WorldWideScience

Sample records for biological tissue samples

  1. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Vavpetič, P., E-mail: primoz.vavpetic@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, K. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Jeromel, L. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Ogrinc Potočnik, N. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Pongrac, P. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Department of Plant Physiology, University of Bayreuth, Universitätstr. 30, 95447 Bayreuth (Germany); Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Pelicon, P. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on–off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm{sup 2} and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  2. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    Science.gov (United States)

    Vavpetič, P.; Vogel-Mikuš, K.; Jeromel, L.; Ogrinc Potočnik, N.; Pongrac, P.; Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M.; Pelicon, P.

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on-off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm2 and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  3. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, Helene, E-mail: helene.rahn@gmail.com [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany); Alexiou, Christoph [ENT-Department, Section for Experimental Oncology and Nanomedicine (Else Kröner-Fresenius-Stiftungsprofessur), University Hospital Erlangen, Waldstraße 1, Erlangen 91054 (Germany); Trahms, Lutz [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, Berlin 10587 (Germany); Odenbach, Stefan [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany)

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration. - Highlights: • Local cancer treatments are promising in reducing negative side effects occurring during conventional chemotherapy. • The nanoparticles play an important role in delivering drugs to the designated area during local cancer treatments as magnetic drug targeting. • We study the nanoparticles distribution in tumor tissue after magnetic drug targeting with X-ray computed tomography. • We achieved a 3-dimensional quantification of the nanoparticles content in tumor tissue out of digital tomographic data.

  4. Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples.

    Directory of Open Access Journals (Sweden)

    Ulrich Leischner

    Full Text Available Ultramicroscopy is a powerful tool to reveal detailed three-dimensional structures of large microscopical objects. Using high magnification, we observed that formalin induces fluorescence more in extra-cellular space and stains cellular structures negatively, rendering cells as dark objects in front of a bright background. Here, we show this effect on a three-dimensional image stack of a hippocampus sample, focusing on the CA1 region. This method, called FIF-Ultramicroscopy, allows for the three-dimensional observation of cellular structures in various tissue types without complicated staining techniques.

  5. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  6. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  7. A New Sample Substrate for Imaging and Correlating Organic and Trace Metal Composition in Biological Cells and Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Miller,L.; Wang, Q.; Smith, R.; Zhong, H.; Elliott, D.; Warren, J.

    2007-01-01

    Many disease processes involve alterations in the chemical makeup of tissue. Synchrotron-based infrared (IR) and X-ray fluorescence (XRF) microscopes are becoming increasingly popular tools for imaging the organic and trace metal compositions of biological materials, respectively, without the need for extrinsic labels or stains. Fourier transform infrared microspectroscopy (FTIRM) provides chemical information on the organic components of a material at a diffraction-limited spatial resolution of 2-10 {mu}m in the mid-infrared region. The synchrotron X-ray fluorescence (SXRF) microprobe is a complementary technique used to probe trace element content in the same systems with a similar spatial resolution. However to be most beneficial, it is important to combine the results from both imaging techniques on a single sample, which requires precise overlap of the IR and X-ray images. In this work, we have developed a sample substrate containing a gold grid pattern on its surface, which can be imaged with both the IR and X-ray microscopes. The substrate consists of a low trace element glass slide that has a gold grid patterned on its surface, where the major and minor parts of the grid contain 25 and 12 nm gold, respectively. This grid pattern can be imaged with the IR microscope because the reflectivity of gold differs as a function of thickness. The pattern can also be imaged with the SXRF microprobe because the Au fluorescence intensity changes with gold thickness. The tissue sample is placed on top of the patterned substrate. The grid pattern's IR reflectivity image and the gold SXRF image are used as fiducial markers for spatially overlapping the IR and SXRF images from the tissue. Results show that IR and X-ray images can be correlated precisely, with a spatial resolution of less than one pixel (i.e., 2-3 microns). The development of this new tool will be presented along with applications to paraffin-embedded metalloprotein crystals, Alzheimer's disease

  8. Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy

    Science.gov (United States)

    Johnston, Helinor J.; Mouras, Rabah; Brown, David M.; Elfick, Alistair; Stone, Vicki

    2015-12-01

    The uptake of nanomaterials (NMs) by cells is critical in determining their potential biological impact, whether beneficial or detrimental. Thus, investigation of NM internalization by cells is a common consideration in hazard and efficacy studies. There are currently a number of approaches that are routinely used to investigate NM-cell interactions, each of which have their own advantages and limitations. Ideally, imaging modalities used to investigate NM uptake by cells should not require the NM to be labelled (e.g. with fluorophores) to facilitate its detection. We present a multimodal imaging approach employing a combination of label-free microscopies that can be used to investigate NM-cell interactions. Coherent anti-Stokes Raman scattering microscopy was used in combination with either two-photon photoluminescence or four-wave mixing (FWM) to visualize the uptake of gold or titanium dioxide NMs respectively. Live and fixed cell imaging revealed that NMs were internalized by J774 macrophage and C3A hepatocyte cell lines (15-31 μg ml-1). Sprague Dawley rats were exposed to NMs (intratracheal instillation, 62 μg) and NMs were detected in blood and lung leucocytes, lung and liver tissue, demonstrating that NMs could translocate from the exposure site. Obtained data illustrate that multimodal nonlinear optical microscopy may help overcome current challenges in the assessment of NM cellular uptake and biodistribution. It is therefore a powerful tool that can be used to investigate unlabelled NM cellular and tissue uptake in three dimensions, requires minimal sample preparation, and is applicable to live and fixed cells.

  9. Some Physical, Chemical, and Biological Parameters of Samples of Scleractinium Coral Aquaculture Skeleton Used for Reconstruction/Engineering of the Bone Tissue.

    Science.gov (United States)

    Popov, A A; Sergeeva, N S; Britaev, T A; Komlev, V S; Sviridova, I K; Kirsanova, V A; Akhmedova, S A; Dgebuadze, P Yu; Teterina, A Yu; Kuvshinova, E A; Schanskii, Ya D

    2015-08-01

    Physical and chemical (phase and chemical composition, dynamics of resorption, and strength properties), and biological (cytological compatibility and scaffold properties of the surface) properties of samples of scleractinium coral skeletons from aquacultures of three types and corresponding samples of natural coral skeletons (Pocillopora verrucosa, Acropora formosa, and Acropora nobilis) were studied. Samples of scleractinium coral aquaculture skeleton of A. nobilis, A. formosa, and P. verrucosa met the requirements (all study parameters) to materials for osteoplasty and 3D-scaffolds for engineering of bone tissue.

  10. Enhanced Biological Sampling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of a variety of biological, reproductive, and energetic data collected from fish on the continental shelf in the northwest Atlantic Ocean. Species...

  11. Biological Sampling Variability Study

    Energy Technology Data Exchange (ETDEWEB)

    Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-11-08

    There are many sources of variability that exist in the sample collection and analysis process. This paper addresses many, but not all, sources of variability. The main focus of this paper was to better understand and estimate variability due to differences between samplers. Variability between days was also studied, as well as random variability within each sampler. Experiments were performed using multiple surface materials (ceramic and stainless steel), multiple contaminant concentrations (10 spores and 100 spores), and with and without the presence of interfering material. All testing was done with sponge sticks using 10-inch by 10-inch coupons. Bacillus atrophaeus was used as the BA surrogate. Spores were deposited using wet deposition. Grime was coated on the coupons which were planned to include the interfering material (Section 3.3). Samples were prepared and analyzed at PNNL using CDC protocol (Section 3.4) and then cultured and counted. Five samplers were trained so that samples were taken using the same protocol. Each sampler randomly sampled eight coupons each day, four coupons with 10 spores deposited and four coupons with 100 spores deposited. Each day consisted of one material being tested. The clean samples (no interfering materials) were run first, followed by the dirty samples (coated with interfering material). There was a significant difference in recovery efficiency between the coupons with 10 spores deposited (mean of 48.9%) and those with 100 spores deposited (mean of 59.8%). There was no general significant difference between the clean and dirty (containing interfering material) coupons or between the two surface materials; however, there was a significant interaction between concentration amount and presence of interfering material. The recovery efficiency was close to the same for coupons with 10 spores deposited, but for the coupons with 100 spores deposited, the recovery efficiency for the dirty samples was significantly larger (65

  12. Developmental biology and tissue engineering.

    Science.gov (United States)

    Marga, Francoise; Neagu, Adrian; Kosztin, Ioan; Forgacs, Gabor

    2007-12-01

    Morphogenesis implies the controlled spatial organization of cells that gives rise to tissues and organs in early embryonic development. While morphogenesis is under strict genetic control, the formation of specialized biological structures of specific shape hinges on physical processes. Tissue engineering (TE) aims at reproducing morphogenesis in the laboratory, i.e., in vitro, to fabricate replacement organs for regenerative medicine. The classical approach to generate tissues/organs is by seeding and expanding cells in appropriately shaped biocompatible scaffolds, in the hope that the maturation process will result in the desired structure. To accomplish this goal more naturally and efficiently, we set up and implemented a novel TE method that is based on principles of developmental biology and employs bioprinting, the automated delivery of cellular composites into a three-dimensional (3D) biocompatible environment. The novel technology relies on the concept of tissue liquidity according to which multicellular aggregates composed of adhesive and motile cells behave in analogy with liquids: in particular, they fuse. We emphasize the major role played by tissue fusion in the embryo and explain how the parameters (surface tension, viscosity) that govern tissue fusion can be used both experimentally and theoretically to control and simulate the self-assembly of cellular spheroids into 3D living structures. The experimentally observed postprinting shape evolution of tube- and sheet-like constructs is presented. Computer simulations, based on a liquid model, support the idea that tissue liquidity may provide a mechanism for in vitro organ building.

  13. Processes and procedures for a worldwide biological samples distribution; product assurance and logistic activities to support the mice drawer system tissue sharing event

    Science.gov (United States)

    Benassai, Mario; Cotronei, Vittorio

    The Mice Drawer System (MDS) is a scientific payload developed by the Italian Space Agency (ASI), it hosted 6 mice on the International Space Station (ISS) and re-entered on ground on November 28, 2009 with the STS 129 at KSC. Linked to the MDS experiment, a Tissue Sharing Program (TSP), was developed in order to make available to 16 Payload Investigators (PI) (located in USA, Canada, EU -Italy, Belgium and Germany -and Japan) the biological samples coming from the mice. ALTEC SpA (a PPP owned by ASI, TAS-I and local institutions) was responsible to support the logistics aspects of the MDS samples for the first MDS mission, in the frame of Italian Space Agency (ASI) OSMA program (OSteoporosis and Muscle Atrophy). The TSP resulted in a complex scenario, as ASI, progressively, extended the original OSMA Team also to researchers from other ASI programs and from other Agencies (ESA, NASA, JAXA). The science coordination was performed by the University of Genova (UNIGE). ALTEC has managed all the logistic process with the support of a specialized freight forwarder agent during the whole shipping operation phases. ALTEC formalized all the steps from the handover of samples by the dissection Team to the packaging and shipping process in a dedicated procedure. ALTEC approached all the work in a structured way, performing: A study of the aspects connected to international shipments of biological samples. A coopera-tive work with UNIGE/ASI /PIs to identify all the needs of the various researchers and their compatibility. A complete revision and integration of shipment requirements (addresses, tem-peratures, samples, materials and so on). A complete definition of the final shipment scenario in terms of boxes, content, refrigerant and requirements. A formal approach to identification and selection of the most suited and specialized Freight Forwarder. A clear identification of all the processes from sample dissection by PI Team, sample processing, freezing, tube preparation

  14. Systems biology characterization of engineered tissues.

    Science.gov (United States)

    Rajagopalan, Padmavathy; Kasif, Simon; Murali, T M

    2013-01-01

    Tissue engineering and molecular systems biology are inherently interdisciplinary fields that have been developed independently so far. In this review, we first provide a brief introduction to tissue engineering and to molecular systems biology. Next, we highlight some prominent applications of systems biology techniques in tissue engineering. Finally, we outline research directions that can successfully blend these two fields. Through these examples, we propose that experimental and computational advances in molecular systems biology can lead to predictive models of bioengineered tissues that enhance our understanding of bioengineered systems. In turn, the unique challenges posed by tissue engineering will usher in new experimental techniques and computational advances in systems biology.

  15. The character of biological tissue's SHG spectrum

    Science.gov (United States)

    Tian, Long; Guo, Zhouyi; Deng, Xiaoyuan; Zhai, Juan; Zhuang, Zhengfei

    2009-08-01

    In biological tissue, the relative strongly SHG (second-harmonic Generation) will be shown in the collagen and the cell membrane with dye molecules under the irradiation of laser. The SHG has a broad prospect in detecting and imaging of the biological tissue for its non-phototoxicity and non-photobleaching. In biological tissue, not only the SHG intensity and emission angle will have more obvious change, but also the spectrum of the SHG will be subject to certain changes when the temperature in the outside world and its structure got a obviously change. According to Kuzyk and Kruhlak's dipole-free sum-over-states theory which gives a introduction for the nonlinear susceptibilities, the relationship between hyperpolarizability of biological tissue, environment temperature and biological tissue's structure is shown in mathematics. In the conditions of control the temperature in experiments, the biological tissue's structure shift can be detected by analyze the SHG spectrum of biological. Also diverse biological tissues' differences in structure can be demonstrated in the spectrum. The change of SHG spectrum for the same biological tissue with environment temperature is discussed. Therefore, SHG spectroscopy analysis provides a new technology for the process of biological tissue lesions. Beside, this research gives a theory results provided by environment temperature which give an explanation for experiment result.

  16. The application of ESEM to biological samples

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, J E; Donald, A M, E-mail: jem60@cam.ac.u [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 OHE (United Kingdom)

    2010-07-01

    The Environmental Scanning Electron Microscope (ESEM) differs from a conventional SEM in that a differential pumping system maintains a pressure of gas (typically H{sub 2}O) in the specimen chamber whilst the gun remains at high vacuum. Ionizing collisions between electrons and these gas molecules create positive ions which drift down onto the sample neutralising specimen charge. It is therefore possible to image insulating samples without the need for metallic coating. The presence of water vapour in the chamber also means that a high relative humidity can be maintained and samples can be imaged in a hydrated state without the need for dehydration and fixation. These features suggest that ESEM could be well suited to imaging biological samples undergoing natural biological processes. We present a proof of principle study on the closure of stomatal pores in Tradescantia andersonia leaf tissue. An imaging protocol is developed and the advantages and limitations of this technique are discussed. Images of Vicia fabaleaf tissue are also presented. Challenges include minimising beam damage and reconciling the need for an adequate physiological temperature and a low gas pressure favourable for imaging, with the thermodynamic constraints on achieving a high relative humidity.

  17. Photon-tissue interaction model for quantitative assessment of biological tissues

    Science.gov (United States)

    Lee, Seung Yup; Lloyd, William R.; Wilson, Robert H.; Chandra, Malavika; McKenna, Barbara; Simeone, Diane; Scheiman, James; Mycek, Mary-Ann

    2014-02-01

    In this study, we describe a direct fit photon-tissue interaction model to quantitatively analyze reflectance spectra of biological tissue samples. The model rapidly extracts biologically-relevant parameters associated with tissue optical scattering and absorption. This model was employed to analyze reflectance spectra acquired from freshly excised human pancreatic pre-cancerous tissues (intraductal papillary mucinous neoplasm (IPMN), a common precursor lesion to pancreatic cancer). Compared to previously reported models, the direct fit model improved fit accuracy and speed. Thus, these results suggest that such models could serve as real-time, quantitative tools to characterize biological tissues assessed with reflectance spectroscopy.

  18. [The ethical implications of conserving biological samples].

    Science.gov (United States)

    Tazzite, A; Roky, R; Avard, D

    2009-09-01

    The conservation and use of biological samples become more and more frequent all around the world. Biobanks of human body substances (blood, urine, DNA, tissues, cells, etc.), and personal data associated with them are created. They have a double character as they are collections of both human biological samples and personal data. In some cases, the gametes, reproductive tissues, embryos, foetal tissue after abortion or even specimens of dead donors are collected and conserved. Although biobanks raise hopes in both the development of new therapies, new drugs and their integration into clinical medicine, they also point to concerns related to ethical questions such as: the principles of information, the consent of the persons concerned, the confidentiality about the personal data, and in some cases discrimination and stigmatisation. Other ethical aspects could raise gradually as research advance. Research being carried out on human sample requires informed free consent from the person who should be able to consent. The donor must be sufficiently informed about the process of research, the purpose, benefits and the risks involved in participating in this research. In the case of persons unable to give consent such minors or persons with mental disabilities, special measures are undertaken. Once the consent was given, the right of withdrawal has been consistently supported by the various declarations and regulations, but some oppose this right for a number of reasons particularly in the case of research on the samples without risk of physical exposure. In this case the notion of human body integrity is different than in research involving therapeutic or clinical intervention. In the case of withdrawal of consent, the samples should be destroyed, but the anonymous results arising from them and their analysis are not affected. What is the case for future uses? Should the researcher obtain again the consent from the donor for a secondary use of the samples? This is a

  19. VISUALIZATION OF BIOLOGICAL TISSUE IMPEDANCE PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. I. Bankov

    2016-01-01

    Full Text Available Objective. Investigation the opportunity for measurement of biological tissue impedance to visualize its parameters.Materials and methods. Studies were undertook on the experimental facility, consists of registrating measuring cell, constructed from flat inductors system, formed in oscillatory circuit, herewith investigated biological tissue is the part of this oscillatory circuit. An excitation of oscillatory circuit fulfilled by means of exciter inductor which forms impulse complex modulated electromagnetic field (ICM EMF. The measurement process and visualizations provided by set of certificated instruments: a digital oscillograph AKTAKOM ADS-2221MV, a digital generator АКТАКОМ AWG-4150 (both with software and a gauge RLC E7-22. Comparative dynamic studies of fixed volume and weight pig’s blood, adipose tissue, muscular tissue impedance were conducted by contact versus contactless methods. Contactless method in contrast to contact method gives opportunity to obtain the real morphological visualization of biological tissue irrespective of their nature.Results. Comparison of contact and contactless methods of impedance measurement shows that the inductance to capacitance ratio X(L / X(C was equal: 17 – for muscular tissue, 4 – for blood, 1 – for adipose tissue. It demonstrates the technical correspondence of both impedance registration methods. If propose the base relevance of X (L and X (C parameters for biological tissue impedance so contactless measurement method for sure shows insulating properties of adipose tissue and high conductivity for blood and muscular tissue in fixed volume-weight parameters. Registration of biological tissue impedance complex parameters by contactless method with the help of induced ICM EMF in fixed volume of biological tissue uncovers the most important informative volumes to characterize morphofunctional condition of biological tissue namely X (L / X (C.Conclusion. Contactless method of biological

  20. Dielectric characterisation of human tissue samples

    NARCIS (Netherlands)

    Rossum, W.L. van; Nennie, F.; Deiana, D.; Veen, A.J. van der; Monni, S.

    2014-01-01

    The electrical properties of tissues samples are required for investigation and simulation purposes in biomedical applications of EM sensors. While available open literature mostly deals with ex-vivo characterization of isolated tissues, knowledge on dielectric properties of these tissues in their o

  1. Nonlinear spectral imaging of biological tissues

    NARCIS (Netherlands)

    Palero, J.A.

    2007-01-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal.

  2. Biological Environmental Sampling Technologies Assessment

    Science.gov (United States)

    2015-12-01

    Nano Intelligent Detection System (NIDS) ........................5 2.3 BBI Detection BWA Integrated Multiplex Assay and Sampling System (IMASS...the samples can be collected ft2 Informational only Not provided N/A N/A Info only GRAND TOTAL 920 5 2.2 ANP Technologies Nano Intelligent ...from all types of surfaces and absorb unknown liquids. The Aklus Shield system can also be used to sample debris, soil, or vegetation . For this

  3. Nonlinear spectral imaging of biological tissues

    Science.gov (United States)

    Palero, J. A.

    2007-07-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.

  4. Multiscale mechanical modeling of soft biological tissues

    Science.gov (United States)

    Stylianopoulos, Triantafyllos

    2008-10-01

    Soft biological tissues include both native and artificial tissues. In the human body, tissues like the articular cartilage, arterial wall, and heart valve leaflets are examples of structures composed of an underlying network of collagen fibers, cells, proteins and molecules. Artificial tissues are less complex than native tissues and mainly consist of a fiber polymer network with the intent of replacing lost or damaged tissue. Understanding of the mechanical function of these materials is essential for many clinical treatments (e.g. arterial clamping, angioplasty), diseases (e.g. arteriosclerosis) and tissue engineering applications (e.g. engineered blood vessels or heart valves). This thesis presents the derivation and application of a multiscale methodology to describe the macroscopic mechanical function of soft biological tissues incorporating directly their structural architecture. The model, which is based on volume averaging theory, accounts for structural parameters such as the network volume fraction and orientation, the realignment of the fibers in response to strain, the interactions among the fibers and the interactions between the fibers and the interstitial fluid in order to predict the overall tissue behavior. Therefore, instead of using a constitutive equation to relate strain to stress, the tissue microstructure is modeled within a representative volume element (RVE) and the macroscopic response at any point in the tissue is determined by solving a micromechanics problem in the RVE. The model was applied successfully to acellular collagen gels, native blood vessels, and electrospun polyurethane scaffolds and provided accurate predictions for permeability calculations in isotropic and oriented fiber networks. The agreement of model predictions with experimentally determined mechanical properties provided insights into the mechanics of tissues and tissue constructs, while discrepancies revealed limitations of the model framework.

  5. Measurement of NO in biological samples.

    Science.gov (United States)

    Csonka, C; Páli, T; Bencsik, P; Görbe, A; Ferdinandy, P; Csont, T

    2015-03-01

    Although the physiological regulatory function of the gasotransmitter NO (a diatomic free radical) was discovered decades ago, NO is still in the frontline research in biomedicine. NO has been implicated in a variety of physiological and pathological processes; therefore, pharmacological modulation of NO levels in various tissues may have significant therapeutic value. NO is generated by NOS in most of cell types and by non-enzymatic reactions. Measurement of NO is technically difficult due to its rapid chemical reactions with a wide range of molecules, such as, for example, free radicals, metals, thiols, etc. Therefore, there are still several contradictory findings on the role of NO in different biological processes. In this review, we briefly discuss the major techniques suitable for measurement of NO (electron paramagnetic resonance, electrochemistry, fluorometry) and its derivatives in biological samples (nitrite/nitrate, NOS, cGMP, nitrosothiols) and discuss the advantages and disadvantages of each method. We conclude that to obtain a meaningful insight into the role of NO and NO modulator compounds in physiological or pathological processes, concomitant assessment of NO synthesis, NO content, as well as molecular targets and reaction products of NO is recommended.

  6. Anisotropy of light propagation in biological tissue

    Science.gov (United States)

    Kienle, A.; Forster, F. K.; Hibst, R.

    2004-11-01

    We investigated the propagation of light in biological tissues that have aligned cylindrical microstructures (e.g., muscle, skin, bone, tooth). Because of pronounced anisotropic light scattering by cylindrical structures (e.g., myofibrils and collagen fibers) the spatially resolved reflectance exhibits a directional dependence that is different close to and far from the incident source. We applied Monte Carlo simulations, using the phase function of an infinitely long cylinder, to explain quantitatively the experimental results. These observations have consequences for noninvasive determination of the optical properties of tissue as well as for the diagnosis of early tissue alterations.

  7. SEM investigation of heart tissue samples

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, R; Amoroso, M [Physics Department, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies (Trinidad and Tobago)

    2010-07-01

    We used the scanning electron microscope to examine the cardiac tissue of a cow (Bos taurus), a pig (Sus scrofa), and a human (Homo sapiens). 1mm{sup 3} blocks of left ventricular tissue were prepared for SEM scanning by fixing in 96% ethanol followed by critical point drying (cryofixation), then sputter-coating with gold. The typical ridged structure of the myofibrils was observed for all the species. In addition crystal like structures were found in one of the samples of the heart tissue of the pig. These structures were investigated further using an EDVAC x-ray analysis attachment to the SEM. Elemental x-ray analysis showed highest peaks occurred for gold, followed by carbon, oxygen, magnesium and potassium. As the samples were coated with gold for conductivity, this highest peak is expected. Much lower peaks at carbon, oxygen, magnesium and potassium suggest that a cystallized salt such as a carbonate was present in the tissue before sacrifice.

  8. Adipose Tissue Biology: An Update Review

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  9. Morpho-chemistry and functionality of diseased biological tissues

    Science.gov (United States)

    Lange, Marta; Cicchi, Riccardo; Pavone, Francesco

    2014-09-01

    Heart and cardiovascular diseases are one of the most common in the world, in particular - arthrosclerosis. The aim of the research is to distinguish pathological and healthy tissue regions in biological samples, in this case - to distinguish collagen and lipid rich regions within the arterial wall. In the work a specific combination of such methods are used: FLIM and SHG in order to evaluate the biological tissue morphology and functionality, so that this research could give a contribution for creating a new biological tissue imaging standard in the closest future. During the study the most appropriate parameter for fluorescence lifetime decay was chosen in order to evaluate lifetime decay parameters and the isotropy of the arterial wall and deposition, using statistical methods FFT and GLCM. The research gives a contribution or the future investigations for evaluating lipid properties when it can de-attach from the arterial wall and cause clotting in the blood vessel or even a stroke.

  10. Evaluation of ultrasound-assisted extraction as sample pre-treatment for quantitative determination of rare earth elements in marine biological tissues by inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Costas, M.; Lavilla, I.; Gil, S.; Pena, F.; Calle, I.; Cabaleiro, N. de la [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, As Lagoas-Marcosende s/n, 36310 Vigo (Spain); Bendicho, C., E-mail: bendicho@uvigo.es [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, As Lagoas-Marcosende s/n, 36310 Vigo (Spain)

    2010-10-29

    In this work, the determination of rare earth elements (REEs), i.e. Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in marine biological tissues by inductively coupled-mass spectrometry (ICP-MS) after a sample preparation method based on ultrasound-assisted extraction (UAE) is described. The suitability of the extracts for ICP-MS measurements was evaluated. For that, studies were focused on the following issues: (i) use of clean up of extracts with a C18 cartridge for non-polar solid phase extraction; (ii) use of different internal standards; (iii) signal drift caused by changes in the nebulization efficiency and salt deposition on the cones during the analysis. The signal drift produced by direct introduction of biological extracts in the instrument was evaluated using a calibration verification standard for bracketing (standard-sample bracketing, SSB) and cumulative sum (CUSUM) control charts. Parameters influencing extraction such as extractant composition, mass-to-volume ratio, particle size, sonication time and sonication amplitude were optimized. Diluted single acids (HNO{sub 3} and HCl) and mixtures (HNO{sub 3} + HCl) were evaluated for improving the extraction efficiency. Quantitative recoveries for REEs were achieved using 5 mL of 3% (v/v) HNO{sub 3} + 2% (v/v) HCl, particle size <200 {mu}m, 3 min of sonication time and 50% of sonication amplitude. Precision, expressed as relative standard deviation from three independent extractions, ranged from 0.1 to 8%. In general, LODs were improved by a factor of 5 in comparison with those obtained after microwave-assisted digestion (MAD). The accuracy of the method was evaluated using the CRM BCR-668 (mussel tissue). Different seafood samples of common consumption were analyzed by ICP-MS after UAE and MAD.

  11. Computational Laser Spectroscopy in a Biological Tissue

    Directory of Open Access Journals (Sweden)

    M. Gantri

    2010-01-01

    Full Text Available We present a numerical spectroscopic study of visible and infrared laser radiation in a biological tissue. We derive a solution of a general two-dimensional time dependent radiative transfer equation in a tissue-like medium. The used model is suitable for many situations especially when the external source is time-dependent or continuous. We use a control volume-discrete ordinate method associated with an implicit three-level second-order time differencing scheme. We consider a very thin rectangular biological-tissue-like medium submitted to a visible or a near infrared light sources. The RTE is solved for a set of different wavelength source. All sources are assumed to be monochromatic and collimated. The energetic fluence rate is computed at a set of detector points on the boundaries. According to the source type, we investigate either the steady-state or transient response of the medium. The used model is validated in the case of a heterogeneous tissue-like medium using referencing experimental results from the literature. Also, the developed model is used to study changes on transmitted light in a rat-liver tissue-like medium. Optical properties depend on the source wavelength and they are taken from the literature. In particular, light-transmission in the medium is studied for continuous wave and for short pulse.

  12. Fluorine ion transmission through thin biological samples

    Institute of Scientific and Technical Information of China (English)

    XueJian-Ming; WangYu-Gang; 等

    1998-01-01

    F2+ beam with 3MeV is used to irradiate thin biological samples(onion inner suface membrane and kidney bean coat)in the transmission measurement ,its current density is 400-800nA/cm2,Results show that the onion samples can be broken up quickly under ion irradiating;as to kidney bean samples,about 60% of the implanted ions penetrate the samples,most of them lose part of their eneregy,fewer ions are found to be able to transmit through the sample without energy loss.SEM experiments are carried out to study sample's damage induced by the ions irradiation.

  13. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  14. Stability of glufosfamide in phosphate buffers and in biological samples.

    Science.gov (United States)

    Sun, Yuming; Chen, Xiaoyan; Xu, Haiyan; Guan, Zhongmin; Zhong, Dafang

    2006-03-07

    Glufosfamide is a new, potential chemotherapeutic agent currently under investigation. Stability of glufosfamide was investigated in sodium phosphate buffers with different pH and temperature and in biological samples. Glufosfamide and isophosphamide mustard were quantified simultaneously using a liquid chromatography-ion trap mass spectrometric method; precision and accuracy were within 15% for each analyte. Glufosfamide was stable in neutral buffers, but decomposed to form isophosphoramide mustard under acidic and basic conditions, which was pH- and temperature-dependent. The stability of glufosfamide varied in different biological samples. Results indicated that glufosfamide was unstable in some biological samples, such as the small intestine, smooth muscles, pancreas and urine, especially in the small intestine homogenate, with a half-life of 1.1 h. But the pH (<8) and beta-glucosidase of the tissue homogenate was found to have negligible contribution to the degradation of glufosfamide. The enzymatic inhibition experiment with the specific inhibitor, saccharo-1,4-lactone, demonstrated that it was glucuronidase that resulted in the degradation of glufosfamide in small intestine homogenate. Methanol was recommended to be used to homogenize the tissue in an ice water bath, and the container for urine collection should also be maintained in an ice water bath, and all the biological samples collected should be preserved in frozen condition until analysis.

  15. Atomic force microscopy of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).

  16. Accelerator mass spectrometry of small biological samples.

    Science.gov (United States)

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  17. Boron concentration measurement in biological tissues by charged particle spectrometry.

    Science.gov (United States)

    Bortolussi, S; Altieri, S

    2013-11-01

    Measurement of boron concentration in biological tissues is a fundamental aspect of boron neutron capture therapy, because the outcome of the therapy depends on the distribution of boron at a cellular level, besides on its overall concentration. This work describes a measurement technique based on the spectroscopy of the charged particles emitted in the reaction (10)B(n,α)(7)Li induced by thermal neutrons, allowing for a quantitative determination of the boron concentration in the different components that may be simultaneously present in a tissue sample, such as healthy cells, tumor cells and necrotic cells. Thin sections of tissue containing (10)B are cut at low temperatures and irradiated under vacuum in a thermal neutron field. The charged particles arising from the sample during the irradiation are collected by a thin silicon detector, and their spectrum is used to determine boron concentration through relatively easy calculations. The advantages and disadvantages of this technique are here described, and validation of the method using tissue standards with known boron concentrations is presented.

  18. Depth-resolved fluorescence of biological tissue

    Science.gov (United States)

    Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.

    2005-06-01

    The depth-resolved autofluorescence ofrabbit oral tissue, normal and dysplastic human ectocervical tissue within l20μm depth were investigated utilizing a confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of oral and ectocervical tissue, strong keratin fluorescence with the spectral characteristics similar to collagen was observed. The fluorescence signal from epithelial tissue between the keratinizing layer and stroma can be well resolved. Furthermore, NADH and FADfluorescence measured from the underlying non-keratinizing epithelial layer were strongly correlated to the tissue pathology. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.

  19. Confocal Imaging of Biological Tissues Using Second Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B-M.; Stoller, P.; Reiser, K.; Eichler, J.; Yan, M.; Rubenchik, A.; Da Silva, L.

    2000-03-06

    A confocal microscopy imaging system was devised to selectively detect Second harmonic signals generated by biological tissues. Several types of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in tissue is collagen. Collagen, the predominant component of most tissues, is known to have second order nonlinear susceptibility. This technique may have diagnostic usefulness in pathophysiological conditions characterized by changes in collagen structure including malignant transformation of nevi, progression of diabetic complications, and abnormalities in wound healing.

  20. Thermal property of biological tissues characterized by piezoelectric photoacoustic technique

    Institute of Scientific and Technical Information of China (English)

    GAO Chunming; ZHANG Shuyi; CHEN Yan; SHUI Xiuji; YANG Yuetao

    2004-01-01

    A photoacoustic piezoelectric method based on a simplified thermoelastic theory is employed to determine thermal diffusivities of biological tissues. The thermal diffusivities of porcine tissues with different preparation conditions, including fresh, dry and specially prepared conditions, are characterized. Comparing the experimental evaluated diffusivities of the tissues in three conditions with each other, it can be seen that the diffusivities of the fresh tissues are the biggest and the diffusivities of the specially prepared tissues are bigger than that of the dry ones generally. The results show that the piezoelectric photoacoustic method is especially effective for determining macro-effective (average) thermal diffusivities of biological materials with micro- inhomogeneity and easy to be performed, which can provide useful information for researching thermal characters of biological tissues.

  1. [Biological material sampling for atomic absorption analysis].

    Science.gov (United States)

    Makarenko, N P; Ganebnykh, E V

    2007-01-01

    The optimum conditions have been chosen for mineralization of biological material for the atomic absorption determination of toxic metals, by using a [Russian characters: see text]-01 laboratory furnace (Gefest) upon exposure to high temperature, pressure, and microwave field. The completeness of dissection of biological material by microwave mineralization is shown under the optimal conditions.

  2. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Ye-Rang Yun

    2010-01-01

    Full Text Available Fibroblast growth factors (FGFs that signal through FGF receptors (FGFRs regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.

  3. THz near-field imaging of biological tissues employing synchrotronradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried,Daniel

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  4. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  5. Cell Division and Evolution of Biological Tissues

    Science.gov (United States)

    Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun

    A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter

  6. Ultrasonically encoded photoacoustic flowgraphy in biological tissue

    Science.gov (United States)

    Wang, Lidai; Xia, Jun; Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.

    2014-01-01

    Blood flow speed is an important functional parameter. Doppler ultrasound flowmetry lacks sufficient sensitivity to slow blood flow (several to tens of millimeters per second) in deep tissue. To address this challenge, we developed ultrasonically encoded photoacoustic flowgraphy combining ultrasonic thermal tagging with photoacoustic imaging. Focused ultrasound generates a confined heat source in acoustically absorptive fluid. Thermal waves propagate with the flow and are directly visualized in pseudo color using photoacoustic computed tomography. The Doppler shift is employed to calculate the flow speed. This method requires only acoustic and optical absorption, and thus is applicable to continuous fluid. A blood flow speed as low as 0.24 mm·s−1 was successfully measured. Deep blood flow imaging was experimentally demonstrated under 5-mm-thick chicken breast tissue. PMID:24289689

  7. Mitosis and growth in biological tissues

    OpenAIRE

    Mombach, Jose Carlos Merino; Almeida, Rita Maria Cunha de; Iglesias, Jose Roberto

    1993-01-01

    We present a simulation of the growth of a two-dimensional biological cellular system in which the cells experience mitosis whenever the (area)/(perimeter) ratio reaches a critical value. The model also includes the effect of interfacial energy and temperature. A stationary state with a constant average area is attained. We calculate the distribution of cells as a function of area, perimeter, and number of sides and also the two-cell correlation function. The results depend on temperature and...

  8. Plasma tissue inhibitor of metalloproteinases-1 as a biological marker?

    DEFF Research Database (Denmark)

    Lomholt, Anne F.; Frederiksen, Camilla B.; Christensen, Ib J.;

    2007-01-01

    Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during ...

  9. Depth Determination of an Abnormal Heat Source in Biological Tissues

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-Hua; LI Zhen-Hua; LAI Jian-Cheng; HE An-Zhi

    2011-01-01

    We deduce the surface temperature distribution generated by the inner point heat source in biological tissues and propose a graphic method to retrieve the depth of the point heat source. The practical surface temperature distribution can be regarded as the convolution of the temperature distribution of the inner point heat source with the heat source shape function. The depth of an abnormal heat source in biological tissues can be retrieved by using the graphic method combined with the blind deconvolution scheme.%We deduce the surface temperature distribution generated by the inner point heat source in biological tissues and propose a graphic method to retrieve the depth of the point heat source.The practical surface temperature distribution can be regarded as the convolution of the temperature distribution of the inner point heat source with the heat source shape function.The depth of an abnormal heat source in biological tissues can be retrieved by using the graphic method combined with the blind deconvolution scheme.Surface temperature distribution of the biological tissues is closely related to the neighboring metabolic heat production,blood circulation in an organism and environmental temperature.[1] The abnormal metabolic performances of a local region in biological tissue imply malignant changes occurring,which can be distinguished from the variance of surface temperature.Modern development of thermal infrared (TIR) imaging has made the surface temperature measurement of biological tissue easier.Nowadays,several types of tumors,e.g.skin or breast can be recognized with TIR imaging.[2] The diagnostics with TIR imaging require more experienced operators and can not accurately ascertain the site of pathological changes,which limits the value of this technology.Therefore ascertaining the depth of inner heat source in biological body has the extremely important clinical value.

  10. Temperature Dependence of Biological Tissues Complex Permitivity at Microwave Frequencies

    Directory of Open Access Journals (Sweden)

    Dagmar Faktorova

    2008-01-01

    Full Text Available In the paper an universal overview of polarizing mechanisms with an emphasis on dipolar materials as the investigated tissues are regarded. Experimental apparatus is presented with giving its specificity as well as the method used at calculation of complex permittivity. The experimental part is aimed at temperature dependence of complex permittivity measurement of pig biological tissues with different properties. Experimental results are presented graphically with the commentary for courses of particular tissues.

  11. Mitosis and growth in biological tissues

    Science.gov (United States)

    Mombach, J. C. M.; de Almeida, Rita M. C.; Iglesias, J. R.

    1993-07-01

    We present a simulation of the growth of a two-dimensional biological cellular system in which the cells experience mitosis whenever the area-to-perimeter ratio reaches a critical value. The model also includes the effect of interfacial energy and temperature. A stationary state with a constant average area is attained. We calculate the distribution of cells as a function of area, perimeter, and number of sides and also the two-cell correlation function. The results depend on temperature and are in agreement with experimental data, simulations, and theoretical models.

  12. Biological Sample Ambient Preservation (BioSAP) Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for alternative methods for ambient preservation of human biological samples collected during extended spaceflight and planetary operations,...

  13. Dielectric properties of tissues and biological materials: a critical review.

    Science.gov (United States)

    Foster, K R; Schwan, H P

    1989-01-01

    We critically review bulk electrical properties of tissues and other biological materials, from DC to 20 GHz, with emphasis on the underlying mechanisms responsible for the properties. We summarize the classical principles behind dielectric relaxation and critically review recent developments in this field. Special topics include a summary of the significant recent advances in theories of counterion polarization effects, dielectric properties of cancer vs. normal tissues, properties of low-water-content tissues, and macroscopic field-coupling considerations. Finally, the dielectric properties of tissues are summarized as empirical correlations with tissue water content in other compositional variables; in addition, a comprehensive table is presented of dielectric properties. The bulk electrical properties of tissues are needed for many bioengineering applications of electric fields or currents, and they provide insight into the basic mechanisms that govern the interaction of electric fields with tissue.

  14. Detection of heavy metals in biological samples through anodic stripping voltammetry

    OpenAIRE

    Buzea, Vlad; Florescu, Monica; Badea, Mihaela

    2012-01-01

    The toxicological aspects due to the presence of heavy metals in biological samples impose to have accurate and rapid methods for their detection. This paper is aimed to review approaches to anodic stripping voltammetry (ASV) determination of several heavy metals (lead, cadmium, copper, mercury, zinc) in biological matrices (blood, urine, saliva, tissue sample). Analytical performances (LOD, data linearity range, sensitivity) of the reviewed methods were presented for several electrochemical ...

  15. Optical characterization of biological tissues and rare earth nanoparticles

    Science.gov (United States)

    Barrera, Frederick John, III

    The ubiquitous use of lasers as both a diagnostic and therapeutic tool for medical applications (e.g. laser surgery, photoacoustic imaging, photodynamic therapy etc.), had rendered the understanding of optical properties of a biological medium critically important. The development of biomedical devices for the purposes of imaging or treatment requires a detailed investigation of these properties. Indeed, diagnostic monitoring of blood in vivo depends on knowledge of the distribution of light due to scattering in a blood medium. In addition, many optical properties of tissues have not been investigated experimentally at many clinically relevant wavelengths. The quantification of the scattering and absorptive behavior of tissue and its interaction with electromagnetic radiation is still at the core of predicting the outcome of a desired clinical effect. Therefore, the first portion of this Dissertation is a thorough characterization of ocular tissues in vitro using reflectance and transmittance spectroscopic techniques and computational models to extract and enlist a systematic study at wavelengths in the visible spectral region. The Kubelka-Munk (KM), Inverse Adding Doubling (IAD), and Inverse Monte Carlo (IMC) methods were used to determine the absorption and scattering coefficients and contrasted. The second portion of this Dissertation is an investigation of the optical and spectroscopic properties of novel rare earth Y2O3 and Nd3+:Y2O 3nanoparticles in a blood medium. Reflectance and transmittance measurements were performed and the absorption and scattering properties for the nanoparticle/blood samples were determined by computational methods and compared. Absorption and emission of Y2O3 and Nd3+:Y 2O3nanoparticle/blood medium revealed their utility as biomarkers.

  16. Correlation of transverse relaxation time with structure of biological tissue

    Science.gov (United States)

    Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.

    2016-09-01

    Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.

  17. Micro-radiography of biological samples with medical contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J., E-mail: jiri.dammer@lf1.cuni.cz [Charles University in Prague, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2 (Czech Republic); Hospital Na Bulovce, Department of Radiological Physics, Budinova 2, 180 81 Prague 8 (Czech Republic); Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Weyda, F. [Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice (Czech Republic); Benes, J. [Charles University in Prague, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2 (Czech Republic); Sopko, V. [Hospital Na Bulovce, Department of Radiological Physics, Budinova 2, 180 81 Prague 8 (Czech Republic); Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Gelbic, I. [Biology Centre, AS CR, Institute of Entomology, Department of Biochemistry and Physiology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic)

    2013-12-01

    Micro-radiography is an imaging technique that uses X-rays to study the internal structures of objects. This fast and easy imaging tool is based on differential X-ray attenuation by various tissues and structures within biological samples. The experimental setup described is based on the semiconductor pixel X-ray detector Medipix2 and X-ray micro-focus tube. Our micro-radiographic system has been recently used not only for the examination of internal structures of various arthropods and other biological objects but also for tracing some processes in selected model species (we used living larvae of mosquito Culex quinquefasciatus). Low concentrations of iodine, lanthanum or gold particles were used as a tracer (contrast agent). Such contrast agents increase the absorption of X-rays and allow a better visibility of internal structures of model organisms (especially the various cavities, pores, etc.). In addition, the movement of tracers in selected timing experiments demonstrates some physiological functions of digestive and excretory system.

  18. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    Energy Technology Data Exchange (ETDEWEB)

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  19. Monte Carlo methods for light propagation in biological tissues

    OpenAIRE

    Vinckenbosch, Laura; Lacaux, Céline; Tindel, Samy; Thomassin, Magalie; Obara, Tiphaine

    2016-01-01

    Light propagation in turbid media is driven by the equation of radiative transfer. We give a formal probabilistic representation of its solution in the framework of biological tissues and we implement algorithms based on Monte Carlo methods in order to estimate the quantity of light that is received by a homogeneous tissue when emitted by an optic fiber. A variance reduction method is studied and implemented, as well as a Markov chain Monte Carlo method based on the Metropolis–Hastings algori...

  20. Thermal model of local ultrasound heating of biological tissue

    Science.gov (United States)

    Nedogovor, V. A.; Sigal, V. L.; Popsuev, E. I.

    1996-09-01

    Possibilities of creation of controlled temperature fields in deep-seated biological tissue with the use of an endocavity ultrasound applicator with surface cooling are considered. Mathematical models are proposed and calculated that make it possible to construct acoustic and thermal fields in biotissues depending on the thermophysical and ultrasound characteristics of the medium being irradiated and to reveal situations and effects that are important for solving problems of practical medicine in the field of local ultrasound hyperthermia and thermotherapy of tissue.

