WorldWideScience

Sample records for biological tissues undergoing

  1. Modeling biological tissue growth: discrete to continuum representations.

    Science.gov (United States)

    Hywood, Jack D; Hackett-Jones, Emily J; Landman, Kerry A

    2013-09-01

    There is much interest in building deterministic continuum models from discrete agent-based models governed by local stochastic rules where an agent represents a biological cell. In developmental biology, cells are able to move and undergo cell division on and within growing tissues. A growing tissue is itself made up of cells which undergo cell division, thereby providing a significant transport mechanism for other cells within it. We develop a discrete agent-based model where domain agents represent tissue cells. Each agent has the ability to undergo a proliferation event whereby an additional domain agent is incorporated into the lattice. If a probability distribution describes the waiting times between proliferation events for an individual agent, then the total length of the domain is a random variable. The average behavior of these stochastically proliferating agents defining the growing lattice is determined in terms of a Fokker-Planck equation, with an advection and diffusion term. The diffusion term differs from the one obtained Landman and Binder [J. Theor. Biol. 259, 541 (2009)] when the rate of growth of the domain is specified, but the choice of agents is random. This discrepancy is reconciled by determining a discrete-time master equation for this process and an associated asymmetric nonexclusion random walk, together with consideration of synchronous and asynchronous updating schemes. All theoretical results are confirmed with numerical simulations. This study furthers our understanding of the relationship between agent-based rules, their implementation, and their associated partial differential equations. Since tissue growth is a significant cellular transport mechanism during embryonic growth, it is important to use the correct partial differential equation description when combining with other cellular functions.

  2. VISUALIZATION OF BIOLOGICAL TISSUE IMPEDANCE PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. I. Bankov

    2016-01-01

    Full Text Available Objective. Investigation the opportunity for measurement of biological tissue impedance to visualize its parameters.Materials and methods. Studies were undertook on the experimental facility, consists of registrating measuring cell, constructed from flat inductors system, formed in oscillatory circuit, herewith investigated biological tissue is the part of this oscillatory circuit. An excitation of oscillatory circuit fulfilled by means of exciter inductor which forms impulse complex modulated electromagnetic field (ICM EMF. The measurement process and visualizations provided by set of certificated instruments: a digital oscillograph AKTAKOM ADS-2221MV, a digital generator АКТАКОМ AWG-4150 (both with software and a gauge RLC E7-22. Comparative dynamic studies of fixed volume and weight pig’s blood, adipose tissue, muscular tissue impedance were conducted by contact versus contactless methods. Contactless method in contrast to contact method gives opportunity to obtain the real morphological visualization of biological tissue irrespective of their nature.Results. Comparison of contact and contactless methods of impedance measurement shows that the inductance to capacitance ratio X(L / X(C was equal: 17 – for muscular tissue, 4 – for blood, 1 – for adipose tissue. It demonstrates the technical correspondence of both impedance registration methods. If propose the base relevance of X (L and X (C parameters for biological tissue impedance so contactless measurement method for sure shows insulating properties of adipose tissue and high conductivity for blood and muscular tissue in fixed volume-weight parameters. Registration of biological tissue impedance complex parameters by contactless method with the help of induced ICM EMF in fixed volume of biological tissue uncovers the most important informative volumes to characterize morphofunctional condition of biological tissue namely X (L / X (C.Conclusion. Contactless method of biological

  3. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  4. Dissipative particle dynamics simulations for biological tissues: rheology and competition

    International Nuclear Information System (INIS)

    Basan, Markus; Prost, Jacques; Joanny, Jean-François; Elgeti, Jens

    2011-01-01

    In this work, we model biological tissues using a simple, mechanistic simulation based on dissipative particle dynamics. We investigate the continuum behavior of the simulated tissue and determine its dependence on the properties of the individual cell. Cells in our simulation adhere to each other, expand in volume, divide after reaching a specific size checkpoint and undergo apoptosis at a constant rate, leading to a steady-state homeostatic pressure in the tissue. We measure the dependence of the homeostatic state on the microscopic parameters of our model and show that homeostatic pressure, rather than the unconfined rate of cell division, determines the outcome of tissue competitions. Simulated cell aggregates are cohesive and round up due to the effect of tissue surface tension, which we measure for different tissues. Furthermore, mixtures of different cells unmix according to their adhesive properties. Using a variety of shear and creep simulations, we study tissue rheology by measuring yield stresses, shear viscosities, complex viscosities as well as the loss tangents as a function of model parameters. We find that cell division and apoptosis lead to a vanishing yield stress and fluid-like tissues. The effects of different adhesion strengths and levels of noise on the rheology of the tissue are also measured. In addition, we find that the level of cell division and apoptosis drives the diffusion of cells in the tissue. Finally, we present a method for measuring the compressibility of the tissue and its response to external stress via cell division and apoptosis

  5. Biological aspects of tissue-engineered cartilage.

    Science.gov (United States)

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  6. Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulation.

    Science.gov (United States)

    Erez, A; Shitzer, A

    1980-02-01

    An analysis of the temperature fields developed in a biological tissue undergoing a monoactive electrical coagulating process is presented, including thermal recovery following prolonged heating. The analysis is performed for the passage of alternating current and assumes a homogeneous and isotropic tissue model which is uniformly perfused by blood at arterial temperature. Solution for the one-dimensional spherical geometry is obtained by a Laplace transform and numerical integrations. Results obtained indicate the major role which blood perfusion plays in determining the effects of the coagulating process; tissue temperatures and depth of destruction are drastically reduced as blood perfusion increases. Metabolic heat generation rate is found to have negligible effects on tissue temperatures whereas electrode thermal inertia affects temperature levels appreciably. However, electrodes employed in practice would have a low thermal inertia which might be regarded as zero for all practical purposes. It is also found that the depth of tissue destruction is almost directly proportional to the electrical power and duration of application. To avoid excessively high temperatures and charring, it would be advantageous to reduce power and increase the time of application. Results of this study should be regarded as a first approximation to the rather complex phenomena associated with electrocoagulation. They may, nevertheless, serve as preliminary guidelines to practicing surgeons applying this technique.

  7. Evaluation of impedance on biological Tissues using automatic control measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo [Pusan National University, Yangsan (Korea, Republic of); Lee, Moo Seok; Kim, Sang Sik [Pusan National University, Busan (Korea, Republic of); Kim, Gun FDo; Lee, Jong Kyu [Pukyung National University, Busan (Korea, Republic of)

    2015-08-15

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  8. Evaluation of impedance on biological Tissues using automatic control measurement system

    International Nuclear Information System (INIS)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo; Lee, Moo Seok; Kim, Sang Sik; Kim, Gun FDo; Lee, Jong Kyu

    2015-01-01

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  9. Role of cell deformability in the two-dimensional melting of biological tissues

    Science.gov (United States)

    Li, Yan-Wei; Ciamarra, Massimo Pica

    2018-04-01

    The size and shape of a large variety of polymeric particles, including biological cells, star polymers, dendrimes, and microgels, depend on the applied stresses as the particles are extremely soft. In high-density suspensions these particles deform as stressed by their neighbors, which implies that the interparticle interaction becomes of many-body type. Investigating a two-dimensional model of cell tissue, where the single particle shear modulus is related to the cell adhesion strength, here we show that the particle deformability affects the melting scenario. On increasing the temperature, stiff particles undergo a first-order solid/liquid transition, while soft ones undergo a continuous solid/hexatic transition followed by a discontinuous hexatic/liquid transition. At zero temperature the melting transition driven by the decrease of the adhesion strength occurs through two continuous transitions as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. Thus, there is a range of adhesion strength values where the hexatic phase is stable at zero temperature, which suggests that the intermediate phase of the epithelial-to-mesenchymal transition could be hexatic type.

  10. An algorithm to biological tissues evaluation in pediatric examinations

    International Nuclear Information System (INIS)

    Souza, R.T.F.; Miranda, J.R.A.; Alvarez, M.; Velo, A.F.; Pina, D.R.

    2011-01-01

    A prerequisite for the construction of phantoms is the quantification of the average thickness of biological tissues and the equivalence of these simulators in simulator material thicknesses. This study aim to develop an algorithm to classify and quantify tissues, based on normal distribution of CT numbers of anatomical structures found in the mean free path of the X-rays beam, using the examination histogram to carry out this evaluation. We have considered an algorithm for the determination of the equivalent biological tissues thickness from histograms. This algorithm classifies different biological tissues from tomographic exams in DICOM format and calculates the average thickness of these tissues. The founded results had revealed coherent with literature, presenting discrepancies of up to 21,6%, relative to bone tissue, analyzed for anthropomorphic phantom (RANDO). These results allow using this methodology in livings tissues, for the construction of thorax homogeneous phantoms, of just born and suckling patients, who will be used later in the optimization process of pediatrics radiographic images. (author)

  11. Mechanics of Biological Tissues and Biomaterials: Current Trends

    Directory of Open Access Journals (Sweden)

    Amir A. Zadpoor

    2015-07-01

    Full Text Available Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address various topics within the general theme of “mechanics of biomaterials”. This editorial aims to present the context within which the studies of this Special Issue could be better understood. I, therefore, try to identify some of the most important research trends in the study of the mechanical behavior of biological tissues and biomaterials.

  12. Mechanics of Biological Tissues and Biomaterials : Current Trends (editorial)

    NARCIS (Netherlands)

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the

  13. Importance of tissue perfusion in ST segment elevation myocardial infarction patients undergoing reperfusion strategies: role of adenosine.

    Science.gov (United States)

    Forman, Mervyn B; Jackson, Edwin K

    2007-11-01

    High risk ST segment elevation myocardial infarction (STEMI) patients undergoing reperfusion therapy continue to exhibit significant morbidity and mortality due in part to myocardial reperfusion injury. Importantly, preclinical studies demonstrate that progressive microcirculatory failure (the "no-reflow" phenomenon) contributes significantly to myocardial reperfusion injury. Diagnostic techniques to measure tissue perfusion have validated this concept in humans, and it is now clear that abnormal tissue perfusion occurs frequently in STEMI patients undergoing reperfusion therapy. Moreover, because tissue perfusion correlates poorly with epicardial blood flow (TIMI flow grade), clinical studies show that tissue perfusion is an independent predictor of early and late mortality in STEMI patients and is associated with infarct size, ventricular function, CHF and ventricular arrhythmias. The mechanisms responsible for abnormal tissue perfusion are multifactorial and include both mechanical obstruction and vasoconstrictor humoral factors. Adenosine, an endogenous nucleoside, maintains microcirculatory flow following reperfusion by activating four well-characterized extracellular receptors. Because activation of adenosine receptors attenuates the mechanical and functional mechanisms leading to the "no reflow" phenomenon and activates other cardioprotective pathways as well, it is not surprising that both experimental and clinical studies show striking myocardial salvage with intravenous infusions of adenosine administered in the peri-reperfusion period. For example, a post hoc analysis of the AMISTAD II trial indicates a significant reduction in 1 and 6-month mortality in STEMI patients undergoing reperfusion therapy who are treated with adenosine within 3 hours of symptoms. In conclusion, adenosine's numerous cardioprotective effects, including attenuation of the "no-reflow" phenomenon, support its use in high risk STEMI undergoing reperfusion.

  14. Mechanics of Biological Tissues and Biomaterials: Current Trends

    OpenAIRE

    Amir A. Zadpoor

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  15. Processing laboratory of radio sterilized biological tissues

    International Nuclear Information System (INIS)

    Aguirre H, Paulina; Zarate S, Herman; Silva R, Samy; Hitschfeld, Mario

    2005-01-01

    The nuclear development applications have also reached those areas related to health. The risk of getting contagious illnesses through applying biological tissues has been one of the paramount worries to be solved since infectious illnesses might be provoked by virus, fungis or bacterias coming from donors or whether they have been introduced by means of intermediate stages before the use of these tissues. Therefore it has been concluded that the tissue allografts must be sterilized. The sterilization of medical products has been one of the main applications of the ionizing radiations and that it is why the International Organization of Atomic Energy began in the 70s promoting works related to the biological tissue sterilization and pharmaceutical products. The development of different tissue preservation methods has made possible the creation of tissue banks in different countries, to deal with long-term preservation. In our country, a project was launched in 1998, 'Establishment of a Tissue Bank in Latino america', this project was supported by the OIEA through the project INT/ 6/ 049, and was the starting of the actual Processing Laboratory of Radioesterilized Biological Tissues (LPTR), leaded by the Chilean Nuclear Energy Commission (CCHEN). This first organization is part of a number of entities compounding the Tissue Bank in Chile, organizations such as the Transplantation Promotion Corporation hospitals and the LPTR. The working system is carried out by means of the interaction between the hospitals and the laboratory. The medical professionals perform the procuring of tissues in the hospitals, then send them to the LPTR where they are processed and sterilized with ionizing radiation. The cycle ends up with the tissues return released to the hospitals, where they are used, and then the result information is sent to the LPTR as a form of feedback. Up to now, human skin has been processed (64 donors), amniotic membranes (35 donors) and pig skin (175 portions

  16. Tumor tissue slice cultures as a platform for analyzing tissue-penetration and biological activities of nanoparticles.

    Science.gov (United States)

    Merz, Lea; Höbel, Sabrina; Kallendrusch, Sonja; Ewe, Alexander; Bechmann, Ingo; Franke, Heike; Merz, Felicitas; Aigner, Achim

    2017-03-01

    The success of therapeutic nanoparticles depends, among others, on their ability to penetrate a tissue for actually reaching the target cells, and their efficient cellular uptake in the context of intact tissue and stroma. Various nanoparticle modifications have been implemented for altering physicochemical and biological properties. Their analysis, however, so far mainly relies on cell culture experiments which only poorly reflect the in vivo situation, or is based on in vivo experiments that are often complicated by whole-body pharmacokinetics and are rather tedious especially when analyzing larger nanoparticle sets. For the more precise analysis of nanoparticle properties at their desired site of action, efficient ex vivo systems closely mimicking in vivo tissue properties are needed. In this paper, we describe the setup of organotypic tumor tissue slice cultures for the analysis of tissue-penetrating properties and biological activities of nanoparticles. As a model system, we employ 350μm thick slice cultures from different tumor xenograft tissues, and analyze modified or non-modified polyethylenimine (PEI) complexes as well as their lipopolyplex derivatives for siRNA delivery. The described conditions for tissue slice preparation and culture ensure excellent tissue preservation for at least 14days, thus allowing for prolonged experimentation and analysis. When using fluorescently labeled siRNA for complex visualization, fluorescence microscopy of cryo-sectioned tissue slices reveals different degrees of nanoparticle tissue penetration, dependent on their surface charge. More importantly, the determination of siRNA-mediated knockdown efficacies of an endogenous target gene, the oncogenic survival factor Survivin, reveals the possibility to accurately assess biological nanoparticle activities in situ, i.e. in living cells in their original environment. Taken together, we establish tumor (xenograft) tissue slices for the accurate and facile ex vivo assessment of

  17. LASER BIOLOGY: Optomechanical tests of hydrated biological tissues subjected to laser shaping

    Science.gov (United States)

    Omel'chenko, A. I.; Sobol', E. N.

    2008-03-01

    The mechanical properties of a matrix are studied upon changing the size and shape of biological tissues during dehydration caused by weak laser-induced heating. The cartilage deformation, dehydration dynamics, and hydraulic conductivity are measured upon laser heating. The hydrated state and the shape of samples of separated fascias and cartilaginous tissues were controlled by using computer-aided processing of tissue images in polarised light.

  18. Optomechanical tests of hydrated biological tissues subjected to laser shaping

    International Nuclear Information System (INIS)

    Omel'chenko, A I; Sobol', E N

    2008-01-01

    The mechanical properties of a matrix are studied upon changing the size and shape of biological tissues during dehydration caused by weak laser-induced heating. The cartilage deformation, dehydration dynamics, and hydraulic conductivity are measured upon laser heating. The hydrated state and the shape of samples of separated fascias and cartilaginous tissues were controlled by using computer-aided processing of tissue images in polarised light. (laser biology)

  19. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    Singh, Rita

    2012-01-01

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  20. Propagation of stochastic electromagnetic vortex beams through the turbulent biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Meilan; Chen, Qi; Hua, Limin; Zhao, Daomu, E-mail: zhaodaomu@yahoo.com

    2014-01-10

    The general analytical expression of the stochastic electromagnetic vortex beams through turbulent biological tissues is derived based on the fractal model. The statistical properties, including the spectral density, the spectral degree of coherence and the spectral degree of polarization are investigated in detail. It can be found that the normalized spectral density of the stochastic electromagnetic vortex beams with higher topological charge is less influenced by turbulence than that with lower topological charge. In addition, the change of the degree of polarization versus propagation distance of the anisotropic vortex beams in biological tissues differs from that of the isotropic vortex beams. The findings might be useful in the investigation of the structures of biological tissues and operation of communication and sensing systems involving biological tissues turbulence channels.

  1. Mechanics of Biological Tissues and Biomaterials: Current Trends (editorial)

    OpenAIRE

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  2. A mechano-biological model of multi-tissue evolution in bone

    Science.gov (United States)

    Frame, Jamie; Rohan, Pierre-Yves; Corté, Laurent; Allena, Rachele

    2017-12-01

    Successfully simulating tissue evolution in bone is of significant importance in predicting various biological processes such as bone remodeling, fracture healing and osseointegration of implants. Each of these processes involves in different ways the permanent or transient formation of different tissue types, namely bone, cartilage and fibrous tissues. The tissue evolution in specific circumstances such as bone remodeling and fracturing healing is currently able to be modeled. Nevertheless, it remains challenging to predict which tissue types and organization can develop without any a priori assumptions. In particular, the role of mechano-biological coupling in this selective tissue evolution has not been clearly elucidated. In this work, a multi-tissue model has been created which simultaneously describes the evolution of bone, cartilage and fibrous tissues. The coupling of the biological and mechanical factors involved in tissue formation has been modeled by defining two different tissue states: an immature state corresponding to the early stages of tissue growth and representing cell clusters in a weakly neo-formed Extra Cellular Matrix (ECM), and a mature state corresponding to well-formed connective tissues. This has allowed for the cellular processes of migration, proliferation and apoptosis to be described simultaneously with the changing ECM properties through strain driven diffusion, growth, maturation and resorption terms. A series of finite element simulations were carried out on idealized cantilever bending geometries. Starting from a tissue composition replicating a mid-diaphysis section of a long bone, a steady-state tissue formation was reached over a statically loaded period of 10,000 h (60 weeks). The results demonstrated that bone formation occurred in regions which are optimally physiologically strained. In two additional 1000 h bending simulations both cartilaginous and fibrous tissues were shown to form under specific geometrical and loading

  3. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Ye-Rang Yun

    2010-01-01

    Full Text Available Fibroblast growth factors (FGFs that signal through FGF receptors (FGFRs regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.

  4. Biological augmentation and tissue engineering approaches in meniscus surgery.

    Science.gov (United States)

    Moran, Cathal J; Busilacchi, Alberto; Lee, Cassandra A; Athanasiou, Kyriacos A; Verdonk, Peter C

    2015-05-01

    The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and

  5. An Error Analysis of Structured Light Scanning of Biological Tissue

    DEFF Research Database (Denmark)

    Jensen, Sebastian Hoppe Nesgaard; Wilm, Jakob; Aanæs, Henrik

    2017-01-01

    This paper presents an error analysis and correction model for four structured light methods applied to three common types of biological tissue; skin, fat and muscle. Despite its many advantages, structured light is based on the assumption of direct reflection at the object surface only......, statistical linear model based on the scan geometry. As such, scans can be corrected without introducing any specially designed pattern strategy or hardware. We can effectively reduce the error in a structured light scanner applied to biological tissue by as much as factor of two or three........ This assumption is violated by most biological material e.g. human skin, which exhibits subsurface scattering. In this study, we find that in general, structured light scans of biological tissue deviate significantly from the ground truth. We show that a large portion of this error can be predicted with a simple...

  6. Quantitative imaging of single upconversion nanoparticles in biological tissue.

    Directory of Open Access Journals (Sweden)

    Annemarie Nadort

    Full Text Available The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs, enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (∼1 cm depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement.

  7. Sex matters: The effects of biological sex on adipose tissue biology and energy metabolism

    Directory of Open Access Journals (Sweden)

    Teresa G. Valencak

    2017-08-01

    Full Text Available Adipose tissue is a complex and multi-faceted organ. It responds dynamically to internal and external stimuli, depending on the developmental stage and activity of the organism. The most common functional subunits of adipose tissue, white and brown adipocytes, regulate and respond to endocrine processes, which then determine metabolic rate as well as adipose tissue functions. While the molecular aspects of white and brown adipose biology have become clearer in the recent past, much less is known about sex-specific differences in regulation and deposition of adipose tissue, and the specific role of the so-called pink adipocytes during lactation in females. This review summarises the current understanding of adipose tissue dynamics with a focus on sex-specific differences in adipose tissue energy metabolism and endocrine functions, focussing on mammalian model organisms as well as human-derived data. In females, pink adipocytes trans-differentiate during pregnancy from subcutaneous white adipocytes and are responsible for milk-secretion in mammary glands. Overlooking biological sex variation may ultimately hamper clinical treatments of many aspects of metabolic disorders. Keywords: Body fatness, Adipose tissue, Sex-specific differences, Adipokines, Adipocytes, Obesity, Energy metabolism

  8. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. The necessity of a theory of biology for tissue engineering: metabolism-repair systems.

    Science.gov (United States)

    Ganguli, Suman; Hunt, C Anthony

    2004-01-01

    Since there is no widely accepted global theory of biology, tissue engineering and bioengineering lack a theoretical understanding of the systems being engineered. By default, tissue engineering operates with a "reductionist" theoretical approach, inherited from traditional engineering of non-living materials. Long term, that approach is inadequate, since it ignores essential aspects of biology. Metabolism-repair systems are a theoretical framework which explicitly represents two "functional" aspects of living organisms: self-repair and self-replication. Since repair and replication are central to tissue engineering, we advance metabolism-repair systems as a potential theoretical framework for tissue engineering. We present an overview of the framework, and indicate directions to pursue for extending it to the context of tissue engineering. We focus on biological networks, both metabolic and cellular, as one such direction. The construction of these networks, in turn, depends on biological protocols. Together these concepts may help point the way to a global theory of biology appropriate for tissue engineering.

  10. Generalized Beer-Lambert model for near-infrared light propagation in thick biological tissues

    Science.gov (United States)

    Bhatt, Manish; Ayyalasomayajula, Kalyan R.; Yalavarthy, Phaneendra K.

    2016-07-01

    The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modified the Beer-Lambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concentrations for NIR spectroscopic data analysis. Even though MBLL is effective in terms of providing qualitative comparison, it suffers from its applicability across tissue types and tissue dimensions. In this work, we introduce Lambert-W function-based modeling for light propagation in biological tissues, which is a generalized version of the Beer-Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coefficients μ0 and η. We validated our model against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. We included numerous human and animal tissues to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is first of its kind in providing accurate modeling of NIR light propagation in biological tissues.

  11. Method for increasing nuclear magnetic resonance signals in living biological tissue

    International Nuclear Information System (INIS)

    Krongrad, A.

    1995-01-01

    A method of enhancing a magnetic resonance comprising the steps of administering a quantity of a selected magnetic isotope to a living biological tissue at a concentration greater than the naturally occurring concentration of such isotope and detecting magnetic resonance signal from the administered magnetic isotope in the living biological tissue. (author)

  12. Thermal Conductivity Measurement of Anisotropic Biological Tissue In Vitro

    Science.gov (United States)

    Yue, Kai; Cheng, Liang; Yang, Lina; Jin, Bitao; Zhang, Xinxin

    2017-06-01

    The accurate determination of the thermal conductivity of biological tissues has implications on the success of cryosurgical/hyperthermia treatments. In light of the evident anisotropy in some biological tissues, a new modified stepwise transient method was proposed to simultaneously measure the transverse and longitudinal thermal conductivities of anisotropic biological tissues. The physical and mathematical models were established, and the analytical solution was derived. Sensitivity analysis and experimental simulation were performed to determine the feasibility and measurement accuracy of simultaneously measuring the transverse and longitudinal thermal conductivities. The experimental system was set up, and its measurement accuracy was verified by measuring the thermal conductivity of a reference standard material. The thermal conductivities of the pork tenderloin and bovine muscles were measured using the traditional 1D and proposed methods, respectively, at different temperatures. Results indicate that the thermal conductivities of the bovine muscle are lower than those of the pork tenderloin muscle, whereas the bovine muscle was determined to exhibit stronger anisotropy than the pork tenderloin muscle. Moreover, the longitudinal thermal conductivity is larger than the transverse thermal conductivity for the two tissues and all thermal conductivities increase with the increase in temperature. Compared with the traditional 1D method, results obtained by the proposed method are slightly higher although the relative deviation is below 5 %.

  13. Carotenoids in Adipose Tissue Biology and Obesity.

    Science.gov (United States)

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.

  14. Observation of dehydration dynamics in biological tissues with terahertz digital holography [Invited].

    Science.gov (United States)

    Guo, Lihan; Wang, Xinke; Han, Peng; Sun, Wenfeng; Feng, Shengfei; Ye, Jiasheng; Zhang, Yan

    2017-05-01

    A terahertz (THz) digital holographic imaging system is utilized to investigate natural dehydration processes in three types of biological tissues, including cattle, mutton, and pork. An image reconstruction algorithm is applied to remove the diffraction influence of THz waves and further improve clarity of THz images. From THz images of different biological specimens, distinctive water content as well as dehydration features of adipose and muscle tissues are precisely distinguished. By analyzing THz absorption spectra of these samples, temporal evolution characteristics of the absorbances for adipose and muscle tissues are described and compared in detail. Discrepancies between water retention ability of different animal tissues are also discussed. The imaging technique provides a valuable measurement platform for biological sensing.

  15. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  16. Optical sensor for heat conduction measurement in biological tissue

    International Nuclear Information System (INIS)

    Gutierrez-Arroyo, A; Sanchez-Perez, C; Aleman-Garcia, N

    2013-01-01

    This paper presents the design of a heat flux sensor using an optical fiber system to measure heat conduction in biological tissues. This optoelectronic device is based on the photothermal beam deflection of a laser beam travelling in an acrylic slab this deflection is measured with a fiber optic angle sensor. We measure heat conduction in biological samples with high repeatability and sensitivity enough to detect differences in tissues from three chicken organs. This technique could provide important information of vital organ function as well as the detect modifications due to degenerative diseases or physical damage caused by medications or therapies.

  17. Simulation on scattering features of biological tissue based on generated refractive-index model

    International Nuclear Information System (INIS)

    Wang Baoyong; Ding Zhihua

    2011-01-01

    Important information on morphology of biological tissue can be deduced from elastic scattering spectra, and their analyses are based on the known refractive-index model of tissue. In this paper, a new numerical refractive-index model is put forward, and its scattering properties are intensively studied. Spectral decomposition [1] is a widely used method to generate random medium in geology, but it is never used in biology. Biological tissue is different from geology in the sense of random medium. Autocorrelation function describe almost all of features in geology, but biological tissue is not as random as geology, its structure is regular in the sense of fractal geometry [2] , and fractal dimension can be used to describe its regularity under random. Firstly scattering theories of this fractal media are reviewed. Secondly the detailed generation process of refractive-index is presented. Finally the scattering features are simulated in FDTD (Finite Difference Time Domain) Solutions software. From the simulation results, we find that autocorrelation length and fractal dimension controls scattering feature of biological tissue.

  18. Knowledge Enrichment Analysis for Human Tissue- Specific Genes Uncover New Biological Insights

    Directory of Open Access Journals (Sweden)

    Gong Xiu-Jun

    2012-06-01

    Full Text Available The expression and regulation of genes in different tissues are fundamental questions to be answered in biology. Knowledge enrichment analysis for tissue specific (TS and housekeeping (HK genes may help identify their roles in biological process or diseases and gain new biological insights.In this paper, we performed the knowledge enrichment analysis for 17,343 genes in 84 human tissues using Gene Set Enrichment Analysis (GSEA and Hypergeometric Analysis (HA against three biological ontologies: Gene Ontology (GO, KEGG pathways and Disease Ontology (DO respectively.The analyses results demonstrated that the functions of most gene groups are consistent with their tissue origins. Meanwhile three interesting new associations for HK genes and the skeletal muscle tissuegenes are found. Firstly, Hypergeometric analysis against KEGG database for HK genes disclosed that three disease terms (Parkinson’s disease, Huntington’s disease, Alzheimer’s disease are intensively enriched.Secondly, Hypergeometric analysis against the KEGG database for Skeletal Muscle tissue genes shows that two cardiac diseases of “Hypertrophic cardiomyopathy (HCM” and “Arrhythmogenic right ventricular cardiomyopathy (ARVC” are heavily enriched, which are also considered as no relationship with skeletal functions.Thirdly, “Prostate cancer” is intensively enriched in Hypergeometric analysis against the disease ontology (DO for the Skeletal Muscle tissue genes, which is a much unexpected phenomenon.

  19. Adipose Tissue Biology: An Update Review

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  20. Changes in diffusion properties of biological tissues associated with mechanical strain

    International Nuclear Information System (INIS)

    Tanaka, Kenichiro; Imae, T.; Mima, Kazuo; Sekino, Masaki; Ohsaki, Hiroyuki; Ueno, Shogo

    2007-01-01

    Mechanical strain in biological tissues causes a change in the diffusion properties of water molecules. This paper proposes a method of estimating mechanical strain in biological tissues using diffusion magnetic resonance imaging (MRI). Measurements were carried out on uncompressed and compressed chicken skeletal muscles. A theoretical model of the diffusion of water molecules in muscle fibers was derived based on Tanner's equation. Diameter of the muscle fibers was estimated by fitting the model equation to the measured signals. Changes in the mean diffusivity (MD), the fractional anisotropy (FA), and diameter of the muscle fiber did not have any statistical significance. The intracellular diffusion coefficient (D int ) was changed by mechanical strain (p<.05). This method has potential applications in the quantitative evaluation of strain in biological tissues, a though it poses several technical challenges. (author)

  1. Mechanically driven interface propagation in biological tissues

    International Nuclear Information System (INIS)

    Ranft, Jonas; Joanny, Jean-François; Aliee, Maryam; Jülicher, Frank; Prost, Jacques

    2014-01-01

    Many biological tissues consist of more than one cell type. We study the dynamics of an interface between two different cell populations as it occurs during the growth of a tumor in a healthy host tissue. Recent work suggests that the rates of cell division and cell death are under mechanical control, characterized by a homeostatic pressure. The difference in the homeostatic pressures of two cell types drives the propagation of the interface, corresponding to the invasion of one cell type into the other. We derive a front propagation equation that takes into account the coupling between cell number balance and tissue mechanics. We show that in addition to pulled fronts, pushed-front solutions occur as a result of convection driven by mechanics. (paper)

  2. Celiac disease or positive tissue transglutaminase antibodies in patients undergoing renal biopsies.

    Science.gov (United States)

    Nurmi, Rakel; Metso, Martti; Pörsti, Ilkka; Niemelä, Onni; Huhtala, Heini; Mustonen, Jukka; Kaukinen, Katri; Mäkelä, Satu

    2018-01-01

    An association between celiac disease and renal diseases has been suggested, but the results are controversial. To investigate the prevalence of celiac disease autoimmunity among individuals undergoing renal biopsies and to evaluate whether co-existent celiac autoimmunity influences the clinical outcome of the renal disease. The prevalence of celiac autoimmunity (previous diagnosis of celiac disease or positive tissue transglutaminase antibodies) was determined in 827 consecutive patients undergoing kidney biopsies due to clinical indications. Up to 15 years' follow-up data on kidney function and co-morbidities were obtained. Celiac autoimmunity was found in 45 (5.4%) patients. Among the IgA nephropathy patients, 8.2% of had celiac autoimmunity. At the time of kidney biopsy and after a median follow-up of 5 to 6 years, renal function measured by estimated glomerular filtration rate (eGFR) was inferior in IgA nephropathy patients with celiac autoimmunity compared to those without it (P=0.048 and P=0.022, respectively). The prevalence of celiac autoimmunity seems to be high in patients undergoing renal biopsies, especially in patients with IgA nephropathy. Such autoimmunity may be associated with worse renal function in IgA nephropathy. Hence the co-existence of celiac disease should be taken into consideration when treating patients with renal diseases. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  3. Correlation between the dielectric properties and biological activities of human ex vivo hepatic tissue

    International Nuclear Information System (INIS)

    Wang, Hang; You, Fusheng; Fu, Feng; Dong, Xiuzhen; Shi, Xuetao; He, Yong; Yang, Min; Yan, Qingguo

    2015-01-01

    Dielectric properties are vital biophysical features of biological tissues, and biological activity is an index to ascertain the active state of tissues. This study investigated the potential correlation between the dielectric properties and biological activities of human hepatic tissue with prolonged ex vivo time through correlation and regression analyses. The dielectric properties of 26 cases of normal human hepatic tissue at 10 Hz to 100 MHz were measured from 15 min after isolation to 24 h at 37 °C with 90% humidity. Cell morphologies, including nucleus area (NA) and alteration rate of intercellular area (ICAR), were analyzed as indicators of biological activities. Conductivity, complex resistivity, and NA exhibited opposing changes 1 h after isolation. Relative permittivity and ex vivo time were not closely correlated (p > 0.05). The dielectric properties measured at low frequencies (i.e. <1 MHz) were more sensitive than those measured at high frequencies in reflecting the biological activity of ex vivo tissue. Highly significant correlations were found between conductivity, resistivity and the ex vivo time (p < 0.05) as well as conductivity and the cell morphology (p < 0.05). The findings indicated that establishing the correlation between the dielectric properties and biological activities of human hepatic tissue is of great significance for promoting the role of dielectric properties in biological science, particularly in human biology. (paper)

  4. Plasma tissue inhibitor of metalloproteinases-1 as a biological marker?

    DEFF Research Database (Denmark)

    Lomholt, Anne F.; Frederiksen, Camilla B.; Christensen, Ib J.

    2007-01-01

    Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during...

  5. Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue

    International Nuclear Information System (INIS)

    Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda

    2016-01-01

    For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue. - Highlights: • Spatial coherence radius of a spherical wave propagating in a turbulent biological tissue is developed. • Expressions of average intensity and beam spreading for GSM, LGSM and BGSM beams in a turbulent biological tissue are derived. • The contrast for the three partially coherent model beams is shown in numerical simulations. • The results are useful for any applications involved light beam propagation through tissues.

  6. Statistical Modeling of Radiative Transfer and Transient Characteristics for Multilayer Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2014-01-01

    Full Text Available The Monte-Carlo method [1] already long ago proved itself as a powerful and universal tool for mathematical modelling in various areas of science and engineering. Researchers often choose this method when it is difficult to find a solution by other ways (or impossible at all, e.g. because of sophisticated analytical dependences, area of modelling or boundary conditions. Certainly, this necessarily statistical and flexible method requires significant computation time, but a continuously increasing computation capability makes it more and more attractive for a choice in specific situation.One of the promising areas to use the method of statistical modelling is description of light propagation in the turbid (scattering media. A high motivation for development of this approach is widely used lasers in biomedicine [3]. Besides, owing to its flexibility, the Monte-Carlo method is also of importance in theoretical researches, in particular, to estimate a degree of adequacy of the offered approximation methods for solving a radiative transfer equation [4].It is known that key parameters of turbid media are an absorption coefficient (characterizes absorption probability of a photon per unit of path length and a scattering coefficient (characterizes scattering probability of a photon per unit of path length. The ratio of each of the coefficients to their sum (extinction defines a probability of "death" or "survival" of a photon, respectively, in interaction with lenses. Generally, in the scattering medium there is a non-coherent radiation component, which in turbid media such as biological tissues, already at the insignificant depth becomes prevailing over the coherent one (residual of the incident laser beam [5].The author used the Monte-Carlo method to simulate optical radiation propagation in the multilayer biological tissues with their optical characteristics corresponding to the skin and subcutaneous tissues. Such a biological tissue is the absorbing

  7. See-Through Technology for Biological Tissue: 3-Dimensional Visualization of Macromolecules

    Directory of Open Access Journals (Sweden)

    Eunsoo Lee

    2016-05-01

    Full Text Available Tissue clearing technology is currently one of the fastest growing fields in biomedical sciences. Tissue clearing techniques have become a powerful approach to understand further the structural information of intact biological tissues. Moreover, technological improvements in tissue clearing and optics allowed the visualization of neural network in the whole brain tissue with subcellular resolution. Here, we described an overview of various tissue-clearing techniques, with focus on the tissue-hydrogel mediated clearing methods, and discussed the main advantages and limitations of transparent tissue for clinical diagnosis.

  8. Characterization of the angular memory effect of scattered light in biological tissues.

    Science.gov (United States)

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

  9. Application of Biological Tissue Grafts for Burns in Zambia

    International Nuclear Information System (INIS)

    Chishimba, Gershom

    2001-01-01

    The author discusses the advances made in the use of Biological Tissue Grafts for the treatment of burns.The paper outlines research activities and clinical trials done in the use of gamma radiation sterilised Amnion membranes and Pig skin grafts in the zambian Heath Care System for treatment of Burns.Ethical issues of Tissue Banking are also discussed in relation to religious and cultural beliefs and Good Manufacturing Practices

  10. Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy

    Science.gov (United States)

    Musio, Roberta; Sciacovelli, Oronzo

    2001-12-01

    The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

  11. Nonlinear Rheology in a Model Biological Tissue

    Science.gov (United States)

    Matoz-Fernandez, D. A.; Agoritsas, Elisabeth; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten

    2017-04-01

    The rheological response of dense active matter is a topic of fundamental importance for many processes in nature such as the mechanics of biological tissues. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with an increasing shear rate. To rationalize this nonlinear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are, respectively, generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.

  12. Sterilization of biological tissues with ionizing radiation

    International Nuclear Information System (INIS)

    Reyes F, M.L.; Martinez P, M.E.; Luna Z, D.

    1997-01-01

    On June 1994, the National Institute of Nuclear Research (ININ) and the South Central Hospital for High Specialty of PEMEX (HCSAE) began a joint work with the finality to obtain radio sterilized amniotic membranes for to be used as cover (biological bandage) in burnt patients. Subsequently the Chemistry Faculty of UNAM and the National Institute of Cardiology began to collaborate this last with interest on cardiac valves for graft. Starting from 1997, the International Atomic Energy Agency (IAEA) supports this project (MEX/7/008) whose main objective is to set up the basis to establish in Mexico a Radio sterilized Tissue Bank (amniotic membranes, skin, bones, tendons, cardiac valves, etc.) to be used with therapeutic purposes (grafts). The IAEA support has consisted in the equipment acquisition which is fundamental for the Tissue Bank performance such as an experimental irradiator, laminar flow bell, lyophilizer, vacuum sealer and special knives for tissues. Also visits to Mexico of experts have been authorized with the aim of advising to the personnel which participate in the project and scientific visits of this personnel to another tissue banks (Sri Lanka and Argentine). The establishment in Mexico of a Tissue bank will be a great benefit because it will have availability of distinct tissues for grafts and it will reduce the synthetic materials importation which is very expensive. (Author)

  13. Comparison of ballistic impact effects between biological tissue and gelatin.

    Science.gov (United States)

    Jin, Yongxi; Mai, Ruimin; Wu, Cheng; Han, Ruiguo; Li, Bingcang

    2018-02-01

    Gelatin is commonly used in ballistic testing as substitute for biological tissue. Comparison of ballistic impact effects produced in the gelatin and living tissue is lacking. The work in this paper was aimed to compare the typical ballistic impact effects (penetration trajectory, energy transfer, temporary cavity) caused by 4.8mm steel ball penetrating the 60kg porcine hind limbs and 10wt% gelatin. The impact event in the biological tissue was recorded by high speed flash X-ray machine at different delay time, while the event in the gelatin continuously recorded by high speed video was compared to that in the biological tissue. The collected results clearly displayed that the ballistic impact effects in the muscle and gelatin were similar for the steel ball test; as for instance, the projectile trajectory in the two targets was basically similar, the process of energy transfer was highly coincident, and the expansion of temporary cavity followed the same pattern. This study fully demonstrated that choosing gelatin as muscle simulant was reasonable. However, the maximum temporary cavity diameter in the gelatin was a little larger than that in the muscle, and the expansion period of temporary cavity was longer in the gelatin. Additionally, the temporary cavity collapse process in the two targets followed different patterns, and the collapse period in the gelatin was two times as long as that in the muscle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Three-dimensional micro-scale strain mapping in living biological soft tissues.

    Science.gov (United States)

    Moo, Eng Kuan; Sibole, Scott C; Han, Sang Kuy; Herzog, Walter

    2018-04-01

    Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro

  15. Estimation of anisotropy factor spectrum for determination of optical properties in biological tissues

    Science.gov (United States)

    Iwamoto, Misako; Honda, Norihiro; Ishii, Katsunori; Awazu, Kunio

    2017-07-01

    Spectroscopic setup for measuring anisotropy factor g spectrum of biological tissues was constructed. g of chicken liver tissue was lower than chicken breast tissue. High absorption of hemoglobin can have an influence on g spectrum.

  16. A stress driven growth model for soft tissue considering biological availability

    International Nuclear Information System (INIS)

    Oller, S; Bellomo, F J; Nallim, L G; Armero, F

    2010-01-01

    Some of the key factors that regulate growth and remodeling of tissues are fundamentally mechanical. However, it is important to take into account the role of bioavailability together with the stresses and strains in the processes of normal or pathological growth. In this sense, the model presented in this work is oriented to describe the growth of soft biological tissue under 'stress driven growth' and depending on the biological availability of the organism. The general theoretical framework is given by a kinematic formulation in large strain combined with the thermodynamic basis of open systems. The formulation uses a multiplicative decomposition of deformation gradient, splitting it in a growth part and visco-elastic part. The strains due to growth are incompatible and are controlled by an unbalanced stresses related to a homeostatic state. Growth implies a volume change with an increase of mass maintaining constant the density. One of the most interesting features of the proposed model is the generation of new tissue taking into account the contribution of mass to the system controlled through biological availability. Because soft biological tissues in general have a hierarchical structure with several components (usually a soft matrix reinforced with collagen fibers), the developed growth model is suitable for the characterization of the growth of each component. This allows considering a different behavior for each of them in the context of a generalized theory of mixtures. Finally, we illustrate the response of the model in case of growth and atrophy with an application example.

  17. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pyshnyi, Michael Ph. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)], E-mail: kuznetsov_oa@yahoo.com; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)

    2009-05-15

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  18. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    International Nuclear Information System (INIS)

    Pyshnyi, Michael Ph.; Kuznetsov, Oleg A.; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A.

    2009-01-01

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  19. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    Science.gov (United States)

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A system for the obtention and analysis of diffuse reflection spectra from biological tissue

    International Nuclear Information System (INIS)

    La Cadena, A. de; La Rosa, J. de; Stolik, S.

    2012-01-01

    The diffuse reflection spectroscopy is a technique with is possible to study biological tissue. In the field of the biomedical applications is useful for diagnostic purposes, since is possible to analyze biological tissue in a non invasive way. also, can be used with therapeutical purposes, for example in photodynamic therapy or laser surgery because with this technique it can be determined the biological effects produced by these treatments. In this paper is shown the development of a system to obtain and analyze diffuse reflection spectra of biological tissues, using a LED as a light source, that emits light between 400-700nm. The system has an interface for the regulation of the emittance of the LED. For diffuse reflectance spectra analysis, we use an HR4000CG-UV-NIR spectrometer. (Author)

  1. TissueCypher™: A systems biology approach to anatomic pathology

    Directory of Open Access Journals (Sweden)

    Jeffrey W Prichard

    2015-01-01

    Full Text Available Background: Current histologic methods for diagnosis are limited by intra- and inter-observer variability. Immunohistochemistry (IHC methods are frequently used to assess biomarkers to aid diagnoses, however, IHC staining is variable and nonlinear and the manual interpretation is subjective. Furthermore, the biomarkers assessed clinically are typically biomarkers of epithelial cell processes. Tumors and premalignant tissues are not composed only of epithelial cells but are interacting systems of multiple cell types, including various stromal cell types that are involved in cancer development. The complex network of the tissue system highlights the need for a systems biology approach to anatomic pathology, in which quantification of system processes is combined with informatics tools to produce actionable scores to aid clinical decision-making. Aims: Here, we describe a quantitative, multiplexed biomarker imaging approach termed TissueCypher™ that applies systems biology to anatomic pathology. Applications of TissueCypher™ in understanding the tissue system of Barrett's esophagus (BE and the potential use as an adjunctive tool in the diagnosis of BE are described. Patients and Methods: The TissueCypher™ Image Analysis Platform was used to assess 14 epithelial and stromal biomarkers with known diagnostic significance in BE in a set of BE biopsies with nondysplastic BE with reactive atypia (RA, n = 22 and Barrett's with high-grade dysplasia (HGD, n = 17. Biomarker and morphology features were extracted and evaluated in the confirmed BE HGD cases versus the nondysplastic BE cases with RA. Results: Multiple image analysis features derived from epithelial and stromal biomarkers, including immune biomarkers and morphology, showed significant differences between HGD and RA. Conclusions: The assessment of epithelial cell abnormalities combined with an assessment of cellular changes in the lamina propria may serve as an adjunct to conventional

  2. The modified Glasgow prognostic score in patients undergoing surgery for bone and soft tissue sarcoma.

    Science.gov (United States)

    Morhij, Rossel; Mahendra, Ashish; Jane, Mike; McMillan, Donald C

    2017-05-01

    The prognostic significance of markers of the systemic inflammatory response in patients with soft tissue and bone sarcomas remains unclear. Therefore, the present study aimed to compare the prognostic value of markers of the systemic inflammatory response in patients undergoing surgery for primary soft tissue and bone sarcoma. Patients who underwent resection of primary soft tissue/bone sarcoma between 2008 and 2012 and had pre-operative measurements of the systemic inflammatory response [C-reactive protein, albumin, white cell, neutrophil, lymphocyte and platelet counts, and the combination of C-reactive protein and albumin (mGPS)] were included in the study (n = 111). The majority of the patients were ≤50 years old (84%), were female (63%), had soft tissue sarcoma (62%), and had tumours >10 cm (52%), mostly of high grade (85%). The median follow-up of survivors was 50 months (range 34-78); 24 (21%) developed local recurrence, 35 (31%) developed distant metastases and 30 (30%) died of their cancer. On univariate analysis, tumour size (P sarcoma. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Ovarian tissue cryopreservation in girls undergoing haematopoietic stem cell transplant: experience of a single centre.

    Science.gov (United States)

    Biasin, E; Salvagno, F; Berger, M; Nesi, F; Quarello, P; Vassallo, E; Evangelista, F; Marchino, G L; Revelli, A; Benedetto, C; Fagioli, F

    2015-09-01

    Fertility after childhood haemopoietic stem cell transplant (HSCT) is a major concern. Conditioning regimens before HSCT present a high risk (>80%) of ovarian failure. Since 2000, we have proposed cryopreservation of ovarian tissue to female patients undergoing HSCT at our centre, to preserve future fertility. After clinical and haematological evaluation, the patients underwent ovarian tissue collection by laparoscopy. The tissue was analysed by histologic examination to detect any tumour contamination and then frozen following the slow freezing procedure and cryopreserved in liquid nitrogen. From August 2000 to September 2013, 47 patients planned to receive HSCT, underwent ovarian tissue cryopreservation. The median age at diagnosis was 11.1 years and at the time of procedure it was 13 years, respectively. Twenty-four patients were not pubertal at the time of storage, whereas 23 patients had already experienced menarche. The median time between laparoscopy and HSCT was 25 days. Twenty-six out of 28 evaluable patients (93%) developed hypergonadotropic hypogonadism at a median time of 23.3 months after HSCT. One patient required autologous orthotopic transplantation that resulted in one live birth. Results show a very high rate of iatrogenic hypergonadotropic hypogonadism, highlighting the need for fertility preservation in these patients.

  4. LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues

    Science.gov (United States)

    Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.

    2002-11-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.

  5. The magnitude of linear dichroism of biological tissues as a result of cancer changes

    Science.gov (United States)

    Bojchuk, T. M.; Yermolenko, S. B.; Fedonyuk, L. Y.; Petryshen, O. I.; Guminetsky, S. G.; Prydij, O. G.

    2011-09-01

    The results of studies of linear dichroism values of different types of biological tissues (human prostate, esophageal epithelial human muscle tissue in rats) both healthy and infected tumor at different stages of development are shown here. The significant differences in magnitude of linear dichroism and its spectral dependence in the spectral range λ = 330 - 750 nm both among the objects of study, and between biotissues: healthy (or affected by benign tumors) and cancer patients are established. It is researched that in all cases in biological tissues (prostate gland, esophagus, human muscle tissue in rats) with cancer the linear dichroism arises, the value of which depends on the type of tissue and time of the tumor process. As for healthy tissues linear dichroism is absent, the results may have diagnostic value for detecting and assessing the degree of development of cancer.

  6. Wavelet analysis of biological tissue's Mueller-matrix images

    Science.gov (United States)

    Tomka, Yu. Ya.

    2008-05-01

    The interrelations between statistics of the 1st-4th orders of the ensemble of Mueller-matrix images and geometric structure of birefringent architectonic nets of different morphological structure have been analyzed. The sensitivity of asymmetry and excess of statistic distributions of matrix elements Cik to changing of orientation structure of optically anisotropic protein fibrils of physiologically normal and pathologically changed biological tissues architectonics has been shown.

  7. MicroRNAs in the Tumor Biology of Soft Tissue Sarcomas

    NARCIS (Netherlands)

    C.M.M. Gits (Caroline)

    2013-01-01

    markdownabstract__Abstract__ Soft tissue sarcomas represent a rare, heterogeneous group of mesenchymal tumors. In sarcomas, histological classification, prediction of clinical behaviour and prognosis, and targeted treatment is often a challenge. A better understanding of the biology of soft

  8. Tumor-Initiating Label-Retaining Cancer Cells in Human Gastrointestinal Cancers Undergo Asymmetric Cell Division

    Science.gov (United States)

    Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak

    2012-01-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  9. Magnetoacoustic Imaging of Electrical Conductivity of Biological Tissues at a Spatial Resolution Better than 2 mm

    OpenAIRE

    Hu, Gang; He, Bin

    2011-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an emerging approach for noninvasively imaging electrical impedance properties of biological tissues. The MAT-MI imaging system measures ultrasound waves generated by the Lorentz force, having been induced by magnetic stimulation, which is related to the electrical conductivity distribution in tissue samples. MAT-MI promises to provide fine spatial resolution for biological tissue imaging as compared to ultrasound resolution. In t...

