behaviors. If the observed behavior of the program agrees with the observed biological behavior, then the program explains the phenomena. This approach has proven beneficial for gaining new biological insights and directing new experimental avenues. One advantage of this approach is that techniques for analysis of computer programs can be applied to the analysis of executable models. For example, one can confirm that a model agrees with experiments for all possible executions of the model (corresponding to all environmental conditions, even if there are a huge number of executions. Various formal methods have been adapted for this context, for example, model checking or symbolic analysis of state spaces. To avoid manual construction of executable models, one can apply synthesis, a method to produce programs automatically from high-level specifications. In the context of biological modelling, synthesis would correspond to extracting executable models from experimental data. We survey recent results about the usage of the techniques underlying synthesis of computer programs for the inference of biological models from experimental data. We describe synthesis of biological models from curated mutation experiment data, inferring network connectivity models from phosphoproteomic data, and synthesis of Boolean networks from gene expression data. While much work has been done on automated analysis of similar datasets using machine learning and artificial intelligence, using synthesis techniques provides new opportunities such as efficient computation of disambiguating experiments, as well as the ability to produce different kinds of models automatically from biological data.
Up-gradient transport in a probabilistic transport model
DEFF Research Database (Denmark)
Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.
2005-01-01
The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....
Transport and characterization of ambient biological aerosol near Laurel, MD
Santarpia, J. L.; Cunningham, D.; Gilberry, J.; Kim, S.; Smith, E. E.; Ratnesar-Shumate, S.; Quizon, J.
2010-09-01
Bacterial aerosol have been observed and studied in the ambient environment since the mid nineteenth century. These studies have sought to provide a better understanding of the diversity, variability and factors that control the biological aerosol population. In this study, we show comparisons between diversity of culturable bacteria and fungi, using culture and clinical biochemical tests, and 16S rRNA diversity using Affymetrix PhyloChips. Comparing the culturable fraction and surveying the total 16S rRNA of each sample provides a comprehensive look at the bacterial population studied and allows comparison with previous studies. Thirty-six hour back-trajectories of the air parcels sampled, over the two day period beginning 4 November 2008, provide information on the sources of aerosol sampled on the campus of Johns Hopkins University Applied Physics Laboratory in Laurel, MD. This study indicates that back-trajectory modeling of air parcels may provide insights into the observed diversity of biological aerosol.
Integrating interactive computational modeling in biology curricula.
Directory of Open Access Journals (Sweden)
Tomáš Helikar
2015-03-01
Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.
Integrating interactive computational modeling in biology curricula.
Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A
2015-03-01
While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.
Setting Parameters for Biological Models With ANIMO
Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran
2014-01-01
ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions
Toward computational cumulative biology by combining models of biological datasets.
Faisal, Ali; Peltonen, Jaakko; Georgii, Elisabeth; Rung, Johan; Kaski, Samuel
2014-01-01
A main challenge of data-driven sciences is how to make maximal use of the progressively expanding databases of experimental datasets in order to keep research cumulative. We introduce the idea of a modeling-based dataset retrieval engine designed for relating a researcher's experimental dataset to earlier work in the field. The search is (i) data-driven to enable new findings, going beyond the state of the art of keyword searches in annotations, (ii) modeling-driven, to include both biological knowledge and insights learned from data, and (iii) scalable, as it is accomplished without building one unified grand model of all data. Assuming each dataset has been modeled beforehand, by the researchers or automatically by database managers, we apply a rapidly computable and optimizable combination model to decompose a new dataset into contributions from earlier relevant models. By using the data-driven decomposition, we identify a network of interrelated datasets from a large annotated human gene expression atlas. While tissue type and disease were major driving forces for determining relevant datasets, the found relationships were richer, and the model-based search was more accurate than the keyword search; moreover, it recovered biologically meaningful relationships that are not straightforwardly visible from annotations-for instance, between cells in different developmental stages such as thymocytes and T-cells. Data-driven links and citations matched to a large extent; the data-driven links even uncovered corrections to the publication data, as two of the most linked datasets were not highly cited and turned out to have wrong publication entries in the database.
Modeling biology using relational databases.
Peitzsch, Robert M
2003-02-01
There are several different methodologies that can be used for designing a database schema; no one is the best for all occasions. This unit demonstrates two different techniques for designing relational tables and discusses when each should be used. These two techniques presented are (1) traditional Entity-Relationship (E-R) modeling and (2) a hybrid method that combines aspects of data warehousing and E-R modeling. The method of choice depends on (1) how well the information and all its inherent relationships are understood, (2) what types of questions will be asked, (3) how many different types of data will be included, and (4) how much data exists.
Structured population models in biology and epidemiology
Ruan, Shigui
2008-01-01
This book consists of six chapters written by leading researchers in mathematical biology. These chapters present recent and important developments in the study of structured population models in biology and epidemiology. Topics include population models structured by age, size, and spatial position; size-structured models for metapopulations, macroparasitc diseases, and prion proliferation; models for transmission of microparasites between host populations living on non-coincident spatial domains; spatiotemporal patterns of disease spread; method of aggregation of variables in population dynamics; and biofilm models. It is suitable as a textbook for a mathematical biology course or a summer school at the advanced undergraduate and graduate level. It can also serve as a reference book for researchers looking for either interesting and specific problems to work on or useful techniques and discussions of some particular problems.
Unified data model for biological data
International Nuclear Information System (INIS)
Idrees, M.
2014-01-01
A data model empowers us to store, retrieve and manipulate data in a unified way. We consider the biological data consists of DNA (De-Oxyribonucleic Acid), RNA (Ribonucleic Acid) and protein structures. In our Bioinformatics Lab (Bioinformatics Lab, Alkhawarizmi Institute of Computer Science, University of Engineering and Technology, Lahore, Pakistan), we have already proposed two data models for DNA and protein structures individually. In this paper, we propose a unified data model by using the data models of TOS (Temporal Object Oriented System) after making some necessary modifications to this data model and our already proposed the two data models. This proposed unified data model can be used for the modeling and maintaining the biological data (i.e. DNA, RNA and protein structures), in a single unified way. (author)
Laser interaction with biological material mathematical modeling
Kulikov, Kirill
2014-01-01
This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.
SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION
International Nuclear Information System (INIS)
B.W. ARNOLD
2004-01-01
The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ
Ranked retrieval of Computational Biology models.
Henkel, Ron; Endler, Lukas; Peters, Andre; Le Novère, Nicolas; Waltemath, Dagmar
2010-08-11
The study of biological systems demands computational support. If targeting a biological problem, the reuse of existing computational models can save time and effort. Deciding for potentially suitable models, however, becomes more challenging with the increasing number of computational models available, and even more when considering the models' growing complexity. Firstly, among a set of potential model candidates it is difficult to decide for the model that best suits ones needs. Secondly, it is hard to grasp the nature of an unknown model listed in a search result set, and to judge how well it fits for the particular problem one has in mind. Here we present an improved search approach for computational models of biological processes. It is based on existing retrieval and ranking methods from Information Retrieval. The approach incorporates annotations suggested by MIRIAM, and additional meta-information. It is now part of the search engine of BioModels Database, a standard repository for computational models. The introduced concept and implementation are, to our knowledge, the first application of Information Retrieval techniques on model search in Computational Systems Biology. Using the example of BioModels Database, it was shown that the approach is feasible and extends the current possibilities to search for relevant models. The advantages of our system over existing solutions are that we incorporate a rich set of meta-information, and that we provide the user with a relevance ranking of the models found for a query. Better search capabilities in model databases are expected to have a positive effect on the reuse of existing models.
Transport Choice Modeling for the Evaluation of New Transport Policies
Directory of Open Access Journals (Sweden)
Ander Pijoan
2018-04-01
Full Text Available Quantifying the impact of the application of sustainable transport policies is essential in order to mitigate effects of greenhouse gas emissions produced by the transport sector. One of the most common approaches used for this purpose is that of traffic modelling and simulation, which consists of emulating the operation of an entire road network. This article presents the results of fitting 8 well known data science methods for transport choice modelling, the area in which more research is needed. The models have been trained with information from Biscay province in Spain in order to match as many of its commuters as possible. Results show that the best models correctly forecast more than 51% of the trips recorded. Finally, the results have been validated with a second data set from the Silesian Voivodeship in Poland, showing that all models indeed maintain their forecasting ability.
Colloid transport in model fracture filling materials
Wold, S.; Garcia-Garcia, S.; Jonsson, M.
2010-12-01
Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture
Logistics and Transport - a conceptual model
DEFF Research Database (Denmark)
Jespersen, Per Homann; Drewes, Lise
2004-01-01
This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...
The Strategies of Modeling in Biology Education
Svoboda, Julia; Passmore, Cynthia
2013-01-01
Modeling, like inquiry more generally, is not a single method, but rather a complex suite of strategies. Philosophers of biology, citing the diverse aims, interests, and disciplinary cultures of biologists, argue that modeling is best understood in the context of its epistemic aims and cognitive payoffs. In the science education literature,…
Introduction to stochastic models in biology
DEFF Research Database (Denmark)
Ditlevsen, Susanne; Samson, Adeline
2013-01-01
This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential equations (ODEs). These models assume that the observed dynamics are driven exclusively by internal, deterministic mechanisms. However, real biological systems will always be exp...
RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS
Energy Technology Data Exchange (ETDEWEB)
S. Magnuson
2004-11-01
The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.
Coal supply and transportation model (CSTM)
International Nuclear Information System (INIS)
1991-11-01
The Coal Supply and Transportation Model (CSTM) forecasts annual coal supply and distribution to domestic and foreign markets. The model describes US coal production, national and international coal transportation industries. The objective of this work is to provide a technical description of the current version of the model
Tariff Model for Combined Transport
Directory of Open Access Journals (Sweden)
Velimir Kolar
2002-11-01
Full Text Available By analysing the cwTen.t situation on the Croatian transportationmarket, and considering all parameters needed forthe development of combined transport, measures are suggestedin order to improve and stimulate its development. Oneof the first measures is the standardisation and introduction ofunique tariffs for combined transport, and then government incentivefor the organisation and development of combinedtransport means and equipment. A significant role in thisshould be set on adequately defined transport policy.
Modeling Dispersion of Chemical-Biological Agents in Three Dimensional Living Space
International Nuclear Information System (INIS)
William S. Winters
2002-01-01
This report documents a series of calculations designed to demonstrate Sandia's capability in modeling the dispersal of chemical and biological agents in complex three-dimensional spaces. The transport of particles representing biological agents is modeled in a single room and in several connected rooms. The influence of particle size, particle weight and injection method are studied
Notions of similarity for computational biology models
Waltemath, Dagmar
2016-03-21
Computational models used in biology are rapidly increasing in complexity, size, and numbers. To build such large models, researchers need to rely on software tools for model retrieval, model combination, and version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of similarity may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here, we introduce a general notion of quantitative model similarities, survey the use of existing model comparison methods in model building and management, and discuss potential applications of model comparison. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on different model aspects. Potentially relevant aspects of a model comprise its references to biological entities, network structure, mathematical equations and parameters, and dynamic behaviour. Future similarity measures could combine these model aspects in flexible, problem-specific ways in order to mimic users\\' intuition about model similarity, and to support complex model searches in databases.
Notions of similarity for computational biology models
Waltemath, Dagmar; Henkel, Ron; Hoehndorf, Robert; Kacprowski, Tim; Knuepfer, Christian; Liebermeister, Wolfram
2016-01-01
Computational models used in biology are rapidly increasing in complexity, size, and numbers. To build such large models, researchers need to rely on software tools for model retrieval, model combination, and version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of similarity may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here, we introduce a general notion of quantitative model similarities, survey the use of existing model comparison methods in model building and management, and discuss potential applications of model comparison. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on different model aspects. Potentially relevant aspects of a model comprise its references to biological entities, network structure, mathematical equations and parameters, and dynamic behaviour. Future similarity measures could combine these model aspects in flexible, problem-specific ways in order to mimic users' intuition about model similarity, and to support complex model searches in databases.
Ecosystem element transport model for Lake Eckarfjaerden
Energy Technology Data Exchange (ETDEWEB)
Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)
2014-07-01
The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)
Uncertainty calculation in transport models and forecasts
DEFF Research Database (Denmark)
Manzo, Stefano; Prato, Carlo Giacomo
Transport projects and policy evaluations are often based on transport model output, i.e. traffic flows and derived effects. However, literature has shown that there is often a considerable difference between forecasted and observed traffic flows. This difference causes misallocation of (public...... implemented by using an approach based on stochastic techniques (Monte Carlo simulation and Bootstrap re-sampling) or scenario analysis combined with model sensitivity tests. Two transport models are used as case studies: the Næstved model and the Danish National Transport Model. 3 The first paper...... in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...
Functional model of biological neural networks.
Lo, James Ting-Ho
2010-12-01
A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.
Green Algae as Model Organisms for Biological Fluid Dynamics
Goldstein, Raymond E.
2015-01-01
In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.
An online model composition tool for system biology models.
Coskun, Sarp A; Cicek, A Ercument; Lai, Nicola; Dash, Ranjan K; Ozsoyoglu, Z Meral; Ozsoyoglu, Gultekin
2013-09-05
There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user's input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well.
Notions of similarity for systems biology models.
Henkel, Ron; Hoehndorf, Robert; Kacprowski, Tim; Knüpfer, Christian; Liebermeister, Wolfram; Waltemath, Dagmar
2018-01-01
Systems biology models are rapidly increasing in complexity, size and numbers. When building large models, researchers rely on software tools for the retrieval, comparison, combination and merging of models, as well as for version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of 'similarity' may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here we survey existing methods for the comparison of models, introduce quantitative measures for model similarity, and discuss potential applications of combined similarity measures. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on a combination of different model aspects. The six aspects that we define as potentially relevant for similarity are underlying encoding, references to biological entities, quantitative behaviour, qualitative behaviour, mathematical equations and parameters and network structure. We argue that future similarity measures will benefit from combining these model aspects in flexible, problem-specific ways to mimic users' intuition about model similarity, and to support complex model searches in databases. © The Author 2016. Published by Oxford University Press.
A Mercury Model of Atmospheric Transport
Energy Technology Data Exchange (ETDEWEB)
Christensen, Alex B. [Oregon State Univ., Corvallis, OR (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chodash, Perry A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Procassini, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2018-01-19
Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.
The european Trans-Tools transport model
Rooijen, T. van; Burgess, A.
2008-01-01
The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland
Dileptons from transport and hydrodynamical models
International Nuclear Information System (INIS)
Huovinen, P.; Koch, V.
2000-01-01
Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball
3D neutron transport modelization
International Nuclear Information System (INIS)
Warin, X.
1996-12-01
Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.)
3D neutron transport modelization
Energy Technology Data Exchange (ETDEWEB)
Warin, X.
1996-12-01
Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.). 10 refs.
Gabetta, Ester
2007-01-01
The study of kinetic equations related to gases, semiconductors, photons, traffic flow, and other systems has developed rapidly in recent years because of its role as a mathematical tool in many applications in areas such as engineering, meteorology, biology, chemistry, materials science, nanotechnology, and pharmacy. Written by leading specialists in their respective fields, this book presents an overview of recent developments in the field of mathematical kinetic theory with a focus on modeling complex systems, emphasizing both mathematical properties and their physical meaning. The overall presentation covers not only modeling aspects and qualitative analysis of mathematical problems, but also inverse problems, which lead to a detailed assessment of models in connection with their applications, and to computational problems, which lead to an effective link of models to the analysis of real-world systems. "Transport Phenomena and Kinetic Theory" is an excellent self-study reference for graduate students, re...
Optimal transportation networks models and theory
Bernot, Marc; Morel, Jean-Michel
2009-01-01
The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.
Ultrafast spectroscopy of model biological membranes
Ghosh, Avishek
2009-01-01
In this PhD thesis, I have described the novel time-resolved sum-frequency generation (TR-SFG) spectroscopic technique that I developed during the course of my PhD research and used it study the ultrafast vibrational, structural and orientational dynamics of water molecules at model biological
Prospective Tests on Biological Models of Acupuncture
Directory of Open Access Journals (Sweden)
Charles Shang
2009-01-01
Full Text Available The biological effects of acupuncture include the regulation of a variety of neurohumoral factors and growth control factors. In science, models or hypotheses with confirmed predictions are considered more convincing than models solely based on retrospective explanations. Literature review showed that two biological models of acupuncture have been prospectively tested with independently confirmed predictions: The neurophysiology model on the long-term effects of acupuncture emphasizes the trophic and anti-inflammatory effects of acupuncture. Its prediction on the peripheral effect of endorphin in acupuncture has been confirmed. The growth control model encompasses the neurophysiology model and suggests that a macroscopic growth control system originates from a network of organizers in embryogenesis. The activity of the growth control system is important in the formation, maintenance and regulation of all the physiological systems. Several phenomena of acupuncture such as the distribution of auricular acupuncture points, the long-term effects of acupuncture and the effect of multimodal non-specific stimulation at acupuncture points are consistent with the growth control model. The following predictions of the growth control model have been independently confirmed by research results in both acupuncture and conventional biomedical sciences: (i Acupuncture has extensive growth control effects. (ii Singular point and separatrix exist in morphogenesis. (iii Organizers have high electric conductance, high current density and high density of gap junctions. (iv A high density of gap junctions is distributed as separatrices or boundaries at body surface after early embryogenesis. (v Many acupuncture points are located at transition points or boundaries between different body domains or muscles, coinciding with the connective tissue planes. (vi Some morphogens and organizers continue to function after embryogenesis. Current acupuncture research suggests a
Two-point model for divertor transport
International Nuclear Information System (INIS)
Galambos, J.D.; Peng, Y.K.M.
1984-04-01
Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime
Agent-based modelling in synthetic biology.
Gorochowski, Thomas E
2016-11-30
Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).
Kulasiri, Don
2002-01-01
Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...
Chiel, Hillel J.; McManus, Jeffrey M.; Shaw, Kendrick M.
2010-01-01
We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge…
Model Comparison for Electron Thermal Transport
Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques
2015-11-01
Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
Modeling pollutant transport using a meshless-lagrangian particle model
International Nuclear Information System (INIS)
Carrington, D.B.; Pepper, D.W.
2002-01-01
A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons
Developments in tokamak transport modeling
International Nuclear Information System (INIS)
Houlberg, W.A.; Attenberger; Lao, L.L.
1981-01-01
A variety of numerical methods for solving the time-dependent fluid transport equations for tokamak plasmas is presented. Among the problems discussed are techniques for solving the sometimes very stiff parabolic equations for particle and energy flow, treating convection-dominated energy transport that leads to large cell Reynolds numbers, optimizing the flow of a code to reduce the time spent updating the particle and energy source terms, coupling the one-dimensional (1-D) flux-surface-averaged fluid transport equations to solutions of the 2-D Grad-Shafranov equation for the plasma geometry, handling extremely fast transient problems such as internal MHD disruptions and pellet injection, and processing the output to summarize the physics parameters over the potential operating regime for reactors. Emphasis is placed on computational efficiency in both computer time and storage requirements
Structural Identifiability of Dynamic Systems Biology Models.
Villaverde, Alejandro F; Barreiro, Antonio; Papachristodoulou, Antonis
2016-10-01
A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.
Centrifuge modelling of contaminant transport processes
Culligan, P. J.; Savvidou, C.; Barry, D. A.
1996-01-01
Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...
A Sediment Transport Model for Sewers
DEFF Research Database (Denmark)
Mark, Ole; Larsson, Johan; Larsen, Torben
1993-01-01
This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model i...... is being developed as a part of a study being carried out at the University of Aalborg, Denmark and VBB VIAK, Sweden. The project is funded by the Swedish Water and Waste Water Works Association and the Nordic Industrial Foundation.......This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model...
Institute for Multiscale Modeling of Biological Interactions
Energy Technology Data Exchange (ETDEWEB)
Paulaitis, Michael E; Garcia-Moreno, Bertrand; Lenhoff, Abraham
2009-12-26
The Institute for Multiscale Modeling of Biological Interactions (IMMBI) has two primary goals: Foster interdisciplinary collaborations among faculty and their research laboratories that will lead to novel applications of multiscale simulation and modeling methods in the biological sciences and engineering; and Building on the unique biophysical/biology-based engineering foundations of the participating faculty, train scientists and engineers to apply computational methods that collectively span multiple time and length scales of biological organization. The success of IMMBI will be defined by the following: Size and quality of the applicant pool for pre-doctoral and post-doctoral fellows; Academic performance; Quality of the pre-doctoral and post-doctoral research; Impact of the research broadly and to the DOE (ASCR program) mission; Distinction of the next career step for pre-doctoral and post-doctoral fellows; and Faculty collaborations that result from IMMBI activities. Specific details about accomplishments during the three years of DOE support for IMMBI have been documented in Annual Progress Reports (April 2005, June 2006, and March 2007) and a Report for a National Academy of Sciences Review (October 2005) that were submitted to DOE on the dates indicated. An overview of these accomplishments is provided.
Modeling electrokinetic transport in phenol contaminated soils
Energy Technology Data Exchange (ETDEWEB)
Zorn, R.; Haus, R.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)
2001-07-01
Numerical simulations are compared to laboratory experiments of electroremediation in soils contaminated by phenolic pollutants. The developing pH affects the electrokinetic transport behaviour of phenol. It is found that a water chemistry model must be included in an electrokinetic mass transport model to describe the process of electroremediation more accurately, if no buffering system is used at the electrodes. In the case of controlling the pH at the electrode compartments only a simplified chemical reaction model must be included in the numerical code to match the experimental phenolic transport. (orig.)
Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches
Directory of Open Access Journals (Sweden)
Sudin eBhattacharya
2012-12-01
Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.
Concept Layout Model of Transportation Terminals
Directory of Open Access Journals (Sweden)
Li-ya Yao
2012-01-01
Full Text Available Transportation terminal is the key node in transport systems. Efficient terminals can improve operation of passenger transportation networks, adjust the layout of public transportation networks, provide a passenger guidance system, and regulate the development of commercial forms, as well as optimize the assembly and distribution of modern logistic modes, among others. This study aims to clarify the relationship between the function and the structure of transportation terminals and establish the function layout design. The mapping mechanism of demand, function, and structure was analyzed, and a quantitative relationship between function and structure was obtained from a design perspective. Passenger demand and terminal structure were decomposed into several demand units and structural elements following the principle of reverse engineering. The relationship maps between these two kinds of elements were then analyzed. Function-oriented concept layout model of transportation terminals was established using the previous method. Thus, a technique in planning and design of transportation structures was proposed. Meaningful results were obtained from the optimization of transportation terminal facilities, which guide the design of the functional layout of transportation terminals and improve the development of urban passenger transportation systems.
Energy Technology Data Exchange (ETDEWEB)
Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)
2016-05-04
Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to
Highway and interline transportation routing models
International Nuclear Information System (INIS)
Joy, D.S.; Johnson, P.E.
1994-01-01
The potential impacts associated with the transportation of hazardous materials are important issues to shippers, carriers, and the general public. Since transportation routes are a central characteristic in most of these issues, the prediction of likely routes is the first step toward the resolution of these issues. In addition, US Department of Transportation requirements (HM-164) mandate specific routes for shipments of highway controlled quantities of radioactive materials. In response to these needs, two routing models have been developed at Oak Ridge National Laboratory under the sponsorship of the U.S. Department of Energy (DOE). These models have been designated by DOE's Office of Environmental Restoration and Waste Management, Transportation Management Division (DOE/EM) as the official DOE routing models. Both models, HIGHWAY and INTERLINE, are described
Modelling anisotropic water transport in polymer composite ...
Indian Academy of Sciences (India)
Parameters for Fickian diffusion and polymer relaxation models were determined by .... Water transport process of resin and polymer composite specimens at ..... simulation. ... Kwon Y W and Bang H 1997 Finite element method using matlab.
Chiel, Hillel J; McManus, Jeffrey M; Shaw, Kendrick M
2010-01-01
We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a "live" textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology.
McManus, Jeffrey M.; Shaw, Kendrick M.
2010-01-01
We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a “live” textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology. PMID:20810957
Mathematical modeling plasma transport in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Quiang, Ji [Univ. of Illinois, Urbana-Champaign, IL (United States)
1997-01-01
In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10^{20}/m^{3} with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.
Mathematical modeling plasma transport in tokamaks
International Nuclear Information System (INIS)
Quiang, Ji
1995-01-01
In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%
Modeling the Biological Diversity of Pig Carcasses
DEFF Research Database (Denmark)
Erbou, Søren Gylling Hemmingsen
This thesis applies methods from medical image analysis for modeling the biological diversity of pig carcasses. The Danish meat industry is very focused on improving product quality and productivity by optimizing the use of the carcasses and increasing productivity in the abattoirs. In order...... equipment is investigated, without the need for a calibration against a less accurate manual dissection. The rest of the contributions regard the construction and use of point distribution models (PDM). PDM’s are able to capture the shape variation of a population of shapes, in this case a 3D surface...
Ecological aspects of using biological diesel oil in railway transport
Directory of Open Access Journals (Sweden)
L. P. Lingaitis
2008-06-01
Full Text Available The number of various transport facilities used in Europe is rapidly growing. They release a big amount of pollutants into the atmosphere. Therefore, environment protection from these pollutants ejected by internal combustion engines is a key problem facing us today and which will be acute in the future. Biofuel is the only effective and widely used alternative fuel which can reduce pollution of the environment. The main aim of the present paper is to perform a comparative analysis of burnt gases of engines using rapeseed oil methyl ester and petroleum diesel oil and to determine ecological effectiveness of biofuel used in diesel locomotive engines in railway transport.
Stochastic model of radioiodine transport
International Nuclear Information System (INIS)
Schwarz, G.; Hoffman, F.O.
1980-01-01
A research project has been underway at the Oak Ridge National Laboratory with the objective to evaluate dose assessment models and to determine the uncertainty associated with the model predictions. This has resulted in the application of methods to propagate uncertainties through models. Some techniques and results related to this problem are discussed
Biologic Constraints on Modelling Virus Assembly
Directory of Open Access Journals (Sweden)
Robert L. Garcea
2008-01-01
Full Text Available The mathematic modelling of icosahedral virus assembly has drawn increasing interest because of the symmetric geometry of the outer shell structures. Many models involve equilibrium expressions of subunit binding, with reversible subunit additions forming various intermediate structures. The underlying assumption is that a final lowest energy state drives the equilibrium toward assembly. In their simplest forms, these models have explained why high subunit protein concentrations and strong subunit association constants can result in kinetic traps forming off pathway partial and aberrant structures. However, the cell biology of virus assembly is exceedingly complex. The biochemistry and biology of polyoma and papillomavirus assembly described here illustrates many of these specific issues. Variables include the use of cellular ‘chaperone’ proteins as mediators of assembly fidelity, the coupling of assembly to encapsidation of a specific nucleic acid genome, the use of cellular structures as ‘workbenches’ upon which assembly occurs, and the underlying problem of making a capsid structure that is metastable and capable of rapid disassembly upon infection. Although formidable to model, incorporating these considerations could advance the relevance of mathematical models of virus assembly to the real world.
Howard, Rebecca J; Carnevale, Vincenzo; Delemotte, Lucie; Hellmich, Ute A; Rothberg, Brad S
2018-04-01
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.
Mathematical modeling in biology: A critical assessment
Energy Technology Data Exchange (ETDEWEB)
Buiatti, M. [Florence, Univ. (Italy). Dipt. di Biologia Animale e Genetica
1998-01-01
The molecular revolution and the development of biology-derived industry have led in the last fifty years to an unprecedented `lead forward` of life sciences in terms of experimental data. Less success has been achieved in the organisation of such data and in the consequent development of adequate explanatory and predictive theories and models. After a brief historical excursus inborn difficulties of mathematisation of biological objects and processes derived from the complex dynamics of life are discussed along with the logical tools (simplifications, choice of observation points etc.) used to overcome them. `Autistic`, monodisciplinary attitudes towards biological modeling of mathematicians, physicists, biologists aimed in each case at the use of the tools of other disciplines to solve `selfish` problems are also taken into account and a warning against derived dangers (reification of mono disciplinary metaphors, lack of falsification etc.) is given. Finally `top.down` (deductive) and `bottom up` (inductive) heuristic interactive approaches to mathematisation are critically discussed with the help of serie of examples.
Mathematical modeling in biology: A critical assessment
International Nuclear Information System (INIS)
Buiatti, M.
1998-01-01
The molecular revolution and the development of biology-derived industry have led in the last fifty years to an unprecedented 'lead forward' of life sciences in terms of experimental data. Less success has been achieved in the organisation of such data and in the consequent development of adequate explanatory and predictive theories and models. After a brief historical excursus inborn difficulties of mathematisation of biological objects and processes derived from the complex dynamics of life are discussed along with the logical tools (simplifications, choice of observation points etc.) used to overcome them. 'Autistic', monodisciplinary attitudes towards biological modeling of mathematicians, physicists, biologists aimed in each case at the use of the tools of other disciplines to solve 'selfish' problems are also taken into account and a warning against derived dangers (reification of mono disciplinary metaphors, lack of falsification etc.) is given. Finally 'top.down' (deductive) and 'bottom up' (inductive) heuristic interactive approaches to mathematisation are critically discussed with the help of serie of examples
Yan, Nieng
2017-08-18
The cellular uptake of glucose is an essential physiological process, and movement of glucose across biological membranes requires specialized transporters. The major facilitator superfamily glucose transporters GLUTs, encoded by the SLC2A genes, have been a paradigm for functional, mechanistic, and structural understanding of solute transport in the past century. This review starts with a glimpse into the structural biology of membrane proteins and particularly membrane transport proteins, enumerating the landmark structures in the past 25years. The recent breakthrough in the structural elucidation of GLUTs is then elaborated following a brief overview of the research history of these archetypal transporters, their functional specificity, and physiological and pathophysiological significances. Structures of GLUT1, GLUT3, and GLUT5 in distinct transport and/or ligand-binding states reveal detailed mechanisms of the alternating access transport cycle and substrate recognition, and thus illuminate a path by which structure-based drug design may be applied to help discover novel therapeutics against several debilitating human diseases associated with GLUT malfunction and/or misregulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Butkus, M [Yale-New Haven Hospital, New Haven, CT (United States); Palmer, T [Oregon State University, Corvallis, OR (United States)
2016-06-15
Purpose: To evaluate the dose and biological effectiveness of various ions that could potentially be used for actively scanned particle therapy. Methods: The PHITS Monte Carlo code paired with a microscopic analytical function was used to determine probability distribution functions of the lineal energy in 0.3µm diameter spheres throughout a water phantom. Twenty million primary particles for 1H beams and ten million particles for 4He, 7Li, 10B, 12C, 14N, 16O, and 20Ne were simulated for 0.6cm diameter pencil beams. Beam energies corresponding to Bragg peak depths of 50, 100, 150, 200, 250, and 300mm were used and evaluated transversely every millimeter and radially in annuli with outer radius of 1.0, 2.0, 3.0, 3.2, 3.4, 3.6, 4.0, 5.0, 10.0, 15.0, 20.0 and 25.0mm. The acquired probability distributions were reduced to dose-mean lineal energies and applied to the modified microdosimetric kinetic model for five different cell types to calculate relative biological effectiveness (RBE) compared to 60Co beams at the 10% survival threshold. The product of the calculated RBEs and the simulated physical dose was taken to create biological dose and comparisons were then made between the various ions. Results: Transversely, the 10B beam was seen to minimize relative biological dose in both the constant and accelerated dose change regions, proximal to the Bragg Peak, for all beams traveling greater than 50mm. For the 50mm beam, 7Li was seen to provide the most optimal biological dose profile. Radially small fluctuations (<4.2%) were seen in RBE while physical dose was greater than 1% for all beams. Conclusion: Even with the growing usage of 12C, it may not be the most optimal ion in all clinical situations. Boron was calculated to have slightly enhanced RBE characteristics, leading to lower relative biological doses.