  1. Temperature Dependence of Biological Tissues Complex Permitivity at Microwave Frequencies

    OpenAIRE

    Dagmar Faktorova

    2008-01-01

    In the paper an universal overview of polarizing mechanisms with an emphasis on dipolar materials as the investigated tissues are regarded. Experimental apparatus is presented with giving its specificity as well as the method used at calculation of complex permittivity. The experimental part is aimed at temperature dependence of complex permittivity measurement of pig biological tissues with different properties. Experimental results are presented graphically with the commentary for courses o...

  2. Simple Empirical Model for Identifying Rheological Properties of Soft Biological Tissues

    CERN Document Server

    Kobayashi, Yo; Miyashita, Tomoyuki; Fujie, Masakatsu G

    2015-01-01

    Understanding the rheological properties of soft biological tissue is a key issue for mechanical systems used in the healthcare field. We propose a simple empirical model using Fractional Dynamics and Exponential Nonlinearity (FDEN) to identify the rheological properties of soft biological tissue. The model is derived from detailed material measurements using samples isolated from porcine liver. We conducted dynamic viscoelastic and creep tests on liver samples using a rheometer. The experimental results indicated that biological tissue has specific properties: i) power law increases in storage elastic modulus and loss elastic modulus with the same slope; ii) power law gain decrease and constant phase delay in the frequency domain over two decades; iii) log-log scale linearity between time and strain relationships under constant force; and iv) linear and log scale linearity between strain and stress relationships. Our simple FDEN model uses only three dependent parameters and represents the specific propertie...

  3. A density-independent glass transition in biological tissues

    CERN Document Server

    Bi, Dapeng; Schwarz, J M; Manning, M Lisa

    2014-01-01

    Cells must move through tissues in many important biological processes, including embryonic development, cancer metastasis, and wound healing. In these tissues, a cell's motion is often strongly constrained by its neighbors, leading to glassy dynamics. Recent work has demonstrated the existence of a non-equilibrium glass transition in self-propelled particle models for active matter, where the transition is driven by changes in density. However, this may not explain liquid-to-solid transitions in confluent tissues, where there are no gaps between cells and the packing fraction remains fixed and equal to unity. Here we demonstrate the existence of a different type of glass transition that occurs in the well-studied vertex model for confluent tissue monolayers. In this model, the onset of rigidity is governed by changes to single-cell properties such as cell-cell adhesion, cortical tension, and volume compressibility, providing an explanation for a liquid-to-solid transitions in confluent tissues.

  4. MALDI direct analysis and imaging of frozen versus FFPE tissues: what strategy for which sample?

    Science.gov (United States)

    Wisztorski, Maxence; Franck, Julien; Salzet, Michel; Fournier, Isabelle

    2010-01-01

    Significant advances have been made in the past decade in the field of mass spectrometry imaging with MALDI ion sources (MALDI-MSI). While MALDI-MSI has high potential in the field of biology and in the clinic, a challenge for MALDI-MSI has been to adapt itself to a greater range of sample types. In particular, much of the biological archived materials for pathology studies are tissue biopsies fixed with paraformaldehyde and embedded in paraffin (FFPE tissues) because of the high stability of such samples. Thus, there has been a need to develop strategies for analyzing FFPE samples as this would allow retrospective studies of past clinical cases on large cohorts of existing samples. Obviously, PAF fixation, by inducing protein cross-linking, causes problems for molecular analysis by MS. We developed on tissue digestion strategies for overcoming these difficulties and allowing molecular data to be retrieved from FFPE samples no matter how long they have been stored. These digestion strategies preserve localization from digested proteins making MALDI-MSI of proteins possible by monitoring the resulting peptides. We present methods and protocols for FFPE samples. These strategies have proven to be valuable for all tested FFPE samples and have opened archived tissues from hospital banks to MALDI-MSI.

  5. Preparation of tissue samples for X-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chwiej, Joanna [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)]. E-mail: jchwiej@novell.ftj.agh.edu.pl; Szczerbowska-Boruchowska, Magdalena [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Lankosz, Marek [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Wojcik, Slawomir [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Falkenberg, Gerald [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron, Notkestr. 85, Hamburg (Germany); Stegowski, Zdzislaw [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Setkowicz, Zuzanna [Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Cracow (Poland)

    2005-12-15

    As is well-known, trace elements, especially metals, play an important role in the pathogenesis of many disorders. The topographic and quantitative elemental analysis of pathologically changed tissues may shed some new light on processes leading to the degeneration of cells in the case of selected diseases. An ideal and powerful tool for such purpose is the Synchrotron Microbeam X-ray Fluorescence technique. It enables the carrying out of investigations of the elemental composition of tissues even at the single cell level. The tissue samples for histopathological investigations are routinely fixed and embedded in paraffin. The authors try to verify the usefulness of such prepared tissue sections for elemental analysis with the use of X-ray fluorescence microscopy. Studies were performed on rat brain samples. Changes in elemental composition caused by fixation in formalin or paraformaldehyde and embedding in paraffin were examined. Measurements were carried out at the bending magnet beamline L of the Hamburger Synchrotronstrahlungslabor HASYLAB in Hamburg. The decrease in mass per unit area of K, Br and the increase in P, S, Fe, Cu and Zn in the tissue were observed as a result of the fixation. For the samples embedded in paraffin, a lower level of most elements was observed. Additionally, for these samples, changes in the composition of some elements were not uniform for different analyzed areas of rat brain.

  6. Micro and Nano Techniques for the Handling of Biological Samples

    DEFF Research Database (Denmark)

    Micro and Nano Techniques for the Handling of Biological Samples reviews the different techniques available to manipulate and integrate biological materials in a controlled manner, either by sliding them along a surface (2-D manipulation), or by gripping and moving them to a new position (3-D...

  7. Manipulation of biological samples using micro and nano techniques

    DEFF Research Database (Denmark)

    Castillo, Jaime; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    The constant interest in handling, integrating and understanding biological systems of interest for the biomedical field, the pharmaceutical industry and the biomaterial researchers demand the use of techniques that allow the manipulation of biological samples causing minimal or no damage to thei...

  8. Workflow for large-scale analysis of melanoma tissue samples

    Directory of Open Access Journals (Sweden)

    Maria E. Yakovleva

    2015-09-01

    Full Text Available The aim of the present study was to create an optimal workflow for analysing a large cohort of malignant melanoma tissue samples. Samples were lysed with urea and enzymatically digested with trypsin or trypsin/Lys C. Buffer exchange or dilution was used to reduce urea concentration prior to digestion. The tissue digests were analysed directly or following strong cation exchange (SCX fractionation by nano LC–MS/MS. The approach which resulted in the largest number of protein IDs involved a buffer exchange step before enzymatic digestion with trypsin and chromatographic separation in 120 min gradient followed by SCX–RP separation of peptides.

  9. Tissue sampling methods and standards for vertebrate genomics

    Directory of Open Access Journals (Sweden)

    Wong Pamela BY

    2012-07-01

    Full Text Available Abstract The recent rise in speed and efficiency of new sequencing technologies have facilitated high-throughput sequencing, assembly and analyses of genomes, advancing ongoing efforts to analyze genetic sequences across major vertebrate groups. Standardized procedures in acquiring high quality DNA and RNA and establishing cell lines from target species will facilitate these initiatives. We provide a legal and methodological guide according to four standards of acquiring and storing tissue for the Genome 10K Project and similar initiatives as follows: four-star (banked tissue/cell cultures, RNA from multiple types of tissue for transcriptomes, and sufficient flash-frozen tissue for 1 mg of DNA, all from a single individual; three-star (RNA as above and frozen tissue for 1 mg of DNA; two-star (frozen tissue for at least 700 μg of DNA; and one-star (ethanol-preserved tissue for 700 μg of DNA or less of mixed quality. At a minimum, all tissues collected for the Genome 10K and other genomic projects should consider each species’ natural history and follow institutional and legal requirements. Associated documentation should detail as much information as possible about provenance to ensure representative sampling and subsequent sequencing. Hopefully, the procedures outlined here will not only encourage success in the Genome 10K Project but also inspire the adaptation of standards by other genomic projects, including those involving other biota.

  10. A density-independent rigidity transition in biological tissues

    Science.gov (United States)

    Bi, Dapeng; Lopez, J. H.; Schwarz, J. M.; Manning, M. Lisa

    2015-12-01

    Cell migration is important in many biological processes, including embryonic development, cancer metastasis and wound healing. In these tissues, a cell’s motion is often strongly constrained by its neighbours, leading to glassy dynamics. Although self-propelled particle models exhibit a density-driven glass transition, this does not explain liquid-to-solid transitions in confluent tissues, where there are no gaps between cells and therefore the density is constant. Here we demonstrate the existence of a new type of rigidity transition that occurs in the well-studied vertex model for confluent tissue monolayers at constant density. We find that the onset of rigidity is governed by a model parameter that encodes single-cell properties such as cell-cell adhesion and cortical tension, providing an explanation for liquid-to-solid transitions in confluent tissues and making testable predictions about how these transitions differ from those in particulate matter.

  11. Motility-driven glass and jamming transitions in biological tissues

    CERN Document Server

    Bi, Dapeng; Marchetti, M Cristina; Manning, M Lisa

    2015-01-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi (SPV) model that simultaneously captures polarized cell motility and multi-body cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solid-like state to a fluid-like state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrat...

  12. Light propagation in tissues: effect of finite size of tissue sample

    Science.gov (United States)

    Melnik, Ivan S.; Dets, Sergiy M.; Rusina, Tatyana V.

    1995-12-01

    Laser beam propagation inside tissues with different lateral dimensions has been considered. Scattering and anisotropic properties of tissue critically determine spatial fluence distribution and predict sizes of tissue specimens when deviations of this distribution can be neglected. Along the axis of incident beam the fluence rate weakly depends on sample size whereas its relative increase (more than 20%) towards the lateral boundaries. The finite sizes were considered to be substantial only for samples with sizes comparable with the diameter of the laser beam. Interstitial irradiance patterns simulated by Monte Carlo method were compared with direct measurements in human brain specimens.

  13. Solid-phase microextraction for the analysis of biological samples

    NARCIS (Netherlands)

    Theodoridis, G; Koster, EHM; de Jong, GJ

    2000-01-01

    Solid-phase microextraction (SPME) has been introduced for the extraction of organic compounds from environmental samples. This relatively new extraction technique has now also gained a lot of interest in a broad field of analysis including food, biological and pharmaceutical samples. SPME has a num

  14. Evaluation of sample holders designed for long-lasting X-ray micro-tomographic scans of ex-vivo soft tissue samples

    Science.gov (United States)

    Dudak, J.; Zemlicka, J.; Krejci, F.; Karch, J.; Patzelt, M.; Zach, P.; Sykora, V.; Mrzilkova, J.

    2016-03-01

    X-ray microradiography and microtomography are imaging techniques with increasing applicability in the field of biomedical and preclinical research. Application of hybrid pixel detector Timepix enables to obtain very high contrast of low attenuating materials such as soft biological tissue. However X-ray imaging of ex-vivo soft tissue samples is a difficult task due to its structural instability. Ex-vivo biological tissue is prone to fast drying-out which is connected with undesired changes of sample size and shape producing later on artefacts within the tomographic reconstruction. In this work we present the optimization of our Timepix equipped micro-CT system aiming to maintain soft tissue sample in stable condition. Thanks to the suggested approach higher contrast of tomographic reconstructions can be achieved while also large samples that require detector scanning can be easily measured.

  15. Quantitative mapping of collagen fiber alignment in thick tissue samples using transmission polarized-light microscopy.

    Science.gov (United States)

    Yakovlev, Dmitry D; Shvachkina, Marina E; Sherman, Maria M; Spivak, Andrey V; Pravdin, Alexander B; Yakovlev, Dmitry A

    2016-07-01

    Immersion optical clearing makes it possible to use transmission polarized-light microscopy for characterization of thick (200 to 2000  μm) layers of biological tissues. We discuss polarization properties of thick samples in the context of the problem of characterization of collagen fiber alignment in connective tissues such as sclera and dermis. Optical chirality caused by azimuthal variations of the macroscopic (effective) optic axis of the medium across the sample thickness should be considered in polarization mapping of thick samples of these tissues. We experimentally evaluate to what extent the optical chirality affects the measurement results in typical situations and show under what conditions it can be easily taken into account and does not hinder, but rather helps, in characterization of collagen fiber alignment.

  16. Monte Carlo methods for light propagation in biological tissues.

    Science.gov (United States)

    Vinckenbosch, Laura; Lacaux, Céline; Tindel, Samy; Thomassin, Magalie; Obara, Tiphaine

    2015-11-01

    Light propagation in turbid media is driven by the equation of radiative transfer. We give a formal probabilistic representation of its solution in the framework of biological tissues and we implement algorithms based on Monte Carlo methods in order to estimate the quantity of light that is received by a homogeneous tissue when emitted by an optic fiber. A variance reduction method is studied and implemented, as well as a Markov chain Monte Carlo method based on the Metropolis-Hastings algorithm. The resulting estimating methods are then compared to the so-called Wang-Prahl (or Wang) method. Finally, the formal representation allows to derive a non-linear optimization algorithm close to Levenberg-Marquardt that is used for the estimation of the scattering and absorption coefficients of the tissue from measurements.

  17. Plasma effects in electromagnetic field interaction with biological tissue

    Science.gov (United States)

    Sharma, R. P.; Batra, Karuna; Excell, Peter S.

    2011-02-01

    Theoretical analysis is presented of the nonlinear behavior of charge carriers in biological tissue under the influence of varying low-intensity electromagnetic (EM) field. The interaction occurs because of the nonlinear force arising due to the gradient of the EM field intensity acting on free electrons in the conduction band of proteins in metabolically active biological cell membrane receptors leading to a redistribution of charge carriers. Field dependence of the resulting dielectric constant is investigated by a suitable modification to include an additional electronic contribution term to the three-term Debye model. The exogenous EM field propagating in this nonlinear cellular medium satisfies the nonlinear Schrödinger equation and can be affected significantly. Resulting field effect can be substantially augmented and effective rectification/demodulation can occur. Possible implications of this modification on biological processes in white and grey matter are discussed.

  18. TissueCypher™: A systems biology approach to anatomic pathology

    Directory of Open Access Journals (Sweden)

    Jeffrey W Prichard

    2015-01-01

    Full Text Available Background: Current histologic methods for diagnosis are limited by intra- and inter-observer variability. Immunohistochemistry (IHC methods are frequently used to assess biomarkers to aid diagnoses, however, IHC staining is variable and nonlinear and the manual interpretation is subjective. Furthermore, the biomarkers assessed clinically are typically biomarkers of epithelial cell processes. Tumors and premalignant tissues are not composed only of epithelial cells but are interacting systems of multiple cell types, including various stromal cell types that are involved in cancer development. The complex network of the tissue system highlights the need for a systems biology approach to anatomic pathology, in which quantification of system processes is combined with informatics tools to produce actionable scores to aid clinical decision-making. Aims: Here, we describe a quantitative, multiplexed biomarker imaging approach termed TissueCypher™ that applies systems biology to anatomic pathology. Applications of TissueCypher™ in understanding the tissue system of Barrett's esophagus (BE and the potential use as an adjunctive tool in the diagnosis of BE are described. Patients and Methods: The TissueCypher™ Image Analysis Platform was used to assess 14 epithelial and stromal biomarkers with known diagnostic significance in BE in a set of BE biopsies with nondysplastic BE with reactive atypia (RA, n = 22 and Barrett's with high-grade dysplasia (HGD, n = 17. Biomarker and morphology features were extracted and evaluated in the confirmed BE HGD cases versus the nondysplastic BE cases with RA. Results: Multiple image analysis features derived from epithelial and stromal biomarkers, including immune biomarkers and morphology, showed significant differences between HGD and RA. Conclusions: The assessment of epithelial cell abnormalities combined with an assessment of cellular changes in the lamina propria may serve as an adjunct to conventional

  19. Quantitative measurement of porphyrins in biological tissues and evaluation of tissue porphyrins during toxicant exposures.

    Science.gov (United States)

    Woods, J S; Miller, H D

    1993-10-01

    Porphyrins are formed in most eukaryotic tissues as intermediates in the biosynthesis of heme. Assessment of changes in tissue porphyrin levels occurring in response to the actions of various drugs or toxicants is potentially useful in the evaluation of chemical exposures and effects. The present paper describes a rapid and sensitive method for the extraction and quantitation of porphyrins in biological tissues which overcomes difficulties encountered in previously described methods, particularly the loss of porphyrins during extraction and interference of porphyrin quantitation by coeluting fluorescent tissue constituents. In this procedure 8- through 2-carboxyl porphyrins are quantitatively extracted from tissue homogenates using HCl and methanol and are subsequently separated from potentially interfering contaminants by sequential methanol/phosphate elution on a C-18 preparatory column. Porphyrins are then separated and measured by reversed-phase high-performance liquid chromatography and spectrofluorometric techniques. Recovery of tissue porphyrins using this method is close to 100% with an intraassay variability of less than 10%. We have employed this procedure to measure liver and kidney porphyrin concentrations in male Fischer rats and to define the distinctive changes in tissue porphyrin patterns associated with treatment with the hepatic and renal porphyrinogenic chemicals, allylisopropylacetamide, and methyl mercury hydroxide, respectively. This method is applicable to the measurement of tissue porphyrin changes resulting from drug or toxicant exposures in clinical, experimental or environmental assessments.

  20. Motility-Driven Glass and Jamming Transitions in Biological Tissues

    Science.gov (United States)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2016-04-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solidlike state to a fluidlike state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum soft glassy rheology model precisely captures this transition in the limit of small persistence times and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with epithelial-to-mesenchymal transition in these tissues.

  1. Proteomic analysis of tissue samples in translational breast cancer research

    DEFF Research Database (Denmark)

    Gromov, Pavel; Moreira, José; Gromova, Irina

    2014-01-01

    , and both prognosis and prediction of outcome of chemotherapy. The purpose of this review is to critically appraise what has been achieved to date using proteomic technologies and to bring forward novel strategies - based on the analysis of clinically relevant samples - that promise to accelerate......In the last decade, many proteomic technologies have been applied, with varying success, to the study of tissue samples of breast carcinoma for protein expression profiling in order to discover protein biomarkers/signatures suitable for: characterization and subtyping of tumors; early diagnosis...

  2. Terahertz spectroscopy and detection of brain tumor in rat fresh-tissue samples

    Science.gov (United States)

    Yamaguchi, S.; Fukushi, Y.; Kubota, O.; Itsuji, T.; Yamamoto, S.; Ouchi, T.

    2015-03-01

    Terahertz (THz) spectroscopy and imaging of biomedical samples is expected to be an important application of THz analysis techniques. Identification and localization of tumor tissue, imaging of biological samples, and analysis of DNA by THz spectroscopy have been reported. THz time-domain spectroscopy (TDS) is useful for obtaining the refractive index over a broad frequency range. However, THz-TDS spectra of fresh tissue samples are sensitive to procedures such as sample preparation, and a standardized measurement protocol is required. Therefore, in this work, we establish a protocol for measurements of THz spectra of fresh tissue and demonstrate reliable detection of rat brain tumor tissue. We use a reflection THz-TDS system to measure the refractive index spectra of the samples mounted on a quartz plate. The tissue samples were measured immediately after sectioning to avoid sample denaturalization during storage. Special care was taken in THz data processing to eliminate parasitic reflections and reduce noise. The error level in our refractive index measurements was as low as 0.02 in the frequency range 0.8-1.5 THz. With increasing frequency, the refractive index in the tumor and normal regions monotonically decreased, similarly to water, and it was 0.02 higher in the tumor regions. The spectral data suggest that the tumor regions have higher water content. Hematoxylin-eosin stained images showed that increased cell density was also responsible for the observed spectral features. A set of samples from 10 rats showed consistent results. Our results suggest that reliable tumor detection in fresh tissue without pretreatment is possible with THz spectroscopy measurements. THz spectroscopy has the potential to become a real-time in vivo diagnostic method.

  3. Chemometric and Statistical Analyses of ToF-SIMS Spectra of Increasingly Complex Biological Samples

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Wu, L; Fortson, S L; Nelson, D O; Kulp, K S; Wu, K J

    2007-10-24

    Characterizing and classifying molecular variation within biological samples is critical for determining fundamental mechanisms of biological processes that will lead to new insights including improved disease understanding. Towards these ends, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to examine increasingly complex samples of biological relevance, including monosaccharide isomers, pure proteins, complex protein mixtures, and mouse embryo tissues. The complex mass spectral data sets produced were analyzed using five common statistical and chemometric multivariate analysis techniques: principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares discriminant analysis (PLSDA), soft independent modeling of class analogy (SIMCA), and decision tree analysis by recursive partitioning. PCA was found to be a valuable first step in multivariate analysis, providing insight both into the relative groupings of samples and into the molecular basis for those groupings. For the monosaccharides, pure proteins and protein mixture samples, all of LDA, PLSDA, and SIMCA were found to produce excellent classification given a sufficient number of compound variables calculated. For the mouse embryo tissues, however, SIMCA did not produce as accurate a classification. The decision tree analysis was found to be the least successful for all the data sets, providing neither as accurate a classification nor chemical insight for any of the tested samples. Based on these results we conclude that as the complexity of the sample increases, so must the sophistication of the multivariate technique used to classify the samples. PCA is a preferred first step for understanding ToF-SIMS data that can be followed by either LDA or PLSDA for effective classification analysis. This study demonstrates the strength of ToF-SIMS combined with multivariate statistical and chemometric techniques to classify increasingly complex biological samples

  4. Low Level Laser Therapy: laser radiation absorption in biological tissues

    Science.gov (United States)

    Di Giacomo, Paola; Orlando, Stefano; Dell'Ariccia, Marco; Brandimarte, Bruno

    2013-07-01

    In this paper we report the results of an experimental study in which we have measured the transmitted laser radiation through dead biological tissues of various animals (chicken, adult and young bovine, pig) in order to evaluate the maximum thickness through which the power density could still produce a reparative cellular effect. In our experiments we have utilized a pulsed laser IRL1 ISO model (based on an infrared diode GaAs, λ=904 nm) produced by BIOMEDICA s.r.l. commonly used in Low Level Laser Therapy. Some of the laser characteristics have been accurately studied and reported in this paper. The transmission results suggest that even with tissue thicknesses of several centimeters the power density is still sufficient to produce a cell reparative effect.

  5. Confocal microscopy, a tool for biological dosimetry in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, P.; Lenaour, H.; Morlier, J.P. [CEA/DSV/DRR, Laboratoire de Radio Toxicologie, 91 - Bruyeres-le-chatel (France)

    1997-03-01

    Because standard histological methods and related observation are very time consuming, only a few studies have concerned biological dosimetry in tissues. This experimental approach is however the only one that could characterize a heterogeneous irradiation such as that induced after internal contamination with {alpha} and/or {beta} emitters. The aim advantage of CM is to observe thin optical sections (<0.5{mu}m) within a thick section (>50{mu}m) which allows observation of many cells and to score events even those occurring at a low frequency if an appropriate staining has been performed. Two rat tissues have been studies, cerebellum during its histogenesis which was irradiated from bone after {sup 90}Sr contamination, and lungs from adults after radon daughter inhalation. In conclusion, our results demonstrate that CM might be an appropriate method to characterize the heterogeneous distribution of doses after internal contamination. (authors)

  6. Temperature dependence of thermal conductivity of biological tissues.

    Science.gov (United States)

    Bhattacharya, A; Mahajan, R L

    2003-08-01

    In this paper, we present our experimental results on the determination of the thermal conductivity of biological tissues using a transient technique based on the principles of the cylindrical hot-wire method. A novel, 1.45 mm diameter, 50 mm long hot-wire probe was deployed. Initial measurements were made on sponge, gelatin and Styrofoam insulation to test the accuracy of the probe. Subsequent experiments conducted on sheep collagen in the range of 25 degrees C temperature. Further, these changes in the thermal conductivity were found to be reversible. However, when the tissue was heated beyond 55 degrees C, irreversible changes in thermal conductivity were observed. Similar experiments were also conducted for determining the thermal conductivity of cow liver. In this case, the irreversible effects were found to set in much later at around 90 degrees C. Below this temperature, in the range of 25 degrees C temperature. In the second part of our study, in vivo measurements were taken on the different organs of a living pig. Comparison with reported values for dead tissues shows the thermal conductivities of living organs to be higher, indicating thereby the dominant role played by blood perfusion in enhancing the net heat transfer in living tissues. The degree of enhancement is different in different organs and shows a direct dependence on the blood flow rate.

  7. 9 CFR 113.3 - Sampling of biological products.

    Science.gov (United States)

    2010-01-01

    ... nonviral Master Seeds requiring cell culture propagation. For Master Seeds isolated or passed in a cell... additional species. For Master Seeds grown in cell culture and intended for use in more than one species, an... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Sampling of biological products....

  8. Fast x-ray fluorescence microtomography of hydrated biological samples.

    Directory of Open Access Journals (Sweden)

    Enzo Lombi

    Full Text Available Metals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly hydrated biological systems is technically challenging. In the case of roots, this is mainly due to the possibility of artifacts arising during sample preparation such as cross sectioning. Synchrotron x-ray fluorescence microtomography has been used to obtain virtual cross sections of elemental distributions. However, traditionally this technique requires long data acquisition times. This has prohibited its application to highly hydrated biological samples which suffer both radiation damage and dehydration during extended analysis. However, recent advances in fast detectors coupled with powerful data acquisition approaches and suitable sample preparation methods can circumvent this problem. We demonstrate the heightened potential of this technique by imaging the distribution of nickel and zinc in hydrated plant roots. Although 3D tomography was still impeded by radiation damage, we successfully collected 2D tomograms of hydrated plant roots exposed to environmentally relevant metal concentrations for short periods of time. To our knowledge, this is the first published example of the possibilities offered by a new generation of fast fluorescence detectors to investigate metal and metalloid distribution in radiation-sensitive, biological samples.

  9. Study of complex matrix effect on solid phase microextraction for biological sample analysis.

    Science.gov (United States)

    Jiang, Ruifen; Xu, Jianqiao; Zhu, Fang; Luan, Tiangang; Zeng, Feng; Shen, Yong; Ouyang, Gangfeng

    2015-09-11

    Solid phase microextraction (SPME) has become a useful tool for in vivo monitoring the behavior of environmental organic pollutants in biological species due to its simplicity, relatively non-invasive, and cost-effective manner. However, the complex matrices in biological samples could significantly influence the extraction kinetic, and bias the quantification result. In this study, we investigated the effect of complex matrix on the extraction kinetic of SPME for biological sample analysis. Two sample matrices, phosphate-buffered saline (PBS) with bovine serum albumin (BSA) and agarose gel with BSA were used to simulate the biological fluid and tissue. Results showed that the addition of BSA significantly enhanced the mass transfer of organic compounds onto SPME fiber in both PBS buffer and gel sample. Enhancement factors ranging from 1.3 to 27, and 2.0 to 80 were found for all selected polyaromatic hydrocarbons (PAHs) in PBS buffer and agarose gel with BSA concentration of 0.1-5%, respectively. Then, an improved theoretical model was applied to quantify the observed enhancement effect, and the result showed that the predicted sampling time constant agreed well with the experimental one in complex matrix. Furthermore, a simplified equation was proposed for the real biological sample analysis.

  10. Effects of formalin fixation on tissue optical properties of in-vitro brain samples

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Martelli, Fabrizio; Giordano, Flavio; Buccoliero, Anna Maria; Guerrini, Renzo; Pavone, Francesco S.

    2015-03-01

    Application of light spectroscopy based techniques for the detection of cancers have emerged as a promising approach for tumor diagnostics. In-vivo or freshly excised samples are normally used for point spectroscopic studies. However, ethical issues related to in-vivo studies, rapid decay of surgically excised tissues and sample availability puts a limitation on in-vivo and in-vitro studies. There has been a few studies reported on the application of formalin fixed samples with good discrimination capability. Usually formalin fixation is performed to prevent degradation of tissues after surgical resection. Fixing tissues in formalin prevents cell death by forming cross-linkages with proteins. Previous investigations have revealed that washing tissues fixed in formalin using phosphate buffered saline is known to reduce the effects of formalin during spectroscopic measurements. But this could not be the case with reflectance measurements. Hemoglobin is a principal absorbing medium in biological tissues in the visible range. Formalin fixation causes hemoglobin to seep out from red blood cells. Also, there could be alterations in the refractive index of tissues when fixed in formalin. In this study, we propose to investigate the changes in tissue optical properties between freshly excised and formalin fixed brain tissues. The results indicate a complete change in the spectral profile in the visible range where hemoglobin has its maximum absorption peaks. The characteristic bands of oxy-hemoglobin at 540, 580 nm and deoxy-hemoglobin at 555 nm disappear in the case of samples fixed in formalin. In addition, an increased spectral intensity was observed for the wavelengths greater than 650 nm where scattering phenomena are presumed to dominate.

  11. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells.

    Science.gov (United States)

    Phadnis, Akshay; Kumar, Sumit; Srivastava, Atul

    2016-10-01

    The work presented in this paper focuses on numerically investigating the thermal response of gold nanoshells-embedded biological tissue phantoms with potential applications into photo-thermal therapy wherein the interest is in destroying the cancerous cells with minimum damage to the surrounding healthy cells. The tissue phantom has been irradiated with a pico-second laser. Radiative transfer equation (RTE) has been employed to model the light-tissue interaction using discrete ordinate method (DOM). For determining the temperature distribution inside the tissue phantom, the RTE has been solved in combination with a generalized non-Fourier heat conduction model namely the dual phase lag bio-heat transfer model. The numerical code comprising the coupled RTE-bio-heat transfer equation, developed as a part of the current work, has been benchmarked against the experimental as well as the numerical results available in the literature. It has been demonstrated that the temperature of the optical inhomogeneity inside the biological tissue phantom embedded with gold nanoshells is relatively higher than that of the baseline case (no nanoshells) for the same laser power and operation time. The study clearly underlines the impact of nanoshell concentration and its size on the thermal response of the biological tissue sample. The comparative study concerned with the size and concentration of nanoshells showed that 60nm nanoshells with concentration of 5×10(15)mm(-3) result into the temperature levels that are optimum for the irreversible destruction of cancer infected cells in the context of photo-thermal therapy. To the best of the knowledge of the authors, the present study is one of the first attempts to quantify the influence of gold nanoshells on the temperature distributions inside the biological tissue phantoms upon laser irradiation using the dual phase lag heat conduction model.

  12. Photoacoustic imaging in both soft and hard biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Li, T; Dewhurst, R J, E-mail: richard.dewhurst@manchester.ac.u [Photon Science Institute, University of Manchester, Alan Turing Building, Oxford road, Manchester, M13 9PL (United Kingdom)

    2010-03-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  13. Theory of sampling and its application in tissue based diagnosis

    Directory of Open Access Journals (Sweden)

    Kayser Gian

    2009-02-01

    Full Text Available Abstract Background A general theory of sampling and its application in tissue based diagnosis is presented. Sampling is defined as extraction of information from certain limited spaces and its transformation into a statement or measure that is valid for the entire (reference space. The procedure should be reproducible in time and space, i.e. give the same results when applied under similar circumstances. Sampling includes two different aspects, the procedure of sample selection and the efficiency of its performance. The practical performance of sample selection focuses on search for localization of specific compartments within the basic space, and search for presence of specific compartments. Methods When a sampling procedure is applied in diagnostic processes two different procedures can be distinguished: I the evaluation of a diagnostic significance of a certain object, which is the probability that the object can be grouped into a certain diagnosis, and II the probability to detect these basic units. Sampling can be performed without or with external knowledge, such as size of searched objects, neighbourhood conditions, spatial distribution of objects, etc. If the sample size is much larger than the object size, the application of a translation invariant transformation results in Kriege's formula, which is widely used in search for ores. Usually, sampling is performed in a series of area (space selections of identical size. The size can be defined in relation to the reference space or according to interspatial relationship. The first method is called random sampling, the second stratified sampling. Results Random sampling does not require knowledge about the reference space, and is used to estimate the number and size of objects. Estimated features include area (volume fraction, numerical, boundary and surface densities. Stratified sampling requires the knowledge of objects (and their features and evaluates spatial features in relation to

  14. Extraction and characterization of collagen from different biological tissues

    Science.gov (United States)

    Gómez, Karla K.; Del Prado, María L.; Piña, M. Cristina; García de León, M. Carmen

    2012-10-01

    Because many suitable properties, collagen type I is used in medical and cosmetical applications, for this, the collagen extraction from biological tissues as the first source for obtaining this protein is important. We used skin and tail tendon from bovine, and rat tail tendon to obtain collagen type I. Acetic acid was employed to dissolve the collagen from biological tissues, once obtained was characterized using Sodium Dodecyl Sulfate Polyacrilamide Gel Electrophoresis (SDS-PAGE) technique, DSC and SEM. It was found that indeed the collagen type I was obtained. The thermal analysis showed that the denaturation temperature (Td) was 70 °C for all cases and that the folding of the protein at this temperature is irreversible, involving in all cases two steps: an unfolding of the native protein (N) and an irreversible alteration of the unfolded protein (U) to yield a final state (F) that is unable to fold back to the native state. The protein morphology was studied using SEM, it was found that morphology protein is fibrillar. The results suggested that the obtaining process is very efficient because the collagen concentration obtained was very high.

  15. Cancer Detection in Human Tissue Samples Using a Fiber-Tip pH Probe.

    Science.gov (United States)

    Schartner, Erik P; Henderson, Matthew R; Purdey, Malcolm; Dhatrak, Deepak; Monro, Tanya M; Gill, P Grantley; Callen, David F

    2016-12-01

    Intraoperative detection of tumorous tissue is an important unresolved issue for cancer surgery. Difficulty in differentiating between tissue types commonly results in the requirement for additional surgeries to excise unremoved cancer tissue or alternatively in the removal of excess amounts of healthy tissue. Although pathologic methods exist to determine tissue type during surgery, these methods can compromise postoperative pathology, have a lag of minutes to hours before the surgeon receives the results of the tissue analysis, and are restricted to excised tissue. In this work, we report the development of an optical fiber probe that could potentially find use as an aid for margin detection during surgery. A fluorophore-doped polymer coating is deposited on the tip of an optical fiber, which can then be used to record the pH by monitoring the emission spectra from this dye. By measuring the tissue pH and comparing with the values from regular tissue, the tissue type can be determined quickly and accurately. The use of a novel lift-and-measure technique allows for these measurements to be performed without influence from the inherent autofluorescence that commonly affects fluorescence-based measurements on biological samples. The probe developed here shows strong potential for use during surgery, as the probe design can be readily adapted to a low-cost portable configuration, which could find use in the operating theater. Use of this probe in surgery either on excised or in vivo tissue has the potential to improve success rates for complete removal of cancers. Cancer Res; 76(23); 6795-801. ©2016 AACR.

  16. [Analysis of human tissue samples for volatile fire accelerants].

    Science.gov (United States)

    Treibs, Rudolf

    2014-01-01

    In police investigations of fires, the cause of a fire and the fire debris analysis regarding traces of fire accelerants are important aspects for forensic scientists. Established analytical procedures were recently applied to the remains of fire victims. When examining lung tissue samples, vapors inhaled from volatile ignitable liquids could be identified and differentiated from products of pyrolysis caused by the fire. In addition to the medico-legal results this evidence allowed to draw conclusions as to whether the fire victim was still alive when the fire started.

  17. Immunoelectron microscopic localization of elastic tissue components in archival tissue samples.

    Science.gov (United States)

    Fanning, J C; White, J F; Polewski, R; Cleary, E G

    1991-06-01

    Tissue samples that have been stored for many years, in different media and under a variety of conditions, have been examined by modern techniques of immunoelectron microscopy, using antibodies against elastic tissue components. A range of postembedding restorative procedures has been identified, which will allow reliable immunolocalization of antibodies against the elastic tissue component of such specimens. These methods have been applied successfully to autopsy-derived material, fixed in buffered formaldehyde, to archival material stored frozen at -70 or -20 degrees C, to specimens fixed for electron microscopy and stored for many years in buffer, and even to archival material from formaldehyde-fixed, paraffin-embedded blocks, reprocessed for electron microscopic examination. The successful restorative methods included pre-treatment of the sections with 6 M guanidine hydrochloride, or 1 M Tris/saline, each containing 100 mM dithiothreitol (a reducing agent) followed by alkylation with 220 mM iodoacetamide. The application of these techniques allowed reliable study of elastic tissue antibody distributions in archival tissues that could not be obtained again, as well as comparative studies with tissues processed many years previously.

  18. Scattered and Fluorescent Photon Track Reconstruction in a Biological Tissue

    Directory of Open Access Journals (Sweden)

    Maria N. Kholodtsova

    2014-01-01

    Full Text Available Appropriate analysis of biological tissue deep regions is important for tumor targeting. This paper is concentrated on photons’ paths analysis in such biotissue as brain, because optical probing depth of fluorescent and excitation radiation differs. A method for photon track reconstruction was developed. Images were captured focusing on the transparent wall close and parallel to the source fibres, placed in brain tissue phantoms. The images were processed to reconstruct the photons most probable paths between two fibres. Results were compared with Monte Carlo simulations and diffusion approximation of the radiative transfer equation. It was shown that the excitation radiation optical probing depth is twice more than for the fluorescent photons. The way of fluorescent radiation spreading was discussed. Because of fluorescent and excitation radiation spreads in different ways, and the effective anisotropy factor, geff, was proposed for fluorescent radiation. For the brain tissue phantoms it were found to be 0.62±0.05 and 0.66±0.05 for the irradiation wavelengths 532 nm and 632.8 nm, respectively. These calculations give more accurate information about the tumor location in biotissue. Reconstruction of photon paths allows fluorescent and excitation probing depths determination. The geff can be used as simplified parameter for calculations of fluorescence probing depth.

  19. Nanoparticle solutions as adhesives for gels and biological tissues.

    Science.gov (United States)

    Rose, Séverine; Prevoteau, Alexandre; Elzière, Paul; Hourdet, Dominique; Marcellan, Alba; Leibler, Ludwik

    2014-01-16

    Adhesives are made of polymers because, unlike other materials, polymers ensure good contact between surfaces by covering asperities, and retard the fracture of adhesive joints by dissipating energy under stress. But using polymers to 'glue' together polymer gels is difficult, requiring chemical reactions, heating, pH changes, ultraviolet irradiation or an electric field. Here we show that strong, rapid adhesion between two hydrogels can be achieved at room temperature by spreading a droplet of a nanoparticle solution on one gel's surface and then bringing the other gel into contact with it. The method relies on the nanoparticles' ability to adsorb onto polymer gels and to act as connectors between polymer chains, and on the ability of polymer chains to reorganize and dissipate energy under stress when adsorbed onto nanoparticles. We demonstrate this approach by pressing together pieces of hydrogels, for approximately 30 seconds, that have the same or different chemical properties or rigidities, using various solutions of silica nanoparticles, to achieve a strong bond. Furthermore, we show that carbon nanotubes and cellulose nanocrystals that do not bond hydrogels together become adhesive when their surface chemistry is modified. To illustrate the promise of the method for biological tissues, we also glued together two cut pieces of calf's liver using a solution of silica nanoparticles. As a rapid, simple and efficient way to assemble gels or tissues, this method is desirable for many emerging technological and medical applications such as microfluidics, actuation, tissue engineering and surgery.

  20. Assessment of the differential linear coherent scattering coefficient of biological samples

    Science.gov (United States)

    Conceição, A. L. C.; Antoniassi, M.; Poletti, M. E.

    2010-07-01

    New differential linear coherent scattering coefficient, μ CS, data for four biological tissue types (fat pork, tendon chicken, adipose and fibroglandular human breast tissues) covering a large momentum transfer interval (0.07≤ q≤70.5 nm -1), resulted from combining WAXS and SAXS data, are presented in order to emphasize the need to update the default data-base by including the molecular interference and the large-scale arrangements effect. The results showed that the differential linear coherent scattering coefficient demonstrates influence of the large-scale arrangement, mainly due to collagen fibrils for tendon chicken and fibroglandular breast samples, and triacylglycerides for fat pork and adipose breast samples at low momentum transfer region. While, at high momentum transfer, the μ CS reflects effects of molecular interference related to water for tendon chicken and fibroglandular samples and, fatty acids for fat pork and adipose samples.

  1. DNA damage in preserved specimens and tissue samples: a molecular assessment

    Directory of Open Access Journals (Sweden)

    Cantin Elizabeth

    2008-10-01

    Full Text Available Abstract The extraction of genetic information from preserved tissue samples or museum specimens is a fundamental component of many fields of research, including the Barcode of Life initiative, forensic investigations, biological studies using scat sample analysis, and cancer research utilizing formaldehyde-fixed, paraffin-embedded tissue. Efforts to obtain genetic information from these sources are often hampered by an inability to amplify the desired DNA as a consequence of DNA damage. Previous studies have described techniques for improved DNA extraction from such samples or focused on the effect of damaging agents – such as light, oxygen or formaldehyde – on free nucleotides. We present ongoing work to characterize lesions in DNA samples extracted from preserved specimens. The extracted DNA is digested to single nucleosides with a combination of DNase I, Snake Venom Phosphodiesterase, and Antarctic Phosphatase and then analyzed by HPLC-ESI-TOF-MS. We present data for moth specimens that were preserved dried and pinned with no additional preservative and for frog tissue samples that were preserved in either ethanol, or formaldehyde, or fixed in formaldehyde and then preserved in ethanol. These preservation methods represent the most common methods of preserving animal specimens in museum collections. We observe changes in the nucleoside content of these samples over time, especially a loss of deoxyguanosine. We characterize the fragmentation state of the DNA and aim to identify abundant nucleoside lesions. Finally, simple models are introduced to describe the DNA fragmentation based on nicks and double-strand breaks.

  2. Transform method for laser speckle strain-rate measurements in biological tissues and biomaterials

    Science.gov (United States)

    Kirkpatrick, Sean J.

    1999-03-01

    Laser speckle strain measurements in biological tissues and some synthetic biomaterials, such as translucent dental composites and ceramics, are often complicated by the physical properties of the materials. For example, speckles generated by illuminating soft biological tissue with laser light are subject to rapid decorrelation due to the Brownian movement of water and scattering particles in the tissues and to cellular motions. In addition, the penetration of the laser beam into the tissue or translucent biomaterial results in multiple scattering and a complete depolarization of the speckle field. This may complicate the evaluation of the strain field when a force is applied to the material because the speckle pattern shift is providing information from the surface of the material as well as from the bulk sample, where the strains may or may not be the same as on the surface. This paper presents a variation of a speckle processing scheme originally called the `Transform Method' for evaluating both surface and bulk strain rates and total strains in biological tissues and translucent biomaterials. The method is not a correlation-based technique, but instead relies upon 2D frequency transforms of time series of 1D speckle pattern records stacked into 2D arrays. The method is insensitive to speckle field depolarization and, compared to correlation-based techniques, is relatively insensitive to speckle decorrelation. Strain rates and total in-plane strains were measured in both hard (cortical bone) and soft (artery segments) biological tissues and in translucent biomaterials (dental ceramics). Potential applications to medical diagnostics and biomaterials science are also discussed.

  3. Using electron microscopy to calculate optical properties of biological samples.

    Science.gov (United States)

    Wu, Wenli; Radosevich, Andrew J; Eshein, Adam; Nguyen, The-Quyen; Yi, Ji; Cherkezyan, Lusik; Roy, Hemant K; Szleifer, Igal; Backman, Vadim

    2016-11-01

    The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy factor g, the phase function and the shape factor D of the nuclei are calculated. The results show strong agreement with an independent study. This method provides a new way to extract the true phase function of biological samples and provides an independent validation for optical property measurement techniques.

  4. Optimizing Endoscopic Ultrasound Guided Tissue Sampling of the Pancreas

    Directory of Open Access Journals (Sweden)

    Pujan Kandel

    2016-03-01

    Full Text Available Endoscopic ultrasound is an important innovation in the field of gastrointestinal endoscopy and allows evaluation of many organs in the vicinity of the gastrointestinal tract. Endoscopic ultrasound-fine needle aspiration has been established to be an important tool in the management of pancreaticobiliary disease and is used for screening, staging, biopsy confirmation, and palliation. The accuracy of endoscopic ultrasound-fine needle aspiration is affected by several factors such as different needle sizes and types and fine needle aspiration techniques. Several comparative studies have been published on various techniques, such as the use of a stylet and suction during fine needle aspiration. Although most studies demonstrate high accuracy across techniques and equipment, various fine needle biopsy histology needles have been studied to compare the advantage of fine needle biopsy over fine needle aspiration. Although fine needle biopsy needles provide better tissue architecture and require fewer numbers of passes, there is no significant evidence of the superiority of fine needle biopsy over fine needle aspiration with regard to diagnostic yield and core tissue procurement. The main aim of this article is to review the various methodologies for improving the practice of endoscopic ultrasound-fine needle aspiration and endoscopic ultrasound- fine needle biopsy tissue sampling for cytological and histological analysis.