  10. Of mice and women: a comparative tissue biology perspective of breast stem cells and differentiation.

    Science.gov (United States)

    Dontu, Gabriela; Ince, Tan A

    2015-06-01

    Tissue based research requires a background in human and veterinary pathology, developmental biology, anatomy, as well as molecular and cellular biology. This type of comparative tissue biology (CTB) expertise is necessary to tackle some of the conceptual challenges in human breast stem cell research. It is our opinion that the scarcity of CTB expertise contributed to some erroneous interpretations in tissue based research, some of which are reviewed here in the context of breast stem cells. In this article we examine the dissimilarities between mouse and human mammary tissue and suggest how these may impact stem cell studies. In addition, we consider the differences between breast ducts vs. lobules and clarify how these affect the interpretation of results in stem cell research. Lastly, we introduce a new elaboration of normal epithelial cell types in human breast and discuss how this provides a clinically useful basis for breast cancer classification.

  11. How preconditioning affects the measurement of poro-viscoelastic mechanical properties in biological tissues

    NARCIS (Netherlands)

    Hosseini, S.M.; Wilson, W.; Ito, K.; Donkelaar, van C.C.

    2014-01-01

    It is known that initial loading curves of soft biological tissues are substantially different from subsequent loadings. The later loading curves are generally used for assessing the mechanical properties of a tissue, and the first loading cycles, referred to as preconditioning, are omitted.

  12. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo

    2015-01-01

    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Spatial transcriptomics: paving the way for tissue-level systems biology.

    Science.gov (United States)

    Moor, Andreas E; Itzkovitz, Shalev

    2017-08-01

    The tissues in our bodies are complex systems composed of diverse cell types that often interact in highly structured repeating anatomical units. External gradients of morphogens, directional blood flow, as well as the secretion and absorption of materials by cells generate distinct microenvironments at different tissue coordinates. Such spatial heterogeneity enables optimized function through division of labor among cells. Unraveling the design principles that govern this spatial division of labor requires techniques to quantify the entire transcriptomes of cells while accounting for their spatial coordinates. In this review we describe how recent advances in spatial transcriptomics open the way for tissue-level systems biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biological Activity Alterations of Human Amniotic Membrane Pre and Post Irradiation Tissue Banking.

    Science.gov (United States)

    Nemr, Waleed; Bashandy, A S; Araby, Eman; Khamiss, O

    Innate immunity of Human Amniotic Membrane (HAM) and its highly active secretome that rich with various types of growth factors and anti-inflammatory substances proposed it as a promising material for many medical studies and applications. This study evaluate the biological activity of cultivated HAM pre and post tissue banking process in which freeze-dried HAM was sterilized by 25 KGray (kGy) dose of γ radiation. The HAM's antimicrobial activity, viability, growth of isolated human amniotic epithelial cells (HAECs), hematopoietic stimulation of co-cultivated murine bone marrow cells (mammalian model), scaffold efficiency for fish brain building up (non-mammalian model) and self re-epithelialization after trypsin denuding treatment were examined as supposed biological activity features. Native HAM revealed viability indications and was active to kill all tested microorganisms; 6 bacterial species (3 Gram-positive and 3 Gram-negative) and Candida albicans as a pathogenic fungus. Also, HAM activity promoted colony formation of murine hematopoietic cells, Tilapia nilotica brain fragment building-up and self re-epithelialization after trypsin treatment. In contrary, radiation-based tissue banking of HAM caused HAM cellular death and consequently lacked almost all of examined biological activity features. Viable HAM was featured with biological activity than fixed HAM prepared by irradiation tissue banking.

  15. Assessment of biological leaf tissue using biospeckle laser imaging technique

    Science.gov (United States)

    Ansari, M. Z.; Mujeeb, A.; Nirala, A. K.

    2018-06-01

    We report on the application of an optical imaging technique, the biospeckle laser, as a potential tool to assess biological and medicinal plant leaves. The biospeckle laser technique is a non-invasive and non-destructive optical technique used to investigate biological objects. Just after their removal from plants, the torn leaves were used for biospeckle laser imaging. Quantitative evaluation of the biospeckle data using the inertia moment (IM) of the time history speckle pattern, showed that the IM can be utilized to provide a biospeckle signature to the plant leaves. It showed that leaves from different plants can have their own characteristic IM values. We further investigated the infected regions of the leaves that display a relatively lower biospeckle activity than the healthy tissue. It was easy to discriminate between the infected and healthy regions of the leaf tissue. The biospeckle technique can successfully be implemented as a potential tool for the taxonomy of quality leaves. Furthermore, the technique can help boost the quality of ayurvedic medicines.

  16. Autologous Adipose-Derived Tissue Matrix Part I: Biologic Characteristics.

    Science.gov (United States)

    Schendel, Stephen A

    2017-10-01

    Autologous collagen is an ideal soft tissue filler and may serve as a matrix for stem cell implantation and growth. Procurement of autologous collagen has been limited, though, secondary to a sufficient source. Liposuction is a widely performed and could be a source of autologous collagen. The amount of collagen and its composition in liposuctioned fat remains unknown. The purpose of this research was to characterize an adipose-derived tissue-based product created using ultrasonic cavitation and cryo-grinding. This study evaluated the cellular and protein composition of the final product. Fat was obtained from individuals undergoing routine liposuction and was processed by a 2 step process to obtain only the connective tissue. The tissue was then evaluated by scanning electronic microscope, Western blot analysis, and flow cytometry. Liposuctioned fat was obtained from 10 individuals with an average of 298 mL per subject. After processing an average of 1 mL of collagen matrix was obtained from each 100 mL of fat. Significant viable cell markers were present in descending order for adipocytes > CD90+ > CD105+ > CD45+ > CD19+ > CD144+ > CD34+. Western blot analysis showed collagen type II, III, IV, and other proteins. Scanning electronic microscope study showed a regular pattern of cross-linked, helical collagen. Additionally, vital staing demonstrated that the cells were still viable after processing. Collagen and cells can be easily obtained from liposuctioned fat by ultrasonic separation without alteration of the overall cellular composition of the tissue. Implantation results in new collagen and cellular growth. Collagen matrix with viable cells for autologous use can be obtained from liposuctioned fat and may provide long term results. 5. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  17. Numerical study of water diffusion in biological tissues using an improved finite difference method

    International Nuclear Information System (INIS)

    Xu Junzhong; Does, Mark D; Gore, John C

    2007-01-01

    An improved finite difference (FD) method has been developed in order to calculate the behaviour of the nuclear magnetic resonance signal variations caused by water diffusion in biological tissues more accurately and efficiently. The algorithm converts the conventional image-based finite difference method into a convenient matrix-based approach and includes a revised periodic boundary condition which eliminates the edge effects caused by artificial boundaries in conventional FD methods. Simulated results for some modelled tissues are consistent with analytical solutions for commonly used diffusion-weighted pulse sequences, whereas the improved FD method shows improved efficiency and accuracy. A tightly coupled parallel computing approach was also developed to implement the FD methods to enable large-scale simulations of realistic biological tissues. The potential applications of the improved FD method for understanding diffusion in tissues are also discussed. (note)

  18. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

    Science.gov (United States)

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin

    2014-05-01

    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network

  19. A multiscale analysis of nutrient transport and biological tissue growth in vitro

    KAUST Repository

    O'Dea, R. D.

    2014-10-15

    © The authors 2014. In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterized by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport, and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection-reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally relevant microstructural information to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.

  20. A high-resolution optical imaging system for obtaining the serial transverse section images of biologic tissue

    Science.gov (United States)

    Wu, Li; Zhang, Bin; Wu, Ping; Liu, Qian; Gong, Hui

    2007-05-01

    A high-resolution optical imaging system was designed and developed to obtain the serial transverse section images of the biologic tissue, such as the mouse brain, in which new knife-edge imaging technology, high-speed and high-sensitive line-scan CCD and linear air bearing stages were adopted and incorporated with an OLYMPUS microscope. The section images on the tip of the knife-edge were synchronously captured by the reflection imaging in the microscope while cutting the biologic tissue. The biologic tissue can be sectioned at interval of 250 nm with the same resolution of the transverse section images obtained in x and y plane. And the cutting job can be automatically finished based on the control program wrote specially in advance, so we save the mass labor of the registration of the vast images data. In addition, by using this system a larger sample can be cut than conventional ultramicrotome so as to avoid the loss of the tissue structure information because of splitting the tissue sample to meet the size request of the ultramicrotome.

  1. Photodisruption in biological tissues using femtosecond laser pulses

    Science.gov (United States)

    Shen, Nan

    Transparent materials do not ordinarily absorb visible or near-infrared light. However, the intensity of a tightly focused femtosecond laser pulse is great enough that nonlinear absorption of the laser energy takes place in transparent materials, leading to optical breakdown and permanent material modification. Because the absorption process is nonlinear, absorption and material modification are confined to the extremely small focal volume. Optical breakdown in transparent or semi-transparent biological tissues depends on intensity rather than energy. As a result, focused femtosecond pulses induce optical breakdown with significantly less pulse energy than is required with longer pulses. The use of femtosecond pulses therefore minimizes the amount of energy deposited into the targeted region of the sample, minimizing mechanical and thermal effects that lead to collateral damage in adjacent tissues. We demonstrate photodisruptive surgery in animal skin tissue and single cells using 100-fs laser pulses. In mouse skin, we create surface incisions and subsurface cavities with much less collateral damage to the surrounding tissue than is produced with picosecond pulses. Using pulses with only a few nanojoules of energy obtained from an unamplified femtosecond oscillator, we destroy single mitochondria in live cells without affecting cell viability, providing insights into the structure of the mitochondrial network. An apparatus is constructed to perform subcellular surgery and multiphoton 3D laser scanning imaging simultaneously with a single laser and objective lens.

  2. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  3. Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization

    International Nuclear Information System (INIS)

    Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu; Flaud, Patrice

    2014-01-01

    Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305–11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications. (paper)

  4. Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization

    Science.gov (United States)

    Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Flaud, Patrice; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-11-01

    Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305-11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications.

  5. Connective tissue graft as a biological barrier for guided tissue regeneration in intrabony defects: a histological study in dogs.

    Science.gov (United States)

    Ribeiro, Fernando Salimon; Pontes, Ana Emília Farias; Zuza, Elizangela Partata; da Silva, Vanessa Camila; Lia, Raphael Carlos Comelli; Marcantonio Junior, Elcio

    2015-06-01

    The use of the autogenous periosteal graft as biological barrier has been proposed for periodontal regeneration. The aim of this study was to evaluate the histometric findings of the subepithelial connective tissue graft as barrier in intrabony defects compared to a bioabsorbable membrane. Three-walled intrabony defects were created surgically in the mesial aspect of the right and left maxillary canines in five healthy mongrel dogs. The defects were chronified, and two types of barriers were randomly carried out for guided tissue regeneration in a split-mouth design: the test group with a subepithelial connective tissue graft and the control group with a bioabsorbable membrane. The specimens were processed for histometric analyses of the epithelium (E), connective tissue (CT), newly formed cementum (NC), new bone (NB), and total newly formed tissues (NFT). The test side showed smaller mean of NC (3.6 ± 1.2), NB (2.1 ± 0.7), and NFT (7.7 ± 0.8) than the control group (NC 7.3 ± 0.5; NB 5.3 ± 1.3; NFT 10.1 ± 2.2; P  0.05) and CT (test 2.5 ± 1.1; control 2.0 ± 0.5; P > 0.05) between groups. The bioabsorbable membrane was more effective in maintaining the space for periodontal regeneration than periosteal connective graft when used as barrier. The bioabsorbable membrane showed more favorable regenerative results in intrabony defects in dogs than the subepithelial connective tissue graft as biological barrier.

  6. A multiscale analysis of nutrient transport and biological tissue growth in vitro

    KAUST Repository

    O'Dea, R. D.; Nelson, M. R.; El Haj, A. J.; Waters, S. L.; Byrne, H. M.

    2014-01-01

    © The authors 2014. In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence

  7. Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy.

    Science.gov (United States)

    Yamaguchi, Shintaro; Yoshino, Jun

    2017-05-01

    Nicotinamide adenine dinucleotide (NAD + ) biosynthetic pathway, mediated by nicotinamide phosphoribosyltransferase (NAMPT), a key NAD + biosynthetic enzyme, plays a pivotal role in controlling many biological processes, such as metabolism, circadian rhythm, inflammation, and aging. Over the past decade, NAMPT-mediated NAD + biosynthesis, together with its key downstream mediator, namely the NAD + -dependent protein deacetylase SIRT1, has been demonstrated to regulate glucose and lipid metabolism in a tissue-dependent manner. These discoveries have provided novel mechanistic and therapeutic insights into obesity and its metabolic complications, such as insulin resistance, an important risk factor for developing type 2 diabetes and cardiovascular disease. This review will focus on the importance of adipose tissue NAMPT-mediated NAD + biosynthesis and SIRT1 in the pathophysiology of obesity and insulin resistance. We will also critically explore translational and clinical aspects of adipose tissue NAD + biology. © 2017 WILEY Periodicals, Inc.

  8. Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography.

    Science.gov (United States)

    Peña, Adrián F; Doronin, Alexander; Tuchin, Valery V; Meglinski, Igor

    2014-08-01

    The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the surface of the tissue samples, the double correlation OCT approach is much more sensitive to the changes associated with the tissues' electro-kinetic response. We also found that topical application of the optical clearing agent reduces the tissues' electro-kinetic response and is cooling the tissue, thus reducing the temperature induced by the electric current by a few degrees. We anticipate that dcOCT approach can find a new application in bioelectrical impedance analysis and monitoring of the electric properties of biological tissues, including the resistivity of high water content tissues and its variations.

  9. Motility-driven glass and jamming transitions in biological tissues

    Science.gov (United States)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2017-01-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi (SPV) model that simultaneously captures polarized cell motility and multi-body cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solid-like state to a fluid-like state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum Soft Glassy Rheology model precisely captures this transition in the limit of small persistence times, and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with Epithelial-to-Mesenchymal transition in these tissues. PMID:28966874

  10. Three-Dimensional Microstructure of Biological Tissues during Freezing and Thawing

    Science.gov (United States)

    Ishiguro, Hiroshi; Horimizu, Takashi; Kataori, Akinobu; Kajigaya, Hiroshi

    Three-dimensional behavior of ice crystals and cells during the freezing and thawing of biological tissues was investigated microscopically in real time by using a confocal laser scanning microscope(CLSM) and a fluorescent dye, acridine orange (AO). Fresh tender meat (2nd pectoral muscles) of chicken was stained with the AO in physiological saline to distinguish ice crystals and cells by their different colors, and then frozen and thawed under two different thermal protocols: a) slow-cooling and rapid-warming and b) rapid-cooling and rapid-warming. The CLSM noninvasively produced optical tomograms of the tissues to clarify the pattern of freezing, morphology of ice crystals in the tissues, and the interaction between ice crystals and cells. Also, the tissues were morphologically investigated by pathological means after the freezing and thawing. Typical freezing pattern during the slow-cooling was extracellular-freezing, and those during the rapid-cooling were extracellular-freezing and intracellular freezing with a lot of fine ice crystals in the cells. Cracks caused by the extracellular and intracellular ice crystals remained in the muscle tissues after the thawing. The results obtained by using the CLSM/dye method were consistent with pathologically morphological changes in the tissues through freezing and thawing.

  11. Generation of radicals in hard biological tissues under the action of laser radiation

    Science.gov (United States)

    Sviridov, Alexander P.; Bagratashvili, Victor N.; Sobol, Emil N.; Omelchenko, Alexander I.; Lunina, Elena V.; Zhitnev, Yurii N.; Markaryan, Galina L.; Lunin, Valerii V.

    2002-07-01

    The formation of radicals upon UV and IR laser irradiation of some biological tissues and their components was studied by the EPR technique. The radical decay kinetics in body tissue specimens after their irradiation with UV light were described by various models. By the spin trapping technique, it was shown that radicals were not produced during IR laser irradiation of cartilaginous tissue. A change in optical absorption spectra and the dynamics of optical density of cartilaginous tissue, fish scale, and a collagen film under exposure to laser radiation in an air, oxygen, and nitrogen atmosphere was studied.

  12. Modularity in developmental biology and artificial organs: a missing concept in tissue engineering.

    Science.gov (United States)

    Lenas, Petros; Luyten, Frank P; Doblare, Manuel; Nicodemou-Lena, Eleni; Lanzara, Andreina Elena

    2011-06-01

    Tissue engineering is reviving itself, adopting the concept of biomimetics of in vivo tissue development. A basic concept of developmental biology is the modularity of the tissue architecture according to which intermediates in tissue development constitute semiautonomous entities. Both engineering and nature have chosen the modular architecture to optimize the product or organism development and evolution. Bioartificial tissues do not have a modular architecture. On the contrary, artificial organs of modular architecture have been already developed in the field of artificial organs. Therefore the conceptual support of tissue engineering by the field of artificial organs becomes critical in its new endeavor of recapitulating in vitro the in vivo tissue development. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Coalescent models for developmental biology and the spatio-temporal dynamics of growing tissues.

    Science.gov (United States)

    Smadbeck, Patrick; Stumpf, Michael P H

    2016-04-01

    Development is a process that needs to be tightly coordinated in both space and time. Cell tracking and lineage tracing have become important experimental techniques in developmental biology and allow us to map the fate of cells and their progeny. A generic feature of developing and homeostatic tissues that these analyses have revealed is that relatively few cells give rise to the bulk of the cells in a tissue; the lineages of most cells come to an end quickly. Computational and theoretical biologists/physicists have, in response, developed a range of modelling approaches, most notably agent-based modelling. These models seem to capture features observed in experiments, but can also become computationally expensive. Here, we develop complementary genealogical models of tissue development that trace the ancestry of cells in a tissue back to their most recent common ancestors. We show that with both bounded and unbounded growth simple, but universal scaling relationships allow us to connect coalescent theory with the fractal growth models extensively used in developmental biology. Using our genealogical perspective, it is possible to study bulk statistical properties of the processes that give rise to tissues of cells, without the need for large-scale simulations. © 2016 The Authors.

  14. Modification of the biologic dose to normal tissue by daily fraction

    Energy Technology Data Exchange (ETDEWEB)

    Wollin, M; Kagan, A R [Southern California Permanente Medical Group, Los Angeles Calif. (USA). Dep. of Radiation Therapy

    1976-12-01

    A method to predict normal tissue injury is proposed that includes high daily doses and unusual times successfully by calculating a new value called BIR (Biologic Index of Reaction). BIR and NSD were calculated for various normal tissue reactions. With the aid of statistical correlation techniques it is found that the BIR model is better than the NSD model in predicting radiation myelopathy and vocal edema and as good as NSD IN PREDICTING RIB FRACTURE/ Neither model predicts pericardial effusion. In no case were the results of BIR inferior to those of NSD.

  15. A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling

    KAUST Repository

    Bera, Tushar Kanti

    2016-12-05

    Under an alternating electrical signal, biological tissues produce a complex electrical bioimpedance that is a function of tissue composition and applied signal frequencies. By studying the bioimpedance spectra of biological tissues over a wide range of frequencies, we can noninvasively probe the physiological properties of these tissues to detect possible pathological conditions. Electrical impedance spectroscopy (EIS) can provide the spectra that are needed to calculate impedance parameters within a wide range of frequencies. Before impedance parameters can be calculated and tissue information extracted, impedance spectra should be processed and analyzed by a dedicated software program. National Instruments (NI) Inc. offers LabVIEW, a fast, portable, robust, user-friendly platform for designing dataanalyzing software. We developed a LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) to analyze the electrical impedance spectra for tissue characterization in medical, biomedical and biological applications. Here, we test, calibrate and evaluate the performance of LEBISDI on the impedance data obtained from simulation studies as well as the practical EIS experimentations conducted on electronic circuit element combinations and the biological tissue samples. We analyze the Nyquist plots obtained from the EIS measurements and compare the equivalent circuit parameters calculated by LEBISDI with the corresponding original circuit parameters to assess the accuracy of the program developed. Calibration studies show that LEBISDI not only interpreted the simulated and circuitelement data accurately, but also successfully interpreted tissues impedance data and estimated the capacitive and resistive components produced by the compositions biological cells. Finally, LEBISDI efficiently calculated and analyzed variation in bioimpedance parameters of different tissue compositions, health and temperatures. LEBISDI can also be used for human tissue

  16. A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling

    KAUST Repository

    Bera, Tushar Kanti; Jampana, Nagaraju; Lubineau, Gilles

    2016-01-01

    Under an alternating electrical signal, biological tissues produce a complex electrical bioimpedance that is a function of tissue composition and applied signal frequencies. By studying the bioimpedance spectra of biological tissues over a wide range of frequencies, we can noninvasively probe the physiological properties of these tissues to detect possible pathological conditions. Electrical impedance spectroscopy (EIS) can provide the spectra that are needed to calculate impedance parameters within a wide range of frequencies. Before impedance parameters can be calculated and tissue information extracted, impedance spectra should be processed and analyzed by a dedicated software program. National Instruments (NI) Inc. offers LabVIEW, a fast, portable, robust, user-friendly platform for designing dataanalyzing software. We developed a LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) to analyze the electrical impedance spectra for tissue characterization in medical, biomedical and biological applications. Here, we test, calibrate and evaluate the performance of LEBISDI on the impedance data obtained from simulation studies as well as the practical EIS experimentations conducted on electronic circuit element combinations and the biological tissue samples. We analyze the Nyquist plots obtained from the EIS measurements and compare the equivalent circuit parameters calculated by LEBISDI with the corresponding original circuit parameters to assess the accuracy of the program developed. Calibration studies show that LEBISDI not only interpreted the simulated and circuitelement data accurately, but also successfully interpreted tissues impedance data and estimated the capacitive and resistive components produced by the compositions biological cells. Finally, LEBISDI efficiently calculated and analyzed variation in bioimpedance parameters of different tissue compositions, health and temperatures. LEBISDI can also be used for human tissue

  17. PIXE characterization of tissues surrounding metallic prostheses coated with biological glasses

    International Nuclear Information System (INIS)

    Barbotteau, Y.; Irigaray, J.L.; Moretto, Ph.

    2004-01-01

    Biological glasses can be used as coatings for metallic prostheses in order to prevent corrosion. According to their composition, these glasses have different properties. We studied, in vivo, two glasses referred to as BVA and BVH. They are used as coatings of Ti6Al4V metallic implant. BVA glass disappears after 3 months of implantation and is replaced by bone. Prostheses initially coated by this glass have a larger osseous contact perimeter compared to the uncoated prostheses. This ensures a better anchoring of the implant and limits the micro-motions which cause wear debris. BVH glass keeps a constant composition during implantation and it is used like a layer which isolates metal implant from biological environment. In order to characterize the bony environment surrounding implants, we have used PIXE and RBS methods. This paper shows results of the behavior of bony tissue under micro-beam, the quality tests of new bone which replaces the BVA glass coating and the evaluation of corrosion effects. Titanium release in bony tissues begins when the metal surface of the prosthesis is exposed to biological fluids. After a few months of implantation, the titanium contamination is stabilized and remains localized within the first tens of micrometers of surrounding bone

  18. Effects of microwave heating on the thermal states of biological tissues

    African Journals Online (AJOL)

    Effects of microwave heating on the thermal states of biological tissues. Nabil TM El-dabe, Mona AA Mohamed, Asma F El-Sayed. Abstract. A mathematical analysis of microwave heating equations in one-dimensional multi-layer model has been discussed. Maxwell's equations and transient bioheat transfer equation were ...

  19. Analysis of biological tissues by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Bonkova, I.; Bujdos, M.; Miglierini, M.

    2016-01-01

    The aim of this work was to analyze of biological tissues by Moessbauer spectroscopy in terms of demonstration of the magnetic properties of iron and its structural positions. Lyophilized samples of the human brain, human and equine spleen were used for the analysis. The samples were measured with 57 Fe Moessbauer spectroscopy in transmission arrangement at room temperature (∼ 300 K) and at a temperature of liquid helium (4.2 K). The resulting Moessbauer spectra measured at room temperature had doublet character, which confirms the presence of non-magnetic particles. On the contrary, low-temperature measurements are a superposition of several sextet and one duplicate. Hyperfine parameters obtained are similar to those reported hematite, ferrihydrite or magnetite. (authors)

  20. A model of engineering materials inspired by biological tissues

    Directory of Open Access Journals (Sweden)

    Holeček M.

    2009-12-01

    Full Text Available The perfect ability of living tissues to control and adapt their mechanical properties to varying external conditions may be an inspiration for designing engineering materials. An interesting example is the smooth muscle tissue since this "material" is able to change its global mechanical properties considerably by a subtle mechanism within individual muscle cells. Multi-scale continuum models may be useful in designing essentially simpler engineering materials having similar properties. As an illustration we present the model of an incompressible material whose microscopic structure is formed by flexible, soft but incompressible balls connected mutually by linear springs. This simple model, however, shows a nontrivial nonlinear behavior caused by the incompressibility of balls and is very sensitive on some microscopic parameters. It may elucidate the way by which "small" changes in biopolymer networks within individual muscular cells may control the stiffness of the biological tissue, which outlines a way of designing similar engineering materials. The 'balls and springs' material presents also prestress-induced stiffening and allows elucidating a contribution of extracellular fluids into the tissue’s viscous properties.

  1. Quantifying the refractive index dispersion of a pigmented biological tissue using Jamin-Lebedeff interference microscopy

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Leertouwer, Hein L.; Wilts, Bodo D.

    Jamin-Lebedeff polarizing interference microscopy is a classical method for determining the refractive index and thickness of transparent tissues. Here, we extend the application of this method to pigmented, absorbing biological tissues, based on a theoretical derivation using Jones calculus. This

  2. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    Science.gov (United States)

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  3. Non-Directional Radiation Spread Modeling and Non-Invasive Estimating the Radiation Scattering and Absorption Parameters in Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2015-01-01

    Full Text Available The article dwells on a development of new non-invasive measurement methods of optical parameters of biological tissues, which are responsible for the scattering and absorption of monochromatic radiation. It is known from the theory of radiation transfer [1] that for strongly scattering media, to which many biological tissues pertain, such parameters are parameters of diffusion approximation, as well as a scattering coefficient and an anisotropy parameter.Based on statistical modeling the paper examines a spread of non-directional radiation from a Lambert light beam with the natural polarization that illuminates a surface of the biological tissue. Statistical modeling is based on the Monte Carlo method [2]. Thus, to have the correct energy coefficient values of Fresnel reflection and transmission in simulation of such radiation by Monte Carlo method the author uses his finding that is a function of the statistical representation for the incidence of model photons [3]. The paper describes in detail a principle of fixing the power transmitted by the non-directional radiation into biological tissue [3], and the equations of a power balance in this case.Further, the paper describes the diffusion approximation of a radiation transfer theory, often used in simulation of radiation propagation in strongly scattering media and shows its application in case of fixing the power transmitted into the tissue. Thus, to represent an uneven power distribution is used an approximating expression in conditions of fixing a total input power. The paper reveals behavior peculiarities of solution on the surface of the biological tissue inside and outside of the incident beam. It is shown that the solution in the region outside of the incident beam (especially far away from it, essentially, depends neither on the particular power distribution across the surface, being a part of the tissue, nor on the refractive index of the biological tissue. It is determined only by

  4. The use of biological isodoses ''IsobioGy 2'' for evaluation of tumour and normal tissues response for fractionated irradiation

    International Nuclear Information System (INIS)

    Maciejewski, B.; Skolyszewski, J.; Majewski, S.; Lobodziec, W.; Jedynak, T.; Slosarek, K.

    1988-01-01

    Divergences between physical and biological dose distributions were analysed using linear quadratic model. It was found that small variations in physical dose distribution and differences in normal tissue sensitivity for change in dose per fraction, expressed by a α/β value, can cause a high difference between physical and biological doses. This difference significantly increases when one field instead of two fields is daily treated. If there is no enough separation between treated fields, the biological dose may dramatically increase. The use of biological ''isobioGy 2'' isodoses, instead of physical isodoses, can provide an important information on biological effect in tumour or normal tissue and may diminish the risk of giving too high dose to normal tissue and too low dose to the tumour. 6 figs., 13 refs. (author)

  5. Plasma tissue inhibitor of metalloproteinases-1 as a biological marker? Pre-analytical considerations

    DEFF Research Database (Denmark)

    Lomholt, Anne Fog; Frederiksen, Camilla; Christensen, Ib Jarle

    2007-01-01

    Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during ...... collection and storage. The aim of this study was to evaluate the influence of platelet TIMP-1 contamination on plasma TIMP-1 levels in healthy volunteers....

  6. Expediting the transition from replacement medicine to tissue engineering.

    Science.gov (United States)

    Coury, Arthur J

    2016-06-01

    In this article, an expansive interpretation of "Tissue Engineering" is proposed which is in congruence with classical and recent published definitions. I further simplify the definition of tissue engineering as: "Exerting systematic control of the body's cells, matrices and fluids." As a consequence, many medical therapies not commonly considered tissue engineering are placed in this category because of their effect on the body's responses. While the progress of tissue engineering strategies is inexorable and generally positive, it has been subject to setbacks as have many important medical therapies. Medical practice is currently undergoing a transition on several fronts (academics, start-up companies, going concerns) from the era of "replacement medicine" where body parts and functions are replaced by mechanical, electrical or chemical therapies to the era of tissue engineering where health is restored by regeneration generation or limitation of the body's tissues and functions by exploiting our expanding knowledge of the body's biological processes to produce natural, healthy outcomes.

  7. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Saravanan, U [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Arthi, N [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Bhuvaneshwar, G S [Department of Engineering Design, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Kumary, T V [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Rajan, S [Madras Medical Mission, Institute of Cardio-Vascular Diseases, Mogappair, Chennai, Tamil Nadu 600037 (India); Verma, R S, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India)

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44{sup +}, αSMA{sup +}, Vimentin{sup +} and CD105{sup −} human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. - Highlights: • We report detailed biological and mechanical investigations of a Bio-Hybrid scaffold. • Optimized polymer thickness yielded desired biological and mechanical properties. • Bio-Hybrid scaffold revealed hVIC proliferation with dense ECM deposition. • Biaxial testing indicated that Bio-Hybrid scaffolds are mechanically stronger than native valves. • Bio-Hybrid scaffold is a promising material for autologous valve tissue engineering.

  8. Development of an algorithm for quantifying extremity biological tissue

    International Nuclear Information System (INIS)

    Pavan, Ana L.M.; Miranda, Jose R.A.; Pina, Diana R. de

    2013-01-01

    The computerized radiology (CR) has become the most widely used device for image acquisition and production, since its introduction in the 80s. The detection and early diagnosis, obtained via CR, are important for the successful treatment of diseases such as arthritis, metabolic bone diseases, tumors, infections and fractures. However, the standards used for optimization of these images are based on international protocols. Therefore, it is necessary to compose radiographic techniques for CR system that provides a secure medical diagnosis, with doses as low as reasonably achievable. To this end, the aim of this work is to develop a quantifier algorithm of tissue, allowing the construction of a homogeneous end used phantom to compose such techniques. It was developed a database of computed tomography images of hand and wrist of adult patients. Using the Matlab ® software, was developed a computational algorithm able to quantify the average thickness of soft tissue and bones present in the anatomical region under study, as well as the corresponding thickness in simulators materials (aluminium and lucite). This was possible through the application of mask and Gaussian removal technique of histograms. As a result, was obtained an average thickness of soft tissue of 18,97 mm and bone tissue of 6,15 mm, and their equivalents in materials simulators of 23,87 mm of acrylic and 1,07mm of aluminum. The results obtained agreed with the medium thickness of biological tissues of a patient's hand pattern, enabling the construction of an homogeneous phantom

  9. Acoustic pressure amplitude thresholds for rectified diffusion in gaseous microbubbles in biological tissue

    DEFF Research Database (Denmark)

    Lewin, Peter A.; Jensen, Leif Bjørnø

    1981-01-01

    One of the mechanisms often suggested for the biological action of ultrasonic beams irradiating human tissues is concerned with the presence in the tissues of minute gaseous bubbles which may, under the influence of the ultrasonic field be stimulated to grow to a size at which resonance or collap...... of calculations for typical (transient) exposure conditions from pulse-echo equipment are presented, indicating that rectified diffusion and stable cavitation are improbable phenomena in these circumstances....

  10. Intra-Tissue Pressure Measurement in Ex Vivo Liver Undergoing Laser Ablation with Fiber-Optic Fabry-Perot Probe

    Directory of Open Access Journals (Sweden)

    Daniele Tosi

    2016-04-01

    Full Text Available We report the first-ever intra-tissue pressure measurement performed during 1064 nm laser ablation (LA of an ex vivo porcine liver. Pressure detection has been performed with a biocompatible, all-glass, temperature-insensitive Extrinsic Fabry-Perot Interferometry (EFPI miniature probe; the proposed methodology mimics in-vivo treatment. Four experiments have been performed, positioning the probe at different positions from the laser applicator tip (from 0.5 mm to 5 mm. Pressure levels increase during ablation time, and decrease with distance from applicator tip: the recorded peak parenchymal pressure levels range from 1.9 kPa to 71.6 kPa. Different pressure evolutions have been recorded, as pressure rises earlier in proximity of the tip. The present study is the first investigation of parenchymal pressure detection in liver undergoing LA: the successful detection of intra-tissue pressure may be a key asset for improving LA, as pressure levels have been correlated to scattered recurrences of tumors by different studies.

  11. Assessment of the biological variation of plasma tissue inhibitor of metalloproteinases-1

    DEFF Research Database (Denmark)

    Frederiksen, C.B.; Lomholt, Anne Fog; Lottenburger, Tine

    2008-01-01

    BACKGROUND: Tissue inhibitor of metalloproteinases-1 (TIMP-1) measurements in plasma may be useful for the early detection and prognosis of colorectal cancer (CRC). Data on analytical performance and normal intra- and interindividual biological variation are required in order to interpret...... the utility of TIMP-1 in CRC. The aim of this study was to establish the biological and analytical variation of plasma TIMP-1 in volunteers. MATERIAL AND METHODS: Three separate studies were undertaken. 1: Plasma was collected from 23 volunteers 6 times within a 3-week period, first in September 2004 (round...

  12. A tensile machine with a novel optical load cell for soft biological tissues application.

    Science.gov (United States)

    Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah

    2014-11-01

    The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.

  13. Neutron interactions with biological tissue. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of neutrons with tissue through the ejected secondary charged particles. The authors used theoretical calculations whose input includes neutron cross section data; range, stopping power, ion yield, and straggling information; and geometrical properties. Outputs are initial and slowing-down spectra of charged particles, kerma factors, average values of quality factors, microdosimetric spectra, and integral microdosimetric parameters such as bar y F , bar y D , y * . Since it has become apparent that nanometer site sizes are also relevant to radiobiological effects, the calculations of event size spectra and their parameters were extended to these smaller diameters. This information is basic to radiological physics, radiation biology, radiation protection of workers, and standards for neutron dose measurement

  14. Elements determination of clinical relevance in biological tissues Dmdmdx/J dystrophic mice strains investigated by NAA

    International Nuclear Information System (INIS)

    Metairon, Sabrina

    2012-01-01

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMD mdx /J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmd mdx /J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  15. Implementation of biological tissue Mueller matrix for polarization-sensitive optical coherence tomography based on LabVIEW

    Science.gov (United States)

    Lin, Yongping; Zhang, Xiyang; He, Youwu; Cai, Jianyong; Li, Hui

    2018-02-01

    The Jones matrix and the Mueller matrix are main tools to study polarization devices. The Mueller matrix can also be used for biological tissue research to get complete tissue properties, while the commercial optical coherence tomography system does not give relevant analysis function. Based on the LabVIEW, a near real time display method of Mueller matrix image of biological tissue is developed and it gives the corresponding phase retardant image simultaneously. A quarter-wave plate was placed at 45 in the sample arm. Experimental results of the two orthogonal channels show that the phase retardance based on incident light vector fixed mode and the Mueller matrix based on incident light vector dynamic mode can provide an effective analysis method of the existing system.

  16. Biophotonics in diagnosis and modeling of tissue pathologies

    Science.gov (United States)

    Serafetinides, A. A.; Makropoulou, M.; Drakaki, E.

    2008-12-01

    Biophotonics techniques are applied to several fields in medicine and biology. The laser based techniques, such as the laser induced fluorescence (LIF) spectroscopy and the optical coherence tomography (OCT), are of particular importance in dermatology, where the laser radiation could be directly applied to the tissue target (e.g. skin). In addition, OCT resolves architectural tissue properties that might be useful as tumour discrimination parameters for skin as well as for ocular non-invasive visualization. Skin and ocular tissues are complex multilayered and inhomogeneous organs with spatially varying optical properties. This fact complicates the quantitative analysis of the fluorescence and/or light scattering spectra, even from the same tissue sample. To overcome this problem, mathematical simulation is applied for the investigation of the human tissue optical properties, in the visible/infrared range of the spectrum, resulting in a better discrimination of several tissue pathologies. In this work, we present i) a general view on biophotonics applications in diagnosis of human diseases, ii) some specific results on laser spectroscopy techniques, as LIF measurements, applied in arterial and skin pathologies and iii) some experimental and theoretical results on ocular OCT measurements. Regarding the LIF spectroscopy, we examined the autofluorescence properties of several human skin samples, excised from humans undergoing biopsy examination. A nitrogen laser was used as an excitation source, emitting at 337 nm (ultraviolet excitation). Histopathology examination of the samples was also performed, after the laser spectroscopy measurements and the results from the spectroscopic and medical analysis were compared, to differentiate malignancies, e.g. basal cell carcinoma tissue (BCC), from normal skin tissue. Regarding the OCT technique, we correlated human data, obtained from patients undergoing OCT examination, with Monte Carlo simulated cornea and retina tissues

  17. Determination of scattering coefficient considering wavelength and absorption dependence of anisotropy factor measured by polarized beam for biological tissues

    Science.gov (United States)

    Fukutomi, D.; Ishii, K.; Awazu, K.

    2015-12-01

    Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.

  18. Oxidative Stress and Adipocyte Biology: Focus on the Role of AGEs

    Directory of Open Access Journals (Sweden)

    Florence Boyer

    2015-01-01

    Full Text Available Diabetes is a major health problem that is usually associated with obesity, together with hyperglycemia and increased advanced glycation endproducts (AGEs formation. Elevated AGEs elicit severe downstream consequences via their binding to receptors of AGEs (RAGE. This includes oxidative stress and oxidative modifications of biological compounds together with heightened inflammation. For example, albumin (major circulating protein undergoes increased glycoxidation with diabetes and may represent an important biomarker for monitoring diabetic pathophysiology. Despite the central role of adipose tissue in many physiologic/pathologic processes, recognition of the effects of greater AGEs formation in this tissue is quite recent within the obesity/diabetes context. This review provides a brief background of AGEs formation and adipose tissue biology and thereafter discusses the impact of AGEs-adipocyte interactions in pathology progression. Novel data are included showing how AGEs (especially glycated albumin may be involved in hyperglycemia-induced oxidative damage in adipocytes and its potential links to diabetes progression.

  19. Ionizing radiation for sterilization of medical products and biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S K; Raghevendrarao, M K [Bhabha Atomic Research Centre, Bombay (India). Library and Technical Information Section

    1975-10-01

    The article reviews the deliberations of the International Symposium on Ionizing Radiation for Sterilization of Medical Products and Biological Tissues which was held during 9-13 December 1974 under the auspices of the IAEA at the Bhabha Atomic Research Centre, Bombay. 42 papers were presented in the following broad subject areas: (1) Microbiological Control aspects of radiation sterilization, (2) Dosimetry aspects of radiation sterilization practices, (3) Effects of sterilizing radiation dose on the constituents of medical products, (4) Application of radiation sterilization of medical products of biological origin, (5) Technological aspects of radiation sterilization facilities, (6) Radiation sterilization of pharmaceutical substances, (7) Reports on current status of radiation sterilization of medical products in IAEA member states and (8) Working group discussion on the revision of the IAEA recommended code of practice for radiation sterilization of medical products.

  20. Low power digital communication in implantable devices using volume conduction of biological tissues.

    Science.gov (United States)

    Yao, Ning; Lee, Heung-No; Sclabassi, R J; Sun, Mingui

    2006-01-01

    This work investigates the data communication problem of implantable devices using fundamental theories in communications. We utilize the volume conduction property of biological tissues to establish a digital communications link. Data obtained through animal experiments are used to analyze the time and frequency response of the volume conduction channel as well as to characterize the biological signals and noises present in the system. A low power bandwidth efficient channel-coded modulation scheme is proposed to conserve battery power and reduce the health risks associated.

  1. Measurement of {alpha} particle energy loss in biological tissue below 2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN), Pavia (Italy); Bortolussi, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN), Pavia (Italy)], E-mail: silva.bortolussi@pv.infn.it; Bruschi, P.; Portella, C. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN), Pavia (Italy)

    2009-09-01

    The energy loss of {alpha} particles crossing biological tissue at energies between 0.8 and 2.2 MeV has been measured. This energy range is very important for boron neutron capture therapy, based on the {sup 10}B(n,{alpha}){sup 7}Li reaction, which emits {alpha} particles with energies of 1.78 and 1.47 MeV. One of the methods used for the measurement of the boron concentration in tissue is based on the deconvolution of the {alpha} spectra obtained from neutron irradiation of thin (70 {mu}m) tissue samples. For this technique, a knowledge of the behaviour of the energy loss of the particles in the irradiated tissue is of critical importance. In particular, the curve of the residual energy as a function of the distance travelled in the tissue must be known. In this paper, the results of an experiment carried out with an {sup 241}Am source and a series of cryostatic sections of rat-lung tissue are presented. The experimental measurements are compared with the results of Monte Carlo calculations performed with the MCNPX code.

  2. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Xu Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao Weixin; Yoo, James J; Atala, Anthony

    2013-01-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  3. Biological effects of combined resveratrol and vitamin D3 on ovarian tissue.

    Science.gov (United States)

    Uberti, Francesca; Morsanuto, Vera; Aprile, Silvio; Ghirlanda, Sabrina; Stoppa, Ian; Cochis, Andrea; Grosa, Giorgio; Rimondini, Lia; Molinari, Claudio

    2017-09-15

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural antioxidant polyphenol able to exert a wide range of biological effect on several tissues. Despite its important beneficial properties, it has a low water solubility, which limits its therapeutic applications in humans. Resveratrol also acts as a phytoestrogen that modulates estrogen receptor (ER)-mediated transcription. In addition, it has been shown that ovarian tissues benefit greatly from vitamin D3, which exerts its beneficial effects through VDR receptors. The aim was to evaluate the cooperative effects of resveratrol combined with vitamin D3 on ovarian cells and tissues and some other organs as well. Moreover, the modulation of specific intracellular pathways involving ER and VDR receptors has been studied. The experiments were performed both in vitro and in vivo, to analyze cell viability, radical oxygen species production, signal transductions through Western Blot, and resveratrol quantification by HPLC. Cell viability, radical oxygen species production, and intracellular pathways have been studied on CHO-K1 cells. Also, the relative mechanism activated following oral intake in female Wistar rats as animal model was investigated, evaluating bioavailability, biodistribution and signal transduction in heart, kidney, liver and ovarian tissues. Both in in vitro and in vivo experiments, resveratrol exerts more evident effects when administered in combination with vitD in ovarian cells, showing a common biphasic cooperative effect: The role of vitamin D3 in maintaining and supporting the biological activity of resveratrol has been clearly observed. Moreover, resveratrol plus vitamin D3 blood concentrations showed a biphasic absorption rate. Such results could be used as a fundamental data for the development of new therapies for gynecological conditions, such as hot-flashes.

  4. Generation of monoclonal antibodies and development of an immunofluorometric assay for the detection of CUZD1 in tissues and biological fluids.

    Science.gov (United States)

    Farkona, Sofia; Soosaipillai, Antoninus; Filippou, Panagiota; Korbakis, Dimitrios; Serra, Stefano; Rückert, Felix; Diamandis, Eleftherios P; Blasutig, Ivan M

    2017-12-01

    CUB and zona pellucida-like domain-containing protein 1 (CUZD1) was identified as a pancreas-specific protein and was proposed as a candidate biomarker for pancreatic related disorders. CUZD1 protein levels in tissues and biological fluids have not been extensively examined. The purpose of the present study was to generate specific antibodies targeting CUZD1 to assess CUZD1 expression within tissues and biological fluids. Mouse monoclonal antibodies against CUZD1 were generated and used to perform immunohistochemical analyses and to develop a sensitive and specific enzyme-linked immunosorbent assay (ELISA). CUZD1 protein expression was assessed in various human tissue extracts and biological fluids and in gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant protein. Immunohistochemical staining of CUZD1 in pancreatic tissue showed that the protein is localized to the acinar cells and the lumen of the acini. Western blot analysis detected the protein in pancreatic tissue extract and pancreatic juice. The newly developed ELISA measured CUZD1 in high levels in pancreas and in much lower but detectable levels in several other tissues. In the biological fluids tested, CUZD1 expression was detected exclusively in pancreatic juice. The analysis of gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant CUZD1 suggested that the protein exists in high molecular weight protein complexes. This study describes the development of tools targeting CUZD1 protein, its tissue expression pattern and levels in several biological fluids. These new tools will facilitate future investigations aiming to delineate the role of CUZD1 in physiology and pathobiology. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  5. Finding biological process modifications in cancer tissues by mining gene expression correlations

    Directory of Open Access Journals (Sweden)

    Storari Sergio

    2006-01-01

    Full Text Available Abstract Background Through the use of DNA microarrays it is now possible to obtain quantitative measurements of the expression of thousands of genes from a biological sample. This technology yields a global view of gene expression that can be used in several ways. Functional insight into expression profiles is routinely obtained by using Gene Ontology terms associated to the cellular genes. In this paper, we deal with functional data mining from expression profiles, proposing a novel approach that studies the correlations between genes and their relations to Gene Ontology (GO. By using this "functional correlations comparison" we explore all possible pairs of genes identifying the affected biological processes by analyzing in a pair-wise manner gene expression patterns and linking correlated pairs with Gene Ontology terms. Results We apply here this "functional correlations comparison" approach to identify the existing correlations in hepatocarcinoma (161 microarray experiments and to reveal functional differences between normal liver and cancer tissues. The number of well-correlated pairs in each GO term highlights several differences in genetic interactions between cancer and normal tissues. We performed a bootstrap analysis in order to compute false detection rates (FDR and confidence limits. Conclusion Experimental results show the main advantage of the applied method: it both picks up general and specific GO terms (in particular it shows a fine resolution in the specific GO terms. The results obtained by this novel method are highly coherent with the ones proposed by other cancer biology studies. But additionally they highlight the most specific and interesting GO terms helping the biologist to focus his/her studies on the most relevant biological processes.

  6. A multiscale description of growth and transport in biological tissues

    Directory of Open Access Journals (Sweden)

    Grillo A.

    2007-01-01

    Full Text Available We study a growing biological tissue as an open biphasic mixture with mass exchange between phases. The solid phase is identified with the matrix of a porous medium, while the fluid phase is comprised of water, together with all the dissolved chemical substances coexisting in the pore space. We assume that chemical substances evolve according to transport mechanisms determined by kinematical and constitutive relations, and we propose to consider growth as a process able to influence transport by continuously varying the thermo-mechanic state of the tissue. By focusing on the case of anisotropic growth, we show that such an influence occurs through a continuous rearrangement of the tissue material symmetries. In order to illustrate this interaction, we restrict ourselves to diffusion-dominated transport, and we assume that the time-scales associated with growth and the transport process of interest are largely separated. This allows for performing an asymptotic analysis of the "field equations" of the system. In this framework, we provide a formal solution of the transport equation in terms of its associated Green's function, and we show how the macroscopic concentration of a given chemical substance is "modulated" by anisotropic growth. .

  7. MODELLING OF RING-SHAPED ULTRASONIC WAVEGUIDES FOR TESTING OF MECHANICAL PROPERTIES AND THERAPEUTIC TREATMENT OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2011-01-01

    Full Text Available The article presents results of modelling of ring-shaped waveguide tool for ultrasonic treatment of biological materials, particularly malignant tumours, and testing of their mechanical properties. Harmonic analysis of forced flexural vibration of the waveguide using ANSYS software and APDL programming language was implemented for determination of waveguide geometric parameters providing its resonance for the given excitation frequency. The developed finite element model accounts for interaction between the waveguide and tumour tissue as well as initial prestressing of tissue radially compressed by the waveguide. Resonant curves of the waveguide in terms of its thickness and diameter are calculated and presented. Principle of application of the developed modeling technique for extraction of diagnostic data on mechanical properties of biological tissues is described.

  8. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    Science.gov (United States)

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-01-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.

  9. Hydrodynamic effects in laser cutting of biological tissue phantoms

    Science.gov (United States)

    Zhigarkov, V. S.; Yusupov, V. I.; Tsypina, S. I.; Bagratashvili, V. N.

    2017-11-01

    We study the thermal and transport processes that occur in the course of incision formation at the surface of a biological tissue phantom under the action of near-IR, moderate-power, continuous-wave laser radiation (λ = 1.94 μm) delivered by means of an optical fibre with an absorbing coating on its exit face. It is shown that in addition to the thermal effect, the laser-induced hydrodynamic effects caused by the explosive boiling of the interstitial water make a large contribution to the phantom destruction mechanism. These effects lead to the tissue rupture accompanied by the ejection of part of the fragmented substance from the site of laser impact and the formation of highly porous structure near the incision surface. We have found that the depth, the width and the relief of the laser incision wall in the case of using the optical fibre moving with a constant velocity, depend on the fibre tilt angle with respect to the phantom surface, as well as the direction of the fibre motion.

  10. Fluorescent biopsy of biological tissues in differentiation of benign and malignant tumors of prostate

    Science.gov (United States)

    Trifoniuk, L. I.; Ushenko, Yu. A.; Sidor, M. I.; Minzer, O. P.; Gritsyuk, M. V.; Novakovskaya, O. Y.

    2014-08-01

    The work consists of investigation results of diagnostic efficiency of a new azimuthally stable Mueller-matrix method of analysis of laser autofluorescence coordinate distributions of biological tissues histological sections. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistic analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order) of differentiation of histological sections of uterus wall tumor - group 1 (dysplasia) and group 2 (adenocarcinoma) are estimated.

  11. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.

    Science.gov (United States)

    Nicolle, S; Vezin, P; Palierne, J-F

    2010-03-22

    Biological soft tissues exhibit a strongly nonlinear viscoelastic behaviour. Among parenchymous tissues, kidney and liver remain less studied than brain, and a first goal of this study is to report additional material properties of kidney and liver tissues in oscillatory shear and constant shear rate tests. Results show that the liver tissue is more compliant but more strain hardening than kidney. A wealth of multi-parameter mathematical models has been proposed for describing the mechanical behaviour of soft tissues. A second purpose of this work is to develop a new constitutive law capable of predicting our experimental data in the both linear and nonlinear viscoelastic regime with as few parameters as possible. We propose a nonlinear strain-hardening fractional derivative model in which six parameters allow fitting the viscoelastic behaviour of kidney and liver tissues for strains ranging from 0.01 to 1 and strain rates from 0.0151 s(-1) to 0.7s(-1). Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  13. Hard tissue regeneration using bone substitutes: an update on innovations in materials.