Unit testing, model validation, and biological simulation.
Sarma, Gopal P; Jacobs, Travis W; Watts, Mark D; Ghayoomie, S Vahid; Larson, Stephen D; Gerkin, Richard C
2016-01-01
The growth of the software industry has gone hand in hand with the development of tools and cultural practices for ensuring the reliability of complex pieces of software. These tools and practices are now acknowledged to be essential to the management of modern software. As computational models and methods have become increasingly common in the biological sciences, it is important to examine how these practices can accelerate biological software development and improve research quality. In this article, we give a focused case study of our experience with the practices of unit testing and test-driven development in OpenWorm, an open-science project aimed at modeling Caenorhabditis elegans. We identify and discuss the challenges of incorporating test-driven development into a heterogeneous, data-driven project, as well as the role of model validation tests, a category of tests unique to software which expresses scientific models.
Evaluation of biological models using Spacelab
Tollinger, D.; Williams, B. A.
1980-01-01
Biological models of hypogravity effects are described, including the cardiovascular-fluid shift, musculoskeletal, embryological and space sickness models. These models predict such effects as loss of extracellular fluid and electrolytes, decrease in red blood cell mass, and the loss of muscle and bone mass in weight-bearing portions of the body. Experimentation in Spacelab by the use of implanted electromagnetic flow probes, by fertilizing frog eggs in hypogravity and fixing the eggs at various stages of early development and by assessing the role of the vestibulocular reflex arc in space sickness is suggested. It is concluded that the use of small animals eliminates the uncertainties caused by corrective or preventive measures employed with human subjects.
Uncertainty associated with selected environmental transport models
International Nuclear Information System (INIS)
Little, C.A.; Miller, C.W.
1979-11-01
A description is given of the capabilities of several models to predict accurately either pollutant concentrations in environmental media or radiological dose to human organs. The models are discussed in three sections: aquatic or surface water transport models, atmospheric transport models, and terrestrial and aquatic food chain models. Using data published primarily by model users, model predictions are compared to observations. This procedure is infeasible for food chain models and, therefore, the uncertainty embodied in the models input parameters, rather than the model output, is estimated. Aquatic transport models are divided into one-dimensional, longitudinal-vertical, and longitudinal-horizontal models. Several conclusions were made about the ability of the Gaussian plume atmospheric dispersion model to predict accurately downwind air concentrations from releases under several sets of conditions. It is concluded that no validation study has been conducted to test the predictions of either aquatic or terrestrial food chain models. Using the aquatic pathway from water to fish to an adult for 137 Cs as an example, a 95% one-tailed confidence limit interval for the predicted exposure is calculated by examining the distributions of the input parameters. Such an interval is found to be 16 times the value of the median exposure. A similar one-tailed limit for the air-grass-cow-milk-thyroid for 131 I and infants was 5.6 times the median dose. Of the three model types discussed in this report,the aquatic transport models appear to do the best job of predicting observed concentrations. However, this conclusion is based on many fewer aquatic validation data than were availaable for atmospheric model validation
Modeling biological pathway dynamics with timed automata.
Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N
2014-05-01
Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience.
Transport properties site descriptive model. Guidelines for evaluation and modelling
International Nuclear Information System (INIS)
Berglund, Sten; Selroos, Jan-Olof
2004-04-01
This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive modelling of
Thermal model of spent fuel transport cask
International Nuclear Information System (INIS)
Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.
1996-01-01
The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs
Coupling of transport and geochemical models
International Nuclear Information System (INIS)
Noy, D.J.
1986-01-01
This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)
Spherical Cancer Models in Tumor Biology
Directory of Open Access Journals (Sweden)
Louis-Bastien Weiswald
2015-01-01
Full Text Available Three-dimensional (3D in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.
Clinton River Sediment Transport Modeling Study
The U.S. ACE develops sediment transport models for tributaries to the Great Lakes that discharge to AOCs. The models developed help State and local agencies to evaluate better ways for soil conservation and non-point source pollution prevention.
Radionuclide Transport Models Under Ambient Conditions
International Nuclear Information System (INIS)
Moridis, G.; Hu, Q.
2001-01-01
The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada
Regional transport model of atmospheric sulfates
International Nuclear Information System (INIS)
Rao, K.S.; Thomson, I.; Egan, B.A.
1977-01-01
As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO 2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO 2 and SO 4 /sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO 2 and SO 4 /sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO 2 and SO 4 /sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants
Commercial Consolidation Model Applied to Transport Infrastructure
Energy Technology Data Exchange (ETDEWEB)
Guilherme de Aragão, J.J.; Santos Fontes Pereira, L. dos; Yamashita, Y.
2016-07-01
Since the 1990s, transport concessions, including public-private partnerships (PPPs), have been increasingly adopted by governments as an alternative for financing and operations in public investments, especially in transport infrastructure. The advantage pointed out by proponents of these models lies in merging the expertise and capital of the private sector to the public interest. Several arrangements are possible and have been employed in different cases. After the duration of the first PPP contracts in transportation, many authors have analyzed the success and failure factors of partnerships. The occurrence of failures in some stages of the process can greatly encumber the public administration, incurring losses to the fiscal responsibility of the competent bodies. This article aims to propose a new commercial consolidation model applied to transport infrastructure to ensure fiscal sustainability and overcome the weaknesses of current models. Initially, a systematic review of the literature covering studies on transport concessions between 1990 and 2015 is offered, where the different approaches between various countries are compared and the critical success factors indicated in the studies are identified. In the subsequent part of the paper, an approach for the commercial consolidation of the infrastructure concessions is presented, where the concessionary is paid following a finalistic performance model, which includes the overall fiscal balance of regional growth. Finally, the papers analyses the usefulness of the model in coping with the critical success factors explained before. (Author)
Radionuclide Transport Models Under Ambient Conditions
International Nuclear Information System (INIS)
Moridis, G.; Hu, Q.
2000-01-01
The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and
A multiscale analysis of nutrient transport and biological tissue growth in vitro
O'Dea, R. D.
2014-10-15
© The authors 2014. In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterized by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport, and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection-reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally relevant microstructural information to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.
A simplified tether model for molecular motor transporting cargo
International Nuclear Information System (INIS)
Fang-Zhen, Li; Li-Chun, Jiang
2010-01-01
Molecular motors are proteins or protein complexes which function as transporting engines in biological cells. This paper models the tether between motor and its cargo as a symmetric linear potential. Different from Elston and Peskin's work for which performance of the system was discussed only in some limiting cases, this study produces analytic solutions of the problem for general cases by simplifying the transport system into two physical states, which makes it possible to discuss the dynamics of the motor–cargo system in detail. It turns out that the tether strength between motor and cargo should be greater than a threshold or the motor will fail to transport the cargo, which was not discussed by former researchers yet. Value of the threshold depends on the diffusion coefficients of cargo and motor and also on the strength of the Brownian ratchets dragging the system. The threshold approaches a finite constant when the strength of the ratchet tends to infinity. (general)
Ion transport through biological membranes an integrated theoretical approach
Mackey, Michael C
1975-01-01
This book illustrates some of the ways physics and mathematics have been, and are being, used to elucidate the underlying mechan isms of passive ion movement through biological membranes in general, and the membranes of excltable cells in particular. I have made no effort to be comprehensive in my introduction of biological material and the reader interested in a brief account of single cell electro physlology from a physically-oriented biologists viewpoint will find the chapters by Woodbury (1965) an excellent introduction. Part I is introductory in nature, exploring the basic electrical properties of inexcitable and excitable cell plasma membranes. Cable theory is utilized to illustrate the function of the non-decrementing action potential as a signaling mechanism for the long range trans mission of information in the nervous system, and to gain some in sight into the gross behaviour of neurons. The detailed analysis of Hodgkin and Huxley on the squid giant axon membrane ionic conductance properties...
ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: MODELING
Directory of Open Access Journals (Sweden)
Brînduşa-Antonela SBÎRCEA
2011-01-01
Full Text Available By using active and participatory methods it is hoped that pupils will not only come to a deeper understanding of the issues involved, but also that their motivation will be heightened. Pupil involvement in their learning is essential. Moreover, by using a variety of teaching techniques, we can help students make sense of the world in different ways, increasing the likelihood that they will develop a conceptual understanding. The teacher must be a good facilitator, monitoring and supporting group dynamics. Modeling is an instructional strategy in which the teacher demonstrates a new concept or approach to learning and pupils learn by observing. In the teaching of biology the didactic materials are fundamental tools in the teaching-learning process. Reading about scientific concepts or having a teacher explain them is not enough. Research has shown that modeling can be used across disciplines and in all grade and ability level classrooms. Using this type of instruction, teachers encourage learning.
Hydrogen recycle modeling in transport codes
International Nuclear Information System (INIS)
Howe, H.C.
1979-01-01
The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes
GEOS-5 Chemistry Transport Model User's Guide
Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.
2015-01-01
The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.
At the biological modeling and simulation frontier.
Hunt, C Anthony; Ropella, Glen E P; Lam, Tai Ning; Tang, Jonathan; Kim, Sean H J; Engelberg, Jesse A; Sheikh-Bahaei, Shahab
2009-11-01
We provide a rationale for and describe examples of synthetic modeling and simulation (M&S) of biological systems. We explain how synthetic methods are distinct from familiar inductive methods. Synthetic M&S is a means to better understand the mechanisms that generate normal and disease-related phenomena observed in research, and how compounds of interest interact with them to alter phenomena. An objective is to build better, working hypotheses of plausible mechanisms. A synthetic model is an extant hypothesis: execution produces an observable mechanism and phenomena. Mobile objects representing compounds carry information enabling components to distinguish between them and react accordingly when different compounds are studied simultaneously. We argue that the familiar inductive approaches contribute to the general inefficiencies being experienced by pharmaceutical R&D, and that use of synthetic approaches accelerates and improves R&D decision-making and thus the drug development process. A reason is that synthetic models encourage and facilitate abductive scientific reasoning, a primary means of knowledge creation and creative cognition. When synthetic models are executed, we observe different aspects of knowledge in action from different perspectives. These models can be tuned to reflect differences in experimental conditions and individuals, making translational research more concrete while moving us closer to personalized medicine.
Modelling activity transport behavior in PWR plant
International Nuclear Information System (INIS)
Henshaw, Jim; McGurk, John; Dickinson, Shirley; Burrows, Robert; Hinds, Kelvin; Hussey, Dennis; Deshon, Jeff; Barrios Figueras, Joan Pau; Maldonado Sanchez, Santiago; Fernandez Lillo, Enrique; Garbett, Keith
2012-09-01
The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)
Models in Planning Urban Public Passenger Transport
Directory of Open Access Journals (Sweden)
Gordana Štefančić
2007-07-01
Full Text Available The solving of complex problems in public transport requiresthe usage of models that are based on the estimate of demandin planning the transport routes. The intention is to predictwhat is going to happen in the future, if the proposed solutionsare implemented. In the majority of cases, the publictransport system is formed as a network and stored in the computermemory in order to start the evaluation process by specifYingthe number of trip origins and destinations in each zone.The trip distribution model which is used to calculate the numberof trips between each pair in the zone is based on the overalltravel frictions from zone to zone.
Proton transport in a membrane protein channel: two-dimensional infrared spectrum modeling.
Liang, C.; Knoester, J.; Jansen, T.L.Th.A.
2012-01-01
We model the two-dimensional infrared (2DIR) spectrum of a proton channel to investigate its applicability as a spectroscopy tool to study the proton transport process in biological systems. Proton transport processes in proton channels are involved in numerous fundamental biochemical reactions.
Reactive transport models and simulation with ALLIANCES
International Nuclear Information System (INIS)
Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.
2009-01-01
Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and
Modelling of activity transport in PHWR
International Nuclear Information System (INIS)
Veena, S.N.; Rangarajan, S.; Narasimhan, S.V.; Horvath, G.L.
2000-01-01
The modelling of mass and activity transport in PHWR is of importance in predicting the build up of radiation field in and around the Primary Heat Transport system which will consequently help in planning the Dilute Chemical Decontamination and man rem budgeting. Modeling also helps in understanding the different parameters controlling the transport behaviour. Some of the important parameters include coolant chemistry like pH, physical parameters like temperature, the nature of the corrosion film and hence the effect of passivation techniques. VVER code for activity transport uses six nodes for the primary system and is essentially devised for stainless steel system. In the present work though based on this model, major modifications have been incorporated to suit the PHWR conditions. In the code, the PHT system of PHWR is suitably divided into 14 nodes, 5 in-core and 9 out of core nodes based on material and heat transfer properties. This paper describes the mechanisms involved in the various processes like generation of corrosion products, their release as well as their transport into the primary coolant, the activation of inactive corrosion product nuclides and the build up of radiation field due to 60 Co around the PHT system. (author)
Multi-compartment Aerosol Transport Model
Energy Technology Data Exchange (ETDEWEB)
Hubbard, Joshua Allen; Santarpia, Joshua; Brotherton, Christopher M.; Omana, Michael Alexis; Rivera, Danielle; Lucero, Gabriel Anthony
2017-06-01
A simple aerosol transport model was developed for a multi-compartmented cleanroom. Each compartment was treated as a well-mixed volume with ventilating supply and return air. Gravitational settling, intercompartment transport, and leakage of exterior air into the system were included in the model. A set of first order, coupled, ordinary differential equations was derived from the conservation equations of aerosol mass and air mass. The system of ODEs was then solved in MATLAB using pre-existing numerical methods. The model was verified against cases of (1) constant inlet-duct concentration, and (2) exponentially decaying inlet-duct concentration. Numerical methods resulted in normalized error of less than 10 -9 when model solutions were compared to analytical solutions. The model was validated against experimental measurements from a single field test and showed good agreement in the shape and magnitude of the aerosol concentration profile with time.
Molecular cell biology and physiology of solute transport
Caplan, Michael J.; Seo-Mayer, Patricia; Zhang, Li
2010-01-01
Purpose of review An enormous body of research has been focused on exploring the mechanisms through which epithelial cells establish their characteristic polarity. It is clear that under normal circumstances cell–cell contacts mediated by the calcium-dependent adhesion proteins of the intercellular adhesion junctions are required to initiate complete polarization. Furthermore, formation of the tight, or occluding, junctions that limit paracellular permeability has long been thought to help to establish polarity by preventing the diffusion of membrane proteins between the two plasmalemmal domains. This review will discuss several selected kinases and protein complexes and highlight their relevance to transporting epithelial cell polarization. Recent findings Recent work has shed new light on the roles of junctional complexes in establishing and maintaining epithelial cell polarity. In addition, work from several laboratories, suggests that the formation of these junctions is tied to processes that regulate cellular energy metabolism. Summary Junctional complexes and energy sensing kinases constitute a novel class of machinery whose capacity to generate and modulate epithelial cell polarity is likely to have wide ranging and important physiological ramifications. PMID:18695392
International Nuclear Information System (INIS)
Abdelghani, A.; Hartley, W.; Bart, H.; Ide, C.; Ellgaard, E.; Sherry, T.; Devall, M.; Thien, L.; Horner, E.; Mizell, M.
1993-01-01
The objective of the cluster investigators is to develop a dynamic model for the evaluation of the biological fate, transport, and ecotoxicity from multiple chemical contamination of the Mississippi River Basin. To develop this environmental model, FY 93-94 most of cluster investigators focused on Devil's Swamp Site (DSS), a cypress swamp which lies just Northwest of Baton Rouge, Louisiana, adjacent to the Mississippi River. The DSS which includes a man-made lake has contaminated sediment, water and biota. The DSS receives flood water from the Mississippi River during high flow periods and the Baton Rouge Bayou drains through the DSS. The DSS receives toxic substances and hazardous waste from a wide variety of surrounding industrial operations including an abandoned hazardous waste disposal facility. In addition, some investigators studied Bayou Trepangnier. This research cluster will continue studying Devil Swamp. The large number of investigators in this cluster resulted from incorporating related research proposals based on reviewer recommendations. The specific aims of the cluster for the first year were to conduct a physical, chemical, ecological survey and baseline toxicological characterization of the DSS from existing databases maintained by State and federal agencies, field studies (assessment) of sediment, air, water and biota, and laboratory screening studios. This assessment will provide critical information and focus for the next two years in-depth studies of critical transport and fate processes, ecotoxicity, biomarkers of effect, and uptake, metabolism and distribution of toxicants. The primary significant outcome of the cluster researchers will be the development of an ecological risk assessment model combining biotic and physical/chemical variables for DSS with a projection of model reliability and accuracy for use at other typical Mississippi River Basin sites
Numerical models of groundwater flow and transport
International Nuclear Information System (INIS)
Konikow, L.F.
1996-01-01
This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs
Numerical models of groundwater flow and transport
Energy Technology Data Exchange (ETDEWEB)
Konikow, L F [Geological Survey, Reston, VA (United States)
1996-10-01
This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs.
Institute of Scientific and Technical Information of China (English)
Jian XIAO; Jing LIU
2009-01-01
Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.
Nonlinear Rheology in a Model Biological Tissue
Matoz-Fernandez, D. A.; Agoritsas, Elisabeth; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten
2017-04-01
The rheological response of dense active matter is a topic of fundamental importance for many processes in nature such as the mechanics of biological tissues. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with an increasing shear rate. To rationalize this nonlinear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are, respectively, generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.
Modelling biological invasions: Individual to population scales at interfaces
Belmonte-Beitia, J.
2013-10-01
Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility. © 2013 Elsevier Ltd.
Modelling biological invasions: Individual to population scales at interfaces
Belmonte-Beitia, J.; Woolley, T.E.; Scott, J.G.; Maini, P.K.; Gaffney, E.A.
2013-01-01
Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility. © 2013 Elsevier Ltd.
Logistics Chains in Freight Transport Modelling
Davydenko, I.Y.
2015-01-01
The flow of trade is not equal to transport flows, mainly due to the fact that warehouses and distribution facilities are used as intermediary stops on the way from production locations to the points of consumption or further rework of goods. This thesis proposes a logistics chain model, which
Neutral gas transport modeling with DEGAS 2
International Nuclear Information System (INIS)
Karney, C.; Stotler, D.
1993-01-01
The authors are currently re-writing the neutral gas transport code, DEGAS, with a view to making it both faster and easier to include new physics. They present model calculations including ionization and charge exchange illustrating the way that reactions are included into DEGAS 2 and its operation on a distributed network of workstations
Climate impact of transportation A model comparison
Girod, B.; Vuuren, D.P. van; Grahn, M.; Kitous, A.; Kim, S.H.; Kyle, P.
2013-01-01
Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global
Unreliability effects in public transport modelling.
van Oort, Niels; Brands, Ties; de Romph, Erik; Aceves Flores, Jessica
2015-01-01
Nowadays, transport demand models do not explicitly evaluate the impacts of service reliability of transit. Service reliability of transit systems is adversely experienced by users, as it causes additional travel time and unsecure arrival times. Because of this, travellers are likely to perceive a
Modelling anisotropic water transport in polymer composite
Indian Academy of Sciences (India)
This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...
Glucose transport machinery reconstituted in cell models.
Hansen, Jesper S; Elbing, Karin; Thompson, James R; Malmstadt, Noah; Lindkvist-Petersson, Karin
2015-02-11
Here we demonstrate the production of a functioning cell model by formation of giant vesicles reconstituted with the GLUT1 glucose transporter and a glucose oxidase and hydrogen peroxidase linked fluorescent reporter internally. Hence, a simplified artificial cell is formed that is able to take up glucose and process it.
Modeling biological tissue growth: discrete to continuum representations.
Hywood, Jack D; Hackett-Jones, Emily J; Landman, Kerry A
2013-09-01
There is much interest in building deterministic continuum models from discrete agent-based models governed by local stochastic rules where an agent represents a biological cell. In developmental biology, cells are able to move and undergo cell division on and within growing tissues. A growing tissue is itself made up of cells which undergo cell division, thereby providing a significant transport mechanism for other cells within it. We develop a discrete agent-based model where domain agents represent tissue cells. Each agent has the ability to undergo a proliferation event whereby an additional domain agent is incorporated into the lattice. If a probability distribution describes the waiting times between proliferation events for an individual agent, then the total length of the domain is a random variable. The average behavior of these stochastically proliferating agents defining the growing lattice is determined in terms of a Fokker-Planck equation, with an advection and diffusion term. The diffusion term differs from the one obtained Landman and Binder [J. Theor. Biol. 259, 541 (2009)] when the rate of growth of the domain is specified, but the choice of agents is random. This discrepancy is reconciled by determining a discrete-time master equation for this process and an associated asymmetric nonexclusion random walk, together with consideration of synchronous and asynchronous updating schemes. All theoretical results are confirmed with numerical simulations. This study furthers our understanding of the relationship between agent-based rules, their implementation, and their associated partial differential equations. Since tissue growth is a significant cellular transport mechanism during embryonic growth, it is important to use the correct partial differential equation description when combining with other cellular functions.
Nasir, Zaheer Ahmad; Campos, Luiza Cintra; Christie, Nicola; Colbeck, Ian
2016-08-01
Exposure to airborne biological hazards in an ever expanding urban transport infrastructure and highly diverse mobile population is of growing concern, in terms of both public health and biosecurity. The existing policies and practices on design, construction and operation of these infrastructures may have severe implications for airborne disease transmission, particularly, in the event of a pandemic or intentional release of biological of agents. This paper reviews existing knowledge on airborne disease transmission in different modes of transport, highlights the factors enhancing the vulnerability of transport infrastructures to airborne disease transmission, discusses the potential protection measures and identifies the research gaps in order to build a bioresilient transport infrastructure. The unification of security and public health research, inclusion of public health security concepts at the design and planning phase, and a holistic system approach involving all the stakeholders over the life cycle of transport infrastructure hold the key to mitigate the challenges posed by biological hazards in the twenty-first century transport infrastructure.
Cumulus parameterizations in chemical transport models
Mahowald, Natalie M.; Rasch, Philip J.; Prinn, Ronald G.
1995-12-01
Global three-dimensional chemical transport models (CTMs) are valuable tools for studying processes controlling the distribution of trace constituents in the atmosphere. A major uncertainty in these models is the subgrid-scale parametrization of transport by cumulus convection. This study seeks to define the range of behavior of moist convective schemes and point toward more reliable formulations for inclusion in chemical transport models. The emphasis is on deriving convective transport from meteorological data sets (such as those from the forecast centers) which do not routinely include convective mass fluxes. Seven moist convective parameterizations are compared in a column model to examine the sensitivity of the vertical profile of trace gases to the parameterization used in a global chemical transport model. The moist convective schemes examined are the Emanuel scheme [Emanuel, 1991], the Feichter-Crutzen scheme [Feichter and Crutzen, 1990], the inverse thermodynamic scheme (described in this paper), two versions of a scheme suggested by Hack [Hack, 1994], and two versions of a scheme suggested by Tiedtke (one following the formulation used in the ECMWF (European Centre for Medium-Range Weather Forecasting) and ECHAM3 (European Centre and Hamburg Max-Planck-Institut) models [Tiedtke, 1989], and one formulated as in the TM2 (Transport Model-2) model (M. Heimann, personal communication, 1992). These convective schemes vary in the closure used to derive the mass fluxes, as well as the cloud model formulation, giving a broad range of results. In addition, two boundary layer schemes are compared: a state-of-the-art nonlocal boundary layer scheme [Holtslag and Boville, 1993] and a simple adiabatic mixing scheme described in this paper. Three tests are used to compare the moist convective schemes against observations. Although the tests conducted here cannot conclusively show that one parameterization is better than the others, the tests are a good measure of the
Three dimensional transport model for toroidal plasmas
International Nuclear Information System (INIS)
Copenhauer, C.
1980-12-01
A nonlinear MHD model, developed for three-dimensional toroidal geometries (asymmetric) and for high β (β approximately epsilon), is used as a basis for a three-dimensional transport model. Since inertia terms are needed in describing evolving magnetic islands, the model can calculate transport, both in the transient phase before nonlinear saturation of magnetic islands and afterwards on the resistive time scale. In the β approximately epsilon ordering, the plasma does not have sufficient energy to compress the parallel magnetic field, which allows the Alfven wave to be eliminated in the reduced nonlinear equations, and the model then follows the slower time scales. The resulting perpendicular and parallel plasma drift velocities can be identified with those of guiding center theory
Computational Modeling of Biological Systems From Molecules to Pathways
2012-01-01
Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.
Modelling soil transport by wind in drylands
International Nuclear Information System (INIS)
Hassan, M.H.A.
1994-01-01
Understanding the movement of windblown soil particles and the resulting formation of complex surface features are among the most intriguing problems in dryland research. This understanding can only be achieved trough physical and mathematical modelling and must also involve observational data and laboratory experiments. Some current mathematical models that have contributed to the basic understanding of the transportation and deposition of soil particles by wind are presented and solved in these notes. (author). 26 refs, 5 figs
Gomez-Ramirez, Jaime; Sanz, Ricardo
2013-09-01
One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist. Copyright © 2013 Elsevier Ltd. All rights reserved.
Coupled Modeling of Rhizosphere and Reactive Transport Processes
Roque-Malo, S.; Kumar, P.
2017-12-01
The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.
European initiatives for modeling emissions from transport
DEFF Research Database (Denmark)
Joumard, Robert; Hickman, A. John; Samaras, Zissis
1998-01-01
In Europe there have been many cooperative studies into transport emission inventories since the late 80s. These cover the scope of CORINAIR program involving experts from seven European Community laboratories addressing only road transport emissions at national level. These also include the latest...... covered are the composition of the vehicle fleets, emission factors, driving statistics and the modeling approach. Many of the European initiatives aim also at promoting further cooperation between national laboratories and at defining future research needs. An assessment of these future needs...... is presented from a European point of view....
Biologically based multistage modeling of radiation effects
Energy Technology Data Exchange (ETDEWEB)
William Hazelton; Suresh Moolgavkar; E. Georg Luebeck
2005-08-30
This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of
Numerical modelling of ion transport in flames
Han, Jie
2015-10-20
This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.
Model checking biological systems described using ambient calculus
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Priami, Corrado; Qualia, Paola
2005-01-01
Model checking biological systems described using ambient calculus. In Proc. of the second International Workshop on Computational Methods in Systems Biology (CMSB04), Lecture Notes in Bioinformatics 3082:85-103, Springer, 2005.......Model checking biological systems described using ambient calculus. In Proc. of the second International Workshop on Computational Methods in Systems Biology (CMSB04), Lecture Notes in Bioinformatics 3082:85-103, Springer, 2005....
A Model of Biological Attacks on a Realistic Population
Carley, Kathleen M.; Fridsma, Douglas; Casman, Elizabeth; Altman, Neal; Chen, Li-Chiou; Kaminsky, Boris; Nave, Demian; Yahja, Alex
The capability to assess the impacts of large-scale biological attacks and the efficacy of containment policies is critical and requires knowledge-intensive reasoning about social response and disease transmission within a complex social system. There is a close linkage among social networks, transportation networks, disease spread, and early detection. Spatial dimensions related to public gathering places such as hospitals, nursing homes, and restaurants, can play a major role in epidemics [Klovdahl et. al. 2001]. Like natural epidemics, bioterrorist attacks unfold within spatially defined, complex social systems, and the societal and networked response can have profound effects on their outcome. This paper focuses on bioterrorist attacks, but the model has been applied to emergent and familiar diseases as well.
Symposium on unsaturated flow and transport modeling
International Nuclear Information System (INIS)
Arnold, E.M.; Gee, G.W.; Nelson, R.W.
1982-09-01
This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted
Symposium on unsaturated flow and transport modeling
Energy Technology Data Exchange (ETDEWEB)
Arnold, E.M.; Gee, G.W.; Nelson, R.W. (eds.)
1982-09-01
This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.
PAT-2 (Plutonium Air Transportable Model 2)
International Nuclear Information System (INIS)
Anderson, J.
1981-01-01
The PAT-2 (Plutonium Air Transportable Model 2) package is designed for the safe transport of plutonium and/or uranium in small quantities, especially as used in international safeguards activities, and especially as transported by air. The PAT-2 package is resistant to severe accidents, including that of a high-speed jet aircraft crash, and is designed to withstand such environments as extreme impact, crushing, puncturing and slashing loads, severe hydrocarbon-fueled fires, and deep underwater immersion, with no escape of contents. The accident environments may be imposed upon the package singly or seqentially. The package meets the requirements of 10 CFR 71 for Fissile Class I packages with a cargo of 15 grams of Pu-239, or other isotopic forms described herein, not to exceed 2 watts of thermal activity. Packaging, operational features, and contents of package, are discussed
Modeling of nonlinear biological phenomena modeled by S-systems.
Mansouri, Majdi M; Nounou, Hazem N; Nounou, Mohamed N; Datta, Aniruddha A
2014-03-01
A central challenge in computational modeling of biological systems is the determination of the model parameters. In such cases, estimating these variables or parameters from other easily obtained measurements can be extremely useful. For example, time-series dynamic genomic data can be used to develop models representing dynamic genetic regulatory networks, which can be used to design intervention strategies to cure major diseases and to better understand the behavior of biological systems. Unfortunately, biological measurements are usually highly infected by errors that hide the important characteristics in the data. Therefore, these noisy measurements need to be filtered to enhance their usefulness in practice. This paper addresses the problem of state and parameter estimation of biological phenomena modeled by S-systems using Bayesian approaches, where the nonlinear observed system is assumed to progress according to a probabilistic state space model. The performances of various conventional and state-of-the-art state estimation techniques are compared. These techniques include the extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter (PF), and the developed variational Bayesian filter (VBF). Specifically, two comparative studies are performed. In the first comparative study, the state variables (the enzyme CadA, the model cadBA, the cadaverine Cadav and the lysine Lys for a model of the Cad System in Escherichia coli (CSEC)) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error (RMSE) with respect to the noise-free data. In the second comparative study, the state variables as well as the model parameters are simultaneously estimated. In this case, in addition to comparing the performances of the various state estimation techniques, the effect of the number of estimated model parameters on the accuracy and convergence of these
Molecular modeling of auxin transport inhibitors
International Nuclear Information System (INIS)
Gardner, G.; Black-Schaefer, C.; Bures, M.G.
1990-01-01
Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for [ 3 H]NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections
Model prodrugs for the intestinal oligopeptide transporter
DEFF Research Database (Denmark)
Nielsen, C U; Andersen, R; Brodin, Birger
2001-01-01
The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...... with a pH of approximately 6.0, but still release the model drug at the intercellular and blood pH of approximately 7.4. Even though benzyl alcohol is not a low molecular weight drug molecule, these results indicate that the dipeptide prodrug principle is a promising drug delivery concept. However......, the physico-chemical properties such as electronegativity, solubility, and log P of the drug molecule may also have an influence on the potential of these kinds of prodrugs. The purpose of the present study is to investigate whether the model drug electronegativity, estimated as Taft substitution parameter...
Generating Systems Biology Markup Language Models from the Synthetic Biology Open Language.
Roehner, Nicholas; Zhang, Zhen; Nguyen, Tramy; Myers, Chris J
2015-08-21
In the context of synthetic biology, model generation is the automated process of constructing biochemical models based on genetic designs. This paper discusses the use cases for model generation in genetic design automation (GDA) software tools and introduces the foundational concepts of standards and model annotation that make this process useful. Finally, this paper presents an implementation of model generation in the GDA software tool iBioSim and provides an example of generating a Systems Biology Markup Language (SBML) model from a design of a 4-input AND sensor written in the Synthetic Biology Open Language (SBOL).
Fractional diffusion models of nonlocal transport
International Nuclear Information System (INIS)
Castillo-Negrete, D. del
2006-01-01
A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ('memory') effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an α-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the 'effective' diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, τ, with the system's size, L, τ∼L α , of low-confinement mode plasma where 1<α<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady sates in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments
Ledbetter, Mary Lee S.; Lippert, Malcolm J.