  5. Toxicological Analysis of Some Drugs of Abuse in Biological Samples

    Directory of Open Access Journals (Sweden)

    Anne Marie Ciobanu

    2015-10-01

    Full Text Available Consumption of drugs of abuse is a scourge of modern world. Abuse, drug addiction and their consequences are one of the major current problems of European society because of the significant repercussions in individual, family, social and economic level. In this context, toxicological analysis of the drugs of abuse in biological samples is a useful tool for: diagnosis of drug addiction, checking an auto-response, mandatory screening in some treatment programs, identification of a substance in the case of an overdose, determining compliance of the treatment. The present paper aims to address the needs of healthcare professionals involved in drugs addiction treatment through systematic presentation of information regarding their toxicological analysis. Basically, it is a tool that help you to select the suitable biological sample and the right collecting time, as well as the proper analysis technique, depending on the purpose of analysis, pharmacokinetic characteristics of the drugs of abuse, available equipment and staff expertise.

  6. Analytical methodologies for the determination of benzodiazepines in biological samples.

    Science.gov (United States)

    Persona, Karolina; Madej, Katarzyna; Knihnicki, Paweł; Piekoszewski, Wojciech

    2015-09-10

    Benzodiazepine drugs belong to important and most widely used medicaments. They demonstrate such therapeutic properties as anxiolytic, sedative, somnifacient, anticonvulsant, diastolic and muscle relaxant effects. However, despite the fact that benzodiazepines possess high therapeutic index and are considered to be relatively safe, their use can be dangerous when: (1) co-administered with alcohol, (2) co-administered with other medicaments like sedatives, antidepressants, neuroleptics or morphine like substances, (3) driving under their influence, (4) using benzodiazepines non-therapeutically as drugs of abuse or in drug-facilitated crimes. For these reasons benzodiazepines are still studied and determined in a variety of biological materials. In this article, sample preparation techniques which have been applied in analysis of benzodiazepine drugs in biological samples have been reviewed and presented. The next part of the article is focused on a review of analytical methods which have been employed for pharmacological, toxicological or forensic study of this group of drugs in the biological matrices. The review was preceded by a description of the physicochemical properties of the selected benzodiazepines and two, very often coexisting in the same analyzed samples, sedative-hypnotic drugs.

  7. Non-linear rheology in a model biological tissue

    CERN Document Server

    Matoz-Fernandez, D A; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten

    2016-01-01

    Mechanical signaling plays a key role in biological processes like embryo development and cancer growth. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with increasing shear rate. To rationalize this non-linear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are respectively generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.

  8. DTAF dye concentrations commonly used to measure microscale deformations in biological tissues alter tissue mechanics.

    Directory of Open Access Journals (Sweden)

    Spencer E Szczesny

    Full Text Available Identification of the deformation mechanisms and specific components underlying the mechanical function of biological tissues requires mechanical testing at multiple levels within the tissue hierarchical structure. Dichlorotriazinylaminofluorescein (DTAF is a fluorescent dye that is used to visualize microscale deformations of the extracellular matrix in soft collagenous tissues. However, the DTAF concentrations commonly employed in previous multiscale experiments (≥2000 µg/ml may alter tissue mechanics. The objective of this study was to determine whether DTAF affects tendon fascicle mechanics and if a concentration threshold exists below which any observed effects are negligible. This information is valuable for guiding the continued use of this fluorescent dye in future experiments and for interpreting the results of previous work. Incremental strain testing demonstrated that high DTAF concentrations (≥100 µg/ml increase the quasi-static modulus and yield strength of rat tail tendon fascicles while reducing their viscoelastic behavior. Subsequent multiscale testing and modeling suggests that these effects are due to a stiffening of the collagen fibrils and strengthening of the interfibrillar matrix. Despite these changes in tissue behavior, the fundamental deformation mechanisms underlying fascicle mechanics appear to remain intact, which suggests that conclusions from previous multiscale investigations of strain transfer are still valid. The effects of lower DTAF concentrations (≤10 µg/ml on tendon mechanics were substantially smaller and potentially negligible; nevertheless, no concentration was found that did not at least slightly alter the tissue behavior. Therefore, future studies should either reduce DTAF concentrations as much as possible or use other dyes/techniques for measuring microscale deformations.

  9. Imaging of Proteins in Tissue Samples Using Nanospray Desorption Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Hsu, Cheng-Chih; Chou, Pi-Tai; Zare, Richard N

    2015-11-17

    Chemical maps of tissue samples provide important information on biological processes therein. Recently, advances in tissue imaging have been achieved using ambient ionization techniques, such as desorption electrospray ionization mass spectrometry (DESI-MS), but such techniques have been almost exclusively confined to the mapping of lipids and metabolites. We report here the use of nanospray desorption electrospray ionization (nanoDESI) that allows us to image proteins in tissue samples in a label-free manner at atmospheric pressure with only minimum sample preparation. Multiply charged proteins with masses up to 15 kDa were successfully detected by nanoDESI using an LTQ Orbitrap mass spectrometer. In an adult mice brain section, expression of proteins including ubiquitin, β-thymosin, myelin basic protein, and hemoglobin were spatially mapped and characterized. We also determined the location of methylation on myelin basic protein. This imaging modality was further implemented to MYC-induced lymphomas. We observed an array of truncated proteins in the region where normal thymus cells were infiltrated by tumor cells, in contrast to healthy tissue.

  10. H2S Analysis in Biological Samples Using Gas Chromatography with Sulfur Chemiluminescence Detection

    Science.gov (United States)

    Vitvitsky, Victor; Banerjee, Ruma

    2015-01-01

    Hydrogen sulfide (H2S) is a metabolite and signaling molecule in biological tissues that regulates many physiological processes. Reliable and sensitive methods for H2S analysis are necessary for a better understanding of H2S biology and for the pharmacological modulation of H2S levels in vivo. In this chapter, we describe the use of gas chromatography coupled to sulfur chemiluminescence detection to measure the rates of H2S production and degradation by tissue homogenates at physiologically relevant concentrations of substrates. This method allows separation of H2S from other sulfur compounds and provides sensitivity of detection to ~15 pg (or 0.5 pmol) of H2S per injected sample. PMID:25725519

  11. Using biological samples in epidemiological research on drugs of abuse

    Directory of Open Access Journals (Sweden)

    Hallvard Gjerde

    2011-12-01

    Full Text Available Blood, oral fluid (saliva, urine and hair are the most commonly used biological matrices for drug testing in epidemiological drug research. Other biological matrices may also be used for selected purposes. Blood reflects recent drug intake and may be used to assess impairment. Oral fluid reflects drug presence in blood and thereby also recent intake, but drug concentrations in this matrix cannot be used to accurately estimate concentrations in blood. Urine reflects drug use during the last few days and in some cases for a longer period, but does not indicate the dose size or frequency of use. Hair reflects drug use during several months, but is a poor matrix for detecting use of cannabis. If using a single drug dose, this can be detected in blood and urine if the sample is taken within the detection timeframes, in most cases also in oral fluid. Single drug use is most often insufficient for producing a positive test result in a sample of hair. For cocaine and amphetamine, weekly use may be needed, while for cannabis a positive result is not guaranteed even after daily use. Refusal rates are lowest for oral fluid and highest for blood and hair samples. The analytical costs are lowest for urine and highest for hair. Combined use of questionnaires/interviews and drug testing detects more drug use than when using only one of those methods and is therefore expected to give more accurate data.

  12. Orientational tomography of optical axes directions distributions of multilayer biological tissues birefringent polycrystalline networks

    Science.gov (United States)

    Zabolotna, Natalia I.; Dovhaliuk, Rostyslav Y.

    2013-09-01

    We present a novel measurement method of optic axes orientation distribution which uses a relatively simple measurement setup. The principal difference of our method from other well-known methods lies in direct approach for measuring the orientation of optical axis of polycrystalline networks biological crystals. Our test polarimetry setup consists of HeNe laser, quarter wave plate, two linear polarizers and a CCD camera. We also propose a methodology for processing of measured optic axes orientation distribution which consists of evaluation of statistical, correlational and spectral moments. Such processing of obtained data can be used to classify particular tissue sample as "healthy" or "pathological". For our experiment we use thin layers of histological section of normal and muscular dystrophy tissue sections. It is shown that the difference between mentioned moments` values of normal and pathological samples can be quite noticeable with relative difference up to 6.26.

  13. RELATIONSHIP AMONG COX-2 PROTEIN EXPRESSION, PGs LEVELS AND BIOLOGIC BEHAVIOR IN OVARIAN CARCINOMA TISSUES

    Institute of Scientific and Technical Information of China (English)

    王敏; 王欣彦; 唐丽霞; 高岩

    2004-01-01

    Objective: To study the relationship among cyclooxygenase-2 (COX-2) protein expression, prostaglandins levels and biologic behavior in ovarian carcinoma tissues. Methods: The expression of COX-2 protein, levels of prostaglandin (PG)E2, 6-keto-PGF1( and thromboxane (TX)B2 in 54 biopsy specimens from patients with ovarian serous tumors which included three groups: 33 samples of ovarian serous carcinoma; 10 samples of borderline ovarian serous tumors and 11 samples of benign ovarian serous tumors and 10 samples of normal ovarian tissues were detected by Western blot analysis and radioimmunoassay to investigate their clinical significance. Results: The expression of COX-2 protein (82%, 27/33) and its relative content (20.08±3.53) in ovarian serous carcinoma tissues were statistically higher than those in benign ovarian serous tumor tissues and normal ovary tissues i.e., 0 and (15.04(0.12), 0 and (15.33(0.60) (P0.05). The levels of PGE2, 6-keto-PGF1( and TXB2 showed no significant differences in ovarian carcinoma tissues with different clinical stages (I to II and III to IV), different histological grades, with or without ascites and lymph metastasis. COX-2 expression was correlated with the levels of PGE2, 6-KETO-PGF1( and TXB2 (P<0.01). Conclusion: Our data suggest that COX-2 overexpression leads to increased PGE2, 6-KETA-PGF1( and TXB2 biosynthesis, which may be mechanisms underlying the contribution of COX-2 to the development of ovarian serous carcinoma. BGF2, 6-keto-PGF1( and TXB2 may be helpful parameters of diagnosis and differentiate diagnosis in ovarian serous carcinoma.

  14. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples

    Energy Technology Data Exchange (ETDEWEB)

    Clair, Geremy; Piehowski, Paul D.; Nicola, Teodora; Kitzmiller, Joseph A.; Huang, Eric L.; Zink, Erika M.; Sontag, Ryan L.; Orton, Daniel J.; Moore, Ronald J.; Carson, James P.; Smith, Richard D.; Whitsett, Jeffrey A.; Corley, Richard A.; Ambalavanan, Namasivayam; Ansong, Charles

    2016-12-22

    Global proteomics approaches allow characterization of whole tissue lysates to an impressive depth. However, it is now increasingly recognized that to better understand the complexity of multicellular organisms, global protein profiling of specific spatially defined regions/substructures of tissues (i.e. spatially-resolved proteomics) is essential. Laser capture microdissection (LCM) enables microscopic isolation of defined regions of tissues preserving crucial spatial information. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, and that impact measurement robustness, quantification, and throughput. Here, we coupled LCM with a fully automated sample preparation workflow that with a single manual step allows: protein extraction, tryptic digestion, peptide cleanup and LC-MS/MS analysis of proteomes from microdissected tissues. Benchmarking against the current state of the art in ultrasensitive global proteomic analysis, our approach demonstrated significant improvements in quantification and throughput. Using our LCM-SNaPP proteomics approach, we characterized to a depth of more than 3,400 proteins, the ontogeny of protein changes during normal lung development in laser capture microdissected alveolar tissue containing ~4,000 cells per sample. Importantly, the data revealed quantitative changes for 350 low abundance transcription factors and signaling molecules, confirming earlier transcript-level observations and defining seven modules of coordinated transcription factor/signaling molecule expression patterns, suggesting that a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes. Our LCM-proteomics approach facilitates efficient, spatially-resolved, ultrasensitive global proteomics analyses in high-throughput that will be enabling for several clinical and

  15. Incubation Station for the Bacterial Growth Study in Biological Samples

    Directory of Open Access Journals (Sweden)

    Carlos Rafael Duharte Rodríguez

    2015-12-01

    Full Text Available This work shows the designing and characterization of a prototype of laboratory incubator as support of Microbiology research, in particular for the research of the bacterial growth in biological samples through optic methods (Turbidimetry and electrometric measurements of bioimpedance. It shows the results of simulation and experimentation of the design proposed for the canals of measurement of the variables: temperature and humidity, with a high linearity from the adequate selection of the corresponding sensors and the analogue components of every canal, controlled with help of a microcontroller AT89C51 (ATMEL with adequate benefi ts for this type of application.

  16. Alteration of biological samples in speciation analysis of metalloproteins.

    Science.gov (United States)

    Wolf, Christian; Wenda, Nadine; Richter, Andrea; Kyriakopoulos, Antonios

    2007-10-01

    For investigations of metalloproteins by speciation analysis, the integrity of the protein-metal complexes before and during separation is crucial. Knowledge about potential alterations of the samples is thus essential to avoid misinterpretations of the analytical results. Chromatographic element profiles of different cytosolic samples from animal tissues were measured repeatedly to estimate the sample stability. The dependence of the signals on the dwell time of the sample in an autosampling device at 4 degrees C for a period of 10 h was observed. Alterations in the element content of different metal-containing fractions were quantified by means of recovery values. Some metalloprotein fractions (e.g. approximately 27-kDa arsenic, approximately 27-kDa iron and different zinc fractions) were stable or only minor alterations were observed and for their investigation an autosampling device is therefore suitable. However, most of the other metalloprotein fractions, especially nickel-containing proteins, showed major alterations: these samples should therefore be analysed immediately after preparation or directly after thawing.

  17. Tumor tissue slice cultures as a platform for analyzing tissue-penetration and biological activities of nanoparticles.

    Science.gov (United States)

    Merz, Lea; Höbel, Sabrina; Kallendrusch, Sonja; Ewe, Alexander; Bechmann, Ingo; Franke, Heike; Merz, Felicitas; Aigner, Achim

    2017-03-01

    The success of therapeutic nanoparticles depends, among others, on their ability to penetrate a tissue for actually reaching the target cells, and their efficient cellular uptake in the context of intact tissue and stroma. Various nanoparticle modifications have been implemented for altering physicochemical and biological properties. Their analysis, however, so far mainly relies on cell culture experiments which only poorly reflect the in vivo situation, or is based on in vivo experiments that are often complicated by whole-body pharmacokinetics and are rather tedious especially when analyzing larger nanoparticle sets. For the more precise analysis of nanoparticle properties at their desired site of action, efficient ex vivo systems closely mimicking in vivo tissue properties are needed. In this paper, we describe the setup of organotypic tumor tissue slice cultures for the analysis of tissue-penetrating properties and biological activities of nanoparticles. As a model system, we employ 350μm thick slice cultures from different tumor xenograft tissues, and analyze modified or non-modified polyethylenimine (PEI) complexes as well as their lipopolyplex derivatives for siRNA delivery. The described conditions for tissue slice preparation and culture ensure excellent tissue preservation for at least 14days, thus allowing for prolonged experimentation and analysis. When using fluorescently labeled siRNA for complex visualization, fluorescence microscopy of cryo-sectioned tissue slices reveals different degrees of nanoparticle tissue penetration, dependent on their surface charge. More importantly, the determination of siRNA-mediated knockdown efficacies of an endogenous target gene, the oncogenic survival factor Survivin, reveals the possibility to accurately assess biological nanoparticle activities in situ, i.e. in living cells in their original environment. Taken together, we establish tumor (xenograft) tissue slices for the accurate and facile ex vivo assessment of

  18. Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography

    Science.gov (United States)

    Peña, Adrián F.; Doronin, Alexander; Tuchin, Valery V.; Meglinski, Igor

    2014-08-01

    The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the surface of the tissue samples, the double correlation OCT approach is much more sensitive to the changes associated with the tissues' electro-kinetic response. We also found that topical application of the optical clearing agent reduces the tissues' electro-kinetic response and is cooling the tissue, thus reducing the temperature induced by the electric current by a few degrees. We anticipate that dcOCT approach can find a new application in bioelectrical impedance analysis and monitoring of the electric properties of biological tissues, including the resistivity of high water content tissues and its variations.

  19. Effects of sample preparation on the optical properties of breast tissue

    Science.gov (United States)

    Marks, Fay A.

    1996-04-01

    The optical properties of biological tissue should be determined in vivo whenever possible. However, for those instances when in vivo studies are impractical, too expensive or inappropriate, and when blood flow is not an issue, the ability to perform in vitro studies then becomes invaluable. Optical absorption spectroscopy shows that it may be possible to obtain meaningful information about the optical properties of human breast tissue from in vitro samples if strict preparation and measuring protocols are used. That a strict protocol for storing and handling tissue is critical can be seen from our observations of changes in the optical absorption spectra that occur in response to formalin fixation, the passage of time, application of stains and dyes, and storage in growth medium of the excised tissue. In vivo optical absorption spectroscopy measurements have been made on human breast cancer xenografts and compared with in vitro measurements on breast biopsies prepared according to precise collection and treatment protocols. There is a 'window of opportunity' before time dependent changes in the UV optical absorption spectra of the excised tissue specimens occur. This time window of opportunity widens at longer wavelengths with the least changes occurring in the optical spectra in the NIR.

  20. Microsystem strategies for sample preparation in biological detection.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D.; Galambos, Paul C.; Bennett, Dawn Jonita (University of Maryland Baltimore County, Baltimore, MD); Manginell, Monica; Okandan, Murat; Acrivos, Andreas (The City College of New York, NY); Brozik, Susan Marie; Khusid, Boris (New Jersey Institute of Technology, Newark, NJ)

    2005-03-01

    The objective of this LDRD was to develop microdevice strategies for dealing with samples to be examined in biological detection systems. This includes three sub-components: namely, microdevice fabrication, sample delivery to the microdevice, and sample processing within the microdevice. The first component of this work focused on utilizing Sandia's surface micromachining technology to fabricate small volume (nanoliter) fluidic systems for processing small quantities of biological samples. The next component was to develop interfaces for the surface-micromachined silicon devices. We partnered with Micronics, a commercial company, to produce fluidic manifolds for sample delivery to our silicon devices. Pressure testing was completed to examine the strength of the bond between the pressure-sensitive adhesive layer and the silicon chip. We are also pursuing several other methods, both in house and external, to develop polymer-based fluidic manifolds for packaging silicon-based microfluidic devices. The second component, sample processing, is divided into two sub-tasks: cell collection and cell lysis. Cell collection was achieved using dielectrophoresis, which employs AC fields to collect cells at energized microelectrodes, while rejecting non-cellular particles. Both live and dead Staph. aureus bacteria have been collected using RF frequency dielectrophoresis. Bacteria have been separated from polystyrene microspheres using frequency-shifting dielectrophoresis. Computational modeling was performed to optimize device separation performance, and to predict particle response to the dielectrophoretic traps. Cell lysis is continuing to be pursued using microactuators to mechanically disrupt cell membranes. Novel thermal actuators, which can generate larger forces than previously tested electrostatic actuators, have been incorporated with and tested with cell lysis devices. Significant cell membrane distortion has been observed, but more experiments need to be

  1. Ablation of biological tissues by radiation of strontium vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Soldatov, A. N., E-mail: general@tic.tsu.ru; Vasilieva, A. V., E-mail: anita-tomsk@mail.ru [National Research Tomsk State University, Lenin ave., 36, 634050, Tomsk (Russian Federation)

    2015-11-17

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  2. The use of contrast agent for imaging biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J; Sopko, V; Jakubek, J [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ 12800 Prague 2 (Czech Republic); Weyda, F, E-mail: jiri.dammer@utef.cvut.cz [Biological center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic)

    2011-01-15

    The technique of X-ray transmission imaging has been available for over a century and is still among the fastest and easiest approaches to the studies of internal structure of biological samples. Recent advances in semiconductor technology have led to the development of new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Semiconductor pixel detectors seem to be specially promising; compared to the film technique, they provide single-quantum and real-time digital information about the objects being studied. We describe the recently developed radiographic apparatus, equipped with Medipix2 semiconductor pixel detector. The detector is used as an imager that counts individual photons of ionizing radiation, emitted by an X-ray tube (micro- or nano-focus FeinFocus). Thanks to the wide dynamic range of the Medipix2 detector and its high spatial resolution better than 1{mu}m, the setup is particularly suitable for radiographic imaging of small biological samples, including in-vivo observations with contrast agent (Optiray). Along with the description of the apparatus we provide examples of the use iodine contrast agent as a tracer in various insects as model organisms. The motivation of our work is to develop our imaging techniques as non-destructive and non-invasive. Microradiographic imaging helps detect organisms living in a not visible environment, visualize the internal biological processes and also to resolve the details of their body (morphology). Tiny live insects are an ideal object for our studies.

  3. Measurement of Beryllium in Biological Samples by Accelerator Mass Spectrometry: Applications for Studying Chronic Beryllium Disease

    Energy Technology Data Exchange (ETDEWEB)

    Chiarappa-Zucca, M L; Finkel, R C; Martinelli, R E; McAninch, J E; Nelson, D O; Turtletaub, K W

    2004-04-15

    A method using accelerator mass spectrometry (AMS) has been developed for quantifying attomoles of beryllium (Be) in biological samples. This method provides the sensitivity to trace Be in biological samples at very low doses with the purpose of identifying the molecular targets involved in chronic beryllium disease. Proof of the method was tested by administering 0.001, 0.05, 0.5 and 5.0 {micro}g {sup 9}Be and {sup 10}Be by intraperitoneal injection to male mice and removing spleen, liver, femurs, blood, lung, and kidneys after 24 h exposure. These samples were prepared for AMS analysis by tissue digestion in nitric acid, followed by further organic oxidation with hydrogen peroxide and ammonium persulfate and lastly, precipitation of Be with ammonium hydroxide, and conversion to beryllium oxide at 800 C. The {sup 10}Be/{sup 9}Be ratio of the extracted beryllium oxide was measured by AMS and Be in the original sample was calculated. Results indicate that Be levels were dose-dependent in all tissues and the highest levels were measured in the spleen and liver. The measured {sup 10}Be/{sup 9}Be ratios spanned 4 orders of magnitude, from 10{sup -10} to 10{sup -14}, with a detection limit of 3.0 x 10{sup -14}, which is equivalent to 0.8 attomoles of {sup 10}Be. These results show that routine quantification of nanogram levels of Be in tissues is possible and that AMS is a sensitive method that can be used in biological studies to understand the molecular dosimetry of Be and mechanisms of toxicity.

  4. Long-term room temperature preservation of corpse soft tissue: an approach for tissue sample storage

    Directory of Open Access Journals (Sweden)

    Caputo Mariela

    2011-08-01

    Full Text Available Abstract Background Disaster victim identification (DVI represents one of the most difficult challenges in forensic sciences, and subsequent DNA typing is essential. Collected samples for DNA-based human identification are usually stored at low temperature to halt the degradation processes of human remains. We have developed a simple and reliable procedure for soft tissue storage and preservation for DNA extraction. It ensures high quality DNA suitable for PCR-based DNA typing after at least 1 year of room temperature storage. Methods Fragments of human psoas muscle were exposed to three different environmental conditions for diverse time periods at room temperature. Storage conditions included: (a a preserving medium consisting of solid sodium chloride (salt, (b no additional substances and (c garden soil. DNA was extracted with proteinase K/SDS followed by organic solvent treatment and concentration by centrifugal filter devices. Quantification was carried out by real-time PCR using commercial kits. Short tandem repeat (STR typing profiles were analysed with 'expert software'. Results DNA quantities recovered from samples stored in salt were similar up to the complete storage time and underscored the effectiveness of the preservation method. It was possible to reliably and accurately type different genetic systems including autosomal STRs and mitochondrial and Y-chromosome haplogroups. Autosomal STR typing quality was evaluated by expert software, denoting high quality profiles from DNA samples obtained from corpse tissue stored in salt for up to 365 days. Conclusions The procedure proposed herein is a cost efficient alternative for storage of human remains in challenging environmental areas, such as mass disaster locations, mass graves and exhumations. This technique should be considered as an additional method for sample storage when preservation of DNA integrity is required for PCR-based DNA typing.

  5. Applications of PIXE to biological and biomedical samples at the university of gent

    Science.gov (United States)

    Maenhaut, W.; Vandenhaute, J.; Duflou, H.; De Reuck, J.

    1987-03-01

    The research on biological and biomedical samples, conducted at the University of Gent during the last 4-5 years and using PIXE as analytical technique, is presented. Our optimized sample/target preparation methods are described, and the accuracy and precision obtainable with them are discussed. Two comprehensive biological/biomedical research projects, initiated at Gent, are presented. The first aims at investigating possible trace element changes in tissues of experimental animals (rats) as a result of liver necrosis or cirrhosis, induced by intraperitoneal injection with CCl 4. The second project involves the determination of the regional distribution of trace elements in the human brain. Eight elements, i.e. K, Ca, Mn, Fe, Cu, Zn, Se and Rb, are being measured in up to 50 different regions of 12 normal brains, and in selected brain regions from patients with neurological disorders. Some of the results of the two projects are discussed.

  6. Investigation of formalin influence over hard and soft biological tissues fluorescent spectra in vitro

    Science.gov (United States)

    Borisova, E.; Uzunov, Tz.; Vladimirov, B.; Avramov, L.

    2007-05-01

    In order to investigate the formalin influence over fluorescence properties of hard and soft biological tissues during conservation, emission spectra have been registered. Nitrogen laser at 337 nm and light-emitting diode with maximum at 405 nm have been used as excitation sources. For investigation of formalin influence over hard tissues, an experiment was made on teeth samples. Sound teeth were demineralized with a phosphoric acid for 10 seconds to obtain enamel structure near to the tooth lesion, and were fixed in formalin. Before and after teeth treatment spectra from the areas of interest were detected. There were not observed changes in the shape of the teeth spectra, related to the introduction of formalin fluorescence. Samples from mucosa of esophagus and stomach, where initially an ALA/Protoporphyrin IX diagnosis was applied, were used as soft tissue specimens. After fluorescent diagnosis in vivo biopsy samples were obtained from normal and cancerous areas and were conserved in formalin. Initially, spectrum observed has one autofluorescence maximum from the mucous tissue at 500-600 nm and secondary maxima from the protoporphyrin fluorescence at 635 nm and 720 nm, as well as pronounced minima at 540 and 575 nm related to hemoglobin absorption. After formalin conservation hemoglobin absorption was strongly reduced that increases mucous emission signal in green-yellow spectral region. Simultaneously the maxima at 635 nm and 720 nm were reduced. As conclusion we could say that formalin has negligible influence over fluorescence spectra of conserved hard tissues and has more pronounced influence over fluorescence spectra obtained in the case of soft tissue conservation, which has to be taking into account in measurements in vitro.

  7. The tensile strength characteristics study of the laser welds of biological tissue using the nanocomposite solder

    Science.gov (United States)

    Rimshan, I. B.; Ryabkin, D. I.; Savelyev, M. S.; Zhurbina, N. N.; Pyanov, I. V.; Eganova, E. M.; Pavlov, A. A.; Podgaetsky, V. M.; Ichkitidze, L. P.; Selishchev, S. V.; Gerasimenko, A. Y.

    2016-04-01

    Laser welding device for biological tissue has been developed. The main device parts are the radiation system and adaptive thermal stabilization system of welding area. Adaptive thermal stabilization system provided the relation between the laser radiation intensity and the weld temperature. Using atomic force microscopy the structure of composite which is formed by the radiation of laser solder based on aqua- albuminous dispersion of multi-walled carbon nanotubes was investigated. AFM topograms nanocomposite solder are mainly defined by the presence of pores in the samples. In generally, the surface structure of composite is influenced by the time, laser radiation power and MWCNT concentration. Average size of backbone nanoelements not exceeded 500 nm. Bulk density of nanoelements was in the range 106-108 sm-3. The data of welding temperature maintained during the laser welding process and the corresponding tensile strength values were obtained. Maximum tensile strength of the suture was reached in the range 50-55°C. This temperature and the pointwise laser welding technology (point area ~ 2.5mm) allows avoiding thermal necrosis of healthy section of biological tissue and provided reliable bonding construction of weld join. In despite of the fact that tensile strength values of the samples are in the range of 15% in comparison with unbroken strips of pigskin leather. This situation corresponds to the initial stage of the dissected tissue connection with a view to further increasing of the joint strength of tissues with the recovery of tissue structure; thereby achieved ratio is enough for a medical practice in certain cases.

  8. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    Science.gov (United States)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  9. Mapping differential elemental accumulation in fish tissues: Importance of fish tissue sampling standardization

    Directory of Open Access Journals (Sweden)

    Jovičić Katarina

    2016-01-01

    Full Text Available The concentrations of As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se and Zn in the muscle, gills, liver and intestine of the wels catfish (Silurus glanis from the Danube River were analyzed by inductively coupled plasma mass spectrometry (ICP-MS. The aim of the study was to determine whether in complex muscle/skin, gill filament/gill arch, proximal/distal liver and proximal/median/distal intestine samples, particular components differ in concentrations of the analyzed elements. Results indicated that there were no differences in the accumulation of different elements between the proximal and distal liver segments and between the proximal and median intestine sections. Conversely, elemental accumulation patterns in muscle and skin differed significantly. Significant differences were also observed between the gill arch and filaments, as well as between the distal and the two upper intestine sections. Findings indicated the importance of detailed reporting of tissue sampling, i.e. whether the skin was included in the muscle sample, as well as if the gill arch and filaments were analyzed together. Due to a potential bias that can be produced by different muscle/skin or gill arch/filament ratios included in the sample, we strongly recommend that they should not be analyzed together. Results of the present study might be of interest to the scientific community and stakeholders involved in aquatic ecosystem monitoring programs. [Projekat Ministarstva nauke Republike Srbije, br. TR37009 i br. 173045

  10. Biological Tissue Imaging with a Position and Time Sensitive Pixelated Detector

    CERN Document Server

    Jungmann, Julia H; MacAleese, Luke; Klinkert, Ivo; Visser, Jan; Heeren, Ron M A

    2013-01-01

    We demonstrate the capabilities of a highly parallel, active pixel detector for large-area, mass spectrometric imaging of biological tissue sections. A bare Timepix assembly (512x512 pixels) is combined with chevron microchannel plates on an ion microscope matrix-assisted laser desorption time-of-flight mass spectrometer (MALDI TOF-MS). The detector assembly registers position- and time-resolved images of multiple m/z species in every measurement frame. We prove the applicability of the detection system to bio-molecular mass spectrometry imaging on biologically relevant samples by mass-resolved images from Timepix measurements of a peptide-grid benchmark sample and mouse testis tissue slices. Mass-spectral and localization information of analytes at physiological concentrations are measured in MALDI-TOF-MS imaging experiments. We show a high spatial resolution (pixel size down to 740x740 nm2 on the sample surface) and a spatial resolving power of 6 {\\mu}m with a microscope mode laser field of view of 100-335 ...

  11. Digital holography microscopy in 3D biologic samples analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ricardo, J O; Palacios, F; Palacios, G F; Sanchez, A [Department of Physics, University of Oriente (Cuba); Muramatsu, M [Department of General Physics, University of Sao Paulo - Sao Paulo (Brazil); Gesualdi, M [Engineering center, Models and Applied Social Science, UFABC - Sao Paulo (Brazil); Font, O [Department of Bio-ingeniering, University of Oriente - Santiago de Cuba (Cuba); Valin, J L [Mechanics Department, ISPJAE, Habana (Cuba); Escobedo, M; Herold, S [Department of Computation, University of Oriente (Cuba); Palacios, D F, E-mail: frpalaciosf@gmail.com [Department of Nuclear physics, University of Simon BolIva (Venezuela, Bolivarian Republic of)

    2011-01-01

    In this work it is used a setup for Digital Holography Microscopy (MHD) for 3D biologic samples reconstruction. The phase contrast image reconstruction is done by using the Double propagation Method. The system was calibrated and tested by using a micrometric scale and pure phase object respectively. It was simulated the human red blood cell (erythrocyte) and beginning from the simulated hologram the digital 3D phase image for erythrocytes it was calculated. Also there was obtained experimental holograms of human erythrocytes and its corresponding 3D phase images, being evident the correspondence qualitative and quantitative between these characteristics in the simulated erythrocyte and in the experimentally calculated by DHM in both cases.

  12. Improved preparation of small biological samples for mercury analysis using cold vapor atomic absorption spectroscopy.

    Science.gov (United States)

    Adair, B M; Cobb, G P

    1999-05-01

    Concentrations of mercury in biological samples collected for environmental studies are often less than 0.1 microgram/g. Low mercury concentrations and small organ sizes in many wildlife species (approximately 0.1 g) increase the difficulty of mercury determination at environmentally relevant concentrations. We have developed a digestion technique to extract mercury from small (0.1 g), biological samples at these relevant concentrations. Mean recoveries (+/- standard error) from validation trials of mercury fortified tissue samples using cold vapor atomic absorption spectroscopy for analysis ranged from 102 +/- 4.3% (2.5 micrograms/L, n = 15) to 108 +/- 1.4% (25 micrograms/L, n = 15). Recoveries of inorganic mercury were 99 +/- 5 (n = 19) for quality assurance samples analyzed during environmental evaluations conducted during a 24 month period. This technique can be used to determine total mercury concentrations of 60 ng Hg/g sample. Samples can be analyzed in standard laboratories in a short time, at minimal cost. The technique is versatile and can be used to determine mercury concentrations in several different matrices, limiting the time and expense of method development and validation.

  13. Developmental biology of Cystoisospora (Apicomplexa: Sarcocystidae) monozoic tissue cysts

    Science.gov (United States)

    Tissue cyst stages are an intriguing aspect of the developmental cycle and transmission of members of the Family Sarcocystidae. Tissue cyst stages of the genera Toxoplasma, Hammondia, Neospora, Besnoitia, and Sarcocystis contain many infectious stages (bradyzoites).The tissue cyst stage of Cystoisos...

  14. Selective extraction of proteins and other macromolecules from biological samples using molecular imprinted polymers.

    Science.gov (United States)

    Stevenson, Derek; El-Sharif, Hazim F; Reddy, Subrayal M

    2016-11-01

    The accurate determination of intact macromolecules in biological samples, such as blood, plasma, serum, urine, tissue and feces is a challenging problem. The increased interest in macromolecules both as candidate drugs and as biomarkers for diagnostic purposes means that new method development approaches are needed. This review charts developments in the use of molecularly imprinted polymers first for small-molecular-mass compounds then for proteins and other macromolecules. Examples of the development of molecularly imprinted polymers for macromolecules are highlighted. The two main application areas to date are sensors and separation science, particularly SPE. Examples include peptides and polypeptides, lysozyme, hemoglobin, ovalbumin, bovine serum albumin and viruses.

  15. Variation in glycogen concentrations within mantle and foot tissue in Amblema plicata plicata: Implications for tissue biopsy sampling

    Science.gov (United States)

    Naimo, T.J.; Monroe, E.M.

    1999-01-01

    With the development of techniques to non-lethally biopsy tissue from unionids, a new method is available to measure changes in biochemical, contaminant, and genetic constituents in this imperiled faunal group. However, before its widespread application, information on the variability of biochemical components within and among tissues needs to be evaluated. We measured glycogen concentrations in foot and mantle tissue in Amblema plicata plicata (Say, 1817) to determine if glycogen was evenly distributed within and between tissues and to determine which tissue might be more responsive to the stress associated with relocating mussels. Glycogen was measured in two groups of mussels: those sampled from their native environment (undisturbed mussels) and quickly frozen for analysis and those relocated into an artificial pond (relocated mussels) for 24 months before analysis. In both undisturbed and relocated mussels, glycogen concentrations were evenly distributed within foot, but not within mantle tissue. In mantle tissue, concentrations of glycogen varied about 2-fold among sections. In addition, glycogen varied significantly between tissues in undisturbed mussels, but not in relocated mussels. Twenty-four months after relocation, glycogen concentrations had declined by 80% in mantle tissue and by 56% in foot tissue relative to the undisturbed mussels. These data indicate that representative biopsy samples can be obtained from foot tissue, but not mantle tissue. We hypothesize that mantle tissue could be more responsive to the stress of relocation due to its high metabolic activity associated with shell formation.

  16. Fragment Produced by Nuclear Reaction of Heavy Ions Interacted with Tissue-equivalent Biological Material

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In heavy ion therapy and radiation biological effects the nuclear fragments from the heavy ion collisions may cause a significant alteration of the radiation field. Nuclear collision between beam particles and tissue nuclei along the penetration path of high-energy ions in tissue or biological-equivalent material causes a loss

  17. Changes of color coordinates of biological tissue with superficial skin damage due to mechanical trauma

    Science.gov (United States)

    Pteruk, Vail; Mokanyuk, Olexander; Kvaternuk, Olena; Yakenina, Lesya; Kotyra, Andrzej; Romaniuk, Ryszard S.; Dussembayeva, Shynar

    2015-12-01

    Change of color coordinates of normal and pathological biological tissues is based on calculated spectral diffuse reflection. The proposed color coordinates of normal and pathological biological tissues of skin provided using standard light sources, allowing accurately diagnose skin damage due to mechanical trauma with a blunt object for forensic problems.

  18. Theoretical and observational analysis of individual ionizing particle effects in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.C.

    1980-11-01

    The microstructural damage to living tissue caused by heavy ion radiation was studied. Preliminary tests on rat corneal tissue, rat cerebellar tissue grown in culture, and rat retinal tissue indicated that the best assay for heavy ion damage is the rat cornea. The corneal tissue of the living rat was exposed to beams of carbon at 474 MeV/amu, neon at 8.5 MeV/amu, argon at 8.5 MeV/amu, silicon at 530 MeV/amu, iron at 500 MeV/amu, and iron at 600 MeV/amu. X-rays were also used on corneas to compare with the heavy ion irradiated corneas. Scanning electron microscopy revealed lesions with circular symmetry on the external plasma membranes of corneal epithelium which were irradiated with heavy ions, but similar lesions were not observed on the plasma membranes of x-ray irradiated or non-irradiated control samples. These data verify the special way in which heavy ions interact with matter: each ion interacts coulombically with electrons all along its trajectory to generate a track. The dose from heavy ion radiation is not distributed homogeneously on a tissue microstructural scale but is concentrated along the individual particle track. Even along a single particle track the dose is discontinuous except at the Bragg peak when the LET is maximum. Micrographs of heavy-ion-irradiated corneas demonstrated two significant correlations with the heavy ion beam: (1) the number of plasma membrane lesions per unit area was correlated with the particle fluence, and (2) the diameter of the lesions were linearly related to the energy loss or LET of the individual particle. These observations corroborate what has already been suggested theoretically about heavy ion tracks and what has been shown experimentally. But the new data indicate that particle tracks occur in biological tissues as well, and that a single heavy ion is responsible for each membrane lesion. (ERB)

  19. A hierarchical Naïve Bayes Model for handling sample heterogeneity in classification problems: an application to tissue microarrays

    Directory of Open Access Journals (Sweden)

    Piergiorgi Paolo

    2006-11-01

    Full Text Available Abstract Background Uncertainty often affects molecular biology experiments and data for different reasons. Heterogeneity of gene or protein expression within the same tumor tissue is an example of biological uncertainty which should be taken into account when molecular markers are used in decision making. Tissue Microarray (TMA experiments allow for large scale profiling of tissue biopsies, investigating protein patterns characterizing specific disease states. TMA studies deal with multiple sampling of the same patient, and therefore with multiple measurements of same protein target, to account for possible biological heterogeneity. The aim of this paper is to provide and validate a classification model taking into consideration the uncertainty associated with measuring replicate samples. Results We propose an extension of the well-known Naïve Bayes classifier, which accounts for biological heterogeneity in a probabilistic framework, relying on Bayesian hierarchical models. The model, which can be efficiently learned from the training dataset, exploits a closed-form of classification equation, thus providing no additional computational cost with respect to the standard Naïve Bayes classifier. We validated the approach on several simulated datasets comparing its performances with the Naïve Bayes classifier. Moreover, we demonstrated that explicitly dealing with heterogeneity can improve classification accuracy on a TMA prostate cancer dataset. Conclusion The proposed Hierarchical Naïve Bayes classifier can be conveniently applied in problems where within sample heterogeneity must be taken into account, such as TMA experiments and biological contexts where several measurements (replicates are available for the same biological sample. The performance of the new approach is better than the standard Naïve Bayes model, in particular when the within sample heterogeneity is different in the different classes.

  20. Influence of Complex Refractive Index on Diffuse Reflection of Biological Tissues

    Institute of Scientific and Technical Information of China (English)

    LAI Jian-Cheng; LI Zhen-Hua; HE An-Zhi

    2005-01-01

    @@ Complex refractive indices are introduced to solve various boundary questions at the interfaces when modelling light migration within heterogeneous tissues. Combined with the complex refractive index, Fresnel's formulae are used to describe the reflection and transmission at the interfaces between two heterogeneous tissues layers.Using the Monte Carlo method, the influence of the complex refractive index on diffuse reflection of semi-infinite biological tissues is discussed. The results show that neglecting the imaginary part of the refractive index of tissues will bring a major deviation in the diffuse reflection of semi-infinite biological tissues when its emitting point is apart from the incident point.

  1. Modularity in developmental biology and artificial organs: a missing concept in tissue engineering.

    Science.gov (United States)

    Lenas, Petros; Luyten, Frank P; Doblare, Manuel; Nicodemou-Lena, Eleni; Lanzara, Andreina Elena

    2011-06-01

    Tissue engineering is reviving itself, adopting the concept of biomimetics of in vivo tissue development. A basic concept of developmental biology is the modularity of the tissue architecture according to which intermediates in tissue development constitute semiautonomous entities. Both engineering and nature have chosen the modular architecture to optimize the product or organism development and evolution. Bioartificial tissues do not have a modular architecture. On the contrary, artificial organs of modular architecture have been already developed in the field of artificial organs. Therefore the conceptual support of tissue engineering by the field of artificial organs becomes critical in its new endeavor of recapitulating in vitro the in vivo tissue development.

  2. Exercise and Regulation of Bone and Collagen Tissue Biology

    DEFF Research Database (Denmark)

    Kjaer, Michael; Jørgensen, Niklas Rye; Heinemeier, Katja

    2015-01-01

    The musculoskeletal system and its connective tissue include the intramuscular connective tissue, the myotendinous junction, the tendon, the joints with their cartilage and ligaments, and the bone; they all together play a crucial role in maintaining the architecture of the skeletal muscle......, ensuring force transmission, storing energy, protecting joint surface and stability, and ensuring the transfer of muscular forces into resulting limb movement. The musculoskeletal connective tissue structure is relatively stable, but mechanical loading and subsequent mechanotransduction and molecular...... anabolic signaling can result in some adaptation of the connective tissue, its size, its strength, and its mechanical properties, whereby it can improve its capacity by 5-20% with regular physical activity. For several of the mechanically loaded connective tissues, only limited information regarding...

  3. Impact of freezing delay time on tissue samples for metabolomic studies

    Directory of Open Access Journals (Sweden)

    Tonje Husby Haukaas

    2016-01-01

    Full Text Available Introduction: Metabolic profiling of intact tumor tissue by high resolution magic angle spinning (HR MAS MR spectroscopy (MRS provides important biological information possibly useful for clinical diagnosis and development of novel treatment strategies. However, generation of high-quality data requires that sample handling from surgical resection until analysis is performed using systematically validated procedures. In this study, we investigated the effect of post-surgical freezing delay time on global metabolic profiles and stability of individual metabolites in intact tumor tissue.Materials and methods: Tumor tissue samples collected from two patient derived breast cancer xenograft models (n=3 for each model were divided into pieces that were snap-frozen in liquid nitrogen at 0, 15, 30, 60, 90, and 120 minutes after surgical removal. In addition, one sample was analysed immediately, representing the metabolic profile of fresh tissue exposed neither to liquid nitrogen nor to room temperature. We also evaluated the metabolic effect of prolonged spinning during the HR MAS experiments in biopsies from breast cancer patiens (n=14. All samples were analyzed by proton HR MAS MRS on a Bruker Avance DRX600 spectrometer, and changes in metabolic profiles were evaluated using multivariate analysis and linear mixed modeling (LMM. Results: Multivariate analysis showed that the metabolic differences between the two breast cancer models were more prominent than variation caused by freezing delay time. No significant changes in levels of individual metabolites were observed in samples frozen within 30 minutes of resection. After this time point, levels of choline increased whereas ascorbate, creatine and glutathione (GS levels decreased. Freezing had a significant effect on several metabolites, but is an essential procedure for research and biobank purposes. Furthermore, four metabolites (glucose, glycine, glycerophosphocholine and choline were affected by

  4. Label-free three-dimensional reconstruction of biological samples (Conference Presentation)

    Science.gov (United States)

    Aknoun, Sherazade; Bon, Pierre; Savatier, Julien; Monneret, Serge; Wattellier, Benoit F.