    Science.gov (United States)

    Sarkar, Swapan Kumar; Lee, Byong Taek

    2015-05-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.

  14. Evaluation of five DNA extraction methods for purification of DNA from atherosclerotic tissue and estimation of prevalence of Chlamydia pneumoniae in tissue from a Danish population undergoing vascular repair

    Directory of Open Access Journals (Sweden)

    Lindholt Jes S

    2003-09-01

    Full Text Available Abstract Background To date PCR detection of Chlamydia pneumoniae DNA in atherosclerotic lesions from Danish patients has been unsuccessful. To establish whether non-detection was caused by a suboptimal DNA extraction method, we tested five different DNA extraction methods for purification of DNA from atherosclerotic tissue. Results The five different DNA extraction methods were tested on homogenate of atherosclerotic tissue spiked with C. pneumoniae DNA or EB, on pure C. pneumoniae DNA samples and on whole C. pneumoniae EB. Recovery of DNA was measured with a C. pneumoniae-specific quantitative real-time PCR. A DNA extraction method based on DNA-binding to spin columns with a silica-gel membrane (DNeasy Tissue kit showed the highest recovery rate for the tissue samples and pure DNA samples. However, an automated extraction method based on magnetic glass particles (MagNA Pure performed best on intact EB and atherosclerotic tissue spiked with EB. The DNeasy Tissue kit and MagNA Pure methods and the highly sensitive real-time PCR were subsequently used on 78 atherosclerotic tissue samples from Danish patients undergoing vascular repair. None of the samples were positive for C. pneumoniae DNA. The atherosclerotic samples were tested for inhibition by spiking with two different, known amounts of C. pneumoniae DNA and no samples showed inhibition. Conclusion As a highly sensitive PCR method and an optimised DNA extraction method were used, non-detection in atherosclerotic tissue from the Danish population was probably not caused by use of inappropriate methods. However, more samples may need to be analysed per patient to be completely certain on this. Possible methodological and epidemiological reasons for non-detection of C. pneumoniae DNA in atherosclerotic tissue from the Danish population are discussed. Further testing of DNA extraction methods is needed as this study has shown considerable intra- and inter-method variation in DNA recovery.

  15. Anomalous optical behavior of biological media: modifying the optical window of myocardial tissues

    Science.gov (United States)

    Splinter, Robert; Raja, M. Yasin A.; Svenson, Robert H.

    1996-05-01

    In medical experimental and clinical treatment modalities of light, laser photocoagulation of ventricular tachycardia amongst others, the success of the application relies on whether or not the procedure operates in the optical window of the light-tissue interaction. The optical window of biological tissues can be determined by spectral scans of the optical properties. Optical anomalies may result from the irradiance, the wavelength, or from the tissue composition itself. The transmission of cw Nd:YAG laser light on myocardial tissue showed a nonlinearity in the transmission curve at approximately 3 kW/mm2 irradiance. The total attenuation coefficient dropped sharp from 1.03 plus or minus 0.04 mm-1 to 0.73 plus or minus 0.05 mm-1 at this point in the curve. On the other hand, aneurysm tissue has a highly organized fiber structure, which serves as light-guides, since the transmission of light along the length of the collagen fibers is approximately 50% higher than the transmission perpendicular to the fiber orientation. In addition, changes in optical properties due to tissue phase changes also influence the penetration depth. These phenomena can be utilized to manipulate the optical penetration to an advantage.

  16. Validity of the Cauchy-Born rule applied to discrete cellular-scale models of biological tissues

    KAUST Repository

    Davit, Y.; Osborne, J. M.; Byrne, H. M.; Gavaghan, D.; Pitt-Francis, J.

    2013-01-01

    The development of new models of biological tissues that consider cells in a discrete manner is becoming increasingly popular as an alternative to continuum methods based on partial differential equations, although formal relationships between

  17. Scattered and Fluorescent Photon Track Reconstruction in a Biological Tissue

    Directory of Open Access Journals (Sweden)

    Maria N. Kholodtsova

    2014-01-01

    Full Text Available Appropriate analysis of biological tissue deep regions is important for tumor targeting. This paper is concentrated on photons’ paths analysis in such biotissue as brain, because optical probing depth of fluorescent and excitation radiation differs. A method for photon track reconstruction was developed. Images were captured focusing on the transparent wall close and parallel to the source fibres, placed in brain tissue phantoms. The images were processed to reconstruct the photons most probable paths between two fibres. Results were compared with Monte Carlo simulations and diffusion approximation of the radiative transfer equation. It was shown that the excitation radiation optical probing depth is twice more than for the fluorescent photons. The way of fluorescent radiation spreading was discussed. Because of fluorescent and excitation radiation spreads in different ways, and the effective anisotropy factor, geff, was proposed for fluorescent radiation. For the brain tissue phantoms it were found to be 0.62±0.05 and 0.66±0.05 for the irradiation wavelengths 532 nm and 632.8 nm, respectively. These calculations give more accurate information about the tumor location in biotissue. Reconstruction of photon paths allows fluorescent and excitation probing depths determination. The geff can be used as simplified parameter for calculations of fluorescence probing depth.

  18. A review of soft-tissue sarcomas: translation of biological advances into treatment measures

    Directory of Open Access Journals (Sweden)

    Hoang NT

    2018-05-01

    Full Text Available Ngoc T Hoang,* Luis A Acevedo,* Michael J Mann, Bhairavi Tolani Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA *These authors contributed equally to this work Abstract: Soft-tissue sarcomas are rare malignant tumors arising from connective tissues and have an overall incidence of about five per 100,000 per year. While this diverse family of malignancies comprises over 100 histological subtypes and many molecular aberrations are prevalent within specific sarcomas, very few are therapeutically targeted. Instead of utilizing molecular signatures, first-line sarcoma treatment options are still limited to traditional surgery and chemotherapy, and many of the latter remain largely ineffective and are plagued by disease resistance. Currently, the mechanism of sarcoma oncogenesis remains largely unknown, thus necessitating a better understanding of pathogenesis. Although substantial progress has not occurred with molecularly targeted therapies over the past 30 years, increased knowledge about sarcoma biology could lead to new and more effective treatment strategies to move the field forward. Here, we discuss biological advances in the core molecular determinants in some of the most common soft-tissue sarcomas – liposarcoma, angiosarcoma, leiomyosarcoma, rhabdomyosarcoma, Ewing’s sarcoma, and synovial sarcoma – with an emphasis on emerging genomic and molecular pathway targets and immunotherapeutic treatment strategies to combat this confounding disease. Keywords: sarcoma, molecular pathways, immunotherapy, genomics

  19. Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy

    NARCIS (Netherlands)

    Turnhout, van M.C.; Kranenbarg, S.; Leeuwen, van J.L.

    2009-01-01

    Quantitative polarized light microscopy (qPLM) is a popular tool for the investigation of birefringent architectures in biological tissues. Collagen, the most abundant protein in mammals, is such a birefringent material. Interpretation of results of qPLM in terms of collagen network architecture and

  20. Adipose tissue transcriptome changes during obesity development in female dogs.

    Science.gov (United States)

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2011-03-29

    During the development of obesity, adipose tissue undergoes major expansion and remodeling, but the biological processes involved in this transition are not well understood. The objective of this study was to analyze global gene expression profiles of adipose tissue in dogs, fed a high-fat diet, during the transition from a lean to obese phenotype. Nine female beagles (4.09 ± 0.64 yr; 8.48 ± 0.35 kg) were randomized to ad libitum feeding or body weight maintenance. Subcutaneous adipose tissue biopsy, blood, and dual x-ray absorptiometry measurements were collected at 0, 4, 8, 12, and 24 wk of feeding. Serum was analyzed for glucose, insulin, fructosamine, triglycerides, free fatty acids, adiponectin, and leptin. Formalin-fixed adipose tissue was used for determination of adipocyte size. Adipose RNA samples were hybridized to Affymetrix Canine 2.0 microarrays. Statistical analysis, using repeated-measures ANOVA, showed ad libitum feeding increased (P obesity development.

  1. Co-culture systems-based strategies for articular cartilage tissue engineering.

    Science.gov (United States)

    Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi

    2018-03-01

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.

  2. Development of radioimmunoassay for pantothenic acid in biological tissues

    International Nuclear Information System (INIS)

    Wyse, B.W.

    1977-01-01

    The purpose of this research was to develop a radioimmunoassay for quantitating pantothenic acid levels in biological tissues and to compare the new method with a microbiological procedure. Since pantothenic acid is a nonantigenic compound with a small molecular weight, it was treated as a hapten and conjugated with an immunogenic protein. A new technique for covalently linking haptens with primary alcohol groups to proteins was developed. To prepare an antiserum for the radioimmunoassay, pantothenic acid-bovine serum albumin antigen was injected into the foot pads of rabbits. As antibodies to pantothenic acid hapten were elicited they were characterized using three classical techniques: ring precipitant test, gel diffusion (Ouchterlony), and skin test (Arthus). For the radioimmunoassay an appropriate dilution of antiserum was incubated in the presence of tritium labeled pantothenic acid and non-radioactive pantothenic acid for the standard curve or tissue extracts containing pantothenic acid. After incubation overnight, the antibodies were precipitated and solubilized and the radioactivity was counted in a liquid scintillation counter. Blood pantothenic acid levels of sixty-eight senior citizens were determined by the radioimmunoassay and by microbiological assay with Lactobacillus plantarum. A highly significant correlation was found between the two assays

  3. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Gray, Evan P; Coleman, Jessica G; Bednar, Anthony J; Kennedy, Alan J; Ranville, James F; Higgins, Christopher P

    2013-12-17

    Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 μg/L 100 nm Au and 4.8 μg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 μg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 μg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media.

  4. Tracking of Short Distance Transport Pathways in Biological Tissues by Ultra-Small Nanoparticles

    Science.gov (United States)

    Segmehl, Jana S.; Lauria, Alessandro; Keplinger, Tobias; Berg, John K.; Burgert, Ingo

    2018-03-01

    In this work, ultra-small europium-doped HfO2 nanoparticles were infiltrated into native wood and used as trackers for studying penetrability and diffusion pathways in the hierarchical wood structure. The high electron density, laser induced luminescence, and crystallinity of these particles allowed for a complementary detection of the particles in the cellular tissue. Confocal Raman microscopy and high-resolution synchrotron scanning wide-angle X-ray scattering (WAXS) measurements were used to detect the infiltrated particles in the native wood cell walls. This approach allows for simultaneously obtaining chemical information of the probed biological tissue and the spatial distribution of the integrated particles. The in-depth information about particle distribution in the complex wood structure can be used for revealing transport pathways in plant tissues, but also for gaining better understanding of modification treatments of plant scaffolds aiming at novel functionalized materials.

  5. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Validity of the Cauchy-Born rule applied to discrete cellular-scale models of biological tissues

    KAUST Repository

    Davit, Y.

    2013-04-30

    The development of new models of biological tissues that consider cells in a discrete manner is becoming increasingly popular as an alternative to continuum methods based on partial differential equations, although formal relationships between the discrete and continuum frameworks remain to be established. For crystal mechanics, the discrete-to-continuum bridge is often made by assuming that local atom displacements can be mapped homogeneously from the mesoscale deformation gradient, an assumption known as the Cauchy-Born rule (CBR). Although the CBR does not hold exactly for noncrystalline materials, it may still be used as a first-order approximation for analytic calculations of effective stresses or strain energies. In this work, our goal is to investigate numerically the applicability of the CBR to two-dimensional cellular-scale models by assessing the mechanical behavior of model biological tissues, including crystalline (honeycomb) and noncrystalline reference states. The numerical procedure involves applying an affine deformation to the boundary cells and computing the quasistatic position of internal cells. The position of internal cells is then compared with the prediction of the CBR and an average deviation is calculated in the strain domain. For center-based cell models, we show that the CBR holds exactly when the deformation gradient is relatively small and the reference stress-free configuration is defined by a honeycomb lattice. We show further that the CBR may be used approximately when the reference state is perturbed from the honeycomb configuration. By contrast, for vertex-based cell models, a similar analysis reveals that the CBR does not provide a good representation of the tissue mechanics, even when the reference configuration is defined by a honeycomb lattice. The paper concludes with a discussion of the implications of these results for concurrent discrete and continuous modeling, adaptation of atom-to-continuum techniques to biological

  7. Detection of Photoacoustic Transients Originating from Microstructures in Optically Diffuse Media such as Biological Tissue

    NARCIS (Netherlands)

    Hoelen, C.G.A.; Dekker, Andre; de Mul, F.F.M.

    2001-01-01

    The generation and detection of broadband photoacoustic (PA) transients may be used for on-axis monitoring or for imaging of optically different structures in the interior of diffuse bodies such as biological tissue. Various piezoelectric sensors are characterized and compared in terms of

  8. Imaging of Biological Tissues by Visible Light CDI

    Science.gov (United States)

    Karpov, Dmitry; Dos Santos Rolo, Tomy; Rich, Hannah; Fohtung, Edwin

    Recent advances in the use of synchrotron and X-ray free electron laser (XFEL) based coherent diffraction imaging (CDI) with application to material sciences and medicine proved the technique to be efficient in recovering information about the samples encoded in the phase domain. The current state-of-the-art algorithms of reconstruction are transferable to optical frequencies, which makes laser sources a reasonable milestone both in technique development and applications. Here we present first results from table-top laser CDI system for imaging of biological tissues and reconstruction algorithms development and discuss approaches that are complimenting the data quality improvement that is applicable to visible light frequencies due to it's properties. We demonstrate applicability of the developed methodology to a wide class of soft bio-matter and condensed matter systems. This project is funded by DOD-AFOSR under Award No FA9550-14-1-0363 and the LANSCE Professorship at LANL.

  9. Generalized Fokker-Planck theory for electron and photon transport in biological tissues: application to radiotherapy.

    Science.gov (United States)

    Olbrant, Edgar; Frank, Martin

    2010-12-01

    In this paper, we study a deterministic method for particle transport in biological tissues. The method is specifically developed for dose calculations in cancer therapy and for radiological imaging. Generalized Fokker-Planck (GFP) theory [Leakeas and Larsen, Nucl. Sci. Eng. 137 (2001), pp. 236-250] has been developed to improve the Fokker-Planck (FP) equation in cases where scattering is forward-peaked and where there is a sufficient amount of large-angle scattering. We compare grid-based numerical solutions to FP and GFP in realistic medical applications. First, electron dose calculations in heterogeneous parts of the human body are performed. Therefore, accurate electron scattering cross sections are included and their incorporation into our model is extensively described. Second, we solve GFP approximations of the radiative transport equation to investigate reflectance and transmittance of light in biological tissues. All results are compared with either Monte Carlo or discrete-ordinates transport solutions.

  10. Brain tissue stiffness is a sensitive marker for acidosis.

    Science.gov (United States)

    Holtzmann, Kathrin; Gautier, Hélène O B; Christ, Andreas F; Guck, Jochen; Káradóttir, Ragnhildur Thóra; Franze, Kristian

    2016-09-15

    Carbon dioxide overdose is frequently used to cull rodents for tissue harvesting. However, this treatment may lead to respiratory acidosis, which potentially could change the properties of the investigated tissue. Mechanical tissue properties often change in pathological conditions and may thus offer a sensitive generic readout for changes in biological tissues with clinical relevance. In this study, we performed force-indentation measurements with an atomic force microscope on acute cerebellar slices from adult rats to test if brain tissue undergoes changes following overexposure to CO2 compared to other methods of euthanasia. The pH significantly decreased in brain tissue of animals exposed to CO2. Concomitant with the drop in pH, cerebellar grey matter significantly stiffened. Tissue stiffening was reproduced by incubation of acute cerebellar slices in acidic medium. Tissue stiffness provides an early, generic indicator for pathophysiological changes in the CNS. Atomic force microscopy offers unprecedented high spatial resolution to detect such changes. Our results indicate that the stiffness particularly of grey matter strongly correlates with changes of the pH in the cerebellum. Furthermore, the method of tissue harvesting and preparation may not only change tissue stiffness but very likely also other physiologically relevant parameters, highlighting the importance of appropriate sample preparation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application.

    Science.gov (United States)

    Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio

    2012-10-01

    The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.

  12. Development of a computational system for management of risks in radiosterilization processes of biological tissues

    International Nuclear Information System (INIS)

    Montoya, Cynara Viterbo

    2009-01-01

    Risk management can be understood to be a systematic management which aims to identify record and control the risks of a process. Applying risk management becomes a complex activity, due to the variety of professionals involved. In order to execute risk management the following are requirements of paramount importance: the experience, discernment and judgment of a multidisciplinary team, guided by means of quality tools, so as to provide standardization in the process of investigating the cause and effects of risks and dynamism in obtaining the objective desired, i.e. the reduction and control of the risk. This work aims to develop a computational system of risk management (software) which makes it feasible to diagnose the risks of the processes of radiosterilization of biological tissues. The methodology adopted was action-research, according to which the researcher performs an active role in the establishment of the problems found, in the follow-up and in the evaluation of the actions taken owing to the problems. The scenario of this action-research was the Laboratory of Biological Tissues (LTB) in the Radiation Technology Center IPEN/CNEN-SP - Sao Paulo/Brazil. The software developed was executed in PHP and Flash/MySQL language, the server (hosting), the software is available on the Internet (www.vcrisk.com.br), which the user can access from anywhere by means of the login/access password previously sent by email to the team responsible for the tissue to be analyzed. The software presents friendly navigability whereby the user is directed step-by-step in the process of investigating the risk up to the means of reducing it. The software 'makes' the user comply with the term and present the effectiveness of the actions taken to reduce the risk. Applying this system provided the organization (LTB/CTR/IPEN) with dynamic communication, effective between the members of the multidisciplinary team: a) in decision-making; b) in lessons learned; c) in knowing the new risk

  13. Carcinogenesis-relevant biological events in the pathophysiology of the efferocytosis phenomenon

    Directory of Open Access Journals (Sweden)

    Gargi Sachin Sarode

    2017-12-01

    Full Text Available The effective removal of cells undergoing programmed cell death, which is referred to as efferocytosis, prevents the leakage of intracellular contents into the surrounding tissue, which could lead to tissue damage and inflammation. Efferocytosis involves a coordinated orchestration of multiple steps that lead to a swift, coherent and immunologically silent removal of dying cells. The release of wound healing cytokines, which resolve inflammation and enhance tissue repair, is an important feature of efferocytosis. However, in addition to the healing cytokines released during efferocytosis, the immunosuppressive action of cytokines promotes the tumor microenvironment, enhances the motility of cancer cells and promotes the evasion of antitumor immunity. The aim of the present review was to comprehensively discuss the efferocytosis phenomenon, the important players associated with this process and their role in cancer-related biological events.

  14. Data analysis in Raman measurements of biological tissues using wavelet techniques

    Science.gov (United States)

    Gaeta, Giovanni M.; Zenone, Flora; Camerlingo, Carlo; Riccio, Roberto; Moro, Gianfranco; Lepore, Maria; Indovina, Pietro L.

    2005-03-01

    Raman spectroscopy of oral tissues is a promising tool for in vivo diagnosis of oral pathologies, due to the high chemical and structural information content of Raman spectra. However, measurements on biological tissues are usually hindered by low level signals and by the presence of interfering noise and background components due to light diffusion or fluorescence processes. Numerical methods can be used in data analysis, in order to overcome these problems. In this work the wavelet multicomponent decomposition approach has been tested in a series of micro-Raman measurements performed on "in vitro" animal tissue samples. The experimental set-up was mainly composed by a He-Ne laser and a monochromator equipped with a liquid nitrogen cooled CCD equipped with a grating of 1800 grooves/mm. The laser light was focused on the sample surface by means of a 50 X optical objective. The resulting spectra were analysed using a wavelet software package and the contribution of different vibration modes have been singled out. In particular, the C=C stretching mode, and the CH2 bending mode of amide I and amide III and tyrosine contributions were present. The validity of wavelet approach in the data treatment has been also successfully tested on aspirin.

  15. Ultraviolet diffraction limited nanosurgery of live biological tissues

    International Nuclear Information System (INIS)

    Colombelli, Julien; Grill, Stephan W.; Stelzer, Ernst H. K.

    2004-01-01

    A laser nanodissection system for in vivo and in situ biological tissues is presented. A pulsed laser beam operating at a wavelength of 355 nm enables diffraction limited dissection, providing an optimal tool for intracellular nanosurgery. Coupled into a conventional inverted microscope and scanned across a field of up to 100x100 μm 2 , this optical nanoscalpel performs in vivo photoablation and plasma-induced ablation inside organisms ranging from intracellular organelles to embryos. The system allows the use of conventional microscopy contrasts and methods, fast dissection with up to 1000 shots per second, and simultaneous dissection and imaging. This article outlines an efficient implementation with a small number of components and reports an improvement of this state of the art of plasma-induced ablation technique over previous studies, with a ratio of plasma volume to beam focal volume of 5.2. This offers, e.g., the possibility of writing information directly at the sample location by plasma glass nanopatterning

  16. Plasma fibronectin in patients undergoing major surgery

    International Nuclear Information System (INIS)

    Sallam, M.H.M.

    2003-01-01

    Plasma fibronectin in patients undergoing major surgery had been determined before and after operation. The study was done on 15 patients and 15 normal healthy individuals. The study revealed that patients subjected to major operation, their fibronectin level was normal before operation followed by reduction one day post-operation. After one week, fibronectin level raised again nearly to the pre-operations levels. The probable mechanisms of fibronectin in healing processes were discussed. Fibronectin (FN) is a family of structurally and immunologically related high molecular weight glycoproteins that are present in many cell surfaces, in extracellular fluids, in connective tissues and in most membranes. Interaction with certain discrete extracellular substances, such as a glucosaminoglycans (e.g. heparin), fibrin and collagen and with cell surface structure seem to account for many of its biological activities, among which are regulation of adhesion, spreading and locomotion (Mosesson and amrani, 1980). The concentration of Fn in human plasma decreases after extensive destruction such as that occurs in major surgery, burns or other trauma. This decrease has been generally though to be due to increased consumption of soluble plasma Fn in opsonization of particulate and soluble debris from circulation by the reticuloendothelial (RE) system. Fn rapidly appears in injury areas, in experimentally induced blisters, wounded and epithelium tissues (Petersen et al., 1985). Fn accumulates at times of increased vascular permeability and it is produced by cell of blood vessels in response to injury

  17. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Vavpetič, P., E-mail: primoz.vavpetic@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, K. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Jeromel, L. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Ogrinc Potočnik, N. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Pongrac, P. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Department of Plant Physiology, University of Bayreuth, Universitätstr. 30, 95447 Bayreuth (Germany); Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Pelicon, P. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on–off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm{sup 2} and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  18. Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues

    KAUST Repository

    Goriely, A.

    2010-07-01

    Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence of applied loads and could induce cavity opening. Here, we demonstrate the possibility of spontaneous growth-induced cavitation in elastic materials and consider the implications of this phenomenon to biological tissues and in particular to the problem of schizogenous aerenchyma formation. Copyright © EPLA, 2010.

  19. CHARACTERISTIC FEATURES OF MUELLER MATRIX PATTERNS FOR POLARIZATION SCATTERING MODEL OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    E DU

    2014-01-01

    Full Text Available We developed a model to describe polarized photon scattering in biological tissues. In this model, tissues are simplified to a mixture of scatterers and surrounding medium. There are two types of scatterers in the model: solid spheres and infinitely long solid cylinders. Variables related to the scatterers include: the densities and sizes of the spheres and cylinders, the orientation and angular distribution of cylinders. Variables related to the surrounding medium include: the refractive index, absorption coefficient and birefringence. In this paper, as a development we introduce an optical activity effect to the model. By comparing experiments and Monte Carlo simulations, we analyze the backscattering Mueller matrix patterns of several tissue-like media, and summarize the different effects coming from anisotropic scattering and optical properties. In addition, we propose a possible method to extract the optical activity values for tissues. Both the experimental and simulated results show that, by analyzing the Mueller matrix patterns, the microstructure and optical properties of the medium can be obtained. The characteristic features of Mueller matrix patterns are potentially powerful tools for studying the contrast mechanisms of polarization imaging for medical diagnosis.

  20. Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels

    Science.gov (United States)

    Ilke Kalcioglu, Z.; Qu, Meng; Strawhecker, Kenneth E.; Shazly, Tarek; Edelman, Elazer; VanLandingham, Mark R.; Smith, James F.; Van Vliet, Krystyn J.

    2011-03-01

    For both materials engineering research and applied biomedicine, a growing need exists to quantify mechanical behaviour of tissues under defined hydration and loading conditions. In particular, characterisation under dynamic contact-loading conditions can enable quantitative predictions of deformation due to high rate 'impact' events typical of industrial accidents and ballistic insults. The impact indentation responses were examined of both hydrated tissues and candidate tissue surrogate materials. The goals of this work were to determine the mechanical response of fully hydrated soft tissues under defined dynamic loading conditions, and to identify design principles by which synthetic, air-stable polymers could mimic those responses. Soft tissues from two organs (liver and heart), a commercially available tissue surrogate gel (Perma-Gel™) and three styrenic block copolymer gels were investigated. Impact indentation enabled quantification of resistance to penetration and energy dissipative constants under the rates and energy densities of interest for tissue surrogate applications. These analyses indicated that the energy dissipation capacity under dynamic impact increased with increasing diblock concentration in the styrenic gels. Under the impact rates employed (2 mm/s to 20 mm/s, corresponding to approximate strain energy densities from 0.4 kJ/m3 to 20 kJ/m3), the energy dissipation capacities of fully hydrated soft tissues were ultimately well matched by a 50/50 triblock/diblock composition that is stable in ambient environments. More generally, the methodologies detailed here facilitate further optimisation of impact energy dissipation capacity of polymer-based tissue surrogate materials, either in air or in fluids.

  1. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  2. Preservation of pathological tissue specimens by freeze-drying for immunohistochemical staining and various molecular biological analyses.

    Science.gov (United States)

    Matsuo, S; Sugiyama, T; Okuyama, T; Yoshikawa, K; Honda, K; Takahashi, R; Maeda, S

    1999-05-01

    Conditions of preserving DNA, RNA and protein in pathological specimens are of great importance as degradation of such macromolecules would critically affect results of molecular biological analysis. The feasibility of freeze-drying as a means of preserving pathological tissue samples for molecular analysis has previously been shown. In the present study, further tests on long-term storage conditions and analyses of freeze-dried samples by polymerase chain reaction (PCR), reverse transcriptase (RT)-PCR, western blotting and immunohistochemistry are reported. Rat chromosomal DNA of freeze-dried samples stored for 4 years showed slight degradation while RNA degradation was more prominently seen at an earlier stage of storage. However, these 4 year DNA and RNA samples were still able to serve as a template for some PCR and RT-PCR analyses, respectively. Overexpression of c-erbB-2 and p53 protein was demonstrated by western blotting and immunohistochemical staining using freeze-dried human breast cancer tissues. Although macromolecules in freeze-dried samples degrade to some extent during the preservation period, they should still be of value for certain molecular biological analyses and morphological examination; hence, providing more convenient and inexpensive ways of pathological tissue storage.

  3. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.

    Science.gov (United States)

    Demirci, Nagehan; Tönük, Ergin

    2014-01-01

    During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.

  4. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    Science.gov (United States)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina

  5. Fractional Calculus-Based Modeling of Electromagnetic Field Propagation in Arbitrary Biological Tissue

    Directory of Open Access Journals (Sweden)

    Pietro Bia

    2016-01-01

    Full Text Available The interaction of electromagnetic fields and biological tissues has become a topic of increasing interest for new research activities in bioelectrics, a new interdisciplinary field combining knowledge of electromagnetic theory, modeling, and simulations, physics, material science, cell biology, and medicine. In particular, the feasibility of pulsed electromagnetic fields in RF and mm-wave frequency range has been investigated with the objective to discover new noninvasive techniques in healthcare. The aim of this contribution is to illustrate a novel Finite-Difference Time-Domain (FDTD scheme for simulating electromagnetic pulse propagation in arbitrary dispersive biological media. The proposed method is based on the fractional calculus theory and a general series expansion of the permittivity function. The spatial dispersion effects are taken into account, too. The resulting formulation is explicit, it has a second-order accuracy, and the need for additional storage variables is minimal. The comparison between simulation results and those evaluated by using an analytical method based on the Fourier transformation demonstrates the accuracy and effectiveness of the developed FDTD model. Five numerical examples showing the plane wave propagation in a variety of dispersive media are examined.

  6. Alpha-particle autoradiography in CR-39: a technique for quantitative assessment of alpha-emitters in biological tissue

    International Nuclear Information System (INIS)

    Fews, A.P.; Henshaw, D.L.

    1983-01-01

    The techniques for α-particle autoradiography based on the plastic nuclear track detector CR-39, previously reported, have been developed considerably. The techniques are applied to α-autoradiography of human lung tissue in particular but are applicable to any biological tissue. The most important developments are: (i) Improvements in the manufacture and pre-etching of the plastic. (ii) High resolution α-particle spectroscopy in CR-39 plastic based on the analysis of the structure of the etched track. (iii) Calculation of the effective thickness of tissue sampled by the plastic. (iv) A deconvolution analysis which takes the distributions of track length and dip angle in the plastic and determines the α-particle range spectrum and distribution of tissue activity with height above the plastic surface. (v) The analysis of radon diffusion in tissue to determine the mean radon diffusion distance in tissue and plastic. (author)

  7. Platform for Rapid Delivery of Biologics and Drugs to Ocular Cells and Tissues Following Combat Associated Trauma

    Science.gov (United States)

    2013-09-01

    death pathways such as apoptosis subsequent to acute trauma as soon as possible, ideally by self- administration of a drug or a biologic that can be... Drugs to Ocular Tissues Including Retina and Cornea . Mol Ther, 2007;16(1):107- 14. 3. Read SP, Cashman SM, and Kumar-Singh R: POD...1 AD_________________ Award Number: W81XWH-12-1-0374 TITLE: Platform for Rapid Delivery of Biologics and Drugs to Ocular Cells

  8. The adipose tissue of origin influences the biological potential of human adipose stromal cells isolated from mediastinal and subcutaneous fat depots

    Directory of Open Access Journals (Sweden)

    Camilla Siciliano

    2016-09-01

    Full Text Available Indirect evidence suggests that adipose tissue-derived stromal cells (ASCs possess different physiological and biological variations related to the anatomical localization of the adipose depots. Accordingly, to investigate the influence of the tissue origin on the intrinsic properties of ASCs and to assess their response to specific stimuli, we compared the biological, functional and ultrastructural properties of two ASC pools derived from mediastinal and subcutaneous depots (thoracic compartment by means of supplements such as platelet lysate (PL and FBS. Subcutaneous ASCs exhibited higher proliferative and clonogenic abilities than mediastinal counterpart, as well as increased secreted levels of IL-6 combined with lower amount of VEGF-C. In contrast, mediastinal ASCs displayed enhanced pro-angiogenic and adipogenic differentiation properties, increased cell diameter and early autophagic processes, highlighted by electron microscopy. Our results further support the hypothesis that the origin of adipose tissue significantly defines the biological properties of ASCs, and that a homogeneric function for all ASCs cannot be assumed.

  9. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Silva Meirelles, Lindolfo da, E-mail: lindolfomeirelles@gmail.com [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS (Brazil); Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre [Laboratory of Large-Scale Functional Biology (LLSFBio), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); and others

    2016-12-10

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  10. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    International Nuclear Information System (INIS)

    Silva Meirelles, Lindolfo da; Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana; Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre

    2016-01-01

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  11. Estimation of organ doses of patient undergoing hepatic chemoembolization procedures

    International Nuclear Information System (INIS)

    Jaramillo, G.W.; Kramer, R.; Khoury, H.J.; Barros, V.S.M.; Andrade, G.

    2015-01-01

    The aim of this study is to evaluate the organ doses of patients undergoing hepatic chemoembolization procedures performed in two hospitals in the city of Recife-Brazil. Forty eight patients undergoing fifty hepatic chemoembolization procedures were investigated. For the 20 cases with PA projection only, organ and tissue absorbed doses as well as radiation risks were calculated. For this purpose organs and tissues dose to KAP conversion coefficients were calculated using the mesh-based phantom series FASH and MASH coupled to the EGSnrc Monte Carlo code. Clinical, dosimetric and irradiations parameters were registered for all patients. The maximum organ doses found were 1.72 Gy, 0.65Gy, 0.56 Gy and 0.33 Gy for skin, kidneys, adrenals and liver, respectively. (authors)

  12. Sterilization of biological tissues with ionizing radiation; Esterilizacion de tejidos biologicos con radiacion ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M.L.; Martinez P, M.E.; Luna Z, D. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    On June 1994, the National Institute of Nuclear Research (ININ) and the South Central Hospital for High Specialty of PEMEX (HCSAE) began a joint work with the finality to obtain radio sterilized amniotic membranes for to be used as cover (biological bandage) in burnt patients. Subsequently the Chemistry Faculty of UNAM and the National Institute of Cardiology began to collaborate this last with interest on cardiac valves for graft. Starting from 1997, the International Atomic Energy Agency (IAEA) supports this project (MEX/7/008) whose main objective is to set up the basis to establish in Mexico a Radio sterilized Tissue Bank (amniotic membranes, skin, bones, tendons, cardiac valves, etc.) to be used with therapeutic purposes (grafts). The IAEA support has consisted in the equipment acquisition which is fundamental for the Tissue Bank performance such as an experimental irradiator, laminar flow bell, lyophilizer, vacuum sealer and special knives for tissues. Also visits to Mexico of experts have been authorized with the aim of advising to the personnel which participate in the project and scientific visits of this personnel to another tissue banks (Sri Lanka and Argentine). The establishment in Mexico of a Tissue bank will be a great benefit because it will have availability of distinct tissues for grafts and it will reduce the synthetic materials importation which is very expensive. (Author)

  13. In situ biological dose mapping estimates the radiation burden delivered to 'spared' tissue between synchrotron X-ray microbeam radiotherapy tracks.

    Directory of Open Access Journals (Sweden)

    Kai Rothkamm

    Full Text Available Microbeam radiation therapy (MRT using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to 'spared' tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30-40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies.

  14. Electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter system*

    Science.gov (United States)

    Zan, Peng; Yang, Bang-hua; Shao, Yong; Yan, Guo-zheng; Liu, Hua

    2010-01-01

    This paper reports on the electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter. The coupling coils and human tissues, including the skin, fat, muscle, liver, and blood, were considered. Specific absorption rate (SAR) and current density were analyzed by a finite-length solenoid model. First, SAR and current density as a function of frequency (10–107 Hz) for an emission current of 1.5 A were calculated under different tissue thickness. Then relations between SAR, current density, and five types of tissues under each frequency were deduced. As a result, both the SAR and current density were below the basic restrictions of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The results show that the analysis of these data is very important for developing the artificial anal sphincter system. PMID:21121071

  15. On The Construction of Models for Electrical Conduction in Biological Tissues

    International Nuclear Information System (INIS)

    Gomez-Aguilar, F.; Bernal-Alvarado, J.; Cordova-Fraga, T.; Rosales-Garcia, J.; Guia-Calderon, M.

    2010-01-01

    Applying RC circuit theory, a theoretical representation for the electrical conduction in a biological multilayer system was developed. In particular an equivalent circuit for the epidermis, dermis and the subcutaneous tissue was constructed. This model includes an equivalent circuit, inside the dermis, in order to model a small formation like tumor. This work shows the feasibility to apply superficial electrodes to detect subcutaneous abnormalities. The behavior of the model is shown in the form of a frequency response chart. The Bode and Nyquist plots are also obtained. This theoretical frame is proposed to be a general treatment to describe the bioelectrical transport in a three layer bioelectrical system.

  16. Theoretical and observational analysis of individual ionizing particle effects in biological tissue

    International Nuclear Information System (INIS)

    Nelson, A.C.

    1980-11-01

    The microstructural damage to living tissue caused by heavy ion radiation was studied. Preliminary tests on rat corneal tissue, rat cerebellar tissue grown in culture, and rat retinal tissue indicated that the best assay for heavy ion damage is the rat cornea. The corneal tissue of the living rat was exposed to beams of carbon at 474 MeV/amu, neon at 8.5 MeV/amu, argon at 8.5 MeV/amu, silicon at 530 MeV/amu, iron at 500 MeV/amu, and iron at 600 MeV/amu. X-rays were also used on corneas to compare with the heavy ion irradiated corneas. Scanning electron microscopy revealed lesions with circular symmetry on the external plasma membranes of corneal epithelium which were irradiated with heavy ions, but similar lesions were not observed on the plasma membranes of x-ray irradiated or non-irradiated control samples. These data verify the special way in which heavy ions interact with matter: each ion interacts coulombically with electrons all along its trajectory to generate a track. The dose from heavy ion radiation is not distributed homogeneously on a tissue microstructural scale but is concentrated along the individual particle track. Even along a single particle track the dose is discontinuous except at the Bragg peak when the LET is maximum. Micrographs of heavy-ion-irradiated corneas demonstrated two significant correlations with the heavy ion beam: (1) the number of plasma membrane lesions per unit area was correlated with the particle fluence, and (2) the diameter of the lesions were linearly related to the energy loss or LET of the individual particle. These observations corroborate what has already been suggested theoretically about heavy ion tracks and what has been shown experimentally. But the new data indicate that particle tracks occur in biological tissues as well, and that a single heavy ion is responsible for each membrane lesion

  17. Theoretical and observational analysis of individual ionizing particle effects in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.C.

    1980-11-01

    The microstructural damage to living tissue caused by heavy ion radiation was studied. Preliminary tests on rat corneal tissue, rat cerebellar tissue grown in culture, and rat retinal tissue indicated that the best assay for heavy ion damage is the rat cornea. The corneal tissue of the living rat was exposed to beams of carbon at 474 MeV/amu, neon at 8.5 MeV/amu, argon at 8.5 MeV/amu, silicon at 530 MeV/amu, iron at 500 MeV/amu, and iron at 600 MeV/amu. X-rays were also used on corneas to compare with the heavy ion irradiated corneas. Scanning electron microscopy revealed lesions with circular symmetry on the external plasma membranes of corneal epithelium which were irradiated with heavy ions, but similar lesions were not observed on the plasma membranes of x-ray irradiated or non-irradiated control samples. These data verify the special way in which heavy ions interact with matter: each ion interacts coulombically with electrons all along its trajectory to generate a track. The dose from heavy ion radiation is not distributed homogeneously on a tissue microstructural scale but is concentrated along the individual particle track. Even along a single particle track the dose is discontinuous except at the Bragg peak when the LET is maximum. Micrographs of heavy-ion-irradiated corneas demonstrated two significant correlations with the heavy ion beam: (1) the number of plasma membrane lesions per unit area was correlated with the particle fluence, and (2) the diameter of the lesions were linearly related to the energy loss or LET of the individual particle. These observations corroborate what has already been suggested theoretically about heavy ion tracks and what has been shown experimentally. But the new data indicate that particle tracks occur in biological tissues as well, and that a single heavy ion is responsible for each membrane lesion. (ERB)

  18. Dielectric properties of biological tissues in which cells are connected by communicating junctions

    International Nuclear Information System (INIS)

    Asami, Koji

    2007-01-01

    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities P j , the low-frequency (LF) relaxation curve became broader, especially at P j of 0.2-0.5, and its intensity was proportional to P j up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues

  19. Dielectric properties of biological tissues in which cells are connected by communicating junctions

    Science.gov (United States)

    Asami, Koji

    2007-06-01

    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.

  20. Ruminant Metabolic Systems Biology: Reconstruction and Integration of Transcriptome Dynamics Underlying Functional Responses of Tissues to Nutrition and Physiological Statea

    Science.gov (United States)

    Bionaz, Massimo; Loor, Juan J.

    2012-01-01

    High-throughput ‘omics’ data analysis via bioinformatics is one key component of the systems biology approach. The systems approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at study and uncover key molecular players involved in the tissue’s adaptations to physiological state or nutrition. PMID:22807626

  1. 'TISUCROMA': A Software for Color Processing of Biological Tissue's Images

    International Nuclear Information System (INIS)

    Arista Romeu, Eduardo J.; La Rosa Vazquez, Jose Manuel de; Valor, Alma; Stolik, Suren

    2016-01-01

    In this work a software intended to plot and analyze digital image RGB histograms from normal and abnormal regions of biological tissue. The obtained RGB histograms from each zone can be used to show the image in only one color or the mixture of some of them. The Software was developed in Lab View to process the images in a laptop. Some medical application examples are shown. (Author)

  2. Suitability of a PLCL fibrous scaffold for soft tissue engineering applications: A combined biological and mechanical characterisation.

    Science.gov (United States)

    Laurent, Cédric P; Vaquette, Cédryck; Liu, Xing; Schmitt, Jean-François; Rahouadj, Rachid

    2018-04-01

    Poly(lactide-co-ε-caprolactone) (PLCL) has been reported to be a good candidate for tissue engineering because of its good biocompatibility. Particularly, a braided PLCL scaffold (PLL/PCL ratio = 85/15) has been recently designed and partially validated for ligament tissue engineering. In the present study, we assessed the in vivo biocompatibility of acellular and cellularised scaffolds in a rat model. We then determined its in vitro biocompatibility using stem cells issued from both bone marrow and Wharton Jelly. From a biological point of view, the scaffold was shown to be suitable for tissue engineering in all these cases. Secondly, while the initial mechanical properties of this scaffold have been previously reported to be adapted to load-bearing applications, we studied the evolution in time of the mechanical properties of PLCL fibres due to hydrolytic degradation. Results for isolated PLCL fibres were extrapolated to the fibrous scaffold using a previously developed numerical model. It was shown that no accumulation of plastic strain was to be expected for a load-bearing application such as anterior cruciate ligament tissue engineering. However, PLCL fibres exhibited a non-expected brittle behaviour after two months. This may involve a potential risk of premature failure of the scaffold, unless tissue growth compensates this change in mechanical properties. This combined study emphasises the need to characterise the properties of biomaterials in a pluridisciplinary approach, since biological and mechanical characterisations led in this case to different conclusions concerning the suitability of this scaffold for load-bearing applications.

  3. Spatio-temporal thermal kinetics of in situ MWCNT heating in biological tissues under NIR laser irradiation

    International Nuclear Information System (INIS)

    Picou, Laura; McMann, Casey; Boldor, Dorin; Elzer, Philip H; Enright, Frederick M; Biris, Alexandru S

    2010-01-01

    Carbon nanotubes have many potential applications in life sciences and engineering as they have very high absorbance in the near-infrared (NIR) spectrum, while biological tissues do not. The purpose of this study was to determine the effect of 1064 nm NIR laser power levels on the spatial temperature distribution and the temperature kinetics in mammalian tissue at both macroscopic and microscopic scales. The model tissue was the 'flat' of a chicken wing (the section containing the radius and ulna), which was injected under the skin in the subcutaneous layer of tissue. Specimens were exposed to laser radiation and an infrared thermography system was used to measure and record the temperature distributions in the specimens at both the macroscopic and microscopic scales. Experimental results concluded that power levels of 1536 mW easily achieved hyperthermic temperatures with localized values as high as 172.7 deg. C.

  4. Multiphase poroelastic finite element models for soft tissue structures

    International Nuclear Information System (INIS)

    Simon, B.R.

    1992-01-01

    During the last two decades, biological structures with soft tissue components have been modeled using poroelastic or mixture-based constitutive laws, i.e., the material is viewed as a deformable (porous) solid matrix that is saturated by mobile tissue fluid. These structures exhibit a highly nonlinear, history-dependent material behavior; undergo finite strains; and may swell or shrink when tissue ionic concentrations are altered. Give the geometric and material complexity of soft tissue structures and that they are subjected to complicated initial and boundary conditions, finite element models (FEMs) have been very useful for quantitative structural analyses. This paper surveys recent applications of poroelastic and mixture-based theories and the associated FEMs for the study of the biomechanics of soft tissues, and indicates future directions for research in this area. Equivalent finite-strain poroelastic and mixture continuum biomechanical models are presented. Special attention is given to the identification of material properties using a porohyperelastic constitutive law ans a total Lagrangian view for the formulation. The associated FEMs are then formulated to include this porohyperelastic material response and finite strains. Extensions of the theory are suggested in order to include inherent viscoelasticity, transport phenomena, and swelling in soft tissue structures. A number of biomechanical research areas are identified, and possible applications of the porohyperelastic and mixture-based FEMs are suggested. 62 refs., 11 figs., 3 tabs

  5. The main features of electrical stimulation of biological tissues by implant electrodes: study from engineering perspective and equipment development to produce

    International Nuclear Information System (INIS)

    Suarez Bagnasco, D.; Alvarez Alonso, J.; Suarez Antola, R.

    2004-08-01

    The main features of electrical stimulation of biological tissues by implant electrodes are studied.These electrodes are applied in neural prostheses and cardiac pacing.Threshold phenomena are stressed and some aspects related with implant electrode design are discussed. A fairly through theoretical research about the optimal pulse shape for electrical stimulation of biological tissues is done.The excitation functional is introduced as a criterium to identify threshold pulses of electric current. We obtain the optimal pulse shapes that minimize the energy dissipated in tissues, or the energy taken by the load seen by the pulse generator, amongst other criteria.We show how these pulse shapes can be determined from experimentally measured strength-duration (S-D) curves using rectangular pulses of current. The development of a prototype of a new equipment is described.The equipment may be used to measure S-D curves and with this information it is able to syntetize the abovementioned optimal pulse shapes. The top-down design process is presented, involving both hardware and software.The construction and assembling of the prototype, as well as the implementation of software are described.Some testing and measures with the prototype, including test with biological tissues are described and assessed

  6. A technique for measuring oxygen saturation in biological tissues based on diffuse optical spectroscopy

    Science.gov (United States)

    Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya

    2017-07-01

    A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.

  7. Measurement of tissue free water tritium in biological samples by liquid scintillation counter

    International Nuclear Information System (INIS)

    Wu Zongmei; Zheng Xiaomin

    1993-01-01

    The authors introduced a method of extracting tissue free water tritium (TFWT) by the azeotropic distribution with toluene and of measuring the activity of the TFWT in biological samples by liquid scintillation counter. The TFWT recovery ratio of pine needles (fresh), green vegetables, radish, rice, pork (muscle) and milk is 0.90, 0.95, 0.96, 0.90, 0.52 and 0.85, and TFWT activity is 1.8, 3.2, 1.8, 2.7, 3.3 and 4.0 Bq/L-H 2 O, respectively

  8. Assumed non-persistent environmental chemicals in human adipose tissue; matrix stability and correlation with levels measured in urine and serum.

    Science.gov (United States)

    Artacho-Cordón, F; Arrebola, J P; Nielsen, O; Hernández, P; Skakkebaek, N E; Fernández, M F; Andersson, A M; Olea, N; Frederiksen, H

    2017-07-01

    The aim of this study was to (1) optimize a method for the measurement of parabens and phenols in adipose tissue, (2) evaluate the stability of chemical residues in adipose tissue samples, and (3) study correlations of these compounds in urine, serum, and adipose tissue. Samples were obtained from adults undergoing trauma surgery. Nine phenols and seven parabens were determined by isotope diluted TurboFlow-LC-MS/MS. The analytical method showed good accuracy and precision. Limits of detection (LOD) for parabens and phenols ranged from 0.05 to 1.83ng/g tissue. Good recovery rates were found, even when biological samples remained defrosted up to 24h. Benzophenone-3 (BP-3; range of values: 70% of adipose tissue samples, while bisphenol-A (BPA; 40% of adipose tissue samples. In general, levels were similar between adipose tissue and serum, while a correlation between adipose tissue and urine was only found for BP-3. In conclusion, adipose tissue samples in this study were found to contain environmental chemicals considered to be non-persistent, whose levels were weakly or not at all correlated with the urine burden. Therefore, adipose tissue may potentially provide additional information to that obtained from other biological matrices. Further investigations are warranted to explore whether adipose tissue might be a suitable matrix for assessment of the consequences for human health of mid/long-term exposure to these chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. ASTM lights the way for tissue engineered medical products standards: jump start for combination medical products that restore biological function of human tissues.

    Science.gov (United States)

    Picciolo, G L; Stocum, D L

    2001-01-01

    Everybody hopes for better health and restoration of impaired bodily function, and now that hope is illuminated by the promise of powerful biological tools that make human cells grow and replace human tissue. ASTM Committee F04 on Medical and Surgical Materials and Devices is taking the lead by defining some of those tools as standards that can be used for the development, production, testing, and regulatory approval of medical products.

  10. Sensitivity improvements, in the determination of mercury in biological tissues by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, C R; Samudralwar, D L; Ehmann, W D [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Markesbery, W R [Kentucky Univ., Lexington, KY (United States)

    1995-08-01

    The possible association of dental amalgam surface exposure, brain mercury (Hg) levels, and pathological markers of Alzheimer`s disease (AD) in the brain is the subject of an on-going study in our laboratory. Two radiochemical neutron activation analysis methods and the use of instrumental neutron activation analysis (INAA) with Compton suppression spectrometry have been evaluated for improving our INAA Hg detection limit (2.8{+-}0.6 ng/g, wet-weight basis) in human tissue. Large numbers of samples dictated the use of a purely instrumental method or rapid, simple radiochemical separations. Human brain tissues and NIST biological standards were analyzed using a precipitation of Hg{sub 2}Cl{sub 2}, a solvent extraction utilizing sodium diethyldithiocarbomate, conventional INAA, and INAA with Compton suppression. The radiochemical precipitation of Hg{sub 2}Cl{sub 2} proved to be the most useful method for use in our study because it provided a simultaneous, quantitative determination of silver (Ag) and a Hg detection limit in brain tissue of 1.6{+-}0.1 ng/g (wet-weight basis). (author). 12 refs., 2 tabs.

  11. Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues

    Science.gov (United States)

    Lubner, Sean D.; Choi, Jeunghwan; Wehmeyer, Geoff; Waag, Bastian; Mishra, Vivek; Natesan, Harishankar; Bischof, John C.; Dames, Chris

    2015-01-01

    Accurate knowledge of the thermal conductivity (k) of biological tissues is important for cryopreservation, thermal ablation, and cryosurgery. Here, we adapt the 3ω method—widely used for rigid, inorganic solids—as a reusable sensor to measure k of soft biological samples two orders of magnitude thinner than conventional tissue characterization methods. Analytical and numerical studies quantify the error of the commonly used "boundary mismatch approximation" of the bi-directional 3ω geometry, confirm that the generalized slope method is exact in the low-frequency limit, and bound its error for finite frequencies. The bi-directional 3ω measurement device is validated using control experiments to within ±2% (liquid water, standard deviation) and ±5% (ice). Measurements of mouse liver cover a temperature ranging from -69 °C to +33 °C. The liver results are independent of sample thicknesses from 3 mm down to 100 μm and agree with available literature for non-mouse liver to within the measurement scatter.