2002-01-01
Membrane transport is a fundamental concept that undergraduate students of cell biology understand better with laboratory experience. Formal teaching exercises commonly used to illustrate this concept are unbiological, qualitative, or intricate and time consuming to prepare. We have developed an exercise that uses uptake of radiolabeled nutrient…
International Nuclear Information System (INIS)
Trebotich, David
2007-01-01
We have developed a simulation capability to model multiscale flow and transport in complex biological systems based on algorithms and software infrastructure developed under the SciDAC APDEC CET. The foundation of this work is a new hybrid fluid-particle method for modeling polymer fluids in irregular microscale geometries that enables long-time simulation of validation experiments. Both continuum viscoelastic and discrete particle representations have been used to model the constitutive behavior of polymer fluids. Complex flow environment geometries are represented on Cartesian grids using an implicit function. Direct simulation of flow in the irregular geometry is then possible using embedded boundary/volume-of-fluid methods without loss of geometric detail. This capability has been used to simulate biological flows in a variety of application geometries including biomedical microdevices, anatomical structures and porous media
Transperitoneal transport of creatinine. A comparison of kinetic models
DEFF Research Database (Denmark)
Fugleberg, S; Graff, J; Joffe, P
1994-01-01
Six kinetic models of transperitoneal creatinine transport were formulated and validated on the basis of experimental results obtained from 23 non-diabetic patients undergoing peritoneal dialysis. The models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective...... including all three forms of transport is superior to other models. We conclude that the best model of transperitoneal creatinine transport includes diffusion, non-lymphatic convective transport and lymphatic convective transport....
Empirical particle transport model for tokamaks
International Nuclear Information System (INIS)
Petravic, M.; Kuo-Petravic, G.
1986-08-01
A simple empirical particle transport model has been constructed with the purpose of gaining insight into the L- to H-mode transition in tokamaks. The aim was to construct the simplest possible model which would reproduce the measured density profiles in the L-regime, and also produce a qualitatively correct transition to the H-regime without having to assume a completely different transport mode for the bulk of the plasma. Rather than using completely ad hoc constructions for the particle diffusion coefficient, we assume D = 1/5 chi/sub total/, where chi/sub total/ ≅ chi/sub e/ is the thermal diffusivity, and then use the κ/sub e/ = n/sub e/chi/sub e/ values derived from experiments. The observed temperature profiles are then automatically reproduced, but nontrivially, the correct density profiles are also obtained, for realistic fueling rates and profiles. Our conclusion is that it is sufficient to reduce the transport coefficients within a few centimeters of the surface to produce the H-mode behavior. An additional simple assumption, concerning the particle mean-free path, leads to a convective transport term which reverses sign a few centimeters inside the surface, as required by the H-mode density profiles
Modelling contaminant transport in saturated aquifers
International Nuclear Information System (INIS)
Lakshminarayana, V.; Nayak, T.R.
1990-01-01
With the increase in population and industrialization the problem of pollution of groundwater has become critical. The present study deals with modelling of pollutant transport through saturated aquifers. Using this model it is possible to predict the concentration distribution, spatial as well as temporal, in the aquifer. The paper also deals with one of the methods of controlling the pollutant movement, namely by pumping wells. A simulation model is developed to determine the number, location and rate of pumping of a number of wells near the source of pollution so that the concentration is within acceptable limits at the point of interest. (Author) (18 refs., 14 figs., tab.)
Waste management practices to control biological transport of radioactivity at the Hanford Site
International Nuclear Information System (INIS)
Conklin, A.W.
1985-01-01
One of the goals of waste management in the Hanford Site 200 Areas is to prevent biological intrusion into, and transport from, waste storage and disposal sites. Practices established to achieve these goals include the elimination of deep-rooted vegetation on waste sites to prevent plant root intrusion into radioactivity, selective herbicide application to prevent regrowth of these plants, planting of shallow-rooted plants to successfully compete with deep-rooted plants for moisture, surface stabilization, and environmental surveillance. Past biological transport incidents have included transport by Russian thistle by way of physiological plant processes, bird access into exposed contamination, and animals burrowing into radioactive waste disposal sites. Rockwell Hanford Operations, through mitigative actions and continued surveillance, has made significant progress in eliminating, or better isolating source terms, thus preventing or inhibiting problems from recurring. Approximately 60% of source term acreage requiring stabilization or decontamination has been completed
Modeling the highway transportation of spent fuel
International Nuclear Information System (INIS)
Harrison, I.G.
1986-01-01
There will be a substantial increase in the number of spent fuel shipments on the nation's highway system in the next thirty years. Most of the spent fuel will be moving from reactors to a spent fuel repository. This study develops two models that evaluate the risk and cost of moving the spent fuel. The Minimum Total Transport Risk Model (MTTRM) seeks an efficient solution for this problem by finding the minimum risk path through the network and sending all the spent fuel shipments over this one path. The Equilibrium Transport Risk Model (ETRM) finds an equitable solution by distributing the shipments over a number of paths in the network. This model decreases the risk along individual paths, but increases society's risk because the spent fuel shipments are traveling over more links in the network. The study finds that there is a trade off between path risk and societal risk. As path risk declines, societal risk rises. The cost of shipping also increases as the number of paths expand. The cost and risk of shipping spent fuel from ten reactors to four potential repository sites are evaluated using the MTTRM. The temporary monitored retrievable storage (MRS) facility in Tennessee is found to be the minimum cost and minimum risk solution. When direct shipment to the permanent sites is considered, Deaf Smith, Texas is the least cost and least incident free transport risk location. Yucca Mountain, Nevada is the least risk location when the focus is placed on the potential consequences of an accident
Modeling tritium transport in the environment
International Nuclear Information System (INIS)
Murphy, C.E. Jr.
1986-01-01
A model of tritium transport in the environment near an atmospheric source of tritium is presented in the general context of modeling material cycling in ecosystems. The model was developed to test hypotheses about the process involved in tritium cycling. The temporal and spatial scales of the model were picked to allow comparison to environmental monitoring data collected in the vicinity of the Savannah River Plant. Initial simulations with the model showed good agreement with monitoring data, including atmospheric and vegetation tritium concentrations. The model can also simulate values of tritium in vegetation organic matter if the key parameter distributing the source of organic hydrogen is varied to fit the data. However, because of the lack of independent conformation of the distribution parameter, there is still uncertainty about the role of organic movement of tritium in the food chain, and its effect on the dose to man
INTERVAL OBSERVER FOR A BIOLOGICAL REACTOR MODEL
Directory of Open Access Journals (Sweden)
T. A. Kharkovskaia
2014-05-01
Full Text Available The method of an interval observer design for nonlinear systems with parametric uncertainties is considered. The interval observer synthesis problem for systems with varying parameters consists in the following. If there is the uncertainty restraint for the state values of the system, limiting the initial conditions of the system and the set of admissible values for the vector of unknown parameters and inputs, the interval existence condition for the estimations of the system state variables, containing the actual state at a given time, needs to be held valid over the whole considered time segment as well. Conditions of the interval observers design for the considered class of systems are shown. They are: limitation of the input and state, the existence of a majorizing function defining the uncertainty vector for the system, Lipschitz continuity or finiteness of this function, the existence of an observer gain with the suitable Lyapunov matrix. The main condition for design of such a device is cooperativity of the interval estimation error dynamics. An individual observer gain matrix selection problem is considered. In order to ensure the property of cooperativity for interval estimation error dynamics, a static transformation of coordinates is proposed. The proposed algorithm is demonstrated by computer modeling of the biological reactor. Possible applications of these interval estimation systems are the spheres of robust control, where the presence of various types of uncertainties in the system dynamics is assumed, biotechnology and environmental systems and processes, mechatronics and robotics, etc.
Modeling sediment transport with an integrated view of the biofilm effects
Fang, H. W.; Lai, H. J.; Cheng, W.; Huang, L.; He, G. J.
2017-09-01
Most natural sediment is invariably covered by biofilms in reservoirs and lakes, which have significant influence on bed form dynamics and sediment transport, and also play a crucial role in natural river evolution, pollutant transport, and habitat changes. However, most models for sediment transport are based on experiments using clean sediments without biological materials. In this study, a three-dimensional mathematical model of hydrodynamics and sediment transport is presented with a comprehensive consideration of the biofilm effects. The changes of the bed resistance mainly due to the different bed form dynamics of the biofilm-coated sediment (biosediment), which affect the hydrodynamic characteristics, are considered. Moreover, the variations of parameters related to sediment transport after the biofilm growth are integrated, including the significant changes of the incipient velocity, settling velocity, reference concentration, and equilibrium bed load transport rate. The proposed model is applied to evaluate the effects of biofilms on the hydrodynamic characteristics and sediment transport in laboratory experiments. Results indicate that the mean velocity increases after the biofilm growth, and the turbulence intensity near the river bed decreases under the same flow condition. Meanwhile, biofilm inhibits sediment from moving independently. Thus, the moderate erosion is observed for biosediment resulting in smaller suspended sediment concentrations. The proposed model can reasonably reflect these sediment transport characteristics with biofilms, and the approach to integration of the biological impact could also be used in other modeling of sediment transport, which can be further applied to provide references for the integrated management of natural aqueous systems.
Manthey, Seth; Brewe, Eric
2013-01-01
University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence. PMID:23737628
Manthey, Seth; Brewe, Eric
2013-06-01
University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence.
Fish larval transport in the coastal waters through ecological modelling
Digital Repository Service at National Institute of Oceanography (India)
George, G.
are as follows: (i) to find out the influence of environmental parameters on the biology of the given ecosystem (ii) to track larval transport and biological abundance in relation to environmental vari- ables (iii) to compare biological abundance and fish larval... include the following investigations: (i) analysis of satellite chlorophyll data along the southwest coastal waters of India to derive a biological calender for sardine (ii) tracking the larval survival and establish a link between food and sardine inter...
Physical models of biological information and adaptation.
Stuart, C I
1985-04-07
The bio-informational equivalence asserts that biological processes reduce to processes of information transfer. In this paper, that equivalence is treated as a metaphor with deeply anthropomorphic content of a sort that resists constitutive-analytical definition, including formulation within mathematical theories of information. It is argued that continuance of the metaphor, as a quasi-theoretical perspective in biology, must entail a methodological dislocation between biological and physical science. It is proposed that a general class of functions, drawn from classical physics, can serve to eliminate the anthropomorphism. Further considerations indicate that the concept of biological adaptation is central to the general applicability of the informational idea in biology; a non-anthropomorphic treatment of adaptive phenomena is suggested in terms of variational principles.
In vitro placental model optimization for nanoparticle transport studies
Directory of Open Access Journals (Sweden)
Cartwright L
2012-01-01
Full Text Available Laura Cartwright1, Marie Sønnegaard Poulsen2, Hanne Mørck Nielsen3, Giulio Pojana4, Lisbeth E Knudsen2, Margaret Saunders1, Erik Rytting2,51Bristol Initiative for Research of Child Health (BIRCH, Biophysics Research Unit, St Michael's Hospital, UH Bristol NHS Foundation Trust, Bristol, UK; 2University of Copenhagen, Faculty of Health Sciences, Department of Public Health, 3University of Copenhagen, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics and Analytical Chemistry, Copenhagen, Denmark; 4Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Venice, Italy; 5Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USABackground: Advances in biomedical nanotechnology raise hopes in patient populations but may also raise questions regarding biodistribution and biocompatibility, especially during pregnancy. Special consideration must be given to the placenta as a biological barrier because a pregnant woman's exposure to nanoparticles could have significant effects on the fetus developing in the womb. Therefore, the purpose of this study is to optimize an in vitro model for characterizing the transport of nanoparticles across human placental trophoblast cells.Methods: The growth of BeWo (clone b30 human placental choriocarcinoma cells for nanoparticle transport studies was characterized in terms of optimized Transwell® insert type and pore size, the investigation of barrier properties by transmission electron microscopy, tight junction staining, transepithelial electrical resistance, and fluorescein sodium transport. Following the determination of nontoxic concentrations of fluorescent polystyrene nanoparticles, the cellular uptake and transport of 50 nm and 100 nm diameter particles was measured using the in vitro BeWo cell model.Results: Particle size measurements, fluorescence readings, and confocal microscopy indicated both cellular uptake of
Oscillation and stability of delay models in biology
Agarwal, Ravi P; Saker, Samir H
2014-01-01
Environmental variation plays an important role in many biological and ecological dynamical systems. This monograph focuses on the study of oscillation and the stability of delay models occurring in biology. The book presents recent research results on the qualitative behavior of mathematical models under different physical and environmental conditions, covering dynamics including the distribution and consumption of food. Researchers in the fields of mathematical modeling, mathematical biology, and population dynamics will be particularly interested in this material.
Abstracts of the symposium on unsaturated flow and transport modeling
International Nuclear Information System (INIS)
1982-03-01
Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport
Computerised modelling for developmental biology : an exploration with case studies
Bertens, Laura M.F.
2012-01-01
Many studies in developmental biology rely on the construction and analysis of models. This research presents a broad view of modelling approaches for developmental biology, with a focus on computational methods. An overview of modelling techniques is given, followed by several case studies. Using
Morphogenesis and pattern formation in biological systems experiments and models
Noji, Sumihare; Ueno, Naoto; Maini, Philip
2003-01-01
A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.
Natural analogues and radionuclide transport model validation
International Nuclear Information System (INIS)
Lever, D.A.
1987-08-01
In this paper, some possible roles for natural analogues are discussed from the point of view of those involved with the development of mathematical models for radionuclide transport and with the use of these models in repository safety assessments. The characteristic features of a safety assessment are outlined in order to address the questions of where natural analogues can be used to improve our understanding of the processes involved and where they can assist in validating the models that are used. Natural analogues have the potential to provide useful information about some critical processes, especially long-term chemical processes and migration rates. There is likely to be considerable uncertainty and ambiguity associated with the interpretation of natural analogues, and thus it is their general features which should be emphasized, and models with appropriate levels of sophistication should be used. Experience gained in modelling the Koongarra uranium deposit in northern Australia is drawn upon. (author)
International Nuclear Information System (INIS)
Wobber, F.J.
1985-09-01
Because natural processes associated with the release and the transport of organic compounds, trace metals, and radionuclides are incompletely understood, research in this area is critical if the long term scientific uncertainties about contaminant transport are to be resolved. The processes that control mobilization and attenuation of energy residuals in soils and geological strata, their hydrological transport to and within ground water regimes, and their accumulation in biological systems require research attention. A summary of DOE's core research program is described. It is designed to provide a base of fundamental scientific information so that the geochemical hydrological, and biophysical mechanics that contribute to the transport and long term fate of energy related contaminants in natural systems can be understood
Discrete element modelling of bedload transport
Loyer, A.; Frey, P.
2011-12-01
Discrete element modelling (DEM) has been widely used in solid mechanics and in granular physics. In this type of modelling, each individual particle is taken into account and intergranular interactions are modelled with simple laws (e.g. Coulomb friction). Gravity and contact forces permit to solve the dynamical behaviour of the system. DEM is interesting to model configurations and access to parameters not directly available in laboratory experimentation, hence the term "numerical experimentations" sometimes used to describe DEM. DEM was used to model bedload transport experiments performed at the particle scale with spherical glass beads in a steep and narrow flume. Bedload is the larger material that is transported on the bed on stream channels. It has a great geomorphic impact. Physical processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known, arguably because granular interactions have been somewhat neglected. An existing DEM code (PFC3D) already computing granular interactions was used. We implemented basic hydrodynamic forces to model the fluid interactions (buoyancy, drag, lift). The idea was to use the minimum number of ingredients to match the experimental results. Experiments were performed with one-size and two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm (about the same width as the coarser particles) and the channel inclination was typically 10%. The water flow rate and the particle rate were kept constant at the upstream entrance and adjusted to obtain bedload transport equilibrium. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. Modelled and experimental particle velocity and concentration depth
Model for radionuclide transport in running waters
Energy Technology Data Exchange (ETDEWEB)
Jonsson, Karin; Elert, Mark [Kemakta Konsult AB, Stockholm (Sweden)
2005-11-15
Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment
Model for radionuclide transport in running waters
International Nuclear Information System (INIS)
Jonsson, Karin; Elert, Mark
2005-11-01
Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment
Modeling VOC transport in simulated waste drums
International Nuclear Information System (INIS)
Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.
1993-06-01
A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum
Pion interferometric tests of transport models
Energy Technology Data Exchange (ETDEWEB)
Padula, S.S.; Gyulassy, M.; Gavin, S. (Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.)
1990-01-08
In hadronic reactions, the usual space-time interpretation of pion interferometry often breaks down due to strong correlations between spatial and momentum coordinates. We derive a general interferometry formula based on the Wigner density formalism that allows for arbitrary phase space and multiparticle correlations. Correction terms due to intermediate state pion cascading are derived using semiclassical hadronic transport theory. Finite wave packets are used to reveal the sensitivity of pion interference effects on the details of the production dynamics. The covariant generalization of the formula is shown to be equivalent to the formula derived via an alternate current ensemble formalism for minimal wave packets and reduces in the nonrelativistic limit to a formula derived by Pratt. The final expression is ideally suited for pion interferometric tests of Monte Carlo transport models. Examples involving gaussian and inside-outside phase space distributions are considered. (orig.).
Pion interferometric tests of transport models
International Nuclear Information System (INIS)
Padula, S.S.; Gyulassy, M.; Gavin, S.
1990-01-01
In hadronic reactions, the usual space-time interpretation of pion interferometry often breaks down due to strong correlations between spatial and momentum coordinates. We derive a general interferometry formula based on the Wigner density formalism that allows for arbitrary phase space and multiparticle correlations. Correction terms due to intermediate state pion cascading are derived using semiclassical hadronic transport theory. Finite wave packets are used to reveal the sensitivity of pion interference effects on the details of the production dynamics. The covariant generalization of the formula is shown to be equivalent to the formula derived via an alternate current ensemble formalism for minimal wave packets and reduces in the nonrelativistic limit to a formula derived by Pratt. The final expression is ideally suited for pion interferometric tests of Monte Carlo transport models. Examples involving gaussian and inside-outside phase space distributions are considered. (orig.)
Transport modeling: An artificial immune system approach
Directory of Open Access Journals (Sweden)
Teodorović Dušan
2006-01-01
Full Text Available This paper describes an artificial immune system approach (AIS to modeling time-dependent (dynamic, real time transportation phenomenon characterized by uncertainty. The basic idea behind this research is to develop the Artificial Immune System, which generates a set of antibodies (decisions, control actions that altogether can successfully cover a wide range of potential situations. The proposed artificial immune system develops antibodies (the best control strategies for different antigens (different traffic "scenarios". This task is performed using some of the optimization or heuristics techniques. Then a set of antibodies is combined to create Artificial Immune System. The developed Artificial Immune transportation systems are able to generalize, adapt, and learn based on new knowledge and new information. Applications of the systems are considered for airline yield management, the stochastic vehicle routing, and real-time traffic control at the isolated intersection. The preliminary research results are very promising.
Genome-scale biological models for industrial microbial systems.
Xu, Nan; Ye, Chao; Liu, Liming
2018-04-01
The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.
OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems.
Ogbunugafor, C Brandon; Robinson, Sean P
2016-01-01
Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs) by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of "ODEs and formalized flow diagrams" as OFFL.) Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative) abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler's behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features.
OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems.
Directory of Open Access Journals (Sweden)
C Brandon Ogbunugafor
Full Text Available Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of "ODEs and formalized flow diagrams" as OFFL. Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler's behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features.
Model for tritiated water transport in soil
International Nuclear Information System (INIS)
Galeriu, D.; Paunescu, N.
1999-01-01
Chemical forms of tritium released from nuclear facilities are mostly water (HTO) and hydrogen (HT, TT). Elemental tritium is inert in vegetation and superior animals, but the microorganisms from soil oxidize HT to HTO. After an atmospheric HT emission, in short time an equivalent quantity of HTO is re-emitted from soil. In the vicinity of a tritium source the spatial and temporary distribution of HTO is dependent on the chemical form of tritium releases. During routine tritium releases (continuously and constant releases), the local distribution of tritium reaches equilibrium, and specific activities of tritium in environmental compartments are almost equal. The situation is very different after an accidental emission. Having in view, harmful effects of tritium when it is incorporated into the body several models were developed for environmental tritium transport and dose assessment. The tritium transport into the soil is an important part of the environmental tritium behavior, but, unfortunately, in spite of the importance of this problem the corresponding modeling is unsatisfactory. The aim of this paper was the improvement of the TRICAIAP model, and the application of the model to BIOMOVS scenario. The BIOMOVS scenario predicts HTO concentrations in soil during 30 days, after one hour atmospheric HTO emission. The most important conclusions of the paper are: the principal carrier of tritium into the soil is water; the transfer processes are the reactions of water in soil and the diffusion due to concentration gradient; atmosphere-soil transport is dependent of surface characteristics (granulation, humidity, roughness, etc.); the conversion rate of HT to HTO is not well known and is dependent on active microorganism concentration in soil and on soil humidity. More experimental data are needed to decrease the uncertainty of transfer parameter, for the definition of the influence of vegetation, etc. (authors)
Reinisch, Bianca; Krüger, Dirk
2018-01-01
In research on the nature of science, there is a need to investigate the role and status of different scientific knowledge forms. Theories and models are two of the most important knowledge forms within biology and are the focus of this study. During interviews, preservice biology teachers (N = 10) were asked about their understanding of theories…
Biochemical Space: A Framework for Systemic Annotation of Biological Models
Czech Academy of Sciences Publication Activity Database
Klement, M.; Děd, T.; Šafránek, D.; Červený, Jan; Müller, Stefan; Steuer, Ralf
2014-01-01
Roč. 306, JUL (2014), s. 31-44 ISSN 1571-0661 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : biological models * model annotation * systems biology * cyanobacteria Subject RIV: EH - Ecology, Behaviour
Review of "Stochastic Modelling for Systems Biology" by Darren Wilkinson
Directory of Open Access Journals (Sweden)
Bullinger Eric
2006-12-01
Full Text Available Abstract "Stochastic Modelling for Systems Biology" by Darren Wilkinson introduces the peculiarities of stochastic modelling in biology. This book is particularly suited to as a textbook or for self-study, and for readers with a theoretical background.
Prevention of biological transport of radioactivity in the Hanford 200 areas
International Nuclear Information System (INIS)
Conklin, A.W.; Wheeler, R.E.; Elder, R.E.; Osborne, W.L.
1985-01-01
Environmental surveillance in the Hanford 200 Areas is conducted, in part, to determine the potential impact on the environment following biological intrusion into, and transport from, radioactive waste containment systems; and to initiate mitigative action to decontaminate the environment, eliminate the source term, and/or prevent future intrusion. Biological transport incidents have included assimilation by Russian thistle via physiological plant processes and subsequent dispersal by winds, bird access into exposed contamination, and animals burrowing into radioactive waste disposal sites. Rockwell Hanford Operations, through mitigative actions and continued surveillance, has made significant progress in eliminating, or better isolating, source terms, thus preventing such incidents from recurring. Approximately 60% of source-term acreage requiring stabilization or decontamination has been completed. 5 references, 3 tables
Demirel, Yasar
2014-01-01
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte
Risk management model in road transport systems
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2016-08-01
The article presents the results of a study of road safety indicators that influence the development and operation of the transport system. Road safety is considered as a continuous process of risk management. Authors constructed a model that relates the social risks of a major road safety indicator - the level of motorization. The model gives a fairly accurate assessment of the level of social risk for any given level of motorization. Authors calculated the dependence of the level of socio-economic costs of accidents and injured people in them. The applicability of the concept of socio-economic damage is caused by the presence of a linear relationship between the natural and economic indicators damage from accidents. The optimization of social risk is reduced to finding the extremum of the objective function that characterizes the economic effect of the implementation of measures to improve safety. The calculations make it possible to maximize the net present value, depending on the costs of improving road safety, taking into account socio-economic damage caused by accidents. The proposed econometric models make it possible to quantify the efficiency of the transportation system, allow to simulate the change in road safety indicators.
Modeling in transport phenomena a conceptual approach
Tosun, Ismail
2007-01-01
Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to
Coupling of transport and geochemical models
International Nuclear Information System (INIS)
Noy, D.J.
1985-01-01
This contract stipulated separate pieces of work to consider mass transport in the far-field of a repository, and more detailed geochemical modelling of the groundwater in the near-field. It was envisaged that the far-field problem would be tackled by numerical solutions to the classical advection-diffusion equation obtained by the finite element method. For the near-field problem the feasibility of coupling existing geochemical equilibrium codes to the three dimensional groundwater flow codes was to be investigated. This report is divided into two sections with one part devoted to each aspect of this contract. (author)
Collective effects in microscopic transport models
International Nuclear Information System (INIS)
Greiner, Carsten
2003-01-01
We give a reminder on the major inputs of microscopic hadronic transport models and on the physics aims when describing various aspects of relativistic heavy ion collisions at SPS energies. We then first stress that the situation of particle ratios being reproduced by a statistical description does not necessarily mean a clear hint for the existence of a fully isotropic momentum distribution at hydrochemical freeze-out. Second, a short discussion on the status of strangeness production is given. Third we demonstrate the importance of a new collective mechanism for producing (strange) antibaryons within a hardonic description, which guarantees sufficiently fast chemical equilibration
A disaggregate freight transport model of transport chain and shipment size choice
Windisch, E.; De Jong, G.C.; Van Nes, R.; Hoogendoorn, S.P.
2010-01-01
The field of freight transport modelling is relatively young compared to passenger transport modelling. However, some key issues in freight policy, like growing freight shares on the road, advanced logistics concepts or emerging strict freight transport regulations, have been creating increasing
Uncertainty in reactive transport geochemical modelling
International Nuclear Information System (INIS)
Oedegaard-Jensen, A.; Ekberg, C.
2005-01-01
Full text of publication follows: Geochemical modelling is one way of predicting the transport of i.e. radionuclides in a rock formation. In a rock formation there will be fractures in which water and dissolved species can be transported. The composition of the water and the rock can either increase or decrease the mobility of the transported entities. When doing simulations on the mobility or transport of different species one has to know the exact water composition, the exact flow rates in the fracture and in the surrounding rock, the porosity and which minerals the rock is composed of. The problem with simulations on rocks is that the rock itself it not uniform i.e. larger fractures in some areas and smaller in other areas which can give different water flows. The rock composition can be different in different areas. In additions to this variance in the rock there are also problems with measuring the physical parameters used in a simulation. All measurements will perturb the rock and this perturbation will results in more or less correct values of the interesting parameters. The analytical methods used are also encumbered with uncertainties which in this case are added to the uncertainty from the perturbation of the analysed parameters. When doing simulation the effect of the uncertainties must be taken into account. As the computers are getting faster and faster the complexity of simulated systems are increased which also increase the uncertainty in the results from the simulations. In this paper we will show how the uncertainty in the different parameters will effect the solubility and mobility of different species. Small uncertainties in the input parameters can result in large uncertainties in the end. (authors)
Particle transport model sensitivity on wave-induced processes
Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna
2017-04-01
Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.
Conceptual and Numerical Models for UZ Flow and Transport
International Nuclear Information System (INIS)
Liu, H.
2000-01-01
The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models
Model of reversible vesicular transport with exclusion
International Nuclear Information System (INIS)
Bressloff, Paul C; Karamched, Bhargav R
2016-01-01
A major question in neurobiology concerns the mechanics behind the motor-driven transport and delivery of vesicles to synaptic targets along the axon of a neuron. Experimental evidence suggests that the distribution of vesicles along the axon is relatively uniform and that vesicular delivery to synapses is reversible. A recent modeling study has made explicit the crucial role that reversibility in vesicular delivery to synapses plays in achieving uniformity in vesicle distribution, so called synaptic democracy (Bressloff et al 2015 Phys. Rev. Lett. 114 168101). In this paper we generalize the previous model by accounting for exclusion effects (hard-core repulsion) that may occur between molecular motor-cargo complexes (particles) moving along the same microtubule track. The resulting model takes the form of an exclusion process with four internal states, which distinguish between motile and stationary particles, and whether or not a particle is carrying vesicles. By applying a mean field approximation and an adiabatic approximation we reduce the system of ODEs describing the evolution of occupation numbers of the sites on a 1D lattice to a system of hydrodynamic equations in the continuum limit. We find that reversibility in vesicular delivery allows for synaptic democracy even in the presence of exclusion effects, although exclusion does exacerbate nonuniform distributions of vesicles in an axon when compared with a model without exclusion. We also uncover the relationship between our model and other models of exclusion processes with internal states. (paper)
A Lagrangian mixing frequency model for transported PDF modeling
Turkeri, Hasret; Zhao, Xinyu
2017-11-01
In this study, a Lagrangian mixing frequency model is proposed for molecular mixing models within the framework of transported probability density function (PDF) methods. The model is based on the dissipations of mixture fraction and progress variables obtained from Lagrangian particles in PDF methods. The new model is proposed as a remedy to the difficulty in choosing the optimal model constant parameters when using conventional mixing frequency models. The model is implemented in combination with the Interaction by exchange with the mean (IEM) mixing model. The performance of the new model is examined by performing simulations of Sandia Flame D and the turbulent premixed flame from the Cambridge stratified flame series. The simulations are performed using the pdfFOAM solver which is a LES/PDF solver developed entirely in OpenFOAM. A 16-species reduced mechanism is used to represent methane/air combustion, and in situ adaptive tabulation is employed to accelerate the finite-rate chemistry calculations. The results are compared with experimental measurements as well as with the results obtained using conventional mixing frequency models. Dynamic mixing frequencies are predicted using the new model without solving additional transport equations, and good agreement with experimental data is observed.
Computer Models and Automata Theory in Biology and Medicine
Baianu, I C
2004-01-01
The applications of computers to biological and biomedical problem solving goes back to the very beginnings of computer science, automata theory [1], and mathematical biology [2]. With the advent of more versatile and powerful computers, biological and biomedical applications of computers have proliferated so rapidly that it would be virtually impossible to compile a comprehensive review of all developments in this field. Limitations of computer simulations in biology have also come under close scrutiny, and claims have been made that biological systems have limited information processing power [3]. Such general conjectures do not, however, deter biologists and biomedical researchers from developing new computer applications in biology and medicine. Microprocessors are being widely employed in biological laboratories both for automatic data acquisition/processing and modeling; one particular area, which is of great biomedical interest, involves fast digital image processing and is already established for rout...
Sensitivity analysis approaches applied to systems biology models.
Zi, Z
2011-11-01
With the rising application of systems biology, sensitivity analysis methods have been widely applied to study the biological systems, including metabolic networks, signalling pathways and genetic circuits. Sensitivity analysis can provide valuable insights about how robust the biological responses are with respect to the changes of biological parameters and which model inputs are the key factors that affect the model outputs. In addition, sensitivity analysis is valuable for guiding experimental analysis, model reduction and parameter estimation. Local and global sensitivity analysis approaches are the two types of sensitivity analysis that are commonly applied in systems biology. Local sensitivity analysis is a classic method that studies the impact of small perturbations on the model outputs. On the other hand, global sensitivity analysis approaches have been applied to understand how the model outputs are affected by large variations of the model input parameters. In this review, the author introduces the basic concepts of sensitivity analysis approaches applied to systems biology models. Moreover, the author discusses the advantages and disadvantages of different sensitivity analysis methods, how to choose a proper sensitivity analysis approach, the available sensitivity analysis tools for systems biology models and the caveats in the interpretation of sensitivity analysis results.
Parameter optimization for surface flux transport models
Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.
2017-11-01
Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.