    2016-03-01

    We describe the use of spatially incoherent illumination combined with quantitative phase imaging (QPI) [1] to make tridimensional reconstruction of semi-transparent biological samples. Quantitative phase imaging is commonly used with coherent illumination for the relatively simple interpretation of the phase measurement. We propose to use spatially incoherent illumination which is known to increase lateral and axial resolution compared to classical coherent illumination. The goal is to image thick samples with intracellular resolution [2]. The 3D volume is imaged by axially scanning the sample with a quadri-wave lateral shearing interferometer used as a conventional camera while using spatially incoherent white-light illumination (native microscope halogen source) or NIR light. We use a non-modified inverted microscope equipped with a Z-axis piezo stage. A z-stack is recorded by objective translation along the optical axis. The main advantages of this approach are its easy implementation, compared to the other state-of-the-art diffraction tomographic setups, and its speed which makes even label-free 3D living sample imaging possible. A deconvolution algorithm is used to compensate for the loss in contrast due to spatially incoherent illumination. This makes the tomographic volume phase values quantitative. Hence refractive index could be recovered from the optical slices. We will present tomographic reconstruction of cells, thick fixed tissue of few tens of micrometers using white light, and the use of NIR light to reach deeper planes in the tissue.

  5. Label-free three dimensional reconstruction of biological samples (Conference Presentation)

    Science.gov (United States)

    Aknoun, Sherazade; Bon, Pierre; Savatier, Julien; Monneret, Serge; Wattellier, Benoit F.

    2016-03-01

    We describe the use of spatially incoherent illumination combined with quantitative phase imaging (QPI) [1] to make tridimensional reconstruction of semi-transparent biological samples. Quantitative phase imaging is commonly used with coherent illumination for the relatively simple interpretation of the phase measurement. We propose to use spatially incoherent illumination which is known to increase lateral and axial resolution compared to classical coherent illumination. The goal is to image thick samples with intracellular resolution [2]. The 3D volume is imaged by axially scanning the sample with a quadri-wave lateral shearing interferometer used as a conventional camera while using spatially incoherent white-light illumination (native microscope halogen source) or NIR light. We use a non-modified inverted microscope equipped with a Z-axis piezo stage. A z-stack is recorded by objective translation along the optical axis. The main advantages of this approach are its easy implementation, compared to the other state-of-the-art diffraction tomographic setups, and its speed which makes even label-free 3D living sample imaging possible. A deconvolution algorithm is used to compensate for the loss in contrast due to spatially incoherent illumination. This makes the tomographic volume phase values quantitative. Hence refractive index could be recovered from the optical slices. We will present tomographic reconstruction of cells, thick fixed tissue of few tens of micrometers using white light, and the use of NIR light to reach deeper planes in the tissue.

  6. Biological aspects of application of nanomaterials in tissue engineering

    Directory of Open Access Journals (Sweden)

    Markovic Dejan

    2016-01-01

    Full Text Available Millions of patients worldwide need surgery to repair or replace tissue that has been damaged through trauma or disease. To solve the problem of lost tissue, a major emphasis of tissue engineering (TE is on tissue regeneration. Stem cells and highly porous biomaterials used as cell carriers (scaffolds have an essential role in the production of new tissue by TE. Cellular component is important for the generation and establishment of the extracellular matrix, while a scaffold is necessary to determine the shape of the newly formed tissue and facilitate migration of cells into the desired location, as well as their growth and differentiation. This review describes the types, characteristics and classification of stem cells. Furthermore, it includes functional features of cell carriers - biocompatibility, biodegradability and mechanical properties of biomaterials used in developing state-of-the-art scaffolds for TE applications, as well as suitability for different tissues. Moreover, it explains the importance of nanotechnology and defines the challenges and the purpose of future research in this rapidly advancing field. [Projekat Ministarstva nauke Republike Srbije, br. 41030 i br. 172026

  7. Measurement depth enhancement in terahertz imaging of biological tissues.

    Science.gov (United States)

    Oh, Seung Jae; Kim, Sang-Hoon; Jeong, Kiyoung; Park, Yeonji; Huh, Yong-Min; Son, Joo-Hiuk; Suh, Jin-Suck

    2013-09-09

    We demonstrate the use of a THz penetration-enhancing agent (THz-PEA) to enhance the terahertz (THz) wave penetration depth in tissues. The THz-PEA is a biocompatible material having absorption lower than that of water, and it is easily absorbed into tissues. When using glycerol as a THz-PEA, the peak value of the THz signal which was transmitted through the fresh tissue and reflected by a metal target, was almost doubled compared to that of tissue without glycerol. THz time-of-flight imaging (B-scan) was used to display the sequential glycerol delivery images. Enhancement of the penetration depth was confirmed after an artificial tumor was located below fresh skin. We thus concluded that the THz-PEA technique can potentially be employed to enhance the image contrast of the abnormal lesions below the skin.

  8. Biological tissue magnetism in the frame of iron overload diseases

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, Francisco J. [Departamento de Ciencia y Tecnologia de Materiales y Fluidos, Universidad de Zaragoza, Zaragoza 50018 (Spain) and Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Zaragoza 50009 (Spain)]. E-mail: osoro@unizar.es; Gutierrez, Lucia [Departamento de Ciencia y Tecnologia de Materiales y Fluidos, Universidad de Zaragoza, Zaragoza 50018 (Spain); Abadia, Ana R. [Departamento de Farmacologia y Fisiologia, Universidad de Zaragoza, Zaragoza 50013 (Spain); Romero, Maria S. [Departamento de Medicina y Psiquiatria, Universidad de Zaragoza, Zaragoza 50009 (Spain); Lopez, A. [CNAM-Salesianos Zaragoza, Zaragoza 50009 (Spain)

    2007-09-15

    The conspicuous magnetic properties of iron, paradoxically, rarely participate in the methods routinely employed in the clinical environment to detect iron containing species in tissues. In the organism iron is just a trace metal and it mostly occurs as part of haemoproteins or ferritin, which show paramagnetic, diamagnetic or antiferromagnetic behaviour, hence resulting in a very low contribution to the tissue susceptibility. Detailed magnetic measurements make it nowadays possible to identify such species in tissues that correspond to individuals with iron overload pathologies. Since, as alternatives to the conventional biopsy, magnetism-based noninvasive techniques to diagnose and manage such diseases are recently under development, the deep knowledge of the magnetic properties of the different forms of iron in tissues is of high applied interest.

  9. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological

  10. Spectroscopy of Multilayered Biological Tissues for Diabetes Care

    Science.gov (United States)

    Yudovsky, Dmitry

    Neurological and vascular complications of diabetes mellitus are known to cause foot ulceration in diabetic patients. Present clinical screening techniques enable the diabetes care provider to triage treatment by identifying diabetic patients at risk of foot ulceration. However, these techniques cannot effectively identify specific areas of the foot at risk of ulceration. This study aims to develop non-invasive optical techniques for accurate assessment of tissue health and viability with spatial resolution on the order of 1 mm². The thesis can be divided into three parts: (1) the use of hyperspectral tissue oximetry to detect microcirculatory changes prior to ulcer formation, (2) development of a two-layer tissue spectroscopy algorithm and its application to detection of callus formation or epidermal degradation prior to ulceration, and (3) multi-layered tissue fluorescence modeling for identification of bacterial growth in existing diabetic foot wounds. The first part of the dissertation describes a clinical study in which hyperspectral tissue oximetry was performed on multiple diabetic subjects at risk of ulceration. Tissue oxyhemoglobin and deoxyhemoglobin concentrations were estimated using the Modified Beer-Lambert law. Then, an ulcer prediction algorithm was developed based on retrospective analysis of oxyhemoglobin and deoxyhemoglobin concentrations in sites that were known to ulcerate. The ulcer prediction algorithm exhibited a large sensitivity but low specificity of 95 and 80%, respectively. The second part of the dissertation revisited the hyperspectral data presented in part one with a new and novel two-layer tissue spectroscopy algorithm. This algorithm was able to detect not only oxyhemoglobin and deoxyhemoglobin concentrations, but also the thickness of the epidermis, and the tissue's scattering coefficient. Specifically, change in epidermal thickness provided insight into the formation of diabetic foot ulcers over time. Indeed, callus formation or

  11. Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation.

    Science.gov (United States)

    Andasari, Vivi; Gerisch, Alf; Lolas, Georgios; South, Andrew P; Chaplain, Mark A J

    2011-07-01

    The ability of cancer cells to break out of tissue compartments and invade locally gives solid tumours a defining deadly characteristic. One of the first steps of invasion is the remodelling of the surrounding tissue or extracellular matrix (ECM) and a major part of this process is the over-expression of proteolytic enzymes, such as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), by the cancer cells to break down ECM proteins. Degradation of the matrix enables the cancer cells to migrate through the tissue and subsequently to spread to secondary sites in the body, a process known as metastasis. In this paper we undertake an analysis of a mathematical model of cancer cell invasion of tissue, or ECM, which focuses on the role of the urokinase plasminogen activation system. The model consists of a system of five reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, uPA, uPA inhibitors, plasmin and the host tissue. Cancer cells react chemotactically and haptotactically to the spatio-temporal effects of the uPA system. The results obtained from computational simulations carried out on the model equations produce dynamic heterogeneous spatio-temporal solutions and using linear stability analysis we show that this is caused by a taxis-driven instability of a spatially homogeneous steady-state. Finally we consider the biological implications of the model results, draw parallels with clinical samples and laboratory based models of cancer cell invasion using three-dimensional invasion assay, and go on to discuss future development of the model.

  12. A pilot study of sampling subcutaneous adipose tissue to examine biomarkers of cancer risk

    OpenAIRE

    Campbell, Kristin L.; Makar, Karen W.; Kratz, Mario; Foster-Schubert, Karen E.; McTiernan, Anne; Ulrich, Cornelia M.

    2009-01-01

    Examination of adipose tissue biology may provide important insight into mechanistic links for the observed association between higher body fat and risk of several types of cancer, in particular colorectal and breast cancer. We tested two different methods of obtaining adipose tissue from healthy individuals.

  13. Troubleshooting digital macro photography for image acquisition and the analysis of biological samples.

    Science.gov (United States)

    Liepinsh, Edgars; Kuka, Janis; Dambrova, Maija

    2013-01-01

    For years, image acquisition and analysis have been an important part of life science experiments to ensure the adequate and reliable presentation of research results. Since the development of digital photography and digital planimetric methods for image analysis approximately 20 years ago, new equipment and technologies have emerged, which have increased the quality of image acquisition and analysis. Different techniques are available to measure the size of stained tissue samples in experimental animal models of disease; however, the most accurate method is digital macro photography with software that is based on planimetric analysis. In this study, we described the methodology for the preparation of infarcted rat heart and brain tissue samples before image acquisition, digital macro photography techniques and planimetric image analysis. These methods are useful in the macro photography of biological samples and subsequent image analysis. In addition, the techniques that are described in this study include the automated analysis of digital photographs to minimize user input and exclude the risk of researcher-generated errors or bias during image analysis.

  14. Heterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues.

    Science.gov (United States)

    Strzyz, P J; Matejcic, M; Norden, C

    2016-01-01

    Pseudostratified epithelia (PSE) are tightly packed proliferative tissues that are important precursors of the development of diverse organs in a plethora of species, invertebrate and vertebrate. PSE consist of elongated epithelial cells that are attached to the apical and basal side of the tissue. The nuclei of these cells undergo interkinetic nuclear migration (IKNM) which leads to all mitotic events taking place at the apical surface of the epithelium. In this review, we discuss the intricacies of proliferation in PSE, considering cell biological, as well as the physical aspects. First, we summarize the principles governing the invariability of apical nuclear migration and apical cell division as well as the importance of apical mitoses for tissue proliferation. Then, we focus on the mechanical and structural features of these tissues. Here, we discuss how the overall architecture of pseudostratified tissues changes with increased cell packing. Lastly, we consider possible mechanical cues resulting from these changes and their potential influence on cell proliferation.

  15. Generalized Beer-Lambert model for near-infrared light propagation in thick biological tissues

    Science.gov (United States)

    Bhatt, Manish; Ayyalasomayajula, Kalyan R.; Yalavarthy, Phaneendra K.

    2016-07-01

    The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modified the Beer-Lambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concentrations for NIR spectroscopic data analysis. Even though MBLL is effective in terms of providing qualitative comparison, it suffers from its applicability across tissue types and tissue dimensions. In this work, we introduce Lambert-W function-based modeling for light propagation in biological tissues, which is a generalized version of the Beer-Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coefficients μ0 and η. We validated our model against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. We included numerous human and animal tissues to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is first of its kind in providing accurate modeling of NIR light propagation in biological tissues.

  16. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Science.gov (United States)

    Díaz, Jairo A; Jaramillo, Natalia A; Murillo, Mauricio F

    2007-12-12

    The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must

  17. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Directory of Open Access Journals (Sweden)

    Jairo A Díaz

    Full Text Available The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further

  18. Backward Multiscattering and Transport of Photons in Biological Tissue: Experiment and Simulation

    OpenAIRE

    Hamed Mohamed Abubaker; Pavel Tomanek

    2012-01-01

    Optical polarimetry is a mighty tool for study of transparent and translucent inorganic and organic materials. Growing interest in better health and also the quality of the food pointed the investigation of physical properties of biological turbid tissues. Due to the fact that biological tissue is complex random material showing inhomogeneity, anisotropy and nonlinearity in the structure, its rigorous characterization is almost impossible. This complexity also involves an important amount of ...

  19. Analysis of micro-composition of biological tissue by means of induced radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, C.A.; Dunn, R.W.

    1948-05-24

    The use of radioactive isotopes as tracers promises a wealth of information regarding the biochemical role of most elements and their components. Usually a radioactive sample of the element to be studied is administered to the plant or animal in a convenient form, and its distribution and rate of exchange are determined in later assays. This technique has, however, certain limitations, two of which will be discussed here: (1) radioactive isotopes are not generally useful for measurements of the concentration of elements in the body or its parts. They can be used only to give a measure of the rate of exchange of the elements and (2) the use of radioactive isotopes for tracer experiments requires that the radiation dose delivered to the tissue should be small in order not to disturb normal biological function.

  20. Using electron microscopy to calculate optical properties of biological samples

    OpenAIRE

    Wu, Wenli; Radosevich, Andrew J.; Eshein, Adam; Nguyen, The-Quyen; Yi, Ji; Cherkezyan, Lusik; Roy, Hemant K.; Szleifer, Igal; Backman, Vadim

    2016-01-01

    The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy...

  1. Versatile electrochemial sensor for tissue culturing and sample handling

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Kwasny, Dorota; Al Atraktchi, Fatima Al-Zahraa;

    2014-01-01

    in microfluidic devices for sample preparation. In this work we present the development of the sensor system along with results on characterization by impedance spectroscopy and cyclic voltammetry. Furthermore we present recent results on integration of the sensor as well as amperometric detection of dopamine...

  2. Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration.

    Science.gov (United States)

    Lai, Po-Hong; Chang, Yen; Chen, Sung-Ching; Wang, Chung-Chi; Liang, Huang-Chien; Chang, Wei-Chun; Sung, Hsing-Wen

    2006-09-01

    It was found in our previous study that acellular tissues derived from bovine pericardia consist primarily of insoluble collagen, elastin, and tightly bound glycosaminoglycans (GAGs). It is speculated that the inherent GAGs in acellular tissues may serve as a reservoir for loading basic fibroblast growth factor (bFGF) and promote angiogenesis and tissue regeneration. This study was therefore designed to investigate effects of the content of GAGs in acellular bovine pericardia on the binding of bFGF and its release profile in vitro while its stimulation in angiogenesis and tissue regeneration in vivo were evaluated subcutaneously in a rat model. To control the content of GAGs, acellular tissues were treated additionally with hyaluronidase for 1 (Hase-D1), 3 (Hase-D3), or 5 days (Hase-D5). The in vitro results indicated that a higher content of GAGs in the acellular tissue resulted in an increase in bFGF binding and in a more gradual and sustained release of the growth factor. The in vivo results obtained at 1 week postoperatively showed that the density and the depth of neo-vessels infiltrated into the acellular tissue loaded with bFGF (acellular/bFGF) were significantly greater than the other test samples. At 1 month postoperatively, vascularized neo-connective tissues were found to fill the pores within each test sample, particularly for the acellular/bFGF tissue. These results suggested that the sustained release of bFGF from the acellular/ bFGF tissue continued to be effective in enhancing angiogenesis and generation of new tissues. In conclusion, the inherent GAGs present in acellular tissues may be used for binding and sustained release of bFGF to enhance angiogenesis and tissue regeneration.

  3. Micro-organisms isolated from cadaveric samples of allograft musculoskeletal tissue.

    Science.gov (United States)

    Varettas, Kerry

    2013-12-01

    Allograft musculoskeletal tissue is commonly used in orthopaedic surgical procedures. Cadaveric donors of musculoskeletal tissue supply multiple allografts such as tendons, ligaments and bone. The microbiology laboratory of the South Eastern Area Laboratory Services (SEALS, Australia) has cultured cadaveric allograft musculoskeletal tissue samples for bacterial and fungal isolates since 2006. This study will retrospectively review the micro-organisms isolated over a 6-year period, 2006-2011. Swab and tissue samples were received for bioburden testing and were inoculated onto agar and/or broth culture media. Growth was obtained from 25.1 % of cadaveric allograft musculoskeletal tissue samples received. The predominant organisms isolated were coagulase-negative staphylococci and coliforms, with the heaviest bioburden recovered from the hemipelvis. The rate of bacterial and fungal isolates from cadaveric allograft musculoskeletal tissue samples is higher than that from living donors. The type of organism isolated may influence the suitability of the allograft for transplant.

  4. Optical multi-frequency swept sensing for wide-field vibration measurement of interior surfaces in biological tissue

    Science.gov (United States)

    Choi, S.; Nin, F.; Hibino, H.; Suzuki, T.

    2015-12-01

    Multifrequency sensing technique adopting the wide field heterodyne detection technique is demonstrated for interior surface vibration measurements in thick biological tissue. These arrangements allow obtaining not only 3D tomographic images but also various vibration parameters such as spatial amplitude, phase, and frequency, with high temporal and transverse resolutions over a wide field. The axial resolution and the accuracy of vibration amplitude measurement were estimated to be 2.5 μm and 3 nm, respectively. This wide-field tomographic sensing method can be applied for measuring microdynamics of a variety of biological samples, thus contributing to the progress in life sciences research.

  5. High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues

    CERN Document Server

    Camp, Charles H; Heddleston, John M; Hartshorn, Christopher M; Walker, Angela R Hight; Rich, Jeremy N; Lathia, Justin D; Cicerone, Marcus T

    2014-01-01

    We have developed a coherent Raman imaging platform using broadband coherent anti-Stokes Raman scattering (BCARS) that provides an unprecedented combination of speed, sensitivity, and spectral breadth. The system utilizes a unique configuration of laser sources that probes the Raman spectrum over 3,000 cm$^{-1}$ and generates an especially strong response in the typically weak Raman "fingerprint" region through heterodyne amplification of the anti-Stokes photons with a large nonresonant background (NRB) while maintaining high spectral resolution of $<$ 13 cm$^{-1}$. For histology and pathology, this system shows promise in highlighting major tissue components in a non-destructive, label-free manner. We demonstrate high-speed chemical imaging in two- and three-dimensional views of healthy murine liver and pancreas tissues and interfaces between xenograft brain tumors and the surrounding healthy brain matter.

  6. Oxyhemoglobin photodissociation efficiency in biological tissue exposed to laser radiation

    Science.gov (United States)

    Barun, V. V.; Ivanov, A. P.

    2011-09-01

    We have obtained quantitative data on the differential (with respect to depth) and the integrated oxyhemoglobin photodissociation efficiency in the dermis when the skin surface is exposed to a light beam in the wavelength range 300-650 nm. With this aim, we have used our own previously developed optical model for skin tissue and analytical procedure for calculating the characteristics of optical fields in a medium. We have estimated the number of oxygen molecules formed at different depths in the medium, and also their integrated number over the entire thickness of the dermis as a function of the irradiation wavelength. We consider models for a dermis that is homogeneous with respect to depth and a dermis that has a layered structure. We show that the spectral photodissociation efficiency has a number of maxima associated with the absorption spectrum of oxyhemoglobin and the optical properties of all the layers of skin tissue. We discuss the effect of the epidermis on these maxima.

  7. Hydraulic fracturing in cells and tissues: fracking meets cell biology.

    Science.gov (United States)

    Arroyo, Marino; Trepat, Xavier

    2016-12-06

    The animal body is largely made of water. A small fraction of body water is freely flowing in blood and lymph, but most of it is trapped in hydrogels such as the extracellular matrix (ECM), the cytoskeleton, and chromatin. Besides providing a medium for biological molecules to diffuse, water trapped in hydrogels plays a fundamental mechanical role. This role is well captured by the theory of poroelasticity, which explains how any deformation applied to a hydrogel causes pressure gradients and water flows, much like compressing a sponge squeezes water out of it. Here we review recent evidence that poroelastic pressures and flows can fracture essential biological barriers such as the nuclear envelope, the cellular cortex, and epithelial layers. This type of fracture is known in engineering literature as hydraulic fracturing or 'fracking'.

  8. Plasma mediated ablation of biological tissues with ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Oraevsky, A.A. [Lawrence Livermore National Lab., CA (United States)]|[Rice Univ., Houston, TX (United States). Dept. of Electrical Engineering; DaSilva, L.B.; Feit, M.D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-03-08

    Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range from 350 fs to 1 ns at 1,053 nm wavelength. A time resolved stress detection technique was employed to measure transient stress profiles and amplitudes. Optical microscopy was used to characterize ablation craters qualitatively, while a wide band acoustic transducer helped to quantify tissue mechanical response and the ablation threshold. The ablation threshold was measured as a function of laser pulse duration and linear absorption coefficient. For nanosecond pulses the ablation threshold was found to have a strong dependence on the linear absorption coefficient of the material. As the pulse length decreased into the subpicosecond regime the ablation threshold became insensitive to the linear absorption coefficient. The ablation efficiency was found to be insensitive to both the laser pulse duration and the linear absorption coefficient. High quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with 350 fs laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond regime, optical breakdown proceeds as an electron collisional avalanche ionization initiated by thermal seed electrons. These seed electrons are created by heating of the tissue by linear absorption. In the ultrashort pulse range, optical breakdown is initiated by the multiphoton ionization of the irradiated medium (6 photons in case of tissue irradiated at 1,053 nm wavelength), and becomes less sensitive to the linear absorption coefficient. The energy deposition profile is insensitive to both the laser pulse duration and the linear absorption coefficient.

  9. Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration.

    Science.gov (United States)

    Rumman, Mohammad; Dhawan, Jyotsna; Kassem, Moustapha

    2015-10-01

    Adult stem cells (ASCs) are tissue resident stem cells responsible for tissue homeostasis and regeneration following injury. In uninjured tissues, ASCs exist in a nonproliferating, reversibly cell cycle-arrested state known as quiescence or G0. A key function of the quiescent state is to preserve stemness in ASCs by preventing precocious differentiation, and thus maintaining a pool of undifferentiated ASCs. Recent evidences suggest that quiescence is an actively maintained state and that excessive or defective quiescence may lead to compromised tissue regeneration or tumorigenesis. The aim of this review is to provide an update regarding the biological mechanisms of ASC quiescence and their role in tissue regeneration.

  10. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor

    Science.gov (United States)

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-01

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based ‘cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  11. Quantifying the refractive index dispersion of a pigmented biological tissue using Jamin-Lebedeff interference microscopy

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Leertouwer, Hein L.; Wilts, Bodo D.

    2013-01-01

    Jamin-Lebedeff polarizing interference microscopy is a classical method for determining the refractive index and thickness of transparent tissues. Here, we extend the application of this method to pigmented, absorbing biological tissues, based on a theoretical derivation using Jones calculus. This n

  12. Experimental Characterization of Near-Infrared Laser Energy Absorption, Scattering, and Transmittance in Biological Tissue

    Science.gov (United States)

    2007-03-01

    the heme pigment of hemoglobin, myoglobin, and bilirubin [12]. The main tissue chromophores in the infrared region are lipofuscine, xantophyll, melanin...water and tissue chromophores that include certain cellular pigments . The natural chromophores present include the biological pigments — specifically

  13. Plasma tissue inhibitor of metalloproteinases-1 as a biological marker? Pre-analytical considerations

    DEFF Research Database (Denmark)

    Lomholt, Anne Fog; Frederiksen, Camilla; Christensen, Ib Jarle;

    2007-01-01

    Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during ...

  14. Sources of Technical Variability in Quantitative LC-MS Proteomics: Human Brain Tissue Sample Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Piehowski, Paul D.; Petyuk, Vladislav A.; Orton, Daniel J.; Xie, Fang; Moore, Ronald J.; Ramirez Restrepo, Manuel; Engel, Anzhelika; Lieberman, Andrew P.; Albin, Roger L.; Camp, David G.; Smith, Richard D.; Myers, Amanda J.

    2013-05-03

    To design a robust quantitative proteomics study, an understanding of both the inherent heterogeneity of the biological samples being studied as well as the technical variability of the proteomics methods and platform is needed. Additionally, accurately identifying the technical steps associated with the largest variability would provide valuable information for the improvement and design of future processing pipelines. We present an experimental strategy that allows for a detailed examination of the variability of the quantitative LC-MS proteomics measurements. By replicating analyses at different stages of processing, various technical components can be estimated and their individual contribution to technical variability can be dissected. This design can be easily adapted to other quantitative proteomics pipelines. Herein, we applied this methodology to our label-free workflow for the processing of human brain tissue. For this application, the pipeline was divided into four critical components: Tissue dissection and homogenization (extraction), protein denaturation followed by trypsin digestion and SPE clean-up (digestion), short-term run-to-run instrumental response fluctuation (instrumental variance), and long-term drift of the quantitative response of the LC-MS/MS platform over the 2 week period of continuous analysis (instrumental stability). From this analysis, we found the following contributions to variability: extraction (72%) >> instrumental variance (16%) > instrumental stability (8.4%) > digestion (3.1%). Furthermore, the stability of the platform and its’ suitability for discovery proteomics studies is demonstrated.

  15. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.

    Science.gov (United States)

    Ferrara, Toni L; Boughton, Philip; Slavich, Eve; Wroe, Stephen

    2013-01-01

    Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard) and non-mineralized (soft) layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias). A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method that is applicable

  16. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.

    Directory of Open Access Journals (Sweden)

    Toni L Ferrara

    Full Text Available Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard and non-mineralized (soft layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias. A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method

  17. High resolution x-ray microtomography of biological samples: Requirements and strategies for satisfying them

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W. Jr. [Univ. of California, San Francisco, CA (United States)]|[Univ. of California, Davis, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States); Rothman, S.S. [Univ. of California, San Francisco, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-02-01

    High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetration depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography (XMT).

  18. Monitoring the marine environment using marine mammal tissue samples

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Hannah, D.J.; Day, P.J. [ESR:Environmental, Lower Hutt (New Zealand)] [and others

    1995-12-31

    Marine environments, both inshore and open ocean, receive numerous inputs of anthropogenic chemicals. Cetaceans provide a valuable resource for monitoring the low level contamination of marine environments with persistent organic contaminants. Comparative studies using inshore and offshore southern ocean cetaceans have revealed significant differences in the types of contamination in these two environments. The polychlorinated biphenyls (PCBs) deposited in the southern oceans are characterized by an abundance of lower chlorinated congeners. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) are not present at significant concentrations in cetaceans from the open southern ocean. In contrast significant concentrations of PCDD/F congeners are detected in the blubber of the inshore living Hector`s dolphin. This species lives close to the shore and has a very small home range (approximately 30 km) for a cetacean. Analysis of tissue PCDD/F and PCB profiles from different populations and their food sources will be presented. The data are being used to determine if there are local variations in the contamination of the New Zealand inshore marine environment.

  19. [PCR-based diagnosis of mucormycosis in tissue samples].

    Science.gov (United States)

    Bialek, R; Zelck, U E

    2013-11-01

    Mucormycosis is characterized by a rapid, often fatal progression. Early diagnosis of invasive mucormycosis is the key for timely therapeutic intervention and improved survival. Contrary to the more prevalent aspergillosis, effective antifungal therapy of mucormycosis is mainly limited to amphotericin B. Given the importance to guide the timely initiation of amphotericin B and possible surgical intervention, rapid and specific identification of fungal hyphae is essential. Conventional histopathology depends on abundance and morphology of the fungi as well as on the skills of the personnel, and usually shows an accuracy of 80 %. PCR assays targeting fungal ribosomal genes to identify Mucorales at least at genus level increase sensitivity, allow a rapid identification as well as detection of double mold infections. Thus, PCR assays are beneficial to complement existing approaches. They are recommended to rapidly specify tissue diagnosis and accurate identification of fungi. This will help to guide effective therapy and thereby, survival will increase. Retrospective analyses of mucormycosis by PCR help to evaluate therapeutic interventions and will optimize treatment options.

  20. Macroscopic characterization of cell electroporation in biological tissue based on electrical measurements

    Science.gov (United States)

    Cima, Lionel F.; Mir, Lluis M.

    2004-11-01

    A method is described to experimentally determine the temporal evolution of state variables involved in the electroporation of biological tissue, i.e., the transmembrane voltage and the macroscopic current flowing in the electropores. Indeed, the electrical parameters of the extracellular, intracellular, and unaltered membrane contributions as well as the electropores electrical characteristics can be deduced from the measurement of the tissue bioimpedance and from the variations of both the macroscopic voltage applied to the tissue and the delivered current.

  1. Optical parameter measurement of highly diffusive tissue body phantoms with specifically designed sample holder for photo diagnostic and PDT applications

    Science.gov (United States)

    Rehman, A.; Rehman, K.; Anwar, S.; Firdous, S.; Nawaz, M.

    2015-12-01

    Knowledge of optical properties (absorption coefficients, scattering Coefficients, and anisotropy) is necessary for understanding light tissue interactions. Optical parameters define the behavior of light in the tissues. Intralipid and Indian ink are well-established tissue body phantoms. Quantitative characterization of biological tissues in terms of optical properties is achieved with integrating sphere. However, samples having significantly higher scattering and absorption coefficients such as malignant tissues potentially reduce the signal to noise ratio (SNR) and accuracy of integrating sphere. We have measured the diffuse reflection and transmission of these phantoms by placing them in integrating sphere at 632.8 nm and then applied IAD method to determine the optical properties tissue phantoms composed of Indian ink (1.0%) and Intralipid (20%). We have fabricated a special sample holder with thin microscopic cover slips which can be used to measure signal from highly concentrated intralipid and Indian ink solutions. Experiments conducted with various phantoms reveal significant improvement of SNR for a wide range of optical properties. This approach opens up a field for potential applications in measurement of optical properties of highly diffusive biological tissues. For 20% intralipid μa =0.112+/-0.046 cm-1 and μs =392.299+/-10.090 cm-1 at 632.8 nm and for 1.0% Indian ink μa =9.808+/-0.490 cm-1 and μs =1.258+/-0.063 cm-1 at same wavelength. System shows good repeatability and reproducibility within 4.9% error. Work may have important biomedical applications in photo-diagnosis and Photodynamic therapy.

  2. H2S Analysis in Biological Samples Using Gas Chromatography with Sulfur Chemiluminescence Detection

    OpenAIRE

    Vitvitsky, Victor; Banerjee, Ruma

    2015-01-01

    Hydrogen sulfide (H2S) is a metabolite and signaling molecule in biological tissues that regulates many physiological processes. Reliable and sensitive methods for H2S analysis are necessary for a better understanding of H2S biology and for the pharmacological modulation of H2S levels in vivo. In this chapter, we describe the use of gas chromatography coupled to sulfur chemiluminescence detection to measure the rates of H2S production and degradation by tissue homogenates at physiologically r...

  3. Nonlinear propagation of focused ultrasound in layered biological tissues based on angular spectrum approach

    Institute of Scientific and Technical Information of China (English)

    Zhu Xiao-Feng; Zhou Lin; Zhang Dong; Gong Xiu-Fen

    2005-01-01

    Nonlinear propagation of focused ultrasound in layered biological tissues is theoretically studied by using the angular spectrum approach (ASA), in which an acoustic wave is decomposed into its angular spectrum, and the distribution of nonlinear acoustic fields is calculated in arbitrary planes normal to the acoustic axis. Several biological tissues are used as specimens inserted into the focusing region illuminated by a focused piston source. The second harmonic components within or beyond the biological specimens are numerically calculated. Validity of the theoretical model is examined by measurements. This approach employing the fast Fourier transformation gives a clear visualization of the focused ultrasound, which is helpful for nonlinear ultrasonic imaging.

  4. Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels

    Science.gov (United States)

    Ilke Kalcioglu, Z.; Qu, Meng; Strawhecker, Kenneth E.; Shazly, Tarek; Edelman, Elazer; VanLandingham, Mark R.; Smith, James F.; Van Vliet, Krystyn J.

    2011-03-01

    For both materials engineering research and applied biomedicine, a growing need exists to quantify mechanical behaviour of tissues under defined hydration and loading conditions. In particular, characterisation under dynamic contact-loading conditions can enable quantitative predictions of deformation due to high rate 'impact' events typical of industrial accidents and ballistic insults. The impact indentation responses were examined of both hydrated tissues and candidate tissue surrogate materials. The goals of this work were to determine the mechanical response of fully hydrated soft tissues under defined dynamic loading conditions, and to identify design principles by which synthetic, air-stable polymers could mimic those responses. Soft tissues from two organs (liver and heart), a commercially available tissue surrogate gel (Perma-Gel™) and three styrenic block copolymer gels were investigated. Impact indentation enabled quantification of resistance to penetration and energy dissipative constants under the rates and energy densities of interest for tissue surrogate applications. These analyses indicated that the energy dissipation capacity under dynamic impact increased with increasing diblock concentration in the styrenic gels. Under the impact rates employed (2 mm/s to 20 mm/s, corresponding to approximate strain energy densities from 0.4 kJ/m3 to 20 kJ/m3), the energy dissipation capacities of fully hydrated soft tissues were ultimately well matched by a 50/50 triblock/diblock composition that is stable in ambient environments. More generally, the methodologies detailed here facilitate further optimisation of impact energy dissipation capacity of polymer-based tissue surrogate materials, either in air or in fluids.

  5. Set-up and calibration of a method to measure 10B concentration in biological samples by neutron autoradiography

    Science.gov (United States)

    Gadan, M. A.; Bortolussi, S.; Postuma, I.; Ballarini, F.; Bruschi, P.; Protti, N.; Santoro, D.; Stella, S.; Cansolino, L.; Clerici, A.; Ferrari, C.; Zonta, A.; Zonta, C.; Altieri, S.

    2012-03-01

    A selective uptake of boron in the tumor is the base of Boron Neutron Capture Therapy, which can destroy the tumor substantially sparing the normal tissue. In order to deliver a lethal dose to the tumor, keeping the dose absorbed by normal tissues below the tolerance level, it is mandatory to know the 10B concentration present in each kind of tissue at the moment of irradiation. This work presents the calibration procedure adopted for a boron concentration measurement method based on neutron autoradiography, where biological samples are deposited on sensitive films and irradiated in the thermal column of the TRIGA reactor (University of Pavia). The latent tracks produced in the film by the charged particles coming from the neutron capture in 10B are made visible by a proper etching, allowing the measurement of the track density. A calibration procedure with standard samples provides curves of track density as a function of boron concentration, to be used in the measurement of biological samples. In this paper, the bulk etch rate parameter and the calibration curves obtained for both liquid samples and biological tissues with known boron concentration are presented. A bulk etch rate value of (1.64 ± 0.02) μm/h and a linear dependence with etching time were found. The plots representing the track density versus the boron concentration in a range between 5 and 50 μg/g (ppm) are linear, with an angular coefficient of (1.614 ± 0.169)·10-3 tracks/(μm2 ppm) for liquids and (1.598 ± 0.097)·10-2 tracks/(μm2 ppm) for tissues.

  6. An inexpensive and portable microvolumeter for rapid evaluation of biological samples.

    Science.gov (United States)

    Douglass, John K; Wcislo, William T

    2010-08-01

    We describe an improved microvolumeter (MVM) for rapidly measuring volumes of small biological samples, including live zooplankton, embryos, and small animals and organs. Portability and low cost make this instrument suitable for widespread use, including at remote field sites. Beginning with Archimedes' principle, which states that immersing an arbitrarily shaped sample in a fluid-filled container displaces an equivalent volume, we identified procedures that maximize measurement accuracy and repeatability across a broad range of absolute volumes. Crucial steps include matching the overall configuration to the size of the sample, using reflected light to monitor fluid levels precisely, and accounting for evaporation during measurements. The resulting precision is at least 100 times higher than in previous displacement-based methods. Volumes are obtained much faster than by traditional histological or confocal methods and without shrinkage artifacts due to fixation or dehydration. Calibrations using volume standards confirmed accurate measurements of volumes as small as 0.06 microL. We validated the feasibility of evaluating soft-tissue samples by comparing volumes of freshly dissected ant brains measured with the MVM and by confocal reconstruction.

  7. Understanding freeze stress in biological tissues: Thermodynamics of interfacial water

    Energy Technology Data Exchange (ETDEWEB)

    Olien, C. Robert [USDA-ARS (retired), Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325 (United States); Livingston, David P. [USDA and North Carolina State University, Crop Science, 840 Method Road, Unit 3, Raleigh, NC 27502 (United States)]. E-mail: dpl@unity.ncsu.edu

    2006-12-01

    A thermodynamic approach to distinguish forms of freeze energy that injure plants as the temperature decreases is developed. The pattern resulting from this analysis dictated the sequence of thermal requirements for water to exist as an independent state. Improvement of freezing tolerance in biological systems depends on identification of a specific form of stress, just as control of a disease depends on identification of the pathogen causing the disease. The forms of energy that stress hydrated systems as temperature decreases begin with disruption of biological function from chill injury that occurs above freezing. Initiation of non-equilibrium freezing with sufficient free energy to drive disruptive effects can occur in a supercooled system. As the temperature continues to decrease and freezing occurs in an equilibrium manner, adhesion at hydrated interfaces contributes to disruptive effects as protoplasts contract by freeze-dehydration. If protective systems are able to prevent injury from direct interactions with ice, passive effects of freeze-dehydration may cause injury at lower temperatures. The temperature range in which an injury occurs is an indicator of the form of energy causing stress. The form of energy is thus a primary guide for selection of a protective mechanism. An interatomic force model whose response to temperature change corresponds with the enthalpy pattern might help define freeze stress from a unique perspective.

  8. Spectroscopic analysis of bosentan in biological samples after a liquid-liquid microextraction

    Directory of Open Access Journals (Sweden)

    Sanaz Sajedi-Amin

    2015-12-01

    Conclusion: A simple, low cost, precise and accurate spectrophotometric analysis of bosentan in biological samples after liquid-liquid microextraction were developed and validated for routine analyses.

  9. Relationship between the temperature and the acoustic nonlinearity parameter in biological tissues

    Institute of Scientific and Technical Information of China (English)

    LU Ying; LIU Xiaozhou; GONG Xiufen; ZHANG Dong

    2004-01-01

    Recently with the rapid development of the high-intensity focused ultrasound (HIFU) in biomedical ultrasound, much attention has been paid to the noninvasive temperature estimation in biological tissue in order to determine the region and degree of the ultrasound-induced lesions. In ultrasound hyperthermal therapy it is highly desirable to study the real-time noninvasive monitoring of temperature distribution in biological tissue. In this paper, the relationship between the nonlinearity parameter B/A and the temperature in biological tissue is studied and compared with the theoretical model as well as the experimental results from the thermocouple. Results indicated that B/A could be used as an effective tool to monitor the temperature distribution in biological media.

  10. A new biological approach to guided bone and tissue regeneration.

    Science.gov (United States)

    Montanari, Marco; Callea, Michele; Yavuz, Izzet; Maglione, Michele

    2013-04-09

    The purpose of this study was to determine the potential of platelet-rich fibrin (PRF) membranes used for guided bone and tissue regeneration. A patient with insufficient alveolar ridge width in aesthetic zone was enrolled. The patient's blood was centrifuged to obtain PRF membranes. Autogenous bone graft was mixed with bovine hydroxyapatite, PRF particles and applied to fill the defect. Five PRF membranes were placed over the bone mix. After 4 months a cone-beam CT was performed to evaluate bone regeneration. The use of PRF as cover membrane permitted a rapid epithelisation and represented an effective barrier versus epithelial cell penetration. After 4 months the site appeared precociously healed and the bone volume increased. This new approach represents a predictable method of augmenting deficient alveolar ridges. Guided bone regeneration with PRF showed limitation compared with guided bone regeneration using collagen membrane in terms of bone gain. The association of collagen membrane and PRF could be a good association.

  11. Biologically improved nanofibrous scaffolds for cardiac tissue engineering.

    Science.gov (United States)

    Bhaarathy, V; Venugopal, J; Gandhimathi, C; Ponpandian, N; Mangalaraj, D; Ramakrishna, S

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(l-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering.

  12. Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth.

    Science.gov (United States)

    Mo, Jianhua; de Groot, Mattijs; de Boer, Johannes F

    2015-02-23

    Optical coherence tomography (OCT) has proven to be able to provide three-dimensional (3D) volumetric images of scattering biological tissues for in vivo medical diagnostics. Unlike conventional optical microscopy, its depth-resolving ability (axial resolution) is exclusively determined by the laser source and therefore invariant over the full imaging depth. In contrast, its transverse resolution is determined by the objective's numerical aperture and the wavelength which is only approximately maintained over twice the Rayleigh range. However, the prevailing laser sources for OCT allow image depths of more than 5 mm which is considerably longer than the Rayleigh range. This limits high transverse resolution imaging with OCT. Previously, we reported a novel method to extend the depth-of-focus (DOF) of OCT imaging in Mo et al.Opt. Express 21, 10048 (2013)]. The approach is to create three different optical apertures via pupil segmentation with an annular phase plate. These three optical apertures produce three OCT images from the same sample, which are encoded to different depth positions in a single OCT B-scan. This allows for correcting the defocus-induced curvature of wave front in the pupil so as to improve the focus. As a consequence, the three images originating from those three optical apertures can be used to reconstruct a new image with an extended DOF. In this study, we successfully applied this method for the first time to both an artificial phantom and biological tissues over a four times larger depth range. The results demonstrate a significant DOF improvement, paving the way for 3D high resolution OCT imaging beyond the conventional Rayleigh range.

  13. Tissue Microarray Technology for Molecular Applications: Investigation of Cross-Contamination between Tissue Samples Obtained from the Same Punching Device

    Directory of Open Access Journals (Sweden)

    Erik Vassella

    2015-04-01

    Full Text Available Background: Tissue microarray (TMA technology allows rapid visualization of molecular markers by immunohistochemistry and in situ hybridization. In addition, TMA instrumentation has the potential to assist in other applications: punches taken from donor blocks can be placed directly into tubes and used for nucleic acid analysis by PCR approaches. However, the question of possible cross-contamination between samples punched with the same device has frequently been raised but never addressed. Methods: Two experiments were performed. (1 A block from mycobacterium tuberculosis (TB positive tissue and a second from an uninfected patient were aligned side-by-side in an automated tissue microarrayer. Four 0.6 mm punches were cored from each sample and placed inside their corresponding tube. Between coring of each donor block, a mechanical cleaning step was performed by insertion of the puncher into a paraffin block. This sequence of coring and cleaning was repeated three times, alternating between positive and negative blocks. A fragment from the 6110 insertion sequence specific for mycobacterium tuberculosis was analyzed; (2 Four 0.6 mm punches were cored from three KRAS mutated colorectal cancer blocks, alternating with three different wild-type tissues using the same TMA instrument (sequence of coring: G12D, WT, G12V, WT, G13D and WT. Mechanical cleaning of the device between each donor block was made. Mutation analysis by pyrosequencing was carried out. This sequence of coring was repeated manually without any cleaning step between blocks. Results/Discussion: In both analyses, all alternating samples showed the expected result (samples 1, 3 and 5: positive or mutated, samples 2, 4 and 6: negative or wild-type. Similar results were obtained without cleaning step. These findings suggest that no cross-contamination of tissue samples occurs when donor blocks are punched using the same device, however a cleaning step is nonetheless recommended. Our

  14. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhaarathy, V. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Lee Kong Chian School of Medicine, Nanyang Technological University, 138673 (Singapore); Venugopal, J., E-mail: nnijrv@nus.edu.sg [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Gandhimathi, C. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Ramakrishna, S. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore)

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  15. Reconstruction of spatial distributions of sound velocity and absorption in soft biological tissues using model ultrasonic tomographic data

    Science.gov (United States)

    Burov, V. A.; Zotov, D. I.; Rumyantseva, O. D.

    2014-07-01

    A two-step algorithm is used to reconstruct the spatial distributions of the acoustic characteristics of soft biological tissues-the sound velocity and absorption coefficient. Knowing these distributions is urgent for early detection of benign and malignant neoplasms in biological tissues, primarily in the breast. At the first stage, large-scale distributions are estimated; at the second step, they are refined with a high resolution. Results of reconstruction on the base of model initial data are presented. The principal necessity of preliminary reconstruction of large-scale distributions followed by their being taken into account at the second step is illustrated. The use of CUDA technology for processing makes it possible to obtain final images of 1024 × 1024 samples in only a few minutes.

  16. Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures.