  12. Method for estimating optimal spectral and energy parameters of laser irradiation in photodynamic therapy of biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Lisenko, S A; Kugeiko, M M [Belarusian State University, Minsk (Belarus)

    2015-04-30

    We have solved the problem of layer-by-layer laser-light dosimetry in biological tissues and of selecting an individual therapeutic dose in laser therapy. A method is proposed for real-time monitoring of the radiation density in tissue layers in vivo, concentrations of its endogenous (natural) and exogenous (specially administered) chromophores, as well as in-depth distributions of the spectrum of light action on these chromophores. As the background information use is made of the spectrum of diffuse light reflected from a patient's tissue, measured by a fibre-optic spectrophotometer. The measured spectrum is quantitatively analysed by the method of approximating functions for fluxes of light multiply scattered in tissue and by a semi-analytical method for calculating the in-depth distribution of the light flux in a multi-layered medium. We have shown the possibility of employing the developed method for monitoring photosensitizer and oxyhaemoglobin concentrations in tissue, light power absorbed by chromophores in tissue layers at different depths and laser-induced changes in the tissue morphology (vascular volume content and ratios of various forms of haemoglobin) during photodynamic therapy. (biophotonics)

  13. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  14. Adhesion of tissue glues to different biological substrates

    NARCIS (Netherlands)

    Bochynska, A. I.; Hannink, G.; Buma, P.; Grijpma, D. W.

    2017-01-01

    Tissue adhesives are attractive materials with potential to replace the use of sutures and staples in the repair of the injured tissues. The research field of tissue adhesives is dynamically growing, and different methods and tissue models are employed to evaluate the adhesive properties of newly

  15. Adhesion of tissue glues to different biological substrates

    NARCIS (Netherlands)

    Bochynska, Agnieszka; Hannink, G.; Buma, P.; Grijpma, Dirk W.

    2016-01-01

    Tissue adhesives are attractive materials with potential to replace the use of sutures and staples in the repair of the injured tissues. The research field of tissue adhesives is dynamically growing, and different methods and tissue models are employed to evaluate the adhesive properties of newly

  16. Elemental analysis of biological tissues of animal models in muscular dystrophies investigation

    International Nuclear Information System (INIS)

    Sabrina Metairon; Zamboni, C.B.; Suzuki, M.F.; Bueno, Jr.C.R.; Sant'Anna, O.A.

    2012-01-01

    Element concentrations in biological tissues of Dmd mdx /J and C57BL/6 J mice strains were determined using the neutron activation analysis technique. Samples of whole blood, bones and organs (heart and muscle) of these strains were irradiated in the IEA-R1 nuclear reactor at IPEN-CNEN/SP (Brazil). To perform this investigation biological samples of two-month-old adult females (n = 10) and males (n = 9) for Dmd mdx /J (dystrophic mice), and males (n 12) for C57BL/6 J (control group), originally obtained from the Jackson Laboratory (Maine, USA) and further inbred at IPEN-CNEN/SP (Sao Paulo, Brazil), were used. A significant change was observed in the analysis of the heart of dystrophic mice suggesting that this dysfunction affects severely the heart muscle. These data may, in the future, contribute to the healthcare area, in veterinary medicine and in the pharmaceutical industry allowing the evaluation of the best procedures in diagnosis, treatment and investigations of neuromuscular diseases (muscular dystrophy) of patients through the use of animal models. (author)

  17. [The influence of biological compatibility of the cyanoacrylate glue on regeneration of the cartilaginous tissue].

    Science.gov (United States)

    Semenov, F V; Skibitskaya, N F

    The objective of the present study was to evaluate the possibility of the application of the cyanoacrylate-based glue for the strengthening of the reconstructed elements of the middle ear and its influence on the regeneration of the cartilaginous tissue. We used the cartilaginous tissue from the auricles of the male California rabbits as a model. The cartilage was destroyed in a standard press. Half of the cartilage thus fragmented was implanted into the left auricle. The remaining part was mixed up with the cyanoacrylate glue and implanted into the right auricle of the same animal. The implanted material was used for the morphological study on day 10, within 1 and 2 months after the beginning of the experiment. The results of the study confirm the absence of the toxic action of the biologically compatible cyanoacrylate-based glue on the regeneration of the cartilaginous and connective tissues which suggests the possibility of its application for the surgical treatment of the diseases of the middle ear.

  18. Biological effects of fast neutron irradiation on callus tissues of Tecoma stans Juss. and Ammi visnaga Lam

    International Nuclear Information System (INIS)

    Supniewska, J.H.; Dohnal, B.; Cebulska Wasilewska, A.; Huczkowski, J.

    1982-01-01

    Callus tissues of Tecoma stans Juss. and Ammi visnaga Lam. were subjected to fast neutron irradiation. Nine doses were applied within the range of 100 - 10.000 cGy. Small doses caused growth stimulation. Intermediate and high doses caused morphological changes, reduced growth and biosynthesis of biologically active substances (monoterpene alkaloids in T. stans, furanochromones in A. visnaga). In A. visnaga neutron irradiation considerably decreased the chlorophyll content in callus tissues. The radiosensitivity of A. visnaga at 50% growth reduction level was 1.5 times higher than that of the callus of T. stans. The recovery of the tissues takes place during a subculturing course. Three to 7 months after neutron exposure growth and biosynthesis reach the control level. (author)

  19. Experimental verification of stopping-power prediction from single- and dual-energy computed tomography in biological tissues

    Science.gov (United States)

    Möhler, Christian; Russ, Tom; Wohlfahrt, Patrick; Elter, Alina; Runz, Armin; Richter, Christian; Greilich, Steffen

    2018-01-01

    An experimental setup for consecutive measurement of ion and x-ray absorption in tissue or other materials is introduced. With this setup using a 3D-printed sample container, the reference stopping-power ratio (SPR) of materials can be measured with an uncertainty of below 0.1%. A total of 65 porcine and bovine tissue samples were prepared for measurement, comprising five samples each of 13 tissue types representing about 80% of the total body mass (three different muscle and fatty tissues, liver, kidney, brain, heart, blood, lung and bone). Using a standard stoichiometric calibration for single-energy CT (SECT) as well as a state-of-the-art dual-energy CT (DECT) approach, SPR was predicted for all tissues and then compared to the measured reference. With the SECT approach, the SPRs of all tissues were predicted with a mean error of (-0.84  ±  0.12)% and a mean absolute error of (1.27  ±  0.12)%. In contrast, the DECT-based SPR predictions were overall consistent with the measured reference with a mean error of (-0.02  ±  0.15)% and a mean absolute error of (0.10  ±  0.15)%. Thus, in this study, the potential of DECT to decrease range uncertainty could be confirmed in biological tissue.

  20. [Lasers in dentistry. Part B--Interaction with biological tissues and the effect on the soft tissues of the oral cavity, the hard tissues of the tooth and the dental pulp].

    Science.gov (United States)

    Moshonov, J; Stabholz, A; Leopold, Y; Rosenberg, I; Stabholz, A

    2001-10-01

    The interaction of laser energy with target tissue is mainly determined by two non operator-dependent factors: the specific wavelength of the laser and the optical properties of the target tissues. Power density, energy density, pulse repetition rate, pulse duration and the mode of energy transferring to the tissue are dictated by the clinician. Combination of these factors enables to control optimal response for the clinical application. Four responses are described when the laser beam hits the target tissue: reflection, absorption, transmission and scattering. Three main mechanisms of interaction between the laser and the biological tissues exist: photothermic, photoacoustic and photochemical. The effect of lasers on the soft tissues of the oral cavity is based on transformation of light energy into thermal energy which, in turn heats the target tissue to produce the desirable effect. In comparison to the scalpel used in surgical procedures, the laser beam is characterized by tissue natural sterility and by minimum bleeding during the surgical procedures due to blood vessels welding. The various effects achieved by the temperature elevation during the laser application on the soft tissue are: I. coagulation and hemostasis II. tissue sterilization III. tissue welding IV. incision and excision V. ablation and vaporization Ablation and melting are the two basic modalities by which the effect of lasers on the hard tissues of the tooth is produced. When discussing the effect of laser on dental hard tissues, the energy absorption in the hydroxyapatite plays a major role in addition to its absorption in water. When laser energy is absorbed in the water of the hard tissues, a rapid volume expansion of the evaporating water occurs as a result of a substantial temperature elevation in the interaction site. Microexplosions are produced causing hard tissue disintegration. If pulp temperatures are raised beyond 5 degrees C level, damage to the dental pulp is irreversible

  1. High mass accuracy and high mass resolving power FT-ICR secondary ion mass spectrometry for biological tissue imaging

    NARCIS (Netherlands)

    Smith, D.F.; Kiss, A.; Leach, F.E.; Robinson, E.W.; Paša-Tolić, L.; Heeren, R.M.A.

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically

  2. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Directory of Open Access Journals (Sweden)

    Jairo A Díaz

    Full Text Available The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further

  3. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Science.gov (United States)

    Díaz, Jairo A; Jaramillo, Natalia A; Murillo, Mauricio F

    2007-12-12

    The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must

  4. Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: Concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator.

    Science.gov (United States)

    Domingo, José L; García, Francisco; Nadal, Martí; Schuhmacher, Marta

    2017-04-01

    Human biomonitoring is of tremendous importance to prevent potential adverse effects derived from human exposure to chemicals. Blood and urine are among the biological monitors more frequently used. However, biological matrices such as breast milk, hair, nails, saliva, feces, teeth, and expired air are also often used. In addition, and focused mainly on long-term exposure, adipose tissue and other human tissues like bone, liver, brain or kidney, are also used as biological monitors of certain substances, especially for long-term biomonitoring. However, for this kind of tissues sampling is always a limiting factor. In this paper, we have examined the role of autopsy tissues as biological monitors of human exposure to environmental pollutants. For it, we have used a case study conducted near a hazardous waste incinerator (HWI) in Catalonia (Spain), in which the concentrations of metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), have been periodically determined in autopsy tissues of subjects living in the area under potential influence of the facility. This case study does not show advantages -in comparison to other appropriate biomonitors such as blood- in using autopsy tissues in the monitoring of long-term exposure to metals and PCDD/Fs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Piezoelectric materials for tissue regeneration: A review.

    Science.gov (United States)

    Rajabi, Amir Hossein; Jaffe, Michael; Arinzeh, Treena Livingston

    2015-09-01

    The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues raised the question whether or not electric fields play an important role in cell function. It has kindled research and the development of technologies in emulating biological electricity for tissue regeneration. Promising effects of electrical stimulation on cell growth and differentiation and tissue growth has led to interest in using piezoelectric scaffolds for tissue repair. Piezoelectric materials can generate electrical activity when deformed. Hence, an external source to apply electrical stimulation or implantation of electrodes is not needed. Various piezoelectric materials have been employed for different tissue repair applications, particularly in bone repair, where charges induced by mechanical stress can enhance bone formation; and in neural tissue engineering, in which electric pulses can stimulate neurite directional outgrowth to fill gaps in nervous tissue injuries. In this review, a summary of piezoelectricity in different biological tissues, mechanisms through which electrical stimulation may affect cellular response, and recent advances in the fabrication and application of piezoelectric scaffolds will be discussed. The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues has kindled research and the development of technologies using electrical stimulation for tissue regeneration. Piezoelectric materials generate electrical activity in response to deformations and allow for the delivery of an electrical stimulus without the need for an external power source. As a scaffold for tissue engineering, growing interest exists due to its potential of providing electrical stimulation to cells to promote tissue formation. In this review, we cover the discovery of piezoelectricity in biological tissues, its connection to streaming potentials, biological response to electrical stimulation and

  6. Bim: guardian of tissue homeostasis and critical regulator of the immune system, tumorigenesis and bone biology.

    Science.gov (United States)

    Akiyama, Toru; Tanaka, Sakae

    2011-08-01

    One of the most important roles of apoptosis is the maintenance of tissue homeostasis. Impairment of apoptosis leads to a number of pathological conditions. In response to apoptotic signals, various proteins are activated in a pathway and signal-specific manner. Recently, the pro-apoptotic molecule Bim has attracted increasing attention as a pivotal regulator of tissue homeostasis. The Bim expression level is strictly controlled in both transcriptional and post-transcriptional levels. This control is dependent on cell, tissue and apoptotic stimuli. The phenotype of Bim-deficient mice is a systemic lupus erythematosus-like autoimmune disease with an abnormal accumulation of hematopoietic cells. Bim is thus a critical regulator of hematopoietic cells and immune system. Further studies have revealed the critical roles of Bim in various normal and pathological conditions, including bone homeostasis and tumorigenesis. The current understanding of Bim signaling and roles in the maintenance of tissue homeostasis is reviewed in this paper, focusing on the immune system, bone biology and tumorigenesis to illustrate the diversified role of Bim.

  7. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  8. Mesangial cell biology

    International Nuclear Information System (INIS)

    Abboud, Hanna E.

    2012-01-01

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  9. Tissue reaction and material characteristics of four bone substitutes

    DEFF Research Database (Denmark)

    Jensen, S S; Aaboe, M; Pinholt, E M

    1996-01-01

    and Interpore 500 HA/CC) were implanted into 5-mm bur holes in rabbit tibiae. There was no difference in the amount of newly formed bone around the four biomaterials. Interpore 500 HA/CC resorbed completely, whereas the other three biomaterials did not undergo any detectable biodegradation. Bio......The aim of the present study was to qualitatively and quantitatively compare the tissue reactions around four different bone substitutes used in orthopedic and craniofacial surgery. Cylinders of two bovine bone substitutes (Endobon and Bio-Oss) and two coral-derived bone substitutes (Pro Osteon 500......-Oss was osseointegrated to a higher degree than the other biomaterials. Material characteristics obtained by diffuse reflectance infrared Fourier transform spectrometry analysis and energy-dispersive spectrometry did not explain the differences in biologic behavior....

  10. In vitro study of the biological activity of RNAs after incubation of hog liver, heart and brain tissue at room temperature

    DEFF Research Database (Denmark)

    Reichert, G H; Issinger, O G

    1985-01-01

    The biological activity of RNA, isolated from tissue which was incubated for 1, 3, or 6 hours at room temperature (simulation of post-mortem conditions), was preserved. However, the different organs used differ from each other. When liver is used, qualitative differences in the in vitro translati...... RNase inhibitors during thawing to reduce the loss of biological activity....

  11. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    International Nuclear Information System (INIS)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Knowles, Jonathan Campbell

    2014-01-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. - Highlights: • This study investigated the role of titania on the biological response of phosphate glasses. • Incorporation of titania improved HOS cell attachment, viability and proliferation. • Titania modified glasses regulated osteoblastic cell differentiation. • Using osteogenic media had no significant effect on cell differentiation. • Titania modified glasses may have future use as bone tissue engineering scaffolds

  12. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface

    Science.gov (United States)

    Michelson, Nicholas J.; Vazquez, Alberto L.; Eles, James R.; Salatino, Joseph W.; Purcell, Erin K.; Williams, Jordan J.; Cui, X. Tracy; Kozai, Takashi D. Y.

    2018-06-01

    Objective. Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations. This can greatly impact the interpretations of results pertaining to device performance and tissue health surrounding the implant. Approach. In this work, electrophysiological activity and immunohistological analysis are compared after controlling for motion artifacts, quiescent neuronal activity, and material failure of devices in order to better understand the relationship between histology and electrophysiological outcomes. Main results. Even after carefully accounting for these factors, the presence of viable neurons and lack of glial scarring does not convey single unit recording performance. Significance. To better understand the biological factors influencing neural activity, detailed cellular and molecular tissue responses were examined. Decreases in neural activity and blood oxygenation in the tissue surrounding the implant, shift in expression levels of vesicular transporter proteins and ion channels, axon and myelin injury, and interrupted blood flow in nearby capillaries can impact neural activity around implanted neural interfaces. Combined, these tissue changes highlight the need for more comprehensive, basic science research to elucidate the relationship between biology and chronic electrophysiology performance in order to advance neural technologies.

  13. Simultaneous observation of cavitation bubbles generated in biological tissue by high-speed optical and acoustic imaging methods

    Science.gov (United States)

    Suzuki, Kai; Iwasaki, Ryosuke; Takagi, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    Acoustic cavitation bubbles are useful for enhancing the heating effect in high-intensity focused ultrasound (HIFU) treatment. Many studies were conducted to investigate the behavior of such bubbles in tissue-mimicking materials, such as a transparent gel phantom; however, the detailed behavior in tissue was still unclear owing to the difficulty in optical observation. In this study, a new biological phantom was developed to observe cavitation bubbles generated in an optically shallow area of tissue. Two imaging methods, high-speed photography using light scattering and high-speed ultrasonic imaging, were used for detecting the behavior of the bubbles simultaneously. The results agreed well with each other for the area of bubble formation and the temporal change in the region of bubbles, suggesting that both methods are useful for visualizing the bubbles.

  14. Organochlorine compounds in streambed sediment and in biological tissue from streams and their relations to land use, central Arizona

    Science.gov (United States)

    Gebler, Joseph B.

    2000-01-01

    Streambed-sediment samples from 13 sites and biological-tissue samples from 11 sites in the Gila River Basin in central Arizona were analyzed for 32 organochlorine compounds in streambed sediment and 28 compounds in biological tissue during 1996 as part of the U.S. Geological Survey's National Water-Quality Assessment program. The objectives of the study were to determine the occurrence and distribution of organochlorine compounds and their relation to land use. Sampling sites were categorized on the basis of major land uses in the basin or the source of water in the stream. Because land uses were mixed or had changed over time, some land-use categories were combined. Sites were categorized as forest/rangeland (6), forest/urban (1), urban (4), or agricultural/urban (2). Thirteen organochlorine compounds were detected in streambed-sediment samples, and 10 were detected in tissue samples. The number of compounds found in streambed-sediment samples from individual sites ranged from 0 to 10, and the range for individual tissue samples was 0 to 7. Comparison of the number of detections in streambed-sediment samples to the number of detections in tissue samples from particular sites where both were sampled yielded five instances where more compounds were detected in streambed sediment, six instances where more compounds were detected in tissue, and five instances where the number of detections in streambed sediment and tissue were equal. The frequency of detection of particular compounds for sites where both streambed sediment and tissue were sampled resulted in five compounds being detected more frequently in streambed sediment, five more frequently in tissue, and three compounds that were equally frequent in streambed sediment and in tissue. Few contaminants were detected in samples from the forest/rangeland sites; greater numbers of compounds were detected at the urban sites and at the forest/urban site. The greatest number of compounds and the highest concentrations

  15. Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) for Imaging Electrical Conductivity of Biological Tissue: A Tutorial Review

    Science.gov (United States)

    Li, Xu; Yu, Kai; He, Bin

    2016-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging method developed to map electrical conductivity of biological tissue with millimeter level spatial resolution. In MAT-MI, a time-varying magnetic stimulation is applied to induce eddy current inside the conductive tissue sample. With the existence of a static magnetic field, the Lorentz force acting on the induced eddy current drives mechanical vibrations producing detectable ultrasound signals. These ultrasound signals can then be acquired to reconstruct a map related to the sample’s electrical conductivity contrast. This work reviews fundamental ideas of MAT-MI and major techniques developed in these years. First, the physical mechanisms underlying MAT-MI imaging are described including the magnetic induction and Lorentz force induced acoustic wave propagation. Second, experimental setups and various imaging strategies for MAT-MI are reviewed and compared together with the corresponding experimental results. In addition, as a recently developed reverse mode of MAT-MI, magneto-acousto-electrical tomography with magnetic induction (MAET-MI) is briefly reviewed in terms of its theory and experimental studies. Finally, we give our opinions on existing challenges and future directions for MAT-MI research. With all the reported and future technical advancement, MAT-MI has the potential to become an important noninvasive modality for electrical conductivity imaging of biological tissue. PMID:27542088

  16. Functional analysis of biological matter across dimensions by atomic force microscopy (AFM): from tissues to molecules and, ultimately, atoms

    OpenAIRE

    Stolz, Martin

    2004-01-01

    For a detailed understanding of biological tissues and proteins and their dynamical processes the 3D structures of the components involved must be known. Most of the structural data have been obtained through the combination of three major techniques: X-ray crystallography, NMR and TEM. These three methods enable the determination of the structure of biological macromolecules at near atomic resolution and each of those was developed over many years to perfection. Nevertheless each one has its...

  17. Mueller-matrix mapping of biological tissues in differential diagnosis of optical anisotropy mechanisms of protein networks

    Energy Technology Data Exchange (ETDEWEB)

    Ushenko, V A; Sidor, M I [Yuriy Fedkovych Chernivtsi National University, Chernivtsi (Ukraine); Marchuk, Yu F; Pashkovskaya, N V; Andreichuk, D R [Bukovinian State Medical University, Chernivtsi (Ukraine)

    2015-03-31

    We report a model of Mueller-matrix description of optical anisotropy of protein networks in biological tissues with allowance for the linear birefringence and dichroism. The model is used to construct the reconstruction algorithms of coordinate distributions of phase shifts and the linear dichroism coefficient. In the statistical analysis of such distributions, we have found the objective criteria of differentiation between benign and malignant tissues of the female reproductive system. From the standpoint of evidence-based medicine, we have determined the operating characteristics (sensitivity, specificity and accuracy) of the Mueller-matrix reconstruction method of optical anisotropy parameters and demonstrated its effectiveness in the differentiation of benign and malignant tumours. (laser applications and other topics in quantum electronics)

  18. [Changes in active cysteine cathepsins in lysosomes from tissues thyroid papillary carcinomas with various biological characteristics].

    Science.gov (United States)

    Kalinichenko, O V; Myshunina, T M; Tron'ko, M D

    2013-01-01

    To clarify possible role of cysteine cathepsin H, B and L in the proteolytic processes that contribute to the progression of tumor growth in the thyroid, we studied their activity in lysosomes isolated from the tissue of papillary carcinomas. It was shown that for these enzymes there is a dependence of the changes in their activity on a number of biological characteristics of the tumors. Thus, the sharp increase in the activity ofcathepsin H observed in lysosomes of tissue carcinomas category T2 and T3, with intra-and ekstrathyroid and lymphatic invasion of tumor cells. An increase in the activity of cathepsin B is set in the lysosomes of tissue heterogeneous follicular structure, especially in the presence of solid areas, in comparison with typical papillary tumors and in the lysosomes of tissue carcinomas in intrathyroid and cathepsin L-at extrathyroid invasion. A common feature of the enzymes is to increase the activity of cathepsins in lysosomes of tissue nonencapsulated papillary carcinomas. These enzymes probably do not take part in the invasion of tumor cells into blood vessels and in the mechanisms of tumor metastasis to regional lymph nodes. The latter shows no changes in the activity of cathepsins in lysosomes of tissue carcinomas category N1. The results indicate the different role of cathepsin H, B and L in thyroid carcinogenesis, where each enzyme has its specific function.

  19. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  20. Tissue bionics: examples in biomimetic tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W [Bone and Joint Research Group, Developmental Origins of Health and Disease, General Hospital, University of Southampton, SO16 6YD (United Kingdom)], E-mail: Hindoostuart@googlemail.com

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  1. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Green, David W

    2008-01-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  2. Coagulation and ablation of biological soft tissue by quantum cascade laser with peak wavelength of 5.7 μm

    Directory of Open Access Journals (Sweden)

    Keisuke Hashimura

    2014-05-01

    Full Text Available Molecules such as water, proteins and lipids that are contained in biological tissue absorb mid-infrared (MIR light, which allows such light to be used in laser surgical treatment. Esters, amides and water exhibit strong absorption bands in the 5–7 μm wavelength range, but at present there are no lasers in clinical use that can emit in this range. Therefore, the present study focused on the quantum cascade laser (QCL, which is a new type of semiconductor laser that can emit at MIR wavelengths and has recently achieved high output power. A high-power QCL with a peak wavelength of 5.7 μm was evaluated for use as a laser scalpel for ablating biological soft tissue. The interaction of the laser beam with chicken breast tissue was compared to a conventional CO2 laser, based on surface and cross-sectional images. The QCL was found to have sufficient power to ablate soft tissue, and its coagulation, carbonization and ablation effects were similar to those for the CO2 laser. The QCL also induced comparable photothermal effects because it acted as a pseudo-continuous wave laser due to its low peak power. A QCL can therefore be used as an effective laser scalpel, and also offers the possibility of less invasive treatment by targeting specific absorption bands in the MIR region.

  3. Long-Term Survival of Dialysis Patients with Bacterial Endocarditis Undergoing Valvular Replacement Surgery in the United States

    Science.gov (United States)

    Leither, Maxwell D.; Shroff, Gautam R.; Ding, Shu; Gilbertson, David T.; Herzog, Charles A.

    2013-01-01

    Background Bacterial endocarditis in dialysis patients is associated with high mortality rates. The literature is limited regarding long-term outcomes of valvular replacement surgery and choice of prosthesis in dialysis patients with bacterial endocarditis. Methods and Results Dialysis patients hospitalized for bacterial endocarditis, 2004-2007, were studied retrospectively using data from the US Renal Data System. Long-term survival of patients undergoing valve replacement surgery with tissue or non-tissue valves was compared using the Kaplan-Meier method. A Cox proportional hazards model was used to identify independent predictors of mortality in patients undergoing valvular replacement surgery. During the study period, 11,156 dialysis patients were hospitalized for bacterial endocarditis and 1267 (11.4%) underwent valvular replacement surgery (tissue valve 44.3%, non-tissue valve 55.7%). In the valve replacement cohort, 60% were men, 50% white, 54% aged 45-64 years, and 36% diabetic. Estimated survival with tissue and non-tissue valves, respectively, at 0.5, 1, 2, and 3 years was 59% and 60%, 48% and 50%, 35% and 37%, and 25% and 30% (log rank P = 0.42). Staphylococcus was the predominant organism (66% of identified organisms). Independent predictors of mortality in patients undergoing valve replacement surgery included older age, diabetes as cause of end-stage renal disease, surgery during index hospitalization, staphylococcus as the causative organism, and dysrhythmias as a comorbid condition. Conclusions Valve replacement surgery is appropriate for well-selected dialysis patients with bacterial endocarditis, but is associated with high mortality rates. Survival does not differ with tissue or non-tissue prosthesis. PMID:23785002

  4. Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae

    Science.gov (United States)

    Itoh, Manabu; Nakayama, Koichi; Noguchi, Ryo; Kamohara, Keiji; Furukawa, Kojirou; Uchihashi, Kazuyoshi; Toda, Shuji; Oyama, Jun-ichi; Node, Koichi; Morita, Shigeki

    2015-01-01

    Background Small caliber vascular prostheses are not clinically available because synthetic vascular prostheses lack endothelial cells which modulate platelet activation, leukocyte adhesion, thrombosis, and the regulation of vasomotor tone by the production of vasoactive substances. We developed a novel method to create scaffold-free tubular tissue from multicellular spheroids (MCS) using a “Bio-3D printer”-based system. This system enables the creation of pre-designed three-dimensional structures using a computer controlled robotics system. With this system, we created a tubular structure and studied its biological features. Methods and Results Using a “Bio-3D printer,” we made scaffold-free tubular tissues (inner diameter of 1.5 mm) from a total of 500 MCSs (2.5× 104 cells per one MCS) composed of human umbilical vein endothelial cells (40%), human aortic smooth muscle cells (10%), and normal human dermal fibroblasts (50%). The tubular tissues were cultured in a perfusion system and implanted into the abdominal aortas of F344 nude rats. We assessed the flow by ultrasonography and performed histological examinations on the second (n = 5) and fifth (n = 5) day after implantation. All grafts were patent and remodeling of the tubular tissues (enlargement of the lumen area and thinning of the wall) was observed. A layer of endothelial cells was confirmed five days after implantation. Conclusions The scaffold-free tubular tissues made of MCS using a Bio-3D printer underwent remodeling and endothelialization. Further studies are warranted to elucidate the underlying mechanism of endothelialization and its function, as well as the long-term results. PMID:26325298

  5. Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae.

    Science.gov (United States)

    Itoh, Manabu; Nakayama, Koichi; Noguchi, Ryo; Kamohara, Keiji; Furukawa, Kojirou; Uchihashi, Kazuyoshi; Toda, Shuji; Oyama, Jun-Ichi; Node, Koichi; Morita, Shigeki

    2015-01-01

    Small caliber vascular prostheses are not clinically available because synthetic vascular prostheses lack endothelial cells which modulate platelet activation, leukocyte adhesion, thrombosis, and the regulation of vasomotor tone by the production of vasoactive substances. We developed a novel method to create scaffold-free tubular tissue from multicellular spheroids (MCS) using a "Bio-3D printer"-based system. This system enables the creation of pre-designed three-dimensional structures using a computer controlled robotics system. With this system, we created a tubular structure and studied its biological features. Using a "Bio-3D printer," we made scaffold-free tubular tissues (inner diameter of 1.5 mm) from a total of 500 MCSs (2.5× 104 cells per one MCS) composed of human umbilical vein endothelial cells (40%), human aortic smooth muscle cells (10%), and normal human dermal fibroblasts (50%). The tubular tissues were cultured in a perfusion system and implanted into the abdominal aortas of F344 nude rats. We assessed the flow by ultrasonography and performed histological examinations on the second (n = 5) and fifth (n = 5) day after implantation. All grafts were patent and remodeling of the tubular tissues (enlargement of the lumen area and thinning of the wall) was observed. A layer of endothelial cells was confirmed five days after implantation. The scaffold-free tubular tissues made of MCS using a Bio-3D printer underwent remodeling and endothelialization. Further studies are warranted to elucidate the underlying mechanism of endothelialization and its function, as well as the long-term results.

  6. The Chernobyl Tissue Bank — A Repository for Biomaterial and Data Used in Integrative and Systems Biology Modeling the Human Response to Radiation

    Science.gov (United States)

    Thomas, Geraldine; Unger, Kristian; Krznaric, Marko; Galpine, Angela; Bethel, Jackie; Tomlinson, Christopher; Woodbridge, Mark; Butcher, Sarah

    2012-01-01

    The only unequivocal radiological effect of the Chernobyl accident on human health is the increase in thyroid cancer in those exposed in childhood or early adolescence. In response to the scientific interest in studying the molecular biology of thyroid cancer post Chernobyl, the Chernobyl Tissue Bank (CTB: www.chernobyltissuebank.com) was established in 1998. Thus far it is has collected biological samples from 3,861 individuals, and provided 27 research projects with 11,254 samples. The CTB was designed from its outset as a resource to promote the integration of research and clinical data to facilitate a systems biology approach to radiation related thyroid cancer. The project has therefore developed as a multidisciplinary collaboration between clinicians, dosimetrists, molecular biologists and bioinformaticians and serves as a paradigm for tissue banking in the omics era. PMID:24704918

  7. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Chisvert, Alberto, E-mail: alberto.chisvert@uv.es [Departamento de Quimica Analitica, Facultad de Quimica, Universitat de Valencia, Doctor Moliner St. 50, 46100 Burjassot, Valencia (Spain); Leon-Gonzalez, Zacarias [Unidad Analitica, Instituto de Investigacion Sanitaria Fundacion Hospital La Fe, 46009 Valencia (Spain); Tarazona, Isuha; Salvador, Amparo [Departamento de Quimica Analitica, Facultad de Quimica, Universitat de Valencia, Doctor Moliner St. 50, 46100 Burjassot, Valencia (Spain); Giokas, Dimosthenis [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2012-11-08

    Highlights: Black-Right-Pointing-Pointer Papers describing the determination of UV filters in fluids and tissues are reviewed. Black-Right-Pointing-Pointer Matrix complexity and low amounts of analytes require effective sample treatments. Black-Right-Pointing-Pointer The published papers do not cover the study of all the substances allowed as UV filters. Black-Right-Pointing-Pointer New analytical methods for UV filters determination in these matrices are encouraged. - Abstract: Organic UV filters are chemical compounds added to cosmetic sunscreen products in order to protect users from UV solar radiation. The need of broad-spectrum protection to avoid the deleterious effects of solar radiation has triggered a trend in the cosmetic market of including these compounds not only in those exclusively designed for sun protection but also in all types of cosmetic products. Different studies have shown that organic UV filters can be absorbed through the skin after topical application, further metabolized in the body and eventually excreted or bioaccumulated. These percutaneous absorption processes may result in various adverse health effects, such as genotoxicity caused by the generation of free radicals, which can even lead to mutagenic or carcinogenic effects, and estrogenicity, which is associated with the endocrine disruption activity caused by some of these compounds. Due to the absence of official monitoring protocols, there is a demand for analytical methods that enable the determination of UV filters in biological fluids and tissues in order to retrieve more information regarding their behavior in the human body and thus encourage the development of safer cosmetic formulations. In view of this demand, there has recently been a noticeable increase in the development of sensitive and selective analytical methods for the determination of UV filters and their metabolites in biological fluids (i.e., urine, plasma, breast milk and semen) and tissues. The complexity of

  8. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues

    International Nuclear Information System (INIS)

    Chisvert, Alberto; León-González, Zacarías; Tarazona, Isuha; Salvador, Amparo; Giokas, Dimosthenis

    2012-01-01

    Highlights: ► Papers describing the determination of UV filters in fluids and tissues are reviewed. ► Matrix complexity and low amounts of analytes require effective sample treatments. ► The published papers do not cover the study of all the substances allowed as UV filters. ► New analytical methods for UV filters determination in these matrices are encouraged. - Abstract: Organic UV filters are chemical compounds added to cosmetic sunscreen products in order to protect users from UV solar radiation. The need of broad-spectrum protection to avoid the deleterious effects of solar radiation has triggered a trend in the cosmetic market of including these compounds not only in those exclusively designed for sun protection but also in all types of cosmetic products. Different studies have shown that organic UV filters can be absorbed through the skin after topical application, further metabolized in the body and eventually excreted or bioaccumulated. These percutaneous absorption processes may result in various adverse health effects, such as genotoxicity caused by the generation of free radicals, which can even lead to mutagenic or carcinogenic effects, and estrogenicity, which is associated with the endocrine disruption activity caused by some of these compounds. Due to the absence of official monitoring protocols, there is a demand for analytical methods that enable the determination of UV filters in biological fluids and tissues in order to retrieve more information regarding their behavior in the human body and thus encourage the development of safer cosmetic formulations. In view of this demand, there has recently been a noticeable increase in the development of sensitive and selective analytical methods for the determination of UV filters and their metabolites in biological fluids (i.e., urine, plasma, breast milk and semen) and tissues. The complexity of the biological matrix and the low concentration levels of these compounds inevitably impose sample

  9. Biological Responses to Materials

    Science.gov (United States)

    Anderson, James M.

    2001-08-01

    All materials intended for application in humans as biomaterials, medical devices, or prostheses undergo tissue responses when implanted into living tissue. This review first describes fundamental aspects of tissue responses to materials, which are commonly described as the tissue response continuum. These actions involve fundamental aspects of tissue responses including injury, inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the biomaterial, medical device, or prosthesis. The second part of this review describes the in vivo evaluation of tissue responses to biomaterials, medical devices, and prostheses to determine intended performance characteristics and safety or biocompatibility considerations. While fundamental aspects of tissue responses to materials are important from research and development perspectives, the in vivo evaluation of tissue responses to these materials is important for performance, safety, and regulatory reasons.

  10. Plasmophore sensitized imaging of ammonia release from biological tissues using optodes

    International Nuclear Information System (INIS)

    Stroemberg, Niklas; Hakonen, Aron

    2011-01-01

    Highlights: → A plasmophore sensitized optode for imaging ammonia (NH 3 ) concentrations in muscle tissues was developed. → Ammonia concentrations ranging from 10 nM and upwards can be quantified reversibly with an optical resolution of 127 μm. → The general sensing scheme offers new possibilities for the development of artificial optical noses and tongues. - Abstract: A plasmophore sensitized optode was developed for imaging ammonia (NH 3 ) concentrations in muscle tissues. The developed ammonia sensor and an equivalent non plasmophore version of the sensor were tested side by side to compare their limit of detection, dynamic range, reversibility and overall imaging quality. Bio-degradation patterns of ammonia release from lean porcine skeletal muscle were studied over a period of 11 days. We demonstrate that ammonia concentrations ranging from 10 nM can be quantified reversibly with an optical resolution of 127 μm in a sample area of 25 mm x 35 mm. The plasmophore ammonia optode showed improved reversibility, less false pixels and a 2 nM ammonia detection limit compared to 200 nM for the non-plasmophore sensor. Main principles of the sensing mechanism include ammonia transfer over a gas permeable film, ammonia protonation, nonactin facilitated merocyanine-ammonium coextraction and plasmophore enhancement. The vast signal improvement is suggested to rely on solvatochroism, nanoparticle scattering and plasmonic interactions that are utilized constructively in a fluorescence ratio. In addition to fundamental medicinal and biological research applications in tissue physiology, reversible ammonia quantification will be possible for a majority of demanding imaging and non imaging applications such as monitoring of low ammonia background concentrations in air and non-invasive medicinal diagnosis through medical breath or saliva analysis. The nanoparticle doped sensor constitutes a highly competitive technique for ammonia sensing in complex matrixes and the

  11. Second harmonic sound field after insertion of a biological tissue sample

    Science.gov (United States)

    Zhang, Dong; Gong, Xiu-Fen; Zhang, Bo

    2002-01-01

    Second harmonic sound field after inserting a biological tissue sample is investigated by theory and experiment. The sample is inserted perpendicular to the sound axis, whose acoustical properties are different from those of surrounding medium (distilled water). By using the superposition of Gaussian beams and the KZK equation in quasilinear and parabolic approximations, the second harmonic field after insertion of the sample can be derived analytically and expressed as a linear combination of self- and cross-interaction of the Gaussian beams. Egg white, egg yolk, porcine liver, and porcine fat are used as the samples and inserted in the sound field radiated from a 2 MHz uniformly excited focusing source. Axial normalized sound pressure curves of the second harmonic wave before and after inserting the sample are measured and compared with the theoretical results calculated with 10 items of Gaussian beam functions.

  12. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.

    Science.gov (United States)

    Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum

    2013-01-01

    Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  13. Embracing the heart: perioperative management of patients undergoing off-pump coronary artery bypass grafting using the octopus tissue stabilizer.

    Science.gov (United States)

    Nierich, A P; Diephuis, J; Jansen, E W; van Dijk, D; Lahpor, J R; Borst, C; Knape, J T

    1999-04-01

    To describe hemodynamic alterations during coronary artery bypass grafting (CABG) without extracorporeal circulation using the Octopus Tissue Stabilizer, and to describe the two anesthetic management protocols based on either general anesthesia with opioids (34 patients) or general anesthesia with high thoracic epidural anesthesia (TEA; 66 patients). A prospective observational report. An academic university heart center. First 100 patients undergoing CABG using the Octopus Tissue Stabilizer. None. Current management provided satisfactory results in preventing hypoperfusion of the heart and inadequate systemic circulation without the use of major pharmacologic interventions. Movement of the heart to reach the target site of anastomosis caused hemodynamic alterations. These could easily be corrected by anesthetic interventions, such as fluid load and low doses of inotropes. High TEA allows earlier extubation compared with the opioid anesthesia technique (0.9 v 4.5 hours). Perioperative management and the incidence of postoperative complications did not differ between anesthetic techniques. Major complications, such as death, intraoperative myocardial infarction, and stroke, did not occur. Both anesthetic protocols are safe and effective in handling these patients. Off-pump CABG surgery requires anesthetic interventions because hemodynamic alterations are caused by the presentation of the heart to the surgeon. The complication rate is low but needs to be evaluated, compared with conventional CABG, in a prospective randomized study. High thoracic epidural anesthesia allows early recovery, but improved outcome could not be proved in this patient group.

  14. Use of high-intensity sonication for pre-treatment of biological tissues prior to multielemental analysis by total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    De La Calle, Inmaculada; Costas, Marta; Cabaleiro, Noelia; Lavilla, Isela; Bendicho, Carlos

    2012-01-01

    In this work, two ultrasound-based procedures are developed for sample preparation prior to determination of P, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se and Sr in biological tissues by total reflection X-ray fluorescence spectrometry. Ultrasound-assisted extraction by means of a cup-horn sonoreactor and ultrasonic-probe slurry sampling were compared with a well-established procedure such as magnetic agitation slurry sampling. For that purpose, seven certified reference materials and different real samples of animal tissue were used. Similar accuracy and precision is obtained with the three sample preparation approaches tried. Limits of detection were dependent on both the sample matrix and the sample pre-treatment used, best values being achieved with ultrasound-assisted extraction. Advantages of ultrasound-assisted extraction include reduced sample handling, decreased contamination risks (neither addition of surfactants nor use of foreign objects inside the extraction vial), simpler background (no solid particles onto the sample carrier) and improved recovery for some elements such as P. A mixture of 10% v/v HNO 3 + 20–40% v/v HCl was suitable for extraction from biological tissues. - Highlights: ► We implement high-intensity sonication for pre-treatment of biological tissues. ► Multielemental analysis is performed by total reflection X-ray spectrometry. ► Ultrasound-based procedures are developed and compared to conventional slurry preparation. ► Features such as background, recovery and sample handling are favored by using ultrasonic extraction.

  15. Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability.

    Science.gov (United States)

    Staber, B; Guilleminot, J

    2017-01-01

    In this work, we address the constitutive modeling, in a probabilistic framework, of the hyperelastic response of soft biological tissues. The aim is on the one hand to mimic the mean behavior and variability that are typically encountered in the experimental characterization of such materials, and on the other hand to derive mathematical models that are almost surely consistent with the theory of nonlinear elasticity. Towards this goal, we invoke information theory and discuss a stochastic model relying on a low-dimensional parametrization. We subsequently propose a two-step methodology allowing for the calibration of the model using standard data, such as mean and standard deviation values along a given loading path. The framework is finally applied and benchmarked on three experimental databases proposed elsewhere in the literature. It is shown that the stochastic model allows experiments to be accurately reproduced, regardless of the tissue under consideration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Low angle X-ray scattering in biological tissues

    International Nuclear Information System (INIS)

    Lemos, Carla; Braz, Delson; Pinto, Nivia G.V.; Lima, Joao C.; Castro, Carlos R.F.; Filgueiras, R.A.; Mendonca, Leonardo; Lopes, Ricardo T.; Barroso, Regina C.

    2007-01-01

    Low-angle x-ray scatter (LAXS) for tissue characterization is based on the differences which result from the interference of photons coherently scattered from molecules of each sample. Biological samples (bone, blood and blood components) have been studied in recent years in our laboratory using powder diffractometer. The scattering information was obtained using a Shimadzu DRX 6000 diffractometer at the Nuclear Instrumentation Laboratory, Rio de Janeiro, Brazil. Unpolarized monoenergetic Kα radiation from Cu provided 8.04 keV photons. The measurements were made in reflection mode (θ-2θ geometry), with the sample stationary on a goniometer which rotates the sample and detector about an axis lying in the plane of the top of the sample holder. LAXS profiles from whole blood, plasma and formed elements were measured to investigate the nature of scattering from such lyophilized samples. The statistical analysis shows that the variation found for the characterization parameters is significant for whole blood considering the age. Gender was positively associated with the variation of the second peak position for the profiles obtained for formed elements. The correlation of the measured relative coherent intensity with the mineral content in the bone samples was investigated. These results suggest that the measurement of bone mineral content within trabecular bone can be performed by using quantitative coherent scattering information. (author)

  17. Dermal white adipose tissue undergoes major morphological changes during the spontaneous and induced murine hair follicle cycling: a reappraisal.

    Science.gov (United States)

    Foster, April R; Nicu, Carina; Schneider, Marlon R; Hinde, Eleanor; Paus, Ralf

    2018-07-01

    In murine skin, dermal white adipose tissue (DWAT) undergoes major changes in thickness in synchrony with the hair cycle (HC); however, the underlying mechanisms remain unclear. We sought to elucidate whether increased DWAT thickness during anagen is mediated by adipocyte hypertrophy or adipogenesis, and whether lipolysis or apoptosis can explain the decreased DWAT thickness during catagen. In addition, we compared HC-associated DWAT changes between spontaneous and depilation-induced hair follicle (HF) cycling to distinguish between spontaneous and HF trauma-induced events. We show that HC-dependent DWAT remodelling is not an artefact caused by fluctuations in HF down-growth, and that dermal adipocyte (DA) proliferation and hypertrophy are HC-dependent, while classical DA apoptosis is absent. However, none of these changes plausibly accounts for HC-dependent oscillations in DWAT thickness. Contrary to previous studies, in vivo BODIPY uptake suggests that increased DWAT thickness during anagen occurs via hypertrophy rather than hyperplasia. From immunohistomorphometry, DWAT thickness likely undergoes thinning during catagen by lipolysis. Hence, we postulate that progressive, lipogenesis-driven DA hypertrophy followed by dynamic switches between lipogenesis and lipolysis underlie DWAT fluctuations in the spontaneous HC, and dismiss apoptosis as a mechanism of DWAT reduction. Moreover, the depilation-induced HC displays increased DWAT thickness, area, and DA number, but decreased DA volume/area compared to the spontaneous HC. Thus, DWAT shows additional, novel HF wounding-related responses during the induced HC. This systematic reappraisal provides important pointers for subsequent functional and mechanistic studies, and introduces the depilation-induced murine HC as a model for dissecting HF-DWAT interactions under conditions of wounding/stress.

  18. Study of the temperature rise induced by a focusing transducer with a wide aperture angle on biological tissue containing ribs

    International Nuclear Information System (INIS)

    Wang Xin; Lin Jiexing; Liu Xiaozhou; Liu Jiehui; Gong Xiufen

    2016-01-01

    We used the spheroidal beam equation to calculate the sound field created by focusing a transducer with a wide aperture angle to obtain the heat deposition, and then we used the Pennes bioheat equation to calculate the temperature field in biological tissue with ribs and to ascertain the effects of rib parameters on the temperature field. The results show that the location and the gap width between the ribs have a great influence on the axial and radial temperature rise of multilayer biological tissue. With a decreasing gap width, the location of the maximum temperature rise moves forward; as the ribs are closer to the transducer surface, the sound energy that passes through the gap between the ribs at the focus decreases, the maximum temperature rise decreases, and the location of the maximum temperature rise moves forward with the ribs. (paper)

  19. The analysis for energy distribution and biological effects of the clusters from electrons in the tissue equivalent material

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Guo Yong; Luo Yisheng; Wang Yong

    2004-01-01

    Objective: To study energy distribution of the clusters from electrons in the tissue equivalent material, and discuss the important aspects of these clusters on inducing biological effects. Methods: Based on the physical mechanism for electrons interacting with tissue equivalent material, the Monte Carlo (MC) method was used. The electron tracks were lively simulated on an event-by-event (ionization, excitation, elastic scattering, Auger electron emission) basis in the material. The relevant conclusions were drawn from the statistic analysis of these events. Results: The electrons will deposit their energy in the form (30%) of cluster in passing through tissue equivalent material, and most clusters (80%) have the energy amount of more than 50 eV. The cluster density depends on its diameter and energy of electrons, and the deposited energy in the cluster depends on the type and energy of radiation. Conclusion: The deposited energy in cluster is the most important factor in inducing all sort of lesions on DNA molecules in tissue cells

  20. 75 FR 24706 - Agency Forms Undergoing Paperwork Reduction Act Review

    Science.gov (United States)

    2010-05-05

    ... parent consent 214 1 10/60 form. Child Clinic Visit--Case 107 1 1.5 children packet. Parent Clinic Visit...] Agency Forms Undergoing Paperwork Reduction Act Review The Centers for Disease Control and Prevention...; (4) a telephone interview focusing on pregnancy-related events and early life history (biological...

  1. Microdosimetry of 14.7 MeV neutrons in tissue equivalent phantom

    International Nuclear Information System (INIS)

    Amols, H.I.

    1974-01-01

    An experimental and theoretical investigation has been made of energy deposition in tissue by neutrons. A one-half inch diameter Rossi type proportional counter was used to simulate a one-micron sphere of tissue. Event-size spectra were taken in air, and at various positions in a large volume of tissue equivalent fluid. From the raw spectra, LET distributions were determined, as well as dose fractions for protons, alphas, and heavy ions, and dose average and track-average LET values. The shape of the D(L) vs. LET curve is found to undergo significant change in the phantom due to moderation of the neutron beam. In addition, previous calculations of LET spectra in air are shown to be in error, and theoretical RBE and OER values, based on data from this experiment are in better agreement with biological results. A two-step theoretical calculation has also been carried out. An original Monte Carlo computer code was used to calculate neutron fluences in phantom (1), which were converted to LET distributions via standard algorithms (2). Agreement with experiment is very good, both in air and in phantom. Edge effects, backscatter effects, and effects of phantom size were also studied

  2. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    Directory of Open Access Journals (Sweden)

    Rinaldo Florencio-Silva

    2015-01-01

    Full Text Available Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines and systemic (e.g., calcitonin and estrogens factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  3. Investigation of superharmonic sound propagation and imaging in biological tissues in vitro.

    Science.gov (United States)

    Ma, Qingyu; Zhang, Dong; Gong, Xiufen; Ma, Yong

    2006-04-01

    This article presents both theoretical and experimental studies on the superharmonic generation and its imaging in biological tissues. A superharmonic component is defined as a summation of the third-, fourth-, and fifth-order harmonics. A superharmonic signal is produced using an 8-mm-diam, 2.5-MHz planar piston source that is excited by eight-cycle, 2.5-MHz tone bursts. Axial and lateral field distributions of the superharmonic component and the second harmonic are first calculated based on the nonlinear KZK model and then compared with those experimentally determined at two different source pressures of 0.5 and 1 MPa. Results indicate that the amplitude of the superharmonic component can exceed that of the second harmonic, depending on the axial distance and the fundamental pressure amplitude. Also, the 3-dB beamwidth of the superharmonic component is about 23% narrower than that of the second harmonic. Additional experiments are performed in vitro using liver and fatty tissues in transmission mode and produced two-dimensional images using the fundamental, the second harmonic, and the superharmonic signals. Although the clinical applicability of this work still needs to be assessed, these results indicate that the superharmonic image quality is better than that of the other two images.

  4. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    “Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  5. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor

    Science.gov (United States)

    Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-04-01

    The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.

  6. Analysis of terahertz dielectric properties of pork tissue

    Science.gov (United States)

    Huang, Yuqing; Xie, Qiaoling; Sun, Ping

    2017-10-01

    Seeing that about 70% component of fresh biological tissues is water, many scientists try to use water models to describe the dielectric properties of biological tissues. The classical water dielectric models are Debye model, Double Debye model and Cole-Cole model. This work aims to determine a suitable model by comparing three models above with experimental data. These models are applied to fresh pork tissue. By means of least square method, the parameters of different models are fitted with the experimental data. Comparing different models on both dielectric function, the Cole-Cole model is verified the best to describe the experiments of pork tissue. The correction factor α of the Cole-Cole model is an important modification for biological tissues. So Cole-Cole model is supposed to be a priority selection to describe the dielectric properties for biological tissues in the terahertz range.

  7. Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues.