Cellular potts models multiscale extensions and biological applications
Scianna, Marco
2013-01-01
A flexible, cell-level, and lattice-based technique, the cellular Potts model accurately describes the phenomenological mechanisms involved in many biological processes. Cellular Potts Models: Multiscale Extensions and Biological Applications gives an interdisciplinary, accessible treatment of these models, from the original methodologies to the latest developments. The book first explains the biophysical bases, main merits, and limitations of the cellular Potts model. It then proposes several innovative extensions, focusing on ways to integrate and interface the basic cellular Potts model at the mesoscopic scale with approaches that accurately model microscopic dynamics. These extensions are designed to create a nested and hybrid environment, where the evolution of a biological system is realistically driven by the constant interplay and flux of information between the different levels of description. Through several biological examples, the authors demonstrate a qualitative and quantitative agreement with t...
Concept Layout Model of Transportation Terminals
Yao, Li-ya; Sun, Li-shan; Wang, Wu-hong; Xiong, Hui
2012-01-01
Transportation terminal is the key node in transport systems. Efficient terminals can improve operation of passenger transportation networks, adjust the layout of public transportation networks, provide a passenger guidance system, and regulate the development of commercial forms, as well as optimize the assembly and distribution of modern logistic modes, among others. This study aims to clarify the relationship between the function and the structure of transportation terminals and establish ...
A Theoretic Model of Transport Logistics Demand
Natalija Jolić; Nikolina Brnjac; Ivica Oreb
2006-01-01
Concerning transport logistics as relation between transportand integrated approaches to logistics, some transport and logisticsspecialists consider the tenn tautological. However,transport is one of the components of logistics, along with inventories,resources, warehousing, infonnation and goods handling.Transport logistics considers wider commercial and operationalframeworks within which the flow of goods is plannedand managed. The demand for transport logistics services canbe valorised as ...
Modeling reactive transport with particle tracking and kernel estimators
Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier
2015-04-01
Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.
Modelling of sediment transport at Muria peninsula coastal, Jepara
International Nuclear Information System (INIS)
Heni Susiati; Yarianto SBS; Wahyu Pandoe; Eko Kusratmoko; Aris Poniman
2010-01-01
Modelling of transport sediment modelling at Muria Peninsula have been done. In this study we had been used mathematical model that consist of hydrodynamics and sediment transport . Data input for modelling has been used tidal, monsoon wind, and river debit. Simulation result of sediment transport modelling showed that tides pattern and seasonal variations are the main causes of variations in the suspended sediment distribution in Muria Peninsula. (author)
Learning (from) the errors of a systems biology model.
Engelhardt, Benjamin; Frőhlich, Holger; Kschischo, Maik
2016-02-11
Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological systems are open. Missed or unknown external influences as well as erroneous interactions in the model could thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a data driven mathematical method which automatically detects such model errors in ordinary differential equation (ODE) models. We demonstrate for real and simulated data, how the dynamic elastic-net approach can be used to automatically (i) reconstruct the error signal, (ii) identify the target variables of model error, and (iii) reconstruct the true system state even for incomplete or preliminary models. Our work provides a systematic computational method facilitating modelling of open biological systems under uncertain knowledge.
Numerical Modelling Approaches for Sediment Transport in Sewer Systems
DEFF Research Database (Denmark)
Mark, Ole
A study of the sediment transport processes in sewers has been carried out. Based on this study a mathematical modelling system has been developed to describe the transport processes of sediments and dissolved matter in sewer systems. The modelling system consists of three sub-models which...... constitute the basic modelling system necessary to give a discription of the most dominant physical transport processes concerning particles and dissolved matter in sewer systems: A surface model. An advection-dispersion model. A sediment transport model....
Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles.
Grzelczak, Marcin P; Danks, Stephen P; Klipp, Robert C; Belic, Domagoj; Zaulet, Adnana; Kunstmann-Olsen, Casper; Bradley, Dan F; Tsukuda, Tatsuya; Viñas, Clara; Teixidor, Francesc; Abramson, Jonathan J; Brust, Mathias
2017-12-26
Carborane-capped gold nanoparticles (Au/carborane NPs, 2-3 nm) can act as artificial ion transporters across biological membranes. The particles themselves are large hydrophobic anions that have the ability to disperse in aqueous media and to partition over both sides of a phospholipid bilayer membrane. Their presence therefore causes a membrane potential that is determined by the relative concentrations of particles on each side of the membrane according to the Nernst equation. The particles tend to adsorb to both sides of the membrane and can flip across if changes in membrane potential require their repartitioning. Such changes can be made either with a potentiostat in an electrochemical cell or by competition with another partitioning ion, for example, potassium in the presence of its specific transporter valinomycin. Carborane-capped gold nanoparticles have a ligand shell full of voids, which stem from the packing of near spherical ligands on a near spherical metal core. These voids are normally filled with sodium or potassium ions, and the charge is overcompensated by excess electrons in the metal core. The anionic particles are therefore able to take up and release a certain payload of cations and to adjust their net charge accordingly. It is demonstrated by potential-dependent fluorescence spectroscopy that polarized phospholipid membranes of vesicles can be depolarized by ion transport mediated by the particles. It is also shown that the particles act as alkali-ion-specific transporters across free-standing membranes under potentiostatic control. Magnesium ions are not transported.
Evaluating biological transport of radionuclides at low-level waste burial sites
International Nuclear Information System (INIS)
Cadwell, L.L.; Kennedy, W.E.; McKenzie, D.H.
1983-08-01
The purpose of the work reported here is to develop and demonstrate methods for evaluating the long-term impact of biological processes at low-level waste (LLW) disposal sites. As part of this effort, we developed order-of-magnitude estimates of dose-to-man resulting from animal burrowing activity and plant translocation of radionuclides. Reference low-level waste sites in both arid and humid areas of the United States were examined. The results of our evaluation for generalized arid LLW burial site are presented here. Dose-to-man estimates resulting from biotic transport are compared with doses calculated from human intrusion exposure scenarios. Dose-to-man estimates, as a result of biotic transport, are of the same order of magnitude as those resulting from a more commonly evaluated human intrusion scenario. The reported lack of potential importance of biotic transport at LLW sites in earlier assessment studies is not confirmed by our findings. These results indicate that biotic transport has the long-term potential to mobilize radionuclides. Therefore, biotic transport should be carefully evaluated during burial site assessment
Uncertainty in biology a computational modeling approach
Gomez-Cabrero, David
2016-01-01
Computational modeling of biomedical processes is gaining more and more weight in the current research into the etiology of biomedical problems and potential treatment strategies. Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes: Modeling establishment under uncertainty Model selection and parameter fitting Sensitivity analysis and model adaptation Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples. This book is intended for graduate stude...
Mathematical manipulative models: in defense of "beanbag biology".
Jungck, John R; Gaff, Holly; Weisstein, Anton E
2010-01-01
Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process-1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets-we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education.
Development of a Value Inquiry Model in Biology Education.
Jeong, Eun-Young; Kim, Young-Soo
2000-01-01
Points out the rapid advances in biology, increasing bioethical issues, and how students need to make rational decisions. Introduces a value inquiry model development that includes identifying and clarifying value problems; understanding biological knowledge related to conflict situations; considering, selecting, and evaluating each alternative;…
SEEK: a systems biology data and model management platform.
Wolstencroft, K.J.; Owen, S.; Krebs, O.; Nguyen, Q.; Stanford, N.J.; Golebiewski, M.; Weidemann, A.; Bittkowski, M.; An, L.; Shockley, D.; Snoep, J.L.; Mueller, W.; Goble, C.
2015-01-01
Background: Systems biology research typically involves the integration and analysis of heterogeneous data types in order to model and predict biological processes. Researchers therefore require tools and resources to facilitate the sharing and integration of data, and for linking of data to systems
Signal Processing Model for Radiation Transport
Energy Technology Data Exchange (ETDEWEB)
Chambers, D H
2008-07-28
This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.
Modelling the Global Transportation Systems for the Hydrogen Economy
Energy Technology Data Exchange (ETDEWEB)
Krzyzanowski, D.A.; Kypreos, S.
2004-03-01
A modelling analysis of the transportation system is described, focused on the market penetration of different transportation technologies (including Learning-by-Doing) until the year 2050. A general outline of the work and first preliminary results are presented. (author)
RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY
The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...
Unified Deep Learning Architecture for Modeling Biology Sequence.
Wu, Hongjie; Cao, Chengyuan; Xia, Xiaoyan; Lu, Qiang
2017-10-09
Prediction of the spatial structure or function of biological macromolecules based on their sequence remains an important challenge in bioinformatics. When modeling biological sequences using traditional sequencing models, characteristics, such as long-range interactions between basic units, the complicated and variable output of labeled structures, and the variable length of biological sequences, usually lead to different solutions on a case-by-case basis. This study proposed the use of bidirectional recurrent neural networks based on long short-term memory or a gated recurrent unit to capture long-range interactions by designing the optional reshape operator to adapt to the diversity of the output labels and implementing a training algorithm to support the training of sequence models capable of processing variable-length sequences. Additionally, the merge and pooling operators enhanced the ability to capture short-range interactions between basic units of biological sequences. The proposed deep-learning model and its training algorithm might be capable of solving currently known biological sequence-modeling problems through the use of a unified framework. We validated our model on one of the most difficult biological sequence-modeling problems currently known, with our results indicating the ability of the model to obtain predictions of protein residue interactions that exceeded the accuracy of current popular approaches by 10% based on multiple benchmarks.
DEFF Research Database (Denmark)
Liu, W.; Lund, H.; Mathiesen, B.V.
2013-01-01
in China. With this purpose in mind, a Chinese transport model has been created and three current transport strategies which are high speed railway (HSR), urban rail transit (URT) and electric vehicle (EV) were evaluated together with a reference transport system in 2020. As conservative results, 13...
Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws
International Nuclear Information System (INIS)
Milligen, B.Ph. van; Sanchez, R.; Carreras, B.A.
2004-01-01
Transport in fusion plasmas in the low confinement mode is characterized by several remarkable properties: the anomalous scaling of transport with system size, stiff (or 'canonical') profiles, power degradation, and rapid transport phenomena. The present article explores the possibilities of constructing a unified transport model, based on the continuous-time random walk, in which all these phenomena are handled adequately. The resulting formalism appears to be sufficiently general to provide a sound starting point for the development of a full-blown plasma transport code, capable of incorporating the relevant microscopic transport mechanisms, and allowing predictions of confinement properties
Chemical Transport Models on Accelerator Architectures
Linford, J.; Sandu, A.
2008-12-01
Heterogeneous multicore chipsets with many layers of polymorphic parallelism are becoming increasingly common in high-performance computing systems. Homogeneous co-processors with many streaming processors also offer unprecedented peak floating-point performance. Effective use of parallelism in these new chipsets is paramount. We present optimization techniques for 3D chemical transport models to take full advantage of emerging Cell Broadband Engine and graphical processing unit (GPU) technology. Our techniques achieve 2.15x the per-node performance of an IBM BlueGene/P on the Cell Broadband Engine, and a strongly-scalable 1.75x the per-node performance of an IBM BlueGene/P on an NVIDIA GeForce 8600.
The Beasts' model of percolative transport
International Nuclear Information System (INIS)
Dubois, M.A.; Beaufume, P.; Fromont, B.
1991-12-01
A class of nonlinear dynamical systems is introduced: it is aimed to be a tool in order to study anomalous transport and percolation phenomena. We study a simple example of this system, and explore different regimes of transport exhibited
Genome Scale Modeling in Systems Biology: Algorithms and Resources
Najafi, Ali; Bidkhori, Gholamreza; Bozorgmehr, Joseph H.; Koch, Ina; Masoudi-Nejad, Ali
2014-01-01
In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics. PMID:24822031
Numerical Modelling of Sediment Transport in Combined Sewer Systems
DEFF Research Database (Denmark)
Schlütter, Flemming
A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed.......A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed....
A Process-Based Transport-Distance Model of Aeolian Transport
Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.
2017-12-01
We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.
Theoretical Biology and Medical Modelling: ensuring continued growth and future leadership.
Nishiura, Hiroshi; Rietman, Edward A; Wu, Rongling
2013-07-11
Theoretical biology encompasses a broad range of biological disciplines ranging from mathematical biology and biomathematics to philosophy of biology. Adopting a broad definition of "biology", Theoretical Biology and Medical Modelling, an open access journal, considers original research studies that focus on theoretical ideas and models associated with developments in biology and medicine.
Development of a kinetic model for biological sulphate reduction ...
African Journals Online (AJOL)
A two-phase (aqueous/gas) physical, biological and chemical processes ... Additionally, the background weak acid/base chemistry for water, carbonate, ... in the UCTADM1 model, and hence the physical gas exchange for sulphide is included.
Mathematical models in biology bringing mathematics to life
Ferraro, Maria; Guarracino, Mario
2015-01-01
This book presents an exciting collection of contributions based on the workshop “Bringing Maths to Life” held October 27-29, 2014 in Naples, Italy. The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content...
Modeling dynamics of biological and chemical components of aquatic ecosystems
International Nuclear Information System (INIS)
Lassiter, R.R.
1975-05-01
To provide capability to model aquatic ecosystems or their subsystems as needed for particular research goals, a modeling strategy was developed. Submodels of several processes common to aquatic ecosystems were developed or adapted from previously existing ones. Included are submodels for photosynthesis as a function of light and depth, biological growth rates as a function of temperature, dynamic chemical equilibrium, feeding and growth, and various types of losses to biological populations. These submodels may be used as modules in the construction of models of subsystems or ecosystems. A preliminary model for the nitrogen cycle subsystem was developed using the modeling strategy and applicable submodels. (U.S.)
Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena
Yang, Jianqiang; Ma, Hong; Zhong, Suchuang
2018-03-01
In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.
Systematic integration of experimental data and models in systems biology.
Li, Peter; Dada, Joseph O; Jameson, Daniel; Spasic, Irena; Swainston, Neil; Carroll, Kathleen; Dunn, Warwick; Khan, Farid; Malys, Naglis; Messiha, Hanan L; Simeonidis, Evangelos; Weichart, Dieter; Winder, Catherine; Wishart, Jill; Broomhead, David S; Goble, Carole A; Gaskell, Simon J; Kell, Douglas B; Westerhoff, Hans V; Mendes, Pedro; Paton, Norman W
2010-11-29
The behaviour of biological systems can be deduced from their mathematical models. However, multiple sources of data in diverse forms are required in the construction of a model in order to define its components and their biochemical reactions, and corresponding parameters. Automating the assembly and use of systems biology models is dependent upon data integration processes involving the interoperation of data and analytical resources. Taverna workflows have been developed for the automated assembly of quantitative parameterised metabolic networks in the Systems Biology Markup Language (SBML). A SBML model is built in a systematic fashion by the workflows which starts with the construction of a qualitative network using data from a MIRIAM-compliant genome-scale model of yeast metabolism. This is followed by parameterisation of the SBML model with experimental data from two repositories, the SABIO-RK enzyme kinetics database and a database of quantitative experimental results. The models are then calibrated and simulated in workflows that call out to COPASIWS, the web service interface to the COPASI software application for analysing biochemical networks. These systems biology workflows were evaluated for their ability to construct a parameterised model of yeast glycolysis. Distributed information about metabolic reactions that have been described to MIRIAM standards enables the automated assembly of quantitative systems biology models of metabolic networks based on user-defined criteria. Such data integration processes can be implemented as Taverna workflows to provide a rapid overview of the components and their relationships within a biochemical system.
Suitability of Commercial Transport Media for Biological Pathogens under Nonideal Conditions
Directory of Open Access Journals (Sweden)
Kyle Hubbard
2011-01-01
Full Text Available There is extensive data to support the use of commercial transport media as a stabilizer for known clinical samples; however, there is little information to support their use outside of controlled conditions specified by the manufacturer. Furthermore, there is no data to determine the suitability of said media for biological pathogens, specifically those of interest to the US military. This study evaluates commercial off-the-shelf (COTS transport media based on sample recovery, viability, and quality of nucleic acids and peptides for nonpathogenic strains of Bacillus anthracis, Yersinia pestis, and Venezuelan equine encephalitis virus, in addition to ricin toxin. Samples were stored in COTS, PBST, or no media at various temperatures over an extended test period. The results demonstrate that COTS media, although sufficient for the preservation of nucleic acid and proteinaceous material, are not capable of maintaining an accurate representation of biothreat agents at the time of collection.
Structural Biology Meets Drug Resistance: An Overview on Multidrug Resistance Transporters
DEFF Research Database (Denmark)
Shaheen, Aqsa; Iqbal, Mazhar; Mirza, Osman
2017-01-01
. Research on the underlying causes of multidrug resistance in cancerous cells and later on in infectious bacteria revealed the involvement of integral membrane transporters, capable of recognizing a broad range of structurally different molecules as substrates and exporting them from the cell using cellular...... superfamilies, viz., ATP-binding cassette superfamily, major facilitator superfamily and resistance nodulation division superfamily are presented. Further, the future role of structural biology in improving our understanding of drug-transporter interactions and in designing novel inhibitors against MDR pump...... century, mankind has become aware and confronted with the emergence of antibiotic-resistant pathogens. In parallel to the failure of antibiotic therapy against infectious pathogens, there had been continuous reports of cancerous cells not responding to chemotherapy with increase in the duration of therapy...
A transportable system of models for natural resource damage assessment
International Nuclear Information System (INIS)
Reed, M.; French, D.
1992-01-01
A system of computer models has been developed for assessment of natural resource economic damages resulting from spills of oil and hazardous materials in marine and fresh water environments. Under USA federal legislation, the results of the model system are presumed correct in damage litigation proceedings. The model can address a wide range of spatial and temporal scales. The equations describing the motion of both pollutants and biota are solved in three dimensions. The model can simulate continuous releases of a contaminant, with representation of complex coastal boundaries, variable bathymetry, multiple shoreline types, and spatially variable ecosystem habitats. A graphic user interface provides easy control of the system in addition to the ability to display elements of the underlying geographical information system data base. The model is implemented on a personal computer and on a UNIX workstation. The structure of the system is such that transport to new geographic regions can be accomplished relatively easily, requiring only the development of the appropriate physical, toxicological, biological, and economic data sets. Applications are currently in progress for USA inland and coastal waters, the Adriatic Sea, the Strait of Sicily, the Gulf of Suez, and the Baltic Sea. 4 refs., 2 figs
International Nuclear Information System (INIS)
McConathy, Jonathan; Owens, Michael J.; Kilts, Clinton D.; Malveaux, Eugene J.; Votaw, John R.; Nemeroff, Charles B.; Goodman, Mark M.
2005-01-01
The development of radioligands suitable for studying the central nervous system (CNS) norepinephrine transporter (NET) in vivo will provide important new tools for examining the pathophysiology and pharmacotherapy of a variety of neuropsychiatric disorders including major depression. Towards this end, a series of trans-3-phenyl-1-indanamine derivatives were prepared and evaluated in vitro. The biological properties of the most promising compound, [ 11 C]3-BrPA, were investigated in rat biodistribution and nonhuman primate PET studies. Despite high in vitro affinity for the human NET, the uptake of [ 11 C]3-BrPA in the brain and the heart was not displaceable with pharmacological doses of NET antagonists
Characterization of the Hanford 300 area burial grounds. Task IV. Biological transport
International Nuclear Information System (INIS)
Fitzner, R.E.; Gano, K.A.; Rickard, W.H.; Rogers, L.E.
1979-10-01
The characteristics of radioactive waste burial sites at the 300 area burial grounds on the Department of Energy's Hanford Site, southeastern Washington were studied. The potential vectors of radionuclide transport studied were vegetation and animals. The overall results showed a low potential for uptake and transport of radionuclides from the 300 area sites. However, additional methods to control physical and biological mechanisms may contribute to the effectiveness of waste burial practices. From the results, the Biological Transport task recommended field studies which include reduction of soil erosion and addition of biobarriers to plants and animals. Vegetation plays a major role in reducing soil erosion, and thereby maintaining the backfill over the burial sites. Of the several species found on the 300 area sites, cheatgrass (Bromus tectorum) appears to be the most desirable as a cover. Besides retarding erosion, it has a shallow root system (does not easily penetrate buried material); it has a low affinity for radionuclide uptake; and its tissues are not easily blown away. Small mammals (specifically, mice) appear to have the most potential for radionuclide exposure and uptake. Small mammals were live-trapped within 10 x 10-meter trap grids. Each animal trapped was surgically implanted with a thermoluminescent dosimeter. When the animal was recaptured, the dosimeter was removed and read for exposure. Exposures were reported in milli-Roentgens. The most consistently trapped small mammals were the Great Basin pocket mouse (Perognathus parvus) and the deer mouse (Peromyscus maniculatus). Results from the dosimeter readings showed that some of those animals had higher than background exposures. Biobarriers to animals could be considered as a mechanism to reduce the potential for radionuclide transport
Characterization of the Hanford 300 area burial grounds. Task IV. Biological transport
Energy Technology Data Exchange (ETDEWEB)
Fitzner, R.E.; Gano, K.A.; Rickard, W.H.; Rogers, L.E.
1979-10-01
The characteristics of radioactive waste burial sites at the 300 area burial grounds on the Department of Energy's Hanford Site, southeastern Washington were studied. The potential vectors of radionuclide transport studied were vegetation and animals. The overall results showed a low potential for uptake and transport of radionuclides from the 300 area sites. However, additional methods to control physical and biological mechanisms may contribute to the effectiveness of waste burial practices. From the results, the Biological Transport task recommended field studies which include reduction of soil erosion and addition of biobarriers to plants and animals. Vegetation plays a major role in reducing soil erosion, and thereby maintaining the backfill over the burial sites. Of the several species found on the 300 area sites, cheatgrass (Bromus tectorum) appears to be the most desirable as a cover. Besides retarding erosion, it has a shallow root system (does not easily penetrate buried material); it has a low affinity for radionuclide uptake; and its tissues are not easily blown away. Small mammals (specifically, mice) appear to have the most potential for radionuclide exposure and uptake. Small mammals were live-trapped within 10 x 10-meter trap grids. Each animal trapped was surgically implanted with a thermoluminescent dosimeter. When the animal was recaptured, the dosimeter was removed and read for exposure. Exposures were reported in milli-Roentgens. The most consistently trapped small mammals were the Great Basin pocket mouse (Perognathus parvus) and the deer mouse (Peromyscus maniculatus). Results from the dosimeter readings showed that some of those animals had higher than background exposures. Biobarriers to animals could be considered as a mechanism to reduce the potential for radionuclide transport.
Some Issues of Biological Shape Modelling with Applications
DEFF Research Database (Denmark)
Larsen, Rasmus; Hilger, Klaus Baggesen; Skoglund, Karl
2003-01-01
This paper illustrates current research at Informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations to, modifications to, and applications of the elements of constructing models of shape or appearance...
International Nuclear Information System (INIS)
Ibnouzahir, M.
1995-03-01
The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E≥ 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author)
Data-based mathematical modeling of vectorial transport across double-transfected polarized cells.
Bartholomé, Kilian; Rius, Maria; Letschert, Katrin; Keller, Daniela; Timmer, Jens; Keppler, Dietrich
2007-09-01
Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport. Time-dependent analyses of (3)H-labeled BSP in the basolateral, intracellular, and apical compartments of cells cultured on filter membranes and efflux experiments in cells preloaded with BSP were performed. A mathematical model was fitted to the experimental data. Data-based modeling was optimized by including endogenous transport processes in addition to the recombinant transport proteins. The predominant contributions to the overall vectorial transport of BSP were mediated by OATP1B3 (44%) and ABCC2 (28%). Model comparison predicted a previously unrecognized endogenous basolateral efflux process as a negative contribution to total vectorial transport, amounting to 19%, which is in line with the detection of the basolateral efflux pump Abcc4 in MDCKII cells. Rate-determining steps in the vectorial transport were identified by calculating control coefficients. Data-based mathematical modeling of vectorial transport of BSP as a model substance resulted in a quantitative description of this process and its components. The same systems biology approach may be applied to other cellular systems and to different substances.
A transport model with color confinement
International Nuclear Information System (INIS)
Loh, S.
1997-01-01
First the mostly important properties of QCD are dealt with. It is made plausible, how the QCD vacuum generates a screening of color charges and is by this responsible for the quark confinement in color singlets. in the following the behaviour of classical color charges and color fields is studied and it is concluded that by this approximation, the neglection of quantum-mechanical fluctuation, the quark confinement cannot be explained, because the mean-field approximation leads to a screening of the color charges. Motivated by this result the Friedberg-Lee soliton model is presented, in which the the color confinement and all further nonperturbative QCD effects are phenomenologically modelled by means of a scalar field. Thereafter a derivation of the transport equations for quarks in the framework of the Wigner-function is presented. An extension of the equation to the Friedberg-Lee model is explained. As results the ground-state properties of the model are studied. Mesonic and baryonic ground-state solutions (soliton solutions) of the equations are constructed, whereby the constituents are both light quarks and heavy quarks. Furthermore the color coupling constant of QCD is fixed by means of the string tension by dynamical separation of the quarks of the meson. The flux tubes formed dynamically in this way are applied, in order to study the interaction of two strings and to calculate a string-string potential. Excited states of the meson (isovectorial modes) are presented as well as the influence of the color confinement on the quark motion. Finally the dynamical formation and the break-up of a string by the production of light and heavy quark pairs is described
Biocellion: accelerating computer simulation of multicellular biological system models.
Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya
2014-11-01
Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Application of a calculational model for thermal neutrons through biological shields
Energy Technology Data Exchange (ETDEWEB)
Hathout, A M [Nuclear engineering safety department, national center for nuclear safety and radiation, Nasr City Cairo, (Egypt)
1995-10-01
In this work a computational program, based on the Boltzmann transport integrodifferential equation, is applied. The scattering kernel is represented by the synthetic scattering model. The behaviour of thermal neutron in hydrogenous materials, which can be used as biological shields, are studied. These materials are water, polyethylene, Oak-Ridge concrete, ordinary concrete and manganese concrete. The data obtained are presented in tables. The results are analysed and compared with similar experimental values. Safety evaluation and environmental impact are discussed. 2 tabs.
Three dimensional heat transport modeling in Vossoroca reservoir
Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias
2017-04-01
Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to
Directory of Open Access Journals (Sweden)
Felizardo A. Rocha
2008-02-01
Full Text Available Analisar o efeito da temperatura e umidade do solo nos processos de mineralização e nitrificação do nitrogênio e comparar as concentrações de nitrato e amônio, simuladas pelo modelo SIMASS-C, com aquelas obtidas experimentalmente, foi o objetivo que norteou o presente trabalho, razão por que se conduziram dois experimentos, o primeiro em câmeras de incubação, variando temperatura e teor de água do solo, e um segundo, em colunas de lixiviação montadas em laboratório. A temperatura e a umidade afetaram as transformações de nitrogênio, cujos efeitos foram mais pronunciados a partir de 15 dias de incubação, sobretudo nas temperaturas acima de 25 °C e umidades superiores à capacidade de campo. Ao se estimular as reações biológicas sofridas pelo nitrogênio, altos teores de água no solo causaram maiores erros entre as concentrações de nitrato e amônio simuladas e observadas.This work aimed at analyzing the effect of temperature and humidity of the soil on mineralization and nitrification processes of the nitrogen, as well as to compare nitrate and ammonium concentrations, simulated by the model SIMASS-C, with those observed. Two experiments were performed: the first in biological incubation camara, varying temperature and water content of the soil and the second, in columns in laboratory. The temperature and water content affected the transformations of nitrogen, and the effects were more pronounced after 15 days of incubation, mainly at temperatures above 25 °C and for water content higher than field capacity. By estimates of the biological reactions of nitrogen, higher levels of soil water caused larger errors between observed and simulated nitrate and ammonium concentrations.
Multiscale modeling of emergent materials: biological and soft matter
DEFF Research Database (Denmark)
Murtola, Teemu; Bunker, Alex; Vattulainen, Ilpo
2009-01-01
In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed in the c......In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed...
Modeling sheet-flow sand transport under progressive surface waves
Kranenburg, Wouter
2013-01-01
In the near-shore zone, energetic sea waves generate sheet-flow sand transport. In present day coastal models, wave-induced sheet-flow sand transport rates are usually predicted with semi-empirical transport formulas, based on extensive research on this phenomenon in oscillatory flow tunnels.
Statistical Model Checking for Biological Systems
DEFF Research Database (Denmark)
David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel
2014-01-01
Statistical Model Checking (SMC) is a highly scalable simulation-based verification approach for testing and estimating the probability that a stochastic system satisfies a given linear temporal property. The technique has been applied to (discrete and continuous time) Markov chains, stochastic...
Nematodes: Model Organisms in High School Biology
Bliss, TJ; Anderson, Margery; Dillman, Adler; Yourick, Debra; Jett, Marti; Adams, Byron J.; Russell, RevaBeth
2007-01-01
In a collaborative effort between university researchers and high school science teachers, an inquiry-based laboratory module was designed using two species of insecticidal nematodes to help students apply scientific inquiry and elements of thoughtful experimental design. The learning experience and model are described in this article. (Contains 4…
Structure, function, and behaviour of computational models in systems biology.
Knüpfer, Christian; Beckstein, Clemens; Dittrich, Peter; Le Novère, Nicolas
2013-05-31
Systems Biology develops computational models in order to understand biological phenomena. The increasing number and complexity of such "bio-models" necessitate computer support for the overall modelling task. Computer-aided modelling has to be based on a formal semantic description of bio-models. But, even if computational bio-models themselves are represented precisely in terms of mathematical expressions their full meaning is not yet formally specified and only described in natural language. We present a conceptual framework - the meaning facets - which can be used to rigorously specify the semantics of bio-models. A bio-model has a dual interpretation: On the one hand it is a mathematical expression which can be used in computational simulations (intrinsic meaning). On the other hand the model is related to the biological reality (extrinsic meaning). We show that in both cases this interpretation should be performed from three perspectives: the meaning of the model's components (structure), the meaning of the model's intended use (function), and the meaning of the model's dynamics (behaviour). In order to demonstrate the strengths of the meaning facets framework we apply it to two semantically related models of the cell cycle. Thereby, we make use of existing approaches for computer representation of bio-models as much as possible and sketch the missing pieces. The meaning facets framework provides a systematic in-depth approach to the semantics of bio-models. It can serve two important purposes: First, it specifies and structures the information which biologists have to take into account if they build, use and exchange models. Secondly, because it can be formalised, the framework is a solid foundation for any sort of computer support in bio-modelling. The proposed conceptual framework establishes a new methodology for modelling in Systems Biology and constitutes a basis for computer-aided collaborative research.
Modeling and analysis of transport in the mammary glands
International Nuclear Information System (INIS)
Quezada, Ana; Vafai, Kambiz
2014-01-01
The transport of three toxins moving from the blood stream into the ducts of the mammary glands is analyzed in this work. The model predictions are compared with experimental data from the literature. The utility of the model lies in its potential to improve our understanding of toxin transport as a pre-disposing factor to breast cancer. This work is based on a multi-layer transport model to analyze the toxins present in the breast milk. The breast milk in comparison with other sampling strategies allows us to understand the mass transport of toxins once inside the bloodstream of breastfeeding women. The multi-layer model presented describes the transport of caffeine, DDT and cimetidine. The analysis performed takes into account the unique transport mechanisms for each of the toxins. Our model predicts the movement of toxins and/or drugs within the mammary glands as well as their bioaccumulation in the tissues. (paper)
Modeling and analysis of transport in the mammary glands
Quezada, Ana; Vafai, Kambiz
2014-08-01
The transport of three toxins moving from the blood stream into the ducts of the mammary glands is analyzed in this work. The model predictions are compared with experimental data from the literature. The utility of the model lies in its potential to improve our understanding of toxin transport as a pre-disposing factor to breast cancer. This work is based on a multi-layer transport model to analyze the toxins present in the breast milk. The breast milk in comparison with other sampling strategies allows us to understand the mass transport of toxins once inside the bloodstream of breastfeeding women. The multi-layer model presented describes the transport of caffeine, DDT and cimetidine. The analysis performed takes into account the unique transport mechanisms for each of the toxins. Our model predicts the movement of toxins and/or drugs within the mammary glands as well as their bioaccumulation in the tissues.