    Science.gov (United States)

    Reif, Roberto; Amorosino, Mark S; Calabro, Katherine W; A'Amar, Ousama; Singh, Satish K; Bigio, Irving J

    2008-01-01

    Spectral reflectance measurements of biological tissues have been studied for early diagnoses of several pathologies such as cancer. These measurements are often performed with a fiber optic probe in contact with the tissue surface. We report a study in which reflectance measurements are obtained in vivo from mouse thigh muscle while varying the contact pressure of the fiber optic probe. It is determined that the probe pressure is a variable that affects the local optical properties of the tissue. The reflectance spectra are analyzed with an analytical model that extracts the tissue optical properties and facilitates the understanding of underlying physiological changes induced by the probe pressure.

  17. Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue

    Science.gov (United States)

    Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda

    2016-11-01

    For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue.

  18. Evaluation of a multi-electrode bioimpedance spectroscopy tensor probe to detect the anisotropic conductivity spectra of biological tissues

    Science.gov (United States)

    Karki, Bishal; Wi, Hun; McEwan, Alistair; Kwon, Hyeuknam; In Oh, Tong; Woo, Eung Je; Seo, Jin Keun

    2014-07-01

    This paper presents bioimpedance spectroscopy measurements of anisotropic tissues using a 16 electrode probe and reconstruction method of estimating the anisotropic impedance spectrum in a local region just underneath the center of the probe. This may enable in-vivo surface bioimpedance measurements with similar performance to the ex-vivo gold standard that requires excising and placing the entire tissue sample in a unit measurement cell with uniform electric field. The multiple surface electrodes enable us to create a focused current pattern so that the resulting measured voltage is more sensitive to a local region and less sensitive to other areas. This is exploited in a reconstruction method to provide improved bioimpedance and anisotropy measurements. In this paper, we describe the current pattern for localized electrical energy concentration, performance with the spring loaded pin electrodes, data calibration and experimental results on anisotropic agar phantoms and different tissue types. The anisotropic conductivity spectra are able to differentiate insulating films of different thickness and detect their orientation. Bioimpedance spectra of biological tissues are in agreement with published data and reference instruments. The anisotropy expressed as the ratio of eigenvalues and the orientation of eigenfunctions were reconstructed at 45° intervals. This information is used to predict the underlying anisotropy of the region under the probe. Tissue measurements clearly demonstrate the expected higher anisotropy of muscle tissue compared to liver tissue and spectral changes.

  19. Detection of Slit2 promoter hypermethylation in tissue and serum samples from breast cancer patients.

    Science.gov (United States)

    Kim, Ga-Eon; Lee, Kyung Hwa; Choi, Yoo Duk; Lee, Ji Shin; Lee, Jae Hyuk; Nam, Jong Hee; Choi, Chan; Park, Min Ho; Yoon, Jung Han

    2011-10-01

    Promoter hypermethylation has been shown to be a common mechanism for inactivation of tumor suppressor genes in breast cancer. The aim of this study was to investigate the prevalence of Slit2 promoter hypermethylation in both the tumor and serum samples of breast cancer patients with ductal carcinoma in situ (DCIS) or invasive breast carcinoma (IBC). The methylation status of Slit2 was investigated in 210 tissue samples (15 breast with no pathological findings, 26 DCIS, and 169 IBC samples) and 123 corresponding serum samples (15 breast with no pathological findings, 26 DCIS, and 82 IBC samples) using methylation-specific polymerase chain reaction. Immunohistochemical staining for Slit2 was also performed using tissue microarray blocks to determine whether Slit2 promoter hypermethylation correlated with loss of Slit2 expression. Slit2 promoter hypermethylation was not detected in breast tissue and serum samples from patients with no pathological findings. DCIS or IBC showed a statistically higher frequency of Slit2 promoter hypermethylation compared to breast with no pathological findings in both the tissue and serum samples; however, there were no statistically significant differences between DCIS and IBC samples. Similar Slit2 promoter hypermethylation patterns were seen in the tissue samples and corresponding serum specimens (p Slit2 promoter hypermethylation was associated with loss of Slit2 expression. These results suggest that Slit2 promoter hypermethylation appears to be responsible for functionally silencing Slit2 expression. Slit2 promoter hypermethylation may be considered as a possible serum marker for early detection of breast cancer.

  20. Concise Review : Engineering Myocardial Tissue: The Convergence of Stem Cells Biology and Tissue Engineering Technology

    NARCIS (Netherlands)

    Buikema, Jan Willem; Van der Meer, Peter; Sluijter, Joost P. G.; Domian, Ibrahim J.

    2013-01-01

    Advanced heart failure represents a leading public health problem in the developed world. The clinical syndrome results from the loss of viable and/or fully functional myocardial tissue. Designing new approaches to augment the number of functioning human cardiac muscle cells in the failing heart ser

  1. Heavy metal pathways and archives in biological tissue

    Science.gov (United States)

    Orlic, I.; Siegele, R.; Menon, D. D.; Markich, S. J.; Cohen, D. D.; Jeffree, R. A.; McPhail, D. C.; Sarbutt, A.; Stelcer, E.

    2002-05-01

    Nuclear milli and microprobes at the Australian Nuclear Science and Technology Organisation (ANSTO) were used to determine lead accumulation in native Australian plants and animals. Three species of eucalypt plants ( Eucalyptus camaldulensis, Eucalyptus globulus and Eucalyptus lesouefii), one species of salt bush ( Atriplex burbhanyana) and one species each of acacia ( Acacia saligna) and estuarine crocodiles ( Crocodylus porosus) were investigated. Experimentally grown plants were subjected to a nutrient solution with a pH of 5 and spiked with a 200 μmol concentration of Pb. Lead concentrations in leaves of both E. globulus and E. camaldulensis showed an almost exponential decrease from the base of the main vein to the tip. Similarly, Pb concentrations decreased from the main vein to secondary veins. Concentrations of essential elements such as K, Fe, Zn and Br in the main and secondary veins were constant within experimental uncertainty. In contrast, the concentrations of Pb in the leaf veins of E. lesouefii were much lower and showed no systematic pattern. In stem and root samples the highest concentration of Pb was found in roots and stem of E. globulus and A. burbhanyana followed by E. camaldulensis. Some Pb was found in roots of A. saligna and only very low concentration in stem of the same plant. More detailed analysis of thin cross-sectional samples of roots and stem showed that Pb is present in much higher concentration in the growth area of the plant structure (i.e. meristemic region) and in relatively low concentration within the pith region and outer cortex. The osteoderms (dermal bones) of estuarine crocodiles, exposed to lead ammunition in food from the hunting activities of traditional Aboriginal owners, were sampled at two sites in Kakadu National Park, northern Australia. PIXE analyses showed enhanced, but relatively constant, ratios of Pb/Ca in the annual laminations. This was consistent with both their history of long term exposure to elevated

  2. Heavy metal pathways and archives in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Orlic, I. E-mail: ivo@ansto.gov.au; Siegele, R.; Menon, D.D.; Markich, S.J.; Cohen, D.D.; Jeffree, R.A.; McPhail, D.C.; Sarbutt, A.; Stelcer, E

    2002-05-01

    Nuclear milli and microprobes at the Australian Nuclear Science and Technology Organisation (ANSTO) were used to determine lead accumulation in native Australian plants and animals. Three species of eucalypt plants (Eucalyptus camaldulensis, Eucalyptus globulus and Eucalyptus lesouefii), one species of salt bush (Atriplex burbhanyana) and one species each of acacia (Acacia saligna) and estuarine crocodiles (Crocodylus porosus) were investigated. Experimentally grown plants were subjected to a nutrient solution with a pH of 5 and spiked with a 200 {mu}mol concentration of Pb. Lead concentrations in leaves of both E. globulus and E. camaldulensis showed an almost exponential decrease from the base of the main vein to the tip. Similarly, Pb concentrations decreased from the main vein to secondary veins. Concentrations of essential elements such as K, Fe, Zn and Br in the main and secondary veins were constant within experimental uncertainty. In contrast, the concentrations of Pb in the leaf veins of E. lesouefii were much lower and showed no systematic pattern. In stem and root samples the highest concentration of Pb was found in roots and stem of E. globulus and A. burbhanyana followed by E. camaldulensis. Some Pb was found in roots of A. saligna and only very low concentration in stem of the same plant. More detailed analysis of thin cross-sectional samples of roots and stem showed that Pb is present in much higher concentration in the growth area of the plant structure (i.e. meristemic region) and in relatively low concentration within the pith region and outer cortex. The osteoderms (dermal bones) of estuarine crocodiles, exposed to lead ammunition in food from the hunting activities of traditional Aboriginal owners, were sampled at two sites in Kakadu National Park, northern Australia. PIXE analyses showed enhanced, but relatively constant, ratios of Pb/Ca in the annual laminations. This was consistent with both their history of long term exposure to elevated

  3. Optomechatronic prototype based on digital holographic interferometry aimed to the study of biological tissues

    Science.gov (United States)

    Alcaráz Gutiérrez, Alejandro; Del Socorro Hernández-Montes, María; Mendoza Santoyo, Fernando; Muñoz, Silvino

    2011-08-01

    This paper presents the preliminary stages of the development of a compact optomechatronic prototype for the characterization and study of biological tissues in full field of view. The system is based on the optical non invasive technique known as digital holographic interferometry (DHI), which allows displacement measurements in the micrometer range, a key feature for the study of biological tissues. An ad-hoc optomechanical design contemplates a sturdy system yet compact that renders high quality images able to generate new data about the biological tissues under study. These data contain quantitative and qualitative information of tissue mechanical parameters. The DHI results are presented as fringe phase maps related to tissue surface displacements, showing that the proposed prototype provides non invasive information pertaining to the mechanical characteristics of the tissue which can be used later to diagnose certain tissue pathologies. The use of this prototype in the biomedical area may be thought of as a new and complementary tool for the study and research in full field of view that may even be used in conditions outside the laboratory.

  4. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  5. Determination of steroid hormones in biological and environmental samples using green microextraction techniques: an overview.

    Science.gov (United States)

    Aufartová, Jana; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan; Nováková, Lucie; Solich, Petr

    2011-10-17

    Residues of steroid hormones have become a cause for concern because they can affect the biological activity of non-target organisms. Steroid hormones are a potential risk for wildlife and humans through the consumption of contaminated food or water. Their determination requires extraction and clean-up steps, prior to detection, to reach low concentration levels. In recent years, a great effort has been made to develop new analytical methodologies, such as microextraction techniques, that reduce environmental pollution. Researchers have modified old methods to incorporate procedures that use less-hazardous chemicals or that use smaller amounts of them. They are able to do direct analysis using miniaturised equipment and reduced amounts of solvents and wastes. These accomplishments are the main objectives of green analytical chemistry. In this overview, we focus on microextraction techniques for the determination of steroid hormones in biological (e.g., human urine, human serum, fish, shrimp and prawn tissue and milk) and environmental (e.g., wastewaters, surface waters, tap waters, river waters, sewage sludges, marine sediments and river sediments) samples. We comment on the most recent applications in sorptive-microextraction modes, such as solid phase microextraction (SPME) with molecularly imprinted polymers (MIPs), in-tube solid-phase microextraction (IT-SPME), stir-bar sorptive extraction (SBSE) and microextraction in packed sorbent (MEPS). We also describe liquid-phase microextraction (LPME) approaches reported in the literature that are applied to the determination of steroid hormones.

  6. Effects of Re-heating Tissue Samples to Core Body Temperature on High-Velocity Ballistic Projectile-tissue Interactions.

    Science.gov (United States)

    Humphrey, Caitlin; Henneberg, Maciej; Wachsberger, Christian; Maiden, Nicholas; Kumaratilake, Jaliya

    2017-02-23

    Damage produced by high-speed projectiles on organic tissue will depend on the physical properties of the tissues. Conditioning organic tissue samples to human core body temperature (37°C) prior to conducting ballistic experiments enables their behavior to closely mimic that of living tissues. To minimize autolytic changes after death, the tissues are refrigerated soon after their removal from the body and re-heated to 37°C prior to testing. This research investigates whether heating 50-mm-cube samples of porcine liver, kidney, and heart to 37°C for varying durations (maximum 7 h) can affect the penetration response of a high-speed, steel sphere projectile. Longer conditioning times for heart and liver resulted in a slight loss of velocity/energy of the projectile, but the reverse effect occurred for the kidney. Possible reasons for these trends include autolytic changes causing softening (heart and liver) and dehydration causing an increase in density (kidney).

  7. Time-resolved photoacoustic measurement for evaluation of viscoelastic properties of biological tissues

    Science.gov (United States)

    Zhao, Yue; Chen, Conggui; Liu, Hongwei; Yang, Sihua; Xing, Da

    2016-11-01

    In this letter, we proposed a method for viscoelastic characterization of biological tissues based on time-resolved photoacoustic measurement. The theoretical and experimental study was performed on the influence of viscoelasticity effects on photoacoustic generation. Taking the time delay between the photoacoustic signal and the exciting laser, the viscoelasticity distribution of biological tissues can be mapped. To validate our method, gelatin phantoms with different densities were measured. We also applied this method in discrimination between fat and liver to confirm the usefulness of the viscoelastic evaluation. Furthermore, pilot experiments were performed on atherosclerosis artery from an apolipoprotein E-knockout mouse to show the viscoelastic characterization of atherosclerotic plaque. Our results demonstrate that this technique has the potential for visualizing the biomechanical properties and lesions of biological tissues.

  8. Backward Multiscattering and Transport of Photons in Biological Tissue: Experiment and Simulation

    Directory of Open Access Journals (Sweden)

    Hamed Mohamed Abubaker

    2012-01-01

    Full Text Available Optical polarimetry is a mighty tool for study of transparent and translucent inorganic and organic materials. Growing interest in better health and also the quality of the food pointed the investigation of physical properties of biological turbid tissues. Due to the fact that biological tissue is complex random material showing inhomogeneity, anisotropy and nonlinearity in the structure, its rigorous characterization is almost impossible. This complexity also involves an important amount of information. Therefore, the research of polarization states of scattered light is one of emerging novel techniques in biomedical science. The paper deals with the experimental study of degree of polarization and also with simulation of the biological tissue by Monte Carlo method.

  9. [Estimation of biological tissue conductivity with contact-free magnetic impedance measurements].

    Science.gov (United States)

    Cordes, Axel; Steffen, Matthias; Leonhardt, Steffen

    2010-04-01

    At present, there are several methods that utilize electrical conductivity of biological tissue, such as biological impedance spectroscopy (BIS). Because these techniques use conductivity values for further analysis (e.g., body water distribution, etc.), accuracy of conductivity measurement is crucial. Traditionally, most impedance-based techniques rely on conductive interaction between tissue and external electrical measurement devices. Thus, electrode properties can influence the results of conductivity measurements. In this study, a contact-free measurement technique is presented, which is based on magnetic induction of eddy currents and measurement of the tiny reinduced voltages in external measurement coils. Our results indicate that it is principally possible to determine conductivity of biological tissue with this technique.

  10. Probing multifractality in depth-resolved refractive index fluctuations in biological tissues using backscattering spectral interferometry

    Science.gov (United States)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, P. K.; Ghosh, Nirmalya

    2016-12-01

    Fourier domain low coherence interferometry is a promising method for quantification of the depth distribution of the refractive index in a layered scattering medium such as biological tissue. Here, we have explored backscattering spectral interferometric measurement in combination with multifractal detrended fluctuation analysis to probe and quantify multifractality in depth distribution of the refractive index in tissue. The depth resolution of the experimental system was validated on model systems comprising of polystyrene microspheres and mica sheet, and was initially tested on turbid collagen layer, the main building blocks of the connective tissue. Following successful evaluation, the method was applied on ex vivo tissues of human cervix. The derived multifractal parameters of depth-resolved index fluctuations of tissue, namely, the generalized Hurst exponent and the width of the singularity spectrum showed interesting differences between tissues having different grades of precancers. The depth-resolved index fluctuations exhibited stronger multifractality with increasing pathological grades, demonstrating its promise as a potential biomarker for precancer detection.

  11. Mitochondrial Respiration Chain Enzymatic Activities in the Human Brain: Methodological Implications for Tissue Sampling and Storage.

    Science.gov (United States)

    Ronsoni, Marcelo Fernando; Remor, Aline Pertile; Lopes, Mark William; Hohl, Alexandre; Troncoso, Iris H Z; Leal, Rodrigo Bainy; Boos, Gustavo Luchi; Kondageski, Charles; Nunes, Jean Costa; Linhares, Marcelo Neves; Lin, Kátia; Latini, Alexandra Susana; Walz, Roger

    2016-04-01

    Mitochondrial respiratory chain complexes enzymatic (MRCCE) activities were successfully evaluated in frozen brain samples. Epilepsy surgery offers an ethical opportunity to study human brain tissue surgically removed to treat drug resistant epilepsies. Epilepsy surgeries are done with hemodynamic and laboratory parameters to maintain physiology, but there are no studies analyzing the association among these parameters and MRCCE activities in the human brain tissue. We determined the intra-operative parameters independently associated with MRCCE activities in middle temporal neocortex (Cx), amygdala (AMY) and head of hippocampus (HIP) samples of patients (n = 23) who underwent temporal lobectomy using multiple linear regressions. MRCCE activities in Cx, AMY and HIP are differentially associated to trans-operative mean arterial blood pressure, O2 saturation, hemoglobin, and anesthesia duration to time of tissue sampling. The time-course between the last seizure occurrence and tissue sampling as well as the sample storage to biochemical assessments were also associated with enzyme activities. Linear regression models including these variables explain 13-17 % of MRCCE activities and show a moderate to strong effect (r = 0.37-0.82). Intraoperative hemodynamic and laboratory parameters as well as the time from last seizure to tissue sampling and storage time are associated with MRCCE activities in human samples from the Cx, AMYG and HIP. Careful control of these parameters is required to minimize confounding biases in studies using human brain samples collected from elective neurosurgery.

  12. Deep Penetration of Charged Particles in Biological Samples

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-Jin; MU Yu-Guang; ZHAO Ming-Wen; MA Yu-Chen; XIA Yue-Yuan; LIU Xiang-Dong; LIU Ji-Tian; ZHANG Jian-Hua; YU Zeng-Liang

    2001-01-01

    Experimental evidence of abnormally deep penetration in some botanical targets by low-energy ion beams is presented. The energy spectra of 818kev He+ ions penetrating a 70μm thick seed coat of maize, fruit peel of grape and of tomato all have a common feature. The leading edges of these broad spectra indicate that some of the penetrating ions pass through the thick targets easily and only lose a small fraction of their initial incident energy. Rutherford backscattering spectrometry and electron microprobe measurements are used to determine the argon concentration in multilayer samples of the seed coat of maize implanted by 200 kev Ar+ ions. The results show that about 10% of the Ar+ ions can penetrate deeper than ~l00 μm in these samples.

  13. Deep Penetration of Charged Particles in Biological Samples

    Science.gov (United States)

    Wang, Rui-Jin; Xia, Yue-Yuan; Mu, Yu-Guang; Zhao, Ming-Wen; Ma, Yu-Chen; Liu, Xiang-Dong; Zhang, Jian-Hua; Liu, Ji-Tian; Yu, Zeng-Liang

    2001-02-01

    Experimental evidence of abnormally deep penetration in some botanical targets by low-energy ion beams is presented. The energy spectra of 818 keV He+ ions penetrating a 70 µm thick seed coat of maize, fruit peel of grape and of tomato all have a common feature. The leading edges of these broad spectra indicate that some of the penetrating ions pass through the thick targets easily and only lose a small fraction of their initial incident energy. Rutherford backscattering spectrometry and electron microprobe measurements are used to determine the argon concentration in multilayer samples of the seed coat of maize implanted by 200 keV Ar+ ions. The results show that about 10% of the Ar+ ions can penetrate deeper than ~100 µm in these samples.

  14. Micro-differential scanning calorimeter for liquid biological samples

    Science.gov (United States)

    Wang, Shuyu; Yu, Shifeng; Siedler, Michael S.; Ihnat, Peter M.; Filoti, Dana I.; Lu, Ming; Zuo, Lei

    2016-10-01

    We developed an ultrasensitive micro-DSC (differential scanning calorimeter) for liquid protein sample characterization. This design integrated vanadium oxide thermistors and flexible polymer substrates with microfluidics chambers to achieve a high sensitivity (6 V/W), low thermal conductivity (0.7 mW/K), high power resolutions (40 nW), and well-defined liquid volume (1 μl) calorimeter sensor in a compact and cost-effective way. We further demonstrated the performance of the sensor with lysozyme unfolding. The measured transition temperature and enthalpy change were in accordance with the previous literature data. This micro-DSC could potentially raise the prospect of high-throughput biochemical measurement by parallel operation with miniaturized sample consumption.

  15. Characterization of the angular memory effect of scattered light in biological tissues

    Science.gov (United States)

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-01

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues. It therefore grants access to superficial layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations (`angular memory effect') are of very short range and, in theory, only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range (and thus the possible field-of-view) by more than an order of magnitude compared to isotropic scattering for $\\sim$1\\,mm thick tissue layers.

  16. Characterization of the angular memory effect of scattered light in biological tissues

    CERN Document Server

    Schott, Sam; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-01-01

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues. It therefore grants access to superficial layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations (`angular memory effect') are of very short range and, in theory, only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range (and thus the possible field-of-view) by more than an order of magnitude compared to isotropic scattering for $\\sim$1\\,mm thick tissue layers.

  17. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo

    2015-01-01

    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications.

  18. Numerical study of water diffusion in biological tissues using an improved finite difference method.

    Science.gov (United States)

    Xu, Junzhong; Does, Mark D; Gore, John C

    2007-04-07

    An improved finite difference (FD) method has been developed in order to calculate the behaviour of the nuclear magnetic resonance signal variations caused by water diffusion in biological tissues more accurately and efficiently. The algorithm converts the conventional image-based finite difference method into a convenient matrix-based approach and includes a revised periodic boundary condition which eliminates the edge effects caused by artificial boundaries in conventional FD methods. Simulated results for some modelled tissues are consistent with analytical solutions for commonly used diffusion-weighted pulse sequences, whereas the improved FD method shows improved efficiency and accuracy. A tightly coupled parallel computing approach was also developed to implement the FD methods to enable large-scale simulations of realistic biological tissues. The potential applications of the improved FD method for understanding diffusion in tissues are also discussed.

  19. [Biological Role of Oligomerny Matriksny of Protein of the Cartilage in Exchange Processes Connecting Tissue].

    Science.gov (United States)

    Belova, Yu S

    2015-01-01

    In the review the literary data on studying of biological role of a oligomerny matriksny of protein of the cartilage in exchange processes connecting tissue at people and animals are provided, and also results of own researches on definition of a oligomerny matriksny of protein of the cartilage as a modern marker of a metabolism of an articulate cartilage at children from undifferentiated displaziy conjunctive tissue are briefly described.

  20. Biology and potential clinical implications of tissue inhibitor of metalloproteinases-1 in colorectal cancer treatment

    DEFF Research Database (Denmark)

    Sørensen, Nanna Møller; Sørensen, irene Vejgaard; Würtz, Sidse Ørnbjerg

    2008-01-01

    be such a marker. TIMP-1 inhibits the proteolytic activity of metalloproteinases, which are centrally involved in tumour invasion and metastases. However, in clinical investigations high tumour tissue or plasma levels of TIMP-1 have shown a strong and independent association with a shorter survival time in CRC...... knowledge of the biology of TIMP-1 as well as the potential use of TIMP-1 as a biological marker in the management of CRC patients....

  1. Nanocharacterization of Soft Biological Samples in Shear Mode with Quartz Tuning Fork Probes

    OpenAIRE

    Manel Puig-Vidal; Laura Gonzalez; Jorge Otero

    2012-01-01

    Quartz tuning forks are extremely good resonators and their use is growing in scanning probe microscopy. Nevertheless, only a few studies on soft biological samples have been reported using these probes. In this work, we present the methodology to develop and use these nanosensors to properly work with biological samples. The working principles, fabrication and experimental setup are presented. The results in the nanocharacterization of different samples in different ambients are presented by...

  2. Serum and tissue PIVKA-II expression reflect the biological malignant potential of small hepatocellular carcinoma.

    Science.gov (United States)

    Tamano, Masaya; Sugaya, Hitoshi; Oguma, Motoo; Iijima, Makoto; Yoneda, Masashi; Murohisa, Toshimitsu; Kojima, Kazuo; Kuniyoshi, Toru; Majima, Yuichi; Hashimoto, Takashi; Terano, Akira

    2002-04-01

    A sensitive method for measuring the serum level of protein-induced by vitamin K absence or antagonist II (PIVKA-II) has become so widely available that it is now used for the clinical diagnosis of small hepatocellular carcinoma (HCC). It is known that serum PIVKA-II can be a prognostic indicator for HCC, but there have been no detailed investigations concerning the tissue expression of PIVKA-II. The present study assessed the relationship between serum or tissue PIVKA-II and the biological malignant potential of HCC. The subjects were 25 patients with histologically confirmed HCC, that were solitary and 3 cm or less in diameter. Tissue PIVKA-II was detected by immunostaining using MU-3 as the primary antibody. The biological malignant potential of the tumors was evaluated on the basis of the Ki-67 labeling index of HCC cells and the tumor arterial vascularity assesed by angiography and CO(2) enhanced ultrasonography. The recurrence-free period after treatment was also evaluated. Among the 25 patients, eight were positive for tissue PIVKA-II. Serum PIVKA-II levels were significantly higher in the tissue PIVKA-II-positive patients compared with the negative patients, but serum and tissue PIVKA-II expressions were not consistently parallel. Tumor cell proliferation was closely correlated with the tissue PIVKA-II expression, while the recurrence-free period was correlated with the serum PIVKA-II level. Tumor arterial vascularity showed a strong correlation with the expression of both serum and tissue PIVKA-II. In conclusion, serum and tissue PIVKA-II expression reflect the biological malignant potential of HCC and thus may be useful indicators for the prognosis of small HCC.

  3. Multiphoton imaging of biological samples during freezing and heating

    Science.gov (United States)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2014-02-01

    We applied multiphoton microscopic imaging to observe freezing and heating effects in plant- and animal cell samples. The experimental setups consisted of a multiphoton imaging system and a heating and cooling stage which allows for precise temperature control from liquid nitrogen temperature (-196°C 77 K) up to +600°C (873 K) with heating/freezing rates between 0.01 K/min and 150 K/min. Two multiphoton imaging systems were used: a system based on a modified optical microscope and a flexible mobile system. To illustrate the imaging capabilities, plant leafs as well as animal cells were microscopically imaged in vivo during freezing based on autofluorescence lifetime and intensity of intrinsic molecules. The measurements illustrate the usefulness of multiphoton imaging to investigate freezing effects on animal and plant cells.

  4. Comparative analysis of toxin detection in biological and enviromental samples

    Science.gov (United States)

    Ogert, Robert A.; Burans, James; O'Brien, Tom; Ligler, Frances S.

    1994-03-01

    The basic recognition schemes underlying the principles of standard enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) protocols are increasingly being adapted for use with new detection devices. A direct comparison was made using a fiber optic biosensor that employs evanescent wave detection and an ELISA using avidin-biotin. The assays were developed for the detection of Ricinus communis agglutinin II, also known as ricin or RCA60. Detection limits between the two methods were comparable for ricin in phosphate buffered saline (PBS), however results in complex samples differed slightly. In PBS, sensitivity for ricin was 1 ng/ml using the fiber optic device and 500 pg/ml using the ELISA. The fiber optic sensor could not detect ricin directly in urine or serum spiked with 5 ng/ml ricin, however, the ELISA showed detection but at reduced levels to the PBS control.

  5. Spatial transcriptomics: paving the way for tissue-level systems biology.

    Science.gov (United States)

    Moor, Andreas E; Itzkovitz, Shalev

    2017-03-24

    The tissues in our bodies are complex systems composed of diverse cell types that often interact in highly structured repeating anatomical units. External gradients of morphogens, directional blood flow, as well as the secretion and absorption of materials by cells generate distinct microenvironments at different tissue coordinates. Such spatial heterogeneity enables optimized function through division of labor among cells. Unraveling the design principles that govern this spatial division of labor requires techniques to quantify the entire transcriptomes of cells while accounting for their spatial coordinates. In this review we describe how recent advances in spatial transcriptomics open the way for tissue-level systems biology.

  6. The modeling of the temperature field formed inside multilayered biological tissue under laser emission

    Science.gov (United States)

    Kulikov, Kirill

    2009-07-01

    The mathematical model the hyperthermy of the multilayer biological structure under the effect of laser emission is proposed. One allows to variate the electrophysical parameters of the biological structure (complex parameter of refraction of the blood and blood corpuscles, epidermis, the upper layer of derma, the lower layer of derma), the significant dimensions of the regular elements of the blood and to establish dependencies between them and by the biophysical properties of the blood taking into account heating biological tissue under the influence on its surface flow of the nonpolarized monochromatic radiation for the case in vivo.

  7. Epigenome-wide profiling of DNA methylation in paired samples of adipose tissue and blood.

    Science.gov (United States)

    Huang, Yen-Tsung; Chu, Su; Loucks, Eric B; Lin, Chien-Ling; Eaton, Charles B; Buka, Stephen L; Kelsey, Karl T

    2016-03-03

    Many epigenetic association studies have attempted to identify DNA methylation markers in blood that are able to mirror those in target tissues. Although some have suggested potential utility of surrogate epigenetic markers in blood, few studies have collected data to directly compare DNA methylation across tissues from the same individuals. Here, epigenomic data were collected from adipose tissue and blood in 143 subjects using Illumina HumanMethylation450 BeadChip array. The top axis of epigenome-wide variation differentiates adipose tissue from blood, which is confirmed internally using cross-validation and externally with independent data from the two tissues. We identified 1,285 discordant genes and 1,961 concordant genes between blood and adipose tissue. RNA expression data of the two classes of genes show consistent patterns with those observed in DNA methylation. The discordant genes are enriched in biological functions related to immune response, leukocyte activation or differentiation, and blood coagulation. We distinguish the CpG-specific correlation from the within-subject correlation and emphasize that the magnitude of within-subject correlation does not guarantee the utility of surrogate epigenetic markers. The study reinforces the critical role of DNA methylation in regulating gene expression and cellular phenotypes across tissues, and highlights the caveats of using methylation markers in blood to mirror the corresponding profile in the target tissue.

  8. Efficient and scalable serial extraction of DNA and RNA from frozen tissue samples.

    Science.gov (United States)

    Mathot, Lucy; Lindman, Monica; Sjöblom, Tobias

    2011-01-07

    Advances in cancer genomics have created a demand for scalable sample processing. We here present a process for serial extraction of nucleic acids from the same frozen tissue sample based on magnetic silica particles. The process is automation friendly with high recoveries of pure DNA and RNA suitable for analysis.

  9. Theoretical analysis of AC electric field transmission into biological tissue through frozen saline for electroporation.

    Science.gov (United States)

    Xiao, Chunyan; Rubinsky, Boris

    2014-12-01

    An analytical model was used to explore the feasibility of sinusoidal electric field transmission across a frozen saline layer into biological tissue. The study is relevant to electroporation and permeabilization of the cell membrane by electric fields. The concept was analyzed for frequencies in the range of conventional electroporation frequencies and electric field intensity. Theoretical analysis for a variety of tissues show that the transmission of electroporation type electric fields through a layer of frozen saline into tissue is feasible and the behavior of this composite system depends on tissue type, frozen domain temperature, and frequency. Freezing could become a valuable method for adherence of electroporation electrodes to moving tissue surfaces, such as the heart in the treatment of atrial fibrillation or blood vessels for the treatment of restenosis.

  10. Plasmophore sensitized imaging of ammonia release from biological tissues using optodes.

    Science.gov (United States)

    Strömberg, Niklas; Hakonen, Aron

    2011-10-17

    A plasmophore sensitized optode was developed for imaging ammonia (NH(3)) concentrations in muscle tissues. The developed ammonia sensor and an equivalent non plasmophore version of the sensor were tested side by side to compare their limit of detection, dynamic range, reversibility and overall imaging quality. Bio-degradation patterns of ammonia release from lean porcine skeletal muscle were studied over a period of 11 days. We demonstrate that ammonia concentrations ranging from 10nM can be quantified reversibly with an optical resolution of 127 μm in a sample area of 25 mm × 35 mm. The plasmophore ammonia optode showed improved reversibility, less false pixels and a 2 nM ammonia detection limit compared to 200 nM for the non-plasmophore sensor. Main principles of the sensing mechanism include ammonia transfer over a gas permeable film, ammonia protonation, nonactin facilitated merocyanine-ammonium coextraction and plasmophore enhancement. The vast signal improvement is suggested to rely on solvatochroism, nanoparticle scattering and plasmonic interactions that are utilized constructively in a fluorescence ratio. In addition to fundamental medicinal and biological research applications in tissue physiology, reversible ammonia quantification will be possible for a majority of demanding imaging and non imaging applications such as monitoring of low ammonia background concentrations in air and non-invasive medicinal diagnosis through medical breath or saliva analysis. The nanoparticle doped sensor constitutes a highly competitive technique for ammonia sensing in complex matrixes and the general sensing scheme offers new possibilities for the development of artificial optical noses and tongues.

  11. Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces

    NARCIS (Netherlands)

    Abayazid, M.; Lopes da Frota Moreira, P.; Shahriari, N.; Patil, S.; Alterovitz, Ron; Misra, S.

    2015-01-01

    In this paper, we present a system capable of automatically steering a bevel-tipped flexible needle under ultrasound guidance toward a physical target while avoiding a physical obstacle embedded in gelatin phantoms and biological tissue with curved surfaces. An ultrasound pre-operative scan is perfo

  12. Experimental evaluation of ultrasound-guided 3D needle steering in biological tissue

    NARCIS (Netherlands)

    Abayazid, M.; Vrooijink, G.J.; Patil, Sachin; Alterovitz, Ron; Misra, S.

    2014-01-01

    Purpose In this paper, we present a system capable of automatically steering bevel tip flexible needles under ultrasound guidance toward stationary and moving targets in gelatin phantoms and biological tissue while avoiding stationary and moving obstacles. We use three-dimensional (3D) ultrasound to

  13. Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy

    NARCIS (Netherlands)

    Turnhout, van M.C.; Kranenbarg, S.; Leeuwen, van J.L.

    2009-01-01

    Quantitative polarized light microscopy (qPLM) is a popular tool for the investigation of birefringent architectures in biological tissues. Collagen, the most abundant protein in mammals, is such a birefringent material. Interpretation of results of qPLM in terms of collagen network architecture and

  14. OPTICAL COMPUTING: Analysis of the tomographic contrast during the immersion bleaching of layered biological tissues

    Science.gov (United States)

    Prokhorov, I. V.; Yarovenko, I. P.

    2010-01-01

    The control of optical properties of biological tissues irradiated by a cw laser source is considered. Within the framework of the stationary model of the radiation transfer, basic factors affecting the tomographic contrast of a layered medium are revealed theoretically and numerically, when immersion liquids, decreasing the radiation scattering level in a medium, are used.

  15. Tissue inhibitor of metalloproteinases-1 as a biological marker ?in colorectal cancer

    DEFF Research Database (Denmark)

    Rasmussen, Louise; Ladelund, Steen; Brünner, Nils Aage;

    2013-01-01

    At present plasma tissue inhibitor of metalloproteinases-1 (TIMP-1) is undergoing validation as a biological marker in colorectal cancer (CRC). The clinical implementation of plasma TIMP-1 in prognosis, prediction, screening and monitoring CRC requires robust information as to the influence...

  16. A new liquid chromatography-tandem mass spectrometry method for determination of parabens in human placental tissue samples.

    Science.gov (United States)

    Jiménez-Díaz, I; Vela-Soria, F; Zafra-Gómez, A; Navalón, A; Ballesteros, O; Navea, N; Fernández, M F; Olea, N; Vílchez, J L

    2011-05-15

    Endocrine disruptors are a group of organic compounds widely used, which are ubiquitous in the environment and in biological samples. The main effect of these compounds is associated with their ability to mimic or block the action of natural hormones in living organisms, including humans. Parabens (esters of p-hydroxybenzoic acid) belong to this group of compounds. In this work, we propose a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to asses the presence of parabens most commonly used in industrial applications (methyl-, ethyl-, propyl- and butyl-paraben) in samples of human placental tissue. The method involves the extraction of the analytes from the samples using ethyl acetate, followed by a clean-up step using centrifugation prior to their quantification by LC-MS/MS using an atmospheric pressure chemical ionization (APCI) interface in the negative mode. Deuterated bisphenol A (BPA-d(16)) was used as surrogate. Found detection limits (LOD) ranged from 0.03 to 0.06 ng g(-1) and quantification limits (LOQ) from 0.1 to 0.2 ng g(-1), while inter- and intra-day variability was under 13.8%. The method was validated using standard addition calibration and a spike recovery assay. Recovery rates for spiked samples ranged from 82% to 108%. This method was satisfactorily applied for the determination of parabens in 50 placental tissue samples collected from women who live in the province of Granada (Spain).

  17. Standard reporting requirements for biological samples in metabolomics experiments: Microbial and in vitro biology experiments

    NARCIS (Netherlands)

    Werf, M.J. van der; Takors, R.; Smedsgaard, J.; Nielsen, J.; Ferenci, T.; Portais, J.C.; Wittmann, C.; Hooks, M.; Tomassini, A.; Oldiges, M.; Fostel, J.; Sauer, U.

    2007-01-01

    With the increasing use of metabolomics as a means to study a large number of different biological research questions, there is a need for a minimal set of reporting standards that allow the scientific community to evaluate, understand, repeat, compare and re-investigate metabolomics studies. Here w

  18. Sample Preparation and Staining Methods for Two-Dimensional Polyacrylamide Gel Electrophoresis of Proteins from Animal Tissues

    Directory of Open Access Journals (Sweden)

    Levente Czegledi

    2010-05-01

    Full Text Available Proteomics in animal science as well as in other biological sciences is a significant tool in the post-genomic era. In proteomic studies the presence and relative abundance of expressed proteins of a cell, tissue or biological fluid is studied. Recently, the whole genome of more and more domestic animal species is known, but genes and the transcribed mRNA have no direct effect on biological systems as they are regulated by proteins, which explain the importance of proteomics. The most common tool in proteomic approach is the two-dimensional polyacrylamide gel electrophoresis (2D PAGE, when proteins are separated by their isoelectric point followed by their mass separation as a second dimension. In this study authors used different sample preparation and protein staining methods on meat,  liver and blood plasma and carried out 2D PAGE experiments. The most appropriate sample preparation methods are described in this paper. We concluded that depletion of major proteins in plasma is required but not necessary for meat and liver samples.

  19. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Chisvert, Alberto, E-mail: alberto.chisvert@uv.es [Departamento de Quimica Analitica, Facultad de Quimica, Universitat de Valencia, Doctor Moliner St. 50, 46100 Burjassot, Valencia (Spain); Leon-Gonzalez, Zacarias [Unidad Analitica, Instituto de Investigacion Sanitaria Fundacion Hospital La Fe, 46009 Valencia (Spain); Tarazona, Isuha; Salvador, Amparo [Departamento de Quimica Analitica, Facultad de Quimica, Universitat de Valencia, Doctor Moliner St. 50, 46100 Burjassot, Valencia (Spain); Giokas, Dimosthenis [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2012-11-08

    Highlights: Black-Right-Pointing-Pointer Papers describing the determination of UV filters in fluids and tissues are reviewed. Black-Right-Pointing-Pointer Matrix complexity and low amounts of analytes require effective sample treatments. Black-Right-Pointing-Pointer The published papers do not cover the study of all the substances allowed as UV filters. Black-Right-Pointing-Pointer New analytical methods for UV filters determination in these matrices are encouraged. - Abstract: Organic UV filters are chemical compounds added to cosmetic sunscreen products in order to protect users from UV solar radiation. The need of broad-spectrum protection to avoid the deleterious effects of solar radiation has triggered a trend in the cosmetic market of including these compounds not only in those exclusively designed for sun protection but also in all types of cosmetic products. Different studies have shown that organic UV filters can be absorbed through the skin after topical application, further metabolized in the body and eventually excreted or bioaccumulated. These percutaneous absorption processes may result in various adverse health effects, such as genotoxicity caused by the generation of free radicals, which can even lead to mutagenic or carcinogenic effects, and estrogenicity, which is associated with the endocrine disruption activity caused by some of these compounds. Due to the absence of official monitoring protocols, there is a demand for analytical methods that enable the determination of UV filters in biological fluids and tissues in order to retrieve more information regarding their behavior in the human body and thus encourage the development of safer cosmetic formulations. In view of this demand, there has recently been a noticeable increase in the development of sensitive and selective analytical methods for the determination of UV filters and their metabolites in biological fluids (i.e., urine, plasma, breast milk and semen) and tissues. The complexity of

  20. Gay and Bisexual Men's Perceptions of the Donation and Use of Human Biological Samples for Research: A Qualitative Study.

    Directory of Open Access Journals (Sweden)

    Chris Patterson

    Full Text Available Human biological samples (biosamples are increasingly important in diagnosing, treating and measuring the prevalence of illnesses. For the gay and bisexual population, biosample research is particularly important for measuring the prevalence of human immunodeficiency virus (HIV. By determining people's understandings of, and attitudes towards, the donation and use of biosamples, researchers can design studies to maximise acceptability and participation. In this study we examine gay and bisexual men's attitudes towards donating biosamples for HIV research. Semi-structured telephone interviews were conducted with 46 gay and bisexual men aged between 18 and 63 recruited in commercial gay scene venues in two Scottish cities. Interview transcripts were analysed thematically using the framework approach. Most men interviewed seemed to have given little prior consideration to the issues. Participants were largely supportive of donating tissue for medical research purposes, and often favourable towards samples being stored, reused and shared. Support was often conditional, with common concerns related to: informed consent; the protection of anonymity and confidentiality; the right to withdraw from research; and ownership of samples. Many participants were in favour of the storage and reuse of samples, but expressed concerns related to data security and potential misuse of samples, particularly by commercial organisations. The sensitivity of tissue collection varied between tissue types and collection contexts. Blood, urine, semen and bowel tissue were commonly identified as sensitive, and donating saliva and as unlikely to cause discomfort. To our knowledge, this is the first in-depth study of gay and bisexual men's attitudes towards donating biosamples for HIV research. While most men in this study were supportive of donating tissue for research, some clear areas of concern were identified. We suggest that these minority concerns should be accounted

  1. Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Ramser

    2012-07-01

    Full Text Available This paper reviews microfluidic technologies with emphasis on applications in the fields of pharmacy, biology, and tissue engineering. Design and fabrication of microfluidic systems are discussed with respect to specific biological concerns, such as biocompatibility and cell viability. Recent applications and developments on genetic analysis, cell culture, cell manipulation, biosensors, pathogen detection systems, diagnostic devices, high-throughput screening and biomaterial synthesis for tissue engineering are presented. The pros and cons of materials like polydimethylsiloxane (PDMS, polymethylmethacrylate (PMMA, polystyrene (PS, polycarbonate (PC, cyclic olefin copolymer (COC, glass, and silicon are discussed in terms of biocompatibility and fabrication aspects. Microfluidic devices are widely used in life sciences. Here, commercialization and research trends of microfluidics as new, easy to use, and cost-effective measurement tools at the cell/tissue level are critically reviewed.

  2. Broth versus solid agar culture of swab samples of cadaveric allograft musculoskeletal tissue.

    Science.gov (United States)

    Varettas, Kerry

    2013-12-01

    As part of the donor assessment protocol, bioburden assessment must be performed on allograft musculoskeletal tissue samples collected at the time of tissue retrieval. Swab samples of musculoskeletal tissue allografts from cadaveric donors are received at the microbiology department of the South Eastern Area Laboratory Services (Australia) to determine the presence of bacteria and fungi. This study will review the isolation rate of organisms from solid agar and broth culture of swab samples of cadaveric allograft musculoskeletal tissue over a 6-year period, 2006-2011. Swabs were inoculated onto horse blood agar (anaerobic, 35 °C) and chocolate agar (CO2, 35 °C) and then placed into a cooked meat broth (aerobic, 35 °C). A total of 1,912 swabs from 389 donors were received during the study period. 557 (29.1 %) swabs were culture positive with the isolation of 713 organisms, 249 (34.9 %) from solid agar culture and an additional 464 (65.1 %) from broth culture only. This study has shown that the broth culture of cadaveric allograft musculoskeletal swab samples recovered a greater amount of organisms than solid agar culture. Isolates such as Clostridium species and Staphylococcus aureus would not have been isolated from solid agar culture alone. Broth culture is an essential part of the bioburden assessment protocol of swab samples of cadaveric allograft musculoskeletal tissue in this laboratory.