    Directory of Open Access Journals (Sweden)

    Jared B Hawkins

    Full Text Available Germinal centers (GCs are complex dynamic structures that form within lymph nodes as an essential process in the humoral immune response. They represent a paradigm for studying the regulation of cell movement in the development of complex anatomical structures. We have developed a simulation of a modified cyclic re-entry model of GC dynamics which successfully employs chemotaxis to recapitulate the anatomy of the primary follicle and the development of a mature GC, including correctly structured mantle, dark and light zones. We then show that correct single cell movement dynamics (including persistent random walk and inter-zonal crossing arise from this simulation as purely emergent properties. The major insight of our study is that chemotaxis can only achieve this when constrained by the known biological properties that cells are incompressible, exist in a densely packed environment, and must therefore compete for space. It is this interplay of chemotaxis and competition for limited space that generates all the complex and biologically accurate behaviors described here. Thus, from a single simple mechanism that is well documented in the biological literature, we can explain both higher level structure and single cell movement behaviors. To our knowledge this is the first GC model that is able to recapitulate both correctly detailed anatomy and single cell movement. This mechanism may have wide application for modeling other biological systems where cells undergo complex patterns of movement to produce defined anatomical structures with sharp tissue boundaries.

  8. Chemotaxis in densely populated tissue determines germinal center anatomy and cell motility: a new paradigm for the development of complex tissues.

    Science.gov (United States)

    Hawkins, Jared B; Jones, Mark T; Plassmann, Paul E; Thorley-Lawson, David A

    2011-01-01

    Germinal centers (GCs) are complex dynamic structures that form within lymph nodes as an essential process in the humoral immune response. They represent a paradigm for studying the regulation of cell movement in the development of complex anatomical structures. We have developed a simulation of a modified cyclic re-entry model of GC dynamics which successfully employs chemotaxis to recapitulate the anatomy of the primary follicle and the development of a mature GC, including correctly structured mantle, dark and light zones. We then show that correct single cell movement dynamics (including persistent random walk and inter-zonal crossing) arise from this simulation as purely emergent properties. The major insight of our study is that chemotaxis can only achieve this when constrained by the known biological properties that cells are incompressible, exist in a densely packed environment, and must therefore compete for space. It is this interplay of chemotaxis and competition for limited space that generates all the complex and biologically accurate behaviors described here. Thus, from a single simple mechanism that is well documented in the biological literature, we can explain both higher level structure and single cell movement behaviors. To our knowledge this is the first GC model that is able to recapitulate both correctly detailed anatomy and single cell movement. This mechanism may have wide application for modeling other biological systems where cells undergo complex patterns of movement to produce defined anatomical structures with sharp tissue boundaries.

  9. Adverse event reporting and developments in radiation biology after normal tissue injury: International Atomic Energy Agency consultation

    International Nuclear Information System (INIS)

    Chen Yuhchyau; Trotti, Andy; Coleman, C. Norman; Machtay, Mitchell; Mirimanoff, Rene O.; Hay, John; O'Brien, Peter C.; El-Gueddari, Brahim; Salvajoli, Joao V.; Jeremic, Branislav

    2006-01-01

    Purpose: Recent research has enhanced our understanding of radiation injury at the molecular-cellular and tissue levels; significant strides have occurred in standardization of adverse event reporting in clinical trials. In response, the International Atomic Energy Agency, through its Division of Human Health and its section for Applied Radiation Biology and Radiotherapy, organized a consultation meeting in Atlanta (October 2, 2004) to discuss developments in radiobiology, normal tissue reactions, and adverse event reporting. Methods and Materials: Representatives from cooperative groups of African Radiation Oncology Group, Curriculo Radioterapeutica Ibero Latino Americana, European Organization for Research and Treatment of Cancer, National Cancer Institute of Canada Clinical Trials Group, Radiation Therapy Oncology Group, and Trans-Tasman Radiation Oncology Group held the meeting discussion. Results: Representatives of major radiotherapy groups/organizations and prominent leaders in radiotherapy discussed current understanding of normal tissue radiobiologic effects, the design and implementation of future clinical and translational projects for normal tissue injury, and the standardization of adverse-event reporting worldwide. Conclusions: The consensus was to adopt NCI comprehensive adverse event reporting terminology and grading system (CTCAE v3.0) as the new standard for all cooperative group trials. Future plans included the implementation of coordinated research projects focusing on normal tissue biomarkers and data collection methods

  10. Modeling fibrous biological tissues with a general invariant that excludes compressed fibers

    Science.gov (United States)

    Li, Kewei; Ogden, Ray W.; Holzapfel, Gerhard A.

    2018-01-01

    Dispersed collagen fibers in fibrous soft biological tissues have a significant effect on the overall mechanical behavior of the tissues. Constitutive modeling of the detailed structure obtained by using advanced imaging modalities has been investigated extensively in the last decade. In particular, our group has previously proposed a fiber dispersion model based on a generalized structure tensor. However, the fiber tension-compression switch described in that study is unable to exclude compressed fibers within a dispersion and the model requires modification so as to avoid some unphysical effects. In a recent paper we have proposed a method which avoids such problems, but in this present study we introduce an alternative approach by using a new general invariant that only depends on the fibers under tension so that compressed fibers within a dispersion do not contribute to the strain-energy function. We then provide expressions for the associated Cauchy stress and elasticity tensors in a decoupled form. We have also implemented the proposed model in a finite element analysis program and illustrated the implementation with three representative examples: simple tension and compression, simple shear, and unconfined compression on articular cartilage. We have obtained very good agreement with the analytical solutions that are available for the first two examples. The third example shows the efficacy of the fibrous tissue model in a larger scale simulation. For comparison we also provide results for the three examples with the compressed fibers included, and the results are completely different. If the distribution of collagen fibers is such that it is appropriate to exclude compressed fibers then such a model should be adopted.

  11. Normal Tissue Complication Probability Analysis of Acute Gastrointestinal Toxicity in Cervical Cancer Patients Undergoing Intensity Modulated Radiation Therapy and Concurrent Cisplatin

    International Nuclear Information System (INIS)

    Simpson, Daniel R.; Song, William Y.; Moiseenko, Vitali; Rose, Brent S.; Yashar, Catheryn M.; Mundt, Arno J.; Mell, Loren K.

    2012-01-01

    Purpose: To test the hypothesis that increased bowel radiation dose is associated with acute gastrointestinal (GI) toxicity in cervical cancer patients undergoing concurrent chemotherapy and intensity-modulated radiation therapy (IMRT), using a previously derived normal tissue complication probability (NTCP) model. Methods: Fifty patients with Stage I–III cervical cancer undergoing IMRT and concurrent weekly cisplatin were analyzed. Acute GI toxicity was graded using the Radiation Therapy Oncology Group scale, excluding upper GI events. A logistic model was used to test correlations between acute GI toxicity and bowel dosimetric parameters. The primary objective was to test the association between Grade ≥2 GI toxicity and the volume of bowel receiving ≥45 Gy (V 45 ) using the logistic model. Results: Twenty-three patients (46%) had Grade ≥2 GI toxicity. The mean (SD) V 45 was 143 mL (99). The mean V 45 values for patients with and without Grade ≥2 GI toxicity were 176 vs. 115 mL, respectively. Twenty patients (40%) had V 45 >150 mL. The proportion of patients with Grade ≥2 GI toxicity with and without V 45 >150 mL was 65% vs. 33% (p = 0.03). Logistic model parameter estimates V50 and γ were 161 mL (95% confidence interval [CI] 60–399) and 0.31 (95% CI 0.04–0.63), respectively. On multivariable logistic regression, increased V 45 was associated with an increased odds of Grade ≥2 GI toxicity (odds ratio 2.19 per 100 mL, 95% CI 1.04–4.63, p = 0.04). Conclusions: Our results support the hypothesis that increasing bowel V 45 is correlated with increased GI toxicity in cervical cancer patients undergoing IMRT and concurrent cisplatin. Reducing bowel V 45 could reduce the risk of Grade ≥2 GI toxicity by approximately 50% per 100 mL of bowel spared.

  12. Exercise and Regulation of Bone and Collagen Tissue Biology.

    Science.gov (United States)

    Kjaer, Michael; Jørgensen, Niklas Rye; Heinemeier, Katja; Magnusson, S Peter

    2015-01-01

    The musculoskeletal system and its connective tissue include the intramuscular connective tissue, the myotendinous junction, the tendon, the joints with their cartilage and ligaments, and the bone; they all together play a crucial role in maintaining the architecture of the skeletal muscle, ensuring force transmission, storing energy, protecting joint surface and stability, and ensuring the transfer of muscular forces into resulting limb movement. The musculoskeletal connective tissue structure is relatively stable, but mechanical loading and subsequent mechanotransduction and molecular anabolic signaling can result in some adaptation of the connective tissue, its size, its strength, and its mechanical properties, whereby it can improve its capacity by 5-20% with regular physical activity. For several of the mechanically loaded connective tissues, only limited information regarding molecular and cellular signaling pathways and their adaptation to exercise is available. In contrast to tissue responses with exercise, lack of mechanical tissue loading through inactivity or immobilization of the human body will result in a dramatic loss of connective tissue content, structure, and tolerable load within weeks, to a degree (30-40%) that mimics that of contractile skeletal musculature. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal system in both daily activity and exercise. © 2015 Elsevier Inc. All rights reserved.

  13. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science.

    Science.gov (United States)

    Lenas, Petros; Moos, Malcolm; Luyten, Frank P

    2009-12-01

    The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has

  14. Growing tissues in real and simulated microgravity: new methods for tissue engineering.

    Science.gov (United States)

    Grimm, Daniela; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Ulbrich, Claudia; Magnusson, Nils E; Infanger, Manfred; Bauer, Johann

    2014-12-01

    Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals.

  15. Spectroscopy of Multilayered Biological Tissues for Diabetes Care

    Science.gov (United States)

    Yudovsky, Dmitry

    Neurological and vascular complications of diabetes mellitus are known to cause foot ulceration in diabetic patients. Present clinical screening techniques enable the diabetes care provider to triage treatment by identifying diabetic patients at risk of foot ulceration. However, these techniques cannot effectively identify specific areas of the foot at risk of ulceration. This study aims to develop non-invasive optical techniques for accurate assessment of tissue health and viability with spatial resolution on the order of 1 mm². The thesis can be divided into three parts: (1) the use of hyperspectral tissue oximetry to detect microcirculatory changes prior to ulcer formation, (2) development of a two-layer tissue spectroscopy algorithm and its application to detection of callus formation or epidermal degradation prior to ulceration, and (3) multi-layered tissue fluorescence modeling for identification of bacterial growth in existing diabetic foot wounds. The first part of the dissertation describes a clinical study in which hyperspectral tissue oximetry was performed on multiple diabetic subjects at risk of ulceration. Tissue oxyhemoglobin and deoxyhemoglobin concentrations were estimated using the Modified Beer-Lambert law. Then, an ulcer prediction algorithm was developed based on retrospective analysis of oxyhemoglobin and deoxyhemoglobin concentrations in sites that were known to ulcerate. The ulcer prediction algorithm exhibited a large sensitivity but low specificity of 95 and 80%, respectively. The second part of the dissertation revisited the hyperspectral data presented in part one with a new and novel two-layer tissue spectroscopy algorithm. This algorithm was able to detect not only oxyhemoglobin and deoxyhemoglobin concentrations, but also the thickness of the epidermis, and the tissue's scattering coefficient. Specifically, change in epidermal thickness provided insight into the formation of diabetic foot ulcers over time. Indeed, callus formation or

  16. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.

    Science.gov (United States)

    Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-03-01

    Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc.

  17. A geometrically controlled rigidity transition in a model for confluent 3D tissues

    Science.gov (United States)

    Merkel, Matthias; Manning, M. Lisa

    2018-02-01

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.

  18. Novel joint TOA/RSSI-based WCE location tracking method without prior knowledge of biological human body tissues.

    Science.gov (United States)

    Ito, Takahiro; Anzai, Daisuke; Jianqing Wang

    2014-01-01

    This paper proposes a novel joint time of arrival (TOA)/received signal strength indicator (RSSI)-based wireless capsule endoscope (WCE) location tracking method without prior knowledge of biological human tissues. Generally, TOA-based localization can achieve much higher localization accuracy than other radio frequency-based localization techniques, whereas wireless signals transmitted from a WCE pass through various kinds of human body tissues, as a result, the propagation velocity inside a human body should be different from one in free space. Because the variation of propagation velocity is mainly affected by the relative permittivity of human body tissues, instead of pre-measurement for the relative permittivity in advance, we simultaneously estimate not only the WCE location but also the relative permittivity information. For this purpose, this paper first derives the relative permittivity estimation model with measured RSSI information. Then, we pay attention to a particle filter algorithm with the TOA-based localization and the RSSI-based relative permittivity estimation. Our computer simulation results demonstrates that the proposed tracking methods with the particle filter can accomplish an excellent localization accuracy of around 2 mm without prior information of the relative permittivity of the human body tissues.

  19. Normal tissue dose-effect models in biological dose optimisation

    International Nuclear Information System (INIS)

    Alber, M.

    2008-01-01

    Sophisticated radiotherapy techniques like intensity modulated radiotherapy with photons and protons rely on numerical dose optimisation. The evaluation of normal tissue dose distributions that deviate significantly from the common clinical routine and also the mathematical expression of desirable properties of a dose distribution is difficult. In essence, a dose evaluation model for normal tissues has to express the tissue specific volume effect. A formalism of local dose effect measures is presented, which can be applied to serial and parallel responding tissues as well as target volumes and physical dose penalties. These models allow a transparent description of the volume effect and an efficient control over the optimum dose distribution. They can be linked to normal tissue complication probability models and the equivalent uniform dose concept. In clinical applications, they provide a means to standardize normal tissue doses in the face of inevitable anatomical differences between patients and a vastly increased freedom to shape the dose, without being overly limiting like sets of dose-volume constraints. (orig.)

  20. Dynamics of anisotropic tissue growth

    Energy Technology Data Exchange (ETDEWEB)

    Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de

    2008-06-15

    We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.

  1. Metabolism and toxicological analysis of synthetic cannabinoids in biological fluids and tissues.

    Science.gov (United States)

    Presley, B C; Gurney, S M R; Scott, K S; Kacinko, S L; Logan, B K

    2016-07-01

    Synthetic cannabinoids, which began proliferating in the United States in 2009, have gone through numerous iterations of modification to their chemical structures. More recent generations of compounds have been associated with significant adverse outcomes following use, including cognitive and psychomotor impairment, seizures, psychosis, tissue injury and death. These effects increase the urgency for forensic and public health laboratories to develop methods for the detection and identification of novel substances, and apply these to the determination of their metabolism and disposition in biological samples. This comprehensive review describes the history of the appearance of the drugs in the United States, discusses the naming conventions emerging to designate new structures, and describes the most prominent new compounds linked to the adverse effects now associated with their use. We review in depth the metabolic pathways that have been elucidated for the major members of each of the prevalent synthetic cannabinoid drug subclasses, the enzyme systems responsible for their metabolism, and the use of in silico approaches to assist in predicting and identifying the metabolites of novel compounds and drug subclasses that will continue to appear. Finally, we review and critique analytical methods applied to the detection of the drugs and their metabolites, including immunoassay screening, and liquid chromatography mass spectrometry confirmatory techniques applied to urine, serum, whole blood, oral fluid, hair, and tissues. Copyright © 2016 Central Police University.

  2. Neutron interactions with biological tissue. Progress report, December 1, 1993--November 30, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    An attempt is made to obtain information about the physical stage of neutron interactions with tissue through secondary charged particles. The authors use theoretical calculations whose input includes neutron cross section data; range, stopping power, ion yield, and straggling information; and geometrical properties. Outputs are initial and slowing-down spectra of charged particles, kerma factors, average values of quality factors, microdosimetric spectra, and integral microdosimetric parameters such as bar y F , bar y D , y * . Since it has become apparent that nanometer site sizes are more relevant to radiobiological effects, the calculations of event size spectra and their parameters have been extended to these smaller diameters. This information is basic to radiological physics, radiation biology, radiation protection of workers, and standards for neutron dose measurement

  3. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    Science.gov (United States)

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  4. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment

    OpenAIRE

    Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A.; Roland, Kenneth L.; Curtiss, Roy

    2008-01-01

    We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain χ8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis a...

  5. Connective tissue activation. XXXII. Structural and biologic characteristics of mesenchymal cell-derived connective tissue activating peptide-V.

    Science.gov (United States)

    Cabral, A R; Cole, L A; Walz, D A; Castor, C W

    1987-12-01

    Connective tissue activating peptide-V (CTAP-V) is a single-chain, mesenchymal cell-derived anionic protein with large and small molecular forms (Mr of 28,000 and 16,000, respectively), as defined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proteins have similar specific activities with respect to stimulation of hyaluronic acid and DNA formation in human synovial fibroblast cultures. S-carboxymethylation or removal of sialic acid residues did not modify CTAP-V biologic activity. Rabbit antibodies raised separately against each of the purified CTAP-V proteins reacted, on immunodiffusion and on Western blot, with each antigen and neutralized mitogenic activity. The amino-terminal amino acid sequence of the CTAP-V proteins, determined by 2 laboratories, confirmed their structural similarities. The amino-terminal sequence through 37 residues was demonstrated for the smaller protein. The first 10 residues of CTAP-V (28 kd) were identical to the N-terminal decapeptide of CTAP-V (16 kd). The C-terminal sequence, determined by carboxypeptidase Y digestion, was the same for both CTAP-V molecular species. The 2 CTAP-V peptides had similar amino acid compositions, whether residues were expressed as a percent of the total or were normalized to mannose. Reduction of native CTAP-V protein released sulfhydryl groups in a protein:disulfide ratio of 1:2; this suggests that CTAP-V contains 2 intramolecular disulfide bonds. Clearly, CTAP-V is a glycoprotein. The carbohydrate content of CTAP-V (16 kd) and CTAP-V (28 kd) is 27% and 25%, respectively. CTAP-V may have significance in relation to autocrine mechanisms for growth regulation of connective tissue cells and other cell types.

  6. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    Science.gov (United States)

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  7. Fertility preservation in children and young adults undergoing treatment for malignancy

    International Nuclear Information System (INIS)

    Al-Fozan, Haya M.; Tulandi, Togas

    2004-01-01

    Advances in cancer therapy have improved the long term survival of young patients suffering from malignancies. However adverse effects of the treatment are sterlity and loss of gonadal function especially in females. Preservation of fertility in males by sperm freezing is more practical and already established. For young women undergoing cancer treatment , the availability of preserving the gonadal function and fertility has just begun.Today we can crypreserve the oocytes, the embryos or rhe ovarian tissue and those undergoing pelvic irradtion, laparascopic can be cnsidered. Because women with non-gynelical malagnencies seek advice from a general surgeon or a medical onconologist, increasing awawreness of physician and general public is recommended. (author)

  8. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues.

    Science.gov (United States)

    Duan, Xiaojie; Fu, Tian-Ming; Liu, Jia; Lieber, Charles M

    2013-08-01

    Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricated multielectrode arrays (MEAs) and planar FETs, recorded action potential and field potential signals with high signal-to-noise ratio and temporal resolution from cultured neurons, cultured cardiomyocytes, acute brain slices and whole animal hearts. Measurements made with modulation-doped nanoscale active channel SiNW FETs demonstrate that signals recorded from cardiomyocytes are highly localized and have improved time resolution compared to larger planar detectors. In addition, several novel three-dimensional (3D) transistor probes, which were realized using advanced nanowire synthesis methods, have been implemented for intracellular recording. These novel probes include (i) flexible 3D kinked nanowire FETs, (ii) branched intracellular nanotube SiNW FETs, and (iii) active silicon nanotube FETs. Following phospholipid modification of the probes to mimic the cell membrane, the kinked nanowire, branched intracellular nanotube and active silicon nanotube FET probes recorded full-amplitude intracellular action potentials from spontaneously firing cardiomyocytes. Moreover, these probes demonstrated the capability of reversible, stable, and long-term intracellular recording, thus indicating the minimal invasiveness of the new nanoscale structures and suggesting biomimetic internalization via the phospholipid modification. Simultaneous, multi-site intracellular recording from both single cells and cell networks were also readily achieved by interfacing independently addressable nanoprobe devices with cells. Finally, electronic and biological systems have been seamlessly merged in 3D

  10. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  11. Analysis of biological tissues in infant chest for the development of an equivalent radiographic phantom

    International Nuclear Information System (INIS)

    Pina, D. R.; Souza, Rafael T. F.; Duarte, Sergio B.; Alvarez, Matheus; Miranda, Jose R. A.

    2012-01-01

    Purpose: The main purpose of the present study was to determine the amounts of different tissues in the chest of the newborn patient (age ≤1 year), with the aim of developing a homogeneous phantom chest equivalent. This type of phantom is indispensable in the development of optimization procedures for radiographic techniques, including dosimetric control, which is a crucial aspect of pediatric radiology. The authors present a systematic set of procedures, including a computational algorithm, to estimate the amounts of tissues and thicknesses of the corresponding simulator material plates used to construct the phantom. Methods: The Gaussian fit of computed tomographic (CT) analysis was applied to classify and quantify different biological tissues. The methodology is summarized with a computational algorithm, which was used to quantify tissues through automated CT analysis. The thicknesses of the equivalent homogeneous simulator material plates were determined to construct the phantom. Results: A total of 180 retrospective CT examinations with anterior-posterior diameter values ranging 8.5-13.0 cm were examined. The amounts of different tissues were evaluated. The results provided elements to construct a phantom to simulate the infant chest in the posterior-anterior or anterior-posterior (PA/AP) view. Conclusions: To our knowledge, this report represents the first demonstration of an infant chest phantom dedicated to the radiology of children younger than one year. This phantom is a key element in the development of clinical charts for optimizing radiographic technique in pediatric patients. Optimization procedures for nonstandard patients were reported previously [Pina et al., Phys. Med. Biol. 49, N215-N226 (2004) and Pina et al., Appl. Radiat. Isot. 67, 61-69 (2009)]. The constructed phantom represents a starting point to obtain radiologic protocols for the infant patient.

  12. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  13. Original paper Influence of biologic therapy on growth in children with chronic inflammatory connective tissue diseases

    Directory of Open Access Journals (Sweden)

    Joanna Świdrowska

    2015-04-01

    Full Text Available Objectives: Connective tissue diseases (CTD are a heterogeneous group of chronic inflammatory conditions. One of their complications in children is the inhibition of growth velocity. Due to direct inflammation within the musculoskeletal system as well as glucocorticoid therapy, this feature is the most essential and is mainly expressed in the course of juvenile spondyloarthropathies and juvenile idiopathic arthritis (JIA. Duration of the disease, but predominantly the activity of the inflammatory process, seems to have a significant impact on the abnormal growth profile in children. Effective biological therapy leads to improvement of the patient’s clinical condition and also, through the extinction of disease activity and reduction of daily doses of glucocorticosteroids (GCS, it gradually accelerates and normalizes the growth rate in children with CTD. Our objective was to evaluate the impact of biological therapy on growth in children with chronic inflammatory CTD. Material and methods: Data from 24 patients with CTD treated with tumor necrosis factor--blockers (etanercept, adalimumab, golimumab and an interleukin-6 receptor blocker (tocilizumab were reviewed at the time of disease onset, biological treatment initiation and at least 12 up to 24 months onwards. The rate of growth was correlated with the daily doses of GCS, and the type and duration of biological therapy. Results : Patient median height, measured as the change in height standard deviation score, was 0.36 ±1.07 at disease onset and –0.13 ±1.02 at biologic therapy initiation. The growth velocity accelerated in 17 patients (70.1% during the biological treatment. Mean height-SDS improvement between biological treatment initiation up to two years was 0.51 ±0.58. In 47% of patients daily doses of GCS were reduced to 0 mg/kg/day. Conclusions : In the treatment of CTD, biological agents restore growth velocity not only by inflammation inhibition, but also through limiting GCS

  14. Thulium fiber laser for the use in low-invasive endoscopic and robotic surgery of soft biological tissues

    Science.gov (United States)

    Michalska, M.; Brojek, W.; Rybak, Z.; Sznelewski, P.; Mamajek, M.; Gogler, S.; Swiderski, J.

    2016-12-01

    An all-fiber, diode-pumped, continuous-wave Tm3+-doped fiber laser operated at a wavelength of 1.94 μm was developed. 37.4 W of output power with a slope efficiency as high as 57% with respect to absorbed pump power at 790 nm was demonstrated. The laser output beam quality factor M2 was measured to be 1.2. The output beam was very stable with power fluctuations surgery of soft biological tissues.

  15. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  16. Fluorodeoxyglucose positron emission tomography of soft tissue tumours: is a non-invasive determination of biological activity possible?

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, M.; Hartwig, E.; Sarkar, M.R.; Schultheiss, M. [Department of Trauma, Hand- and Reconstructive Surgery, University Hospital Ulm (Germany); Brecht-Krauss, D.; Guhlmann, A.; Diederichs, C.G.; Kotzerke, J.; Reske, S.N. [Department of Nuclear Medicine, University Hospital Ulm (Germany); Heymer, B. [Department of Pathology, University Hospital Ulm (Germany)

    1999-06-01

    Since musculoskeletal tumours comprise a large heterogeneous group of entities with different biological behaviour, clinical diagnosis of such lesions can be very difficult. The aim of this prospective study was to assess the usefulness of 2-[F-18]-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) in the non-invasive evaluation of soft tissue tumours. One hundred and two patients with suspected soft tissue neoplasms were investigated by FDG-PET. The uptake of FDG was evaluated semiquantitatively by determining the tumour to background ratio (TBR). All patients underwent biopsy, resulting in the histological detection of 39 high-grade sarcomas, 16 intermediate-grade sarcomas, 11 low-grade sarcomas, 25 benign tumours, 10 tumour-like lesions such as spontaneous myositis ossificans (n = 6) and one non-Hodgkin lymphoma. All lesions except for two lipomas disclosed an increased FDG uptake. Sarcomas showed significantly higher TBR values than latent or active benign lesions (P<0.001) and aggressive benign lesions (P<0.05). Using a TBR cut-off level of 3.0 for malignancy, sensitivity of FDG-PET was 97.0%, specificity 65.7% and accuracy 86.3%. From our data there are three main conclusions: (1) Except for patients with pseudotumoral myositis ossificans, lesions with a TBR >3 were sarcomas (91.7%) or aggressive benign tumours (8.3%). (2) Tumours with a TBR <1.5 were latent or active benign lesions, exclusively. (3) The group with intermediate TBR values (<3 and >1.5) comprised primarily latent or active benign lesions, but also four aggressive benign tumours and two low-grade sarcomas. Our data suggest that FDG-PET represents a useful tool for the evaluation of the biological activity of soft tissue neoplasms. (orig.) With 5 figs., 2 tabs., 26 refs.

  17. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment.

    Science.gov (United States)

    Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A; Roland, Kenneth L; Curtiss, Roy

    2008-07-08

    We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain chi8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 P(R) promoter. An arabinose-regulated c2 gene is present in the chromosome. chi8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of P(R), driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic alpha-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with chi8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable.

  18. Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue.

    Science.gov (United States)

    Shiba, Kenji; Nagato, Tomohiro; Tsuji, Toshio; Koshiji, Kohji

    2008-07-01

    This paper reports on the electromagnetic influences on the analysis of biological tissue surrounding a prototype energy transmission system for a wireless capsule endoscope. Specific absorption rate (SAR) and current density were analyzed by electromagnetic simulator in a model consisting of primary coil and a human trunk including the skin, fat, muscle, small intestine, backbone, and blood. First, electric and magnetic strength in the same conditions as the analytical model were measured and compared to the analytical values to confirm the validity of the analysis. Then, SAR and current density as a function of frequency and output power were analyzed. The validity of the analysis was confirmed by comparing the analytical values with the measured ones. The SAR was below the basic restrictions of the International Commission on Nonionizing Radiation Protection (ICNIRP). At the same time, the results for current density show that the influence on biological tissue was lowest in the 300-400 kHz range, indicating that it was possible to transmit energy safely up to 160 mW. In addition, we confirmed that the current density has decreased by reducing the primary coil's current.

  19. Fluorescence confocal endomicroscopy in biological imaging

    Science.gov (United States)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    resolution. In rodent disease models, in vivo endomicroscopy with appropriate fluorescent agents allowed examination of thrombosis formation, tumour microvasculature and liver metastases, diagnosis and staging of ulcerative colitis, liver necrosis and glomerulonephritis. Miniaturised confocal endomicroscopy allows rapid in vivo molecular and subsurface microscopy of normal and pathologic tissue at high resolution in small and large whole animal models. Fluorescein endomicroscopy has recently been introduced into the medical device market as a clinical imaging tool in GI endoscopy and is undergoing clinical evaluation in laparoscopic surgery. This medical usage is encouraging in-situ endomicroscopy as an important pre-clinical research tool to observe microscopic and molecular system biologic events in vivo in animal models for various human diseases.

  20. Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Teixeira Rosa, Ramon Gabriel; Salvio, Ana Gabriela; Pratavieira, Sebastião; Kurachi, Cristina

    2017-12-01

    Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics.

  1. Third order harmonic imaging for biological tissues using three phase-coded pulses.

    Science.gov (United States)

    Ma, Qingyu; Gong, Xiufen; Zhang, Dong

    2006-12-22

    Compared to the fundamental and the second harmonic imaging, the third harmonic imaging shows significant improvements in image quality due to the better resolution, but it is degraded by the lower sound pressure and signal-to-noise ratio (SNR). In this study, a phase-coded pulse technique is proposed to selectively enhance the sound pressure of the third harmonic by 9.5 dB whereas the fundamental and the second harmonic components are efficiently suppressed and SNR is also increased by 4.7 dB. Based on the solution of the KZK nonlinear equation, the axial and lateral beam profiles of harmonics radiated from a planar piston transducer were theoretically simulated and experimentally examined. Finally, the third harmonic images using this technique were performed for several biological tissues and compared with the images obtained by the fundamental and the second harmonic imaging. Results demonstrate that the phase-coded pulse technique yields a dramatically cleaner and sharper contrast image.

  2. Concise Review: Biomimetic Functionalization of Biomaterials to Stimulate the Endogenous Healing Process of Cartilage and Bone Tissue.

    Science.gov (United States)

    Taraballi, Francesca; Bauza, Guillermo; McCulloch, Patrick; Harris, Josh; Tasciotti, Ennio

    2017-12-01

    Musculoskeletal reconstruction is an ongoing challenge for surgeons as it is required for one out of five patients undergoing surgery. In the past three decades, through the close collaboration between clinicians and basic scientists, several regenerative strategies have been proposed. These have emerged from interdisciplinary approaches that bridge tissue engineering with material science, physiology, and cell biology. The paradigm behind tissue engineering is to achieve regeneration and functional recovery using stem cells, bioactive molecules, or supporting materials. Although plenty of preclinical solutions for bone and cartilage have been presented, only a few platforms have been able to move from the bench to the bedside. In this review, we highlight the limitations of musculoskeletal regeneration and summarize the most relevant acellular tissue engineering approaches. We focus on the strategies that could be most effectively translate in clinical practice and reflect on contemporary and cutting-edge regenerative strategies in surgery. Stem Cells Translational Medicine 2017;6:2186-2196. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A

    2011-01-01

    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...

  4. Tissue Banking: Current procedures, ethical consideration and ...

    African Journals Online (AJOL)

    Tissue banking provides safe and effective cells and tissues for transplantation in reconstruction surgery. Bone, amnion, skin, cartilage, heart valves and xenograft tissues are the most commonly used biological tissues. Acquisition of tissue is dependent on elaborate donor screening criteria based on medical and social ...

  5. Tumor‐associated DNA mutation detection in individuals undergoing colonoscopy

    OpenAIRE

    Fleshner, Phillip; Braunstein, Glenn D.; Ovsepyan, Gayane; Tonozzi, Theresa R.; Kammesheidt, Anja

    2017-01-01

    Abstract The majority of colorectal cancers (CRC) harbor somatic mutations and epigenetic modifications in the tumor tissue, and some of these mutations can be detected in plasma as circulating tumor DNA (ctDNA). Precancerous colorectal lesions also contain many of these same mutations. This study examined plasma for ctDNA from patients undergoing a screening or diagnostic colonoscopy to determine the sensitivity and specificity of the ctDNA panel for detecting CRC and precancerous lesions. T...

  6. Meat Science and Muscle Biology Symposium: manipulating meat tenderness by increasing the turnover of intramuscular connective tissue.

    Science.gov (United States)

    Purslow, P P; Archile-Contreras, A C; Cha, M C

    2012-03-01

    Controlled reduction of the connective tissue contribution to cooked meat toughness is an objective that would have considerable financial impact in terms of added product value. The amount of intramuscular connective tissue in a muscle appears connected to its in vivo function, so reduction of the overall connective tissue content is not thought to be a viable target. However, manipulation of the state of maturity of the collagenous component is a biologically viable target; by increasing connective tissue turnover, less mature structures can be produced that are functional in vivo but more easily broken down on cooking at temperatures above 60°C, thus improving cooked meat tenderness. Recent work using cell culture models of fibroblasts derived from muscle and myoblasts has identified a range of factors that alter the activity of the principal enzymes responsible for connective tissue turnover, the matrix metalloproteinases (MMP). Fibroblasts cultured from 3 different skeletal muscles from the same animal show different cell proliferation and MMP activity, which may relate to the different connective tissue content and architecture in functionally different muscles. Expression of MMP by fibroblasts is increased by vitamins that can counter the negative effects of oxidative stress on new collagen synthesis. Preliminary work using in situ zymography of myotubes in culture also indicates increased MMP activity in the presence of epinephrine and reactive oxidative species. Comparison of the relative changes in MMP expression from muscle cells vs. fibroblasts shows that myoblasts are more responsive to a range of stimuli. Muscle cells are likely to produce more of the total MMP in muscle tissue as a whole, and the expression of latent forms of the enzymes (i.e., pro-MMP) may vary between oxidative and glycolytic muscle fibers within the same muscle. The implication is that the different muscle fiber composition of different muscles eaten as meat may influence the

  7. Biology and Mechanics of Blood Flows Part I: Biology

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part I of this two-volume sequence, Biology, addresses the nanoscopic and microscopic scales. The nanoscale corresponds to the scale of biochemical reaction cascades involved in cell adaptation to mechanical stresses among other stimuli. The microscale is the scale of stress-induced tissue remodeling associated with acute or chronic loadings. The cardiovascular system, like any physiological system, has a complicated three-dimensional structure and composition. Its time dependent behavior is regulated, and this complex system has many components. In this authoritative work, the author provides a survey of relevant cell components and processes, with detailed coverage of the electrical and mechanical behaviors of vascular cells, tissues, and organs. Because the behaviors of vascular cells and tissues are tightly coupl...

  8. Studying cytokinesis in Drosophila epithelial tissues.

    Science.gov (United States)

    Pinheiro, D; Bellaïche, Y

    2017-01-01

    Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Photoacoustic contrast imaging of biological tissues with nanodiamonds fabricated for high near-infrared absorbance.

    Science.gov (United States)

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Su, Long-Jyun; Ren, Shenqiang; Chang, Huan-Cheng; Yang, Xinmai; Forrest, M Laird

    2013-02-01

    Radiation-damaged nanodiamonds (DNDs) are potentially ideal optical contrast agents for photoacoustic (PA) imaging in biological tissues due to their low toxicity and high optical absorbance. PA imaging contrast agents have been limited to quantum dots and gold particles, since most existing carbon-based nanoparticles, including fluorescent nanodiamonds, do not have sufficient optical absorption in the near-infrared (NIR) range. A new DND by He+ ion beam irradiation with very high NIR absorption was synthesized. These DNDs produced a 71-fold higher PA signal on a molar basis than similarly dimensioned gold nanorods, and 7.1 fmol of DNDs injected into rodents could be clearly imaged 3 mm below the skin surface with PA signal enhancement of 567% using an 820-nm laser wavelength.

  10. THz near-field imaging of biological tissues employing synchrotronradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried,Daniel

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  11. The Chernobyl Tissue Bank — A Repository for Biomaterial and Data Used in Integrative and Systems Biology Modeling the Human Response to Radiation

    OpenAIRE

    Thomas, Geraldine; Unger, Kristian; Krznaric, Marko; Galpine, Angela; Bethel, Jackie; Tomlinson, Christopher; Woodbridge, Mark; Butcher, Sarah

    2012-01-01

    The only unequivocal radiological effect of the Chernobyl accident on human health is the increase in thyroid cancer in those exposed in childhood or early adolescence. In response to the scientific interest in studying the molecular biology of thyroid cancer post Chernobyl, the Chernobyl Tissue Bank (CTB: www.chernobyltissuebank.com) was established in 1998. Thus far it is has collected biological samples from 3,861 individuals, and provided 27 research projects with 11,254 samples. The CTB ...

  12. Cell Division and Evolution of Biological Tissues

    Science.gov (United States)

    Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun

    A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter

  13. Exercise and Regulation of Bone and Collagen Tissue Biology

    DEFF Research Database (Denmark)

    Kjaer, Michael; Jørgensen, Niklas Rye; Heinemeier, Katja

    2015-01-01

    The musculoskeletal system and its connective tissue include the intramuscular connective tissue, the myotendinous junction, the tendon, the joints with their cartilage and ligaments, and the bone; they all together play a crucial role in maintaining the architecture of the skeletal muscle, ensur...

  14. Neutron activation analysis of trace elements in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Velandia, J A; Perkons, A K

    1974-01-01

    Thermal Neutron Activation Analysis with Instrumental Ge(Li) Gamma Spectrometry was used to determine the amounts of more than 30 trace constituents in heart tissue of rats and kidney tissue of rabbits. The results were confirmed by a rapid ion-exchange group separation method in the initial stages of the experiments. The samples were exposed to thermal neutrons for periods between 3 minutes and 14 hours. Significant differences in the amounts and types of trace elements in the two different tissue types are apparent, however, are probably due to specific diets. Tables of relevant nuclear data, standard concentrations, radiochemical separation recoveries, and quantitative analytical results are presented. The ion-exchange group separation scheme and typical examples of the instrumental gamma ray spectra are shown. The techniques developed in this study are being used for a large scale constituent survey of various diseased and healthy human tissues.

  15. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Nitro-fatty acid pharmacokinetics in the adipose tissue compartment.

    Science.gov (United States)

    Fazzari, Marco; Khoo, Nicholas K H; Woodcock, Steven R; Jorkasky, Diane K; Li, Lihua; Schopfer, Francisco J; Freeman, Bruce A

    2017-02-01

    Electrophilic nitro-FAs (NO 2 -FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO 2 -FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[ 14 C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO 2 -FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO 2 -OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO 2 -FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO 2 -OA-treated mice. This pattern of NO 2 -FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Real-time Visualization of Tissue Dynamics during Embryonic Development and Malignant Transformation

    Science.gov (United States)

    Yamada, Kenneth

    Tissues undergo dramatic changes in organization during embryonic development, as well as during cancer progression and invasion. Recent advances in microscopy now allow us to visualize and track directly the dynamic movements of tissues, their constituent cells, and cellular substructures. This behavior can now be visualized not only in regular tissue culture on flat surfaces (`2D' environments), but also in a variety of 3D environments that may provide physiological cues relevant to understanding dynamics within living organisms. Acquisition of imaging data using various microscopy modalities will provide rich opportunities for determining the roles of physical factors and for computational modeling of complex processes in living tissues. Direct visualization of real-time motility is providing insight into biology spanning multiple spatio-temporal scales. Many cells in our body are known to be in contact with connective tissue and other forms of extracellular matrix. They do so through microscopic cellular adhesions that bind to matrix proteins. In particular, fluorescence microscopy has revealed that cells dynamically probe and bend the matrix at the sites of cell adhesions, and that 3D matrix architecture, stiffness, and elasticity can each regulate migration of the cells. Conversely, cells remodel their local matrix as organs form or tumors invade. Cancer cells can invade tissues using microscopic protrusions that degrade the surrounding matrix; in this case, the local matrix protein concentration is more important for inducing the micro-invasive protrusions than stiffness. On the length scales of tissues, transiently high rates of individual cell movement appear to help establish organ architecture. In fact, isolated cells can self-organize to form tissue structures. In all of these cases, in-depth real-time visualization will ultimately provide the extensive data needed for computer modeling and for testing hypotheses in which physical forces interact

  18. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, Helene, E-mail: helene.rahn@gmail.com [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany); Alexiou, Christoph [ENT-Department, Section for Experimental Oncology and Nanomedicine (Else Kröner-Fresenius-Stiftungsprofessur), University Hospital Erlangen, Waldstraße 1, Erlangen 91054 (Germany); Trahms, Lutz [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, Berlin 10587 (Germany); Odenbach, Stefan [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany)

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration. - Highlights: • Local cancer treatments are promising in reducing negative side effects occurring during conventional chemotherapy. • The nanoparticles play an important role in delivering drugs to the designated area during local cancer treatments as magnetic drug targeting. • We study the nanoparticles distribution in tumor tissue after magnetic drug targeting with X-ray computed tomography. • We achieved a 3-dimensional quantification of the nanoparticles content in tumor tissue out of digital tomographic data.

  19. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens

    Science.gov (United States)

    Cors, J. F.; Lovchik, R. D.; Delamarche, E.; Kaigala, G. V.

    2014-03-01

    The microfluidic probe (MFP) is a non-contact, scanning microfluidic technology for local (bio)chemical processing of surfaces based on hydrodynamically confining nanoliter volumes of liquids over tens of micrometers. We present here a compact MFP (cMFP) that can be used on a standard inverted microscope and assist in the local processing of tissue sections and biological specimens. The cMFP has a footprint of 175 × 100 × 140 mm3 and can scan an area of 45 × 45 mm2 on a surface with an accuracy of ±15 μm. The cMFP is compatible with standard surfaces used in life science laboratories such as microscope slides and Petri dishes. For ease of use, we developed self-aligned mounted MFP heads with standardized "chip-to-world" and "chip-to-platform" interfaces. Switching the processing liquid in the flow confinement is performed within 90 s using a selector valve with a dead-volume of approximately 5 μl. We further implemented height-compensation that allows a cMFP head to follow non-planar surfaces common in tissue and cellular ensembles. This was shown by patterning different macroscopic copper-coated topographies with height differences up to 750 μm. To illustrate the applicability to tissue processing, 5 μm thick M000921 BRAF V600E+ melanoma cell blocks were stained with hematoxylin to create contours, lines, spots, gradients of the chemicals, and multiple spots over larger areas. The local staining was performed in an interactive manner using a joystick and a scripting module. The compactness, user-friendliness, and functionality of the cMFP will enable it to be adapted as a standard tool in research, development and diagnostic laboratories, particularly for the interaction with tissues and cells.

  20. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    Science.gov (United States)

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (Pepithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  1. Expression of transcription factors Slug in the lens epithelial cells undergoing epithelial-mesenchymal transition induced by connective tissue growth factor

    Directory of Open Access Journals (Sweden)

    Ying-Na Wang

    2015-10-01

    Full Text Available AIM:To investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs undergoing epithelial-mesenchymal transition (EMT induced by connective tissue growth factor (CTGF.METHODS: HLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL or without CTGF (control for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (α-SMA were further determined by Western blot analysis. RESULTS: HLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64±0.11, 1.96 ±0.03, 3.12 ±0.10, and 4.08±0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, PCONCLUSION: Transcription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro.

  2. Radiation biology. Chapter 20

    Energy Technology Data Exchange (ETDEWEB)

    Wondergem, J. [International Atomic Energy Agency, Vienna (Austria)

    2014-09-15

    Radiation biology (radiobiology) is the study of the action of ionizing radiations on living matter. This chapter gives an overview of the biological effects of ionizing radiation and discusses the physical, chemical and biological variables that affect dose response at the cellular, tissue and whole body levels at doses and dose rates relevant to diagnostic radiology.

  3. Multi-tissue RNA-seq and transcriptome characterisation of the spiny dogfish shark (Squalus acanthias) provides a molecular tool for biological research and reveals new genes involved in osmoregulation

    DEFF Research Database (Denmark)

    Chana Munoz, Andres; Jendroszek, Agnieszka; Sønnichsen, Malene

    2017-01-01

    The spiny dogfish shark (Squalus acanthias) is one of the most commonly used cartilaginous fishes in biological research, especially in the fields of nitrogen metabolism, ion transporters and osmoregulation. Nonetheless, transcriptomic data for this organism is scarce. In the present study, a multi......-tissue RNA-seq experiment and de novo transcriptome assembly was performed in four different spiny dogfish tissues (brain, liver, kidney and ovary), providing an annotated sequence resource. The characterization of the transcriptome greatly increases the scarce sequence information for shark species. Reads...... and provides a new molecular tool to assist biological research in cartilaginous fishes....

  4. Side-by-Side Comparison of the Biological Characteristics of Human Umbilical Cord and Adipose Tissue-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Hu

    2013-01-01

    Full Text Available Both human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs have been explored as attractive mesenchymal stem cells (MSCs sources, but very few parallel comparative studies of these two cell types have been made. We designed a side-by-side comparative study by isolating MSCs from the adipose tissue and umbilical cords from mothers delivering full-term babies and thus compared the various biological aspects of ASCs and UC-MSCs derived from the same individual, in one study. Both types of cells expressed cell surface markers characteristic of MSCs. ASCs and UC-MSCs both could be efficiently induced into adipocytes, osteoblasts, and neuronal phenotypes. While there were no significant differences in their osteogenic differentiation, the adipogenesis of ASCs was more prominent and efficient than UC-MSCs. In the meanwhile, ASCs responded better to neuronal induction methods, exhibiting the higher differentiation rate in a relatively shorter time. In addition, UC-MSCs exhibited a more prominent secretion profile of cytokines than ASCs. These results indicate that although ASCs and UC-MSCs share considerable similarities in their immunological phenotype and pluripotentiality, certain biological differences do exist, which might have different implications for future cell-based therapy.

  5. Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects.

    Science.gov (United States)

    Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V

    2015-09-01

    The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as

  6. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  7. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

    Science.gov (United States)

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R

    2015-07-06

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

  8. Biological therapy of strontium-substituted bioglass for soft tissue wound-healing: responses to oxidative stress in ovariectomised rats.

    Science.gov (United States)

    Jebahi, S; Oudadesse, H; Jardak, N; Khayat, I; Keskes, H; Khabir, A; Rebai, T; El Feki, H; El Feki, A

    2013-07-01

    New synthetic biomaterials are constantly being developed for wound repair and regeneration. Bioactive glasses (BG) containing strontium have shown successful applications in tissue engineering account of their biocompatibility and the positive biological effects after implantation. This study aimed to assess whether BG-Sr was accepted by the host tissue and to characterize oxidative stress biomarker and antioxidant enzyme profiles during muscle and skin healing. Wistar rats were divided into five groups (six animals per group): the group (I) was used as negative control (T), after ovariectomy, groups II, III, IV and V were used respectively as positive control (OVX), implanted tissue with BG (OVX-BG), BG-Sr (OVX-BG-Sr) and presented empty defects (OVX-NI). Soft tissues surrounding biomaterials were used to estimate superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA) concentration. Our results show that 60 days after operation, treatment of rats with BG-Sr significantly increased MDA concentration and caused an increase of SOD, CAT and GPx activities in both skin and muscular tissues. BG-Sr revealed maturation of myotubes followed a normal appearance of muscle regenerated with high density and mature capillary vessels. High wound recovery with complete re-epithelialization and regeneration of skin was observed. The results demonstrate that the protective action against reactive oxygen species (ROS) was clearly observed in soft tissue surrounding BG-Sr. Moreover, the potential use of BG-Sr rapidly restores the wound skin and muscle structural and functional properties. The BG advantages such as ion release might make BG-Sr an effective biomaterial choice for antioxidative activity. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Urine: Waste product or biologically active tissue?

    Science.gov (United States)

    2018-03-01

    Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  10. Biological Properties of Low-Toxic PLGA and PLGA/PHB Fibrous Nanocomposite Scaffolds for Osseous Tissue Regeneration. Evaluation of Potential Bioactivity

    Directory of Open Access Journals (Sweden)

    Boguslawa Żywicka

    2017-10-01

    Full Text Available Abstracts: The aim of the study was to evaluate the biocompatibility and bioactivity of two new prototype implants for bone tissue regeneration made from biodegradable fibrous materials. The first is a newly developed poly(l-lactide-co-glycolide, (PLGA, and the second is a blend of PLGA with synthetic poly([R,S]-3-hydroxybutyrate (PLGA/PHB. The implant prototypes comprise PLGA or PLGA/PHB nonwoven fabrics with designed pore structures to create the best conditions for cell proliferation. The bioactivity of the proposed implants was enhanced by introducing a hydroxyapatite material and a biologically active agent, namely, growth factor IGF1, encapsulated in calcium alginate microspheres. To assess the biocompatibility and bioactivity, allergenic tests and an assessment of the local reaction of bone tissue after implantation were performed. Comparative studies of local tissue response after implantation into trochanters for a period of 12 months were performed on New Zealand rabbits. Based on the results of the in vivo evaluation of the allergenic effects and the local tissue reaction 12 months after implantation, it was concluded that the two implant prototypes, PLGA + IGF1 and PLGA/PHB + IGF1, were characterized by high biocompatibility with the soft and bone tissues of the tested animals.

  11. Donation FAQs (Bone and Tissue Allografts)

    Science.gov (United States)

    ... Biologics is affiliated with organ, eye and tissue procurement agencies throughout the U.S. They typically ... Visit DonateLife.net and learn how your gift of tissue can give bring new life to ...

  12. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  13. A neural network based approach for determination of optical scattering and absorption coefficients of biological tissue

    International Nuclear Information System (INIS)

    Warncke, D; Lewis, E; Leahy, M; Lochmann, S

    2009-01-01

    The propagation of light in biological tissue depends on the absorption and reduced scattering coefficient. The aim of this project is the determination of these two optical properties using spatially resolved reflectance measurements. The sensor system consists of five laser sources at different wavelengths, an optical fibre probe and five photodiodes. For these kinds of measurements it has been shown that an often used solution of the diffusion equation can not be applied. Therefore a neural network is being developed to extract the needed optical properties out of the reflectance data. Data sets for the training, validation and testing process are provided by Monte Carlo Simulations.