Di Giorgio, Marina; Radl, Analía; Taja, María R; Bubniak, Ruth; Deminge, Mayra; Sapienza, Carla; Vázquez, Marina; Baciu, Florian; Kenny, Pat
2014-06-01
It has been observed that victims of accidental overexposures show better chance of survival if they receive medical treatment early. The increased risk of scenarios involving mass casualties has stimulated the scientific community to develop tools that would help the medical doctors to treat victims. The biological dosimetry has become a routine test to estimate the dose, supplementing physical and clinical dosimetry. In case of radiation emergencies, in order to provide timely and effectively biological dosimetry assistance it is essential to guarantee an adequate transport of blood samples in principal, for providing support to countries that do not have biodosimetry laboratories. The objective of the present paper is to provide general guidelines, summarised in 10 points, for timely and proper receiving and sending of blood samples under National and International regulations, for safe and expeditious international transport. These guidelines cover the classification, packaging, marking, labelling, refrigeration and documentation requirements for the international shipping of blood samples and pellets, to provide assistance missions with a tool that would contribute with the preparedness for an effective biodosimetric response in cases of radiological or nuclear emergencies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays
Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.
1991-01-01
The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.
Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays
International Nuclear Information System (INIS)
Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Nealy, J.E.; Shinn, J.L.
1991-02-01
The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space
Polynomial algebra of discrete models in systems biology.
Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard
2010-07-01
An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.
SEEK: a systems biology data and model management platform.
Wolstencroft, Katherine; Owen, Stuart; Krebs, Olga; Nguyen, Quyen; Stanford, Natalie J; Golebiewski, Martin; Weidemann, Andreas; Bittkowski, Meik; An, Lihua; Shockley, David; Snoep, Jacky L; Mueller, Wolfgang; Goble, Carole
2015-07-11
Systems biology research typically involves the integration and analysis of heterogeneous data types in order to model and predict biological processes. Researchers therefore require tools and resources to facilitate the sharing and integration of data, and for linking of data to systems biology models. There are a large number of public repositories for storing biological data of a particular type, for example transcriptomics or proteomics, and there are several model repositories. However, this silo-type storage of data and models is not conducive to systems biology investigations. Interdependencies between multiple omics datasets and between datasets and models are essential. Researchers require an environment that will allow the management and sharing of heterogeneous data and models in the context of the experiments which created them. The SEEK is a suite of tools to support the management, sharing and exploration of data and models in systems biology. The SEEK platform provides an access-controlled, web-based environment for scientists to share and exchange data and models for day-to-day collaboration and for public dissemination. A plug-in architecture allows the linking of experiments, their protocols, data, models and results in a configurable system that is available 'off the shelf'. Tools to run model simulations, plot experimental data and assist with data annotation and standardisation combine to produce a collection of resources that support analysis as well as sharing. Underlying semantic web resources additionally extract and serve SEEK metadata in RDF (Resource Description Format). SEEK RDF enables rich semantic queries, both within SEEK and between related resources in the web of Linked Open Data. The SEEK platform has been adopted by many systems biology consortia across Europe. It is a data management environment that has a low barrier of uptake and provides rich resources for collaboration. This paper provides an update on the functions and
Progress in transport modelling of internal transport barrier plasmas in JET
International Nuclear Information System (INIS)
Tala, T.; Bourdelle, C.; Imbeaux, F.; Moreau, D.; Garbet, X.; Joffrin, E.; Laborde, L.; Litaudon, X.; Mazon, D.; Parail, V.; Corrigan, G.; Heading, D.; Crisanti, F.; Mantica, P.; Salmi, A.; Strand, P.; Weiland, J.
2005-01-01
This paper will report on the recent progress in transport modelling of Internal Transport Barrier (ITB) plasmas. Two separate issues will be covered, fully predictive transport modelling of ITBs in the multi-tokamak database, including micro-stability analyses of ITBs, and predictive closed-loop (i.e. real-time control) transport simulations of the q-profile and ITBs. For the first time, the predictive capabilities of the mixed Bohm/GyroBohm and Weiland transport models are investigated with discharges from the ITPA ITB database by fully predictive transport simulations. The predictive transport simulations with the Bohm/GyroBohm model agree very well with experimental results from JET and JT-60U. In order to achieve a good agreement in DIII-D, the stabilisation had to be included into the model, showing the significant role played by the stabilisation in governing the physics of the ITBs. The significant role of the stabilisation is also emphasised by the gyrokinetic analysis. The Weiland transport model shows only limited agreement between the model predictions and experimental results with respect to the formation and location of the ITB. The fully predictive closed-loop simulations with real-time control of the q-profile and ITB show that it is possible to reach various set-point profiles for q and ITB and control them for longer than a current diffusion time in JET using the same real-time control technique as in the experiments. (author)
Biological-Mathematical Modeling of Chronic Toxicity.
1981-07-22
34Mathematical Model of Uptake and Distribution," Uptake and Distribution of Anesthetic Agents, E. M. Papper and R. J. Kitz (Editors, McGraw-Hill Book Co., Inc...distribution, In: Papper , E.M. and Kltz, R.J.(eds.) Uptake and distribution of anesthetic agents, McGraw- Hill, New York, p. 72 3. Plpleson, W.W...1963) Quantitative prediction of anesthetic concentrations. In: Papper , E.M. and Kitz, R.J. (eds.) Uptake and distribution of anesthetic agents, McGraw
Modelling multicomponent solute transport in structured soils
Beinum, van G.W.
2007-01-01
The mobility of contaminants in soil is an important factor in determining their ability to spread into the wider environment. For non-volatile substances, transport within the soil is generally dominated by transport of dissolved fractions in the soil water phase, via either diffusion or
Modelling global container freight transport demand
Tavasszy, L.A.; Ivanova, O.; Halim, R.A.
2015-01-01
The objective of this chapter is to discuss methods and techniques for a quantitative and descriptive analysis of future container transport demand at a global level. Information on future container transport flows is useful for various purposes. It is instrumental for the assessment of returns of
International Nuclear Information System (INIS)
Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad
2013-01-01
Transport is one of the most challenge sectors when addressing energy security and climate change due to its high reliance on oil products and lack of the alternative fuels. This paper explores the ability of three transport strategies to contribute to the development of a sustainable transport in China. With this purpose in mind, a Chinese transport model has been created and three current transport strategies which are high speed railway (HSR), urban rail transit (URT) and electric vehicle (EV) were evaluated together with a reference transport system in 2020. As conservative results, 13% of the energy saving and 12% of the CO 2 emission reduction can be attained by accomplishing three strategies compared with the reference transport system. However, the energy demand of transport in 2020 with the implementation of three strategies will be about 1.7 times as much as today. The three strategies show the potential of drawing the transport demand to the more energy efficient vehicles; however, more initiatives are needed if the sustainable transport is the long term objective, such as the solutions to stabilise the private vehicle demands, to continuously improve the vehicle efficiency and to boost the alternative fuels produced from the renewable energy sources. - Highlights: • A Chinese transport model was created and three transport strategies were evaluated • Transport is the biggest driver of the oil demand in China not the industry • The energy demand of transport in 2020 will be twice as much as today • Strategies contribute 13% energy saving and 12% CO 2 emission reduction • More initiatives are needed if a sustainable transport is the long-term objective
On The Construction of Models for Electrical Conduction in Biological Tissues
International Nuclear Information System (INIS)
Gomez-Aguilar, F.; Bernal-Alvarado, J.; Cordova-Fraga, T.; Rosales-Garcia, J.; Guia-Calderon, M.
2010-01-01
Applying RC circuit theory, a theoretical representation for the electrical conduction in a biological multilayer system was developed. In particular an equivalent circuit for the epidermis, dermis and the subcutaneous tissue was constructed. This model includes an equivalent circuit, inside the dermis, in order to model a small formation like tumor. This work shows the feasibility to apply superficial electrodes to detect subcutaneous abnormalities. The behavior of the model is shown in the form of a frequency response chart. The Bode and Nyquist plots are also obtained. This theoretical frame is proposed to be a general treatment to describe the bioelectrical transport in a three layer bioelectrical system.
Modeling life the mathematics of biological systems
Garfinkel, Alan; Guo, Yina
2017-01-01
From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. This book develops the mathematical tools essential for students in the life sciences to describe these interacting systems and to understand and predict their behavior. Complex feedback relations and counter-intuitive responses are common in dynamical systems in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models ...
Profiling the biological activity of oxide nanomaterials with mechanistic models
Burello, E.
2013-01-01
In this study we present three mechanistic models for profiling the potential biological and toxicological effects of oxide nanomaterials. The models attempt to describe the reactivity, protein adsorption and membrane adhesion processes of a large range of oxide materials and are based on properties
Building executable biological pathway models automatically from BioPAX
Willemsen, Timo; Feenstra, Anton; Groth, Paul
2013-01-01
The amount of biological data exposed in semantic formats is steadily increasing. In particular, pathway information (a model of how molecules interact within a cell) from databases such as KEGG and WikiPathways are available in a standard RDF-based format BioPAX. However, these models are
Multi-level and hybrid modelling approaches for systems biology.
Bardini, R; Politano, G; Benso, A; Di Carlo, S
2017-01-01
During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.
Modeling emissions for three-dimensional atmospheric chemistry transport models.
Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus
2018-01-24
Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple
Spencer, J.; Gajdos, F.; Blumberger, J.
2016-08-01
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.
Energy Technology Data Exchange (ETDEWEB)
Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2016-08-14
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.
Predictive modelling of complex agronomic and biological systems.
Keurentjes, Joost J B; Molenaar, Jaap; Zwaan, Bas J
2013-09-01
Biological systems are tremendously complex in their functioning and regulation. Studying the multifaceted behaviour and describing the performance of such complexity has challenged the scientific community for years. The reduction of real-world intricacy into simple descriptive models has therefore convinced many researchers of the usefulness of introducing mathematics into biological sciences. Predictive modelling takes such an approach another step further in that it takes advantage of existing knowledge to project the performance of a system in alternating scenarios. The ever growing amounts of available data generated by assessing biological systems at increasingly higher detail provide unique opportunities for future modelling and experiment design. Here we aim to provide an overview of the progress made in modelling over time and the currently prevalent approaches for iterative modelling cycles in modern biology. We will further argue for the importance of versatility in modelling approaches, including parameter estimation, model reduction and network reconstruction. Finally, we will discuss the difficulties in overcoming the mathematical interpretation of in vivo complexity and address some of the future challenges lying ahead. © 2013 John Wiley & Sons Ltd.
Modeling of capacitated transportation systems for integral scheduling
Ebben, Mark; van der Heijden, Matthijs C.; Hurink, Johann L.; Schutten, Johannes M.J.
2003-01-01
Motivated by a planned automated cargo transportation network, we consider transportation problems in which the finite capacity of resources has to be taken into account. We present a flexible modeling methodology which allows to construct, evaluate, and improve feasible solutions. The modeling is
Modeling of capacitated transportation systems for integral scheduling
Ebben, Mark; van der Heijden, Matthijs C.; Hurink, Johann L.; Schutten, Johannes M.J.
2003-01-01
Motivated by a planned automated cargo transportation network, we consider transportation problems in which the finite capacity of resources has to be taken nto account. We present a flexible modeling methodology which allows to construct, evaluate, and improve feasible solutions. The modeling is
A Coupled Chemical and Mass Transport Model for Concrete Durability
DEFF Research Database (Denmark)
Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica
2012-01-01
In this paper a general continuum theory is used to evaluate the service life of cement based materials, in terms of mass transport processes and chemical degradation of the solid matrix. The model established is a reactive mass transport model, based on an extended version of the Poisson-Nernst-...
Numerical modelling of ion transport in flames
Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Sarathy, Mani
2015-01-01
that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect
A distributed approach for parameters estimation in System Biology models
International Nuclear Information System (INIS)
Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.
2009-01-01
Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.
Modeling the fate transport of cesium in crushed granite
International Nuclear Information System (INIS)
Lee, C.B.; Kuo, Y.M.; Hsu, C.N.; Li, M.H.; Cheng, H.P.; Teng, S.P.
2005-01-01
Full text of publication follows: In order to assess the safety of a underground radwaste repository, reactive transport models suitable for evaluating the fate and transport of radionuclides need to be established based on experimental observation and analysis. The goal of this study is to construct adequate models simulating the reactive transport of cesium (Cs) in crushed granite through a systematic analysis, where synthetic groundwater (SGW) and synthetic seawater (SSW) were employed as the liquid phase. To build such models, this study applied N 2 -BET, x-ray diffraction (XRD), polar-microscopy/ auto-radiography, and solid-phase digestion for the analysis of granite, kinetic batch tests for the characterization of sorption/desorption of Cs, and multi-stage advection-dispersion column tests for the determination of major transport processes and the calibration/validation of hypothesized reactive transport models. Based on the results of solid phase analysis and batch tests, a two-site Langmuir kinetic model has been determined capable of appropriately describing Cs sorption/desorption under test conditions. From the results of non-reactive HTO column tests, a mobile/immobile transport model was proposed to capture the major transport processes in our column system. However, the combination of the two-site Langmuir model and the mobile/immobile transport model failed to provide numerical breakthrough curves matching the Cs experimental breakthroughs. It implied that our model needs to be further refined. To achieve this, the setup of our column test needs to be modified first to reduce the volume of column connecting space, so that the effect of extra diffusion/dispersion on breakthroughs would be minimized and major transport characteristics can be clearly revealed. Moreover, more investigations on the reaction mechanisms and transport processes of the reactive transport system must be conducted. (authors)
Advances in dynamic network modeling in complex transportation systems
Ukkusuri, Satish V
2013-01-01
This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.
Symmetrization of mathematical model of charge transport in semiconductors
Directory of Open Access Journals (Sweden)
Alexander M. Blokhin
2002-11-01
Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.
A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)
Energy Technology Data Exchange (ETDEWEB)
Claveau, J; Ramaroson, R [Office National d` Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)
1998-12-31
The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.
A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)
Energy Technology Data Exchange (ETDEWEB)
Claveau, J.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)
1997-12-31
The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.
Application of rrm as behavior mode choice on modelling transportation
Surbakti, M. S.; Sadullah, A. F.
2018-03-01
Transportation mode selection, the first step in transportation planning process, is probably one of the most important planning elements. The development of models that can explain the preference of passengers regarding their chosen mode of public transport option will contribute to the improvement and development of existing public transport. Logit models have been widely used to determine the mode choice models in which the alternative are different transport modes. Random Regret Minimization (RRM) theory is a theory developed from the behavior to choose (choice behavior) in a state of uncertainty. During its development, the theory was used in various disciplines, such as marketing, micro economy, psychology, management, and transportation. This article aims to show the use of RRM in various modes of selection, from the results of various studies that have been conducted both in north sumatera and western Java.
Modelling Emission of Pollutants from transportation using mobile sensing data
DEFF Research Database (Denmark)
Lehmann, Anders
The advent and the proliferation of the smartphone has promised new possibilities for researchers to gain knowledge about the habits and behaviour of people, as the ubiqui- tous smartphone with an array of sensors is capable of deliver a wealth of information. This dissertation addresses methods...... to use data acquired from smartphones to im- prove transportation related air quality models and models for climate gas emission from transportation. These models can be used for planning of transportation net- works, monitoring of air quality, and automate transport related green accounting. More...... database imple- mentations are a subfield of computer science. I have worked to bring these diverse research fields together to solve the challenge of improving modelling of transporta- tion related air quality emissions as well as modelling of transportation related climate gas emissions. The main...
Reinisch, Bianca; Krüger, Dirk
2018-02-01
In research on the nature of science, there is a need to investigate the role and status of different scientific knowledge forms. Theories and models are two of the most important knowledge forms within biology and are the focus of this study. During interviews, preservice biology teachers ( N = 10) were asked about their understanding of theories and models. They were requested to give reasons why they see theories and models as either tentative or certain constructs. Their conceptions were then compared to philosophers' positions (e.g., Popper, Giere). A category system was developed from the qualitative content analysis of the interviews. These categories include 16 conceptions for theories ( n tentative = 11; n certai n = 5) and 18 conceptions for models ( n tentative = 10; n certain = 8). The analysis of the interviews showed that the preservice teachers gave reasons for the tentativeness or certainty of theories and models either due to their understanding of the terms or due to their understanding of the generation or evaluation of theories and models. Therefore, a variety of different terminology, from different sources, should be used in learning-teaching situations. Additionally, an understanding of which processes lead to the generation, evaluation, and refinement or rejection of theories and models should be discussed with preservice teachers. Within philosophy of science, there has been a shift from theories to models. This should be transferred to educational contexts by firstly highlighting the role of models and also their connections to theories.
Runkel, Robert L.
2010-01-01
OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.
Yeast as a Model System to Study Tau Biology
Directory of Open Access Journals (Sweden)
Ann De Vos
2011-01-01
Full Text Available Hyperphosphorylated and aggregated human protein tau constitutes a hallmark of a multitude of neurodegenerative diseases called tauopathies, exemplified by Alzheimer's disease. In spite of an enormous amount of research performed on tau biology, several crucial questions concerning the mechanisms of tau toxicity remain unanswered. In this paper we will highlight some of the processes involved in tau biology and pathology, focusing on tau phosphorylation and the interplay with oxidative stress. In addition, we will introduce the development of a human tau-expressing yeast model, and discuss some crucial results obtained in this model, highlighting its potential in the elucidation of cellular processes leading to tau toxicity.
BayesMD: flexible biological modeling for motif discovery
DEFF Research Database (Denmark)
Tang, Man-Hung Eric; Krogh, Anders; Winther, Ole
2008-01-01
We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained on trans......We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained...
Transport parameters for the modelling of water transport in ionomer membranes for PEM-fuel cells
International Nuclear Information System (INIS)
Meier, Frank; Eigenberger, Gerhart
2004-01-01
The water transport number (drag coefficient) and the hydraulic permeability were measured for Nafion. The results show a significant increase of both parameters with increasing water content indicating that they are strongly influenced by the membrane microstructure. Based on these experimental studies a new model approach to describe water transport in the H 2 -PEFC membrane is presented. This approach considers water transport by electro-osmosis caused by the proton flux through the membrane and by osmosis caused by a gradient in the chemical potential of water. It is parametrized by the measured data for the water transport number and the hydraulic permeability of Nafion. First simulation results applying this approach to a one-dimensional model of the H 2 -PEFC show good agreement with experimental data. Therefore, the developed model can be used for a new insight into the dominating mechanisms of water transport in the membrane
Transport Routes Optimization Model Through Application of Fuzzy Logic
Directory of Open Access Journals (Sweden)
Ivan Bortas
2018-03-01
Full Text Available The transport policy of the European Union is based on the mission of restructuring road traffic into other and energy-favourable transport modes which have not been sufficiently represented yet. Therefore, the development of the inland waterway and rail transport, and connectivity in the intermodal transport network are development planning priorities of the European transport strategy. The aim of this research study was to apply the scientific methodology and thus analyse the factors that affect the distribution of the goods flows and by using the fuzzy logic to make an optimization model, according to the criteria of minimizing the costs and negative impact on the environment, for the selection of the optimal transport route. Testing of the model by simulation, was performed on the basis of evaluating the criteria of the influential parameters with unprecise and indefinite input parameters. The testing results show that by the distribution of the goods flow from road transport network to inland waterways or rail transport, can be predicted in advance and determine the transport route with optimal characteristics. The results of the performed research study will be used to improve the process of planning the transport service, with the aim of reducing the transport costs and environmental pollution.
Tracking of Short Distance Transport Pathways in Biological Tissues by Ultra-Small Nanoparticles
Segmehl, Jana S.; Lauria, Alessandro; Keplinger, Tobias; Berg, John K.; Burgert, Ingo
2018-03-01
In this work, ultra-small europium-doped HfO2 nanoparticles were infiltrated into native wood and used as trackers for studying penetrability and diffusion pathways in the hierarchical wood structure. The high electron density, laser induced luminescence, and crystallinity of these particles allowed for a complementary detection of the particles in the cellular tissue. Confocal Raman microscopy and high-resolution synchrotron scanning wide-angle X-ray scattering (WAXS) measurements were used to detect the infiltrated particles in the native wood cell walls. This approach allows for simultaneously obtaining chemical information of the probed biological tissue and the spatial distribution of the integrated particles. The in-depth information about particle distribution in the complex wood structure can be used for revealing transport pathways in plant tissues, but also for gaining better understanding of modification treatments of plant scaffolds aiming at novel functionalized materials.
FEMA: a Finite Element Model of Material Transport through Aquifers
International Nuclear Information System (INIS)
Yeh, G.T.; Huff, D.D.
1985-01-01
This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above
FEMA: a Finite Element Model of Material Transport through Aquifers
Energy Technology Data Exchange (ETDEWEB)
Yeh, G.T.; Huff, D.D.
1985-01-01
This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above.
A finite element model for protein transport in vivo
Directory of Open Access Journals (Sweden)
Montas Hubert J
2007-06-01
Full Text Available Abstract Background Biological mass transport processes determine the behavior and function of cells, regulate interactions between synthetic agents and recipient targets, and are key elements in the design and use of biosensors. Accurately predicting the outcomes of such processes is crucial to both enhancing our understanding of how these systems function, enabling the design of effective strategies to control their function, and verifying that engineered solutions perform according to plan. Methods A Galerkin-based finite element model was developed and implemented to solve a system of two coupled partial differential equations governing biomolecule transport and reaction in live cells. The simulator was coupled, in the framework of an inverse modeling strategy, with an optimization algorithm and an experimental time series, obtained by the Fluorescence Recovery after Photobleaching (FRAP technique, to estimate biomolecule mass transport and reaction rate parameters. In the inverse algorithm, an adaptive method was implemented to calculate sensitivity matrix. A multi-criteria termination rule was developed to stop the inverse code at the solution. The applicability of the model was illustrated by simulating the mobility and binding of GFP-tagged glucocorticoid receptor in the nucleoplasm of mouse adenocarcinoma. Results The numerical simulator shows excellent agreement with the analytic solutions and experimental FRAP data. Detailed residual analysis indicates that residuals have zero mean and constant variance and are normally distributed and uncorrelated. Therefore, the necessary and sufficient criteria for least square parameter optimization, which was used in this study, were met. Conclusion The developed strategy is an efficient approach to extract as much physiochemical information from the FRAP protocol as possible. Well-posedness analysis of the inverse problem, however, indicates that the FRAP protocol provides insufficient
Theoretical modeling of transport barriers in helical plasmas
International Nuclear Information System (INIS)
Toda, S.; Itoh, K.; Ohyabu, N.
2008-10-01
A unified transport modelling to explain electron Internal Transport Barriers (e-ITB) in helical plasmas and Internal Diffusion Barriers (IDB) observed in Large Helical Device (LHD) is proposed. The e-ITB can be predicted with the effect of zonal flows to obtain the e-ITB in the low collisional regime when the radial variation of the particle anomalous diffusivity is included. Transport analysis in this article can newly show that the particle fuelling induces the IDB formation when this unified transport modelling is used in the high collisional regime. The density limit for the IDB in helical plasmas is also examined including the effect of the radiation loss. (author)
Energy Technology Data Exchange (ETDEWEB)
Lasuik, J.; Shalchi, A., E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada)
2017-09-20
Recently, a new theory for the transport of energetic particles across a mean magnetic field was presented. Compared to other nonlinear theories the new approach has the advantage that it provides a full time-dependent description of the transport. Furthermore, a diffusion approximation is no longer part of that theory. The purpose of this paper is to combine this new approach with a time-dependent model for parallel transport and different turbulence configurations in order to explore the parameter regimes for which we get ballistic transport, compound subdiffusion, and normal Markovian diffusion.
Toward a comprehensive model of chemical transport in porous media
International Nuclear Information System (INIS)
Miller, C.W.
1983-02-01
A chemical transport model, CHEMTRN, that includes advection, dispersion/diffusion, complexation, sorption, precipitation or dissolution of solids, and the dissociation of water has been written. The transport, mass action and site constraint equations are written in a differential/algebraic form and solved simultaneously. The sorption process is modelled by either ion-exchange or surface complexation. The model has been used to investigate the applicability of a k/sub D/ model for simulating the transport of chemical species in groundwater systems, to simulate precipitation/dissolution of minerals, and to consider the effect of surface complexation on sorption
Particle Tracking Model and Abstraction of Transport Processes
International Nuclear Information System (INIS)
Robinson, B.
2000-01-01
The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone
Biology learning evaluation model in Senior High Schools
Directory of Open Access Journals (Sweden)
Sri Utari
2017-06-01
Full Text Available The study was to develop a Biology learning evaluation model in senior high schools that referred to the research and development model by Borg & Gall and the logic model. The evaluation model included the components of input, activities, output and outcomes. The developing procedures involved a preliminary study in the form of observation and theoretical review regarding the Biology learning evaluation in senior high schools. The product development was carried out by designing an evaluation model, designing an instrument, performing instrument experiment and performing implementation. The instrument experiment involved teachers and Students from Grade XII in senior high schools located in the City of Yogyakarta. For the data gathering technique and instrument, the researchers implemented observation sheet, questionnaire and test. The questionnaire was applied in order to attain information regarding teacher performance, learning performance, classroom atmosphere and scientific attitude; on the other hand, test was applied in order to attain information regarding Biology concept mastery. Then, for the analysis of instrument construct, the researchers performed confirmatory factor analysis by means of Lisrel 0.80 software and the results of this analysis showed that the evaluation instrument valid and reliable. The construct validity was between 0.43-0.79 while the reliability of measurement model was between 0.88-0.94. Last but not the least, the model feasibility test showed that the theoretical model had been supported by the empirical data.
Limitations of sorption isotherms on modeling groundwater contaminant transport
International Nuclear Information System (INIS)
Silva, Eduardo Figueira da
2007-01-01
Design and safety assessment of radioactive waste repositories, as well as remediation of radionuclide contaminated groundwater require the development of models capable of accurately predicting trace element fate and transport. Adsorption of trace radionuclides onto soils and groundwater is an important mechanism controlling near- and far- field transport. Although surface complexation models (SCMs) can better describe the adsorption mechanisms of most radionuclides onto mineral surfaces by directly accounting for variability of system properties and mineral surface properties, isotherms are still used to model contaminant transport in groundwater, despite the much higher system dependence. The present work investigates differences between transport model results based on these two approaches for adsorption modeling. A finite element transport model is used for the isotherm model, whereas the computer program PHREEQC is used for the SCM approach. Both models are calibrated for a batch experiment, and one-dimensional transport is simulated using the calibrated parameters. At the lower injected concentrations there are large discrepancies between SCM and isotherm transport predictions, with the SCM presenting much longer tails on the breakthrough curves. Isotherms may also provide non-conservative results for time to breakthrough and for maximum concentration in a contamination plume. Isotherm models are shown not to be robust enough to predict transport behavior of some trace elements, thus discouraging their use. The results also illustrate the promise of the SCM modeling approach in safety assessment and environmental remediation applications, also suggesting that independent batch sorption measurements can be used, within the framework of the SCM, to produce a more versatile and realistic groundwater transport model for radionuclides which is capable of accounting more accurately for temporal and spatial variations in geochemical conditions. (author)
Transport services quality measurment using SERVQUAL model
Directory of Open Access Journals (Sweden)
Maksimović Mlađan V.
2017-01-01
Full Text Available Quality in the world is considered to be the most important phenomenon of our age, with a permanent and irreversible growing trend of its emphasis. Many companies have come to the conclusion that high quality of services can provide them with a potential competitive advantage, leading to superior sales results and profit making. The aim of this paper is to test the applicability of service SERVQUAL dimensions and measure the quality of services in the public transport of passengers. Based on the data obtained by researching the views of public transport users in Kragujevac using the SERVQUAL methodology and statistical analysis based on defined service quality dimensions, this research will show the level of quality of urban transport services in Kragujevac and based on this, make recommendations for improving the quality of service.
Modeling of biological intelligence for SCM system optimization.
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.
Modeling of Biological Intelligence for SCM System Optimization
Directory of Open Access Journals (Sweden)
Shengyong Chen
2012-01-01
Full Text Available This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.
Modeling of Biological Intelligence for SCM System Optimization
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724
Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M
2017-07-01
Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.
Advanced transport systems analysis, modeling, and evaluation of performances
Janić, Milan
2014-01-01
This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social, and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air trans...
Assessment of applications of transport models on regional scale solute transport
Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.
2017-12-01
Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.
Metal-like transport in proteins: A new paradigm for biological electron transfer
Malvankar, Nikhil; Vargas, Madeline; Tuominen, Mark; Lovley, Derek
2012-02-01
Electron flow in biologically proteins generally occurs via tunneling or hopping and the possibility of electron delocalization has long been discounted. Here we report metal-like transport in protein nanofilaments, pili, of bacteria Geobacter sulfurreducens that challenges this long-standing belief [1]. Pili exhibit conductivities comparable to synthetic organic metallic nanostructures. The temperature, magnetic field and gate-voltage dependence of pili conductivity is akin to that of quasi-1D disordered metals, suggesting a metal-insulator transition. Magnetoresistance (MR) data provide evidence for quantum interference and weak localization at room temperature, as well as a temperature and field-induced crossover from negative to positive MR. Furthermore, pili can be doped with protons. Structural studies suggest the possibility of molecular pi stacking in pili, causing electron delocalization. Reducing the disorder increases the metallic nature of pili. These electronically functional proteins are a new class of electrically conductive biological proteins that can be used to generate future generation of inexpensive and environmentally-sustainable nanomaterials and nanolectronic devices such as transistors and supercapacitors. [1] Malvankar et al. Nature Nanotechnology, 6, 573-579 (2011)
Energy Technology Data Exchange (ETDEWEB)
Bergman, T.L.; Faghri, A. [Department of Mechanical Engineering, The University of Connecticut, Storrs, CT 06269-3139 (United States); Viskanta, R. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States)
2008-09-15
A US National Science Foundation-sponsored workshop entitled ''Frontiers in Transport Phenomena Research and Education: Energy Systems, Biological Systems, Security, Information Technology, and Nanotechnology'' was held in May of 2007 at the University of Connecticut. The workshop provided a venue for researchers, educators and policy-makers to identify frontier challenges and associated opportunities in heat and mass transfer. Approximately 300 invited participants from academia, business and government from the US and abroad attended. Based upon the final recommendations on the topical matter of the workshop, several trends become apparent. A strong interest in sustainable energy is evident. A continued need to understand the coupling between broad length (and time) scales persists, but the emerging need to better understand transport phenomena at the macro/mega scale has evolved. The need to develop new metrology techniques to collect and archive reliable property data persists. Societal sustainability received major attention in two of the reports. Matters involving innovation, entrepreneurship, and globalization of the engineering profession have emerged, and the responsibility to improve the technical literacy of the public-at-large is discussed. Integration of research thrusts and education activities is highlighted throughout. Specific recommendations, made by the panelists with input from the international heat transfer community and directed to the National Science Foundation, are included in several reports. (author)
Boolean Models of Biological Processes Explain Cascade-Like Behavior.
Chen, Hao; Wang, Guanyu; Simha, Rahul; Du, Chenghang; Zeng, Chen
2016-01-29
Biological networks play a key role in determining biological function and therefore, an understanding of their structure and dynamics is of central interest in systems biology. In Boolean models of such networks, the status of each molecule is either "on" or "off" and along with the molecules interact with each other, their individual status changes from "on" to "off" or vice-versa and the system of molecules in the network collectively go through a sequence of changes in state. This sequence of changes is termed a biological process. In this paper, we examine the common perception that events in biomolecular networks occur sequentially, in a cascade-like manner, and ask whether this is likely to be an inherent property. In further investigations of the budding and fission yeast cell-cycle, we identify two generic dynamical rules. A Boolean system that complies with these rules will automatically have a certain robustness. By considering the biological requirements in robustness and designability, we show that those Boolean dynamical systems, compared to an arbitrary dynamical system, statistically present the characteristics of cascadeness and sequentiality, as observed in the budding and fission yeast cell- cycle. These results suggest that cascade-like behavior might be an intrinsic property of biological processes.