  3. Mucosal Incision and Forceps Biopsy for Reliable Tissue Sampling of Gastric Subepithelial Tumors

    Science.gov (United States)

    Shin, Sa Young; Lee, Sang Jin; Jun, Jae Hyuck; Park, Jong Kyu; Seo, Hyun Il; Han, Koon Hee; Kim, Young Don; Jeong, Woo Jin; Cheon, Gab Jin

    2017-01-01

    Background/Aims The diagnostic efficacy of current tissue sampling techniques for gastric subepithelial tumors (SETs) is limited. Better tissue sampling techniques are needed to improve pathological diagnosis. The aim of this study was to evaluate the safety and efficacy of a new technique, mucosal incision and forceps biopsy, for reliable tissue sampling of gastric SETs. Methods This study enrolled 12 consecutive patients who underwent mucosal incision and forceps biopsy of gastric SETs between November 2011 and September 2014 at Gangneung Asan Hospital. The medical records of patients were reviewed retrospectively. The safety and diagnostic yield of this method were evaluated. Results By performing mucosal incision and forceps biopsy, we were able to provide a definitive histological diagnosis for 11 out of 12 cases. The pathological diagnoses were leiomyoma (3/11), gastrointestinal stromal tumor (GIST; 2/11), lipoma (2/11), schwannoma (1/11), and ectopic pancreas (3/11). In cases of leiomyoma (n=3) and GIST (n=2), tissue samples were of sufficient size to allow immunohistochemical staining. In addition, the mitotic index was evaluated in two cases of GIST. There were no procedure-related complications. Conclusions Mucosal incision and forceps biopsy can be used as one of several methods to obtain adequate tissue samples from gastric SETs. PMID:26942580

  4. X-ray scattering for the characterization of lyophilized breast tissue samples

    Science.gov (United States)

    Elshemey, Wael M.; Mohamed, Fayrouz S.; Khater, Ibrahim M.

    2013-09-01

    This work investigates the possibility of characterizing breast cancer by measuring the X-ray scattering profiles of lyophilized excised breast tissue samples. Since X-ray scattering from water-rich tissue is dominated by scattering from water, the removal of water by lyophilization would enhance the characterization process. In the present study, X-ray scattering profiles of 22 normal, 22 malignant and 10 benign breast tissue samples are measured. The cut-offs of scatter diagrams, sensitivity, specificity and diagnostic accuracy of three characterization parameters (full width at half maximum (FWHM) for the peak at 1.1 nm-1, area under curve (AUC), and ratio of 1st to 2nd scattering peak intensities (I1/I2%)) are calculated and compared to the data from non-lyophilized samples. Results show increased sensitivity (up to 100%) of the present data on lyophilized breast tissue samples compared to previously reported data for non-lyophilized samples while the specificity (up to 95.4%), diagnostic accuracy (up to 95.4%) and receiver operating characteristic (ROC) curve values (up to 0.9979) for both sets of data are comparable. The present study shows significant differences between normal samples and each of malignant and benign samples. Only subtle differences exist between malignant and benign lyophilized breast tissue samples where FWHM=0.7±0.1 and 0.8±0.3, AUC=1.3±0.2 and 1.4±0.2 and I1/I2%=44.9±11.0 and 52.4±7.6 for malignant and benign samples respectively.

  5. Environmental contaminants in water, sediment and biological samples from Playa Lakes in southeastern New Mexico - 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment, water, bird tissue, and invertebrates were collected from 10 playa lakes in Southeastern New Mexico in 1991 and 1992. These samples were analyzed for a...

  6. Robotic, MEMS-based Multi Utility Sample Preparation Instrument for ISS Biological Workstation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a multi-functional, automated sample preparation instrument for biological wet-lab workstations on the ISS. The instrument is based on a...

  7. A multiscale analysis of nutrient transport and biological tissue growth in vitro

    KAUST Repository

    O'Dea, R. D.

    2014-10-15

    © The authors 2014. In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterized by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport, and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection-reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally relevant microstructural information to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.

  8. Biological Effects of Laser Radiation. Volume IV. Optical Second Harmonic Generation in Biological Tissues.

    Science.gov (United States)

    1978-10-17

    efficiency of CC1 4 . The parameter values used in this computacion are listed below. -30 9/2 -1/2a) 8-6.24 x 10 cm erg for f - 1, and assuming imaginary...the desired temperature had been reached. When the samples were immersed in the preheated water, the test nube water temperature remained within + 1C of

  9. Nitrous oxide determination in postmortem biological samples: a case of serial fatal poisoning in a public hospital.

    Science.gov (United States)

    Poli, Diana; Gagliano-Candela, Roberto; Strisciullo, Giuseppe; Colucci, Anna P; Strada, Luigi; Laviola, Domenica; Goldoni, Matteo; Mutti, Antonio

    2010-01-01

    In a public hospital, eight cases of fatal poisoning by nitrous oxide (N(2)O) occurred under oxygen administration, due to an erroneous swapping of the lines in the gas system. The aim of the study was to clarify the factors involved in asphyxia by characterizing gases from different lines and measuring N(2)O concentrations in postmortem biological samples from bodies exhumed. Analyses carried out on the gas system confirmed the erroneous substitution of O(2) line with N(2)O and air line with O(2). Consequently, high N(2)O amounts were revealed in several tissues and gaseous biological samples. All specimens were analyzed by headspace gas chromatography technique. A rigorous quantitative analysis was possible only in blood (11.29-2152.04 mg/L) and urine (95.11 mg/L) and in air samples from stomach and trachea (from 5.28 to 83.63 g/m(3)). This study demonstrates that N(2)O can be detected in biological samples even 1 month after death.

  10. Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects.

    Science.gov (United States)

    Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V

    2015-09-01

    The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as

  11. A method for the determination of D-kynurenine in biological tissues.

    Science.gov (United States)

    Wang, Xiao-Dan; Horning, Kyle J; Notarangelo, Francesca M; Schwarcz, Robert

    2013-12-01

    D-kynurenine (D-KYN), a metabolite of D-tryptophan, can serve as the bioprecursor of kynurenic acid (KYNA) and 3-hydroxykynurenine, two neuroactive compounds that are believed to play a role in the pathophysiology of several neurological and psychiatric diseases. In order to investigate the possible presence of D-KYN in biological tissues, we developed a novel assay based on the conversion of D-KYN to KYNA by purified D-amino acid oxidase (D-AAO). Samples were incubated with D-AAO under optimal conditions for measuring D-AAO activity (100 mM borate buffer, pH 9.0), and newly produced KYNA was detected by high-performance liquid chromatography (HPLC) with fluorimetric detection. The detection limit for D-KYN was 300 fmol, and linearity of the assay was ascertained up to 300 pmol. No assay interference was noted when other D-amino acids, including D-serine and D-aspartate, were present in the incubation mixture at 50-fold higher concentrations than D-KYN. Using this new method, D-KYN was readily detected in the brain, liver, and plasma of mice treated systemically with D-KYN (300 mg/kg). In these experiments, enantioselectivity was confirmed by determining total kynurenine levels in the same samples using a conventional HPLC assay. Availability of a sensitive, specific, and simple method for D-KYN measurement will be instrumental for evaluating whether D-KYN should be considered for a role in physiology and pathology.

  12. Sample preparation strategies for food and biological samples prior to nanoparticle detection and imaging

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Löschner, Katrin

    2014-01-01

    fractionation (AFFF, or AF4) coupled on-line to various detectors including static and dynamic light scattering (LS), UV or fluorescence (FL) spectroscopies and ICP-MS have proven useful and powerful [1, 2, 3]. Furthermore, additional information obtained by an imaging method such as transmission electron...... microscopy (TEM) proved to be necessary for trouble shooting of results obtained from AFFF-LS-ICP-MS. Aqueous and enzymatic extraction strategies were tested for thorough sample preparation aiming at degrading the sample matrix and to liberate the AgNPs from chicken meat into liquid suspension. The resulting...

  13. Acoustic pressure amplitude thresholds for rectified diffusion in gaseous microbubbles in biological tissue

    DEFF Research Database (Denmark)

    Lewin, Peter A.; Jensen, Leif Bjørnø

    1981-01-01

    One of the mechanisms often suggested for the biological action of ultrasonic beams irradiating human tissues is concerned with the presence in the tissues of minute gaseous bubbles which may, under the influence of the ultrasonic field be stimulated to grow to a size at which resonance or collapse...... occurs with severe associated shear stresses. The evidence for the existence of microbubbles in tissues is reviewed. The results of calculations, using two existing theoretical models, of the peak pressure threshold as a function of frequency are presented. The frequency is normalized with the resonant...... frequency of the bubble, and results are presented for three bubble radii (1, 2, and 3.5 µm) and for different values of the gas concentration in the tissue between 0.1 and 1. The results from two models differ suggesting that an improved model and better experimental data for the threshold calculations...

  14. Sample processing considerations for detecting copy number changes in formalin-fixed, paraffin-embedded tissues.

    Science.gov (United States)

    Jacobs, Sharoni

    2012-11-01

    The Whole Genome Sampling Analysis (WGSA) assay in combination with Affymetrix GeneChip Mapping Arrays is used for copy number analysis of high-quality DNA samples (i.e., samples that have been collected from blood, fresh or frozen tissue, or cell lines). Formalin-fixed, paraffin-embedded (FFPE) samples, however, represent the most prevalent form of archived clinical samples, but they provide additional challenges for molecular assays. FFPE processing usually results in the degradation of FFPE DNA and in the contamination and chemical modification of these DNA samples. Because of these issues, FFPE DNA is not suitable for all molecular assays designed for high-quality DNA samples. Strategies recommended for processing FFPE DNA samples through WGSA and to the Mapping arrays are described here.

  15. Substrate-zymography: a still worthwhile method for gelatinases analysis in biological samples.

    Science.gov (United States)

    Ricci, Serena; D'Esposito, Vittoria; Oriente, Francesco; Formisano, Pietro; Di Carlo, Angelina

    2016-08-01

    Matrix metallo-proteinases (MMPs) are a family of zinc-dependent endopeptidases, capable of degrading all the molecular components of extracellular matrix. A class of MMPs is gelatinases which includes gelatinase A or MMP-2 (72 kDa) and gelatinase B or MMP-9 (92 kDa), which have been shown to play critical roles in pathophysiology of many human disease and, in particular, cancer progression. For these reasons they obtained a great interest as potential non-invasive biomarker in providing useful clinical information in cancer diagnosis and therapy. A sensitive and unexpensive method for analysis of gelatinases is the gelatine zymography, which allows to measure the relative amounts of active and inactive enzymes in body fluids and tissue extracts. The procedure involves the electrophoretic separation of proteins under denaturing but non reducing conditions through a polyacrylamide gel containing a synthetic substrate (gelatin). The aim of this mini-review has been to describe the general principles of gelatine zymography technique, underling the main advantages and disadvantages. Even though an improvement of this method is necessary for a better applicability in laboratory medicine, gelatine zymography represents the most convenient method to detect the activity of the different gelatinases from a wide range of biological samples.

  16. Microfluidic devices for sample clean-up and screening of biological samples

    NARCIS (Netherlands)

    Tetala, K.K.R.

    2009-01-01

    Analytical chemistry plays an important role in the separation and identification of analytes from raw samples (e.g. plant extracts, blood), but the whole analytical process is tedious, difficult to automate and time consuming. To overcome these drawbacks, the concept of μTAS (miniaturized total ana

  17. Chiral analysis of amphetamines, methadone and metabolites in biological samples by electrodriven methods.

    Science.gov (United States)

    Mandrioli, Roberto; Mercolini, Laura; Raggi, Maria A

    2011-10-01

    Amphetamines and methadone are synthetic chiral drugs with a high potential for abuse. As such, several analytical methods have been developed for their enantioseparation and analysis in biological tissues, and some of these are based on electrodriven techniques. In this review, the most important and recent of these latter methods are reviewed and their main advantages and disadvantages are discussed. Particular attention is paid to the suitability of each method for the application to the biological matrix of interest: while all methods have been successfully applied for one or more biological tissues, to reach this goal they must overcome the sensitivity problem that is common to almost all capillary electrophoretic techniques. Most methods use one or more cyclodextrin derivatives as the chiral selector, thus the separation mechanism is not particularly complicated or unusual.

  18. Magnetoacoustic tomography with magnetic induction (MAT-MI) for imaging electrical conductivity of biological tissue: a tutorial review

    Science.gov (United States)

    Li, Xu; Yu, Kai; He, Bin

    2016-09-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging method developed to map electrical conductivity of biological tissue with millimeter level spatial resolution. In MAT-MI, a time-varying magnetic stimulation is applied to induce eddy current inside the conductive tissue sample. In the presence of a static magnetic field, the Lorentz force acting on the induced eddy current drives mechanical vibrations producing detectable ultrasound signals. These ultrasound signals can then be acquired to reconstruct a map related to the sample’s electrical conductivity contrast. This work reviews fundamental ideas of MAT-MI and major techniques developed in recent years. First, the physical mechanisms underlying MAT-MI imaging are described, including the magnetic induction and Lorentz force induced acoustic wave propagation. Second, experimental setups and various imaging strategies for MAT-MI are reviewed and compared, together with the corresponding experimental results. In addition, as a recently developed reverse mode of MAT-MI, magneto-acousto-electrical tomography with magnetic induction is briefly reviewed in terms of its theory and experimental studies. Finally, we give our opinions on existing challenges and future directions for MAT-MI research. With all the reported and future technical advancement, MAT-MI has the potential to become an important noninvasive modality for electrical conductivity imaging of biological tissue.

  19. Collecting and Storing Tissue, Blood, and Bone Marrow Samples From Patients With Rhabdomyosarcoma or Other Soft Tissue Sarcoma

    Science.gov (United States)

    2016-09-23

    Adult Rhabdomyosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Previously Untreated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  20. Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry

    Science.gov (United States)

    Mounfield, William P.; Garrett, Timothy J.

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  1. Use of Mesothelial Cells and Biological Matrices for Tissue Engineering of Simple Epithelium Surrogates

    Science.gov (United States)

    Lachaud, Christian Claude; Rodriguez-Campins, Berta; Hmadcha, Abdelkrim; Soria, Bernat

    2015-01-01

    Tissue-engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large celomic cavities (peritoneal, pericardial, and pleural) and internal organs housed inside. Interestingly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable, and non-immunogenic) may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions. PMID:26347862

  2. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology.

    Science.gov (United States)

    Marciniak, Anja; Cohrs, Christian M; Tsata, Vasiliki; Chouinard, Julie A; Selck, Claudia; Stertmann, Julia; Reichelt, Saskia; Rose, Tobias; Ehehalt, Florian; Weitz, Jürgen; Solimena, Michele; Slak Rupnik, Marjan; Speier, Stephan

    2014-12-01

    Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.

  3. [Detection of bovine leukaemia virus (BLV) in tissue samples of naturally and experimentally infected cattle].

    Science.gov (United States)

    Teifke, Jens P; Vahlenkamp, Thomas W

    2008-01-01

    Enzootic bovine leukaemia (EBL) which is caused by the bovine leukaemia virus (BLV) still plays a remarkable role despite a significant success in sanitation programmes. In the Federal Republic of Germany it was not possible to eradicate the disease until today. Sporadically during slaughter or necropsy of cattle neoplastic lesions of the lymphatic tissues are observed that need to be clarified with regard to BLV as etiological agent. Due to the fact that in most instances no serological data are available from the respective animals and blood drawings from the original holdings are not easy to obtain the polymerase chain reaction (PCR) opens new avenues as supplementary diagnostic tool to test unfixed lymphatic tissues for the presence of BLV proviral DNA. Lymph node tissues from 10 naturally or experimentally BLV-infected cattle, which have been monitored virologically and serologically, and tissues from 4 negative animals were processed, DNA was extracted and subjected to PCR to amplify BLV env gene specific sequences. The results show that in cattle with BLV-induced leukosis as well as in cattle, which were clinically healthy and unsuspicious at slaughter or at post-mortem, either with persistent lymphocytosis (PL) or without, BLV proviral DNA could be detected easily in samples of lymphatic tissues and in high concordance with serological data. In this article data from the National and OIE reference laboratory for EBL at the Friedrich-Loeffler-Institut (FLI, Germany) are presented. Elaborated laboratory protocols for processing of tissue samples and performing of BLV-PCR are recommended.

  4. Procedures for cryogenic X-ray ptychographic imaging of biological samples

    Science.gov (United States)

    Yusuf, M.; Zhang, F.; Chen, B.; Bhartiya, A.; Cunnea, K.; Wagner, U.; Cacho-Nerin, F.; Schwenke, J.; Robinson, I. K.

    2017-01-01

    Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This manuscript describes the equipment and experimental procedures as well as the authors’ first ptychographic reconstructions using X-rays.

  5. Procedures for cryogenic X-ray ptychographic imaging of biological samples.

    Science.gov (United States)

    Yusuf, M; Zhang, F; Chen, B; Bhartiya, A; Cunnea, K; Wagner, U; Cacho-Nerin, F; Schwenke, J; Robinson, I K

    2017-03-01

    Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This manuscript describes the equipment and experimental procedures as well as the authors' first ptychographic reconstructions using X-rays.

  6. Procedures for cryogenic X-ray ptychographic imaging of biological samples

    Directory of Open Access Journals (Sweden)

    M. Yusuf

    2017-03-01

    Full Text Available Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This manuscript describes the equipment and experimental procedures as well as the authors' first ptychographic reconstructions using X-rays.

  7. Non-destructive evaluation of scientific and biological samples by scattering of 145 keV gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.P.; Sharma, Amandeep; Singh, Bhajan [Physics Department, Punjabi University, Patiala, Punjab 147002 (India); Sandhu, B.S., E-mail: balvir@pbi.ac.i [Physics Department, Punjabi University, Patiala, Punjab 147002 (India)

    2010-09-15

    The objective of present experiment is to assign effective atomic number (Z{sub eff}) to samples of scientific interest (oxides of lanthanoids, also called rare earths, and alloys of lead and tin of known composition) and to measure stable iodine content of tissue (biological sample). An HPGe semiconductor detector, placed at 70{sup o} to the incident beam, detects gamma photons scattered from the sample under investigation. The experiment is performed on various elements with atomic number satisfying, 6 {<=}Z {<=} 82, for 145 keV incident photons. The intensity ratio of Rayleigh to Compton scattered peaks, corrected for photo-peak efficiency of gamma detector and absorption of photons in the sample and air, is plotted as a function of atomic number and constituted a fit curve. From this fit curve, the respective effective atomic numbers of the scientific samples are determined. The agreement of measured values of Z{sub eff} with theoretical calculations is found to be quite satisfactory. The measured intensity ratio from phantom (KI solutions, simulating thyroid content of stable iodine) varies linearly with KI concentration and provides stable iodine content of tissue.

  8. Closer to the native state. Critical evaluation of cryo-techniques for Transmission Electron Microscopy: preparation of biological samples.

    Science.gov (United States)

    Mielanczyk, Lukasz; Matysiak, Natalia; Michalski, Marek; Buldak, Rafal; Wojnicz, Romuald

    2014-01-01

    Over the years Transmission Electron Microscopy (TEM) has evolved into a powerful technique for the structural analysis of cells and tissues at various levels of resolution. However, optimal sample preservation is required to achieve results consistent with reality. During the last few decades, conventional preparation methods have provided most of the knowledge about the ultrastructure of organelles, cells and tissues. Nevertheless, some artefacts can be introduced at all stagesofstandard electron microscopy preparation technique. Instead, rapid freezing techniques preserve biological specimens as close as possible to the native state. Our review focuses on different cryo-preparation approaches, starting from vitrification methods dependent on sample size. Afterwards, we discuss Cryo-Electron Microscopy Of VItreous Sections (CEMOVIS) and the main difficulties associated with this technique. Cryo-Focused Ion Beam (cryo-FIB) is described as a potential alternative for CEMOVIS. Another post-processing route for vitrified samples is freeze substitution and embedding in resin for structural analysis or immunolocalization analysis. Cryo-sectioning according to Tokuyasu is a technique dedicated to high efficiency immunogold labelling. Finally, we introduce hybrid techniques, which combine advantages of primary techniques originally dedicated to different approaches. Hybrid approaches permit to perform the study of difficult-to-fix samples and antigens or help optimize the sample preparation protocol for the integrated Laser and Electron Microscopy (iLEM) technique.

  9. Three dimensional imaging of paraffin embedded human lung tissue samples by micro-computed tomography.

    Directory of Open Access Journals (Sweden)

    Anna E Scott

    Full Text Available Understanding the three-dimensional (3-D micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data.FFPE human lung tissue samples (n = 4 were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging.The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15 mm x 7 mm. Resolution (voxel size 6.7 µm in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections.We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis.

  10. Determination of carbofuran in surface water and biological tissue by sol-gel immunoaffinity extraction and on-line preconcentration/HPLC/UV analysis.

    Science.gov (United States)

    Vera-Avila, Luz E; Márquez-Lira, Bani P; Villanueva, Marcos; Covarrubias, Rosario; Zelada, Gustavo; Thibert, Valérie

    2012-01-15

    A selective and simple analytical method for the trace level determination of carbofuran in complex environmental and biological samples was developed based on immunoaffinity extraction (IAE) followed by on-line preconcentration and HPLC/UV analysis of the purified extract. The immunosorbent for IAE was prepared by sol-gel encapsulation of monoclonal anti-carbofuran antibodies, and was fully characterized for capacity, repeatability, binding strength, binding kinetics and cross-reactivity. Method performance was evaluated with two different types of difficult samples: dam water and methanolic extracts of epithelial cervical-uterine tissue. Linear behavior and quantitative recoveries were obtained from the analysis of samples spiked with carbofuran at 0.2-4 ng/mL (dam water, 50 mL samples) and 10-40 ng/mL (biological tissue extract, 2 mL samples). RSD (n=7) and detection limits were, respectively, 10.1% (spike 0.40 ng/mL) and 0.13 ng/mL for dam water; 8.5% (spike 20 ng/mL) and 5 ng/mL for the biological tissue extract. The excellent sample purification achieved with the IAE column allows precise and accurate determination of carbofuran in complex matrices, even when using non-selective UV detection in the chromatographic analysis.

  11. Concentration of organochlorines in human brain, liver, and adipose tissue autopsy samples from Greenland

    DEFF Research Database (Denmark)

    Dewailly, Éric; Mulvad, Gert; Pedersen, Henning S.;

    1999-01-01

    Organochlorines are persistent lipophilic compounds that accumulate in Inuit people living in circumpolar countries. Organochlorines accumulate as a result of the Inuits' large consumption of sea mammal fat; however, available data are limited to blood lipids, milk fat, and adipose tissue. We...... report results of organochlorine determination in liver, brain, omental fat, and subcutaneous abdominal fat samples collected from deceased Greenlanders between 1992 and 1994. Eleven chlorinated pesticides and 14 polychlorinated biphenyl congeners were measured in tissue lipid extracts by high......-resolution gas chromatography with electron capture detection. Mean concentrations of polychlorinated biphenyls, 2, 2'-bis(4-chlorophenyl)-1,1-dichloroethylene, ss-hexachlorocyclohexane, hexachlorobenzene, mirex, trans-nonachlor, and oxychlordane in adipose tissue samples from Greenlanders were 3-34-fold higher...

  12. An Approximate Numerical Technique for Characterizing Optical Pulse Propagation in Inhomogeneous Biological Tissue

    Directory of Open Access Journals (Sweden)

    Chintha C. Handapangoda

    2008-01-01

    Full Text Available An approximate numerical technique for modeling optical pulse propagation through weakly scattering biological tissue is developed by solving the photon transport equation in biological tissue that includes varying refractive index and varying scattering/absorption coefficients. The proposed technique involves first tracing the ray paths defined by the refractive index profile of the medium by solving the eikonal equation using a Runge-Kutta integration algorithm. The photon transport equation is solved only along these ray paths, minimizing the overall computational burden of the resulting algorithm. The main advantage of the current algorithm is that it enables to discretise the pulse propagation space adaptively by taking optical depth into account. Therefore, computational efficiency can be increased without compromising the accuracy of the algorithm.

  13. Nonlinear effects of the finite amplitude ultrasound wave in biological tissues

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nonlinear effects will occur during the transmission of the finite amplitude wave in biological tissues.The theoretical prediction and experimental demonstration of the nonlinear effects on the propagation of the finite amplitude wave at the range of biomedical ultrasound frequency and intensity are studied.Results show that the efficiency factor and effective propagation distance will decrease while the attenuation coefficient increases due to the existence of nonlinear effects.The experimental results coincided quite well with the theory.This shows that the effective propagation distance and efficiency factor can be used to describe quantitatively the influence of nonlinear effects on the propagation of the finite amplitude sound wave in biological tissues.

  14. Cellular burdens and biological effects on tissue level caused by inhaled radon progenies

    CERN Document Server

    Madas, Balázs G; Farkas, Árpád; Szőke, István

    2014-01-01

    In the case of radon exposure, the spatial distribution of deposited radioactive particles is highly inhomogeneous in the central airways. The objective of this research is to investigate the consequences of this heterogeneity regarding cellular burdens in the bronchial epithelium and to study the possible biological effects on tissue level. Applying a computational fluid dynamics program, the deposition distribution of inhaled radon daughters has been determined in a bronchial airway model for 23 minutes of work in the New Mexico uranium mine corresponding to 0.0129 WLM exposure. A numerical epithelium model based on experimental data has been utilized in order to quantify cellular hits and doses. Finally, a carcinogenesis model considering cell death induced cell cycle shortening has been applied to assess the biological responses. Computations present, that cellular dose may reach 1.5 Gy, which is several orders of magnitude higher than tissue dose. The results are in agreement with the histological findin...

  15. Theoretical and experimental study of the intensity distribution in biological tissues

    Institute of Scientific and Technical Information of China (English)

    Xu Tang; Zhang Chun-Ping; Chen Gui-Ying; Tian Jian-Guo; Zhang Guang-Yin; Zhao Cheng-Mei

    2005-01-01

    Based on the diffusion approximate theory (DA ), a theoretical model about the distribution of the intensity of a narrow collimation beam illuminating on a semi-infinite biological tissue is developed. In order to verify the correctness of the model, a novel method of measuring the distributions of the intensity of light in Intralipid-10% suspension at 650 nm is presented and measurements of the distributions of the distance-dependent intensity of scattering light in different directions are made. The investigations show that the results from our diffusion model are in good agreement with the experimental results beyond and in the areas around the light source, and the distance-dependent intensity in the incident direction attenuates approximately in the exponential form. Furthermore, our theoretic results indicate the anisotropic characteristics of the intensity in different directions of scattering light inside the biological tissue.

  16. Determination of Cu, Zn, and Se in microvolumes of liquid biological samples

    Science.gov (United States)

    Shaban, H. A.; Shaltout, A. A.; Abdou, M.; Al Ashker, E. A.; Elgohary, M.

    2011-01-01

    Cu, Zn, and Se were successfully determined in a few microliters (<100 μl) of biological samples using discrete injection atomic absorption spectrometry. Different factors were investigated in order to obtain a biological sample volume which is valid for analysis. Among them are the effect of microsampling volume variations (starting from 40 to 200 μl), nebulization efficiency, detection limits, precision, and finally the calibration and sensitivity of the proposed method. It was found that 60 μl of the biological sample was adequate for the quantitative analysis with reasonable precision. The advantages of the proposed method are not only rapidity, simplicity, sensitivity, and good precision, but also, contrary to conventional flame atomic absorption spectrometry, the capability of analyzing microvolumes of samples.

  17. Non-destructive electron microscopy imaging and analysis of biological samples with graphene coating

    Science.gov (United States)

    Park, Jong Bo; Kim, Yong-Jin; Kim, Seong-Min; Yoo, Je Min; Kim, Youngsoo; Gorbachev, Roman; Barbolina, I. I.; Kim, Sang Jin; Kang, Sangmin; Yoon, Myung-Han; Cho, Sung-Pyo; Novoselov, Konstantin S.; Hong, Byung Hee

    2016-12-01

    In electron microscopy (EM), charging of non-conductive biological samples by focused electron beams hinders their high-resolution imaging. Gold or platinum coatings have been commonly used to prevent such sample charging, but it disables further quantitative and qualitative chemical analyses such as energy dispersive spectroscopy (EDS). Here we report that graphene-coating on biological samples enables non-destructive high-resolution imaging by EM as well as chemical analysis by EDS, utilizing graphene’s transparency to electron beams, high conductivity, outstanding mechanical strength and flexibility. We believe that the graphene-coated imaging and analysis would provide us a new opportunity to explore various biological phenomena unseen before due to the limitation in sample preparation and image resolution, which will broaden our understanding on the life mechanism of various living organisms.

  18. Poro_Thermoelastic Duality and FE-based strategies for the analysis of biological tissues

    OpenAIRE

    Capone, Claudia Cristiana Chiara

    2010-01-01

    Many analytical and numerical approaches have been proposed in order to solve poroelastic problems describing the behavior of biological tissues. The main difficulty associated to numerical strategies concerns the solution of the coupled poroelastic equations for determining the solid response in terms of deformation and filtration. The proposal of this work is to find a strategy to numerically solve poroelastic problems employing the Finite Element Method (FEM). In particular, the strategy p...

  19. Preparation of Biological Samples Containing Metoprolol and Bisoprolol for Applying Methods for Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Corina Mahu Ştefania

    2015-12-01

    Full Text Available Arterial hypertension is a complex disease with many serious complications, representing a leading cause of mortality. Selective beta-blockers such as metoprolol and bisoprolol are frequently used in the management of hypertension. Numerous analytical methods have been developed for the determination of these substances in biological fluids, such as liquid chromatography coupled with mass spectrometry, gas chromatography coupled with mass spectrometry, high performance liquid chromatography. Due to the complex composition of biological fluids a biological sample pre-treatment before the use of the method for quantitative determination is required in order to remove proteins and potential interferences. The most commonly used methods for processing biological samples containing metoprolol and bisoprolol were identified through a thorough literature search using PubMed, ScienceDirect, and Willey Journals databases. Articles published between years 2005-2015 were reviewed. Protein precipitation, liquid-liquid extraction and solid phase extraction are the main techniques for the extraction of these drugs from plasma, serum, whole blood and urine samples. In addition, numerous other techniques have been developed for the preparation of biological samples, such as dispersive liquid-liquid microextraction, carrier-mediated liquid phase microextraction, hollow fiber-protected liquid phase microextraction, on-line molecularly imprinted solid phase extraction. The analysis of metoprolol and bisoprolol in human plasma, urine and other biological fluids provides important information in clinical and toxicological trials, thus requiring the application of appropriate extraction techniques for the detection of these antihypertensive substances at nanogram and picogram levels.

  20. Radioenzymatic microassay for picogram quantities of serotonin or acetylserotonin in biological fluids and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.N.; Benedict, C.R.

    1987-06-01

    This paper describes several modifications of the original radioenzymatic assay for serotonin which increase the sensitivity of the assay 20-fold as well as enhance its reliability. Using this method serotonin concentrations can be directly measured in biological examples without precleaning the sample. When compared to currently available methods this assay is specific and sensitive to approximately 1 pg of serotonin and can be used to measure serotonin levels in individual brain nuclei or microliter quantities of biological fluids. This assay can be easily adapted for the direct measurement of N-acetylserotonin. A large number of samples can be assayed in a single working day.

  1. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    Science.gov (United States)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  2. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ronald M.; Laprevote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F.

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  3. Sterilization of biological tissues with ionizing radiation; Esterilizacion de tejidos biologicos con radiacion ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M.L.; Martinez P, M.E.; Luna Z, D. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    On June 1994, the National Institute of Nuclear Research (ININ) and the South Central Hospital for High Specialty of PEMEX (HCSAE) began a joint work with the finality to obtain radio sterilized amniotic membranes for to be used as cover (biological bandage) in burnt patients. Subsequently the Chemistry Faculty of UNAM and the National Institute of Cardiology began to collaborate this last with interest on cardiac valves for graft. Starting from 1997, the International Atomic Energy Agency (IAEA) supports this project (MEX/7/008) whose main objective is to set up the basis to establish in Mexico a Radio sterilized Tissue Bank (amniotic membranes, skin, bones, tendons, cardiac valves, etc.) to be used with therapeutic purposes (grafts). The IAEA support has consisted in the equipment acquisition which is fundamental for the Tissue Bank performance such as an experimental irradiator, laminar flow bell, lyophilizer, vacuum sealer and special knives for tissues. Also visits to Mexico of experts have been authorized with the aim of advising to the personnel which participate in the project and scientific visits of this personnel to another tissue banks (Sri Lanka and Argentine). The establishment in Mexico of a Tissue bank will be a great benefit because it will have availability of distinct tissues for grafts and it will reduce the synthetic materials importation which is very expensive. (Author)

  4. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments.

    Science.gov (United States)

    McEwen, Charles N; McKay, Richard G; Larsen, Barbara S

    2005-12-01

    Direct analysis of samples using atmospheric pressure ionization (API) provides a more rapid method for analysis of volatile and semivolatile compounds than vacuum solids probe methods and can be accomplished on commercial API mass spectrometers. With only a simple modification to either an electrospray (ESI) or atmospheric pressure chemical ionization (APCI) source, solid as well as liquid samples can be analyzed in seconds. The method acts as a fast solids/liquid probe introduction as well as an alternative to the new direct analysis in real time (DART) and desorption electrospray ionization (DESI) methods for many compound types. Vaporization of materials occurs in the hot nitrogen gas stream flowing from an ESI or APCI probe. Ionization of the thermally induced vapors occurs by corona discharge under standard APCI conditions. Accurate mass and mass-selected fragmentation are demonstrated as is the ability to obtain ions from biological tissue, currency, and other objects placed in the path of the hot nitrogen stream.

  5. Numerical simulation and experiment of optothermal response of biological tissue irradiated by continuous xenon lamp

    Institute of Scientific and Technical Information of China (English)

    Meizhen Huang; Yaxing Tong

    2012-01-01

    A finite element method computation model for analyzing optothermal interaction of polychromatic light and biology tissue is proposed and proven by experiment.A continuous xenon lamp is employed as an example.First,the spectral energy distribution of the xenon lamp is measured and found to be equivalent to a series of quasi-chromatic light with different central wavelengths,different energies,and certain bandwidth.Next,according to the reported thermal and optical parameters of porcine skin and porcine liver,the temporal temperature distributions of these tissues irradiated by each quasi-chromatic light are simulated.Then,the thermal effect is superimposed to obtain the whole optothermal temporal temperature distribution.Moreover,the optothermal response experiments of fresh porcine skin and porcine liver tissues irradiated by continuous xenon lamp are carried out.The results of the simulation and experiment are analyzed and compared,and are found to be commendably matched.

  6. Random laser in biological tissues impregnated with a fluorescent anticancer drug

    Science.gov (United States)

    Lahoz, F.; Martín, I. R.; Urgellés, M.; Marrero-Alonso, J.; Marín, R.; Saavedra, C. J.; Boto, A.; Díaz, M.

    2015-04-01

    We have demonstrated that chemically modified anticancer drugs can provide random laser (RL) when infiltrated in a biological tissue. A fluorescent biomarker has been covalently bound to tamoxifen, which is one of the most frequently used drugs for breast cancer therapy. The light emitted by the drug-dye composite is scattered in tissue, which acts as a gain medium. Both non-coherent and coherent RL regimes have been observed. Moreover, the analysis of power Fourier transforms of coherent RL spectra indicates that the tissues show a dominant random laser cavity length of about 18 µm, similar to the average size of single cells. These results show that RL could be obtained from other drugs, if properly marked with a fluorescent tag, which could be appealing for new forms of combined opto-chemical therapies.

  7. Mueller matrix polarimetry for the characterization of complex random medium like biological tissues

    Indian Academy of Sciences (India)

    Nirmalya Ghosh; Jalpa Soni; M F G Wood; M A Wallenberg; I A Vitkin

    2010-12-01

    The polarization parameters of light scattered from biological tissues contain wealth of morphological and functional information of potential biomedical importance. But, in optically thick turbid media such as tissues, numerous complexities due to multiple scattering and simultaneous occurrences of many polarization events present formidable challenges, in terms of both accurate measurement and unique interpretation of the individual polarimetry characteristics. We have developed and validated an expanded Mueller matrix decomposition approach to overcome this problem. The approach was validated theoretically with a polarization-sensitive Monte Carlo light propagation model and experimentally by recording Mueller matrices from tissue-like complex random medium. In this paper, we discuss our comprehensive turbid polarimetry platform consisting of the experimental polarimetry system, forward Monte Carlo modelling and inverse polar decomposition analysis. Initial biomedical applications of this novel general method for polarimetry analysis in random media are also presented.

  8. Studying Biological Tissue with Fluorescence Lifetime Imaging: Microscopy, Endoscopy, and Complex Decay Profiles

    Science.gov (United States)

    Siegel, Jan; Elson, Daniel S.; Webb, Stephen E. D.; Lee, K. C. Benny; Vlandas, Alexis; Gambaruto, Giovanni L.; Léveque-Fort, Sandrine; Lever, M. John; Tadrous, Paul J.; Stamp, Gordon W. H.; Wallace, Andrew L.; Sandison, Ann; Watson, Tim F.; Alvarez, Fernando; French, Paul M. W.

    2003-06-01

    We have applied fluorescence lifetime imaging (FLIM) to the autofluorescence of different kinds of biological tissue in vitro , including animal tissue sections and knee joints as well as human teeth, obtaining two-dimensional maps with functional contrast. We find that fluorescence decay profiles of biological tissue are well described by the stretched exponential function (StrEF), which can represent the complex nature of tissue. The StrEF yields a continuous distribution of fluorescence lifetimes, which can be extracted with an inverse Laplace transformation, and additional information is provided by the width of the distribution. Our experimental results from FLIM microscopy in combination with the StrEF analysis indicate that this technique is ready for clinical deployment, including portability that is through the use of a compact picosecond diode laser as the excitation source. The results obtained with our FLIM endoscope successfully demonstrated the viability of this modality, though they need further optimization. We expect a custom-designed endoscope with optimized illumination and detection efficiencies to provide significantly improved performance.

  9. Dielectric polarization transients in biological tissue moving in a static magnetic field.

    Science.gov (United States)

    Jokela, Kari; Laakso, Ilkka

    2016-09-01

    Movement of a body in a static magnetic field gives rise to the Lorentz force that induces in the medium both electric currents and dielectric polarization. It is usually assumed that the conductivity of biological tissues is sufficiently high in order to neglect dielectric phenomenon arising from non-equilibrium of polarization charges. However, the permittivity of biological tissues is extremely high and the relaxation time of free charges is relatively low. In this study, we examined the effect of dielectric polarization on the electric field (EF) induced by human movements in a strong magnetic field (MF). Analytic equations for brain and bone equivalent spheres translating and rotating in a uniform MF were derived from Maxwell equations. Several examples were computed by using Fast Fourier Transform to examine transient dielectric effects in a time domain. The results showed that dielectric polarization transients do arise, but in the case of homogeneous medium, they are vanishingly small. In contrast, the local dielectric transients are not vanishingly small in heterogeneous medium. However, due to limited acceleration and deceleration of normal human movements, the transients are relatively small, at maximum a few dozen percent of the EF induced by the change of the magnetic flux. Taking into account the high uncertainty in numerical simulation, the dielectric transients can be neglected in the case of biological materials but not in the case of many non-biological materials of low conductivity. Bioelectromagnetics. 37:409-422, 2016. © 2016 Wiley Periodicals, Inc.

  10. Laser Direct Writing of Idealized Cellular and Biologic Constructs for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Schiele, Nathan R.; Corr, David T.; Chrisey, Douglas B.

    Conventional tissue engineering typically involves homogenously seeding cells into a scaffold, then manipulating the scaffold either mechanically, using bioreactors, or chemically, using growth factors, in an attempt to tailor the mechanical and biological properties of the engineered tissue. The material composition of the scaffold gives the construct its initial strength; then the scaffold either remodels or dissolves when implanted in the body. An ideal tissue replacement scaffold would be biocompatible, biodegradable, implantable, and would match the strength of the tissue it is replacing, and would remodel by natural mechanisms [1]. Finding or creating scaffold materials that meet all these specifications while providing an environment for cell attachment and proliferation is one of the main goals of conventional tissue engineering. Popular current scaffold materials include poly-l-lactic acid (PLLA) [2] and collagen [3]. Typically, the utilization of scaffolds in tissue engineering employs a top-down approach in which cells are seeded homogenously into the scaffold, then incubated in vitro prior to implantation. Scaffold properties, such as geometric dimensions (e.g., thickness) and cellular in-growth, are limited by the diffusion of nutrients, since these scaffolds do not incorporate vascular structures to transport nutrients and remove wastes deep into the scaffold as in native tissue [4]. Although seeded scaffolds have proven successful in some cases, there remains the need to have greater control of cell placement as well as the placement of additional features such as vascular structures, multiple cell types, growth factors, and extracellular matrix proteins that will aid in the fabrication of the next generation of engineered tissues.

  11. Correlation of mRNA and protein in complex biological samples.

    Science.gov (United States)

    Maier, Tobias; Güell, Marc; Serrano, Luis

    2009-12-17

    The correlation between mRNA and protein abundances in the cell has been reported to be notoriously poor. Recent technological advances in the quantitative analysis of mRNA and protein species in complex samples allow the detailed analysis of this pathway at the center of biological systems. We give an overview of available methods for the identification and quantification of free and ribosome-bound mRNA, protein abundances and individual protein turnover rates. We review available literature on the correlation of mRNA and protein abundances and discuss biological and technical parameters influencing the correlation of these central biological molecules.

  12. Diffraction enhanced imaging and x-ray fluorescence microtomography for analyzing biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, H.S.; Pereira, G.R.; Lopes, R.T. [Laboratorio de Instrumentacao Nuclear-COPPE/UFRJ-RJ (Brazil); Anjos, M.J. [Instituto de Fisica-UERJ-RJ (Brazil); Faria, P. [Instituto Nacional do Cancer-INCa-RJ (Brazil); Kellermann, G.; Perez, C.A. [Laboratorio Nacional de Luz Sincrotron-Campinas-SP (Brazil); Tirao, G. [Faculdad de Mat. Astronomia y Fisica (FAMAF), UNC. Cordoba (Argentina); Mazzaro, I. [Laboratorio de Optica de Raios X e Instrumentacao-UFPR-Curitiba-PR (Brazil); Giles, C. [Laboratorio de Cristalografia Aplicada e Raios X-UNICAMP-Campinas-SP (Brazil)

    2007-07-15

    In this work, breast tissue samples were investigated in order to verify the distribution of certain elements by x-ray fluorescence computed tomography (XRFCT) correlated with the characteristics and pathology of each tissue observed by diffraction enhanced imaging (DEI). The DEI system can show details in low attenuation tissues. It is based on the contrast imaging obtained by extinction, diffraction and refraction characteristics and can improve reduction in false positive and false negative diagnoses. XRFCT allows mapping of all elements within the sample, since even a minute fluorescence signal can be detected. DEI imaging techniques revealed the complex structure of the disease, confirmed by the histological section, and showed microstructures in all planes of the sample. The XRFCT showed the distribution of Zn, Cu and Fe at higher concentration. (authors)

  13. JURISPRUDENTIAL EXAMINATION REGARDING BIOLOGICAL SAMPLING IN THE CASE OF CONVICTED PERSONS

    Directory of Open Access Journals (Sweden)

    Gabriela\tNEMŢOI

    2015-12-01

    Full Text Available Objectives: The research devotes particular attention to the timing of biological sampling in the case of convicted persons. The main idea of the research is the factual situation regarding the criminal case law, which is not unified; problematic that prevents the formation of the National System of Judicial Genetic Data. Materials and Methods: The study focuses on evaluating the two opinions of jurisprudence on the implementation of the text of the law (Law no. 76/2008. Results: The carried research on different cases has shown that legal text is not mandatory, but its application is arbitrary, at the discretion of the court, but, nevertheless, the biological sampling in the case of convicted persons disregards the form for penalty. Conclusions: In the context of the creation of the National System of Judicial Genetic Data is a control condition on the typology of criminal profiling, we believe that biological sampling should be a priority to ensure safety of the individual.

  14. Recent developments in fatty acids profile determination in biological samples - a review

    Directory of Open Access Journals (Sweden)

    Tiuca Ioana

    2015-12-01

    Full Text Available The present paper is a literature review of the recent years dealing with the most important separation techniques of fatty acids in biological samples. Our aim was to make a synthesis of the analytical methods used, to note the most used ones, but also to mention other methods that are less utilized, which can have important advantages (such as less time consuming, greener reagents, etc.. Gas-chromatographic separation methods were described and compared to liquid chromatographic separations of fatty acids in different types of biological samples. In the same time, the importance of determining fatty acids profiles in biological samples was revealed, pointing out the possible implications in diagnostics of different types of disorders or remarking different profiles compared to healthy states.

  15. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes

    CERN Document Server

    Rhinow, Daniel; Weber, Nils-Eike; Beyer, André; Gölzhäuser, Armin; Kühlbrandt, Werner; Hampp, Norbert; Turchanin, Andrey; 10.1016/j.ultramic.2011.01.028

    2011-01-01

    Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl precursors have been tested as support films for energy-filtered transmission electron microscopy (EFTEM) of biological specimens. Due to their high transparency CNM are ideal substrates for electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) of stained and unstained biological samples. Virtually background-free elemental maps of tobacco mosaic virus (TMV) and ferritin have been obtained from samples supported by ~ 1 nm thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM) comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded TMV on cCNM and compared the results with images of ice-embedded TMV on conventional carbon film (CC), thus analyzing the gain in contrast for TMV on cCNM in a quantitative manner. In addition we have developed a method for the preparation of vitrified specimens, sus...