  14. Increased levels of dioxin-like substances in adipose tissue in patients with deep infiltrating endometriosis.

    Science.gov (United States)

    Martínez-Zamora, M A; Mattioli, L; Parera, J; Abad, E; Coloma, J L; van Babel, B; Galceran, M T; Balasch, J; Carmona, F

    2015-05-01

    Are the levels of biologically active and the most toxic dioxin-like substances in adipose tissue of patients with deep infiltrating endometriosis (DIE) higher than in a control group without endometriosis? DIE patients have higher levels of dioxins and polychlorinated biphenyls (PCBs) in adipose tissue compared with controls without endometriosis. Some studies have investigated the levels of dioxin-like substances, in serum samples, in patients with endometriosis, with inconsistent results. Case-control study including two groups of patients. The study group (DIE group) consisted of 30 patients undergoing laparoscopic surgery because of DIE. In all patients, an extensive preoperative work-up was performed including clinical exploration, magnetic resonance imaging (MRI) and transvaginal sonography. All patients with DIE underwent a confirmatory histological study for DIE after surgery. The non-endometriosis control group (control group), included the next consecutive patient undergoing laparoscopic surgery in our center due to adnexal benign gynecological disease (ovarian or tubal procedures other than endometriosis) after each DIE patient, and who did not present any type of endometriosis. During the surgical procedure 1-2 g of adipose tissue from the omentum were obtained. Dioxin-like substances were analyzed in adipose tissue in DIE patients and controls without endometriosis. The total toxic equivalence and concentrations of both dioxins and PCBs were significantly higher in patients with DIE in comparison with the control group (P dioxins (2,3,7,8-tetrachlorodibenzo-p-dioxin [2,3,7,8-TCDD] and 1,2,3,7,8-pentachlorodibenzo-p-dioxin [1,2,3,7,8-PeCDD]) (P dioxins and PCBs widely vary in different countries. Furthermore, the strict eligibility criteria used may preclude generalization of the results to other populations and the surgery-based sampling frame may induce a selection bias. Finally, adipose tissue was obtained only from the omentum, and not from other

  15. Risk of disseminated intravascular coagulation in patients undergoing US-guided transperineal prostatic biopsy

    International Nuclear Information System (INIS)

    Stella, M.S.; Comparato, D.; Camici, M.; Evangelisti, L.; Gaudio, V.; De Negri, F.; Talarico, L.; Giusti, C.; Morelli, G.

    1991-01-01

    Disseminated intravascular coagulation (DIC) is a severe life-threatening acute bleeding disorder. Traumatized tissues, tumors, necrotic tissues, or bacterial endotoxines release similar material in the blood to the tissutal factors activating the coagulation cascade. This preliminary study was aimed at verifying the risk of DIV in patients undergoing US-guided transperineal prostatic biopsy with Chiba and Tru-Cut needles. To evaluate the activation degree of coagulation factors in the circulation, the authors measured the concentrations of urinary fibrin degradation products in 10 patients undergoing US-guided transperineal prostatic biopsy, both before and after biopsy, every second hour, for 24 hours. Every tube of urine sample contained soya bean trypsin inhibitor and bovine thrombin to prevent any further fibrin degradation during incubation period for the possible presence of blood in urine samples. The results showed that 7/10 patients had marked increase in urinary fibrin degradation product levels (up to 800 XXXX%), with a 3-phase trend: early peak after 2-6 hours, middle peak after 6-14 hours, and late peak after 18-24 hours, which proved the activation of the coagulation cascade

  16. Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues.

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Teixeira Rosa, Ramon Gabriel; Salvio, Ana Gabriela; Pratavieira, Sebastião; Kurachi, Cristina

    2017-10-01

    Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  17. Diffuse reflectance spectroscopy and optical polarization imaging of in-vivo biological tissue

    Science.gov (United States)

    Mora-Núñez, A.; Castillejos, Y.; García-Torales, G.; Martínez-Ponce, G.

    2013-11-01

    A number of optical techniques have been reported in the scientific literature as accomplishable methodologies to diagnose diseases in biological tissue, for instance, diffuse reflectance spectroscopy (DRS) and optical polarization imaging (OPI). The skin is the largest organ in the body and consists of three primary layers, namely, the epidermis (the outermost layer exposed to the world), the dermis, and the hypodermis. The epidermis changes from to site to site, mainly because of difference in hydration. A lower water content increase light scattering and reduce the penetration depth of radiation. In this work, two hairless mice have been selected to evaluate their skin features by using DRS and OPI. Four areas of the specimen body were chosen to realize the comparison: back, abdomen, tail, and head. From DRS, it was possible to distinguish the skin nature because of different blood irrigation at dermis. In the other hand, OPI shows pseudo-depolarizing regions in the measured Mueller images related to a spatially varying propagation of the scattered light. This provides information about the cell size in the irradiated skin.

  18. Tissue engineering and regenerative medicine: manufacturing challenges.

    Science.gov (United States)

    Williams, D J; Sebastine, I M

    2005-12-01

    Tissue engineering and regenerative medicine are interdisciplinary fields that apply principles of engineering and life sciences to develop biological substitutes, typically composed of biological and synthetic components, that restore, maintain or improve tissue function. Many tissue engineering technologies are still at a laboratory or pre-commercial scale. The short review paper describes the most significant manufacturing and bio-process challenges inherent in the commercialisation and exploitation of the exciting results emerging from the biological and clinical laboratories exploring tissue engineering and regenerative medicine. A three-generation road map of the industry has been used to structure a view of these challenges and to define where the manufacturing community can contribute to the commercial success of the products from these emerging fields. The first-generation industry is characterised by its demonstrated clinical applications and products in the marketplace, the second is characterised by emerging clinical applications, and the third generation is characterised by aspirational clinical applications. The paper focuses on the cost reduction requirement of the first generation of the industry to allow more market penetration and consequent patient impact. It indicates the technological requirements, for instance the creation of three-dimensional tissue structures, and value chain issues in the second generation of the industry. The third-generation industry challenges lie in fundamental biological and clinical science. The paper sets out a road map of these generations to identify areas for research.

  19. Biological reference materials and analysis of toxic elements

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, R; Sukumar, A

    1988-12-01

    Biological monitoring of toxic metal pollution in the environment requires quality control analysis with use of standard reference materials. A variety of biological tissues are increasingly used for analysis of element bioaccumulation, but the available Certified Reference Materials (CRMs) are insufficient. An attempt is made to review the studies made using biological reference materials for animal and human tissues. The need to have inter-laboratory studies and CRM in the field of biological monitoring of toxic metals is also discussed.

  20. Neoproteoglycans in tissue engineering

    Science.gov (United States)

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  1. Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs

    Science.gov (United States)

    Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.

    2015-01-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738

  2. A comparison of sample preparation strategies for biological tissues and subsequent trace element analysis using LA-ICP-MS.

    Science.gov (United States)

    Bonta, Maximilian; Török, Szilvia; Hegedus, Balazs; Döme, Balazs; Limbeck, Andreas

    2017-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.

  3. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears.

    Science.gov (United States)

    Rothrauff, Benjamin B; Pauyo, Thierry; Debski, Richard E; Rodosky, Mark W; Tuan, Rocky S; Musahl, Volker

    2017-08-01

    The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.

  4. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  5. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  6. Workshop Introduction: Systems Biology and Biological Models

    Science.gov (United States)

    As we consider the future of toxicity testing, the importance of applying biological models to this problem is clear. Modeling efforts exist along a continuum with respect to the level of organization (e.g. cell, tissue, organism) linked to the resolution of the model. Generally,...

  7. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  8. Hypericin-mediated selective photomodification of connective tissues

    International Nuclear Information System (INIS)

    Hovhannisyan, V.; Guo, H. W.; Chen, Y. F.; Hovhannisyan, A.; Ghukasyan, V.; Dong, C. Y.

    2014-01-01

    Controllable modification of biological molecules and supramolecular components of connective tissue are important for biophysical and biomedical applications. Through the use of second harmonic generation imaging, two-photon fluorescence microscopy, and spectrofluorimetry, we found that hypericin, a natural pigment, induces photosensitized destruction of collagen fibers but does not affect elastic fibers and lipids in chicken tendon, skin, and blood vessels. We demonstrated the dynamics and efficiency of collagen photomodification and investigated mechanisms of this processes. Our results suggest that hypericin–mediated photoprocesses in biological tissues may be useful in biomedical applications that require selective modification of connective tissues

  9. Hypericin-mediated selective photomodification of connective tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hovhannisyan, V., E-mail: hovv@phys.ntu.edu.tw; Guo, H. W.; Chen, Y. F., E-mail: yfchen@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Hovhannisyan, A. [Multimedia and Programming, European Regional Education Academy, Yerevan 0037 (Armenia); Ghukasyan, V. [Neuroscience Center, University of North Carolina at Chapel Hill, North Carolina 27514 (United States); Dong, C. Y., E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2014-12-29

    Controllable modification of biological molecules and supramolecular components of connective tissue are important for biophysical and biomedical applications. Through the use of second harmonic generation imaging, two-photon fluorescence microscopy, and spectrofluorimetry, we found that hypericin, a natural pigment, induces photosensitized destruction of collagen fibers but does not affect elastic fibers and lipids in chicken tendon, skin, and blood vessels. We demonstrated the dynamics and efficiency of collagen photomodification and investigated mechanisms of this processes. Our results suggest that hypericin–mediated photoprocesses in biological tissues may be useful in biomedical applications that require selective modification of connective tissues.

  10. Synthesis and characterization of polyglycerols dendrimers for applications in tissue engineering biological

    International Nuclear Information System (INIS)

    Passos, E.D.; Queiroz, A.A.A. de

    2014-01-01

    Full text: Introduction: Over the last twenty years is the growing development in the manufacture of synthetic scaffold in tissue engineering applications. These new materials are based on polyglycerol dendrimers (PGLD's). PGLD's are highly functional polymers with hydroxymethyl side groups, fulfill all structural prerequisites to replace poly(ethylene glycol)s in medical applications. Furthermore, since these materials are based on naturally occurring compounds that degrades over time in the body and can be safely excreted. The objective of this work was the synthesis, physicochemical, biological characterization of HPGL's with potential use as scaffolds in tissue engineering. HPGL's with oligomeric cores, of diglycerol triglycerol and tetraglycerol was used. Theoretical and Experimental Simulation Details: The synthesis of PGLD procedures involves the etherification of glycerol through anionic polymerization of glycidol. The PGLD's were characterized by chromatographic techniques (SEC and HPLC), spectroscopic (FTIR, 1H-NMR and 13C - NMR) electrochemical (zeta potential) and thermal analysis (DSC and TGA) techniques. The structure- activity relationships (SAR's) of compound prototype and its analogs were studied to determine the generation number (G) of the molecule responsible for the biological activity on the adhesion and cell proliferation process. A detailed study of the structure of PGLD's of G=0-4 was performed using the Hyperchem 7. 5 and Gromacs 4 software packages. The biocompatibility studies were studied by scanning electron microscopy (SEM) and fluorescence microscopy (EPF) technique after PGLD (G=0-4) blood contact. The overall electro-negativity/total charge density, dipole moment, frontier orbital's (HOMO - LUMO) and electrostatic potential maps (EPM) were calculated. The most stable form of the resulting compounds was determined by estimating the hydration energy and energy conformation. Results and Discussion: The techniques SEM and EPF

  11. Elemental analysis of biological tissues of Dmdmdx/J and C57BL/6J mice strains investigated by neutron activation analysis

    International Nuclear Information System (INIS)

    Sabrina Metairon; Zamboni, C.B.; Suzuki, M.F.; Bueno Junior, C.R.; Sant'Anna, O.A.

    2013-01-01

    In order to understand in more details the alterations that Duchenne muscular dystrophy disease may cause in biological tissues (blood, tibia, quadriceps and heart), correlations matrixes of the Dmd mdx /J dystrophic mice as well as C57BL/6J (control group) were generated. These mice were obtained from Jackson Laboratory (Maine, USA) and bred at IPEN (Dmd mdx /J), and at Centro de Estudos do Genoma Humano (C57BL/6J), both research centers at Sao Paulo city. Elements of clinical and nutritional relevance (Br, Ca, Cl, K, Mg, Na and S) were investigated by neutron activation analysis. These measurements were performed using the nuclear reactor IEA-R1 (3.5-4.5 MW, pool type) at IPEN. Comparisons between concentrations and correlations in these biological tissues, of these strains, showed that a Ca and Mg in blood are altered for the dystrophic mice. A significant change in the heart of dystrophic mice was also observed suggesting that a constant monitoring is required. Moreover, these results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  12. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  13. Tissue invasion and metastasis: Molecular, biological and clinical perspectives.

    Science.gov (United States)

    Jiang, W G; Sanders, A J; Katoh, M; Ungefroren, H; Gieseler, F; Prince, M; Thompson, S K; Zollo, M; Spano, D; Dhawan, P; Sliva, D; Subbarayan, P R; Sarkar, M; Honoki, K; Fujii, H; Georgakilas, A G; Amedei, A; Niccolai, E; Amin, A; Ashraf, S S; Ye, L; Helferich, W G; Yang, X; Boosani, C S; Guha, G; Ciriolo, M R; Aquilano, K; Chen, S; Azmi, A S; Keith, W N; Bilsland, A; Bhakta, D; Halicka, D; Nowsheen, S; Pantano, F; Santini, D

    2015-12-01

    Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Hydrogel microfabrication technology toward three dimensional tissue engineering

    Directory of Open Access Journals (Sweden)

    Fumiki Yanagawa

    2016-03-01

    Full Text Available The development of biologically relevant three-dimensional (3D tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.

  15. The relative biological effectiveness of antiprotons

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Alsner, Jan; Bassler, Niels

    2016-01-01

    Background and purpose: Aside from the enhancement of physical dose deposited by antiprotons annihilating in tissue-like material compared to protons of the same range a further increase of biological effective dose has been demonstrated. This enhancement can be expressed in an increase of the re......Background and purpose: Aside from the enhancement of physical dose deposited by antiprotons annihilating in tissue-like material compared to protons of the same range a further increase of biological effective dose has been demonstrated. This enhancement can be expressed in an increase...... of the relative biological effectiveness (RBE) of antiprotons near the end of range. We have performed the first-ever direct measurement of the RBE of antiprotons both at rest and in flight. Materials and methods: Experimental data were generated on the RBE of an antiproton beam entering a tissue-like target...

  16. Association of intraoperative tissue oxygenation with suspected risk factors for tissue hypoxia.

    Science.gov (United States)

    Spruit, R J; Schwarte, L A; Hakenberg, O W; Scheeren, T W L

    2013-10-01

    Tissue hypoxia may cause organ dysfunction, but not much is known about tissue oxygenation in the intraoperative setting. We studied microcirculatory tissue oxygen saturation (StO₂) to determine representative values for anesthetized patients undergoing urological surgery and to test the hypothesis that StO₂ is associated with known perioperative risk factors for morbidity and mortality, conventionally monitored variables, and hypotension requiring norepinephrine. Using near-infrared spectroscopy, we measured StO₂ on the thenar eminence in 160 patients undergoing open urological surgery under general anesthesia (FiO2 0.35-0.4), and calculated its correlations with age, risk level for general perioperative complications and mortality (high if age ≥70 and procedure is radical cystectomy), mean arterial pressure (MAP), hemoglobin concentration (Hb), central venous oxygen saturation (ScvO₂), and norepinephrine use. The time averaged StO₂ was 86 ± 6 % (mean ± SD). In the multivariate analysis, Hb [standardized coefficient (SC) 0.21, p = 0.003], ScvO₂ (SC 0.53, p SStO₂ was partly dependent on MAP only when this was below 65 mmHg (lowest MAP SC 0.20, p = 0.006, MAP area under the curve <65 mmHg SC 0.03, p = 0.02). Finally, StO₂ was slightly lower in patients requiring norepinephrine (85 ± 6 vs. 89 ± 6 %, p = 0.001). Intraoperative StO₂ in urological patients was comparable to that of healthy volunteers breathing room air as reported in the literature and correlated with known perioperative risk factors. Further research should investigate its association with outcome and the effect of interventions aimed at optimizing StO₂.

  17. THz near-field imaging of biological tissues employing synchrotron radiation

    International Nuclear Information System (INIS)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried, Daniel

    2004-01-01

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin

  18. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  19. Introduction to tissue engineering and application for cartilage engineering.

    Science.gov (United States)

    de Isla, N; Huseltein, C; Jessel, N; Pinzano, A; Decot, V; Magdalou, J; Bensoussan, D; Stoltz, J-F

    2010-01-01

    Tissue engineering is a multidisciplinary field that applies the principles of engineering, life sciences, cell and molecular biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In Western Countries, tissues or cells management for clinical uses is a medical activity governed by different laws. Three general components are involved in tissue engineering: (1) reparative cells that can form a functional matrix; (2) an appropriate scaffold for transplantation and support; and (3) bioreactive molecules, such as cytokines and growth factors that will support and choreograph formation of the desired tissue. These three components may be used individually or in combination to regenerate organs or tissues. Thus the growing development of tissue engineering needs to solve four main problems: cells, engineering development, grafting and safety studies.

  20. Comparison of digestion procedures used for the determination of boron in biological tissues by ICP-AES [inductively-coupled, plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Bauer, W.F.; Miller, D.L.; Steele, S.M.

    1988-01-01

    A study was designed to identify the most accurate and reliable procedures for the digestion of biological tissues prior to the determination of boron by inductively-coupled, plasma-atomic emission spectroscopy (ICP-AES). The four procedures used in this study were an acid bomb digestion and digestions performed in test tubes using perchloric acid and hydrogen peroxide, nitric acid and hydrogen peroxide, and nitric acid alone. Digestions using nitric acid and hydrogen peroxide and nitric acid alone were performed in a manner analogous to the perchloric acid/hydrogen peroxide procedure. The tissues used in the study were from dogs that had been administered a boron compound (Na 2 B 12 H 11 SH) and included two brain tissues, a liver and a tongue. These tissues were selected in order to eliminate results that may be due to surface spiking only. None of the test tube procedures were successful in completely dissolving the samples, as was evidenced by residual color and a coagulated precipitate. The amount of precipitate was much larger for the brain tissues in all cases. The acid bomb digestion and the perchloric acid/hydrogen peroxide procedures gave comparable boron concentrations for all of the tissues in this study. 2 refs., 1 tab

  1. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    Energy Technology Data Exchange (ETDEWEB)

    Gallyamov, Marat O., E-mail: glm@spm.phys.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Chaschin, Ivan S. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Khokhlova, Marina A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Grigorev, Timofey E. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E. [Bakulev Scientific Center for Cardiovascular Surgery of the Russian Academy of Medical Sciences, Roublyevskoe Sh. 135, Moscow 121552 (Russian Federation); Badun, Gennadii A.; Chernysheva, Maria G. [Radiochemistry Division, Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Khokhlov, Alexei R. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation)

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H{sub 2}O and CO{sub 2}. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA

  2. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    International Nuclear Information System (INIS)

    Gallyamov, Marat O.; Chaschin, Ivan S.; Khokhlova, Marina A.; Grigorev, Timofey E.; Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E.; Badun, Gennadii A.; Chernysheva, Maria G.; Khokhlov, Alexei R.

    2014-01-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H 2 O and CO 2 . Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA-stabilised bovine

  3. Dose to level I and II axillary lymph nodes and lung by tangential field radiation in patients undergoing postmastectomy radiation with tissue expander reconstruction

    International Nuclear Information System (INIS)

    Russo, James K; Armeson, Kent E; Rhome, Ryan; Spanos, Michele; Harper, Jennifer L

    2011-01-01

    To define the dosimetric coverage of level I/II axillary volumes and the lung volume irradiated in postmastectomy radiotherapy (PMRT) following tissue expander placement. Twenty-three patients were identified who had undergone postmastectomy radiotherapy with tangent only fields. All patients had pre-radiation tissue expander placement and expansion. Thirteen patients had bilateral expander reconstruction. The level I/II axillary volumes were contoured using the RTOG contouring atlas. The patient-specific variables of expander volume, superior-to-inferior location of expander, distance between expanders, expander angle and axillary volume were analyzed to determine their relationship to the axillary volume and lung volume dose. The mean coverage of the level I/II axillary volume by the 95% isodose line (V D95% ) was 23.9% (range 0.3 - 65.4%). The mean Ipsilateral Lung V D50% was 8.8% (2.2-20.9). Ipsilateral and contralateral expander volume correlated to Axillary V D95% in patients with bilateral reconstruction (p = 0.01 and 0.006, respectively) but not those with ipsilateral only reconstruction (p = 0.60). Ipsilateral Lung V D50% correlated with angle of the expander from midline (p = 0.05). In patients undergoing PMRT with tissue expanders, incidental doses delivered by tangents to the axilla, as defined by the RTOG contouring atlas, do not provide adequate coverage. The posterior-superior region of level I and II is the region most commonly underdosed. Axillary volume coverage increased with increasing expander volumes in patients with bilateral reconstruction. Lung dose increased with increasing expander angle from midline. This information should be considered both when placing expanders and when designing PMRT tangent only treatment plans by contouring and targeting the axilla volume when axillary treatment is indicated

  4. Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering

    Science.gov (United States)

    Kosztin, Ioan; Vunjak-Novakovic, Gordana; Forgacs, Gabor

    2012-10-01

    Tissue engineering is a rapidly evolving discipline that aims at building functional tissues to improve or replace damaged ones. To be successful in such an endeavor, ideally, the engineering of tissues should be based on the principles of developmental biology. Recent progress in developmental biology suggests that the formation of tissues from the composing cells is often guided by physical laws. Here a comprehensive computational-theoretical formalism is presented that is based on experimental input and incorporates biomechanical principles of developmental biology. The formalism is described and it is shown that it correctly reproduces and predicts the quantitative characteristics of the fundamental early developmental process of tissue fusion. Based on this finding, the formalism is then used toward the optimization of the fabrication of tubular multicellular constructs, such as a vascular graft, by bioprinting, a novel tissue engineering technology.

  5. New vibro-acoustic paradigms in biological tissues with application to diagnosis of pulmonary disorders

    Science.gov (United States)

    Zhang, Xiangling

    The fundamental objective of the present study is to improve our understanding of audible sound propagation in the pulmonary system and torso. A related applied objective is to assess the feasibility of using audible acoustics for diagnosis of specific pulmonary conditions, such as pneumothorax (PTX). To accomplish these objectives, this study includes theoretical, computational and experimental developments aimed at: (1) better identifying the mechanical dynamic properties of soft biological tissues found in the torso region, (2) investigating the mechanisms of sound attenuation that occur when a PTX is present using greatly simplified theoretical and computational models, and (3) exploring the feasibility and utility of more comprehensive and precise computational finite element models of audible sound propagation in the pulmonary system and torso that would aid in related diagnostic developments. Mechanical material properties of soft biological tissue are studied for the low audible frequency range. The sensitivity to shear viscoelastic material constants of theoretical solutions for radiation impedance and surface wave motion are compared. Theoretical solutions are also compared to experimental measurements and numerical results from finite element analysis. It is found that, while prior theoretical solutions for radiation impedance are accurate, use of such measurements to estimate shear viscoelastic constants is not as precise as the use of surface wave measurements. The feasibility of using audible sound for diagnosis of pneumothorax is studied. Simplified one- and two-dimensional theoretical and numerical models of sound transmission through the pulmonary system and chest region to the chest wall surface are developed to more clearly understand the mechanism of energy loss when a pneumothorax is present, relative to a baseline case. A canine study on which these models are based predicts significant decreases in acoustic transmission strength when a

  6. Random lasing in human tissues

    International Nuclear Information System (INIS)

    Polson, Randal C.; Vardeny, Z. Valy

    2004-01-01

    A random collection of scatterers in a gain medium can produce coherent laser emission lines dubbed 'random lasing'. We show that biological tissues, including human tissues, can support coherent random lasing when infiltrated with a concentrated laser dye solution. To extract a typical random resonator size within the tissue we average the power Fourier transform of random laser spectra collected from many excitation locations in the tissue; we verified this procedure by a computer simulation. Surprisingly, we found that malignant tissues show many more laser lines compared to healthy tissues taken from the same organ. Consequently, the obtained typical random resonator was found to be different for healthy and cancerous tissues, and this may lead to a technique for separating malignant from healthy tissues for diagnostic imaging

  7. Biology and potential clinical implications of tissue inhibitor of metalloproteinases-1 in colorectal cancer treatment

    DEFF Research Database (Denmark)

    Sørensen, Nanna Møller; Sørensen, irene Vejgaard; Würtz, Sidse Ørnbjerg

    2008-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in the industrialized world. About half of "curatively" resected patients develop recurrent disease within the next 3-5 years despite the lack of clinical, histological and biochemical evidence of remaining overt disease...... after resection of the primary tumour. Availability of validated biological markers for early detection, selection for adjuvant therapy, prediction of treatment efficacy and monitoring of treatment efficacy would most probably increase survival. Tissue inhibitor of metalloproteinases-1 (TIMP-1) may...... patients, suggesting that TIMP-1 could have a tumour-promoting function. Furthermore, measurement of plasma TIMP-1 has been shown to be useful for disease detection, with a high sensitivity and high specificity for early-stage colon cancer. This review describes some basic information on the current...

  8. Modelling the electrical properties of tissue as a porous medium

    International Nuclear Information System (INIS)

    Smye, S W; Evans, C J; Robinson, M P; Sleeman, B D

    2007-01-01

    Models of the electrical properties of biological tissue have been the subject of many studies. These models have sought to explain aspects of the dielectric dispersion of tissue. This paper develops a mathematical model of the complex permittivity of tissue as a function of frequency f, in the range 10 4 7 Hz, which is derived from a formulation used to describe the complex permittivity of porous media. The model introduces two parameters, porosity and percolation probability, to the description of the electrical properties of any tissue which comprises a random arrangement of cells. The complex permittivity for a plausible porosity and percolation probability distribution is calculated and compared with the published measured electrical properties of liver tissue. Broad agreement with the experimental data is noted. It is suggested that future detailed experimental measurements should be undertaken to validate the model. The model may be a more convenient method of parameterizing the electrical properties of biological tissue and subsequent measurement of these parameters in a range of tissues may yield information of biological and clinical significance

  9. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

    KAUST Repository

    Bera, Tushar Kanti

    2016-03-18

    Abstract: Electrical impedance tomography (EIT) phantoms are essential for the calibration, comparison and evaluation of the EIT systems. In EIT, the practical phantoms are typically developed based on inhomogeneities surrounded by a homogeneous background to simulate a suitable conductivity contrast. In multifrequency EIT (Mf-EIT) evaluation, the phantoms must be developed with the materials which have recognizable or distinguishable impedance variations over a wide range of frequencies. In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity are analyzed. A number of practical phantoms with different tissue inhomogeneities and different inhomogeneity configurations are developed and the multifrequency impedance imaging is studied with the Mf-EIT system to evaluate the phantoms. The conductivity of the vegetable inhomogeneities reconstructed from the EIT imaging is compared with the conductivity values obtained from the EIS studies. Experimental results obtained from multifrequency EIT reconstruction demonstrate that the electrical impedance of all the biological tissues inhomogenity decreases with frequency. The potato tissue phantom produces better impedance image in high frequency ranges compared to the cucumber phantom, because the cucumber impedance at high frequency becomes lesser than that of the potato at the same frequency range. Graphical Abstract: [Figure not available: see fulltext.] © 2016 The Visualization Society of Japan

  10. Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments

    International Nuclear Information System (INIS)

    Khokhlova, Tanya D; Pelivanov, Ivan M; Solomatin, Vladimir S; Karabutov, Aleksander A; Sapozhnikov, Oleg A

    2006-01-01

    The possibility of using the opto-acoustic (OA) method for monitoring high-intensity ultrasonic therapy is studied. The optical properties of raw and boiled liver samples used as the undamaged model tissue and tissue destroyed by ultrasound, respectively, are measured. Experiments are performed with samples consisting of several alternating layers of raw and boiled liver of different thickness. The position and transverse size of the thermal lesion were determined from the temporal shape of the OA signals. The results of measurements are compared with the real size and position of the thermal lesion determined from the subsequent cuts of the sample. It is shown that the OA method permits the diagnostics of variations in biological tissues upon ultrasonic therapy. (special issue devoted to multiple radiation scattering in random media)

  11. Optoacoustic laser monitoring of cooling and freezing of tissues

    International Nuclear Information System (INIS)

    Larin, Kirill V; Larina, I V; Motamedi, M; Esenaliev, R O

    2002-01-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast. (laser biology and medicine)

  12. Accuracy of identification of tissue types in endoscopic esophageal mucosal biopsies used for molecular biology studies

    Directory of Open Access Journals (Sweden)

    Plauto Beck

    2009-02-01

    Full Text Available Plauto Beck1, George C Mayne1, David Astill2, Tanya Irvine1, David I Watson1, Willem A Dijckmeester1, Bas PL Wijnhoven1, Damian J Hussey11Department of Surgery, 2Department of Anatomical Pathology, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, AustraliaObjectives: To determine if histopathologic assessment of esophageal biopsies harvested for research study is justified due to the heterogeneity of tissues in the esophagus, and the consequent histopathologic mis-matches with the clinical histopathology of biopsies taken at the same level.Methods: Since 2004, patients undergoing upper endoscopy for a variety of clinical conditions were invited to provide additional esophageal biopsies; those were collected for research purpose at the same level as biopsies collected for clinical histopathology. Research biopsies were cut in two parts: one part was submitted to research histopathology and the other stored for molecular analysis. Results of clinical histopathology for each patient were summarized per biopsy level and compared to results obtained from research biopsies at the corresponding level.Results: A total of 377 level summaries were obtained from 137 patients. Clinical histopathology summaries classified 123 levels (32.6% as squamous epithelium, 84 levels (22.3% as metaplastic columnar-lined epithelium, 135 levels (35.8% as columnar-lined epithelium with intestinal metaplasia, 30 levels (8% as dysplasia, and 5 levels (1.3% as adenocarcinoma. Research histopathology matched to clinical summaries on 120 of 123 (97.5% levels for squamous epithelium, 52 of 84 (61.9% for metaplastic columnar-lined epithelium, and 94 of 135 (69.5% for columnar-lined epithelium with intestinal metaplasia. There were no matches for dysplasia between the groups; however, they agreed on all five cases of AC. On 59 (70.2% metaplastic columnar-lined epithelium levels and on 62 (46% columnar-lined epithelium with intestinal metaplasia levels

  13. Point-of-care instrument for monitoring tissue health during skin graft repair

    Science.gov (United States)

    Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.

    2011-06-01

    We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.

  14. Normalization of periodontal tissues in osteopetrotic mib mutant rats, treated with CSF-1

    Science.gov (United States)

    Wojtowicz, A.; Yamauchi, M.; Sotowski, R.; Ostrowski, K.

    1998-01-01

    The osteopetrotic mib mutation in rats causes defects in the skeletal bone tissue in young animals. These defects, i.e. slow bone remodelling, changes in both crystallinity and mineral content, are transient and undergo normalization, even without any treatment in 6-wk-old animals. Treatment with CSF-1 (colony stimulating factor-1) accelerates the normalization process in skeletal bones. The periodontal tissues around the apices of incisors show abnormalities caused by the slow remodelling process of the mandible bone tissue, the deficiency of osteoclasts and their abnormal morphology, as well as the disorganization of periodontal ligament fibres. In contrast to the skeletal tissues, these abnormalities would not undergo spontaneous normalization. Under treatment with colony stimulating factor 1 (CSF-1), the primitive bone trabeculae of mandible are resorbed and the normalization of the number of osteoclasts and their cytology occurs. The organization of the periodontal ligament fibres is partially restored, resembling the histological structure of the normal one.

  15. Tissue-based standoff biosensors for detecting chemical warfare agents

    Science.gov (United States)

    Greenbaum, Elias; Sanders, Charlene A.

    2003-11-18

    A tissue-based, deployable, standoff air quality sensor for detecting the presence of at least one chemical or biological warfare agent, includes: a cell containing entrapped photosynthetic tissue, the cell adapted for analyzing photosynthetic activity of the entrapped photosynthetic tissue; means for introducing an air sample into the cell and contacting the air sample with the entrapped photosynthetic tissue; a fluorometer in operable relationship with the cell for measuring photosynthetic activity of the entrapped photosynthetic tissue; and transmitting means for transmitting analytical data generated by the fluorometer relating to the presence of at least one chemical or biological warfare agent in the air sample, the sensor adapted for deployment into a selected area.

  16. Influence of surgical decompression on the expression of inflammatory and tissue repair biomarkers in periapical cysts.

    Science.gov (United States)

    Rodrigues, Janderson Teixeira; Dos Santos Antunes, Henrique; Armada, Luciana; Pires, Fábio Ramôa

    2017-12-01

    The biologic effects of surgical decompression on the epithelium and connective tissues of periapical cysts are not fully understood. The aim of this study was to evaluate the expression of tissue repair and inflammatory biomarkers in periapical cysts before and after surgical decompression. Nine specimens of periapical cysts treated with decompression before undergoing complete enucleation were immunohistochemically analyzed to investigate the expression of interleukin-1β, tumor necrosis factor-α, transforming growth factor-β1, matrix metalloproteinase-9, Ki-67, and epidermal growth factor receptor. Expression of the biomarkers was classified as positive, focal, or negative. Ki-67 immunoexpression was calculated as a cell proliferation index. The expression of the biomarkers was compared in the specimens from decompression and from the final surgical procedure. Computed tomography demonstrated that volume was reduced in all cysts after decompression. There were no differences in the immunoexpression of the proinflammatory and tissue repair biomarkers when comparing the specimens obtained before and after the decompression. Surgical decompression was efficient in reducing the volume of periapical cysts before complete enucleation. When comparing the specimens obtained from surgical decompression and from complete surgical removal, the immunohistochemical analysis did not show a decrease in proinflammatory biomarkers; neither did it show an increase in tissue repair biomarkers. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Development of an algorithm for quantifying extremity biological tissue; Desenvolvimento de um algoritmo quantificador de tecido biologico de extremidade

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, Ana L.M.; Miranda, Jose R.A., E-mail: analuiza@ibb.unesp.br, E-mail: jmiranda@ibb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Instituto de Biociencias. Dept. de Fisica e Biofisica; Pina, Diana R. de, E-mail: drpina@frnb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (FMB/UNESP), Botucatu, SP (Brazil). Faculdade de Medicina. Dept. de Doencas Tropicas e Diagnostico por Imagem

    2013-07-01

    The computerized radiology (CR) has become the most widely used device for image acquisition and production, since its introduction in the 80s. The detection and early diagnosis, obtained via CR, are important for the successful treatment of diseases such as arthritis, metabolic bone diseases, tumors, infections and fractures. However, the standards used for optimization of these images are based on international protocols. Therefore, it is necessary to compose radiographic techniques for CR system that provides a secure medical diagnosis, with doses as low as reasonably achievable. To this end, the aim of this work is to develop a quantifier algorithm of tissue, allowing the construction of a homogeneous end used phantom to compose such techniques. It was developed a database of computed tomography images of hand and wrist of adult patients. Using the Matlab Registered-Sign software, was developed a computational algorithm able to quantify the average thickness of soft tissue and bones present in the anatomical region under study, as well as the corresponding thickness in simulators materials (aluminium and lucite). This was possible through the application of mask and Gaussian removal technique of histograms. As a result, was obtained an average thickness of soft tissue of 18,97 mm and bone tissue of 6,15 mm, and their equivalents in materials simulators of 23,87 mm of acrylic and 1,07mm of aluminum. The results obtained agreed with the medium thickness of biological tissues of a patient's hand pattern, enabling the construction of an homogeneous phantom.

  18. In vitro neoplastic transformation of plant callus tissue by γ-radiation

    International Nuclear Information System (INIS)

    Pandey, K.N.; Sabharwal, P.S.

    1979-01-01

    Tumours have been induced by γ-radiation in callus tissue derived from a monocotyledonous flowering plant, Haworthia mirabilis Haw. The transformed tissue exhibited compact texture, excessive cell proliferation and loss of capacity for organogenesis. Tumors were characterized by their ability to undergo continuous autonomous growth on minimal media in the subsequent 4 generations of subculture. In contrast, the nonirradiated control tissue grew with friable texture, required inositol or growth hormones and showed prolific differentiation of vegetative buds. (Auth.)

  19. Analysis of specific absorption rate and internal electric field in human biological tissues surrounding an air-core coil-type transcutaneous energy transmission transformer.

    Science.gov (United States)

    Shiba, Kenji; Zulkifli, Nur Elina Binti; Ishioka, Yuji

    2017-06-01

    In this study, we analyzed the internal electric field E and specific absorption rate (SAR) of human biological tissues surrounding an air-core coil transcutaneous energy transmission transformer. Using an electromagnetic simulator, we created a model of human biological tissues consisting of a dry skin, wet skin, fat, muscle, and cortical bone. A primary coil was placed on the surface of the skin, and a secondary coil was located subcutaneously inside the body. The E and SAR values for the model representing a 34-year-old male subject were analyzed using electrical frequencies of 0.3-1.5 MHz. The transmitting power was 15 W, and the load resistance was 38.4 Ω. The results showed that the E values were below the International Commission on Non-ionizing Radiation Protection (ICNIRP) limit for the general public exposure between the frequencies of 0.9 and 1.5 MHz, and SAR values were well below the limit prescribed by the ICNIRP for the general public exposure between the frequencies of 0.3 and 1.2 MHz.

  20. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  1. The interplay between adipose tissue and the cardiovascular system: is fat always bad?

    Science.gov (United States)

    Akoumianakis, Ioannis; Antoniades, Charalambos

    2017-07-01

    Obesity is a risk factor for cardiovascular disease (CVD). However, clinical research has revealed a paradoxically protective role for obesity in patients with chronic diseases including CVD, suggesting that the biological 'quality' of adipose tissue (AT) may be more important than overall AT mass or body weight. Importantly, AT is recognised as a dynamic organ secreting a wide range of biologically active adipokines, microRNAs, gaseous messengers, and other metabolites that affect the cardiovascular system in both endocrine and paracrine ways. Despite being able to mediate normal cardiovascular function under physiological conditions, AT undergoes a phenotypic shift characterised by acquisition of pro-oxidant and pro-inflammatory properties in cases of CVD. Crucially, recent evidence suggests that AT depots such as perivascular AT and epicardial AT are able to modify their phenotype in response to local signals of vascular and myocardial origin, respectively. Utilisation of this unique property of certain AT depots to dynamically track cardiovascular biology may reveal novel diagnostic and prognostic tools against CVD. Better understanding of the mechanisms controlling the 'quality' of AT secretome, as well as the communication links between AT and the cardiovascular system, is required for the efficient management of CVD. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For Permissions, please email: journals.permissions@oup.com.

  2. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Chengdong Xiong

    2009-07-01

    Full Text Available Abstract In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR, transmission electron microscope(TEM, scanning electron microscope(SEM, universal material testing machine and phosphate buffer solution (PBS soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material.

  3. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering

    Science.gov (United States)

    Liuyun, Jiang; Yubao, Li; Chengdong, Xiong

    2009-01-01

    In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR), transmission electron microscope(TEM), scanning electron microscope(SEM), universal material testing machine and phosphate buffer solution (PBS) soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs) culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material. PMID:19594953

  4. A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.

    Science.gov (United States)

    Acun, A; Vural, D C; Zorlutuna, P

    2017-07-11

    Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.

  5. Synthesis and characterization of polyglycerols dendrimers for applications in tissue engineering biological

    Energy Technology Data Exchange (ETDEWEB)

    Passos, E.D.; Queiroz, A.A.A. de [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2014-07-01

    Full text: Introduction: Over the last twenty years is the growing development in the manufacture of synthetic scaffold in tissue engineering applications. These new materials are based on polyglycerol dendrimers (PGLD's). PGLD's are highly functional polymers with hydroxymethyl side groups, fulfill all structural prerequisites to replace poly(ethylene glycol)s in medical applications. Furthermore, since these materials are based on naturally occurring compounds that degrades over time in the body and can be safely excreted. The objective of this work was the synthesis, physicochemical, biological characterization of HPGL's with potential use as scaffolds in tissue engineering. HPGL's with oligomeric cores, of diglycerol triglycerol and tetraglycerol was used. Theoretical and Experimental Simulation Details: The synthesis of PGLD procedures involves the etherification of glycerol through anionic polymerization of glycidol. The PGLD's were characterized by chromatographic techniques (SEC and HPLC), spectroscopic (FTIR, 1H-NMR and 13C - NMR) electrochemical (zeta potential) and thermal analysis (DSC and TGA) techniques. The structure- activity relationships (SAR's) of compound prototype and its analogs were studied to determine the generation number (G) of the molecule responsible for the biological activity on the adhesion and cell proliferation process. A detailed study of the structure of PGLD's of G=0-4 was performed using the Hyperchem 7. 5 and Gromacs 4 software packages. The biocompatibility studies were studied by scanning electron microscopy (SEM) and fluorescence microscopy (EPF) technique after PGLD (G=0-4) blood contact. The overall electro-negativity/total charge density, dipole moment, frontier orbital's (HOMO - LUMO) and electrostatic potential maps (EPM) were calculated. The most stable form of the resulting compounds was determined by estimating the hydration energy and energy conformation. Results and

  6. 3D Printing of Personalized Organs and Tissues

    Science.gov (United States)

    Ye, Kaiming

    2015-03-01

    Authors: Kaiming Ye and Sha Jin, Department of Biomedical Engineering, Watson School of Engineering and Applied Science, Binghamton University, State University of New York, Binghamton, NY 13902-6000 Abstract: Creation of highly organized multicellular constructs, including tissues and organs or organoids, will revolutionize tissue engineering and regenerative medicine. The development of these technologies will enable the production of individualized organs or tissues for patient-tailored organ transplantation or cell-based therapy. For instance, a patient with damaged myocardial tissues due to an ischemic event can receive a myocardial transplant generated using the patient's own induced pluripotent stem cells (iPSCs). Likewise, a type-1 diabetic patient can be treated with lab-generated islets to restore his or her physiological insulin secretion capability. These lab-produced, high order tissues or organs can also serve as disease models for pathophysiological study and drug screening. The remarkable advances in stem cell biology, tissue engineering, microfabrication, and materials science in the last decade suggest the feasibility of generating these tissues and organoids in the laboratory. Nevertheless, major challenges still exist. One of the critical challenges that we still face today is the difficulty in constructing or fabricating multicellular assemblies that recapitulate in vivo microenvironments essential for controlling cell proliferation, migration, differentiation, maturation and assembly into a biologically functional tissue or organoid structure. These challenges can be addressed through developing 3D organ and tissue printing which enables organizing and assembling cells into desired tissue and organ structures. We have shown that human pluripotent stem cells differentiated in 3D environments are mature and possess high degree of biological function necessary for them to function in vivo.

  7. 3D bioprinting of tissues and organs.

    Science.gov (United States)

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

  8. Detection of EGFR and COX-2 Expression by Immunohistochemical Method on a Tissue Microarray Section in Lung Cancer and Biological Significance

    Directory of Open Access Journals (Sweden)

    Xinyun WANG

    2010-02-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR and cyclooxygenase-2 (COX-2, which can regulate growth, invasion and metastasis of tumor through relevant signaling pathway, have been detected in a variety of solid tumors. The aim of this study is to investigate the biological significance of EGFR and COX-2 expression in lung cancer and the relationship between them. Methods The expression of EGFR and COX-2 was detected in 89 primary lung cancer tissues, 12 premaliganant lesions, 12 lymph node metastases, and 10 normal lung tissues as the control by immunohistochemical method on a tissue microarray section. Results EGFR protein was detectable in 59.6%, 41.7%, and 66.7% of primary lung cancer tissues, premalignant lesions and lymph node metastases, respectively; COX-2 protein was detectable in 52.8%, 41.7%, and 66.7% of primary lung cancer tissues, premalignant lesions and lymph node metastases, respectively, which were significantly higher than those of the control (P 0.05. COX-2 expression was related to gross type (P < 0.05. A highly positive correlation was observed between EGFR and COX-2 expression (P < 0.01. Conclusion Overexpression of EGFR and COX-2 may play an important role in the tumorgenesis, progression and malignancy of lung cancer. Detection of EGFR and COX-2 expression might be helpful to diagnosis and prognosis of lung cancer.

  9. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  10. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury

    DEFF Research Database (Denmark)

    Mackey, Abigail Louise; Kjaer, Michael

    2017-01-01

    Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibres as they undergo necrosis, followed closely by satellite cell mediated myogenesis, have been mapped in detail. Much less is known about...... the adaptation throughout this process of both the connective tissue structures surrounding the myofibres, and the fibroblasts, the cells responsible for synthesising this connective tissue. However, the few studies investigating muscle connective tissue remodelling demonstrate a strong response that appears...

  11. Cuttlefish bone scaffold for tissue engineering: a novel hydrothermal transformation, chemical-physical, and biological characterization.

    Science.gov (United States)

    Battistella, Elisa; Mele, Silvia; Foltran, Ismaela; Lesci, Isidoro Giorgio; Roveri, Norberto; Sabatino, Piera; Rimondini, Lia

    2012-09-27

    Natural resources are receiving growing interest because of their possible conversion from a cheap and easily available material into a biomedical product. Cuttlefish bone from Sepia Officinalis was investigated in order to obtain an hydroxyapatite porous scaffold using hydrothermal transformation. Complete conversion of the previous calcium carbonate (aragonite) phase into a calcium phosphate (hydroxyapatite) phase was performed with an hydrothermal transformation at 200 °C (~ 15 atm), for four hours, with an aqueous solution of KH2PO4 in order to set the molar ratio Ca/P = 10/6 in a reactor (Parr 4382). The complete conversion was then analyzed by TGA, ATR-FTIR, x-ray diffraction, and SEM. Moreover, the material was biologically investigated with MC3T3-E1 in static cultures, using both osteogenic and maintenance media. The expression of osteogenic markers as ALP and osteocalcin and the cell proliferation were investigated. Cuttlefish bone has been successfully transformed from calcium carbonate into calcium phosphate. Biological characterization revealed that osteogenic markers are expressed using both osteogenic and maintenance conditions. Cell proliferation is influenced by the static culture condition used for this three-dimensional scaffold. The new scaffold composed by hydroxyapatite and derived for a natural source presents good biocompatibility and can be used for further investigations using dynamic cultures in order to improve cell proliferation and differentiation for bone tissue engineering.

  12. Tissue Engineering: Toward a New Era of Medicine.

    Science.gov (United States)

    Shafiee, Ashkan; Atala, Anthony

    2017-01-14

    The goal of tissue engineering is to mitigate the critical shortage of donor organs via in vitro fabrication of functional biological structures. Tissue engineering is one of the most prominent examples of interdisciplinary fields, where scientists with different backgrounds work together to boost the quality of life by addressing critical health issues. Many different fields, such as developmental and molecular biology, as well as technologies, such as micro- and nanotechnologies and additive manufacturing, have been integral for advancing the field of tissue engineering. Over the past 20 years, spectacular advancements have been achieved to harness nature's ability to cure diseased tissues and organs. Patients have received laboratory-grown tissues and organs made out of their own cells, thus eliminating the risk of rejection. However, challenges remain when addressing more complex solid organs such as the heart, liver, and kidney. Herein, we review recent accomplishments as well as challenges that must be addressed in the field of tissue engineering and provide a perspective regarding strategies in further development.

  13. Effects of warm ischemic time on gene expression profiling in colorectal cancer tissues and normal mucosa.

    Directory of Open Access Journals (Sweden)

    Valeria Musella

    Full Text Available BACKGROUND: Genome-wide gene expression analyses of tumors are a powerful tool to identify gene signatures associated with biologically and clinically relevant characteristics and for several tumor types are under clinical validation by prospective trials. However, handling and processing of clinical specimens may significantly affect the molecular data obtained from their analysis. We studied the effects of tissue handling time on gene expression in human normal and tumor colon tissues undergoing routine surgical procedures. METHODS: RNA extracted from specimens of 15 patients at four time points (for a total of 180 samples after surgery was analyzed for gene expression on high-density oligonucleotide microarrays. A mixed-effects model was used to identify probes with different expression means across the four different time points. The p-values of the model were adjusted with the Bonferroni method. RESULTS: Thirty-two probe sets associated with tissue handling time in the tumor specimens, and thirty-one in the normal tissues, were identified. Most genes exhibited moderate changes in expression over the time points analyzed; however four of them were oncogenes, and two confirmed the effect of tissue handling by independent validation. CONCLUSIONS: Our results suggest that a critical time point for tissue handling in colon seems to be 60 minutes at room temperature. Although the number of time-dependent genes we identified was low, the three genes that already showed changes at this time point in tumor samples were all oncogenes, hence recommending standardization of tissue-handling protocols and effort to reduce the time from specimen removal to snap freezing accounting for warm ischemia in this tumor type.

  14. Critical Point in Self-Organized Tissue Growth

    Science.gov (United States)

    Aguilar-Hidalgo, Daniel; Werner, Steffen; Wartlick, Ortrud; González-Gaitán, Marcos; Friedrich, Benjamin M.; Jülicher, Frank

    2018-05-01

    We present a theory of pattern formation in growing domains inspired by biological examples of tissue development. Gradients of signaling molecules regulate growth, while growth changes these graded chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length. We apply this theory to the biological model system of the developing wing of the fruit fly Drosophila melanogaster and quantitatively identify signatures of the critical point.

  15. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  16. Application of a new MR Microscope using an Independent Console System (MRMICS) for biological tissues in vitro

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Anno, Izumi; Itai, Yuji; Haishi, Tomoyuki; Adachi, Naotaka; Kose, Katsumi

    1999-01-01

    We studied microscopic MR images of the normal appendix in vitro using a new MR microscope system: MR Microscope using an Independent Console System (MRMICS). The MRMICS was placed in the clinical MR room, and the probe box was fixed on the bed of the 1.5 T clinical MR machine. T1-, T2-, and proton density-weighted images were obtained using spin echo sequences with an in-plane pixel size of 100 x 100 μm. Zonal structures of the appendix were clearly demonstrated with different contrast by different sequences. Therefore, the MRMICS is a useful add-on system for investigating microscopic MR images of biological tissues in vitro. (author)

  17. Application of a new MR Microscope using an Independent Console System (MRMICS) for biological tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi; Anno, Izumi; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Haishi, Tomoyuki; Adachi, Naotaka; Kose, Katsumi

    1999-02-01

    We studied microscopic MR images of the normal appendix in vitro using a new MR microscope system: MR Microscope using an Independent Console System (MRMICS). The MRMICS was placed in the clinical MR room, and the probe box was fixed on the bed of the 1.5 T clinical MR machine. T1-, T2-, and proton density-weighted images were obtained using spin echo sequences with an in-plane pixel size of 100 x 100 {mu}m. Zonal structures of the appendix were clearly demonstrated with different contrast by different sequences. Therefore, the MRMICS is a useful add-on system for investigating microscopic MR images of biological tissues in vitro. (author)

  18. Soft tissue wound healing around teeth and dental implants.

    Science.gov (United States)

    Sculean, Anton; Gruber, Reinhard; Bosshardt, Dieter D

    2014-04-01

    To provide an overview on the biology and soft tissue wound healing around teeth and dental implants. This narrative review focuses on cell biology and histology of soft tissue wounds around natural teeth and dental implants. The available data indicate that: (a) Oral wounds follow a similar pattern. (b) The tissue specificities of the gingival, alveolar and palatal mucosa appear to be innately and not necessarily functionally determined. (c) The granulation tissue originating from the periodontal ligament or from connective tissue originally covered by keratinized epithelium has the potential to induce keratinization. However, it also appears that deep palatal connective tissue may not have the same potential to induce keratinization as the palatal connective tissue originating from an immediately subepithelial area. (d) Epithelial healing following non-surgical and surgical periodontal therapy appears to be completed after a period of 7–14 days. Structural integrity of a maturing wound between a denuded root surface and a soft tissue flap is achieved at approximately 14-days post-surgery. (e) The formation of the biological width and maturation of the barrier function around transmucosal implants requires 6–8 weeks of healing. (f) The established peri-implant soft connective tissue resembles a scar tissue in composition, fibre orientation, and vasculature. (g) The peri-implant junctional epithelium may reach a greater final length under certain conditions such as implants placed into fresh extraction sockets versus conventional implant procedures in healed sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Biological timekeeping

    DEFF Research Database (Denmark)

    Lloyd, David

    2016-01-01

    , the networks that connect differenttime domains and the oscillations, rhythms and biological clocks that coordinate andsynchronise the complexity of the living state.“It is the pattern maintained by this homeostasis, which is the touchstone ofour personal identity. Our tissues change as we live: the food we...