Transport of biologically important nutrients by wind in an eroding cold desert
Sankey, Joel B.; Germino, Matthew J.; Benner, Shawn G.; Glenn, Nancy F.; Hoover, Amber N.
2012-01-01
Wind erosion following fire is an important landscape process that can result in the redistribution of ecologically important soil resources. In this study we evaluated the potential for a fire patch in a desert shrubland to serve as a source of biologically important nutrients to the adjacent, downwind, unburned ecosystem. We analyzed nutrient concentrations (P, K, Ca, Mg, Cu, Fe, Mn, Al) in wind-transported sediments, and soils from burned and adjacent unburned surfaces, collected during the first to second growing seasons after a wildfire that burned in 2007 in Idaho, USA in sagebrush steppe; a type of cold desert shrubland. We also evaluated the timing of potential wind erosion events and weather conditions that might have contributed to nutrient availability in downwind shrubland. Findings indicated that post-fire wind erosion resulted in an important, but transient, addition of nutrients on the downwind shrubland. Aeolian sediments from the burned area were enriched relative to both the up- and down-wind soil and indicated the potential for a fertilization effect through the deposition of the nutrient-enriched sediment during the first, but not second, summer after wildfire. Weather conditions that could have produced nutrient transport events might have provided increased soil moisture necessary to make nutrients accessible for plants in the desert environment. Wind transport of nutrients following fire is likely important in the sagebrush steppe as it could contribute to pulses of resource availability that might, for example, affect plant species differently depending on their phenology, and nutrient- and water-use requirements.
Composite Transport Model and Water and Solute Transport across Plant Roots: An Update
Directory of Open Access Journals (Sweden)
Yangmin X. Kim
2018-02-01
Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.
Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.
Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung
2018-01-01
The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.
Particle Tracking Model and Abstraction of Transport Processes
Energy Technology Data Exchange (ETDEWEB)
B. Robinson
2004-10-21
The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.
Particle Tracking Model and Abstraction of Transport Processes
International Nuclear Information System (INIS)
Robinson, B.
2004-01-01
The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data
An optimization model for transportation of hazardous materials
International Nuclear Information System (INIS)
Seyed-Hosseini, M.; Kheirkhah, A. S.
2005-01-01
In this paper, the optimal routing problem for transportation of hazardous materials is studied. Routing for the purpose of reducing the risk of transportation of hazardous materials has been studied and formulated by many researcher and several routing models have been presented up to now. These models can be classified into the categories: the models for routing a single movement and the models for routing multiple movements. In this paper, according to the current rules and regulations of road transportations of hazardous materials in Iran, a routing problem is designed. In this problem, the routs for several independent movements are simultaneously determined. To examine the model, the problem the transportations of two different dangerous materials in the road network of Mazandaran province in the north of Iran is formulated and solved by applying Integer programming model
A consistent transported PDF model for treating differential molecular diffusion
Wang, Haifeng; Zhang, Pei
2016-11-01
Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.
Generative models versus underlying symmetries to explain biological pattern.
Frank, S A
2014-06-01
Mathematical models play an increasingly important role in the interpretation of biological experiments. Studies often present a model that generates the observations, connecting hypothesized process to an observed pattern. Such generative models confirm the plausibility of an explanation and make testable hypotheses for further experiments. However, studies rarely consider the broad family of alternative models that match the same observed pattern. The symmetries that define the broad class of matching models are in fact the only aspects of information truly revealed by observed pattern. Commonly observed patterns derive from simple underlying symmetries. This article illustrates the problem by showing the symmetry associated with the observed rate of increase in fitness in a constant environment. That underlying symmetry reveals how each particular generative model defines a single example within the broad class of matching models. Further progress on the relation between pattern and process requires deeper consideration of the underlying symmetries. © 2014 The Author. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
A framework to establish credibility of computational models in biology.
Patterson, Eann A; Whelan, Maurice P
2017-10-01
Computational models in biology and biomedical science are often constructed to aid people's understanding of phenomena or to inform decisions with socioeconomic consequences. Model credibility is the willingness of people to trust a model's predictions and is often difficult to establish for computational biology models. A 3 × 3 matrix has been proposed to allow such models to be categorised with respect to their testability and epistemic foundation in order to guide the selection of an appropriate process of validation to supply evidence to establish credibility. Three approaches to validation are identified that can be deployed depending on whether a model is deemed untestable, testable or lies somewhere in between. In the latter two cases, the validation process involves the quantification of uncertainty which is a key output. The issues arising due to the complexity and inherent variability of biological systems are discussed and the creation of 'digital twins' proposed as a means to alleviate the issues and provide a more robust, transparent and traceable route to model credibility and acceptance. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Roehner, Nicholas; Myers, Chris J
2014-02-21
Recently, we have begun to witness the potential of synthetic biology, noted here in the form of bacteria and yeast that have been genetically engineered to produce biofuels, manufacture drug precursors, and even invade tumor cells. The success of these projects, however, has often failed in translation and application to new projects, a problem exacerbated by a lack of engineering standards that combine descriptions of the structure and function of DNA. To address this need, this paper describes a methodology to connect the systems biology markup language (SBML) to the synthetic biology open language (SBOL), existing standards that describe biochemical models and DNA components, respectively. Our methodology involves first annotating SBML model elements such as species and reactions with SBOL DNA components. A graph is then constructed from the model, with vertices corresponding to elements within the model and edges corresponding to the cause-and-effect relationships between these elements. Lastly, the graph is traversed to assemble the annotating DNA components into a composite DNA component, which is used to annotate the model itself and can be referenced by other composite models and DNA components. In this way, our methodology can be used to build up a hierarchical library of models annotated with DNA components. Such a library is a useful input to any future genetic technology mapping algorithm that would automate the process of composing DNA components to satisfy a behavioral specification. Our methodology for SBML-to-SBOL annotation is implemented in the latest version of our genetic design automation (GDA) software tool, iBioSim.
Natural crayfish clone as emerging model for various biological ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Biosciences; Volume 36; Issue 2. Marmorkrebs: Natural crayfish clone as emerging model for various biological disciplines. Günter Vogt. Mini-review Volume 36 Issue 2 June 2011 pp 377-382. Fulltext. Click here to view fulltext PDF. Permanent link:
Learning through Creating Robotic Models of Biological Systems
Cuperman, Dan; Verner, Igor M.
2013-01-01
This paper considers an approach to studying issues in technology and science, which integrates design and inquiry activities towards creating and exploring technological models of scientific phenomena. We implemented this approach in a context where the learner inquires into a biological phenomenon and develops its representation in the form of a…
Model calculations of nuclear data for biologically-important elements
International Nuclear Information System (INIS)
Chadwick, M.B.; Blann, M.; Reffo, G.; Young, P.G.
1994-05-01
We describe calculations of neutron-induced reactions on carbon and oxygen for incident energies up to 70 MeV, the relevant clinical energy in radiation neutron therapy. Our calculations using the FKK-GNASH, GNASH, and ALICE codes are compared with experimental measurements, and their usefulness for modeling reactions on biologically-important elements is assessed
A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Ihekwaba, Adoha
2007-01-01
A. Ihekwaba, R. Mardare. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems. Case study: NFkB system. In Proc. of International Conference of Computational Methods in Sciences and Engineering (ICCMSE), American Institute of Physics, AIP Proceedings, N 2...
Part 6: Modelling of simultaneous chemical-biological P removal ...
African Journals Online (AJOL)
drinie
approaches taken in modelling the chemical P removal processes. In the literature .... to 2 mgP/l) for an iron dose of ~1 to 10 mg/l as Fe - refer to dashed line in Fig. 1). ...... systems exhibiting biological enhanced phosphate removal. Part 3:.
Universally sloppy parameter sensitivities in systems biology models.
Directory of Open Access Journals (Sweden)
Ryan N Gutenkunst
2007-10-01
Full Text Available Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.
Universally sloppy parameter sensitivities in systems biology models.
Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P
2007-10-01
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.
Modelling Transition Towards Sustainable Transportation Sector
DEFF Research Database (Denmark)
Dominkovic, Dominik Franjo; Bačeković, I.; Mýrdal, Jón Steinar Garðarsson
2016-01-01
In a transition towards 100% renewable energy system, transportation sector is rarely dealt withusing the holistic approach and measuring its impact on the whole energy system. Furthermore, assolutions for power and heat sectors are clearer, it is a tendency of the researchers to focus on thelatt...
Strategic Network Modelling for Passenger Transport Pricing
Smits, E.-S.
2017-01-01
In the last decade the Netherlands has experienced an economic recession. Now, in 2017, the economy is picking up again. This growth does not only come with advantages because economic growth demands more from the transport system. Congestion is increasing again, the capacity of the train system is
Mathematical modelling on transport of petroleum hydrocarbons
Indian Academy of Sciences (India)
A brief theory has been included on the composition and transport of petroleum hydrocarbons following an onshore oil spill in order to demonstrate the level of complexity associated with the LNAPL dissolution mass transfer even in a classical porous medium. However, such studies in saturated fractured rocks are highly ...
Guidelines for Reproducibly Building and Simulating Systems Biology Models.
Medley, J Kyle; Goldberg, Arthur P; Karr, Jonathan R
2016-10-01
Reproducibility is the cornerstone of the scientific method. However, currently, many systems biology models cannot easily be reproduced. This paper presents methods that address this problem. We analyzed the recent Mycoplasma genitalium whole-cell (WC) model to determine the requirements for reproducible modeling. We determined that reproducible modeling requires both repeatable model building and repeatable simulation. New standards and simulation software tools are needed to enhance and verify the reproducibility of modeling. New standards are needed to explicitly document every data source and assumption, and new deterministic parallel simulation tools are needed to quickly simulate large, complex models. We anticipate that these new standards and software will enable researchers to reproducibly build and simulate more complex models, including WC models.
Computer modeling in developmental biology: growing today, essential tomorrow.
Sharpe, James
2017-12-01
D'Arcy Thompson was a true pioneer, applying mathematical concepts and analyses to the question of morphogenesis over 100 years ago. The centenary of his famous book, On Growth and Form , is therefore a great occasion on which to review the types of computer modeling now being pursued to understand the development of organs and organisms. Here, I present some of the latest modeling projects in the field, covering a wide range of developmental biology concepts, from molecular patterning to tissue morphogenesis. Rather than classifying them according to scientific question, or scale of problem, I focus instead on the different ways that modeling contributes to the scientific process and discuss the likely future of modeling in developmental biology. © 2017. Published by The Company of Biologists Ltd.
Energy Technology Data Exchange (ETDEWEB)
Ramsey, James L., Jr. (.,; .); Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline
2006-06-01
The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.
Modeling spin magnetization transport in a spatially varying magnetic field
International Nuclear Information System (INIS)
Picone, Rico A.R.; Garbini, Joseph L.; Sidles, John A.
2015-01-01
We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]). - Highlights: • A framework for modeling the transport of conserved magnetic and thermodynamic quantities in any spatial configuration. • A thermodynamically grounded model of spin magnetization transport valid in new regimes, including high-polarization. • Analysis of the separative quality of
Modeling spin magnetization transport in a spatially varying magnetic field
Energy Technology Data Exchange (ETDEWEB)
Picone, Rico A.R., E-mail: rpicone@stmartin.edu [Department of Mechanical Engineering, University of Washington, Seattle (United States); Garbini, Joseph L. [Department of Mechanical Engineering, University of Washington, Seattle (United States); Sidles, John A. [Department of Orthopædics, University of Washington, Seattle (United States)
2015-01-15
We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]). - Highlights: • A framework for modeling the transport of conserved magnetic and thermodynamic quantities in any spatial configuration. • A thermodynamically grounded model of spin magnetization transport valid in new regimes, including high-polarization. • Analysis of the separative quality of
Modelling radionuclide transport in the geosphere: a review of the models available
International Nuclear Information System (INIS)
Cacas, M.C.; Cordier, E.; Coudrain-Ribstein, A.; Fargue, D.; Goblet, P.; Jamet, Ph.; Ledoux, E.; Marsily, G. de; Vinsot, A.; Brun, Ch.; Cernes, A.; Jacquier, Ph.; Lewi, J.; Priem, Th.
1990-01-01
Over the last twelve years, several models have been developed to simulate the transport of radionuclides in the environment of a radioactive waste repository: - continuous equivalent porous media flow and transport models using the finite element method in 1, 2 or 3 dimensions and taking into account various coupled mechanisms; - discontinuous stochastic fracture network models in 3 dimensions representing flow, transport, matrix diffusion, heat flow and mechanical stress; - geochemical models representing interactions between transported elements and a solid matrix; - transport process models coupling non dominant phenomena such as thermo-diffusion or thermo-gravitation. This paper reviews the role that each of these models can play in safety analyses. 3 refs [fr
Evaluation of radiobiological effects in 3 distinct biological models
International Nuclear Information System (INIS)
Lemos, J.; Costa, P.; Cunha, L.; Metello, L.F.; Carvalho, A.P.; Vasconcelos, V.; Genesio, P.; Ponte, F.; Costa, P.S.; Crespo, P.
2015-01-01
Full text of publication follows. The present work aims at sharing the process of development of advanced biological models to study radiobiological effects. Recognizing several known limitations and difficulties of the current monolayer cellular models, as well as the increasing difficulties to use advanced biological models, our group has been developing advanced biological alternative models, namely three-dimensional cell cultures and a less explored animal model (the Zebra fish - Danio rerio - which allows the access to inter-generational data, while characterized by a great genetic homology towards the humans). These 3 models (monolayer cellular model, three-dimensional cell cultures and zebra fish) were externally irradiated with 100 mGy, 500 mGy or 1 Gy. The consequences of that irradiation were studied using cellular and molecular tests. Our previous experimental studies with 100 mGy external gamma irradiation of HepG2 monolayer cells showed a slight increase in the proliferation rate 24 h, 48 h and 72 h post irradiation. These results also pointed into the presence of certain bystander effects 72 h post irradiation, constituting the starting point for the need of a more accurate analysis realized with this work. At this stage, we continue focused on the acute biological effects. Obtained results, namely MTT and clonogenic assays for evaluating cellular metabolic activity and proliferation in the in vitro models, as well as proteomics for the evaluation of in vivo effects will be presented, discussed and explained. Several hypotheses will be presented and defended based on the facts previously demonstrated. This work aims at sharing the actual state and the results already available from this medium-term project, building the proof of the added value on applying these advanced models, while demonstrating the strongest and weakest points from all of them (so allowing the comparison between them and to base the subsequent choice for research groups starting
Use of artificial neural networks for transport energy demand modeling
International Nuclear Information System (INIS)
Murat, Yetis Sazi; Ceylan, Halim
2006-01-01
The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem
Biologically based modelling and simulation of carcinogenesis at low doses
International Nuclear Information System (INIS)
Ouchi, Noriyuki B.
2003-01-01
The process of the carcinogenesis is studied by computer simulation. In general, we need a large number of experimental samples to detect mutations at low doses, but in practice it is difficult to get such a large number of data. To satisfy the requirements of the situation at low doses, it is good to study the process of carcinogenesis using biologically based mathematical model. We have mainly studied it by using as known as 'multi-stage model'; the model seems to get complicated, as we adopt the recent new findings of molecular biological experiments. Moreover, the basic idea of the multi-stage model is based on the epidemiologic data of log-log variation of cancer incidence with age, it seems to be difficult to compare with experimental data of irradiated cell culture system, which has been increasing in recent years. Taking above into consideration, we concluded that we had better make new model with following features: 1) a unit of the target system is a cell, 2) the new information of the molecular biology can be easily introduced, 3) having spatial coordinates for checking a colony formation or tumorigenesis. In this presentation, we will show the detail of the model and some simulation results about the carcinogenesis. (author)
Methods and models in mathematical biology deterministic and stochastic approaches
Müller, Johannes
2015-01-01
This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.
Matthew P. Adams; Catherine J. Collier; Sven Uthicke; Yan X. Ow; Lucas Langlois; Katherine R. O’Brien
2017-01-01
When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluat...
Physics and modelling of scrape-off layer transport
International Nuclear Information System (INIS)
Cohen, R.H.; Allen, S.L.; Crotinger, J.A.; Kaiser, T.B.; Milovich, J.L.; Mattor, N.; Nevins, W.M.; Porter, G.D.; Rensink, M.E.; Rognlien, T.D.; Berk, H.L.; Diamond, P.H.; Rosenbluth, M.N.; Hinton, F.L.; Staebler, G.M.; Knoll, D.A.; Modi, B.; Xu, X.Q.; Prinja, A.K.; Ryutov, D.D.; Tsidulko, Y.A.
1992-01-01
We present studies of three schemes for reducing the peak heat flux on divertor plates, divertor biasing, impurity injection (''radiative divertor'') and neutral gas injection (''gas target divertor''). We report on theoretical analysis of a likely source of turbulent transport in the SOL and incorporation of the resultant transport coefficients into self-consistent models
Reactive Transport Modeling of the Yucca Mountain Site, Nevada
International Nuclear Information System (INIS)
G. Bodvarsson
2004-01-01
The Yucca Mountain site has a dry climate and deep water table, with the repository located in the middle of an unsaturated zone approximately 600 m thick. Radionuclide transport processes from the repository to the water table are sensitive to the unsaturated zone flow field, as well as to sorption, matrix diffusion, radioactive decay, and colloid transport mechanisms. The unsaturated zone flow and transport models are calibrated against both physical and chemical data, including pneumatic pressure, liquid saturation, water potential, temperature, chloride, and calcite. The transport model predictions are further compared with testing specific to unsaturated zone transport: at Alcove 1 in the Exploratory Studies Facility (ESF), at Alcove 8 and Niche 3 of the ESF, and at the Busted Butte site. The models are applied to predict the breakthroughs at the water table for nonsorbing and sorbing radionuclides, with faults shown as the important paths for radionuclide transport. Daughter products of some important radionuclides, such as 239 Pu and 241 Am, have faster transport than the parents and must be considered in the unsaturated zone transport model. Colloid transport is significantly affected by colloid size, but only negligibly affected by lunetic declogging (reverse filtering) mechanisms. Unsaturated zone model uncertainties are discussed, including the sensitivity of breakthrough to the active fracture model parameter, as an example of uncertainties related to detailed flow characteristics and fracture-matrix interaction. It is expected that additional benefits from the unsaturated zone barrier for transport can be achieved by full implementation of the shadow zone concept immediately below the radionuclide release points in the waste emplacement drifts
Monte Carlo impurity transport modeling in the DIII-D transport
International Nuclear Information System (INIS)
Evans, T.E.; Finkenthal, D.F.
1998-04-01
A description of the carbon transport and sputtering physics contained in the Monte Carlo Impurity (MCI) transport code is given. Examples of statistically significant carbon transport pathways are examined using MCI's unique tracking visualizer and a mechanism for enhanced carbon accumulation on the high field side of the divertor chamber is discussed. Comparisons between carbon emissions calculated with MCI and those measured in the DIII-D tokamak are described. Good qualitative agreement is found between 2D carbon emission patterns calculated with MCI and experimentally measured carbon patterns. While uncertainties in the sputtering physics, atomic data, and transport models have made quantitative comparisons with experiments more difficult, recent results using a physics based model for physical and chemical sputtering has yielded simulations with about 50% of the total carbon radiation measured in the divertor. These results and plans for future improvement in the physics models and atomic data are discussed
Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling
International Nuclear Information System (INIS)
Karvonen, T.
2013-11-01
Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from
Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling
Energy Technology Data Exchange (ETDEWEB)
Karvonen, T. [WaterHope, Helsinki (Finland)
2013-11-15
Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from
Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations
Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.;
2010-01-01
We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.
Dynamics of mathematical models in biology bringing mathematics to life
Zazzu, Valeria; Guarracino, Mario
2016-01-01
This volume focuses on contributions from both the mathematics and life science community surrounding the concepts of time and dynamicity of nature, two significant elements which are often overlooked in modeling process to avoid exponential computations. The book is divided into three distinct parts: dynamics of genomes and genetic variation, dynamics of motifs, and dynamics of biological networks. Chapters included in dynamics of genomes and genetic variation analyze the molecular mechanisms and evolutionary processes that shape the structure and function of genomes and those that govern genome dynamics. The dynamics of motifs portion of the volume provides an overview of current methods for motif searching in DNA, RNA and proteins, a key process to discover emergent properties of cells, tissues, and organisms. The part devoted to the dynamics of biological networks covers networks aptly discusses networks in complex biological functions and activities that interpret processes in cells. Moreover, chapters i...
Biological parameters for lung cancer in mathematical models of carcinogenesis
International Nuclear Information System (INIS)
Jacob, P.; Jacob, V.
2003-01-01
Applications of the two-step model of carcinogenesis with clonal expansion (TSCE) to lung cancer data are reviewed, including those on atomic bomb survivors from Hiroshima and Nagasaki, British doctors, Colorado Plateau miners, and Chinese tin miners. Different sets of identifiable model parameters are used in the literature. The parameter set which could be determined with the lowest uncertainty consists of the net proliferation rate gamma of intermediate cells, the hazard h 55 at an intermediate age, and the hazard H? at an asymptotically large age. Also, the values of these three parameters obtained in the various studies are more consistent than other identifiable combinations of the biological parameters. Based on representative results for these three parameters, implications for the biological parameters in the TSCE model are derived. (author)
Multiway modeling and analysis in stem cell systems biology
Directory of Open Access Journals (Sweden)
Vandenberg Scott L
2008-07-01
Full Text Available Abstract Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.. A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a
Programming biological models in Python using PySB.
Lopez, Carlos F; Muhlich, Jeremy L; Bachman, John A; Sorger, Peter K
2013-01-01
Mathematical equations are fundamental to modeling biological networks, but as networks get large and revisions frequent, it becomes difficult to manage equations directly or to combine previously developed models. Multiple simultaneous efforts to create graphical standards, rule-based languages, and integrated software workbenches aim to simplify biological modeling but none fully meets the need for transparent, extensible, and reusable models. In this paper we describe PySB, an approach in which models are not only created using programs, they are programs. PySB draws on programmatic modeling concepts from little b and ProMot, the rule-based languages BioNetGen and Kappa and the growing library of Python numerical tools. Central to PySB is a library of macros encoding familiar biochemical actions such as binding, catalysis, and polymerization, making it possible to use a high-level, action-oriented vocabulary to construct detailed models. As Python programs, PySB models leverage tools and practices from the open-source software community, substantially advancing our ability to distribute and manage the work of testing biochemical hypotheses. We illustrate these ideas using new and previously published models of apoptosis.
Fractional diffusion models of transport in magnetically confined plasmas
International Nuclear Information System (INIS)
Castillo-Negrete, D. del; Carreras, B. A.; Lynch, V. E.
2005-01-01
Experimental and theoretical evidence suggests that transport in magnetically confined fusion plasmas deviates from the standard diffusion paradigm. Some examples include the confinement time scaling in L-mode plasmas, rapid pulse propagation phenomena, and inward transport in off-axis fueling experiments. The limitations of the diffusion paradigm can be traced back to the restrictive assumptions in which it is based. In particular, Fick's law, one of the cornerstones of diffusive transport, assumes that the fluxes only depend on local quantities, i. e. the spatial gradient of the field (s). another key issue is the Markovian assumption that neglects memory effects. Also, at a microscopic level, standard diffusion assumes and underlying Gaussian, uncorrelated stochastic process (i. e. a Brownian random walk) with well defined characteristic spatio-temporal scales. Motivated by the need to develop models of non-diffusive transport, we discuss here a class of transport models base on the use of fractional derivative operators. The models incorporates in a unified way non-Fickian transport, non-Markovian processes or memory effects, and non-diffusive scaling. At a microscopic level, the models describe an underlying stochastic process without characteristic spatio-temporal scales that generalizes the Brownian random walk. As a concrete case study to motivate and test the model, we consider transport of tracers in three-dimensional, pressure-gradient-driven turbulence. We show that in this system transport is non-diffusive and cannot be described in the context of the standard diffusion parading. In particular, the probability density function (pdf) of the radial displacements of tracers is strongly non-Gaussian with algebraic decaying tails, and the moments of the tracer displacements exhibit super-diffusive scaling. there is quantitative agreement between the turbulence transport calculations and the proposed fractional diffusion model. In particular, the model
Metal transport across biomembranes: emerging models for a distinct chemistry.
Argüello, José M; Raimunda, Daniel; González-Guerrero, Manuel
2012-04-20
Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models.
DEFF Research Database (Denmark)
Larsen, E.H.; Møbjerg, N.; Sørensen, Jens Nørkær
2006-01-01
transport similar to rat proximal tubule. Na+ recirculation is required for truly isotonic transport. The tonicity of the absorbate and the recirculation flux depend critically on ion permeabilities of interspace basement membrane. Conclusion: Our model based on solute-solvent coupling in lateral space......Aim: By mathematical modelling, we analyse conditions for near-isotonic and isotonic transport by mammalian kidney proximal tubule. Methods: The model comprises compliant lateral intercellular space (lis) and cells, and infinitely large luminal and peritubular compartments with diffusible species......: Na+, K+, Cl and an intracellular non-diffusible anion. Unknown model variables are solute concentrations, electrical potentials, volumes and hydrostatic pressures in cell and lis, and transepithelial potential. We used data mainly from rat proximal tubule to model epithelial cells and interspace...
Automatic modeling for the Monte Carlo transport code Geant4
International Nuclear Information System (INIS)
Nie Fanzhi; Hu Liqin; Wang Guozhong; Wang Dianxi; Wu Yican; Wang Dong; Long Pengcheng; FDS Team
2015-01-01
Geant4 is a widely used Monte Carlo transport simulation package. Its geometry models could be described in Geometry Description Markup Language (GDML), but it is time-consuming and error-prone to describe the geometry models manually. This study implemented the conversion between computer-aided design (CAD) geometry models and GDML models. This method has been Studied based on Multi-Physics Coupling Analysis Modeling Program (MCAM). The tests, including FDS-Ⅱ model, demonstrated its accuracy and feasibility. (authors)
Capabilities and requirements for modelling radionuclide transport in the geosphere
International Nuclear Information System (INIS)
Paige, R.W.; Piper, D.
1989-02-01
This report gives an overview of geosphere flow and transport models suitable for use by the Department of the Environment in the performance assessment of radioactive waste disposal sites. An outline methodology for geosphere modelling is proposed, consisting of a number of different types of model. A brief description of each of the component models is given, indicating the purpose of the model, the processes being modelled and the methodologies adopted. Areas requiring development are noted. (author)
An architecture model for communication of safety in public transportation
Rajabalinejad, Mohammad; Horváth, Imre; Pernot, Jean-Paul; Rusák, Zoltan
2016-01-01
Safety in transportation is under the influence of the rising complexity, increasing demands for capacity and decreasing cost. Furthermore, the interdisciplinary environment of operation and altered safety regulations invite for a centralized (integrated) modelling/ communication approach. This
Modelled transport and deposition of sulphur over Southern Africa
CSIR Research Space (South Africa)
Zunckel, M
2000-01-01
Full Text Available Ambient SO2 concentrations and atmospheric deposition of sulphur resulting from emissions on the industrialised highveld region of South Africa are estimated using the multi-scale atmospheric transport and chemistry (MATCH) modelling system...
State-of-the-art in modeling solute and sediment transport in rivers
International Nuclear Information System (INIS)
Sayre, W.W.
1980-01-01
This overview is structured around a comprehensive general model based on the conservation of mass principle as applied to dissolved and particulate constituents in rivers, with a few restricted but more specific examples that illustrate the state-of-the-art in modeling typical physical, chemical, and biological processes undergone by selected constituents in rivers. These examples include: simplified one- and two-dimensional formulations focusing on the hydrodynamic advection and dispersion mechanisms; a two-dimensional biochemial oxygen demand-dissolved oxygen model; a one-dimensional polychlorinated biphenyl model that includes uptake and release of constituent by suspended sediment, and deposition and erosion of contaminated particles; and a one-dimensional sediment transport model that accounts for interactions between the flow and the bed, and is capable of tracking dispersing slugs of sediment through cycles of erosion, entrainment, transport in suspension and as bed load, and burial and storage in the bed
Plasma transport simulation modeling for helical confinement systems
International Nuclear Information System (INIS)
Yamazaki, K.; Amano, T.
1991-08-01
New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)
Plasma transport simulation modelling for helical confinement systems
International Nuclear Information System (INIS)
Yamazaki, K.; Amano, T.
1992-01-01
New empirical and theoretical transport models for helical confinement systems are developed on the basis of the neoclassical transport theory, including the effect of the radial electric field and of multi-helicity magnetic components as well as the drift wave turbulence transport for electrostatic and electromagnetic modes or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with experimental data from the Compact Helical System which indicate that the central transport coefficient of a plasma with electron cyclotron heating agrees with neoclassical axisymmetric value and the transport outside the half-radius is anomalous. On the other hand, the transport of plasmas with neutral beam injection heating is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these discharges with flat density profiles. For a detailed prediction of the plasma parameters in the Large Helical Device (LHD), 3-D equilibrium/1-D transport simulations including empirical or drift wave turbulence models are performed which suggest that the global confinement time of the LHD is determined mainly by the electron anomalous transport in the plasma edge region rather than by the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase in global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to half of the value used in the present scaling, as is the case in the H-mode of tokamak discharges, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius improves the plasma confinement and increases the fusion product by more than 50% by reducing the neoclassical asymmetric ion transport loss and increasing the plasma radius (10%). (author). 32 refs, 7 figs
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
COPERT III (computer programme to calculate emissions from road transport) is the third version of an MS Windows software programme aiming at the calculation of air pollutant emissions from road transport. COPERT estimates emissions of all regulated air pollutants (CO, NO{sub x}, VOC, PM) produced by different vehicle categories as well as CO{sub 2} emissions on the basis of fuel consumption. This research seminar was organized by the French agency of environment and energy mastery (Ademe) around the following topics: the uncertainties and sensitiveness analysis of the COPERT III model, the presentation of case studies that use COPERT III for the estimation of road transport emissions, and the future of the modeling of road transport emissions: from COPERT III to ARTEMIS (assessment and reliability of transport emission models and inventory systems). This document is a compilation of 8 contributions to this seminar and dealing with: the uncertainty and sensitiveness analysis of the COPERT III model; the road mode emissions of the ESCOMPTE program: sensitivity study; the sensitivity analysis of the spatialized traffic at the time-aggregation level: application in the framework of the INTERREG project (Alsace); the road transport aspect of the regional air quality plan of Bourgogne region: exhaustive consideration of the road network; intercomparison of tools and methods for the inventory of emissions of road transport origin; evolution of the French park of vehicles by 2025: new projections; application of COPERT III to the French context: a new version of IMPACT-ADEME; the European ARTEMIS project: new structural considerations for the modeling of road transport emissions. (J.S.)
Fate and transport modelling of uranium in Port Hope Harbour
International Nuclear Information System (INIS)
Pinilla, C.E.; Garisto, N.; Peters, R.
2010-01-01
Fate and transport modelling of contaminants in Port Hope Harbour and near-shore Lake Ontario was undertaken in support of an ecological and human health risk assessment. Uranium concentrations in the Harbour and near-shore Lake Ontario due to groundwater and storm water loadings were estimated with a state-of-the-art 3D hydrodynamic and contaminant transport model (ECOMSED). The hydrodynamic model was simplified to obtain a first estimate of the flow pattern in the Harbour. The model was verified with field data using a tracer (fluoride). The modelling results generally showed good agreement with the tracer field data. (author)
Sediment and toxic contaminant transport modeling in coastal waters
International Nuclear Information System (INIS)
Onishi, Y.; Mayer, D.W.; Argo, R.S.