  16. FACE Analysis as a Fast and Reliable Methodology to Monitor the Sulfation and Total Amount of Chondroitin Sulfate in Biological Samples of Clinical Importance

    Directory of Open Access Journals (Sweden)

    Evgenia Karousou

    2014-06-01

    Full Text Available Glycosaminoglycans (GAGs due to their hydrophilic character and high anionic charge densities play important roles in various (pathophysiological processes. The identification and quantification of GAGs in biological samples and tissues could be useful prognostic and diagnostic tools in pathological conditions. Despite the noteworthy progress in the development of sensitive and accurate methodologies for the determination of GAGs, there is a significant lack in methodologies regarding sample preparation and reliable fast analysis methods enabling the simultaneous analysis of several biological samples. In this report, developed protocols for the isolation of GAGs in biological samples were applied to analyze various sulfated chondroitin sulfate- and hyaluronan-derived disaccharides using fluorophore-assisted carbohydrate electrophoresis (FACE. Applications to biologic samples of clinical importance include blood serum, lens capsule tissue and urine. The sample preparation protocol followed by FACE analysis allows quantification with an optimal linearity over the concentration range 1.0–220.0 µg/mL, affording a limit of quantitation of 50 ng of disaccharides. Validation of FACE results was performed by capillary electrophoresis and high performance liquid chromatography techniques.

  17. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Rhinow, Daniel, E-mail: daniel.rhinow@biophys.mpg.de [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Strasse 3, D-60439 Frankfurt (Germany); Bueenfeld, Matthias; Weber, Nils-Eike; Beyer, Andre; Goelzhaeuser, Armin [University of Bielefeld, Department of Physics, Universitaetsstrasse 25, D-33615 Bielefeld (Germany); Kuehlbrandt, Werner [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Strasse 3, D-60439 Frankfurt (Germany); Hampp, Norbert [University of Marburg, Department of Chemistry, Hans-Meerwein-Strasse, D-35032 Marburg (Germany); Turchanin, Andrey [University of Bielefeld, Department of Physics, Universitaetsstrasse 25, D-33615 Bielefeld (Germany)

    2011-04-15

    Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl precursors have been tested as support films for energy-filtered transmission electron microscopy (EFTEM) of biological specimens. Due to their high transparency CNM are ideal substrates for electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) of stained and unstained biological samples. Virtually background-free elemental maps of tobacco mosaic virus (TMV) and ferritin have been obtained from samples supported by {approx}1 nm thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM) comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded TMV on cCNM and compared the results with images of ice-embedded TMV on conventional carbon film (CC), thus analyzing the gain in contrast for TMV on cCNM in a quantitative manner. In addition we have developed a method for the preparation of vitrified specimens, suspended over the holes of a conventional holey carbon film, while backed by ultrathin cCNM. -- Research highlights: {yields} We examine ultrathin carbon nanomembranes (CNM) as supports for biological TEM. {yields} CNM comprise crosslinked biphenyl precursors. {yields} CNM supports enable background-free elemental mapping of heavy and light elements. {yields} We perform cryoEM of ice-embedded biological samples on graphene-like conductive CNM.

  18. Prospects of use of cobalt nitrate as a contrast medium in electron microscopy of biological samples

    Directory of Open Access Journals (Sweden)

    I. O. Tikhankov

    2008-01-01

    Full Text Available The method of cobalt nitrate impregnation of ultrathin sections of plant and animal tissues, which are embedded in epoxy resin, has been worked out. Various aspects of such handling of specimens have been examined. Best conditions for the sections staining were determined. The advantage of this method was analyzed. The estimation of the possibilities to implicate this method for the morphological and histochemical study of various biological specimens has been made.

  19. Mapping Chemical and Structural Composition of Pharmaceutical and Biological Samples by Raman, Surface-Enhanced Raman and Fluorescence Spectral Imaging

    Science.gov (United States)

    Chourpa, Igor; Cohen-Jonathan, Simone; Dubois, Pierre

    Raman spectroscopy is an analytical technique recognised for its structural and conformational specificity. The efficient discrimination of molecular species by Raman is particularly potent for multidimensional microscopic imaging of complex biological environment, as demonstrated in the present book. The commonly admitted problem of Raman, low sensitivity, can often be circumvented due to high output instruments and via approaches like RRS (resonance Raman scattering), SERS (surface-enhanced Raman scattering), TERS (tip-enhanced Raman scattering) or CARS (coherent anti-Stokes Raman scattering). In contrast to the latter, RRS and SERS are realizable with less sophisticated set-up based on common Raman systems. Although more invasive than RRS, SERS provides better sensitivity and quenching of fluorescence. SERRS (surface-enhanced resonance Raman scattering) spectroscopy can be used in coupling with fluorescence and competes in selectivity and sensitivity with spectrofluorimetry. In the chapter below, we use recent applications made in our group to illustrate the use of Raman and SERRS spectral imaging for characterization of biological samples (animal subcutaneous tissue, human cancer cells) and pharmaceutical samples (microparticles for drug delivery, fibres for wound dressing). After a brief description of experimental details on spectral imaging, the chapter will focus on results concerning (i) biocompatible pharmaceutical materials made of alginates and (ii) anticancer drugs in pharmaceutical forms and in biological systems.

  20. Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination

    Directory of Open Access Journals (Sweden)

    Laura Hewitson

    2014-01-01

    Full Text Available In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV. Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA, was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR was conducted. The LLMDA technology was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae, Bacteroidaceae, and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.

  1. Swine infectious agents in Tayassu pecari and Pecari tajacu tissue samples from Brazil.

    Science.gov (United States)

    de Castro, Alessandra Marnie Martins Gomes; Brombila, Talita; Bersano, Josete Garcia; Soares, Herbert Sousa; Silva, Sheila Oliveira de Souza; Minervino, Antonio Humberto Hamad; Ogata, Renato Akio; Gennari, Solange Maria; Richtzenhain, Leonardo Jose

    2014-04-01

    Peccaries and pigs, Tayassuidae and Suidae respectively, diverged approximately one million years ago from a common ancestor. Because these families share some pathogens, peccaries can act as reservoirs of infectious pathogens for domestic and wild swine. We evaluated the presence of swine infectious agents in the spleen and lung tissues of white-lipped peccaries (WLP; Tayassu pecari) and collared peccaries (CP; Pecari tajacu) in Brazil. Samples from 10 adult CP and three WLP, which had been hunted by locals or hit by motor vehicles, were obtained from two free-ranging Brazilian populations. The samples were tested by PCR for Mycoplasma hyopneumoniae, Bordetella bronchiseptica, Pasteurella multocida, porcine circovirus 2 (PCV2), Suid herpesvirus 1 (SuHV-1), and porcine parvovirus (PPV). Positive samples were sequenced. Both species were negative for PPV and B. bronchiseptica and positive for PCV2 and SuHV-1. The lungs of two animals were positive for M. hyopneumoniae and P. multocida. This report is the first demonstration of PCV2 and SuHV-1 swine viruses and of M. hyopneumoniae and P. multocida bacteria in peccaries. One factor contributing to this detection was access to tissue samples, which is uncommon. The role of these infectious agents in peccaries is unknown and further epidemiologic studies should be performed. This study identified several infectious agents in peccaries and highlighted the importance of the tissue type used to detect pathogens.

  2. Determination of cadmium and lead in human biological samples by spectrometric techniques: a review.

    Science.gov (United States)

    Lemos, Valfredo Azevedo; de Carvalho, Anaildes Lago

    2010-12-01

    The analysis of human biological samples, such as blood, urine, nails, and hair, is generally used for the verification of human exposure to toxic metals. In this review, various spectrometric methods for the determination of cadmium and lead in biological samples are discussed and compared. Several spectrometric techniques are presented and discussed with respect to various characteristics such as sensitivity, selectivity, and cost. Special attention is drawn to the procedures for digestion prior to the determination of cadmium and lead in hair, nails, blood, and urine.

  3. Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-Zhou; Zhu Yi; Zhang Fei; Gong Xiu-Fen

    2013-01-01

    In most previous models,simulation of the temperature generation in tissue is based on the Pennes bio-heat transfer equation,which implies an instantaneous thermal energy deposition in the medium.Due to the long thermal relaxation time τ (20 s-30 s) in biological tissues,the actual temperature elevation during clinical treatments could be different from the value predicted by the Pennes bioheat equation.The thermal wave model of bio-heat transfer (TWMBT) defines a thermal relaxation time to describe the tissue heating from ultrasound exposure.In this paper,COMSOL Multiphysics 3.5a,a finite element method software package,is used to simulate the temperature response in tissues based on Pennes and TWMBT equations.We further discuss different factors in the bio-heat transfer model on the influence of the temperature rising and it is found that the temperature response in tissue under ultrasound exposure is a rising process with a declining rate.The thermal relaxation time inhibits the temperature elevation at the beginning of ultrasonic heating.Besides,thermal relaxation in TWMBT leads to lower temperature estimation than that based on Pennes equation during the same period of time.The blood flow carrying heat dominates most to the decline of temperature rising rate and the influence increases with temperature rising.On the contrary,heat diffusion,which can be described by thermal conductivity,has little effect on the temperature rising.

  4. Association of environmental toxic elements in biological samples of myocardial infarction patients at different stages.

    Science.gov (United States)

    Afridi, Hassan Imran; Kazi, Tasneem Gul; Kazi, Naveed; Kandhro, Ghulam Abbas; Baig, Jameel Ahmed; Jamali, Mohammad Khan; Arain, Mohammad Balal; Shah, Abdul Qadir; Shah, Faheem; Khan, Sumaira; Kolachi, Nida Fatima

    2011-06-01

    The exposure of toxic elements may directly or indirectly associate with different pathogenesis of heart diseases. In the present study, the association of arsenic (As), cadmium (Cd), cobalt (Co), lead (Pb), and nickel (Ni) in biological samples (whole blood and urine) and mortality from myocardial infarction (MI) patients at first, second, and third heart attacks was carried out. Both biological samples of 130 MI patients (77 male and 53 female), with ages ranging from 45 to 60 years, and 61 healthy persons (33 male and 28 female) of the same age group were collected. The elements in biological samples were assessed by electrothermal atomic absorption spectrophotometer, prior to microwave-assisted acid digestion. The validity of methodology was checked by the biological certified reference materials. During this study, 78% of 32 patients aged above 50 years, registered after third MI attack, died. In these subjects, the levels of As, Cd, Co, Ni, and Pb in blood samples were higher in MI patients as compared with referents (p < 0.05), while increased by 11.7%, 12.2%, 5.55%, and 7.2%, respectively, in the blood samples of those patients who tolerated the third MI attack (p = 0.12). The high level of understudied toxic elements may play a role in the mortality of MI patients.

  5. Spectroscopic analysis of bosentan in biological samples after a liquid-liquid microextraction

    Science.gov (United States)

    Sajedi-Amin, Sanaz; Assadpour-Zeynali, Karim; Panahi-Azar, Vahid; Kebriaeezadeh, Abbas; Khoubnasabjafari, Maryam; Ansarin, Khalil; Jouyban-Gharamaleki, Vahid; Jouyban, Abolghasem

    2015-01-01

    Introduction:Microextraction processes with UV-Vis measurement have been developed and validated for analysis of bosentan in biological samples. Methods:In this work, liquid–liquid microextraction procedures (DLLME & USAEME) were employed for cleanup, pre-concentration, and determination of bosentan in biological samples by UV-Vis spectroscopy at 270 nm. The method was validated and applied to the determination of bosentan in spiked serum, exhaled breath condensate and urine samples. Results:Various experimental factors including type of extraction and dispersive solvents and their volumes, pH, sonication time and centrifuging time were investigated. Under the optimum conditions, the method was linear in the range of 1.0–5.0 μg.mL-1, with coefficient of determination (R2) of > 0.998. The limit of detection (LOD) was 0.07 mg.L-1. Recovery of the target analyte in biological samples was 106.2%. The method could be easily applied for higher concentration of bosentan and needs more improvement for application in the pharmacokinetic investigations where more sensitive methods are required. Conclusion:A simple, low cost, precise and accurate spectrophotometric analysis of bosentan in biological samples after liquid-liquid microextraction were developed and validated for routine analyses. PMID:26929923

  6. A comprehensive factorial design study of variables affecting protein extraction from formalin-fixed kidney tissue samples.

    Science.gov (United States)

    Araújo, J E; Oliveira, E; Otero-Glez, A; Santos Nores, J; Igrejas, G; Lodeiro, C; Capelo, J L; Santos, H M

    2014-02-01

    Formalin-fixed tissues are an important source of biological samples for biomedical research. However, proteomics analysis of formalin-fixed tissues has been set aside by formalin-induced protein modifications, which reduce protein extraction efficiency. In this study, a two level full factorial experimental design (2(4)) was used to determine the effects of the extracting conditions in the efficiency of protein recovery from formalin-fixed kidney samples. The following variables were assessed: temperature of extraction, pH of extraction, composition of the extracting buffer and the use ultrasonic energy applied with probe. It is clearly demonstrated that when hating and ultrasonic energy are used in conjunction, a 7-fold increase (p protein extraction is obtained if compared to extracting conditions for which neither heating nor ultrasonic energy are used. The optimization study was done following the amount of protein extracted by UV (Nanodrop(®) technology, protein ABS at 280 nm) and by 1D SDS-PAGE. Extracts obtained with the optimized conditions were subjected to LC-MALDI MS/MS. A total of 112 proteins were identified.

  7. Dual-porosity model of solute diffusion in biological tissue modified by electroporation.

    Science.gov (United States)

    Mahnič-Kalamiza, Samo; Miklavčič, Damijan; Vorobiev, Eugène

    2014-07-01

    In many electroporation applications mass transport in biological tissue is of primary concern. This paper presents a theoretical advancement in the field and gives some examples of model use in electroporation applications. The study focuses on post-treatment solute diffusion. We use a dual-porosity approach to describe solute diffusion in electroporated biological tissue. The cellular membrane presents a hindrance to solute transport into the extracellular space and is modeled as electroporation-dependent porosity, assigned to the intracellular space (the finite rate of mass transfer within an individual cell is not accounted for, for reasons that we elaborate on). The second porosity is that of the extracellular space, through which solute vacates a block of tissue. The model can be used to study extraction out of or introduction of solutes into tissue, and we give three examples of application, a full account of model construction, validation with experiments, and a parametrical analysis. To facilitate easy implementation and experimentation by the reader, the complete derivation of the analytical solution for a simplified example is presented. Validation is done by comparing model results to experimentally-obtained data; we modeled kinetics of sucrose extraction by diffusion from sugar beet tissue in laboratory-scale experiments. The parametrical analysis demonstrates the importance of selected physicochemical and geometrical properties of the system, illustrating possible outcomes of applying the model to different electroporation applications. The proposed model is a new platform that supports rapid extension by state-of-the-art models of electroporation phenomena, developed as latest achievements in the field of electroporation.

  8. Direct analysis of biological samples by total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Lue M, Marco P. [Unidad de Analisis Instrumental, Departamento de Quimica y Suelos, Decanato de Agronomia, Universidad Centro-occidental Lisandro Alvarado, Apartado Postal 4076, Cabudare 3023 (Venezuela)]. E-mail: luemerumarco@yahoo.es; Hernandez-Caraballo, Edwin A. [Instituto Venezolano-Andino para la Investigacion Quimica (IVAIQUIM), Facultad de Ciencias, Universidad de los Andes, Merida 5101 (Venezuela)

    2004-08-31

    The technique of total reflection X-ray fluorescence (TXRF) is well suited for the direct analysis of biological samples due to the low matrix interferences and simultaneous multi-element nature. Nevertheless, biological organic samples are frequently analysed after digestion procedures. The direct determination of analytes requires shorter analysis time, low reactive consumption and simplifies the whole analysis process. On the other hand, the biological/clinical samples are often available in minimal amounts and routine studies require the analysis of large number of samples. To overcome the difficulties associated with the analysis of organic samples, particularly of solid ones, different procedures of sample preparation and calibration to approach the direct analysis have been evaluated: (1) slurry sampling, (2) Compton peak standardization, (3) in situ microwave digestion, (4) in situ chemical modification and (5) direct analysis with internal standardization. Examples of analytical methods developed by our research group are discussed. Some of them have not been previously published, illustrating alternative strategies for coping with various problems that may be encountered in the direct analysis by total reflection X-ray fluorescence spectrometry.

  9. Telomere Lengths and Telomerase Activity in Dog Tissues: A Potential Model System to Study Human Telomere and Telomerase Biology

    Directory of Open Access Journals (Sweden)

    Lubna Nasir

    2001-01-01

    Full Text Available Studies on telomere and telomerase biology are fundamental to the understanding of aging and age-related diseases such as cancer. However, human studies have been hindered by differences in telomere biology between humans and the classical murine animal model system. In this paper, we describe basic studies of telomere length and telomerase activity in canine normal and neoplastic tissues and propose the dog as an alternative model system. Briefly, telomere lengths were measured in normal canine peripheral blood mononuclear cells (PBMCs, a range of normal canine tissues, and in a panel of naturally occurring soft tissue tumours by terminal restriction fragment (TRF analysis. Further, telomerase activity was measured in canine cell lines and multiple canine tissues using a combined polymerase chain reaction/enzyme-linked immunosorbent assay method. TRF analysis in canine PBMCs and tissues demonstrated mean TRF lengths to range between 12 and 23 kbp with heterogeneity in telomere lengths being observed in a range of normal somatic tissues. In soft tissue sarcomas, two subgroups were identified with mean TRFs of 22.2 and 18.2 kbp. Telomerase activity in canine tissue was present in tumour tissue and testis with little or no activity in normal somatic tissues. These results suggest that the dog telomere biology is similar to that in humans and may represent an alternative model system for studying telomere biology and telomerase-targeted anticancer therapies.

  10. Alginate-polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering.

    Science.gov (United States)

    Thankam, Finosh G; Muthu, Jayabalan

    2015-11-01

    The physiochemical and biological responses of tissue engineering hydrogels are crucial in determining their desired performance. A hybrid comacromer was synthesized by copolymerizing alginate and poly(mannitol fumarate-co-sebacate) (pFMSA). Three bimodal hydrogels pFMSA-AA, pFMSA-MA and pFMSA-NMBA were synthesized by crosslinking with Ca(2+) and vinyl monomers acrylic acid (AA), methacrylic acid (MA) and N,N'-methylene bisacrylamide (NMBA), respectively. Though all the hydrogels were cytocompatible and exhibited a normal cell cycle profile, pFMSA-AA exhibited superior physiochemical properties viz non-freezable water content (58.34%) and water absorption per unit mass (0.97 g water/g gel) and pore length (19.92±3.91 μm) in comparing with other two hydrogels. The increased non-freezable water content and water absorption of pFMSA-AA hydrogels greatly influenced its biological performance, which was evident from long-term viability assay and cell cycle proliferation. The physiochemical and biological favorability of pFMSA-AA hydrogels signifies its suitability for cardiac tissue engineering.

  11. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44(+), αSMA(+), Vimentin(+) and CD105(-) human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children.

  12. Detection of Flavobacterium psychrophilum from fish tissue and water samples by PCR amplification

    DEFF Research Database (Denmark)

    Wiklund, T.; Madsen, Lone; Bruun, Morten Sichlau

    2000-01-01

    Rainbow trout fry syndrome and cold-water disease, caused by Flavobacterium psychrophilum, are important diseases in farmed salmonids. Some of the presently available techniques for the detection of Fl. psychrophilum are either time consuming or lack sufficient sensitivity. In the present...... investigation, the possible detection of Fl. psychrophilum from fish tissue and water samples was examined using nested PCR with DNA probes against a sequence of the 16S rRNA genes. The DNA was extracted using Chelex(R) 100 chelating resin. The primers, which were tested against strains isolated from diseased...... to be more sensitive than agar cultivation of tissue samples from the brain of rainbow trout injected with Fl. psychrophilum. In non-sterile fresh water seeded with Fl. psychrophilum the detection limit of the PCR- assay was 1.7 cfu in the PCR tube, corresponding to 110 cfu ml(-1) water. The PCR...

  13. Identification of organ tissue types and skin from forensic samples by microRNA expression analysis.

    Science.gov (United States)

    Sauer, Eva; Extra, Antje; Cachée, Philipp; Courts, Cornelius

    2017-05-01

    The identification of organ tissues in traces recovered from scenes and objects with regard to violent crimes involving serious injuries can be of considerable relevance in forensic investigations. Molecular genetic approaches are provably superior to histological and immunological assays in characterizing organ tissues, and micro-RNAs (miRNAs), due to their cell type specific expression patterns and stability against degradation, emerged as a promising molecular species for forensic analyses, with a range of tried and tested indicative markers. Thus, herein we present the first miRNA based approach for the forensic identification of organ tissues. Using quantitative PCR employing an empirically derived strategy for data normalization and unbiased statistical decision making, we assessed the differential expression of 15 preselected miRNAs in tissues of brain, kidney, lung, liver, heart muscle, skeletal muscle and skin. We show that not only can miRNA expression profiling be used to reliably differentiate between organ tissues but also that this method, which is compatible with and complementary to forensic DNA analysis, is applicable to realistic forensic samples e.g. mixtures, aged and degraded material as well as traces generated by mock stabbings and experimental shootings at ballistic models.

  14. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples

    Science.gov (United States)

    Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  15. Photothermal method using a pyroelectric sensor for thermophysical characterization of agricultural and biological samples

    Science.gov (United States)

    Frandas, A.; Dadarlat, Dorin; Chirtoc, Mihai; Jalink, Henk; Bicanic, Dane D.; Paris, D.; Antoniow, Jean S.; Egee, Michel; Ungureanu, Costica

    1998-07-01

    The photopyroelectric method in different experimental configurations was used for thermophysical characterization of agricultural and biological samples. The study appears important due to the relation of thermal parameters to the quality of foodstuffs (connected to their preservation, storage and adulteration), migration profiles in biodegradable packages, and the mechanism of desiccation tolerance of seeds. Results are presented on the thermal parameters measurement and their dependence on temperature and water content for samples such as: honey, starch, seeds.

  16. Tomographic imaging of transparent biological samples using the pyramid phase microscope.

    Science.gov (United States)

    Iglesias, Ignacio

    2016-08-01

    We show how a pyramid phase microscope can be used to obtain tomographic information of the spatial variation of refractive index in biological samples using the Radon transform. A method that uses the information provided by the phase microscope for axial and lateral repositioning of the sample when it rotates is also described. Its application to the reconstruction of mouse embryos in the blastocyst stage is demonstrated.

  17. The privacy of Tutankhamen--utilising the genetic information in stored tissue samples.

    Science.gov (United States)

    Holm, S

    2001-09-01

    Recent technical developments in genetic testing has led to a situation where the DNA in previously stored tissue samples can be extracted and used for genetic analysis. This raises the question of how to decide whether a specific use of such samples should be allowed. Using the genetic testing of ancient DNA in general, and the DNA of the pharaoh Tutankhamen in particular as examples this paper analyses the question. It investigates whether ethical frameworks based on proxy consent, cultural affiliation, ownership, or the privacy rights of the dead are appropriate and justifiable in this context. The conclusion is that frameworks based on proxy consent, cultural affiliation, and ownership are not very useful.

  18. A single lysis solution for the analysis of tissue samples by different proteomic technologies

    DEFF Research Database (Denmark)

    Gromov, P.; Celis, J.E.; Gromova, I.

    2008-01-01

    Cancer, being a major healthcare concern worldwide, is one of the main targets for the application of emerging proteomic technologies and these tools promise to revolutionize the way cancer will be diagnosed and treated in the near future. Today, as a result of the unprecedented advances that have...... dissease, is driving scientists to increasingly use clinically relevant samples for biomarker and target discovery. Tissues are heterogeneous and as a result optimization of sample preparation is critical for generating accurate, representative, and highly reproducible quantitative data. Although a large...

  19. Phytochemical analysis and biological evaluation of selected African propolis samples from Cameroon and Congo

    NARCIS (Netherlands)

    Papachroni, D.; Graikou, K.; Kosalec, I.; Damianakos, H.; Ingram, V.J.; Chinou, I.

    2015-01-01

    The objective of this study was the chemical analysis of four selected samples of African propolis (Congo and Cameroon) and their biological evaluation. Twenty-one secondary metabolites belonging to four different chemical groups were isolated from the 70% ethanolic extracts of propolis and their st

  20. Chirality study inside biological tissue by second harmonic generation circular dichroism

    Science.gov (United States)

    Hsu, Kuo-Jen; Lee, Hsuan; Zhuo, Guan-Yu; Chao, Pen-Hsiu; Chu, Shi-Wei

    2013-02-01

    Many biological systems are composed of chiral molecules and their functions depend strongly on their chirality. For example, most amino acids are of left-handed chirality while most polysaccharides are of right-handed chirality. Both of them are vital for human life, so it is important to perform chiral detection inside bio-tissues. Here we demonstrated second harmonic generation circular dichroism (SHG-CD) as a novel chiral imaging contrast in thick biotissue. Compared with conventional chiral detection, SHG-CD provides at least three orders higher contrast. In addition, due to the nonlinear nature of SHG, this technique provides optical sectioning capability, so the axial contrast is much better. The advantages of nonlinear optical microscopy are optical sectioning and deep penetration capabilities. The SHG-CD achieved 100% signal contrast with sub-micrometer spatial resolution. This method is expected to offer a novel contrast mechanism of imaging chirality inside complex bio-tissues.

  1. QEEN Workshop: "Quantifying Exposure to Engineered Nano-materials from Manufactured Products": Write Up Biological Tissues and Media

    Science.gov (United States)

    The measurement and characterization of nanomaterials in biological tissues is complicated by a number of factors including: the sensitivity of the assay to small sized particles or low concentrations of materials; the ability to distinguish different forms and transformations of...

  2. The Content and Size of Hyaluronan in Biological Fluids and Tissues

    Directory of Open Access Journals (Sweden)

    Mary K. Cowman

    2015-06-01

    Full Text Available Hyaluronan is a simple repeating disaccharide polymer, synthesized at the cell surface by integral membrane synthases. The repeating sequence is perfectly homogeneous, and is the same in all vertebrate tissues and fluids. The polymer molecular mass is more variable. Most commonly, hyaluronan is synthesized as a high molecular mass polymer, with an average molecular mass of approximately 1000-8000 kDa. There are a number of studies showing increased hyaluronan content, but reduced average molecular mass with a broader range of sizes present, in tissues or fluids when inflammatory or tissue remodeling processes occur. In parallel studies, exogenous hyaluronan fragments of low molecular mass (generally, less than about 200 kDa have been shown to affect cell behavior through binding to receptor proteins such as CD44 and RHAMM (gene name HMMR, and to signal either directly or indirectly through Toll-like receptors. These data suggest that receptor sensitivity to hyaluronan size provides a biosensor of the state of the microenvironment surrounding the cell. Sensitive methods for isolation and characterization of hyaluronan and its fragments have been developed and continue to improve. This review provides an overview of the methods and our current state of knowledge of hyaluronan content and size distribution in biological fluids and tissues.

  3. Extraction and Quantification of Carbon Nanotubes in Biological Matrices with Application to Rat Lung Tissue

    Science.gov (United States)

    Doudrick, Kyle; Corson, Nancy; Oberdörster, Günter; Elder, Alison; Herckes, Pierre; Halden, Rolf U.; Westerhoff, Paul

    2013-01-01

    Extraction of carbon nanotubes (CNTs) from biological matrices such as rat lung tissue is integral to developing a quantification method for evaluating the environmental and human health exposure and toxicity of CNTs. The ability of various chemical treatment methods, including Solvable (2.5% sodium hydroxide/surfactant mixture), ammonium hydroxide, nitric acid, sulfuric acid, hydrochloric acid, hydrofluoric acid, hydrogen peroxide, and proteinase K, to extract CNTs from rat lung tissue was evaluated. CNTs were quantified using programmed thermal analysis (PTA). Two CNTs were used to represent the lower (500°C) and upper (800°C) PTA limit of CNT thermal stability. The recovery efficiency of each of the eight chemical reagents evaluated was found to depend on the ability to (1) minimize oxidation of CNTs, (2) remove interfering background carbon from the rat lung tissue, and (3) separate the solid-phase CNTs from the liquid-phase dissolved tissue via centrifugation. A two-step extraction method using Solvable and proteinase K emerged as the optimal approach, enabling a recovery of 98 ± 15% of a 2.9 ± 0.19 µg CNT loading that was spiked into whole rat lungs. Due to its high yield and applicability to low organ burdens of nanomaterials, this extraction method is particularly well suited for in vivo studies to quantify clearance rates and retained CNTs in lungs and other organs. PMID:23992048

  4. Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues

    KAUST Repository

    Goriely, A.

    2010-07-01

    Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence of applied loads and could induce cavity opening. Here, we demonstrate the possibility of spontaneous growth-induced cavitation in elastic materials and consider the implications of this phenomenon to biological tissues and in particular to the problem of schizogenous aerenchyma formation. Copyright © EPLA, 2010.

  5. On The Construction of Models for Electrical Conduction in Biological Tissues

    Science.gov (United States)

    Gómez-Aguilar, F.; Bernal-Alvarado, J.; Cordova-Fraga, T.; Rosales-García, J.; Guía-Calderón, M.

    2010-12-01

    Applying RC circuit theory, a theoretical representation for the electrical conduction in a biological multilayer system was developed. In particular an equivalent circuit for the epidermis, dermis and the subcutaneous tissue was constructed. This model includes an equivalent circuit, inside the dermis, in order to model a small formation like tumor. This work shows the feasibility to apply superficial electrodes to detect subcutaneous abnormalities. The behavior of the model is shown in the form of a frequency response chart. The Bode and Nyquist plots are also obtained. This theoretical frame is proposed to be a general treatment to describe the bioelectrical transport in a three layer bioelectrical system.

  6. Electrical impedance tomography method for reconstruction of biological tissues with continuous plane-stratification.

    Science.gov (United States)

    Dolgin, M; Einziger, P D

    2006-01-01

    A novel electrical impedance tomography method is introduced for reconstruction of layered biological tissues with continuous plane-stratification. The algorithm implements the recently proposed reconstruction scheme for piecewise constant conductivity profiles, based on an improved Prony method in conjunction with Legendre polynomial expansion (LPE). It is shown that the proposed algorithm is capable of successfully reconstructing continuous conductivity profiles with moderate (WKB) slop. Features of the presented reconstruction scheme include, an inherent linearity, achieved by the linear LPE transform, a locality feature, assigning analytically to each spectral component a local electrical impedance associated with a unique location, and effective performance even in the presence of noisy measurements.

  7. The biological effects of extracorporeal shock wave therapy (eswt) on tendon tissue.

    Science.gov (United States)

    Notarnicola, Angela; Moretti, Biagio

    2012-01-01

    There is currently great interest in the use of Extracorporeal Shock Wave Therapy (ESWT) and in clarifying the mechanisms of action in tendon pathologies. The success rate ranges from 60% to 80% in epicondylitis, plantar fasciitis, cuff tendinitis, trocanteritis, Achilles tendinitis or jumper's knee. In contrast to urological treatments (lithotripsy), where shockwaves are used to disintegrate renal stones, in musculoskeletal treatments (orthotripsy), shockwaves are not being used to disintegrate tissues, but rather to microscopically cause interstitial and extracellular biological responses and tissue regeneration. The researchers are interesting to investigate the biological effects which support the clinical successes. Some authors speculated that shockwaves relieve pain in insertional tendinopathy by hyper-stimulation analgesia. Many recent studies demonstrated the modulations of shockwave treatment including neovascularization, differentiation of mesenchymal stem cells and local release of angiogenetic factors. The experimental findings confirm that ESWT decrease the expression of high levels of inflammatory mediators (matrix metalloproteinases and inter-leukins). Therefore, ESWT produces a regenerative and tissue-repairing effect in musculoskeletal tissues, not merely a mechanical disintegrative effect as generally before assumed. Based on the encouraging results of clinical and experimental studies, the potential of ESWT appears to be emerging. The promising outcome after this non-invasive treatment option in tendinitis care justifies the indication of shockwave therapy. Further studies have to be performed in order or determine optimum treatment parameters and will bring about an improvement in accordance with evidence-based medicine. Finally, meta-analysis studies are necessary to demonstrate the efficacy and safety of ESWT in treating tendinopathies.

  8. Investigations on the radioimmunological determination of stilbenes in tissue samples from pigs

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, B.; Weiler, S.

    Based on the extraction procedures described for tissue of veal calves and following the introduction of reversed-phase-column chromatography as an alternative purification step, a radioimmunoassay is described for the determination of DES in pork-tissue. When using the DES-specific antiserum AS 254 and depending on the tissue examined, the lower limits of detection were between 29-69 pg. A mean enor of 10.8% (CV between 13-17%) for the ecovery added to tissue samples and a CV between 3.6 and 10.5% for the reproducibility demonstrate a good reliability. Testing the stilbene-specific antiserum AS 6139 by using /sup 3/H-DES as tracer revealed, the DES - and to a lesser extent also HEX - could be quantified with an acceptable degree of reliability when using the homologous RIA-system (use of DES and HEX resp. as calibration-standard), differently to DIEN; the possibility of a transformation of DIEN during the extraction into a compound exhibiting a higher cross reactivity is discussed. Application of the heterologous test system (quantification of the sample-stilbene by using each of the other two stilbenes for calibration) yielded the expected over- and underestimations. Furtheron, in respect to total stilbenes, i.e. not knowing whether DES, HEX or DIEN are present in the sample, it has been shown, that the assay - though qualitative - is highly sensitive (59-86 pg lower level of detection) when DES is used as tracer and for calibration purposes.

  9. Threshold-dependent sample sizes for selenium assessment with stream fish tissue

    Science.gov (United States)

    Hitt, Nathaniel P.; Smith, David R.

    2015-01-01

    Natural resource managers are developing assessments of selenium (Se) contamination in freshwater ecosystems based on fish tissue concentrations. We evaluated the effects of sample size (i.e., number of fish per site) on the probability of correctly detecting mean whole-body Se values above a range of potential management thresholds. We modeled Se concentrations as gamma distributions with shape and scale parameters fitting an empirical mean-to-variance relationship in data from southwestern West Virginia, USA (63 collections, 382 individuals). We used parametric bootstrapping techniques to calculate statistical power as the probability of detecting true mean concentrations up to 3 mg Se/kg above management thresholds ranging from 4 to 8 mg Se/kg. Sample sizes required to achieve 80% power varied as a function of management thresholds and Type I error tolerance (α). Higher thresholds required more samples than lower thresholds because populations were more heterogeneous at higher mean Se levels. For instance, to assess a management threshold of 4 mg Se/kg, a sample of eight fish could detect an increase of approximately 1 mg Se/kg with 80% power (given α = 0.05), but this sample size would be unable to detect such an increase from a management threshold of 8 mg Se/kg with more than a coin-flip probability. Increasing α decreased sample size requirements to detect above-threshold mean Se concentrations with 80% power. For instance, at an α-level of 0.05, an 8-fish sample could detect an increase of approximately 2 units above a threshold of 8 mg Se/kg with 80% power, but when α was relaxed to 0.2, this sample size was more sensitive to increasing mean Se concentrations, allowing detection of an increase of approximately 1.2 units with equivalent power. Combining individuals into 2- and 4-fish composite samples for laboratory analysis did not decrease power because the reduced number of laboratory samples was compensated for by increased

  10. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    Science.gov (United States)

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  11. Evaluation of sample preparation methods and optimization of nickel determination in vegetable tissues

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernando dos Santos Salazar

    2011-02-01

    Full Text Available Nickel, although essential to plants, may be toxic to plants and animals. It is mainly assimilated by food ingestion. However, information about the average levels of elements (including Ni in edible vegetables from different regions is still scarce in Brazil. The objectives of this study were to: (a evaluate and optimize a method for preparation of vegetable tissue samples for Ni determination; (b optimize the analytical procedures for determination by Flame Atomic Absorption Spectrometry (FAAS and by Electrothermal Atomic Absorption (ETAAS in vegetable samples and (c determine the Ni concentration in vegetables consumed in the cities of Lorena and Taubaté in the Vale do Paraíba, State of São Paulo, Brazil. By means of the analytical technique for determination by ETAAS or FAAS, the results were validated by the test of analyte addition and recovery. The most viable method tested for quantification of this element was HClO4-HNO3 wet digestion. All samples but carrot tissue collected in Lorena contained Ni levels above the permitted by the Brazilian Ministry of Health. The most disturbing results, requiring more detailed studies, were the Ni concentrations measured in carrot samples from Taubaté, where levels were five times higher than permitted by Brazilian regulations.

  12. Automatic sampling for unbiased and efficient stereological estimation using the proportionator in biological studies

    DEFF Research Database (Denmark)

    Gardi, Jonathan Eyal; Nyengaard, Jens Randel; Gundersen, Hans Jørgen Gottlieb

    2008-01-01

    cerebellum, total number of orexin positive neurons in transgenic mice brain, and estimating the absolute area and the areal fraction of β islet cells in dog pancreas.  The proportionator was at least eight times more efficient (precision and time combined) than traditional computer controlled sampling.......Quantification of tissue properties is improved using the general proportionator sampling and estimation procedure: automatic image analysis and non-uniform sampling with probability proportional to size (PPS). The complete region of interest is partitioned into fields of view, and every field...

  13. A Method for Determining the Content of Glycoproteins in Biological Samples

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2016-11-01

    Full Text Available The glycoprotein purified from the mycelium extract of Tremella fuciformis was marked with iodine through the iodine substitution reaction. The content of iodine, which is indicative of the amount of the marked tremella glycoprotein (ITG, was detected with Inductively coupled plasma mass spectrometry (ICP-MS. The method was found to be stable, sensitive, and accurate at detecting the content of iodine-substituted glycoprotein, and was used in the quantitative analysis of biological samples, including blood and organs. Different biological samples were collected from rats after oral administration of ITG, and were tested for iodine content by ICP-MS to calculate the amount of ITG in the samples. The results suggested that ICP-MS is a sensitive, stable, and accurate method for detection of iodinated glycoproteins in blood and organs.

  14. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review.

    Science.gov (United States)

    Karle, Marc; Vashist, Sandeep Kumar; Zengerle, Roland; von Stetten, Felix

    2016-07-27

    The last decade has witnessed tremendous advances in employing microfluidic solutions enabling Continuous Processing and Monitoring of Biological Samples (CPMBS), which is an essential requirement for the control of bio-processes. The microfluidic systems are superior to the traditional inline sensors due to their ability to implement complex analytical procedures, such as multi-step sample preparation, and enabling the online measurement of parameters. This manuscript provides a backgound review of microfluidic approaches employing laminar flow, hydrodynamic separation, acoustophoresis, electrophoresis, dielectrophoresis, magnetophoresis and segmented flow for the continuous processing and monitoring of biological samples. The principles, advantages and limitations of each microfluidic approach are described along with its potential applications. The challenges in the field and the future directions are also provided.

  15. Electromembrane extraction as a rapid and selective miniaturized sample preparation technique for biological fluids

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Pedersen-Bjergaard, Stig; Seip, Knut Fredrik

    2015-01-01

    This special report discusses the sample preparation method electromembrane extraction, which was introduced in 2006 as a rapid and selective miniaturized extraction method. The extraction principle is based on isolation of charged analytes extracted from an aqueous sample, across a thin film...... of organic solvent, and into an aqueous receiver solution. The extraction is promoted by application of an electrical field, causing electrokinetic migration of the charged analytes. The method has shown to perform excellent clean-up and selectivity from complicated aqueous matrices like biological fluids....... Technical aspects of electromembrane extraction, important extraction parameters as well as a handful of examples of applications from different biological samples and bioanalytical areas are discussed in the paper....

  16. Lead Assessment in Biological Samples of Children with Different Gastrointestinal Disorders.

    Science.gov (United States)

    Shah, Faheem; Ullah, Naeem; Kazi, Tasneem Gul; Khan, Ajmal; Kandhro, Ghulam Abbas; Afridi, Hassan Imran; Arain, Mohammad Balal; Khan, Zahid; Farooq, Umar

    2016-01-01

    Lead (Pb) levels have been evaluated in the biological samples of children with different gastrointestinal disorders. Blood, scalp hair, and urine samples of children (of age 4-10 years) complaining about different gastrointestinal disorders were analyzed. For comparison, age matched healthy subjects were also included in this study. Biological samples were digested in a microwave oven prior to Pb determination by graphite furnace atomic absorption spectrometry. Significant differences in Pb profile were found between the diseased and referent children. Elevated Pb contents were observed in case of diseased children than WHO permissible limit, while normal results were obtained for healthy referents. The results were compared with those of healthy children having the same age, socioeconomic status, and residential areas.

  17. Nanocharacterization of soft biological samples in shear mode with quartz tuning fork probes.

    Science.gov (United States)

    Otero, Jorge; Gonzalez, Laura; Puig-Vidal, Manel

    2012-01-01

    Quartz tuning forks are extremely good resonators and their use is growing in scanning probe microscopy. Nevertheless, only a few studies on soft biological samples have been reported using these probes. In this work, we present the methodology to develop and use these nanosensors to properly work with biological samples. The working principles, fabrication and experimental setup are presented. The results in the nanocharacterization of different samples in different ambients are presented by using different working modes: amplitude modulation with and without the use of a Phase-Locked Loop (PLL) and frequency modulation. Pseudomonas aeruginosa bacteria are imaged in nitrogen using amplitude modulation. Microcontact printed antibodies are imaged in buffer using amplitude modulation with a PLL. Finally, metastatic cells are imaged in air using frequency modulation.

  18. Nanocharacterization of Soft Biological Samples in Shear Mode with Quartz Tuning Fork Probes

    Directory of Open Access Journals (Sweden)

    Manel Puig-Vidal

    2012-04-01

    Full Text Available Quartz tuning forks are extremely good resonators and their use is growing in scanning probe microscopy. Nevertheless, only a few studies on soft biological samples have been reported using these probes. In this work, we present the methodology to develop and use these nanosensors to properly work with biological samples. The working principles, fabrication and experimental setup are presented. The results in the nanocharacterization of different samples in different ambients are presented by using different working modes: amplitude modulation with and without the use of a Phase-Locked Loop (PLL and frequency modulation. Pseudomonas aeruginosa bacteria are imaged in nitrogen using amplitude modulation. Microcontact printed antibodies are imaged in buffer using amplitude modulation with a PLL. Finally, metastatic cells are imaged in air using frequency modulation.

  19. Toward greener analytical techniques for the absolute quantification of peptides in pharmaceutical and biological samples.

    Science.gov (United States)

    Van Eeckhaut, Ann; Mangelings, Debby

    2015-09-10

    Peptide-based biopharmaceuticals represent one of the fastest growing classes of new drug molecules. New reaction types included in the synthesis strategies to reduce the rapid metabolism of peptides, along with the availability of new formulation and delivery technologies, resulted in an increased marketing of peptide drug products. In this regard, the development of analytical methods for quantification of peptides in pharmaceutical and biological samples is of utmost importance. From the sample preparation step to their analysis by means of chromatographic or electrophoretic methods, many difficulties should be tackled to analyze them. Recent developments in analytical techniques emphasize more and more on the use of green analytical techniques. This review will discuss the progresses in and challenges observed during green analytical method development for the quantification of peptides in pharmaceutical and biological samples.

  20. Implementation of immunohistochemistry on frozen ear notch tissue samples in diagnosis of bovine viral diarrhea virus in persistently infected cattle

    Directory of Open Access Journals (Sweden)

    Bedeković Tomislav

    2011-12-01

    Full Text Available Abstract Background Bovine viral diarrhea is a contagious disease of domestic and wild ruminants and one of the most economically important diseases in cattle. Bovine viral diarrhea virus belongs to the genus Pestivirus, within the family Flaviviridae. The identification and elimination of the persistently infected animals from herds is the initial step in the control and eradication programs. It is therefore necessary to have reliable methods for diagnosis of bovine viral diarrhea virus. One of those methods is immunohistochemistry. Immunohistochemistry on formalin fixed, paraffin embedded tissue is a routine technique in diagnosis of persistently infected cattle from ear notch tissue samples. However, such technique is inappropriate due to complicated tissue fixation process and it requires more days for preparation. On the contrary, immunohistochemistry on frozen tissue was usually applied on organs from dead animals. In this paper, for the first time, the imunohistochemistry on frozen ear notch tissue samples was described. Findings Seventeen ear notch tissue samples were obtained during the period 2008-2009 from persistently infected cattle. Samples were fixed in liquid nitrogen and stored on -20°C until testing. Ear notch tissue samples from all persistently infected cattle showed positive results with good section quality and possibility to determinate type of infected cells. Conclusions Although the number of samples was limited, this study indicated that immunohistochemistry on formalin fixed paraffin embedded tissue can be successfully replaced with immunohistochemistry on frozen ear notch tissue samples in diagnosis of persistently infected cattle.