  20. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues

    International Nuclear Information System (INIS)

    Gabriel, S.; Lau, R.W.; Gabriel, C.

    1996-01-01

    A parametric model was developed to describe the variation of dielectric properties of tissues as a function of frequency. The experimental spectrum from 10 Hz to 100 GHz was modelled with four dispersion regions. The development of the model was based on recently acquired data, complemented by data surveyed from the literature. The purpose is to enable the prediction of dielectric data that are in line with those contained in the vast body of literature on the subject. The analysis was carried out on a Microsoft Excel spreadsheet. Parameters are given for 17 tissue types. (author)

  1. Behaviors of tritium in terrestrial biological system

    International Nuclear Information System (INIS)

    Inomata, Tsuyako

    1983-01-01

    The in vivo behaviors of HTO- 3 H in food chain models in experimental animals were described. Of pregnant mice that had ingested HTO and drinking water alone for 19 days, the total 3 H content in the tissue/wet weight was greater by 20% in fetuses and newborns than in mothers, and the proportion of tissue-bound 3 H was 8-24% in mothers and 3% in fetuses. The mean 3 H concentration in the free water in tissues was about 36% of ingested HTO. When only 3 H foods were ingested for 18 days, the total 3 H content in the tissue/wet weight showed no marked difference among the mother, fetuses and newborns, nor did the bound 3 H level show great differences. With respect to the tissue distribution of 3 H, only the incorporation rate by the mother's brain from HTO was satisfactory, whereas in other organs, the mother, fetuses and newborns showed higher incorporation rates from 3 H foods. The ratio of specific radioactivity of soft tissue 3 H in mothers to HTO in drinking water exceeded 1 only for the spleen, but other tissues showed no biological concentration. Again, no biological concentration was observed with 3 H foods. Environmental HTO did not result in biological concentration of 3 H in mother mice that had ingested 3 H foods, but 3 H was rather diluted. Tissues other than the spleen showed similar values of 3 H ingestion from environmental HTO through all routes. However, the proportion of bound 3 H in the total 3 H in the soft tissue was about 1.4-1.6 times that on ingestion of HTO alone. (Chiba, N.)

  2. Effects of ionizing radiation on plant tissue cultures

    International Nuclear Information System (INIS)

    Hell, K.G.

    1978-01-01

    A short review is done of the biological effects of ionizing radiations on plant tissues kept in culture, from the work of Gladys King, in 1949, with X-ray irradiated tobacco. The role of plant hormones is discussed in the processes of growth inhibition and growth restoration of irradiated tissues, as well as morphogenesis. Radioresistance of cells kept in culture and the use of ionizing radiations as mutagens are also commented. Some aspects of the biological effects of ionizing radiations that need to be investigated are discussed, and the problem of genome instability of plant tissues kept in culture is pointed out. (M.A.) [pt

  3. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  4. Essentialist Reasoning and Knowledge Effects on Biological Reasoning in Young Children

    Science.gov (United States)

    Herrmann, Patricia A.; French, Jason A.; DeHart, Ganie B.; Rosengren, Karl S.

    2013-01-01

    Biological kinds undergo a variety of changes during their life span, and these changes vary in degree by organism. Understanding that an organism, such as a caterpillar, maintains category identity over its life span despite dramatic changes is a key concept in biological reasoning. At present, we know little about the developmental trajectory of…

  5. High Prevalence of Nonalcoholic Fatty Liver Disease in Adolescents Undergoing Bariatric Surgery.

    Science.gov (United States)

    Xanthakos, Stavra A; Jenkins, Todd M; Kleiner, David E; Boyce, Tawny W; Mourya, Reena; Karns, Rebekah; Brandt, Mary L; Harmon, Carroll M; Helmrath, Michael A; Michalsky, Marc P; Courcoulas, Anita P; Zeller, Meg H; Inge, Thomas H

    2015-09-01

    Little is known about the prevalence of nonalcoholic fatty liver disease (NAFLD) among severely obese adolescents or factors that determine its development. We investigated the prevalence of NAFLD in a multicenter cohort of adolescents undergoing bariatric surgery and the factors associated with it. We enrolled 242 adolescents undergoing bariatric surgery between March 2007 and February 2012 at 5 tertiary care centers into a multicenter, prospective observational cohort study. Intraoperative core liver biopsies were collected from 165 subjects; 17 were excluded because of insufficient liver tissue or use of hepatotoxic medications, so 148 remained in the study (mean age, 16.8 ± 1.6 years; median body mass index = 52 kg/m(2)). Liver tissues were analyzed by histology using validated criteria. Hepatic gene expression was analyzed in 67 samples. NAFLD was present in 59% of this predominantly female (72%), white (68%), non-Hispanic (91%) cohort. Of subjects with NAFLD, 24% had borderline and 10% had definite nonalcoholic steatohepatitis (NASH). Mild fibrosis (stage 2 or lower) was observed in 18% of liver biopsies and stage 3 was observed in 0.7%, but cirrhosis was not detected. Dyslipidemia was present in 78% of subjects, hypertension in 44%, and diabetes in 14%. More severe NAFLD was associated with increasing levels of alanine aminotransferase, fasting glucose level, hypertension (each P adolescents undergoing bariatric surgery in this cohort had NAFLD, yet the prevalence of severe or fibrotic NASH was low. Increasing severity of NAFLD was associated with level of alanine aminotransferase and cardiometabolic risk factors, but not body mass index. Based on gene expression analysis, borderline and definite NASH were associated with abnormal immune function, intestinal cholesterol absorption, and lipid metabolism. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.

    Science.gov (United States)

    Watson, David E; Hunziker, Rosemarie; Wikswo, John P

    2017-10-01

    Microphysiological systems (MPS), which include engineered organoids (EOs), single organ/tissue chips (TCs), and multiple organs interconnected to create miniature in vitro models of human physiological systems, are rapidly becoming effective tools for drug development and the mechanistic understanding of tissue physiology and pathophysiology. The second MPS thematic issue of Experimental Biology and Medicine comprises 15 articles by scientists and engineers from the National Institutes of Health, the IQ Consortium, the Food and Drug Administration, and Environmental Protection Agency, an MPS company, and academia. Topics include the progress, challenges, and future of organs-on-chips, dissemination of TCs into Pharma, children's health protection, liver zonation, liver chips and their coupling to interconnected systems, gastrointestinal MPS, maturation of immature cardiomyocytes in a heart-on-a-chip, coculture of multiple cell types in a human skin construct, use of synthetic hydrogels to create EOs that form neural tissue models, the blood-brain barrier-on-a-chip, MPS models of coupled female reproductive organs, coupling MPS devices to create a body-on-a-chip, and the use of a microformulator to recapitulate endocrine circadian rhythms. While MPS hardware has been relatively stable since the last MPS thematic issue, there have been significant advances in cell sourcing, with increased reliance on human-induced pluripotent stem cells, and in characterization of the genetic and functional cell state in MPS bioreactors. There is growing appreciation of the need to minimize perfusate-to-cell-volume ratios and respect physiological scaling of coupled TCs. Questions asked by drug developers are followed by an analysis of the potential value, costs, and needs of Pharma. Of highest value and lowest switching costs may be the development of MPS disease models to aid in the discovery of disease mechanisms; novel compounds including probes, leads, and clinical candidates

  7. Measurement of human normal tissue and tumour responses

    International Nuclear Information System (INIS)

    Ross, G.; Yarnold, J.R.

    1988-01-01

    The scarcity of quantitative measures of normal tissue damage and tumour response in patients undergoing radiotherapy is an obstacle to the clinical evaluation of new treatment strategies. Retrospective studies of complications in critical normal tissues taught important lessons in the past concerning the potential dangers of hypofractionation. However, it is unethical to use serious complications as planned end-points in prospective studies. This paper reviews the desirable characteristics of clinical end-points required to compare alternative treatments employing radiotherapy, with emphasis on simple scales applied by clinicians or even the patients themselves

  8. Microgravity cultivation of cells and tissues

    Science.gov (United States)

    Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.

    1999-01-01

    In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.

  9. The cellular environment of cancerous human tissue. Interfacial and dangling water as a "hydration fingerprint".

    Science.gov (United States)

    Abramczyk, Halina; Brozek-Pluska, Beata; Krzesniak, Marta; Kopec, Monika; Morawiec-Sztandera, Alina

    2014-08-14

    Despite a large number of publications, the role of water in the cellular environment of biological tissue has not been clarified. Characterizing the biological interface is a key challenge in understanding the interactions of water in the tissue. Although we often assume that the properties of the bulk water can be translated to the crowded biological environment, this approach must be considerably revised when considering the biological interface. To our knowledge, few studies have directly monitored the interactions and accumulation of water in the restricted environments of the biological tissue upon realistic crowding conditions. The present study focuses on a molecular picture of water molecules at the biological interface, or specifically, water molecules adjacent to the hydrophobic and hydrophilic surfaces of normal and cancerous tissues. We recorded and analyzed the IR and Raman spectra of the νs(OH) stretching modes of water at the biological interfaces of the human breast and neck tissues. The results revealed dramatic changes in the water content in the tissue and are potentially relevant to both the fundamental problems of interfacial water modeling and the molecular diagnostics of cancer as a 'hydration fingerprint'. Herein, we will discuss the origin of the vibrational substructures observed for the νs(OH) stretching modes of water, showing that the interfacial water interacting via H-bond with other water molecules and biomolecules at the biological surface and free OH vibration of the dangling water are sensitive indicators of the pathology between the normal (noncancerous) and cancerous tissue and cancer types. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Comparison of fatty acid composition of subcutaneous, pericardial and epicardial adipose tissue and atrial tissue in patients with heart disease

    DEFF Research Database (Denmark)

    Eschen, Rikke Bülow; Gu, Jiwei; Andreasen, Jan Jesper

    2016-01-01

    (EPA) and docosahexaenoic acid (DHA), from three different adipose tissue compartments [epicardial (EAT), pericardial (PAT) and subcutaneous (SAT)]. Furthermore, we studied the correlation between the content of EPA and DHA in these compartments and in atrial tissue (AT). METHODS We obtained AT from......OBJECTIVES The content in adipose tissue of marine n-3 polyunsaturated fatty acids (PUFAs) is a marker of long-term fish consumption and data suggest an antiarrhythmic effect of n-3 PUFAs. We investigated the correlation between adipose tissue content of the major n-3 PUFAs, eicosapentaenoic acid...... auricles, EAT above the right ventricle, PAT, and SAT below the sternum from 50 patients undergoing cardiac surgery. Samples were frozen at -80°C and the content of n-3 PUFAs determined by gas chromatography with results given in relative weight%. RESULTS EPA and DHA were significantly correlated in EAT...

  11. Optical tomography of tissues

    International Nuclear Information System (INIS)

    Zimnyakov, D A; Tuchin, Valerii V

    2002-01-01

    Methods of optical tomography of biological tissues are considered, which include pulse-modulation and frequency-modulation tomography, diffusion tomography with the use of cw radiation sources, optical coherent tomography, speckle-correlation tomography of nonstationary media, and optoacoustic tomography. The method for controlling the optical properties of tissues is studied from the point of view of increasing a probing depth in optical coherent tomography. The modern state and prospects of the development of optical tomography are discussed. (review)

  12. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    Science.gov (United States)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  13. Physically based principles of cell adhesion mechanosensitivity in tissues

    International Nuclear Information System (INIS)

    Ladoux, Benoit; Nicolas, Alice

    2012-01-01

    The minimal structural unit that defines living organisms is a single cell. By proliferating and mechanically interacting with each other, cells can build complex organization such as tissues that ultimately organize into even more complex multicellular living organisms, such as mammals, composed of billions of single cells interacting with each other. As opposed to passive materials, living cells actively respond to the mechanical perturbations occurring in their environment. Tissue cell adhesion to its surrounding extracellular matrix or to neighbors is an example of a biological process that adapts to physical cues. The adhesion of tissue cells to their surrounding medium induces the generation of intracellular contraction forces whose amplitude adapts to the mechanical properties of the environment. In turn, solicitation of adhering cells with physical forces, such as blood flow shearing the layer of endothelial cells in the lumen of arteries, reinforces cell adhesion and impacts cell contractility. In biological terms, the sensing of physical signals is transduced into biochemical signaling events that guide cellular responses such as cell differentiation, cell growth and cell death. Regarding the biological and developmental consequences of cell adaptation to mechanical perturbations, understanding mechanotransduction in tissue cell adhesion appears as an important step in numerous fields of biology, such as cancer, regenerative medicine or tissue bioengineering for instance. Physicists were first tempted to view cell adhesion as the wetting transition of a soft bag having a complex, adhesive interaction with the surface. But surprising responses of tissue cell adhesion to mechanical cues challenged this view. This, however, did not exclude that cell adhesion could be understood in physical terms. It meant that new models and descriptions had to be created specifically for these biological issues, and could not straightforwardly be adapted from dead matter

  14. Framework of collagen type I - vasoactive vessels structuring invariant geometric attractor in cancer tissues: insight into biological magnetic field.

    Directory of Open Access Journals (Sweden)

    Jairo A Díaz

    Full Text Available In a previous research, we have described and documented self-assembly of geometric triangular chiral hexagon crystal-like complex organizations (GTCHC in human pathological tissues. This article documents and gathers insights into the magnetic field in cancer tissues and also how it generates an invariant functional geometric attractor constituted for collider partners in their entangled environment. The need to identify this hierarquic attractor was born out of the concern to understand how the vascular net of these complexes are organized, and to determine if the spiral vascular subpatterns observed adjacent to GTCHC complexes and their assembly are interrelational. The study focuses on cancer tissues and all the macroscopic and microscopic material in which GTCHC complexes are identified, which have been overlooked so far, and are rigorously revised. This revision follows the same parameters that were established in the initial phase of the investigation, but with a new item: the visualization and documentation of external dorsal serous vascular bed areas in spatial correlation with the localization of GTCHC complexes inside the tumors. Following the standard of the electro-optical collision model, we were able to reproduce and replicate collider patterns, that is, pairs of left and right hand spin-spiraled subpatterns, associated with the orientation of the spinning process that can be an expansion or contraction disposition of light particles. Agreement between this model and tumor data is surprisingly close; electromagnetic spiral patterns generated were identical at the spiral vascular arrangement in connection with GTCHC complexes in malignant tumors. These findings suggest that the framework of collagen type 1 - vasoactive vessels that structure geometric attractors in cancer tissues with invariant morphology sets generate collider partners in their magnetic domain with opposite biological behavior. If these principles are incorporated

  15. Analytical procedures for bulk frozen-hydrated biological tissues

    International Nuclear Information System (INIS)

    Echlin, P.; Hayes, T.L.; McKoon, M.

    1983-01-01

    The main advantage of using solid frozen samples for elemental x-ray microanalysis is the ease with which they may be prepared and maintained in the frozen-hydrated state. Within the limits imposed by the reduced spatial resolution of the method, the morphological identification of the tissue components is comparatively easy. Bearing in mind these limitations, the authors have carried out an analysis for several elements in the developing root tips of Lemna minor L (Duckweed). Fresh root tips of Lemna minor L, briefly encapsulated in a polymeric cryoprotectant, are quench frozen in melting nitrogen at ca. 70 0 K and transferred to the pre-cooled cold stage of an AMray Biochamber. The analysis was carried out by means of a Kevex energy-dispersive detector by use of the peak-to-background ratio method. These procedures allow the authors to obtain flat fracture faces in which they have been able to measure the relative concentrations of various elements at the various stages of differentiation in the root tissue

  16. Effects of pions on normal tissues

    International Nuclear Information System (INIS)

    Tokita, N.

    1981-01-01

    Verification of the uniform biological effectiveness of pion beams of various dimensions produced at LAMPF has been made using cultured mammalian cells and mouse jejunum. Normal tissue radiobiology studies at LAMPF are reviewed with regard to biological beam characterization for the therapy program and the current status of acute and late effect studies on rodents

  17. Tissue-based map of the human proteome

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M.

    2015-01-01

    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transc...

  18. Bimodal spectroscopy in elastic scattering and spatially resolved auto-fluorescence: instrumentation, light-tissues interaction modeling and application to ex vivo and in vivo biological tissues characterization for cancers detection

    International Nuclear Information System (INIS)

    Pery, Emilie

    2007-01-01

    This research activity aims at developing and validating a multimodal spectroscopy method in elastic scattering and auto-fluorescence to characterize biological tissues in vitro and in vivo. It is articulated in four axes. At first, instrumentation is considered with the development, the engineering and the experimental characterization of a fibers bimodal, multi-points spectrometry system allowing the acquisition of spectra in vivo (variable distances, fast acquisition). Secondly, the optical properties of tissues are modelled with the development and the experimental validation on phantoms of a photons propagation simulation algorithm in turbid media and multi-fluorescent. Thirdly, an experimental study has been conducted ex vivo on fresh and cryo-preserved arterial rings. It confirms the complementarity of spectroscopic measurements in elastic scattering and auto-fluorescence, and validates the method of multi-modality spectroscopy and the simulation of photons propagation algorithm. Results have well proved a correlation between rheological and optical properties. Finally, one second experimental study in vivo related to a pre-clinical tumoral model of bladder has been carried out. It highlights a significant difference in diffuse reflectance and/or auto-fluorescence and/or intrinsic fluorescence between healthy, inflammatory and tumoral tissues, on the basis of specific wavelength. The results of not supervised classification show that the combination of various spectroscopic approaches increases the reliability of the diagnosis. (author) [fr

  19. Thermal distribution in biological tissue at laser induced fluorescence and photodynamic therapy

    Science.gov (United States)

    Krasnikov, I. V.; Seteikin, A. Yu.; Drakaki, E.; Makropoulou, M.

    2012-03-01

    Laser induced fluorescence spectroscopy and photodynamic therapy (PDT) are techniques currently introduced in clinical applications for visualization and local destruction of malignant tumours as well as premalignant lesions. During the laser irradiation of tissues for the diagnostic and therapeutic purposes, the absorbed optical energy generates heat, although the power density of the treatment light for surface illumination is normally low enough not to cause any significantly increased tissue temperature. In this work we tried to evaluate the utility of Monte Carlo modeling for simulating the temperature fields and the dynamics of heat conduction into the skin tissue under several laser irradiation conditions with both a pulsed UV laser and a continuous wave visible laser beam. The analysis of the results showed that heat is not localized on the surface, but it is collected inside the tissue. By varying the boundary conditions on the surface and the type of the laser radiation (continuous or pulsed) we can reach higher than normal temperature inside the tissue without simultaneous formation of thermally damaged tissue (e.g. coagulation or necrosis zone).

  20. Curriculum in biomedical optics and laser-tissue interactions

    Science.gov (United States)

    Jacques, Steven L.

    2003-10-01

    A graduate student level curriculum has been developed for teaching the basic principles of how lasers and light interact with biological tissues and materials. The field of Photomedicine can be divided into two topic areas: (1) where tissue affects photons, used for diagnostic sensing, imaging, and spectroscopy of tissues and biomaterials, and (2) where photons affect tissue, used for surgical and therapeutic cutting, dissecting, machining, processing, coagulating, welding, and oxidizing tissues and biomaterials. The courses teach basic principles of tissue optical properties and light transport in tissues, and interaction of lasers and conventional light sources with tissues via photochemical, photothermal and photomechanical mechanisms.

  1. The mechanics of soft biological composites.

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thao D. (Sandia National Laboratories, Livermore, CA); Grazier, John Mark; Boyce, Brad Lee; Jones, Reese E. (Sandia National Laboratories, Livermore, CA)

    2007-10-01

    Biological tissues are uniquely structured materials with technologically appealing properties. Soft tissues such as skin, are constructed from a composite of strong fibrils and fluid-like matrix components. This was the first coordinated experimental/modeling project at Sandia or in the open literature to consider the mechanics of micromechanically-based anisotropy and viscoelasticity of soft biological tissues. We have exploited and applied Sandia's expertise in experimentation and mechanics modeling to better elucidate the behavior of collagen fibril-reinforced soft tissues. The purpose of this project was to provide a detailed understanding of the deformation of ocular tissues, specifically the highly structured skin-like tissue in the cornea. This discovery improved our knowledge of soft/complex materials testing and modeling. It also provided insight into the way that cornea tissue is bio-engineered such that under physiologically-relevant conditions it has a unique set of properties which enhance functionality. These results also provide insight into how non-physiologic loading conditions, such as corrective surgeries, may push the cornea outside of its natural design window, resulting in unexpected non-linear responses. Furthermore, this project created a clearer understanding of the mechanics of soft tissues that could lead to bio-inspired materials, such as highly supple and impact resistant body armor, and improve our design of human-machine interfaces, such as micro-electrical-mechanical (MEMS) based prosthetics.

  2. A Biochemical Approach to Detect Oxidative Stress in Infertile Women Undergoing Assisted Reproductive Technology Procedures

    Science.gov (United States)

    Becatti, Matteo; Fucci, Rossella; Mannucci, Amanda; Barygina, Victoria; Mugnaini, Marco; Criscuoli, Luciana; Giachini, Claudia; Bertocci, Francesco; Picone, Rita; Emmi, Giacomo; Evangelisti, Paolo; Rizzello, Francesca; Cozzi, Cinzia; Taddei, Niccolò; Coccia, Maria Elisabetta

    2018-01-01

    Oxidative stress plays a major role in critical biological processes in human reproduction. However, a reliable and biologically accurate indicator of this condition does not yet exist. On these bases, the aim of this study was to assess and compare the blood and follicular fluid (FF) redox status of 45 infertile subjects (and 45 age-matched controls) undergoing in vitro fertilization (IVF), and explore possible relationships between the assessed redox parameters and IVF outcomes. Reactive Oxygen Species (ROS) production, assessed by flow cytometry analysis in blood leukocytes and granulosa cells, significantly increased (p assisted reproductive techniques and infertility management is recommended. PMID:29462946

  3. Photoacoustic imaging in both soft and hard biological tissue

    International Nuclear Information System (INIS)

    Li, T; Dewhurst, R J

    2010-01-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  4. Pulsed photothermal depth profiling of tattoos undergoing laser removal treatment

    Science.gov (United States)

    Milanic, Matija; Majaron, Boris

    2012-02-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive determination of temperature depth profiles induced by pulsed laser irradiation of strongly scattering biological tissues and organs, including human skin. In present study, we evaluate the potential of this technique for investigational characterization and possibly quantitative evaluation of laser tattoo removal. The study involved 5 healthy volunteers (3 males, 2 females), age 20-30 years, undergoing tattoo removal treatment using a Q-switched Nd:YAG laser. There were four measurement and treatment sessions in total, separated by 2-3 months. Prior to each treatment, PPTR measurements were performed on several tattoo sites and one nearby healthy site in each patient, using a 5 ms Nd:YAG laser at low radiant exposure values and a dedicated radiometric setup. The laser-induced temperature profiles were then reconstructed by applying a custom numerical code. In addition, each tatoo site was documented with a digital camera and measured with a custom colorimetric system (in tristimulus color space), providing an objective evaluation of the therapeutic efficacy to be correlated with our PPTR results. The results show that the laser-induced temperature profile in untreated tattoos is invariably located at a subsurface depth of 300 μm. In tattoo sites that responded well to laser therapy, a significant drop of the temperature peak was observed in the profiles obtained from PPTR record. In several sites that appeared less responsive, as evidenced by colorimetric data, a progressive shift of the temperature profile deeper into the dermis was observed over the course of consecutive laser treatments, indicating that the laser tattoo removal was efficient.

  5. Regulatory inhibition of biological tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Joshua C., E-mail: joshchang@ucla.edu [Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA and Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio 43210 (United States); Miura, Robert M., E-mail: miura@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2016-04-21

    In vertebrates, insufficient availability of calcium and inorganic phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are usually present at high concentrations throughout bodily fluids—at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. In this manuscript, we extend mean-field continuum classical nucleation theory of the growth of clusters to encompass surface shielding. We use this formulation to study the regulation of sedimentation of calcium phosphate salts in biological tissues through the mechanism of post-nuclear shielding of nascent mineral particles by binding proteins. We develop a mathematical description of this phenomenon using a countable system of hyperbolic partial differential equations. A critical concentration of regulatory protein is identified as a function of the physical parameters that describe the system.

  6. Clinical oncology based upon radiation biology

    International Nuclear Information System (INIS)

    Hirata, Hideki

    2016-01-01

    This paper discussed the biological effects of radiation as physical energy, especially those of X-ray as electromagnetic radiation, by associating the position of clinical oncology with classical radiation cell biology as well as recent molecular biology. First, it described the physical and biological effects of radiation, cell death due to radiation and recovery, radiation effects at tissue level, and location information and dosage information in the radiotherapy of cancer. It also described the territories unresolved through radiation biology, such as low-dose high-sensitivity, bystander effects, etc. (A.O.)

  7. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E.; Clevers, Hans

    2016-01-01

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in

  8. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E; Clevers, Hans

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in

  9. Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites.

    Science.gov (United States)

    Gabriel, Laís P; Santos, Maria Elizabeth M Dos; Jardini, André L; Bastos, Gilmara N T; Dias, Carmen G B T; Webster, Thomas J; Maciel Filho, Rubens

    2017-01-01

    In this work, thermoset polyurethane composites were prepared by the addition of hydroxyapatite nanoparticles using the reactants polyol polyether and an aliphatic diisocyanate. The polyol employed in this study was extracted from the Euterpe oleracea Mart. seeds from the Amazon Region of Brazil. The influence of hydroxyapatite nanoparticles on the structure and morphology of the composites was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), thermal properties were analyzed by thermogravimetry analysis (TGA), and biological properties were studied by in vitro and in vivo studies. It was found that the addition of HA nanoparticles promoted fibroblast adhesion while in vivo investigations with histology confirmed that the composites promoted connective tissue adherence and did not induce inflammation. In this manner, this study supports the further investigation of bio-based, polyurethane/hydroxyapatite composites as biocompatible scaffolds for numerous tissue engineering applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Advances in biologic augmentation for rotator cuff repair

    Science.gov (United States)

    Patel, Sahishnu; Gualtieri, Anthony P.; Lu, Helen H.; Levine, William N.

    2016-01-01

    Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue. Therefore, various biological augmentation approaches have been investigated to improve rotator cuff repair healing. This review highlights recent advances in three fundamental approaches for biological augmentation for functional and integrative tendon–bone repair. First, the exploration, application, and delivery of growth factors to improve regeneration of native tissue is discussed. Second, applications of stem cell and other cell-based therapies to replenish damaged tissue for better healing is covered. Finally, this review will highlight the development and applications of compatible biomaterials to both better recapitulate the tendon–bone interface and improve delivery of biological factors for enhanced integrative repair. PMID:27750374

  11. Effects of estradiol and medroxyprogesterone acetate on morphology, proliferation and apoptosis of human breast tissue in organ cultures

    International Nuclear Information System (INIS)

    Eigėlienė, Natalija; Härkönen, Pirkko; Erkkola, Risto

    2006-01-01

    Human breast tissue undergoes phases of proliferation, differentiation and regression regulated by changes of the levels of circulating sex hormones during the menstrual cycle or aging. Ovarian hormones also likely play a key role in the etiology and biology of breast cancer. Reports concerning the proliferative effects of steroid hormones on the normal epithelium of human breast have been conflicting. Some studies have shown that steroid hormones may predispose breast epithelial cells to malignant changes by stimulating their proliferation, which is known to be regulated tightly by stromal cells. The aim of this study was to investigate the effects of 17β-estradiol and medroxyprogesterone acetate on proliferation, apoptosis, expression of differentiation markers and steroid hormone receptors in breast epithelium using an in vitro model of freshly isolated human breast tissue, in which a proper interaction of breast epithelium and stroma has been maintained. Human breast tissues were obtained from women undergoing surgery for breast tumours. Peritumoral tissues were excised and explants were cultured for 3 weeks in medium supplemented with E 2 or MPA or with E 2 +MPA. Endpoints included histopathological, histomorphometric and immunohistochemical assessment of the breast explants. Culture of breast explants for 14 or 21 days with steroid hormones increased proliferative activity and the thickness of acinar and ductal epithelium. E 2 -treatment led to hyperplastic epithelial morphology, MPA to hypersecretory single-layered epithelium and E 2 +MPA to multilayered but organised epithelium. The proliferative response to E 2 in comparison to control (p < 0.001) was more pronounced than to MPA (p < 0.05) or E 2 +MPA (p < 0.05) at 7 and 14 days for Ki-67 and PCNA. E 2 treatment also decreased the proportion of apoptotic cells after 7 (p < 0.01) and 14 (p < 0.01) days. In addition, the relative number of ERα, ERβ and PR positive epithelial cells was decreased by all

  12. Environmental regulation of valvulogenesis:implications for tissue engineering

    NARCIS (Netherlands)

    Riem Vis, P.W.; Kluin, J.; Sluijter, J.P.G.; Herwerden, van L.A.; Bouten, C.V.C.

    2011-01-01

    Ongoing research efforts aim at improving the creation of tissue-engineered heart valves for in vivo systemic application. Hence, in vitro studies concentrate on optimising culture protocols incorporating biological as well as biophysical stimuli for tissue development. Important lessons can be

  13. Cell-size distribution in epithelial tissue formation and homeostasis.

    Science.gov (United States)

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. © 2017 The Author(s).

  14. Spatial-Frequency Azimuthally Stable Cartography of Biological Polycrystalline Networks

    Directory of Open Access Journals (Sweden)

    V. A. Ushenko

    2013-01-01

    Full Text Available A new azimuthally stable polarimetric technique processing microscopic images of optically anisotropic structures of biological tissues histological sections is proposed. It has been used as a generalized model of phase anisotropy definition of biological tissues by using superposition of Mueller matrices of linear birefringence and optical activity. The matrix element M44 has been chosen as the main information parameter, whose value is independent of the rotation angle of both sample and probing beam polarization plane. For the first time, the technique of concerted spatial-frequency filtration has been used in order to separate the manifestation of linear birefringence and optical activity. Thereupon, the method of azimuthally stable spatial-frequency cartography of biological tissues histological sections has been elaborated. As the analyzing tool, complex statistic, correlation, and fractal analysis of coordinate distributions of M44 element has been performed. The possibility of using the biopsy of the uterine wall tissue in order to differentiate benign (fibromyoma and malignant (adenocarcinoma conditions has been estimated.

  15. Biochemical And Biological Effects Of GAMMA Irradiation On Certain Mineral Contents In The Almond Moth Tissues, EPHESTIA CAUTELLA (WALKER)

    International Nuclear Information System (INIS)

    MOHAMED, H.F.; GHAREIB, O.H.

    2009-01-01

    In the present study, the biochemical and biological effects of two sub-sterilizing doses of gamma radiation (100 and 200 Gray) were studied on F 1 adult male and female almond moths, Ephestia cautella (Walker) (Pyralidae: Lepidoptera) descendant of irradiated parental male pupae. The insects were maintained continuously on peanuts and hazelnuts diets. Oviposition, average of adult longevity per days, the emerged adult weight, the percentage loss in diet weight and the percentage free fatty acid and peroxide values of infested peanuts and hazelnuts were determined. The effect of gamma irradiation on the relative percentage of metal contents was detected in the whole body tissues of males and females descendant of irradiated parental male pupae. The obtained results indicated that the total concentrations of the light metals (Mg, Al, Si, P, S, Cl, K and Fe) of F 1 male and female tissues at 100 and 200 Gy and reared on peanuts and hazelnuts diets were very higher than those of the heavy metals (Cu and Zn) at all treatments.

  16. Some Physical, Chemical, and Biological Parameters of Samples of Scleractinium Coral Aquaculture Skeleton Used for Reconstruction/Engineering of the Bone Tissue.

    Science.gov (United States)

    Popov, A A; Sergeeva, N S; Britaev, T A; Komlev, V S; Sviridova, I K; Kirsanova, V A; Akhmedova, S A; Dgebuadze, P Yu; Teterina, A Yu; Kuvshinova, E A; Schanskii, Ya D

    2015-08-01

    Physical and chemical (phase and chemical composition, dynamics of resorption, and strength properties), and biological (cytological compatibility and scaffold properties of the surface) properties of samples of scleractinium coral skeletons from aquacultures of three types and corresponding samples of natural coral skeletons (Pocillopora verrucosa, Acropora formosa, and Acropora nobilis) were studied. Samples of scleractinium coral aquaculture skeleton of A. nobilis, A. formosa, and P. verrucosa met the requirements (all study parameters) to materials for osteoplasty and 3D-scaffolds for engineering of bone tissue.

  17. Influence of length of interval between pulses in PDR brachytherapy (PDRBT on value of Biologically Equivalent Dose (BED in healthy tissues

    Directory of Open Access Journals (Sweden)

    Tomasz Piotrowski

    2010-07-01

    Full Text Available Purpose: Different PDR treatment schemas are used in clinical practice, however optimal length of interval between pulses still remains unclear. The aim of this work was to compare value of BED doses measured in surrounded healthy tissues according to different intervals between pulses in PDRBT. Influence of doses optimization on BED values was analyzed.Material and methods: Fifty-one patients treated in Greater Poland Cancer Centre were qualified for calculations.Calculations of doses were made in 51 patients with head and neck cancer, brain tumor, breast cancer, sarcoma, penis cancer and rectal cancer. Doses were calculated with the use of PLATO planning system in chosen critical points in surrounded healthy tissues. For all treatment plans the doses were compared using Biologically Equivalent Dose formula.Three interval lengths (1, 2 and 4 hours between pulses were chosen for calculations. For statistical analysis Friedman ANOVA test and Kendall ratio were used.Results: The median value of BED in chosen critical points in healthy tissues was statistically related to the length of interval between PDR pulses and decreased exponentially with 1 hour interval to 4 hours (Kendall = from 0.48 to 1.0; p = from 0.002 to 0.00001.Conclusions: Prolongation of intervals between pulses in PDR brachytherapy was connected with lower values of BED doses in healthy tissues. It seems that longer intervals between pulses reduced the risk of late complications, but also decreased the tumour control. Furthermore, optimization influenced the increase of doses in healthy tissues.

  18. Metabolic reconstruction of Setaria italica: a systems biology approach for integrating tissue-specific omics and pathway analysis of bioenergy grasses

    Directory of Open Access Journals (Sweden)

    Cristiana Gomes De Oliveira Dal'molin

    2016-08-01

    Full Text Available The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica, as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S.italica. mRNA, protein and metabolite abundances, were measured in mature and immature stem/leaf phytomers and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME. Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study

  19. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    Science.gov (United States)

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  20. Oxidant-antioxidant status in tissue samples of oral leukoplakia

    Directory of Open Access Journals (Sweden)

    Kumar Chandan Srivastava

    2014-01-01

    Full Text Available Background: Imbalances between the oxidant-antioxidant status have been implicated in the pathogenesis of several diseases, including oral cancer. Majority of oral cancer are preceded by a well-recognized group of pre-malignant lesions. However, only a small fraction of those lesions, undergo malignant transformation. Hence, there is a great need to identify biological markers, which will assist in identifying lesion carrying high-risk. This study aims to evaluate and compare the status of oxidative stress and antioxidant enzymes in tissue samples of patients with various clinicopathological stages of oral pre-malignancy. Materials and Methods: A case control study consisting of 20 new histopathologically proven leukoplakia patients and equal number of age, sex, and habit matched healthy subjects were recruited for this study. Their tissue samples were subjected to evaluation of lipid peroxidation product, thiobarbituric acid reactive substances and antioxidant enzymes, namely, superoxide dismutase (SOD, catalase (CAT, reduced glutathione (GSH, and glutathione peroxidase (GPx using spectrophotometric methods. The data are expressed as mean ± standard deviation. The statistical comparisons were performed by independent Student′s unpaired t-test and one-way analysis of variance. Pearson′s correlation was performed for the biochemical parameters within the group and between the groups. For statistically significant correlations, simple linear regression was performed. P- value < 0.05 was considered statistically significant. Results: Significant reduction in lipid peroxidation (P < 0.001 SOD and CAT (P < 0.001 was observed in the tissue of leukoplakia patients as compared to the healthy controls. On the other hand, GSH and GPx were significantly increased in tumor samples. Conclusion: Reduced lipid peroxidation and increased activity of GSH and GPx provides the suitable environment for the tumor growth and malignant transformation in the later

  1. Modern Soft Tissue Pathology | Center for Cancer Research

    Science.gov (United States)

    This book comprehensively covers modern soft tissue pathology and includes both tumors and non-neoplastic entities. Soft tissues make up a large bulk of the human body, and they are susceptible to a wide range of diseases. Many soft-tissue tumors are biologically very aggressive, and the chance of them metastasizing to vital organs is quite high. In recent years, the outlook

  2. Bifurcations of a class of singular biological economic models

    International Nuclear Information System (INIS)

    Zhang Xue; Zhang Qingling; Zhang Yue

    2009-01-01

    This paper studies systematically a prey-predator singular biological economic model with time delay. It shows that this model exhibits two bifurcation phenomena when the economic profit is zero. One is transcritical bifurcation which changes the stability of the system, and the other is singular induced bifurcation which indicates that zero economic profit brings impulse, i.e., rapid expansion of the population in biological explanation. On the other hand, if the economic profit is positive, at a critical value of bifurcation parameter, the system undergoes a Hopf bifurcation, i.e., the increase of delay destabilizes the system and bifurcates into small amplitude periodic solution. Finally, by using Matlab software, numerical simulations illustrate the effectiveness of the results obtained here. In addition, we study numerically that the system undergoes a saddle-node bifurcation when the bifurcation parameter goes through critical value of positive economic profit.

  3. The Human Tissue Act 2004 and the child donor.

    Science.gov (United States)

    Baston, Jenny

    2009-05-01

    In 2001, the inquiry panel appointed to investigate the removal, retention and disposal of human organs and tissues at the Royal Liverpool Children's Hospital published its report. The panel's recommendations led to a new approach to consent for organ removal and storage under the new Human Tissue Act 2004. For child bone marrow donors, the new consent process requires all donor children or their parent to undergo a separate assessment before the bone marrow donation. They must be assessed by an accredited assessor who will submit a recommendation to the Human Tissue Authority for consideration. The unfortunate circumstances highlighted in the inquiry have led to changes to law, practice and culture that are benefiting other children and families.

  4. Designing a 'neotissue' using the principles of biology, chemistry and engineering.

    Science.gov (United States)

    Nannaparaju, Madhusudhan; Oragui, Emeka; Khan, Wasim S

    2012-01-01

    The traditional methods of treating musculoskeletal injuries and disorders are not completely effective and have several limitations. Tissue engineering involves using the principles of biology, chemistry and engineering to design a 'neotissue' that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. In this review we provide an overview of the biology of common musculoskeletal tissue and discuss their common pathologies. We also describe the commonly used stem cells, scaffolds and bioreactors and evaluate their role in issue engineering.

  5. Application of dried-droplets deposited on pre-cut filter paper disks for quantitative LA-ICP-MS imaging of biologically relevant minor and trace elements in tissue samples.

    Science.gov (United States)

    Bonta, Maximilian; Hegedus, Balazs; Limbeck, Andreas

    2016-02-18

    In this work, a novel calibration approach for minor and trace element quantification in LA-ICP-MS imaging of biological tissues is presented. Droplets of aqueous standard solutions are deposited onto pre-cut pieces of filter paper, allowed to dry, and sputtered with a thin gold layer for use as pseudo-internal standard. Analysis of the standards using LA-ICP-MS is performed using radial line-scans across the filters. In contrast to conventionally used preparation of matrix-matched tissue standards, the dried-droplet approach offers a variety of advantages: The standards are easy to prepare, no characterization of the standards using acid digestion is required, no handling of biological materials is necessary, and the concentration range, as well the number of investigated analytes is almost unlimited. The proposed quantification method has been verified using homogenized tissue standards with known analyte concentrations before being applied to a human malignant mesothelioma biopsy from a patient who had not received any chemotherapeutic treatment. Elemental distribution images were acquired at a lateral resolution of 40 μm per pixel, limits of detection ranging from 0.1 μg g(-1) (Mn, Ni, Cu, Zn) to 13.2 μg g(-1) (K) were reached. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Directory of Open Access Journals (Sweden)

    Viti Federica

    2008-04-01

    Full Text Available Abstract Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.

  7. A photoacoustic tomography system for imaging of biological tissues

    International Nuclear Information System (INIS)

    Su Yixiong; Zhang Fan; Xu Kexin; Yao Jianquan; Wang, Ruikang K

    2005-01-01

    Non-invasive laser-induced photoacoustic tomography (PAT) is a promising imaging modality in the biomedical optical imaging field. This technology, based on the intrinsic optical properties of tissue and ultrasonic detection, overcomes the resolution disadvantage of pure-optical imaging caused by strong light scattering and the contrast and speckle disadvantages of pure ultrasonic imaging. Here, we report a PAT experimental system constructed in our laboratory. In our system, a Q-switched Nd : YAG pulse laser operated at 532 nm with a 8 ns pulse width is used to generate a photoacoustic signal. By using this system, the two-dimensional distribution of optical absorption in the tissue-mimicking phantom is reconstructed and has an excellent agreement with the original ones. The spatial resolution of the imaging system approaches 100 μm through about 4 cm of highly scattering medium

  8. Programming Morphogenesis through Systems and Synthetic Biology.

    Science.gov (United States)

    Velazquez, Jeremy J; Su, Emily; Cahan, Patrick; Ebrahimkhani, Mo R

    2018-04-01

    Mammalian tissue development is an intricate, spatiotemporal process of self-organization that emerges from gene regulatory networks of differentiating stem cells. A major goal in stem cell biology is to gain a sufficient understanding of gene regulatory networks and cell-cell interactions to enable the reliable and robust engineering of morphogenesis. Here, we review advances in synthetic biology, single cell genomics, and multiscale modeling, which, when synthesized, provide a framework to achieve the ambitious goal of programming morphogenesis in complex tissues and organoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Elements determination of clinical relevance in biological tissues Dmd{sup mdx}/J dystrophic mice strains investigated by NAA; Determinacao de elementos de relevancia clinica em tecidos biologicos de camundongos distroficos Dmd{sup mdx}/J por AAN

    Energy Technology Data Exchange (ETDEWEB)

    Metairon, Sabrina

    2012-07-01

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMD{sup mdx}/J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmd{sup mdx}/J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  10. Imaging in cellular and tissue engineering

    CERN Document Server

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  11. Improved mathematical and computational tools for modeling photon propagation in tissue

    Science.gov (United States)

    Calabro, Katherine Weaver

    Light interacts with biological tissue through two predominant mechanisms: scattering and absorption, which are sensitive to the size and density of cellular organelles, and to biochemical composition (ex. hemoglobin), respectively. During the progression of disease, tissues undergo a predictable set of changes in cell morphology and vascularization, which directly affect their scattering and absorption properties. Hence, quantification of these optical property differences can be used to identify the physiological biomarkers of disease with interest often focused on cancer. Diffuse reflectance spectroscopy is a diagnostic tool, wherein broadband visible light is transmitted through a fiber optic probe into a turbid medium, and after propagating through the sample, a fraction of the light is collected at the surface as reflectance. The measured reflectance spectrum can be analyzed with appropriate mathematical models to extract the optical properties of the tissue, and from these, a set of physiological properties. A number of models have been developed for this purpose using a variety of approaches -- from diffusion theory, to computational simulations, and empirical observations. However, these models are generally limited to narrow ranges of tissue and probe geometries. In this thesis, reflectance models were developed for a much wider range of measurement parameters, and influences such as the scattering phase function and probe design were investigated rigorously for the first time. The results provide a comprehensive understanding of the factors that influence reflectance, with novel insights that, in some cases, challenge current assumptions in the field. An improved Monte Carlo simulation program, designed to run on a graphics processing unit (GPU), was built to simulate the data used in the development of the reflectance models. Rigorous error analysis was performed to identify how inaccuracies in modeling assumptions can be expected to affect the accuracy

  12. Printing and Prototyping of Tissues and Scaffolds

    Science.gov (United States)

    Derby, Brian

    2012-11-01

    New manufacturing technologies under the banner of rapid prototyping enable the fabrication of structures close in architecture to biological tissue. In their simplest form, these technologies allow the manufacture of scaffolds upon which cells can grow for later implantation into the body. A more exciting prospect is the printing and patterning in three dimensions of all the components that make up a tissue (cells and matrix materials) to generate structures analogous to tissues; this has been termed bioprinting. Such techniques have opened new areas of research in tissue engineering and regenerative medicine.

  13. Engineering Complex Tissues

    Science.gov (United States)

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  14. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    Science.gov (United States)

    Martínez-Pardo, M. E.; Ley-Chávez, E.; Reyes-Frías, M. L.; Rodríguez-Ferreyra, P.; Vázquez-Maya, L.; Salazar, M. A.

    2007-11-01

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is "Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation". At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders.

  15. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Pardo, M.E. [Instituto Nacional de Investigaciones Nucleares, Apdo. postal 18-1027, Col. Escandon 11801 Mexico DF (Mexico)], E-mail: memp@nuclear.inin.mx; Ley-Chavez, E. [ISSEMYM Toluca, Mexico DF (Mexico); Reyes-Frias, M.L. [Instituto Nacional de Investigaciones Nucleares, Apdo. postal 18-1027, Col. Escandon 11801 Mexico DF (Mexico); Rodriguez-Ferreyra, P. [Hospital ' Dr. Nicolas San Juan' , Toluca, Mexico DF (Mexico); Vazquez-Maya, L.; Salazar, M.A. [Hospital General de Mexico, Mexico DF (Mexico)

    2007-11-15

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is 'Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation'. At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders.

  16. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    International Nuclear Information System (INIS)

    Martinez-Pardo, M.E.; Ley-Chavez, E.; Reyes-Frias, M.L.; Rodriguez-Ferreyra, P.; Vazquez-Maya, L.; Salazar, M.A.

    2007-01-01

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is 'Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation'. At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders

  17. Emergent material properties of developing epithelial tissues.

    Science.gov (United States)

    Machado, Pedro F; Duque, Julia; Étienne, Jocelyn; Martinez-Arias, Alfonso; Blanchard, Guy B; Gorfinkiel, Nicole

    2015-11-23

    Force generation and the material properties of cells and tissues are central to morphogenesis but remain difficult to measure in vivo. Insight is often limited to the ratios of mechanical properties obtained through disruptive manipulation, and the appropriate models relating stress and strain are unknown. The Drosophila amnioserosa epithelium progressively contracts over 3 hours of dorsal closure, during which cell apices exhibit area fluctuations driven by medial myosin pulses with periods of 1.5-6 min. Linking these two timescales and understanding how pulsatile contractions drive morphogenetic movements is an urgent challenge. We present a novel framework to measure in a continuous manner the mechanical properties of epithelial cells in the natural context of a tissue undergoing morphogenesis. We show that the relationship between apicomedial myosin fluorescence intensity and strain during fluctuations is consistent with a linear behaviour, although with a lag. We thus used myosin fluorescence intensity as a proxy for active force generation and treated cells as natural experiments of mechanical response under cyclic loading, revealing unambiguous mechanical properties from the hysteresis loop relating stress to strain. Amnioserosa cells can be described as a contractile viscoelastic fluid. We show that their emergent mechanical behaviour can be described by a linear viscoelastic rheology at timescales relevant for tissue morphogenesis. For the first time, we establish relative changes in separate effective mechanical properties in vivo. Over the course of dorsal closure, the tissue solidifies and effective stiffness doubles as net contraction of the tissue commences. Combining our findings with those from previous laser ablation experiments, we show that both apicomedial and junctional stress also increase over time, with the relative increase in apicomedial stress approximately twice that of other obtained measures. Our results show that in an epithelial

  18. Biology and function of adipose tissue macrophages, dendritic cells and B cells.

    Science.gov (United States)

    Ivanov, Stoyan; Merlin, Johanna; Lee, Man Kit Sam; Murphy, Andrew J; Guinamard, Rodolphe R

    2018-04-01

    The increasing incidence of obesity and its socio-economical impact is a global health issue due to its associated co-morbidities, namely diabetes and cardiovascular disease [1-5]. Obesity is characterized by an increase in adipose tissue, which promotes the recruitment of immune cells resulting in low-grade inflammation and dysfunctional metabolism. Macrophages are the most abundant immune cells in the adipose tissue of mice and humans. The adipose tissue also contains other myeloid cells (dendritic cells (DC) and neutrophils) and to a lesser extent lymphocyte populations, including T cells, B cells, Natural Killer (NK) and Natural Killer T (NKT) cells. While the majority of studies have linked adipose tissue macrophages (ATM) to the development of low-grade inflammation and co-morbidities associated with obesity, emerging evidence suggests for a role of other immune cells within the adipose tissue that may act in part by supporting macrophage homeostasis. In this review, we summarize the current knowledge of the functions ATMs, DCs and B cells possess during steady-state and obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. On the interplay between mathematics and biology: hallmarks toward a new systems biology.

    Science.gov (United States)

    Bellomo, Nicola; Elaiw, Ahmed; Althiabi, Abdullah M; Alghamdi, Mohammed Ali

    2015-03-01

    This paper proposes a critical analysis of the existing literature on mathematical tools developed toward systems biology approaches and, out of this overview, develops a new approach whose main features can be briefly summarized as follows: derivation of mathematical structures suitable to capture the complexity of biological, hence living, systems, modeling, by appropriate mathematical tools, Darwinian type dynamics, namely mutations followed by selection and evolution. Moreover, multiscale methods to move from genes to cells, and from cells to tissue are analyzed in view of a new systems biology approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Tracheal CT morphology: correlation with distribution and extent of thoracic adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ap Dafydd, Derfel [Imperial College Healthcare NHS Trust, Department of Radiology, Charing Cross Hospital, London (United Kingdom); Desai, Sujal R. [King' s College Hospital NHS Foundation Trust, King' s College London, King' s Health Partners, London (United Kingdom); Gordon, Fabiana; Copley, Susan J. [Imperial College, London (United Kingdom)

    2016-10-15

    To evaluate the relationship between adipose tissue measurements and anterior bowing of the posterior tracheal wall in a large nonselected group of patients undergoing CT pulmonary angiography (CTPA). Consecutive patients undergoing CTPA over a 4-month period were analyzed retrospectively. Using an adapted scoring system (posterior bowing, flattening, mild/moderate or severe anterior bowing of the posterior tracheal membrane), the axial morphology and cross-sectional area of the trachea at the narrowest point and 1 cm above the aortic arch were evaluated. Measurements of adipose tissue were taken (anterior mediastinal fat width, sagittal upper abdominal diameter and subcutaneous fat thickness at the level of the costophrenic angle). Relationships between tracheal morphology and measurements of adipose tissue were analyzed. 296 patients were included (120 males, 176 females, mean age 59 years, range 19-90). Severe anterior bowing of the posterior tracheal wall correlated with increasing sagittal upper abdominal diameter (p = 0.002). Mild/moderate and severe anterior bowing of the posterior tracheal wall correlated with increasing mediastinal fat width (p = 0.000 and p = 0.031, respectively). Tracheal cross-sectional area was inversely correlated with increasing subcutaneous fat thickness (p = 0.022). The findings demonstrate a statistically significant relationship between CT tracheal morphology and adipose tissue measurements in a large nonselected population. (orig.)