1982-02-01
A hydrodynamic model, CAFE-I, a wave refraction model, LO3D, and a sediment and contaminant transport model, FETRA, were selected as tools for evaluating exposure levels of radionuclides, heavy metals, and other toxic chemicals in coastal waters. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interactions (e.g., adsorption and desorption), and the mechanisms governing the transport, deposition, and resuspension of contaminated sediments
Electronic transport in VO2—Experimentally calibrated Boltzmann transport modeling
International Nuclear Information System (INIS)
Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y.; Kado, Motohisa; Ling, Chen; Zhu, Gaohua; Banerjee, Debasish
2015-01-01
Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO 2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO 2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO 2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties
Electronic transport in VO{sub 2}—Experimentally calibrated Boltzmann transport modeling
Energy Technology Data Exchange (ETDEWEB)
Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y., E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kado, Motohisa [Higashifuji Technical Center, Toyota Motor Corporation, Susono, Shizuoka 410-1193 (Japan); Ling, Chen; Zhu, Gaohua; Banerjee, Debasish, E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Materials Research Department, Toyota Motor Engineering and Manufacturing North America, Inc., Ann Arbor, Michigan 48105 (United States)
2015-12-28
Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO{sub 2} has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO{sub 2} in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO{sub 2} films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.
Echinococcus as a model system: biology and epidemiology.
Thompson, R C A; Jenkins, D J
2014-10-15
The introduction of Echinococcus to Australia over 200 years ago and its establishment in sheep rearing areas of the country inflicted a serious medical and economic burden on the country. This resulted in an investment in both basic and applied research aimed at learning more about the biology and life cycle of Echinococcus. This research served to illustrate the uniqueness of the parasite in terms of developmental biology and ecology, and the value of Echinococcus as a model system in a broad range of research, from fundamental biology to theoretical control systems. These studies formed the foundation for an international, diverse and ongoing research effort on the hydatid organisms encompassing stem cell biology, gene regulation, strain variation, wildlife diseases and models of transmission dynamics. We describe the development, nature and diversity of this research, and how it was initiated in Australia but subsequently has stimulated much international and collaborative research on Echinococcus. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Meridional Flow Observations: Implications for the current Flux Transport Models
International Nuclear Information System (INIS)
Gonzalez Hernandez, Irene; Komm, Rudolf; Kholikov, Shukur; Howe, Rachel; Hill, Frank
2011-01-01
Meridional circulation has become a key element in the solar dynamo flux transport models. Available helioseismic observations from several instruments, Taiwan Oscillation Network (TON), Global Oscillation Network Group (GONG) and Michelson Doppler Imager (MDI), have made possible a continuous monitoring of the solar meridional flow in the subphotospheric layers for the last solar cycle, including the recent extended minimum. Here we review some of the meridional circulation observations using local helioseismology techniques and relate them to magnetic flux transport models.
In vitro placental model optimization for nanoparticle transport studies
DEFF Research Database (Denmark)
Cartwright, Laura; Poulsen, Marie Sønnegaard; Nielsen, Hanne Mørck
2012-01-01
Background: Advances in biomedical nanotechnology raise hopes in patient populations but may also raise questions regarding biodistribution and biocompatibility, especially during pregnancy. Special consideration must be given to the placenta as a biological barrier because a pregnant woman...... placental choriocarcinoma cells for nanoparticle transport studies was characterized in terms of optimized Transwell® insert type and pore size, the investigation of barrier properties by transmission electron microscopy, tight junction staining, transepithelial electrical resistance, and fluorescein sodium...
Integrated modelling of physical, chemical and biological weather
DEFF Research Database (Denmark)
Kurganskiy, Alexander
. This is an online-coupled meteorology-chemistry model where chemical constituents and different types of aerosols are an integrated part of the dynamical model, i.e., these constituents are transported in the same way as, e.g., water vapor and cloud water, and, at the same time, the aerosols can interactively...... impact radiation and cloud micro-physics. The birch pollen modelling study has been performed for domains covering Europe and western Russia. Verification of the simulated birch pollen concentrations against in-situ observations showed good agreement obtaining the best score for two Danish sites...
Transport properties of stochastic Lorentz models
Beijeren, H. van
Diffusion processes are considered for one-dimensional stochastic Lorentz models, consisting of randomly distributed fixed scatterers and one moving light particle. In waiting time Lorentz models the light particle makes instantaneous jumps between scatterers after a stochastically distributed
Transport modelling including radial electric field and plasma rotation
International Nuclear Information System (INIS)
Fukuyama, A.; Fuji, Y.; Itoh, S.-I.
1994-01-01
Using a simple turbulent transport model with a constant diffusion coefficient and a fixed temperature profile, the density profile in a steady state and the transient behaviour during the co and counter neutral beam injection are studied. More consistent analysis has been initiated with a turbulent transport model based on the current diffusive high-n ballooning mode. The enhancement of the radial electric field due to ion orbit losses and the reduction of the transport due to the poloidal rotation shear are demonstrated. The preliminary calculation indicates a sensitive temperature dependence of the density profile. (author)
Modelling the Transport Process in Marine Container Technology
Directory of Open Access Journals (Sweden)
Serđo Kos
2003-01-01
Full Text Available The paper introduces a mathematical problem that occursin marine container technology when programming the transportof a beforehand established number of ISO containers effectedby a full container ship from several ports of departure toseveral ports of destination at the minimum distance (time innavigation or at minimum transport costs. The application ofthe proposed model may have an effect on cost reduction incontainer transport thereby improving the operation process inmarine transport technology. The model has been tested by usinga numerical example with real data. In particular, it describesthe application of the dual variables in the analysis ofoptimum solution.
The thermoballistic transport model a novel approach to charge carrier transport in semiconductors
Lipperheide, Reinhard
2014-01-01
The book presents a comprehensive survey of the thermoballistic approach to charge carrier transport in semiconductors. This semi-classical approach, which the authors have developed over the past decade, bridges the gap between the opposing drift-diffusion and ballistic models of carrier transport. While incorporating basic features of the latter two models, the physical concept underlying the thermoballistic approach constitutes a novel, unifying scheme. It is based on the introduction of "ballistic configurations" arising from a random partitioning of the length of a semiconducting sample into ballistic transport intervals. Stochastic averaging of the ballistic carrier currents over the ballistic configurations results in a position-dependent thermoballistic current, which is the key element of the thermoballistic concept and forms the point of departure for the calculation of all relevant transport properties. In the book, the thermoballistic concept and its implementation are developed in great detai...
Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO
Chenhall, Jeffrey; Moses, Gregory
2017-10-01
The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
Sánchez, R.; van Milligen, B. Ph.; Carreras, B. A.
2005-05-01
It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Lévy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems.
International Nuclear Information System (INIS)
Sanchez, R.; Milligen, B.Ph. van; Carreras, B.A.
2005-01-01
It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Levy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems
DEFF Research Database (Denmark)
Sonnenborg, Torben Obel; Engesgaard, Peter Knudegaard; Rosbjerg, Dan
1996-01-01
An application of an inverse flow and transport model to a contaminated aquifer is presented. The objective of the study is to identify physical and nonreactive flow and transport parameters through an optimization approach. The approach can be classified as a statistical procedure, where a flow...... to steady state versus transient flow conditions and to the amount of hydraulic and solute data used is investigated. The flow parameters, transmissivity and leakage factor, are estimated simultaneously with the transport parameters: source strength, porosity, and longitudinal dispersivity. This paper...
Software for modelling groundwater transport and contaminant migration
International Nuclear Information System (INIS)
Gishkelyuk, I.A.
2008-01-01
Facilities of modern software for modeling of groundwater transport and process of contaminant distribution are considered. Advantages of their application are discussed. The comparative analysis of mathematical modeling software of 'Groundwater modeling system' and 'Earth Science Module' from 'COMSOL Multiphysics' is carried out. (authors)
GRRR. The EXPECT groundwater model for transport of solutes
Meijers R; Sauter FJ; Veling EJM; van Grinsven JJM; Leijnse A; Uffink GJM; MTV; CWM; LBG
1994-01-01
In this report the design and first test results are presented of the EXPECT groundwater module for transport of solutes GRRR (GRoundwater source Receptor Relationships). This model is one of the abiotic compartment modules of the EXPECT model. The EXPECT model is a tool for scenario development
Evolving cell models for systems and synthetic biology.
Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio
2010-03-01
This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.
Bifurcations of a class of singular biological economic models
International Nuclear Information System (INIS)
Zhang Xue; Zhang Qingling; Zhang Yue
2009-01-01
This paper studies systematically a prey-predator singular biological economic model with time delay. It shows that this model exhibits two bifurcation phenomena when the economic profit is zero. One is transcritical bifurcation which changes the stability of the system, and the other is singular induced bifurcation which indicates that zero economic profit brings impulse, i.e., rapid expansion of the population in biological explanation. On the other hand, if the economic profit is positive, at a critical value of bifurcation parameter, the system undergoes a Hopf bifurcation, i.e., the increase of delay destabilizes the system and bifurcates into small amplitude periodic solution. Finally, by using Matlab software, numerical simulations illustrate the effectiveness of the results obtained here. In addition, we study numerically that the system undergoes a saddle-node bifurcation when the bifurcation parameter goes through critical value of positive economic profit.
Enterococcus infection biology: lessons from invertebrate host models.
Yuen, Grace J; Ausubel, Frederick M
2014-03-01
The enterococci are commensals of the gastrointestinal tract of many metazoans, from insects to humans. While they normally do not cause disease in the intestine, they can become pathogenic when they infect sites outside of the gut. Recently, the enterococci have become important nosocomial pathogens, with the majority of human enterococcal infections caused by two species, Enterococcus faecalis and Enterococcus faecium. Studies using invertebrate infection models have revealed insights into the biology of enterococcal infections, as well as general principles underlying host innate immune defense. This review highlights recent findings on Enterococcus infection biology from two invertebrate infection models, the greater wax moth Galleria mellonella and the free-living bacteriovorous nematode Caenorhabditis elegans.
ATTILA - Atmospheric Tracer Transport In a Langrangian Model
Energy Technology Data Exchange (ETDEWEB)
Reithmeier, C.; Sausen, R.
2000-07-01
The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an
Economic model of pipeline transportation systems
Energy Technology Data Exchange (ETDEWEB)
Banks, W. F.
1977-07-29
The objective of the work reported here was to develop a model which could be used to assess the economic effects of energy-conservative technological innovations upon the pipeline industry. The model is a dynamic simulator which accepts inputs of two classes: the physical description (design parameters, fluid properties, and financial structures) of the system to be studied, and the postulated market (throughput and price) projection. The model consists of time-independent submodels: the fluidics model which simulates the physical behavior of the system, and the financial model which operates upon the output of the fluidics model to calculate the economics outputs. Any of a number of existing fluidics models can be used in addition to that developed as a part of this study. The financial model, known as the Systems, Science and Software (S/sup 3/) Financial Projection Model, contains user options whereby pipeline-peculiar characteristics can be removed and/or modified, so that the model can be applied to virtually any kind of business enterprise. The several dozen outputs are of two classes: the energetics and the economics. The energetics outputs of primary interest are the energy intensity, also called unit energy consumption, and the total energy consumed. The primary economics outputs are the long-run average cost, profit, cash flow, and return on investment.
An intermodal transportation geospatial network modeling for containerized soybean shipping
Directory of Open Access Journals (Sweden)
Xiang Liu
2017-06-01
Full Text Available Containerized shipping is a growing market for agricultural exports, particularly soybeans. In order to understand the optimal strategies for improving the United States’ economic competitiveness in this emerging market, this research develops an intermodal transportation network modeling framework, focusing on U.S. soybean container shipments. Built upon detailed modal cost analyses, a Geospatial Intermodal Freight Transportation (GIFT model has been developed to understand the optimal network design for U.S. soybean exports. Based on market demand and domestic supply figures, the model is able to determine which domestically produced soybeans should go to which foreign markets, and by which transport modes. This research and its continual studies, will provide insights into future policies and practices that can improve the transportation efficiency of soybean logistics.
Directory of Open Access Journals (Sweden)
Martin Gregory T
2004-11-01
Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the
Interfacial and Wall Transport Models for SPACE-CAP Code
International Nuclear Information System (INIS)
Hong, Soon Joon; Choo, Yeon Joon; Han, Tae Young; Hwang, Su Hyun; Lee, Byung Chul; Choi, Hoon; Ha, Sang Jun
2009-01-01
The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. And CAP (Containment Analysis Package) code has been also developed for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (gas, continuous liquid, and dispersed drop) for the assessment of containment specific phenomena, and is featured by its multidimensional assessment capabilities. Thermal hydraulics solver was already developed and now under testing of its stability and soundness. As a next step, interfacial and wall transport models was setup. In order to develop the best model and correlation package for the CAP code, various models currently used in major containment analysis codes, which are GOTHIC, CONTAIN2.0, and CONTEMPT-LT, have been reviewed. The origins of the selected models used in these codes have also been examined to find out if the models have not conflict with a proprietary right. In addition, a literature survey of the recent studies has been performed in order to incorporate the better models for the CAP code. The models and correlations of SPACE were also reviewed. CAP models and correlations are composed of interfacial heat/mass, and momentum transport models, and wall heat/mass, and momentum transport models. This paper discusses on those transport models in the CAP code
Interfacial and Wall Transport Models for SPACE-CAP Code
Energy Technology Data Exchange (ETDEWEB)
Hong, Soon Joon; Choo, Yeon Joon; Han, Tae Young; Hwang, Su Hyun; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Choi, Hoon; Ha, Sang Jun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)
2009-10-15
The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. And CAP (Containment Analysis Package) code has been also developed for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (gas, continuous liquid, and dispersed drop) for the assessment of containment specific phenomena, and is featured by its multidimensional assessment capabilities. Thermal hydraulics solver was already developed and now under testing of its stability and soundness. As a next step, interfacial and wall transport models was setup. In order to develop the best model and correlation package for the CAP code, various models currently used in major containment analysis codes, which are GOTHIC, CONTAIN2.0, and CONTEMPT-LT, have been reviewed. The origins of the selected models used in these codes have also been examined to find out if the models have not conflict with a proprietary right. In addition, a literature survey of the recent studies has been performed in order to incorporate the better models for the CAP code. The models and correlations of SPACE were also reviewed. CAP models and correlations are composed of interfacial heat/mass, and momentum transport models, and wall heat/mass, and momentum transport models. This paper discusses on those transport models in the CAP code.
Coupling between solute transport and chemical reactions models
International Nuclear Information System (INIS)
Samper, J.; Ajora, C.
1993-01-01
During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs
Transport modeling and advanced computer techniques
International Nuclear Information System (INIS)
Wiley, J.C.; Ross, D.W.; Miner, W.H. Jr.
1988-11-01
A workshop was held at the University of Texas in June 1988 to consider the current state of transport codes and whether improved user interfaces would make the codes more usable and accessible to the fusion community. Also considered was the possibility that a software standard could be devised to ease the exchange of routines between groups. It was noted that two of the major obstacles to exchanging routines now are the variety of geometrical representation and choices of units. While the workshop formulated no standards, it was generally agreed that good software engineering would aid in the exchange of routines, and that a continued exchange of ideas between groups would be worthwhile. It seems that before we begin to discuss software standards we should review the current state of computer technology --- both hardware and software to see what influence recent advances might have on our software goals. This is done in this paper
Fast algorithms for transport models. Final report
International Nuclear Information System (INIS)
Manteuffel, T.A.
1994-01-01
This project has developed a multigrid in space algorithm for the solution of the S N equations with isotropic scattering in slab geometry. The algorithm was developed for the Modified Linear Discontinuous (MLD) discretization in space which is accurate in the thick diffusion limit. It uses a red/black two-cell μ-line relaxation. This relaxation solves for all angles on two adjacent spatial cells simultaneously. It takes advantage of the rank-one property of the coupling between angles and can perform this inversion in O(N) operations. A version of the multigrid in space algorithm was programmed on the Thinking Machines Inc. CM-200 located at LANL. It was discovered that on the CM-200 a block Jacobi type iteration was more efficient than the block red/black iteration. Given sufficient processors all two-cell block inversions can be carried out simultaneously with a small number of parallel steps. The bottleneck is the need for sums of N values, where N is the number of discrete angles, each from a different processor. These are carried out by machine intrinsic functions and are well optimized. The overall algorithm has computational complexity O(log(M)), where M is the number of spatial cells. The algorithm is very efficient and represents the state-of-the-art for isotropic problems in slab geometry. For anisotropic scattering in slab geometry, a multilevel in angle algorithm was developed. A parallel version of the multilevel in angle algorithm has also been developed. Upon first glance, the shifted transport sweep has limited parallelism. Once the right-hand-side has been computed, the sweep is completely parallel in angle, becoming N uncoupled initial value ODE's. The author has developed a cyclic reduction algorithm that renders it parallel with complexity O(log(M)). The multilevel in angle algorithm visits log(N) levels, where shifted transport sweeps are performed. The overall complexity is O(log(N)log(M))
The Importance of Protons in Reactive Transport Modeling
McNeece, C. J.; Hesse, M. A.
2014-12-01
The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of
Mathematical Model of Ion Transport in Electrodialysis Process
Directory of Open Access Journals (Sweden)
F.S. Rohman
2010-10-01
Full Text Available Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is discussed. Three scales of ion transport reviewed are: 1 ion transport in the membrane, where two approaches are used, the irreversible thermodynamics and modeling of the membrane material; 2 ion transport in a three-layer system composed of a membrane with two adjoining diffusion layers; and 3 coupling with hydraulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convectivediffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding solutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 BCREC UNDIP. All rights reserved.[Received: 21 January 2008, Accepted: 10 March 2008][How to Cite: F.S. Rohman, N. Aziz (2008. Mathematical Model of Ion Transport in Electrodialysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 3-8. doi:10.9767/bcrec.3.1-3.7122.3-8][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7122.3-8 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7122 ]
Dynamic modeling of interfacial structures via interfacial area transport equation
International Nuclear Information System (INIS)
Seungjin, Kim; Mamoru, Ishii
2005-01-01
The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right-hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. In the present paper, the interfacial area transport equations currently available are reviewed to address the feasibility and reliability of the model along with extensive experimental results. These include the data from adiabatic upward air-water two-phase flow in round tubes of various sizes, from a rectangular duct, and from adiabatic co-current downward air-water two-phase flow in round pipes of two sizes. (authors)
UNCERTAINTY SUPPLY CHAIN MODEL AND TRANSPORT IN ITS DEPLOYMENTS
Directory of Open Access Journals (Sweden)
Fabiana Lucena Oliveira
2014-05-01
Full Text Available This article discusses the Model Uncertainty of Supply Chain, and proposes a matrix with their transportation modes best suited to their chains. From the detailed analysis of the matrix of uncertainty, it is suggested transportation modes best suited to the management of these chains, so that transport is the most appropriate optimization of the gains previously proposed by the original model, particularly when supply chains are distant from suppliers of raw materials and / or supplies.Here we analyze in detail Agile Supply Chains, which is a result of Uncertainty Supply Chain Model, with special attention to Manaus Industrial Center. This research was done at Manaus Industrial Pole, which is a model of industrial agglomerations, based in Manaus, State of Amazonas (Brazil, which contemplates different supply chains and strategies sharing same infrastructure of transport, handling and storage and clearance process and uses inbound for suppliers of raw material. The state of art contemplates supply chain management, uncertainty supply chain model, agile supply chains, Manaus Industrial Center (MIC and Brazilian legislation, as a business case, and presents concepts and features, of each one. The main goal is to present and discuss how transport is able to support Uncertainty Supply Chain Model, in order to complete management model. The results obtained confirms the hypothesis of integrated logistics processes are able to guarantee attractivity for industrial agglomerations, and open discussions when the suppliers are far from the manufacturer center, in a logistics management.
Jacques, Diederik
2017-04-01
As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different
Dynamic models in research and management of biological invasions.
Buchadas, Ana; Vaz, Ana Sofia; Honrado, João P; Alagador, Diogo; Bastos, Rita; Cabral, João A; Santos, Mário; Vicente, Joana R
2017-07-01
Invasive species are increasing in number, extent and impact worldwide. Effective invasion management has thus become a core socio-ecological challenge. To tackle this challenge, integrating spatial-temporal dynamics of invasion processes with modelling approaches is a promising approach. The inclusion of dynamic processes in such modelling frameworks (i.e. dynamic or hybrid models, here defined as models that integrate both dynamic and static approaches) adds an explicit temporal dimension to the study and management of invasions, enabling the prediction of invasions and optimisation of multi-scale management and governance. However, the extent to which dynamic approaches have been used for that purpose is under-investigated. Based on a literature review, we examined the extent to which dynamic modelling has been used to address invasions worldwide. We then evaluated how the use of dynamic modelling has evolved through time in the scope of invasive species management. The results suggest that modelling, in particular dynamic modelling, has been increasingly applied to biological invasions, especially to support management decisions at local scales. Also, the combination of dynamic and static modelling approaches (hybrid models with a spatially explicit output) can be especially effective, not only to support management at early invasion stages (from prevention to early detection), but also to improve the monitoring of invasion processes and impact assessment. Further development and testing of such hybrid models may well be regarded as a priority for future research aiming to improve the management of invasions across scales. Copyright © 2017 Elsevier Ltd. All rights reserved.
The University – a Rational-Biologic Model
Directory of Open Access Journals (Sweden)
Ion Gh. Rosca
2008-05-01
Full Text Available The article advances the extension of the biologic rational model for the organizations, which are reprocessing and living in a turbulent environment. The current “tree” type organizations are not able to satisfy the requirements of the socio-economical environment and are not able to provide the organizational perpetuation and development. Thus, an innovative performing model for both the top and down management areas is presented, with the following recommendations: dividing the organization into departments using neuronal connections, focusing on the formatting processes and not on the activities, rethinking the system of a new organizational culture.
Modelling the Influence of Shielding on Physical and Biological Organ Doses
Ballarini, Francesca; Ferrari, Alfredo; Ottolenghi, Andrea; Pelliccioni, Maurizio; Scannicchio, Domenico
2002-01-01
Distributions of "physical" and "biological" dose in different organs were calculated by coupling the FLUKA MC transport code with a geometrical human phantom inserted into a shielding box of variable shape, thickness and material. While the expression "physical dose" refers to the amount of deposited energy per unit mass (in Gy), "biological dose" was modelled with "Complex Lesions" (CL), clustered DNA strand breaks calculated in a previous work based on "event-by-event" track-structure simulations. The yields of complex lesions per cell and per unit dose were calculated for different radiation types and energies, and integrated into a version of FLUKA modified for this purpose, allowing us to estimate the effects of mixed fields. As an initial test simulation, the phantom was inserted into an aluminium parallelepiped and was isotropically irradiated with 500 MeV protons. Dose distributions were calculated for different values of the shielding thickness. The results were found to be organ-dependent. In most ...
Models of transport processes in concrete
International Nuclear Information System (INIS)
Pommersheim, J.M.; Clifton, J.R.
1991-01-01
An approach being considered by the US Nuclear Regulatory Commission for disposal of low-level radioactive waste is to place the waste forms in concrete vaults buried underground. The vaults would need a service life of 500 years. Approaches for predicting the service life of concrete of such vaults include the use of mathematical models. Mathematical models are presented in this report for the major degradation processes anticipated for the concrete vaults, which are corrosion of steel reinforcement, sulfate attack, acid attack, and leaching. The models mathematically represent rate controlling processes including diffusion, convection, and reaction and sorption of chemical species. These models can form the basis for predicting the life of concrete under in-service conditions. 33 refs., 6 figs., 7 tabs
Biological profiling and dose-response modeling tools ...
Through its ToxCast project, the U.S. EPA has developed a battery of in vitro high throughput screening (HTS) assays designed to assess the potential toxicity of environmental chemicals. At present, over 1800 chemicals have been tested in up to 600 assays, yielding a large number of concentration-response data sets. Standard processing of these data sets involves finding a best fitting mathematical model and set of model parameters that specify this model. The model parameters include quantities such as the half-maximal activity concentration (or “AC50”) that have biological significance and can be used to inform the efficacy or potency of a given chemical with respect to a given assay. All of this data is processed and stored in an online-accessible database and website: http://actor.epa.gov/dashboard2. Results from these in vitro assays are used in a multitude of ways. New pathways and targets can be identified and incorporated into new or existing adverse outcome pathways (AOPs). Pharmacokinetic models such as those implemented EPA’s HTTK R package can be used to translate an in vitro concentration into an in vivo dose; i.e., one can predict the oral equivalent dose that might be expected to activate a specific biological pathway. Such predicted values can then be compared with estimated actual human exposures prioritize chemicals for further testing.Any quantitative examination should be accompanied by estimation of uncertainty. We are developing met
Energy Technology Data Exchange (ETDEWEB)
Kopp, Andreas [Université Libre de Bruxelles, Service de Physique Statistique et des Plasmas, CP 231, B-1050 Brussels (Belgium); Wiengarten, Tobias; Fichtner, Horst [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Effenberger, Frederic [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Kühl, Patrick; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, Christian-Albrecht-Universität zu Kiel, D-24098 Kiel (Germany); Raath, Jan-Louis; Potgieter, Marius S. [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)
2017-03-01
The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.
Stencil method: a Markov model for transport in porous media
Delgoshaie, A. H.; Tchelepi, H.; Jenny, P.
2016-12-01
In porous media the transport of fluid is dominated by flow-field heterogeneity resulting from the underlying transmissibility field. Since the transmissibility is highly uncertain, many realizations of a geological model are used to describe the statistics of the transport phenomena in a Monte Carlo framework. One possible way to avoid the high computational cost of physics-based Monte Carlo simulations is to model the velocity field as a Markov process and use Markov Chain Monte Carlo. In previous works multiple Markov models for discrete velocity processes have been proposed. These models can be divided into two general classes of Markov models in time and Markov models in space. Both of these choices have been shown to be effective to some extent. However some studies have suggested that the Markov property cannot be confirmed for a temporal Markov process; Therefore there is not a consensus about the validity and value of Markov models in time. Moreover, previous spacial Markov models have only been used for modeling transport on structured networks and can not be readily applied to model transport in unstructured networks. In this work we propose a novel approach for constructing a Markov model in time (stencil method) for a discrete velocity process. The results form the stencil method are compared to previously proposed spacial Markov models for structured networks. The stencil method is also applied to unstructured networks and can successfully describe the dispersion of particles in this setting. Our conclusion is that both temporal Markov models and spacial Markov models for discrete velocity processes can be valid for a range of model parameters. Moreover, we show that the stencil model can be more efficient in many practical settings and is suited to model dispersion both on structured and unstructured networks.
Mouse models for gastric cancer: Matching models to biological questions
Poh, Ashleigh R; O'Donoghue, Robert J J
2016-01-01
Abstract Gastric cancer is the third leading cause of cancer‐related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late‐stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new‐targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre‐clinical development of new therapeutics. PMID:26809278
Sustainable logistics and transportation optimization models and algorithms
Gakis, Konstantinos; Pardalos, Panos
2017-01-01
Focused on the logistics and transportation operations within a supply chain, this book brings together the latest models, algorithms, and optimization possibilities. Logistics and transportation problems are examined within a sustainability perspective to offer a comprehensive assessment of environmental, social, ethical, and economic performance measures. Featured models, techniques, and algorithms may be used to construct policies on alternative transportation modes and technologies, green logistics, and incentives by the incorporation of environmental, economic, and social measures. Researchers, professionals, and graduate students in urban regional planning, logistics, transport systems, optimization, supply chain management, business administration, information science, mathematics, and industrial and systems engineering will find the real life and interdisciplinary issues presented in this book informative and useful.
Caenorhabditis elegans, a Biological Model for Research in Toxicology.
Tejeda-Benitez, Lesly; Olivero-Verbel, Jesus
2016-01-01
Caenorhabditis elegans is a nematode of microscopic size which, due to its biological characteristics, has been used since the 1970s as a model for research in molecular biology, medicine, pharmacology, and toxicology. It was the first animal whose genome was completely sequenced and has played a key role in the understanding of apoptosis and RNA interference. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. C. elegans' use as a biological model in environmental toxicological assessments allows the determination of multiple endpoints. Some of these utilize the effects on the biological functions of the nematode and others use molecular markers. Endpoints such as lethality, growth, reproduction, and locomotion are the most studied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter genes, such as green fluorescence protein, driven by regulatory sequences from other genes related to different mechanisms of toxicity, such as heat shock, oxidative stress, CYP system, and metallothioneins among others, allowing the study of gene expression in a manner both rapid and easy. These transgenic strains of C. elegans represent a powerful tool to assess toxicity pathways for mixtures and environmental samples, and their numbers are growing in diversity and selectivity. However, other molecular biology techniques, including DNA microarrays and MicroRNAs have been explored to assess the effects of different toxicants and samples. C. elegans has allowed the assessment of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode
A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields
Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian
2018-05-01
Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.
Orgovan, Norbert; Patko, Daniel; Hos, Csaba; Kurunczi, Sándor; Szabó, Bálint; Ramsden, Jeremy J; Horvath, Robert
2014-09-01
This paper gives an overview of the advantages and associated caveats of the most common sample handling methods in surface-sensitive chemical and biological sensing. We summarize the basic theoretical and practical considerations one faces when designing and assembling the fluidic part of the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette dead volumes, and sample injection systems are all discussed. Typical application areas of particular arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the sense that for every sample handling arrangement considered we present our own experimental data and critically review our experience with the given arrangement. In the experimental part we focus on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the present study is equally applicable for other biosensing technologies in which an analyte in solution is captured at a surface and its presence is monitored. Explicit attention is given to features that are expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing measurements, such as analyte transport to the sensor surface; the distorting influence of dead volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also discussed, particularly with regard to their models used in biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.
Intermittency inhibited by transport: An exactly solvable model
Zanette, Damián H.
1994-04-01
Transport is incorporated in a discrete-time stochastic model of a system undergoing autocatalytic reactions of the type A-->2A and A-->0, whose population field is known to exhibit spatiotemporal intermittency. The temporal evolution is exactly solved, and it is shown that if the transport process is strong enough, intermittency is inhibited. This inhibition is nonuniform, in the sense that, as transport is strengthened, low-order population moments are affected before the high-order ones. Numerical simulations are presented to support the analytical results.
Wave basin model tests of technical-biological bank protection
Eisenmann, J.
2012-04-01
Sloped embankments of inland waterways are usually protected from erosion and other negative im-pacts of ship-induced hydraulic loads by technical revetments consisting of riprap. Concerning the dimensioning of such bank protection there are several design rules available, e.g. the "Principles for the Design of Bank and Bottom Protection for Inland Waterways" or the Code of Practice "Use of Standard Construction Methods for Bank and Bottom Protection on Waterways" issued by the BAW (Federal Waterways Engineering and Research Institute). Since the European Water Framework Directive has been put into action special emphasis was put on natural banks. Therefore the application of technical-biological bank protection is favoured. Currently design principles for technical-biological bank protection on inland waterways are missing. The existing experiences mainly refer to flowing waters with no or low ship-induced hydraulic loads on the banks. Since 2004 the Federal Waterways Engineering and Research Institute has been tracking the re-search and development project "Alternative Technical-Biological Bank Protection on Inland Water-ways" in company with the Federal Institute of Hydrology. The investigation to date includes the ex-amination of waterway sections where technical- biological bank protection is applied locally. For the development of design rules for technical-biological bank protection investigations shall be carried out in a next step, considering the mechanics and resilience of technical-biological bank protection with special attention to ship-induced hydraulic loads. The presentation gives a short introduction into hydraulic loads at inland waterways and their bank protection. More in detail model tests of a willow brush mattress as a technical-biological bank protec-tion in a wave basin are explained. Within the scope of these tests the brush mattresses were ex-posed to wave impacts to determine their resilience towards hydraulic loads. Since the
Mathematical models for volume rendering and neutron transport
International Nuclear Information System (INIS)
Max, N.
1994-09-01
This paper reviews several different models for light interaction with volume densities of absorbing, glowing, reflecting, or scattering material. They include absorption only, glow only, glow and absorption combined, single scattering of external illumination, and multiple scattering. The models are derived from differential equations, and illustrated on a data set representing a cloud. They are related to corresponding models in neutron transport. The multiple scattering model uses an efficient method to propagate the radiation which does not suffer from the ray effect
Modeling Cancer Metastasis using Global, Quantitative and Integrative Network Biology
DEFF Research Database (Denmark)
Schoof, Erwin; Erler, Janine
understanding of molecular processes which are fundamental to tumorigenesis. In Article 1, we propose a novel framework for how cancer mutations can be studied by taking into account their effect at the protein network level. In Article 2, we demonstrate how global, quantitative data on phosphorylation dynamics...... can be generated using MS, and how this can be modeled using a computational framework for deciphering kinase-substrate dynamics. This framework is described in depth in Article 3, and covers the design of KinomeXplorer, which allows the prediction of kinases responsible for modulating observed...... phosphorylation dynamics in a given biological sample. In Chapter III, we move into Integrative Network Biology, where, by combining two fundamental technologies (MS & NGS), we can obtain more in-depth insights into the links between cellular phenotype and genotype. Article 4 describes the proof...
Agent-Based Modeling in Molecular Systems Biology.
Soheilypour, Mohammad; Mofrad, Mohammad R K
2018-06-08
Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.
Modeling and simulation of emergent behavior in transportation infrastructure restoration
Ojha, Akhilesh; Corns, Steven; Shoberg, Thomas G.; Qin, Ruwen; Long, Suzanna K.
2018-01-01
The objective of this chapter is to create a methodology to model the emergent behavior during a disruption in the transportation system and that calculates economic losses due to such a disruption, and to understand how an extreme event affects the road transportation network. The chapter discusses a system dynamics approach which is used to model the transportation road infrastructure system to evaluate the different factors that render road segments inoperable and calculate economic consequences of such inoperability. System dynamics models have been integrated with business process simulation model to evaluate, design, and optimize the business process. The chapter also explains how different factors affect the road capacity. After identifying the various factors affecting the available road capacity, a causal loop diagram (CLD) is created to visually represent the causes leading to a change in the available road capacity and the effects on travel costs when the available road capacity changes.
Routing and Scheduling Optimization Model of Sea Transportation
barus, Mika debora br; asyrafy, Habib; nababan, Esther; mawengkang, Herman
2018-01-01
This paper examines the routing and scheduling optimization model of sea transportation. One of the issues discussed is about the transportation of ships carrying crude oil (tankers) which is distributed to many islands. The consideration is the cost of transportation which consists of travel costs and the cost of layover at the port. Crude oil to be distributed consists of several types. This paper develops routing and scheduling model taking into consideration some objective functions and constraints. The formulation of the mathematical model analyzed is to minimize costs based on the total distance visited by the tanker and minimize the cost of the ports. In order for the model of the problem to be more realistic and the cost calculated to be more appropriate then added a parameter that states the multiplier factor of cost increases as the charge of crude oil is filled.
Transport modeling of sorbing tracers in artificial fractures
International Nuclear Information System (INIS)
Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo.
1998-02-01
This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs
Transport modeling of sorbing tracers in artificial fractures
Energy Technology Data Exchange (ETDEWEB)
Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo
1998-02-01
This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs.
ANALYTICAL AND SIMULATION PLANNING MODEL OF URBAN PASSENGER TRANSPORT
Directory of Open Access Journals (Sweden)
Andrey Borisovich Nikolaev
2017-09-01
Full Text Available The article described the structure of the analytical and simulation models to make informed decisions in the planning of urban passenger transport. Designed UML diagram that describes the relationship of classes of the proposed model. A description of the main agents of the model developed in the simulation AnyLogic. Designed user interface integration with GIS map. Also provides simulation results that allow concluding about her health and the possibility of its use in solving planning problems of urban passenger transport.
Dust mobilization and transport modeling for loss of vacuum accidents
International Nuclear Information System (INIS)
Humrickhouse, P.W.; Sharpe, J.P.
2007-01-01
We develop a general continuum fluid dynamic model for dust transport in loss of vacuum accidents in fusion energy systems. The relationship between this general approach and established particle transport methods is clarified, in particular the relationship between the seemingly disparate treatments of aerosol dynamics and Lagrangian particle tracking. Constitutive equations for granular flow are found to be inadequate for prediction of mobilization, as these models essentially impose a condition of flow from the outset. Experiments confirm that at low shear, settled dust piles behave more like a continuum solid, and suitable solid models will be required to predict the onset of dust mobilization
Dust mobilization and transport modeling for loss of vacuum accidents
International Nuclear Information System (INIS)
Humrickhouse, P.W.; Sharpe, J.P.
2008-01-01
We develop a general continuum fluid dynamic model for dust transport in loss of vacuum accidents in fusion energy systems. The relationship between this general approach and established particle transport methods is clarified, in particular the relationship between the seemingly disparate treatments of aerosol dynamics and Lagrangian particle tracking. Constitutive equations for granular flow are found to be inadequate for prediction of mobilization, as these models essentially impose a condition of flow from the outset. Experiments confirm that at low shear, settled dust piles behave more like a continuum solid, and suitable solid models will be required to predict the onset of dust mobilization
Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model
Directory of Open Access Journals (Sweden)
W. Feng
2011-06-01
Full Text Available We investigate the performance of cloud convection and tracer transport in a global off-line 3-D chemical transport model. Various model simulations are performed using different meteorological (reanalyses (ERA-40, ECMWF operational and ECMWF Interim to diagnose the updraft mass flux, convective precipitation and cloud top height.
The diagnosed upward mass flux distribution from TOMCAT agrees quite well with the ECMWF reanalysis data (ERA-40 and ERA-Interim below 200 hPa. Inclusion of midlevel convection improves the agreement at mid-high latitudes. However, the reanalyses show strong convective transport up to 100 hPa, well into the tropical tropopause layer (TTL, which is not captured by TOMCAT. Similarly, the model captures the spatial and seasonal variation of convective cloud top height although the mean modelled value is about 2 km lower than observed.
The ERA-Interim reanalyses have smaller archived upward convective mass fluxes than ERA-40, and smaller convective precipitation, which is in better agreement with satellite-based data. TOMCAT captures these relative differences when diagnosing convection from the large-scale fields. The model also shows differences in diagnosed convection with the version of the operational analyses used, which cautions against using results of the model from one specific time period as a general evaluation.
We have tested the effect of resolution on the diagnosed modelled convection with simulations ranging from 5.6° × 5.6° to 1° × 1°. Overall, in the off-line model, the higher model resolution gives stronger vertical tracer transport, however, it does not make a large change to the diagnosed convective updraft mass flux (i.e., the model results using the convection scheme fail to capture the strong convection transport up to 100 hPa as seen in the archived convective mass fluxes. Similarly, the resolution of the forcing winds in the higher resolution CTM does not make a
Estimating confidence intervals in predicted responses for oscillatory biological models.
St John, Peter C; Doyle, Francis J
2013-07-29
The dynamics of gene regulation play a crucial role in a cellular control: allowing the cell to express the right proteins to meet changing needs. Some needs, such as correctly anticipating the day-night cycle, require complicated oscillatory features. In the analysis of gene regulatory networks, mathematical models are frequently used to understand how a network's structure enables it to respond appropriately to external inputs. These models typically consist of a set of ordinary differential equations, describing a network of biochemical reactions, and unknown kinetic parameters, chosen such that the model best captures experimental data. However, since a model's parameter values are uncertain, and since dynamic responses to inputs are highly parameter-dependent, it is difficult to assess the confidence associated with these in silico predictions. In particular, models with complex dynamics - such as oscillations - must be fit with computationally expensive global optimization routines, and cannot take advantage of existing measures of identifiability. Despite their difficulty to model mathematically, limit cycle oscillations play a key role in many biological processes, including cell cycling, metabolism, neuron firing, and circadian rhythms. In this study, we employ an efficient parameter estimation technique to enable a bootstrap uncertainty analysis for limit cycle models. Since the primary role of systems biology models is the insight they provide on responses to rate perturbations, we extend our uncertainty analysis to include first order sensitivity coefficients. Using a literature model of circadian rhythms, we show how predictive precision is degraded with decreasing sample points and increasing relative error. Additionally, we show how this method can be used for model discrimination by comparing the output identifiability of two candidate model structures to published literature data. Our method permits modellers of oscillatory systems to confidently
Solvable Model for Dynamic Mass Transport in Disordered Geophysical Media
Marder, M.; Eftekhari, Behzad; Patzek, Tadeusz
2018-01-01
We present an analytically solvable model for transport in geophysical materials on large length and time scales. It describes the flow of gas to a complicated absorbing boundary over long periods of time. We find a solution to this model using Green's function techniques, and apply the solution to three absorbing networks of increasing complexity.
Sediment Transport Model for a Surface Irrigation System
Directory of Open Access Journals (Sweden)
Damodhara R. Mailapalli
2013-01-01
Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.
Planning for a National Community Sediment Transport Model
2002-01-01
modeling project. The workshop did not develop a NOPP proposal because NOPP had not yet announced funding opportunities for a coastal community modeling...2002, titled “NOPP / USGS Coastal Community Sediment-Transport Model”. Dr. Sherwood presented status reports at the NOPP Nearshore Annual meeting in
A model for radionuclide transport in the Cooling Water System
International Nuclear Information System (INIS)
Kahook, S.D.
1992-08-01
A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA
Solvable Model for Dynamic Mass Transport in Disordered Geophysical Media
Marder, M.
2018-03-29
We present an analytically solvable model for transport in geophysical materials on large length and time scales. It describes the flow of gas to a complicated absorbing boundary over long periods of time. We find a solution to this model using Green\\'s function techniques, and apply the solution to three absorbing networks of increasing complexity.
Stochastic models for transport in a fluidized bed
Dehling, H.G; Hoffmann, A.C; Stuut, H.W.
1999-01-01
In this paper we study stochastic models for the transport of particles in a fluidized bed reactor and compute the associated residence time distribution (RTD). Our main model is basically a diffusion process in [0;A] with reflecting/absorbing boundary conditions, modified by allowing jumps to the
Modelling of human transplacental transport as performed in Copenhagen, Denmark
DEFF Research Database (Denmark)
Mathiesen, Line; Mørck, Thit Aarøe; Zuri, Giuseppina
2014-01-01
Placenta perfusion models are very effective when studying the placental mechanisms in order to extrapolate to real-life situations. The models are most often used to investigate the transport of substances between mother and foetus, including the potential metabolism of these. We have studied...
Spatial Economics Model Predicting Transport Volume
Directory of Open Access Journals (Sweden)
Lu Bo
2016-10-01
Full Text Available It is extremely important to predict the logistics requirements in a scientific and rational way. However, in recent years, the improvement effect on the prediction method is not very significant and the traditional statistical prediction method has the defects of low precision and poor interpretation of the prediction model, which cannot only guarantee the generalization ability of the prediction model theoretically, but also cannot explain the models effectively. Therefore, in combination with the theories of the spatial economics, industrial economics, and neo-classical economics, taking city of Zhuanghe as the research object, the study identifies the leading industry that can produce a large number of cargoes, and further predicts the static logistics generation of the Zhuanghe and hinterlands. By integrating various factors that can affect the regional logistics requirements, this study established a logistics requirements potential model from the aspect of spatial economic principles, and expanded the way of logistics requirements prediction from the single statistical principles to an new area of special and regional economics.
Conservation laws and nuclear transport models
International Nuclear Information System (INIS)
Gale, C.; Das Gupta, S.
1990-01-01
We discuss the consequences of energy and angular momentum conservation for nucleon-nucleon scattering in a nuclear environment during high-energy heavy-ion collisions. We describe algorithms that ensure stricter enforcement of such conservation laws within popular microscopic models of intermediate-energy heavy-ion collisions. We find that the net effects on global observables are small
Analysis and logical modeling of biological signaling transduction networks
Sun, Zhongyao
The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.
Mathematical modeling of solute transport in the subsurface
International Nuclear Information System (INIS)
Naymik, T.G.
1987-01-01
A review of key works on solute transport models indicates that solute transport processes with the exception of advection are still poorly understood. Solute transport models generally do a good job when they are used to test scientific concepts and hypotheses, investigate natural processes, systematically store and manage data, and simulate mass balance of solutes under certain natural conditions. Solute transport models generally are not good for predicting future conditions with a high degree of certainty, or for determining concentrations precisely. The mathematical treatment of solute transport far surpasses their understanding of the process. Investigations of the extent of groundwater contamination and methods to remedy existing problems show the along-term nature of the hazard. Industrial organic compounds may be immiscible in water, highly volatile, or complexed with inorganic as well as other organic compounds; many remain stable in nature almost indefinitely. In the worst case, future disposal of hazardous waste may be restricted to deep burial, as is proposed for radioactive wastes. For investigations pertinent to transport of radionuclides from a geologic repository, the process cannot be fully understood without adequate thermodynamic and kinetic data bases
Multiscale modeling of transport of grains through granular assemblies
Directory of Open Access Journals (Sweden)
Tejada Ignacio G
2017-01-01
Full Text Available We investigate the transport of moderately large passive particles through granular assemblies caused by seeping flows. This process can only be described by highly nonlinear continuum models, since the local permeability, the advection and dispersion mechanisms are strongly determined by the concentration of transported particles. Particles may sometimes get temporally trapped and thus proper kinetic mass transfer models are required. The mass transfer depends on the complexity of the porous medium, the kind of interaction forces and the concentration of transported particles. We study these two issues by means of numerical and laboratory experiments. In the laboratory we use an oedo-permeameter to force sand grains to move through a gravel bed under conditions of constant hydraulic pressure drop. To understand the process, numerical experiments were performed to approach particle transport at the grain scale with a fully coupled method. The DEM-PFV combines the discrete element method with a pore scale finite volume formulation to solve the interstitial fluid flow and particle transport problems. These experiments help us to set up a continuum transport model that can be used in a boundary value problem.
Toward a community coastal sediment transport modeling system: the second workshop
Sherwood, Christopher R.; Harris, Courtney K.; Geyer, W. Rockwell; Butman, Bradford
2002-01-01
Models for transport and the long-term fate of particles in coastal waters are essential for a variety of applications related to commerce, defense, public health, and the quality of the marine environment. Examples include: analysis of waste disposal and transport and the fate of contaminated materials; evaluation of burial rates for naval mines or archaeological artifacts; prediction of water-column optical properties; analysis of transport and the fate of biological particles; prediction of coastal flooding and coastal erosion; evaluation of impacts of sea-level or wave-climate changes and coastal development; planning for construction and maintenance of navigable waterways; evaluation of habitat for commercial fisheries; evaluation of impacts of natural or anthropogenic changes in coastal conditions on recreational activities; and design of intakes and outfalls for sewage treatment, cooling systems, and desalination plants.
Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System
Energy Technology Data Exchange (ETDEWEB)
Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.
2001-03-01
Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.
McGann, Mary; Erikson, Li H.; Wan, Elmira; Powell, Charles; Maddocks, Rosalie F.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.
2013-01-01
Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.
Dynamic modeling of interfacial structures via interfacial area transport equation
International Nuclear Information System (INIS)
Seungjin, Kim; Mamoru, Ishii
2004-01-01
Full text of publication follows:In the current thermal-hydraulic system analysis codes using the two-fluid model, the empirical correlations that are based on the two-phase flow regimes and regime transition criteria are being employed as closure relations for the interfacial transfer terms. Due to its inherent shortcomings, however, such static correlations are inaccurate and present serious problems in the numerical analysis. In view of this, a new dynamic approach employing the interfacial area transport equation has been studied. The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Therefore, the interfacial area transport equation can make a leapfrog improvement in the current capability of the two-fluid model from both scientific and practical point of view. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. The coalescence mechanisms include the random collision driven by turbulence, and the entrainment of trailing bubbles in the wake region of the preceding bubble. The disintegration mechanisms include the break-up by turbulence impact, shearing-off at the rim of large cap bubbles and the break-up of large cap
Conceptual modeling in systems biology fosters empirical findings: the mRNA lifecycle.
Directory of Open Access Journals (Sweden)
Dov Dori
Full Text Available One of the main obstacles to understanding complex biological systems is the extent and rapid evolution of information, way beyond the capacity individuals to manage and comprehend. Current modeling approaches and tools lack adequate capacity to model concurrently structure and behavior of biological systems. Here we propose Object-Process Methodology (OPM, a holistic conceptual modeling paradigm, as a means to model both diagrammatically and textually biological systems formally and intuitively at any desired number of levels of detail. OPM combines objects, e.g., proteins, and processes, e.g., transcription, in a way that is simple and easily comprehensible to researchers and scholars. As a case in point, we modeled the yeast mRNA lifecycle. The mRNA lifecycle involves mRNA synthesis in the nucleus, mRNA transport to the cytoplasm, and its subsequent translation and degradation therein. Recent studies have identified specific cytoplasmic foci, termed processing bodies that contain large complexes of mRNAs and decay factors. Our OPM model of this cellular subsystem, presented here, led to the discovery of a new constituent of these complexes, the translation termination factor eRF3. Association of eRF3 with processing bodies is observed after a long-term starvation period. We suggest that OPM can eventually serve as a comprehensive evolvable model of the entire living cell system. The model would serve as a research and communication platform, highlighting unknown and uncertain aspects that can be addressed empirically and updated consequently while maintaining consistency.
Contaminant transport modeling studies of Russian sites
International Nuclear Information System (INIS)
Tsang, Chin-Fu
1993-01-01
Lawrence Berkeley Laboratory (LBL) established mechanisms that promoted cooperation between U.S. and Russian scientists in scientific research as well as environmental technology transfer. Using Russian experience and U.S technology, LBL developed approaches for field investigations, site evaluation, waste disposal, and remediation at Russian contaminated sites. LBL assessed a comprehensive database as well as an actual, large-scale contaminated site to evaluate existing knowledge of and test mathematical models used for the assessment of U.S. contaminated sites
Quantifying Distributional Model Risk via Optimal Transport
Blanchet, Jose; Murthy, Karthyek R. A.
2016-01-01
This paper deals with the problem of quantifying the impact of model misspecification when computing general expected values of interest. The methodology that we propose is applicable in great generality, in particular, we provide examples involving path dependent expectations of stochastic processes. Our approach consists in computing bounds for the expectation of interest regardless of the probability measure used, as long as the measure lies within a prescribed tolerance measured in terms ...
2-D model of global aerosol transport
Energy Technology Data Exchange (ETDEWEB)
Rehkopf, J; Newiger, M; Grassl, H
1984-01-01
The distribution of aerosol particles in the troposphere is described. Starting with long term mean seasonal flow and diffusivities as well as temperature, cloud distribution (six cloud classes), relative humidity and OH radical concentration, the steady state concentration of aerosol particles and SO/sub 2/ are calculated in a two-dimensional global (height and latitude) model. The following sources and sinks for particles are handled: direct emission, gas-to-particle conversion from SO/sub 2/, coagulation, rainout, washout, gravitational settling, and dry deposition. The sinks considered for sulphur emissions are dry deposition, washout, rainout, gasphase oxidation, and aqueous phase oxidation. Model tests with the water vapour cycle show a good agreement between measured and calculated zonal mean precipitation distribution. The steady state concentration distribution for natural emissions reached after 10 weeks model time, may be described by a mean exponent ..cap alpha.. = 3.2 near the surface assuming a modified Junge distribution and an increased value, ..cap alpha.. = 3.7, for the combined natural and man-made emission. The maximum ground level concentrations are 2000 and 10,000 particules cm/sup -3/ for natural and natural plus man-made emissions, respectively. The resulting distribution of sulphur dioxide agrees satisfactorily with measurements given by several authors. 37 references, 4 figures.
Revision history aware repositories of computational models of biological systems.
Miller, Andrew K; Yu, Tommy; Britten, Randall; Cooling, Mike T; Lawson, James; Cowan, Dougal; Garny, Alan; Halstead, Matt D B; Hunter, Peter J; Nickerson, David P; Nunns, Geo; Wimalaratne, Sarala M; Nielsen, Poul M F
2011-01-14
Building repositories of computational models of biological systems ensures that published models are available for both education and further research, and can provide a source of smaller, previously verified models to integrate into a larger model. One problem with earlier repositories has been the limitations in facilities to record the revision history of models. Often, these facilities are limited to a linear series of versions which were deposited in the repository. This is problematic for several reasons. Firstly, there are many instances in the history of biological systems modelling where an 'ancestral' model is modified by different groups to create many different models. With a linear series of versions, if the changes made to one model are merged into another model, the merge appears as a single item in the history. This hides useful revision history information, and also makes further merges much more difficult, as there is no record of which changes have or have not already been merged. In addition, a long series of individual changes made outside of the repository are also all merged into a single revision when they are put back into the repository, making it difficult to separate out individual changes. Furthermore, many earlier repositories only retain the revision history of individual files, rather than of a group of files. This is an important limitation to overcome, because some types of models, such as CellML 1.1 models, can be developed as a collection of modules, each in a separate file. The need for revision history is widely recognised for computer software, and a lot of work has gone into developing version control systems and distributed version control systems (DVCSs) for tracking the revision history. However, to date, there has been no published research on how DVCSs can be applied to repositories of computational models of biological systems. We have extended the Physiome Model Repository software to be fully revision history aware
Revision history aware repositories of computational models of biological systems
Directory of Open Access Journals (Sweden)
Nickerson David P
2011-01-01
Full Text Available Abstract Background Building repositories of computational models of biological systems ensures that published models are available for both education and further research, and can provide a source of smaller, previously verified models to integrate into a larger model. One problem with earlier repositories has been the limitations in facilities to record the revision history of models. Often, these facilities are limited to a linear series of versions which were deposited in the repository. This is problematic for several reasons. Firstly, there are many instances in the history of biological systems modelling where an 'ancestral' model is modified by different groups to create many different models. With a linear series of versions, if the changes made to one model are merged into another model, the merge appears as a single item in the history. This hides useful revision history information, and also makes further merges much more difficult, as there is no record of which changes have or have not already been merged. In addition, a long series of individual changes made outside of the repository are also all merged into a single revision when they are put back into the repository, making it difficult to separate out individual changes. Furthermore, many earlier repositories only retain the revision history of individual files, rather than of a group of files. This is an important limitation to overcome, because some types of models, such as CellML 1.1 models, can be developed as a collection of modules, each in a separate file. The need for revision history is widely recognised for computer software, and a lot of work has gone into developing version control systems and distributed version control systems (DVCSs for tracking the revision history. However, to date, there has been no published research on how DVCSs can be applied to repositories of computational models of biological systems. Results We have extended the Physiome Model
Modeling spin magnetization transport in a spatially varying magnetic field
Picone, Rico A. R.; Garbini, Joseph L.; Sidles, John A.
2015-01-01
We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]).
Instantaneous sediment transport model for asymmetric oscillatory sheet flow.
Directory of Open Access Journals (Sweden)
Xin Chen
Full Text Available On the basis of advanced concentration and velocity profiles above a mobile seabed, an instantaneous analytical model is derived for sediment transport in asymmetric oscillatory flow. The applied concentration profile is obtained from the classical exponential law based on mass conservation, and asymmetric velocity profile is developed following the turbulent boundary layer theory and the asymmetric wave theory. The proposed model includes two parts: the basic part that consists of erosion depth and free stream velocity, and can be simplified to the total Shields parameter power 3/2 in accordance with the classical empirical models, and the extra vital part that consists of phase-lead, boundary layer thickness and erosion depth. The effects of suspended sediment, phase-lag and asymmetric boundary layer development are considered particularly in the model. The observed instantaneous transport rate proportional to different velocity exponents due to phase-lag is unified and summarised by the proposed model. Both instantaneous and half period empirical formulas are compared with the developed model, using extensive data on a wide range of flow and sediment conditions. The synchronous variation in instantaneous transport rate with free stream velocity and its decrement caused by increased sediment size are predicted correctly. Net transport rates, especially offshore transport rates with large phase-lag under velocity skewed flows, which existing instantaneous type formulas failed to predict, are predicted correctly in both direction and magnitude by the proposed model. Net sediment transport rates are affected not only by suspended sediment and phase-lag, but also by the boundary layer difference between onshore and offshore.
In silico biology of bone modelling and remodelling: adaptation.
Gerhard, Friederike A; Webster, Duncan J; van Lenthe, G Harry; Müller, Ralph
2009-05-28
Modelling and remodelling are the processes by which bone adapts its shape and internal structure to external influences. However, the cellular mechanisms triggering osteoclastic resorption and osteoblastic formation are still unknown. In order to investigate current biological theories, in silico models can be applied. In the past, most of these models were based on the continuum assumption, but some questions related to bone adaptation can be addressed better by models incorporating the trabecular microstructure. In this paper, existing simulation models are reviewed and one of the microstructural models is extended to test the hypothesis that bone adaptation can be simulated without particular knowledge of the local strain distribution in the bone. Validation using an experimental murine loading model showed that this is possible. Furthermore, the experimental model revealed that bone formation cannot be attributed only to an increase in trabecular thickness but also to structural reorganization including the growth of new trabeculae. How these new trabeculae arise is still an unresolved issue and might be better addressed by incorporating other levels of hierarchy, especially the cellular level. The cellular level sheds light on the activity and interplay between the different cell types, leading to the effective change in the whole bone. For this reason, hierarchical multi-scale simulations might help in the future to better understand the biomathematical laws behind bone adaptation.
Computer-Supported Modelling of Multi modal Transportation Networks Rationalization
Directory of Open Access Journals (Sweden)
Ratko Zelenika
2007-09-01
Full Text Available This paper deals with issues of shaping and functioning ofcomputer programs in the modelling and solving of multimoda Itransportation network problems. A methodology of an integrateduse of a programming language for mathematical modellingis defined, as well as spreadsheets for the solving of complexmultimodal transportation network problems. The papercontains a comparison of the partial and integral methods ofsolving multimodal transportation networks. The basic hypothesisset forth in this paper is that the integral method results inbetter multimodal transportation network rationalization effects,whereas a multimodal transportation network modelbased on the integral method, once built, can be used as the basisfor all kinds of transportation problems within multimodaltransport. As opposed to linear transport problems, multimodaltransport network can assume very complex shapes. This papercontains a comparison of the partial and integral approach totransp01tation network solving. In the partial approach, astraightforward model of a transp01tation network, which canbe solved through the use of the Solver computer tool within theExcel spreadsheet inteiface, is quite sufficient. In the solving ofa multimodal transportation problem through the integralmethod, it is necessmy to apply sophisticated mathematicalmodelling programming languages which supp01t the use ofcomplex matrix functions and the processing of a vast amountof variables and limitations. The LINGO programming languageis more abstract than the Excel spreadsheet, and it requiresa certain programming knowledge. The definition andpresentation of a problem logic within Excel, in a manner whichis acceptable to computer software, is an ideal basis for modellingin the LINGO programming language, as well as a fasterand more effective implementation of the mathematical model.This paper provides proof for the fact that it is more rational tosolve the problem of multimodal transportation networks by
Directory of Open Access Journals (Sweden)
Mac Sisson
2016-11-01
Full Text Available Poquoson River is a tidal coastal embayment located along the Western Shore of the Chesapeake Bay about 4 km south of the York River mouth in the City of Poquoson and in York County, Virginia. Its drainage area has diversified land uses, including high densities of residence, agricultural, salt marsh land uses, as well as a National Wildlife Refuge. This embayment experiences elevated bacterial concentration due to excess bacterial inputs from storm water runoff, nonpoint sources, and wash off from marshes due to tide and wind-induced set-up and set-down. Bacteria can also grow in the marsh and small tributaries. It is difficult to use a traditional watershed model to simulate bacterial loading, especially in this low-lying marsh area with abundant wildlife, while runoff is not solely driven by precipitation. An inverse approach is introduced to estimate loading from unknown sources based on observations in the embayment. The estimated loadings were combined with loadings estimated from different sources (human, wildlife, agriculture, pets, etc. and input to the watershed model. The watershed model simulated long-term flow and bacterial loading and discharged to a three-dimensional transport model driven by tide, wind, and freshwater discharge. The transport model efficiently simulates the transport and fate of the bacterial concentration in the embayment and is capable of determining the loading reduction needed to improve the water quality condition of the embayment. Combining inverse, watershed, and transport models is a sound approach for simulating bacterial transport correctly in the coastal embayment with complex unknown bacterial sources, which are not solely driven by precipitation.
Human pluripotent stem cells: an emerging model in developmental biology.
Zhu, Zengrong; Huangfu, Danwei
2013-02-01
Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.
Experimental, statistical, and biological models of radon carcinogenesis
International Nuclear Information System (INIS)
Cross, F.T.
1991-09-01
Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared to domestic environments and from uncertainties about the interaction between cigarette-smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research program that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models), and the relationship of radon to smoking and other copollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. 20 refs., 1 fig
Modeling of 60Co transport by groundwater
International Nuclear Information System (INIS)
Serebryakov, B.E.; Ivanov, E.A.; Shchukin, A.P.
2006-01-01
Results of calculation of the 60 Co migration in a water-bearing horizon after the accident Novo-Voronezh NPP in 1985 are presented. The accident was connected with the liquid radioactive waste leakage into the ground water. The features of 60 Co migration in the water-bearing horizon and its coming into the Don river are calculated by means of three-dimensional models. Population irradiation estimations show that the accident did not lead to exceeding the recommended dose limits [ru
Modelling transport in single electron transistor
International Nuclear Information System (INIS)
Dinh Sy Hien; Huynh Lam Thu Thao; Le Hoang Minh
2009-01-01
We introduce a model of single electron transistor (SET). Simulation programme of SET is used as the exploratory tool in order to gain better understanding of process and device physics. This simulator includes a graphic user interface (GUI) in Matlab. The SET was simulated using GUI in Matlab to get current-voltage (I-V) characteristics. In addition, effects of device capacitance, bias, temperature on the I-V characteristics were obtained. In this work, we review the capabilities of the simulator of the SET. Typical simulations of the obtained I-V characteristics of the SET are presented.
Modeling transport and deposition of the Mekong River sediment
Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.
2012-01-01
A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.
Multiscale modeling for fluid transport in nanosystems.
Energy Technology Data Exchange (ETDEWEB)
Lee, Jonathan W.; Jones, Reese E.; Mandadapu, Kranthi Kiran; Templeton, Jeremy Alan; Zimmerman, Jonathan A.
2013-09-01
Atomistic-scale behavior drives performance in many micro- and nano-fluidic systems, such as mircrofludic mixers and electrical energy storage devices. Bringing this information into the traditionally continuum models used for engineering analysis has proved challenging. This work describes one such approach to address this issue by developing atomistic-to-continuum multi scale and multi physics methods to enable molecular dynamics (MD) representations of atoms to incorporated into continuum simulations. Coupling is achieved by imposing constraints based on fluxes of conserved quantities between the two regions described by one of these models. The impact of electric fields and surface charges are also critical, hence, methodologies to extend finite-element (FE) MD electric field solvers have been derived to account for these effects. Finally, the continuum description can have inconsistencies with the coarse-grained MD dynamics, so FE equations based on MD statistics were derived to facilitate the multi scale coupling. Examples are shown relevant to nanofluidic systems, such as pore flow, Couette flow, and electric double layer.
Tavasszy, L.; Davydenko, I.; Ruijgrok, K.
2009-01-01
The integration of Spatial Equilibrium models and Freight transport network models is important to produce consistent scenarios for future freight transport demand. At various spatial scales, we see the changes in production, trade, logistics networking and transportation, being driven by