  1. Effect of clindamycin prophylaxis on the colonic microflora in patients undergoing colorectal surgery.

    OpenAIRE

    Kager, L; Liljeqvist, L; Malmborg, A S; Nord, C E

    1981-01-01

    Clindamycin was given intravenously to 15 patients undergoing colorectal surgery in an initial dose of 600 mg, given at induction of anesthesia followed by 6 doses of 600 mg at 8-h intervals. Series of serum samples and fecal specimens were taken for analysis of clindamycin concentrations. Tissue samples from the gut wall were taken at surgery. The highest serum concentrations observed occurred 30 min after administration of clindamycin and varied between 6.8 and 37.9 microgram/ml (mean, 14.8...

  2. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    Science.gov (United States)

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  3. Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound

    International Nuclear Information System (INIS)

    Ting-Bo, Fan; Zhen-Bo, Liu; Zhe, Zhang; Dong, Zhang; Xiu-Fen, Gong

    2009-01-01

    A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals. (fundamental areas of phenomenology (including applications))

  4. Tissue architecture: the ultimate regulator of breast epithelial function

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Mian, Saira

    2003-10-20

    A problem in developmental biology that continues to take center stage is how higher organisms generate diverse tissues and organs given the same cellular genotype. In cell and tumor biology, the key question is not the production of form, but its preservation: how do tissues and organs maintain homeostasis, and how do cells within tissues lose or overcome these controls in cancer? Undoubtedly, mechanisms that maintain tissue specificity should share features with those employed to drive formation of the tissues. However, they are unlikely to be identical. At a simplistic level, developmental pathways may be thought of as a series of extremely rapid short-term events. Each new step depends on what came before, and the outcome is the organism itself at birth. All organs, with a few notable exceptions, such as the mammary gland and the brain, 'arrive' together and are complete when the organism is born. In mice and humans, these events occur in a mere 21 days and 9 months respectively. The stability of the differentiated state and the homeostasis of the organism, on the other hand, will last 40-110 times longer. How does the organism achieve this feat? How are tissues maintained? These questions also relate fundamentally to how tissues become malignant and, although not discussed here, to aging. While there is much literature on differentiation - loosely defined as the gain of a single or a series of functions - we know much less about the forces and the pathways that maintain organ morphology and function as a unit. This may be partly because it is difficult to study a tissue as a unit in vivo and there are few techniques that allow maintenance of organs in vitro long enough and in such a way as to make cell and molecular biology experiments possible. Techniques for culturing cells in three-dimensional gels (3D) as a surrogate for tissues, however, have been steadily improving and the method is now used by several laboratories. In this commentary we

  5. Design Approaches to Myocardial and Vascular Tissue Engineering.

    Science.gov (United States)

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  6. Methadone Recycling Sustains Drug Reservoir in Tissue.

    Science.gov (United States)

    Linares, Oscar A; Fudin, Jeffrey; Daly, Annemarie; Schiesser, William E; Boston, Raymond C

    2015-09-01

    We hypothesize that there is a tissue store of methadone content in humans that is not directly accessible, but is quantifiable. Further, we hypothesize the mechanism by which methadone content is sustained in tissue stores involves methadone uptake, storage, and release from tissue depots in the body (recycling). Accordingly, we hypothesize that such tissue stores, in part, determine plasma methadone levels. We studied a random sample of six opioid-naïve healthy subjects. We performed a clinical trial simulation in silico using pharmacokinetic modeling. We found a large tissue store of methadone content whose size was much larger than methadone's size in plasma in response to a single oral dose of methadone 10 mg. The tissue store measured 13-17 mg. This finding could only be explained by the contemporaneous storage of methadone in tissue with dose recycling. We found that methadone recycles 2-5 times through an inaccessible extravascular compartment (IAC), from an accessible plasma-containing compartment (AC), before exiting irreversibly. We estimate the rate of accumulation (or storage) of methadone in tissue was 0.029-7.29 mg/h. We predict 39 ± 13% to 83 ± 6% of methadone's tissue stores "spillover" into the circulation. Our results indicate that there exists a large quantifiable tissue store of methadone in humans. Our results support the notion that methadone in humans undergoes tissue uptake, storage, release into the circulation, reuptake from the circulation, and re-release into the circulation, and that spillover of methadone from tissue stores, in part, maintain plasma methadone levels in humans.

  7. A comparison of proximal and distal Chevron osteotomy, both with lateral soft-tissue release, for moderate to severe hallux valgus in patients undergoing simultaneous bilateral correction: a prospective randomised controlled trial.

    Science.gov (United States)

    Lee, K B; Cho, N Y; Park, H W; Seon, J K; Lee, S H

    2015-02-01

    Moderate to severe hallux valgus is conventionally treated by proximal metatarsal osteotomy. Several recent studies have shown that the indications for distal metatarsal osteotomy with a distal soft-tissue procedure could be extended to include moderate to severe hallux valgus. The purpose of this prospective randomised controlled trial was to compare the outcome of proximal and distal Chevron osteotomy in patients undergoing simultaneous bilateral correction of moderate to severe hallux valgus. The original study cohort consisted of 50 female patients (100 feet). Of these, four (8 feet) were excluded for lack of adequate follow-up, leaving 46 female patients (92 feet) in the study. The mean age of the patients was 53.8 years (30.1 to 62.1) and the mean duration of follow-up 40.2 months (24.1 to 80.5). After randomisation, patients underwent a proximal Chevron osteotomy on one foot and a distal Chevron osteotomy on the other. At follow-up, the American Orthopedic Foot and Ankle Society (AOFAS) hallux metatarsophalangeal interphalangeal (MTP-IP) score, patient satisfaction, post-operative complications, hallux valgus angle, first-second intermetatarsal angle, and tibial sesamoid position were similar in each group. Both procedures gave similar good clinical and radiological outcomes. This study suggests that distal Chevron osteotomy with a distal soft-tissue procedure is as effective and reliable a means of correcting moderate to severe hallux valgus as proximal Chevron osteotomy with a distal soft-tissue procedure. ©2015 The British Editorial Society of Bone & Joint Surgery.

  8. Tissue banking for management of nuclear casualties

    International Nuclear Information System (INIS)

    Singh, Rita

    2014-01-01

    The proliferation of nuclear material and technology has made the acquisition and adversarial use more probable than ever. Devastating medical consequences would follow a nuclear detonation due to the thermal, blast and radiation effects of the weapon. Atomic explosions at Hiroshima and Nagasaki demonstrated the human agonies on vast scale. A full range of medical modalities are required to decrease the morbidity and mortality as a result of the use of nuclear weapons. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Processed tissues can be provided by the tissue banks and can be of great assistance in the treatment of injuries due to the nuclear weapon. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. The aim of the tissue bank is to provide a wide range of processed biological tissues free from any transmissible disease, that help to restore the growth and function of the damaged tissues. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone allografts can be used for reconstructive approaches to the skeletal system. Tissue banking would thus ensure health care to the military personnel and population following a nuclear detonation. (author)

  9. Epithelial-Mesenchymal Transition in Tissue Repair and Fibrosis

    Science.gov (United States)

    Stone, Rivka C.; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I.; Tomic-Canic, Marjana

    2016-01-01

    Epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics which confer migratory capacity. EMT and its converse, MET (mesenchymal-to-epithelial transition), are integral stages of many physiologic processes, and as such are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes - the resident skin epithelial cells - migrate across the wound bed to restore the epidermal barrier. Moreover, EMT also plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblast arises from cells of epithelial lineage in response to injury but is pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the impaired repair of fibrotic wounds may identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. PMID:27461257

  10. Viscoelastic characterization of soft biological materials

    Science.gov (United States)

    Nayar, Vinod Timothy

    Progressive and irreversible retinal diseases are among the primary causes of blindness in the United States, attacking the cells in the eye that transform environmental light into neural signals for the optic pathway. Medical implants designed to restore visual function to afflicted patients can cause mechanical stress and ultimately damage to the host tissues. Research shows that an accurate understanding of the mechanical properties of the biological tissues can reduce damage and lead to designs with improved safety and efficacy. Prior studies on the mechanical properties of biological tissues show characterization of these materials can be affected by environmental, length-scale, time, mounting, stiffness, size, viscoelastic, and methodological conditions. Using porcine sclera tissue, the effects of environmental, time, and mounting conditions are evaluated when using nanoindentation. Quasi-static tests are used to measure reduced modulus during extended exposure to phosphate-buffered saline (PBS), as well as the chemical and mechanical analysis of mounting the sample to a solid substrate using cyanoacrylate. The less destructive nature of nanoindentation tests allows for variance of tests within a single sample to be compared to the variance between samples. The results indicate that the environmental, time, and mounting conditions can be controlled for using modified nanoindentation procedures for biological samples and are in line with averages modulus values from previous studies but with increased precision. By using the quasi-static and dynamic characterization capabilities of the nanoindentation setup, the additional stiffness and viscoelastic variables are measured. Different quasi-static control methods were evaluated along with maximum load parameters and produced no significant difference in reported reduced modulus values. Dynamic characterization tests varied frequency and quasi-static load, showing that the agar could be modeled as a linearly

  11. Biological effects of proton radiation: an update

    International Nuclear Information System (INIS)

    Girdhani, S.; Hlatky, L.; Sachs, R.

    2015-01-01

    Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes. (authors)

  12. The Gravity of Regenerative Medicine; Physics, Chemistry & Biology behind it

    Directory of Open Access Journals (Sweden)

    Dedeepiya V

    2008-01-01

    Full Text Available The in-vitro expansion of cells of the organs/tissues and their re-implantation into the affected region/ tissue for treating cell/organ failure have been in practice for long, but in limited specialties. The in-vitro cell culture protocols use variety of biological reagents derived from animal sources and recombinant technologies. However, the optimal quantity of such biological components such as growth factors, cytokines etc.,needed for such cells to be grown in a non-physiological environment is still unknown. The use of such biological components have started to stir a controversy of late, due to the recognition of its potential hazards such as spread of prion diseases and contamination with non-human sialic acid proteins. Therefore synthetic reproducible biomaterials are gaining popularity in cell culture and tissue engineering. The biomaterials made of several chemical components based on physical parameters are starting to change certain concepts about the niche of cell culture and that of stem cell expansion and differentiation to specific lineages. Engler et al have already proven that a simple change in the matrix elasticity alone could change the lineage of the cells. Spencer et al have reported that a change in bioelectricity could change the morphogenesis during development. NCRM has been involved in cell culture and tissue engineering using approximately 240 different materials ranging from polymer hydrogel, gel with adherent inserts, nano composite materials, nano-coating technologies, nano-sheets and nano-films. These materials are used in cell culture in different hybrid combinations such as Floating 3D cell culture without adherent components in a homogenous hydrogel. Floating 3D cell culture with anchorage inserts. Flat surface- 2D adherent cell culture. Combined flat surface 2D cell culture (for differentiating cells and floating 3D culture (for undifferentiated cells. These combinations have started yielding several

  13. Progress in the processing of radioesterilized tissue

    International Nuclear Information System (INIS)

    Zarate S, H; Espinoza B, J; Ribbeck N, J; Vargas Q, M; Gutierrez D, K

    2003-01-01

    Since 1996, the Chilean Nuclear Energy Commission has been carrying out work to implement the first Radiosterilized Tissue Processing Laboratory (RTPL) in Chile, in order to introduce the use of sterilized biological tissue for clinical application. The International Atomic Energy Agency (IAEA) has provided collaboration and technical assistance for this work. The processing of biological tissues has been done in conjunction with physicians from different state hospital centers, mostly in the Metropolitan Region. Among the tissues primarily processed are allografts such as frozen human skin at - 80 o C, freeze-dried human bone and amniotic membrane. We have also been working with xenograft developments such as freeze-dried pig skin and demineralized ground cow bone. All these tissues are sterilized by means of gamma radiation, in order to obtain a sterility assurance level (SAL) of 10 -6 . This laboratory has already completed various stages, from the beginning when it was only just an idea up to the production stage where a large quantity of processed tissues have been delivered to physicians of different specialties, resulting in a contribution to medical science as well as to the treatment quality of a great many patients. The preliminary results and the opinions of those physicians who have used the processed products from our laboratory have encouraged us to continue developing new products, thus enlarging the scope of application (author)

  14. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.

    Science.gov (United States)

    Ottensmeyer, M P; Ben-Ur, E; Salisbury, J K

    2000-01-01

    Current efforts in surgical simulation very often focus on creating realistic graphical feedback, but neglect some or all tactile and force (haptic) feedback that a surgeon would normally receive. Simulations that do include haptic feedback do not typically use real tissue compliance properties, favoring estimates and user feedback to determine realism. When tissue compliance data are used, there are virtually no in vivo property measurements to draw upon. Together with the Center for Innovative Minimally Invasive Therapy at the Massachusetts General Hospital, the Haptics Group is developing tools to introduce more comprehensive haptic feedback in laparoscopy simulators and to provide biological tissue material property data for our software simulation. The platform for providing haptic feedback is a PHANToM Haptic Interface, produced by SensAble Technologies, Inc. Our devices supplement the PHANToM to provide for grasping and optionally, for the roll axis of the tool. Together with feedback from the PHANToM, which provides the pitch, yaw and thrust axes of a typical laparoscopy tool, we can recreate all of the haptic sensations experienced during laparoscopy. The devices integrate real laparoscopy toolhandles and a compliant torso model to complete the set of visual and tactile sensations. Biological tissues are known to exhibit non-linear mechanical properties, and change their properties dramatically when removed from a living organism. To measure the properties in vivo, two devices are being developed. The first is a small displacement, 1-D indenter. It will measure the linear tissue compliance (stiffness and damping) over a wide range of frequencies. These data will be used as inputs to a finite element or other model. The second device will be able to deflect tissues in 3-D over a larger range, so that the non-linearities due to changes in the tissue geometry will be measured. This will allow us to validate the performance of the model on large tissue

  15. Tissue-specific transcriptomic profiling provides new insights into the reproductive ecology and biology of the iconic seagrass species Posidonia oceanica.

    Science.gov (United States)

    Entrambasaguas, Laura; Jahnke, Marlene; Biffali, Elio; Borra, Marco; Sanges, Remo; Marín-Guirao, Lázaro; Procaccini, Gabriele

    2017-10-01

    Seagrasses form extensive meadows in shallow coastal waters and are among the world's most productive ecosystems. Seagrasses can produce both clonally and sexually, and flowering has long been considered infrequent, but important for maintaining genetically diverse stands. Here we investigate the molecular mechanisms involved in flowering of the seagrass Posidonia oceanica, an iconic species endemic to the Mediterranean. We generated a de novo transcriptome of this non-model species for leaf, male and female flower tissue of three individuals, and present molecular evidence for genes that may be involved in the flowering process and on the reproductive biology of the species. We present evidence that suggests that P. oceanica exhibits a strategy of protogyny, where the female part of the hermaphroditic flower develops before the male part, in order to avoid self-fertilization. We found photosynthetic genes to be up-regulated in the female flower tissues, indicating that this may be capable of photosynthesis. Finally, we detected a number of interesting genes, previously known to be involved in flowering pathways responding to light and temperature cues and in pathways involved in anthocyanin and exine synthesis. This first comparative transcriptomic approach of leaf, male and female tissue provides a basis for functional genomics research on flower development in P. oceanica and other seagrass species. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. THz near-field imaging of biological tissues employing synchrotron radiation (Invited Paper)

    Science.gov (United States)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried, Daniel

    2005-04-01

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking on to the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical waveguides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about λ/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 μm at about 12 wavenumbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06 and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  17. Substrate specific hydrolysis of aromatic and aromatic-aliphatic esters in orchid tissue cultures

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-01-01

    Full Text Available We found that tissue cultures of higher plants were able, similarly as microorganisms, to transform low-molecular-weight chemical compounds. In tissue cultures of orchids (Cymbidium 'Saint Pierre' and Dendrobium phalaenopsis acetates of phenols and aromatic-aliphatic alcohols were hydrolyzed, whereas methyl esters of aromatic and aromatic-aliphatic acids did not undergo this reaction. Acetates of racemic aromatic-aliphatic alcohols were hydrolyzed with distinct enantiospecificity.

  18. Oral manifestations of connective tissue disease and novel therapeutic approaches.

    Science.gov (United States)

    Heath, Kenisha R; Rogers, Roy S; Fazel, Nasim

    2015-10-16

    Connective tissue diseases such as systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and Sjögren syndrome (SS) have presented many difficulties both in their diagnosis and treatment. Known causes for this difficulty include uncertainty of disease etiology, the multitude of clinical presentations, the unpredictable disease course, and the variable cell types, soluble mediators, and tissue factors that are believed to play a role in the pathogenesis of connective tissue diseases. The characteristic oral findings seen with these specific connective tissue diseases may assist with more swift diagnostic capability. Additionally, the recent use of biologics may redefine the success rate in the treatment and management of the disease. In this review we describe the oral manifestations associated with SLE, SSc, and SS and review the novel biologic drugs used to treat these conditions.

  19. Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function.

    Science.gov (United States)

    Takata, Kazuyuki; Kozaki, Tatsuya; Lee, Christopher Zhe Wei; Thion, Morgane Sonia; Otsuka, Masayuki; Lim, Shawn; Utami, Kagistia Hana; Fidan, Kerem; Park, Dong Shin; Malleret, Benoit; Chakarov, Svetoslav; See, Peter; Low, Donovan; Low, Gillian; Garcia-Miralles, Marta; Zeng, Ruizhu; Zhang, Jinqiu; Goh, Chi Ching; Gul, Ahmet; Hubert, Sandra; Lee, Bernett; Chen, Jinmiao; Low, Ivy; Shadan, Nurhidaya Binte; Lum, Josephine; Wei, Tay Seok; Mok, Esther; Kawanishi, Shohei; Kitamura, Yoshihisa; Larbi, Anis; Poidinger, Michael; Renia, Laurent; Ng, Lai Guan; Wolf, Yochai; Jung, Steffen; Önder, Tamer; Newell, Evan; Huber, Tara; Ashihara, Eishi; Garel, Sonia; Pouladi, Mahmoud A; Ginhoux, Florent

    2017-07-18

    Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Direct plasma interaction with living tissue

    Science.gov (United States)

    Fridman, Gregory

    For some time, plasma has been used in medicine to cauterize or cut tissue using heat and mechanical energy. In the recent decade, some researchers around the world have started to investigate how gas jets that pass through thermal plasma can be employed in medicine. This thesis presents the first investigation of biomedical uses of non-thermal plasma discharge which comes in direct contact with living tissue. It is demonstrated that the direct application of non-thermal plasma in air can cause rapid deactivation of bacteria on surfaces of tissues without causing any visible tissue damage. Medical need for such a device is discussed. Construction and operation of various types of non-thermal plasma power supplies and many types of treatment electrodes are presented as well. Application of this plasma to living organisms is shown to be safe from both the electrical perspective and from the biological perspective. Biological safety is revealed through a series of differential skin toxicity trials on human cadaver tissue, live hairless mouse skin tissue, live pig skin tissue, and finally in an open wound model on pigs. Direct non-thermal plasma in air is shown to deactivate bacteria about 100 times faster than indirect application using jets. A series of experiments reveal that this effectiveness is due to the ability of direct discharge to bring charges to tissue surfaces. It is demonstrated that neither ultraviolet (UV) radiation nor neutral active species such as hydroxyl radicals or ozone produced in plasma are responsible for the main effect on bacteria. Although much additional work remains on establishing detailed mechanism by which charges from plasma achieve this effect, the work carried out in this thesis clearly demonstrates that direct application of non-thermal plasma in air can be a very useful tool in medicine.

  1. Integrative Radiation Biology

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos-Hoff, Mary Helen [New York University School of Medicine, NY (United States)

    2015-02-27

    We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive and negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.

  2. Tissue Engineering of the Penis

    Directory of Open Access Journals (Sweden)

    Manish N. Patel

    2011-01-01

    Full Text Available Congenital disorders, cancer, trauma, or other conditions of the genitourinary tract can lead to significant organ damage or loss of function, necessitating eventual reconstruction or replacement of the damaged structures. However, current reconstructive techniques are limited by issues of tissue availability and compatibility. Physicians and scientists have begun to explore tissue engineering and regenerative medicine strategies for repair and reconstruction of the genitourinary tract. Tissue engineering allows the development of biological substitutes which could potentially restore normal function. Tissue engineering efforts designed to treat or replace most organs are currently being undertaken. Most of these efforts have occurred within the past decade. However, before these engineering techniques can be applied to humans, further studies are needed to ensure the safety and efficacy of these new materials. Recent progress suggests that engineered urologic tissues and cell therapy may soon have clinical applicability.

  3. [Periodontal microbiota and microorganisms isolated from heart valves in patients undergoing valve replacement surgery in a clinic in Cali, Colombia].

    Science.gov (United States)

    Moreno, Sandra; Parra, Beatriz; Botero, Javier E; Moreno, Freddy; Vásquez, Daniel; Fernández, Hugo; Alba, Sandra; Gallego, Sara; Castillo, Gilberto; Contreras, Adolfo

    2017-12-01

    Periodontitis is an infectious disease that affects the support tissue of the teeth and it is associated with different systemic diseases, including cardiovascular disease. Microbiological studies facilitate the detection of microorganisms from subgingival and cardiovascular samples. To describe the cultivable periodontal microbiota and the presence of microorganisms in heart valves from patients undergoing valve replacement surgery in a clinic in Cali. We analyzed 30 subgingival and valvular tissue samples by means of two-phase culture medium, supplemented blood agar and trypticase soy agar with antibiotics. Conventional PCR was performed on samples of valve tissue. The periodontal pathogens isolated from periodontal pockets were: Fusobacterium nucleatum (50%), Prevotella intermedia/ nigrescens (40%), Campylobacter rectus (40%), Eikenella corrodens (36.7%), Gram negative enteric bacilli (36.7%), Porphyromonas gingivalis (33.3%), and Eubacterium spp. (33.3%). The pathogens isolated from the aortic valve were Propionibacterium acnes (12%), Gram negative enteric bacilli (8%), Bacteroides merdae (4%), and Clostridium bifermentans (4%), and from the mitral valve we isolated P. acnes and Clostridium beijerinckii. Conventional PCR did not return positive results for oral pathogens and bacterial DNA was detected only in two samples. Periodontal microbiota of patients undergoing surgery for heart valve replacement consisted of species of Gram-negative bacteria that have been associated with infections in extraoral tissues. However, there is no evidence of the presence of periodontal pathogens in valve tissue, because even though there were valve and subgingival samples positive for Gram-negative enteric bacilli, it is not possible to maintain they corresponded to the same phylogenetic origin.

  4. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  5. Recent advances in hydrogels for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    SL Vega

    2017-01-01

    Full Text Available Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks, new techniques to process hydrogels (e.g. 3D printing and better incorporation of biological signals (e.g. controlled release. This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  6. Recent advances in hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Vega, S L; Kwon, M Y; Burdick, J A

    2017-01-30

    Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks), new techniques to process hydrogels (e.g. 3D printing) and better incorporation of biological signals (e.g. controlled release). This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  7. Simultaneous Treatment with Subcutaneous Injection of Golimumab and Intra-articular Injection of Triamcinolone Acetonide (K-Method in Patients with Rheumatoid Arthritis Undergoing Switching of Biologics: Retrospective Case–Control Study

    Directory of Open Access Journals (Sweden)

    Katsuaki Kanbe

    2016-01-01

    Full Text Available Background Tight control of severe rheumatoid arthritis (RA in patients with high disease activity, even when using biologics, is sometimes difficult using a treat-to-target strategy. Switching from one biologic to another is associated with lower efficacy than that in treatment-naive cases. We developed the K-method that involves simultaneous treatment with golimumab and intra-articular joint injection of triamcinolone acetonide (TA in patients undergoing switching of biologics. We performed this retrospective case–control study to investigate the efficacy of achieving an immediate treatment response using the K-method. Methods This study involved 20 patients with RA (control group, 10 patients; K-method group, 10 patients. Patients in the control group were switched to golimumab from other biologics without intra-articular injection of TA. The K-method involved injection of 1 mL of TA (40 mg/mL and 2 mL of 1% lidocaine hydrochloride into swollen or painful joints on the same day as golimumab treatment. A quick response one day after treatment was compared between the two groups according to the disease activity score 28 based on C-reactive protein (DAS28 CRP, clinical disease activity index (CDAI, simplified disease activity index (SDAI, European League Against Rheumatism (EULAR response, and remission rate. These parameters were investigated for 24 weeks. Results The K-method group showed significant improvements in DAS28 CRP, CDAI, and SDAI at one day, 12 weeks, and 24 weeks compared with the control group. The number of swollen and tender joints and the patient and doctor global visual analog scale scores were also significantly different between the two groups. The remission rates based on DAS28 CRP were 30% at one day, 50% at 12 weeks, and 60% at 24 weeks in the K-method group. The EULAR good/moderate response rates were 80% at one day, 90% at 12 weeks, and 90% at 24 weeks in the K-method group; however, these rates were only 10%, 40

  8. Biomechanics of cells and tissues experiments, models and simulations

    CERN Document Server

    2013-01-01

    The application of methodological approaches and mathematical formalisms proper to Physics and Engineering to investigate and describe biological processes and design biological structures has led to the development of many disciplines in the context of computational biology and biotechnology. The best known applicative domain is tissue engineering and its branches. Recent domains of interest are in the field of biophysics, e.g.: multiscale mechanics of biological membranes and films and filaments; multiscale mechanics of adhesion; biomolecular motors and force generation.   Modern hypotheses, models, and tools are currently emerging and resulting from the convergence of the methods and philosophical approaches of the different research areas and disciplines. All these emerging approaches share the purpose of disentangling the complexity of organisms, tissues, and cells and mimicking the function of living systems. The contributions presented in this book are current research highlights of six challenging an...

  9. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes.

    Directory of Open Access Journals (Sweden)

    Mehul S Suthar

    2013-02-01

    Full Text Available The actions of the RIG-I like receptor (RLR and type I interferon (IFN signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV. In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen and nonpermissive (liver tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs(-/- × Ifnar(-/- mice revealed the loss of expression of several key components within the natural killer (NK cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs(-/- × Ifnar(-/- infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue

  10. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features

    Directory of Open Access Journals (Sweden)

    Schlegel Karl A

    2010-10-01

    Full Text Available Abstract Background Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL; however, osteonecrosis of the jaw (ONJ is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP-related and denosumab (anti-RANKL antibody-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL in ONJ-altered and healthy periodontal tissue. Methods Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment. Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Results Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p Conclusions These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred exclusively jaw remodelling. Further research on developmental biology-related unique features of jaw bone structures will help to elucidate pathologies restricted to

  11. Nanomechanical strength mechanisms of hierarchical biological materials and tissues.

    Science.gov (United States)

    Buehler, Markus J; Ackbarow, Theodor

    2008-12-01

    Biological protein materials (BPMs), intriguing hierarchical structures formed by assembly of chemical building blocks, are crucial for critical functions of life. The structural details of BPMs are fascinating: They represent a combination of universally found motifs such as alpha-helices or beta-sheets with highly adapted protein structures such as cytoskeletal networks or spider silk nanocomposites. BPMs combine properties like strength and robustness, self-healing ability, adaptability, changeability, evolvability and others into multi-functional materials at a level unmatched in synthetic materials. The ability to achieve these properties depends critically on the particular traits of these materials, first and foremost their hierarchical architecture and seamless integration of material and structure, from nano to macro. Here, we provide a brief review of this field and outline new research directions, along with a review of recent research results in the development of structure-property relationships of biological protein materials exemplified in a study of vimentin intermediate filaments.

  12. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  13. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  14. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos; Cheng, Chih-Yao

    2010-01-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V 100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  15. Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues.

    Science.gov (United States)

    Drexler, Dieter M; Garrett, Timothy J; Cantone, Joseph L; Diters, Richard W; Mitroka, James G; Prieto Conaway, Maria C; Adams, Stephen P; Yost, Richard A; Sanders, Mark

    2007-01-01

    The properties and potential liabilities of drug candidate are investigated in detailed ADME assays and in toxicity studies, where findings are placed in context of exposure to dosed drug and metabolites. The complex nature of biological samples may necessitate work-up procedures prior to high performance liquid chromatography-mass spectrometric (HPLC-MS) analysis of endogenous or xenobiotic compounds. This concept can readily be applied to biological fluids such as blood or urine, but in localized samples such as organs and tissues potentially important spatial, thus anatomical, information is lost during sample preparation as the result of homogenization and extraction procedures. However, the localization of test article or spatial identification of metabolites may be critical to the understanding of the mechanism of target-organ toxicity and its relevance to clinical safety. Tissue imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) and ion trap mass spectrometry (MS) with higher order mass spectrometric scanning functions was utilized for localization of dosed drug or metabolite in tissue. Laser capture microscopy (LCM) was used to obtain related samples from tissue for analyses by standard MALDI-MS and HPLC-MS. In a toxicology study, rats were administered with a high dosage of a prodrug for 2 weeks. Birefringent microcrystalline material (10-25 microm) was observed in histopathologic formalin-fixed tissue samples. Direct analysis by IMS provided the identity of material in the microcrystals as circulating active drug while maintaining spatial orientation. Complementary data from visual cross-polarized light microscopy as well as standard MALDI-MS and HPLC-MS experiments on LCM samples validated the qualitative results obtained by IMS. Furthermore, the HPLC-MS analysis on the LCM samples afforded a semi-quantitative assessment of the crystalline material in the tissue samples. IMS by MALDI ion trap MS proved sensitive

  16. Posttranslational modifications of proopiomelanocortin in vertebrates and their biological significance

    Directory of Open Access Journals (Sweden)

    Akiyoshi eTakahashi

    2013-10-01

    Full Text Available Proopiomelanocortin (POMC is the precursor of several peptide hormones generated in the pituitary gland. After biosynthesis, POMC undergoes several posttranslational modifications, including proteolytic cleavage, acetylation, amidation, phosphorylation, glycosylation, and disulfide linkage formation, which generate mature POMC-derived peptides. Therefore, POMC is a useful model for the investigation of posttranslational modifications. These processes have been extensively investigated in mammals, primarily in rodents. In addition, over the last decade, much information has been obtained about the posttranslational processing of POMC in non-mammalian animals such as fish, amphibians, reptiles, and birds through sequencing and peptide identification by mass spectrometry. One POMC modification, acetylation, is known to modulate the biological activities of POMC-derived alpha-melanocyte-stimulating hormone (alpha-MSH having an acetyl group at N-terminal through potentiation or inhibition. This bidirectional regulation depends on its intrinsic roles in the tissue or cell; for example, alpha-MSH, as well as desacety-alpha-MSH, stimulates pigment dispersion in the xanthophores of a flounder. In contrast, alpha-MSH does not stimulate pigment dispersion in the melanophores of the same species, whereas desacetyl-alpha-MSH does. Regulation of pigment-dispersing activities may be associated with the subtle balance in the expression of receptor genes. In this review, we consider the posttranslational modifications of POMC in vertebrates from an evolutionary aspect, with a focus on the relationship between acetylation and the biological activities of alpha-MSH as an important consequence of posttranslational modification.

  17. Normal morphogenesis of epithelial tissues and progression of epithelial tumors

    Science.gov (United States)

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.

    2011-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857

  18. Bone Marrow Adipocyte Developmental Origin and Biology.

    Science.gov (United States)

    Bukowska, Joanna; Frazier, Trivia; Smith, Stanley; Brown, Theodore; Bender, Robert; McCarthy, Michelle; Wu, Xiying; Bunnell, Bruce A; Gimble, Jeffrey M

    2018-06-01

    This review explores how the relationships between bone marrow adipose tissue (BMAT) adipogenesis with advancing age, obesity, and/or bone diseases (osteopenia or osteoporosis) contribute to mechanisms underlying musculoskeletal pathophysiology. Recent studies have re-defined adipose tissue as a dynamic, vital organ with functions extending beyond its historic identity restricted solely to that of an energy reservoir or sink. "State of the art" methodologies provide novel insights into the developmental origin, physiology, and function of different adipose tissue depots. These include genetic tracking of adipose progenitors, viral vectors application, and sophisticated non-invasive imaging modalities. While constricted within the rigid bone cavity, BMAT vigorously contributes to local and systemic metabolic processes including hematopoiesis, osteogenesis, and energy metabolism and undergoes dynamic changes as a function of age, diet, bone topography, or sex. These insights will impact future research and therapies relating to osteoporosis.

  19. Variation in primary and culture-expanded cells derived from connective tissue progenitors in human bone marrow space, bone trabecular surface and adipose tissue.

    Science.gov (United States)

    Qadan, Maha A; Piuzzi, Nicolas S; Boehm, Cynthia; Bova, Wesley; Moos, Malcolm; Midura, Ronald J; Hascall, Vincent C; Malcuit, Christopher; Muschler, George F

    2018-03-01

    Connective tissue progenitors (CTPs) embody the heterogeneous stem and progenitor cell populations present in native tissue. CTPs are essential to the formation and remodeling of connective tissue and represent key targets for tissue-engineering and cell-based therapies. To better understand and characterize CTPs, we aimed to compare the (i) concentration and prevalence, (ii) early in vitro biological behavior and (iii) expression of surface-markers and transcription factors among cells derived from marrow space (MS), trabecular surface (TS), and adipose tissues (AT). Cancellous-bone and subcutaneous-adipose tissues were collected from 8 patients. Cells were isolated and cultured. Colony formation was assayed using Colonyze software based on ASTM standards. Cell concentration ([Cell]), CTP concentration ([CTP]) and CTP prevalence (P CTP ) were determined. Attributes of culture-expanded cells were compared based on (i) effective proliferation rate and (ii) expression of surface-markers CD73, CD90, CD105, SSEA-4, SSEA-3, SSEA-1/CD15, Cripto-1, E-Cadherin/CD324, Ep-CAM/CD326, CD146, hyaluronan and transcription factors Oct3/4, Sox-2 and Nanog using flow cytometry. Mean [Cell], [CTP] and P CTP were significantly different between MS and TS samples (P = 0.03, P = 0.008 and P= 0.0003), respectively. AT-derived cells generated the highest mean total cell yield at day 6 of culture-4-fold greater than TS and more than 40-fold greater than MS per million cells plated. TS colonies grew with higher mean density than MS colonies (290 ± 11 versus 150 ± 11 cell per mm 2 ; P = 0.0002). Expression of classical-mesenchymal stromal cell (MSC) markers was consistently recorded (>95%) from all tissue sources, whereas all the other markers were highly variable. The prevalence and biological potential of CTPs are different between patients and tissue sources and lack variation in classical MSC markers. Other markers are more likely to discriminate differences

  20. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Pei Feng

    Full Text Available A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP scaffolds via selective laser sintering (SLS. We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO. Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2, and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF, indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.

  1. Tissue refractometry using Hilbert phase microscopy.

    Science.gov (United States)

    Lue, Niyom; Bewersdorf, Joerg; Lessard, Mark D; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S; Popescu, Gabriel

    2007-12-15

    We present, for the first time to our knowledge, quantitative phase images associated with unstained 5 mum thick tissue slices of mouse brain, spleen, and liver. The refractive properties of the tissue are retrieved in terms of the average refractive index and its spatial variation. We find that the average refractive index varies significantly with tissue type, such that the brain is characterized by the lowest value and the liver by the highest. The spatial power spectra of the phase images reveal power law behavior with different exponents for each tissue type. This approach opens a new possibility for stain-free characterization of tissues, where the diagnostic power is provided by the intrinsic refractive properties of the biological structure. We present results obtained for liver tissue affected by a lysosomal storage disease and show that our technique can quantify structural changes during this disease development.

  2. [Cancer cachexia and white adipose tissue browning].

    Science.gov (United States)

    Zhang, S T; Yang, H M

    2016-08-01

    Cancer cachexia occurs in a majority of advanced cancer patients. These patients with impaired physical function are unable to tolerance cancer treatment well and have a significantly reduced survival rate. Currently, there is no effective clinical treatment available for cancer cachexia, therefore, it is necessary to clarify the molecular mechanisms of cancer cachexia, moreover, new therapeutic targets for cancer cachexia treatment are urgently needed. Very recent studies suggest that, during cancer cachexia, white adipose tissue undergo a 'browning' process, resulting in increased lipid mobilization and energy expenditure, which may be necessary for the occurrence of cancer cachexia. In this article, we summarize the definition and characteristics of cancer cachexia and adipose tissue 'browning', then, we discuss the new study directions presented in latest research.

  3. The biological basis of radiotherapy

    International Nuclear Information System (INIS)

    Steel, G.G.; Adams, G.E.; Horwich, A.

    1989-01-01

    The focus of this book is the biological basis of radiotherapy. The papers presented include: Temporal stages of radiation action:free radical processes; The molecular basis of radiosensitivity; and Radiation damage to early-reacting normal tissue

  4. Discrete vessel heat transfer in perfused tissue - model comparison

    NARCIS (Netherlands)

    Stanczyk, M.; Leeuwen, van G.M.J.; Steenhoven, van A.A.

    2007-01-01

    The aim of this paper is to compare two methods of calculating heat transfer in perfused biological tissue using a discrete vessel description. The methods differ in two important aspects: the representation of the vascular system and the algorithm for calculating the heat flux between tissue and

  5. Functional Characterization of Preadipocytes Derived from Human Periaortic Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2017-01-01

    Full Text Available Adipose tissue can affect the metabolic control of the cardiovascular system, and its anatomic location can affect the vascular function differently. In this study, biochemical and phenotypical characteristics of adipose tissue from periaortic fat were evaluated. Periaortic and subcutaneous adipose tissues were obtained from areas surrounding the ascending aorta and sternotomy incision, respectively. Adipose tissues were collected from patients undergoing myocardial revascularization or mitral valve replacement surgery. Morphological studies with hematoxylin/eosin and immunohistochemical assay were performed in situ to quantify adipokine expression. To analyze adipogenic capacity, adipokine expression, and the levels of thermogenic proteins, adipocyte precursor cells were isolated from periaortic and subcutaneous adipose tissues and induced to differentiation. The precursors of adipocytes from the periaortic tissue accumulated less triglycerides than those from the subcutaneous tissue after differentiation and were smaller than those from subcutaneous adipose tissue. The levels of proteins involved in thermogenesis and energy expenditure increased significantly in periaortic adipose tissue. Additionally, the expression levels of adipokines that affect carbohydrate metabolism, such as FGF21, increased significantly in mature adipocytes induced from periaortic adipose tissue. These results demonstrate that precursors of periaortic adipose tissue in humans may affect cardiovascular events and might serve as a target for preventing vascular diseases.

  6. Principles, Techniques, and Applications of Tissue Microfluidics

    Science.gov (United States)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  7. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features.

    Science.gov (United States)

    Wehrhan, Falk; Hyckel, Peter; Ries, Jutta; Stockmann, Phillip; Nkenke, Emeka; Schlegel, Karl A; Neukam, Friedrich W; Amann, Kerstin

    2010-10-13

    Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue. Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p Msx-1 (p Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred exclusively jaw remodelling. Further research on developmental biology-related unique features of jaw bone structures will help to elucidate pathologies restricted to maxillofacial tissue.

  8. Osteochondral tissue engineering: scaffolds, stem cells and applications

    Science.gov (United States)

    Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R

    2012-01-01

    Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848

  9. In-air micro-pixe analysis of tissue samples

    International Nuclear Information System (INIS)

    Tanaka, A.; Ishii, K.; Komori, Y.

    2002-01-01

    Micro-PIXE is capable of providing spatial distributions of elements in the micro-meter scale and its application to biology is useful to elucidate the cellular metabolism. Since, in this method, a sample target is usually irradiated with proton or α-particle beams in vacuum, beam heating results in evaporation of volatile elements an shrinking of the sample. In order to avoid these side effects, we previously developed a technique of in-air micro-PIXE analysis for samples of cultured cells. In addition to these, analysis of exposed tissue samples from living subjects is highly desirable in biological and medical research. Here, we describe a technique of in-air micro-PIXE analysis of such tissue samples. The target samples of exposed tissue slices from a Donryu rat, in which a tumor had been transplanted, were analyzed with proton micro-beams of 2.6 MeV. We report that the shape of cells and the distribution of volatile elements in the tissue sample remain uncharged when using a target preparation based on a freeze-drying method. (author)

  10. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Detection of apoptosis in paraffin embedded tissues: the influence of tissue type and fixation

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Dubská, L.; Míšek, Ivan

    2002-01-01

    Roč. 71, č. 4 (2002), s. 529-533 ISSN 0001-7213 R&D Projects: GA ČR GP204/02/P112; GA AV ČR KSK6005114 Keywords : apoptosis * TUNEL test * paraffin embedded tissues Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.370, year: 2002

  12. Advancing biomaterials of human origin for tissue engineering

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  13. Rhabdomyolysis and compartment syndrome in a bodybuilder undergoing minimally invasive cardiac surgery

    Directory of Open Access Journals (Sweden)

    Sebastian John Baxter

    2017-01-01

    Full Text Available Rhabdomyolysis is the result of skeletal muscle tissue injury and is characterized by elevated creatine kinase levels, muscle pain, and myoglobinuria. It is caused by crush injuries, hyperthermia, drugs, toxins, and abnormal metabolic states. This is often difficult to diagnose perioperatively and can result in renal failure and compartment syndrome if not promptly treated. We report a rare case of inadvertent rhabdomyolysis and compartment syndrome in a bodybuilder undergoing minimally invasive cardiac surgery. The presentation, differential diagnoses, and management are discussed. Hyperkalemia may be the first presenting sign. Early recognition and management are essential to prevent life-threatening complications.

  14. Severe and acute complications of biologics in psoriasis.

    Science.gov (United States)

    Oussedik, Elias; Patel, Nupur U; Cash, Devin R; Gupta, Angela S; Feldman, Steven R

    2017-12-01

    Biologic therapies have revolutionized the approach to immune-mediated diseases such as psoriasis. Due to their favorable safety profiles and excellent efficacy, biologic agents are considered the gold standard for moderate-to-severe psoriasis. The aim of this paper is to saliently review the severe and acute complications of the Food and Drug Administration (FDA) approved biologic agents for psoriasis. Reviewed agents include tumor necrosis factor alpha inhibitors (etanercept, infliximab, and adalimumab), interleukin 12/23 inhibitors (ustekinumab), and interleukin 17 (IL-17) inhibitors (secukinumab and ixekizumab). While malignancies, serious infections, and major adverse cardiovascular events have been reported, their association with biologic therapy are not hypothesized as causal. However, IL-17 inhibitors appear to cause exacerbations and new cases of inflammatory bowel disease. While more long-term studies are warranted in understanding the biologic's long-term side effect profile, short-term studies have confirmed that the biologics are some of the safest treatment options for psoriasis. Nevertheless, certain populations yield higher risk to acute complications with the biologics than others - physicians must use their judgement and vigilance when monitoring and treating patients undergoing therapy with biological agents.

  15. Mechanical, Biological and Electrochemical Investigations of Advanced Micro/Nano Materials for Tissue Engineering and Energy Storage

    Science.gov (United States)

    Pu, Juan

    Various micro/nano materials have been extensively studied for applications in tissue engineering and energy storage. Tissue engineering seeks to repair or replace damaged tissue by integrating approaches from cellular/molecular biology and material chemistry/engineering. A major challenge is the consistent design of three-dimensional (3D) scaffolds that mimic the structure and biological functions of extracellular matrix (ECM), guide cell migration, provide mechanical support, and regulate cell activity. Electrospun micro/nanofibers have been investigated as promising tissue engineering scaffolds because they resemble native ECM and possess tunable surface morphologies. Supercapacitors, one of the energy storage devices, bridge the performance gap between rechargeable batteries and conventional capacitors. Active electrode materials of supercapacitors must possess high specific surface area, high conductivity, and good electrochemical properties. Carbon-based micro/nano-particles, such as graphene, activated carbon (AC), and carbon nanotubes, are commonly used as active electrode materials for storing charge in supercapacitors by the electrical double layer mechanism due to their high specific surface area and excellent conductivity. In this thesis, the mechanical properties of electrospun bilayer microfibrous membranes were investigated for potential applications in tissue engineering. Bilayer microfibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning using a parallel-disk mandrel configuration, which resulted in the sequential deposition of a layer with aligned fibers (AFL) across the two parallel disks and a layer with random fibers (RFL), both deposited by a single process step. The membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, the bilayer membranes exhibited higher porosity than the

  16. Biological Studies with Laser-Polarized ^129Xe

    Science.gov (United States)

    Tseng, C. H.; Oteiza, E. R.; Wong, G. A.; Walsworth, R. L.; Albert, M. S.; Nascimben, L.; Peled, S.; Sakai, K.; Jolesz, F. A.

    1996-05-01

    We have studied several biological systems using laser-polarized ^129Xe. In certain tissues magnetic resonance imaging (MRI) using inhaled laser-polarized noble gases may provide images superior to those from conventional proton MRI. High resolution laser-polarized ^3He images of air spaces in the human lung were recently obtained by the Princeton/Duke group. However, ^3He is not very soluble in tissue. Therefore, we are using laser polarized ^129Xe (tissue-soluble), with the long term goal of biomedical functional imaging. We have investigated multi-echo and multi-excitation magnetic resonance detection schemes to exploit the highly non-thermal ^129Xe magnetization produced by the laser polarization technique. We have inhalated live rats with laser-polarized ^129Xe gas and measured three distinct ^129Xe tissue resonances that last 20 to 40 sec. As a demonstration, we obtained a laser polarized ^129Xe image of the human oral cavity. Currently we are measuring the polarization lifetime of ^129Xe dissolved in human blood, the biological transporting medium. These studies and other recent developments will be reported.

  17. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ronald M.; Laprevote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F.

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  18. Normal parenchymal enhancement patterns in women undergoing MR screening of the breast

    International Nuclear Information System (INIS)

    Jansen, Sanaz A.; Lin, Vicky C.; Giger, Maryellen L.; Li, Hui; Karczmar, Gregory S.; Newstead, Gillian M.

    2011-01-01

    To characterize the kinetic and morphological presentation of normal breast tissue on DCE-MRI in a large cohort of asymptomatic women, and to relate these characteristics to breast tissue density. 335 consecutive breast MR examinations in 229 asymptomatic women undergoing high-risk screening evaluations based on recommendations from the American Cancer Society including strong family history and genetic predisposition were selected for IRB-approved review (average age 49.2 ± 10.5 years). Breast tissue density was assessed on precontrast T 2 -weighted images. Parenchymal enhancement pattern (PEP) was qualitatively classified as minimal, homogeneous, heterogeneous or nodular. Quantitative analysis of parenchymal enhancement kinetics (PEK) was performed, including calculation of initial and peak enhancement percentages (E 1 , E peak ), the time to peak enhancement (T peak ) and the signal enhancement ratio (SER). 41.8% of examinations were classified as minimal, 13.7% homogeneous, 23.9% heterogeneous and 21.2% nodular PEP. Women with heterogeneously or extremely dense breasts exhibited a higher proportion of nodular PEP (44.2% (27/61)) and significantly higher E 1 , and E peak (p < 0.003) compared with those with less dense breasts. Qualitative and quantitative parenchymal enhancement characteristics vary by breast tissue density. In future work, the association between image-derived MR features of the normal breast and breast cancer risk should be explored. (orig.)

  19. [Anti-rheumatic therapy in patients with rheumatoid arthritis undergoing hemodialysis].

    Science.gov (United States)

    Akiyama, Yuji

    2011-01-01

    Hemodialysis (HD) patients have been increasing recently. Some rheumatoid arthritis (RA) patients need hemodialysis (HD), though the proportion is not high. At present, such patients are almost treated with corticosteroids and/or nonsteroidal anti-inflammatory drugs alone, even if they have a high disease activity that would require disease-modifying anti-rheumatic drug (DMARD) therapy, partly because the safety of DMARDs in RA patients with end-stage renal disease has not been confirmed. Their joint destruction would be inevitable and lead to impaired activities of daily living. As there are no guidelines for the use of DMARDs in HD patients, here I reviewed the previous reports about the treatment of DMARDs including biologics for patients with RA undergoing HD.

  20. The assessment of cold atmospheric plasma treatment of DNA in synthetic models of tissue fluid, tissue and cells

    Science.gov (United States)

    Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Kurita, Hirofumi; Oh, Jun-Seok; Ito, Masafumi; Mizuno, Akira; Hatta, Akimitsu; Cowin, Allison J.; Graves, David B.; Short, Robert D.

    2017-07-01

    There is a growing literature database that demonstrates the therapeutic potential of cold atmospheric plasma (herein referred to as plasma). Given the breadth of proposed applications (e.g. from teeth whitening to cancer therapy) and vast gamut of plasma devices being researched, it is timely to consider plasma interactions with specific components of the cell in more detail. Plasma can produce highly reactive oxygen and nitrogen species (RONS) such as the hydroxyl radical (OH•), peroxynitrite (ONOO-) and superoxide (\\text{O}2- ) that would readily modify essential biomolecules such as DNA. These modifications could in principle drive a wide range of biological processes. Against this possibility, the reported therapeutic action of plasmas are not underpinned by a particularly deep knowledge of the potential plasma-tissue, -cell or -biomolecule interactions. In this study, we aim to partly address this issue by developing simple models to study plasma interactions with DNA, in the form of DNA-strand breaks. This is carried out using synthetic models of tissue fluid, tissue and cells. We argue that this approach makes experimentation simpler, more cost-effective and faster than compared to working with real biological materials and cells. Herein, a helium plasma jet source was utilised for these experiments. We show that the plasma jet readily induced DNA-strand breaks in the tissue fluid model and in the cell model, surprisingly without any significant poration or rupture of the phospholipid membrane. In the plasma jet treatment of the tissue model, DNA-strand breaks were detected in the tissue mass after pro-longed treatment (on the time-scale of minutes) with no DNA-strand breaks being detected in the tissue fluid model underneath the tissue model. These data are discussed in the context of the therapeutic potential of plasma.