  1. Direct observation of unstained wet biological samples by scanning-electron generation X-ray microscopy.

    Science.gov (United States)

    Ogura, Toshihiko

    2010-01-01

    Analytical tools of nanometre-scale resolution are indispensable in the fields of biology, physics and chemistry. One suitable tool, the soft X-ray microscope, provides high spatial resolution of visible light for wet specimens. For biological specimens, X-rays of water-window wavelength between carbon (284 eV; 4.3 nm) and oxygen (540 eV; 2.3 nm) absorption edges provide high-contrast imaging of biological samples in water. Among types of X-ray microscope, the transmission X-ray microscope using a synchrotron radiation source with diffractive zone plates offers the highest spatial resolution, approaching 15-10nm. However, even higher resolution is required to measure proteins and protein complexes in biological specimens; therefore, a new type of X-ray microscope with higher resolution that uses a simple light source is desirable. Here we report a novel scanning-electron generation X-ray microscope (SGXM) that demonstrates direct imaging of unstained wet biological specimens. We deposited wet yeasts in the space between two silicon nitride (Si(3)N(4)) films. A scanning electron beam of accelerating voltage 5 keV and current 1.6 nA irradiates the titanium (Ti)-coated Si(3)N(4) film, and the soft X-ray signal from it is detected by an X-ray photodiode (PD) placed below the sample. The SGXM can theoretically achieve better than 5 nm resolution. Our method can be utilized easily for various wet biological samples of bacteria, viruses, and protein complexes.

  2. Solid Phase Microextraction and Related Techniques for Drugs in Biological Samples

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Moein

    2014-01-01

    Full Text Available In drug discovery and development, the quantification of drugs in biological samples is an important task for the determination of the physiological performance of the investigated drugs. After sampling, the next step in the analytical process is sample preparation. Because of the low concentration levels of drug in plasma and the variety of the metabolites, the selected extraction technique should be virtually exhaustive. Recent developments of sample handling techniques are directed, from one side, toward automatization and online coupling of sample preparation units. The primary objective of this review is to present the recent developments in microextraction sample preparation methods for analysis of drugs in biological fluids. Microextraction techniques allow for less consumption of solvent, reagents, and packing materials, and small sample volumes can be used. In this review the use of solid phase microextraction (SPME, microextraction in packed sorbent (MEPS, and stir-bar sorbtive extraction (SBSE in drug analysis will be discussed. In addition, the use of new sorbents such as monoliths and molecularly imprinted polymers will be presented.

  3. Resonant second-harmonic-generation circular-dichroism microscopy reveals molecular chirality in native biological tissues

    CERN Document Server

    Chen, Mei-Yu; Kan, Che-Wei; Lin, Yen-Yin; Ye, Cin-Wei; Wu, Meng-Jer; Liu, Hsiang-Lin; Chu, Shi-Wei

    2016-01-01

    Conventional linear optical activity effects are widely used for studying chiral materials. However, poor contrast and artifacts due to sample anisotropy limit the applicability of these methods. Here we demonstrate that nonlinear second-harmonic-generation circular dichroism spectral microscopy can overcome these limits. In intact collagenous tissues, clear spectral resonance is observed with sub-micrometer spatial resolution. By performing gradual protein denaturation studies, we show that the resonant responses are dominantly due to the molecular chirality.

  4. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation

    OpenAIRE

    Polf, Jerimy C.; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-01-01

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured ...

  5. [Effect of cytokines and stromal cells of adipose tissue on integration of a two-component composite net imlant into biological tissues].

    Science.gov (United States)

    Dubinina, V G; Chetverikov, S G; Luk'ianchuk, O V; Rosha, L G; Sazhienko, V V; Lysenko, M A; Mikhaĭlov, A S; Chetverikov, M S

    2014-02-01

    Morphological changes in biological tissues, surrounding the composite net-like implant, owing large pores "Ultrapro", and also its combination with adipose transplant, fibrin, enriched with thrombocytes, were studied in experiment on 36 adult male rats of a Wistar line. While application of such construction the processes of creation and organization of connective tissue, neoangiogenesis as well as development of a new adipose tissue are improved. As a consequence of increase of concentration of highly active biological substances and regenerative cytokines in combination of the net implant with adipose transplant, containing multipotent stem cells, proliferative activity of all cellular elements, surrounding the net implant, is raising, what predispose its optimal integration into surrounding tissues.

  6. Analysis of biological tissues in infant chest for the development of an equivalent radiographic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Pina, D. R.; Souza, Rafael T. F.; Duarte, Sergio B.; Alvarez, Matheus; Miranda, Jose R. A. [Faculdade de Medicina de Botucatu, Departamento de Doencas Tropicais e Diagnostico por Imagem, Universidade Estadual Paulista-UNESP, Distrito de Rubiao Junior S/N, Botucatu, 18618-000 Sao Paulo (Brazil); Instituto de Biociencias de Botucatu, Departamento de Fisica e Biofisica, Universidade Estadual Paulista-UNESP, Distrito de Rubiao Junior S/N, Botucatu, 18618-000 Sao Paulo (Brazil); Centro Brasileiro de Pesquisas Fisicas-CBPF/MCT, Rio de Janeiro 22290-180 (Brazil); Instituto de Biociencias de Botucatu, Departamento de Fisica e Biofisica, Universidade Estadual Paulista-UNESP, Distrito de Rubiao Junior S/N, Botucatu, 18618-000 Sao Paulo (Brazil); Instituto de Biociencias de Botucatu, Departamento de Fisica e Biofisica, Universidade Estadual Paulista-UNESP, Distrito de Rubiao Junior S/N, Botucatu, 18618-000 Sao Paulo (Brazil)

    2012-03-15

    Purpose: The main purpose of the present study was to determine the amounts of different tissues in the chest of the newborn patient (age {<=}1 year), with the aim of developing a homogeneous phantom chest equivalent. This type of phantom is indispensable in the development of optimization procedures for radiographic techniques, including dosimetric control, which is a crucial aspect of pediatric radiology. The authors present a systematic set of procedures, including a computational algorithm, to estimate the amounts of tissues and thicknesses of the corresponding simulator material plates used to construct the phantom. Methods: The Gaussian fit of computed tomographic (CT) analysis was applied to classify and quantify different biological tissues. The methodology is summarized with a computational algorithm, which was used to quantify tissues through automated CT analysis. The thicknesses of the equivalent homogeneous simulator material plates were determined to construct the phantom. Results: A total of 180 retrospective CT examinations with anterior-posterior diameter values ranging 8.5-13.0 cm were examined. The amounts of different tissues were evaluated. The results provided elements to construct a phantom to simulate the infant chest in the posterior-anterior or anterior-posterior (PA/AP) view. Conclusions: To our knowledge, this report represents the first demonstration of an infant chest phantom dedicated to the radiology of children younger than one year. This phantom is a key element in the development of clinical charts for optimizing radiographic technique in pediatric patients. Optimization procedures for nonstandard patients were reported previously [Pina et al., Phys. Med. Biol. 49, N215-N226 (2004) and Pina et al., Appl. Radiat. Isot. 67, 61-69 (2009)]. The constructed phantom represents a starting point to obtain radiologic protocols for the infant patient.

  7. High-resolution imaging of biological tissue with full-field optical coherence tomography

    Science.gov (United States)

    Zhu, Yue; Gao, Wanrong

    2015-03-01

    A new full-field optical coherence tomography system with high-resolution has been developed for imaging of cells and tissues. Compared with other FF-OCT (Full-field optical coherence tomography, FF-OCT) systems illuminated with optical fiber bundle, the improved Köhler illumination arrangement with a halogen lamp was used in the proposed FF-OCT system. High numerical aperture microscopic objectives were used for imaging and a piezoelectric ceramic transducer (PZT) was used for phase-shifting. En-face tomographic images can be obtained by applying the five-step phase-shifting algorithm to a series of interferometric images which are recorded by a smart camera. Three-dimensional images can be generated from these tomographic images. Imaging of the chip of Intel Pentium 4 processor demonstrated the ultrahigh resolution of the system (lateral resolution is 0.8μm ), which approaches the theoretical resolution 0.7 μm× 0.5 μm (lateral × axial). En-face images of cells of onion show an excellent performance of the system in generating en-face images of biological tissues. Then, unstained pig stomach was imaged as a tissue and gastric pits could be easily recognized using FF-OCT system. Our study provides evidence for the potential ability of FFOCT in identifying gastric pits from pig stomach tissue. Finally, label-free and unstained ex vivo human liver tissues from both normal and tumor were imaged with this FFOCT system. The results show that the setup has the potential for medical diagnosis applications such liver cancer diagnosis.

  8. Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples

    Science.gov (United States)

    Renault, Marie; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

    2013-11-01

    High-Resolution Magic-Angle Spinning (HR-MAS) NMR spectroscopy has become an extremely versatile analytical tool to study heterogeneous systems endowed with liquid-like dynamics. Spinning frequencies of several kHz are however required to obtain NMR spectra, devoid of spinning sidebands, with a resolution approaching that of purely isotropic liquid samples. An important limitation of the method is the large centrifugal forces that can damage the structure of the sample. In this communication, we show that optimizing the sample preparation, particularly avoiding air bubbles, and the geometry of the sample chamber of the HR-MAS rotor leads to high-quality low-sideband NMR spectra even at very moderate spinning frequencies, thus allowing the use of well-established solution-state NMR procedures for the characterization of small and highly dynamic molecules in the most fragile samples, such as live cells and intact tissues.

  9. Improved FIA-ABTS method for antioxidant capacity determination in different biological samples.

    Science.gov (United States)

    Bompadre, Stefano; Leone, Luciana; Politi, Alessia; Battino, Maurizio

    2004-08-01

    In order to evaluate the actual antioxidant features of foods, beverages and also plasma from patients, a number of assays have been developed in the last few years to determine the so called total antioxidant activity (TAA), intended as the cumulative capacity of a biological sample to scavenge free radicals. Most of the assays partially failed in obtaining a good reproducibility when using plasma because it is composed of a large number of substances, some of which are present at very high concentrations and possess masking features. For these reasons we have improved the widely known ABTS method by means of a FIA system where both temperature and dispersion of sample and reagent were strictly controlled. We found that temperature may be a critical aspect in the measurement of plasma TAA whilst its influence may be less important in the assay of non-complex biological samples. We demonstrated that also the reaction time may be critical, depending on the nature of the substance employed. Data confirmed the high TAA of a methylsalicylate-containing mouthrinse as well as the negligible TAA offered by the chlorhexidine containing one. White wines (Verdicchio) also displayed interesting TAA values. The improved method was useful to screen rapidly, without dilution, with very limited handling of the sample and with high repeatability the TAA of plasma in addition to chemical products, beverages and non-complex biological mixtures.

  10. Transcriptional profiling of degraded RNA in cryopreserved and fixed tissue samples obtained at autopsy

    Directory of Open Access Journals (Sweden)

    Alhasan Samir

    2006-12-01

    Full Text Available Abstract Background Traditional multiplexed gene expression methods require well preserved, intact RNA. Such specimens are difficult to acquire in clinical practice where formalin fixation is the standard procedure for processing tissue. Even when special handling methods are used to obtain frozen tissue, there may be RNA degradation; for example autopsy samples where degradation occurs both pre-mortem and during the interval between death and cryopreservation. Although specimens with partially degraded RNA can be analyzed by qRT-PCR, these analyses can only be done individually or at low levels of multiplexing and are laborious and expensive to run for large numbers of RNA targets. Methods We evaluated the ability of the cDNA-mediated Annealing, Selection, extension, and Ligation (DASL assay to provide highly multiplexed analyses of cryopreserved and formalin fixed, paraffin embedded (FFPE tissues obtained at autopsy. Each assay provides data on 1536 targets, and can be performed on specimens with RNA fragments as small as 60 bp. Results The DASL performed accurately and consistently with cryopreserved RNA obtained at autopsy as well as with RNA extracted from formalin-fixed paraffin embedded tissue that had a cryopreserved mirror image specimen with high quality RNA. In FFPE tissue where the cryopreserved mirror image specimen was of low quality the assay performed reproducibly on some but not all specimens. Conclusion The DASL assay provides reproducible results from cryopreserved specimens and many FFPE specimens obtained at autopsy. Gene expression analyses of these specimens may be especially valuable for the study of non-cancer endpoints, where surgical specimens are rarely available.

  11. Evaluation of Chromosomal Disorders in Tissue and Blood Samples in Patients with Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    A. Parvaneroo

    2004-12-01

    Full Text Available Statement of Problem: Many studies have indicated that genetic disturbances are common findings in patients with Oral Squamous Cell Carcinoma (OSCC. Identification of these changes can be helpful in diagnostic procedures of these tumors.Purpose: The aim of this study was to appraise the chromosomal disorders in blood and tissue patients with OSCC.Methods and Materials: In this descriptive study, the study group consisted of all OSCC patients who were referred to the Faculty of Dentistry, Tehran University of Medical Sciences, Maxillofacial Surgery Clinic of Shariati Hospital, and Amir Aalam Hospital fromSeptember 2000 to November 2002. In order to study chromosomal disorders in the peripheral blood lymphocytes, 5 mL of blood was obtained from each patient In patients with the large lesion, a piece of involved tissue were obtained and cultured for 24 hours.This led to 29 blood samples and 16 tissue specimens and any relation between OSCC and age, sex, smoking and alcohol use were evaluated.Results: In this study, OSCC was more common in males than in females (3 to 5. 31% of our patients were smokers, and one had a history of alcoholic consumption. There was an increase in incidence of OSCC with age. In this study, all patients had numerical(aneuploidy, polyploidy and structural chromosomal disorders (double minute, fragment,breakage and dicentric. There was significant difference between blood and tissue chromosomal disorders (aneuploidy, polyploidy,breakage in OSCC patients.Conclusion: It can be concluded that chromosomes in patients with OSCC might show some genetic aberration and evaluation of involved tissue might be better way for determining this disorders.

  12. Physicochemical characteristics and biological activities of seasonal atmospheric particulate matter sampling in two locations of Paris.

    Science.gov (United States)

    Baulig, Augustin; Poirault, Jean-Jacques; Ausset, Patrick; Schins, Roel; Shi, Tingming; Baralle, Delphine; Dorlhene, Pascal; Meyer, Martine; Lefevre, Roger; Baeza-Squiban, Armelle; Marano, Francelyne

    2004-11-15

    Fine particulate matter present in urban areas seems to be incriminated in respiratory disorders. The aim of this study was to relate physicochemical characteristics of PM2.5 (particulate matter collected with a 50% efficiency for particles with an aerodynamic diameter of 2.5 microm) to their biological activities toward a bronchial epithelial cell line 16-HBE. Two seasonal sampling campaigns of particles were realized, respectively, in a kerbside and an urban background station in Paris. Sampled-PM2.5 mainly consist of particles with a size below 1 microm and are mainly composed of soot as assessed by analytical scanning electron microscopy. The different PM2.5 samples contrasted in their PAH content, which was the highest in the kerbside station in winter, as well as in their metal content. Kerbside station samples were characterized by the highest Fe and Cu content, which appears correlated to their hydroxyl radical generating properties measured by electron paramagnetic resonance. Particles were compared by their capacity to induce cytotoxicity, intracellular ROS production, and proinflammatory cytokine release (GM-CSF and TNF-alpha). At a concentration of 10 microg/cm2, all samples induced peroxide production and cytokine release to the similar extent in the absence of cytotoxicity. In conclusion, whereas the PM2.5 samples differ by their PAH and metal composition, they induce the same biological responses likely either due to components bioavailability and/ or interactions between PM components.

  13. Elemental and isotopic imaging of biological samples using NanoSIMS.

    Science.gov (United States)

    Kilburn, Matt R; Clode, Peta L

    2014-01-01

    With its low detection limits and the ability to analyze most of the elements in the periodic table, secondary ion mass spectrometry (SIMS) represents one of the most versatile in situ analytical techniques available, and recent developments have resulted in significant advantages for the use of imaging mass spectrometry in biological and biomedical research. Increases in spatial resolution and sensitivity allow detailed interrogation of samples at relevant scales and chemical concentrations. Advances in dynamic SIMS, specifically with the advent of NanoSIMS, now allow the tracking of stable isotopes within biological systems at subcellular length scales, while static SIMS combines subcellular imaging with molecular identification. In this chapter, we present an introduction to the SIMS technique, with particular reference to NanoSIMS, and discuss its application in biological and biomedical research.

  14. Fractional Calculus-Based Modeling of Electromagnetic Field Propagation in Arbitrary Biological Tissue

    Directory of Open Access Journals (Sweden)

    Pietro Bia

    2016-01-01

    Full Text Available The interaction of electromagnetic fields and biological tissues has become a topic of increasing interest for new research activities in bioelectrics, a new interdisciplinary field combining knowledge of electromagnetic theory, modeling, and simulations, physics, material science, cell biology, and medicine. In particular, the feasibility of pulsed electromagnetic fields in RF and mm-wave frequency range has been investigated with the objective to discover new noninvasive techniques in healthcare. The aim of this contribution is to illustrate a novel Finite-Difference Time-Domain (FDTD scheme for simulating electromagnetic pulse propagation in arbitrary dispersive biological media. The proposed method is based on the fractional calculus theory and a general series expansion of the permittivity function. The spatial dispersion effects are taken into account, too. The resulting formulation is explicit, it has a second-order accuracy, and the need for additional storage variables is minimal. The comparison between simulation results and those evaluated by using an analytical method based on the Fourier transformation demonstrates the accuracy and effectiveness of the developed FDTD model. Five numerical examples showing the plane wave propagation in a variety of dispersive media are examined.

  15. Imaging of metals, metalloids, and non-metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in biological tissues.

    Science.gov (United States)

    Becker, J Sabine; Becker, J Susanne

    2010-01-01

    The determination of the localization and distribution of essential and beneficial metals (e.g., Cu, Fe, Zn, Mn, Co, Ti, Al, Ca, K, Na, Cr and others), toxic metals (like Cd, Pb, Hg, U), metalloids (e.g., As, Se, Sb), and non-metals (such as C, S, P, Cl, I) in biological tissues is a challenging task for life science studies. Over the past few years, the development and application of mass spectrometric imaging (MSI) techniques for elements has been rapidly growing in the life sciences in order to investigate the uptake and the transport of both essential and toxic metals in plant and animal sections. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a very sensitive and efficient trace, surface, and isotopic analytical technique for biological samples. LA-ICP-MS is increasingly utilized as an elemental mass spectrometric technique using double-focusing sector field (LA-ICP-SFMS) or quadrupole mass spectrometers (LA-ICP-QMS) to produce images of detailed regionally specific element distributions in thin biological tissue sections. Nowadays, MSI studies focus on brain research for studying neurodegenerative diseases such as Alzheimer's or Parkinson's, stroke, or tumor growth, or for the imaging of cancer biomarkers in tissue sections.The combination of the mass spectrometry imaging of metals by LA-ICP-MS with proteomics using biomolecular mass spectrometry (such as MALDI-MS or ESI-MS) to identify metal-containing proteins has become an important strategy in the life sciences. Besides the quantitative imaging of metals, non-metals and metalloids in biological tissues, LA-ICP-MS has been utilized for imaging metal-containing proteins in a 2D gel after electrophoretic separation of proteins. Recent progress in applying LA-ICP-MS in life science studies will be reviewed including the imaging of thin slices of biological tissue and applications in proteome analysis in combination with MALDI/ESI-MS to analyze metal-containing proteins.

  16. Electroanalytical Determination of Danofloxacin in Biological Samples Using Square Wave Voltammetry

    Directory of Open Access Journals (Sweden)

    Chirley Vanessa Boone

    2014-10-01

    Full Text Available The voltammetric behavior of danofloxacin (DFX has been studied, in aqueous solution, on a glassy carbon electrode using square wave voltammetry (SWV as electroanalytical technique. After optimization of the experimental conditions, DFX was analyzed in spiked biologic samples using a Britton-Robinson buffer with pH = 5.0 as the supporting electrolyte. Oxidation occurs at 0.98 V vs. Ag/AgCl in a two-electron process controlled by adsorption of the electrogenerated products on the electrode surface. A acceptable recovery was obtained for assay of spiked biologic samples, with value of 98.7% for the swine urine and 95.3 % for the bovine urine.

  17. A bench-top K X-ray fluorescence system for quantitative measurement of gold nanoparticles for biological sample diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ricketts, K., E-mail: k.ricketts@ucl.ac.uk [Division of Surgery and Interventional Sciences, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF (United Kingdom); Guazzoni, C.; Castoldi, A. [Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano and INFN, Sezione di Milano P.za Leonardo da Vinci, 32-20133 Milano (Italy); Royle, G. [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT (United Kingdom)

    2016-04-21

    Gold nanoparticles can be targeted to biomarkers to give functional information on a range of tumour characteristics. X-ray fluorescence (XRF) techniques offer potential quantitative measurement of the distribution of such heavy metal nanoparticles. Biologists are developing 3D tissue engineered cellular models on the centimetre scale to optimise targeting techniques of nanoparticles to a range of tumour characteristics. Here we present a high energy bench-top K-X-ray fluorescence system designed for sensitivity to bulk measurement of gold nanoparticle concentration for intended use in such thick biological samples. Previous work has demonstrated use of a L-XRF system in measuring gold concentrations but being a low energy technique it is restricted to thin samples or superficial tumours. The presented system comprised a high purity germanium detector and filtered tungsten X-ray source, capable of quantitative measurement of gold nanoparticle concentration of thicker samples. The developed system achieved a measured detection limit of between 0.2 and 0.6 mgAu/ml, meeting specifications of biologists and being approximately one order of magnitude better than the detection limit of alternative K-XRF nanoparticle detection techniques. The scatter-corrected K-XRF signal of gold was linear with GNP concentrations down to the detection limit, thus demonstrating potential in GNP concentration quantification. The K-XRF system demonstrated between 5 and 9 times less sensitivity than a previous L-XRF bench-top system, due to a fundamental limitation of lower photoelectric interaction probabilities at higher K-edge energies. Importantly, the K-XRF technique is however less affected by overlying thickness, and so offers future potential in interrogating thick biological samples.

  18. Polybrominated diphenyl ethers in water, sediment, soil, and biological samples from different industrial areas in Zhejiang, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junxia; Lin, Zhenkun [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China); Lin, Kuangfei [School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237 (China); Wang, Chunyan [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China); Zhang, Wei [School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237 (China); Cui, Changyuan [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China); Lin, Junda [Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Dong, Qiaoxiang, E-mail: dqxdong@163.com [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We examined PBDE concentrations in various matrices from different industrial areas. Black-Right-Pointing-Pointer Elevated PBDE levels were found in areas with low-voltage electrical manufactures. Black-Right-Pointing-Pointer Areas with e-waste recycling activities also had higher PBDE concentrations. Black-Right-Pointing-Pointer PBDE content and composition in water samples varied from one area to another. Black-Right-Pointing-Pointer PBDE composition in sediment/soil and biological samples was predominated by BDE-209. - Abstract: Polybrominated diphenyl ethers (PBDEs) have been used extensively in electrical and electronic products, but little is known about their distribution in the environment surrounding the manufacturing factories. This study reports PBDE contamination in various matrices from the location (Liushi, Zhejiang province) that produces more than 70% of the low-voltage electrical appliances in China. Additionally, PBDE contamination was compared with other industries such as the e-waste recycling business (Fengjiang) in the same region. Specifically, we measured seven PBDE congeners (BDEs - 47, 99, 100, 153, 154, 183, and 209) in water, sediment, soil, plant, and animal tissues from four different areas in this region. The present study revealed elevated PBDE concentrations in all matrices collected from Liushi and Fengjiang in comparison with highly industrialized areas without significant PBDE contamination sources. In water samples, there were large variations of PBDE content and composition across different areas. In sediment/soil and biological samples, BDE-209 was the predominant congener and this could be due to the abundant usage of deca-BDE mixtures in China. Our findings provide the very first data on PBDE contamination in the local environments surrounding the electronics industry, and also reveal widespread PBDE contamination in highly industrialized coastal regions of China.

  19. Development of an improved immunoassay for detection of sorLA in cells and biological samples

    DEFF Research Database (Denmark)

    Andersen, Olav Michael; Thakurta, Ishita Guha; West, Mark J.

    , or traditional sandwich ELISA assays which are time consuming and less sensitive. Hence, the purpose of the present study is to develop a new assay called AlphaLISA which is fast and very sensitive, to measure sorLA in extremely small volumes of cells and biological samples. Methods: The Alpha......, which can be automated suitably for determination of sorLA in large sample batches. It also shows high recovery and signal to noise ratio. Conclusions: The results support the development of an improved method for measuring sorLA quantitatively, which could further prove as an important tool...

  20. HPLC and TLC methods for analysis of [(18)F]FDG and its metabolites from biological samples.

    Science.gov (United States)

    Rokka, Johanna; Grönroos, Tove J; Viljanen, Tapio; Solin, Olof; Haaparanta-Solin, Merja

    2017-03-24

    The most used positron emission tomography (PET) tracer, 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG), is a glucose analogue that is used to measure tissue glucose consumption. Traditionally, the Sokoloff model is the basis for [(18)F]FDG modeling. According to this model, [(18)F]FDG is expected to be trapped in a cell in the form of [(18)F]FDG-6-phosphate ([(18)F]FDG-6-P). However, several studies have shown that in tissues, [(18)F]FDG metabolism goes beyond [(18)F]FDG-6-P. Our aim was to develop radioHPLC and radioTLC methods for analysis of [(18)F]FDG metabolites from tissue samples. The radioHPLC method uses a sensitive on-line scintillation detector to detect radioactivity, and the radioTLC method employs digital autoradiography to detect the radioactivity distribution on a TLC plate. The HPLC and TLC methods were developed using enzymatically in vitro-produced metabolites of [(18)F]FDG as reference standards. For this purpose, three [(18)F]FDG metabolites were synthesized: [(18)F]FDG-6-P, [(18)F]FD-PGL, and [(18)F]FDG-1,6-P2. The two methods were evaluated by analyzing the [(18)F]FDG metabolic profile from rodent ex vivo tissue homogenates. The HPLC method with an on-line scintillation detector had a wide linearity in a range of 5Bq-5kBq (LOD 46Bq, LOQ 139Bq) and a good resolution (Rs ≥1.9), and separated [(18)F]FDG and its metabolites clearly. The TLC method combined with digital autoradiography had a high sensitivity in a wide range of radioactivity (0.1Bq-2kBq, LOD 0.24Bq, LOQ 0.31Bq), and multiple samples could be analyzed simultaneously. As our test and the method validation with ex vivo samples showed, both methods are useful, and at best they complement each other in analysis of [(18)F]FDG and its radioactive metabolites from biological samples.

  1. The presence of enterovirus, adenovirus, and parvovirus B19 in myocardial tissue samples from autopsies

    DEFF Research Database (Denmark)

    Nielsen, Trine Skov; Hansen, Jakob; Nielsen, Lars Peter

    2014-01-01

    PURPOSE: Multiple viruses have been detected in cardiac tissue, but their role in causing myocarditis remains controversial. Viral diagnostics are increasingly used in forensic medicine, but the interpretation of the results can sometimes be challenging. In this study, we examined the prevalence...... of adenovirus, enterovirus, and parvovirus B19 (PVB) in myocardial autopsy samples from myocarditis related deaths and in non-inflamed control hearts in an effort to clarify their significance as the causes of myocarditis in a forensic material. METHODS: We collected all autopsy cases diagnosed with myocarditis...... was made by the serological determination of PVB-specific immunoglobulins M and G. RESULTS: PVB was detected in 33 of 112 (29 %) myocarditis cases and 37 of 84 (44 %) control cases. All of the samples were negative for the presence of adenovirus and enterovirus. Serological evidence of an acute PVB...

  2. Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS.

    Science.gov (United States)

    Loeschner, Katrin; Brabrand, Myung Suk Jung; Sloth, Jens J; Larsen, Erik H

    2014-06-01

    Inductively coupled plasma mass spectrometry in single-particle mode (spICPMS) is a promising method for the detection of metal-containing nanoparticles (NPs) and the quantification of their size and number concentration. Whereas existing studies mainly focus on NPs suspended in aqueous matrices, not much is known about the applicability of spICPMS for determination of NPs in complex matrices such as biological tissues. In the present study, alkaline and enzymatic treatments were applied to solubilize spleen samples from rats, which had been administered 60-nm gold nanoparticles (AuNPs) intravenously. The results showed that similar size distributions of AuNPs were obtained independent of the sample preparation method used. Furthermore, the quantitative results for AuNP mass concentration obtained with spICPMS following alkaline sample pretreatment coincided with results for total gold concentration obtained by conventional ICPMS analysis of acid-digested tissue. The recovery of AuNPs from enzymatically digested tissue, however, was approximately four times lower. Spiking experiments of blank spleen samples with AuNPs showed that the lower recovery was caused by an inferior transport efficiency of AuNPs in the presence of enzymatically digested tissue residues.

  3. Sampling designs matching species biology produce accurate and affordable abundance indices

    Directory of Open Access Journals (Sweden)

    Grant Harris

    2013-12-01

    Full Text Available Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling, it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS data from 42 Alaskan brown bears (Ursus arctos. Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion, and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture

  4. Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach

    Directory of Open Access Journals (Sweden)

    Parida Shreemanta K

    2010-01-01

    Full Text Available Abstract Background For heterogeneous tissues, such as blood, measurements of gene expression are confounded by relative proportions of cell types involved. Conclusions have to rely on estimation of gene expression signals for homogeneous cell populations, e.g. by applying micro-dissection, fluorescence activated cell sorting, or in-silico deconfounding. We studied feasibility and validity of a non-negative matrix decomposition algorithm using experimental gene expression data for blood and sorted cells from the same donor samples. Our objective was to optimize the algorithm regarding detection of differentially expressed genes and to enable its use for classification in the difficult scenario of reversely regulated genes. This would be of importance for the identification of candidate biomarkers in heterogeneous tissues. Results Experimental data and simulation studies involving noise parameters estimated from these data revealed that for valid detection of differential gene expression, quantile normalization and use of non-log data are optimal. We demonstrate the feasibility of predicting proportions of constituting cell types from gene expression data of single samples, as a prerequisite for a deconfounding-based classification approach. Classification cross-validation errors with and without using deconfounding results are reported as well as sample-size dependencies. Implementation of the algorithm, simulation and analysis scripts are available. Conclusions The deconfounding algorithm without decorrelation using quantile normalization on non-log data is proposed for biomarkers that are difficult to detect, and for cases where confounding by varying proportions of cell types is the suspected reason. In this case, a deconfounding ranking approach can be used as a powerful alternative to, or complement of, other statistical learning approaches to define candidate biomarkers for molecular diagnosis and prediction in biomedicine, in

  5. Comparative analysis of housekeeping and tissue-selective genes in human based on network topologies and biological properties.

    Science.gov (United States)

    Yang, Lei; Wang, Shiyuan; Zhou, Meng; Chen, Xiaowen; Zuo, Yongchun; Sun, Dianjun; Lv, Yingli

    2016-06-01

    Housekeeping genes are genes that are turned on most of the time in almost every tissue to maintain cellular functions. Tissue-selective genes are predominantly expressed in one or a few biologically relevant tissue types. Benefitting from the massive gene expression microarray data obtained over the past decades, the properties of housekeeping and tissue-selective genes can now be investigated on a large-scale manner. In this study, we analyzed the topological properties of housekeeping and tissue-selective genes in the protein-protein interaction (PPI) network. Furthermore, we compared the biological properties and amino acid usage between these two gene groups. The results indicated that there were significant differences in topological properties between housekeeping and tissue-selective genes in the PPI network, and housekeeping genes had higher centrality properties and may play important roles in the complex biological network environment. We also found that there were significant differences in multiple biological properties and many amino acid compositions. The functional genes enrichment and subcellular localizations analysis was also performed to investigate the characterization of housekeeping and tissue-selective genes. The results indicated that the two gene groups showed significant different enrichment in drug targets, disease genes and toxin targets, and located in different subcellular localizations. At last, the discriminations between the properties of two gene groups were measured by the F-score, and expression stage had the most discriminative index in all properties. These findings may elucidate the biological mechanisms for understanding housekeeping and tissue-selective genes and may contribute to better annotate housekeeping and tissue-selective genes in other organisms.

  6. Correlation of abnormal DNMT1 and MeCP2 expression with cell biological characteristics in cervical lesion tissue

    Institute of Scientific and Technical Information of China (English)

    Wei Lin; Sha Ma

    2016-01-01

    Objective:To study the correlation of abnormal DNMT1 and MeCP2 expression with cell biological characteristics in cervical lesion tissue.Methods:Cervical cancer tissue and para-carcinoma tissue were collected from cervical cancer patients who received surgery in our hospital from May 2012 to October 2015, and HPV types as well as the expression levels of DNMTs, MeCP2, PBK, TOPK, Snail, Slug, SALL4 and Cat L were determined.Results:Protein levels of DNMT1, DNMT2, DNMT3a, DNMT3b, DNMT3l and MeCP2 in cervical cancer tissue were significantly higher than those in para-carcinoma tissue, and the rising trend of DNMT1 expression level was the most significant; protein levels of DNMT1, DNMT2, DNMT3a, DNMT3b, DNMT3l and MeCP2 in cervical cancer tissue with high-risk HPV infection were significantly higher than those in cervical cancer tissue with normal HPV infection; in cervical cancer tissue with high expression of DNMT1 and MeCP2, PBK, TOPK, Snail, Slug, SALL4 and Cat L levels were significantly higher than those in cervical cancer tissue with low expression of DNMT1 and MeCP2.Conclusions:Abnormally high expression of DNMT1 and MeCP2 in cervical cancer tissue may up-regulate the expression of a variety of malignant biological molecules by increasing methylation level.

  7. A monoclonal antibody against Meningococcus group B polysaccharides used to immunocapture and quantify polysialylated NCAM in tissues and biological fluids.

    Science.gov (United States)

    Dubois, C; Okandze, A; Figarella-Branger, D; Rampini, C; Rougon, G

    1995-04-12

    Polysialylated isoforms of neural cell adhesion molecule (PSA-NCAM) are transiently expressed in many tissues during development and in discrete areas of the adult central nervous system. In pathological situations, they are expressed by poorly differentiated tumor cells of neuroectodermal origin and by regenerating muscle. An ELISA is introduced here to estimate the relative concentrations of PSA-NCAM expressed by tissues or released into biological fluids. In this double-sandwich assay, an anti-PSA antibody (anti-MenB) was adsorbed onto plastic plates and permitted the immunocapture of PSA-bearing molecules. It is demonstrated that these molecules are major NCAM. The second antibody was directed against an amino acid sequence shared by NCAM isoforms in several species. The standard curves were established using Nonidet P40 extracts of human or mouse embryonic brain known to be rich in PSA-NCAM. The sensitivity of the assay allows for quantitation of PSA-NCAM in muscle during regeneration and in small samples of cerebrospinal fluid from patients with medulloblastoma metastasis.

  8. Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS.

    Science.gov (United States)

    Wang, Meng; Feng, Weiyue; Shi, Junwen; Zhang, Fang; Wang, Bing; Zhu, Motao; Li, Bai; Zhao, Yuliang; Chai, Zhifang

    2007-03-30

    A mild, efficient and convenient extraction method of using 2-mercaptoethanol contained extractant solution combined with an incubator shaker for determination of mercury species in biological samples by HPLC-ICP-MS has been developed. The effects of the concentration of 2-mercaptoethanol, the composition of the extractant solution and the shaking time on the efficiency of mercury extraction were evaluated. The optimization experiments indicated that the quantitative extraction of mercury species from biological samples could be achieved by using 0.1% (v/v) HCl, 0.1% (v/v) 2-mercapoethanol and 0.15% (m/v) KCl extractant solution in an incubator shaker for shaking overnight (about 12h) at room temperature. The established method was validated by analysis of various biological certified reference materials, including NRCC DOLT-3 (dogfish liver), IAEA 436 (tuna fish), IAEA MA-B-3/TM (garfish filet), IAEA MA-M-2/TM (mussel tissue), GBW 08193 (bovine liver) and GBW 08572 (prawn). The analytical results of the reference materials were in good agreement with the certified or reference values of both methyl and total mercury, indicating that no distinguishable transformation between mercury species had occurred during the extraction and determination procedures. The limit of detection (LOD) for methyl (CH(3)Hg(+)) and inorganic mercury (Hg(2+)) by the method are both as 0.2microg L(-1). The relative standard deviation (R.S.D.s) for CH(3)Hg(+) and Hg(2+) are 3.0% and 5.8%, respectively. The advantages of the developed extraction method are that (1) it is easy to operate in HPLC-ICP-MS for mercury species determination since the extracted solution can be directly injected into the HPLC column without pH adjustment and (2) the memory effect of mercury in the ICP-MS measurement system can be reduced.

  9. Preconcentration and determination of heavy metals in water, sediment and biological samples

    Directory of Open Access Journals (Sweden)

    Shirkhanloo Hamid

    2011-01-01

    Full Text Available In this study, a simple, sensitive and accurate column preconcentration method was developed for the determination of Cd, Cu and Pb ions in river water, urine and sediment samples by flame atomic absorption spectrometry. The procedure is based on the retention of the analytes on a mixed cellulose ester membrane (MCEM column from buffered sample solutions and then their elution from the column with nitric acid. Several parameters, such as pH of the sample solution, volume of the sample and eluent and flow rates of the sample were evaluated. The effects of diverse ions on the preconcentration were also investigated. The recoveries were >95 %. The developed method was applied to the determination of trace metal ions in river water, urine and sediment samples, with satisfactory results. The 3δ detection limits for Cu, Pb and Cd were found to be 2, 3 and 0.2 μg dm−3, respectively. The presented procedure was successfully applied for determination of the copper, lead and cadmium contents in real samples, i.e., river water and biological samples.

  10. Evaluation of convenient pretreatment protocols for RNA virus metagenomics in serum and tissue samples.

    Science.gov (United States)

    Rosseel, Toon; Ozhelvaci, Orkun; Freimanis, Graham; Van Borm, Steven

    2015-09-15

    Viral metagenomic approaches are increasingly being used for viral discovery. Various strategies are applied to enrich viral sequences, but there is often a lack of knowledge about their effective influence on the viral discovery sensitivity. We evaluate some convenient and widely used approaches for RNA virus discovery in clinical samples in order to reveal their sensitivity and potential bias introduced by the enrichment or amplifications steps. An RNA virus was artificially spiked at a fixed titer in serum and lung tissue, respectively, low and high nucleic acid content matrices. For serum, a simple DNase treatment on the RNA extract gave the maximum gain in proportion of viral sequences (83×), and a subsequent ribosomal RNA removal nearly doubled once more the proportion of viral sequences. For lung tissue, a ribosomal RNA depletion step on the RNA extract had the biggest gain in proportion of viral sequences (32×). We show also that direct sequencing of cDNA is recommended above an extra random PCR amplification step, and a that the virion enrichment strategy (filtration and nuclease treatment) has a beneficial effect for sequencing-based virus discovery. Our findings provide sample-dependent guidelines for targeted virus discovery strategies.

  11. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues.

    Science.gov (United States)

    Ji, Na; Milkie, Daniel E; Betzig, Eric

    2010-02-01

    Biological specimens are rife with optical inhomogeneities that seriously degrade imaging performance under all but the most ideal conditions. Measuring and then correcting for these inhomogeneities is the province of adaptive optics. Here we introduce an approach to adaptive optics in microscopy wherein the rear pupil of an objective lens is segmented into subregions, and light is directed individually to each subregion to measure, by image shift, the deflection faced by each group of rays as they emerge from the objective and travel through the specimen toward the focus. Applying our method to two-photon microscopy, we could recover near-diffraction-limited performance from a variety of biological and nonbiological samples exhibiting aberrations large or small and smoothly varying or abruptly changing. In particular, results from fixed mouse cortical slices illustrate our ability to improve signal and resolution to depths of 400 microm.

  12. Identification of fungal pathogens in Formalin-fixed, Paraffin-embedded tissue samples by molecular methods.

    Science.gov (United States)

    Rickerts, Volker

    2016-02-01

    The etiology of invasive fungal infections (IFI) is incompletely understood due to diagnostic limitations including insensitivity of cultures and failure of histopathology to discriminate between different species. This diagnostic gap precludes the optimal use of antifungals, leading to adverse patient outcomes. The identification of fungal pathogens from Formalin-fixed, Paraffin-embedded tissue (FFPE) blocks by molecular methods is emerging as an alternative approach to study the etiology of IFI. PCR assays, including species specific- and broadrange fungal tests are used with FFPE samples from patients with proven IFI. Fungal species identification is achieved in 15-90% of the samples. This heterogeneity may be explained by the samples studied. However, comparison of different studies is impaired, as controls ruling out false positive-, false negative test results or PCR inhibition are frequently not reported. Studies using in situ hybridization also vary in the clinical samples included and the targeted fungi. In addition, target sequences, the probe chemistry and the detection of hybridization signals also account for the differences in diagnostic sensitivity. Using both approaches in parallel yields additive insights, potentially leading to a superior identification of fungal etiology and awareness of the limitations of both molecular diagnostic approaches.

  13. A Two-Layer Mathematical Modelling of Drug Delivery to Biological Tissues

    CERN Document Server

    Chakravarty, Koyel

    2016-01-01

    Local drug delivery has received much recognition in recent years, yet it is still unpredictable how drug efficacy depends on physicochemical properties and delivery kinetics. The purpose of the current study is to provide a useful mathematical model for drug release from a drug delivery device and consecutive drug transport in biological tissue, thereby aiding the development of new therapeutic drug by a systemic approach. In order to study the complete process, a two-layer spatio-temporal model depicting drug transport between the coupled media is presented. Drug release is described by considering solubilisation dynamics of drug particle, diffusion of the solubilised drug through porous matrix and also some other processes like reversible dissociation / recrystallization, drug particle-receptor binding and internalization phenomena. The model has led to a system of partial differential equations describing the important properties of drug kinetics. This model contributes towards the perception of the roles...

  14. A Polydisperse Sphere Model Describing the Propagation of Light in Biological Tissue

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-Hua; LI Zhen-Hua; LAI Jian-Cheng; HE An-Zhi

    2007-01-01

    A polydisperse sphere model with the complex refractive index is employed to describe the propagation of light in biological tissue.The scattering coefficient,absorption coefficient and scattering phase function are calculated.At the same time,the inverse problem on retrieving the particles size distribution,imaginary part of the refractive index and number density of scatterers is investigated.The result shows that the retrieval scheme together with the Chahine algorithm is effective in dealing with such an inverse problem.IT is also clarified that a group of parameters including the scattering coefficient,absorption coefficient and phase function are associated with another group including the refractive index,particle size distribution and number density of scatterers,which is a problem described in two different ways and the anisotropy factor is not an independent variable,but is determined by the phase function.

  15. Cell reprogramming: a new chemical approach to stem cell biology and tissue regeneration.

    Science.gov (United States)

    Anastasia, L; Piccoli, M; Garatti, A; Conforti, E; Scaringi, R; Bergante, S; Castelvecchio, S; Venerando, B; Menicanti, L; Tettamanti, G

    2011-02-01

    Generation of pluripotent stem cells (iPSCs) from adult fibroblasts starts a "new era" in stem cell biology, as it overcomes several key issues associated with previous approaches, including the ethical concerns associated with human embryonic stem cells. However, as the genetic approach for cell reprogramming has already shown potential safety issues, a chemical approach may be a safer and easier alternative. Moreover, a chemical approach could be advantageous not only for the de-differentiation phase, but also for inducing reprogrammed cells into the desired cell type with higher efficiency than current methodologies. Finally, a chemical approach may be envisioned to activate resident adult stem cells to proliferate and regenerate damaged tissues in situ, without the need for exogenous cell injections.

  16. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-07-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.

  17. The Tip-Sample Interaction in Atomic Force Microscopy and its Implications for Biological Applications.

    Science.gov (United States)

    Baselt, David Randall

    This thesis describes the construction of an atomic force microscope and its application to the study of tip -sample interactions, primarily through the use of friction and hardness (elasticity) imaging. Part one describes the atomic force microscope, which consists of a scanned-cantilever stage (chapter 2); a versatile digital signal processor-based control system with self-optimizing feedback, lock-in amplifier emulation (for hardness imaging), and macro programmability (chapter 3); and image processing software (chapter 4). Part two describes a number of results that have helped to characterize the tip-sample interaction and the contact imaging modes used for its study. Meniscus forces act laterally as well as normally, and that they vary with position (chapter 5). Friction measurements couple with scanner position and feedback, and the meniscus effects friction images (chapter 6). Sliding of the tip over the sample surface introduces slope-dependence into hardness measurements (chapter 7). Dull tips can create prominent topography artifacts even on very flat surfaces (chapter 8). In an investigation of collagen fibrils, AFM has revealed the characteristic 65 nm banding pattern, a second, minor banding pattern, and microfibrils that run along the fibril axis. The distribution of proteoglycans along the fibrils creates a characteristic pattern in friction images. Although imaging in water reduces interaction forces, water can also make biological samples more sensitive to force. However, for robust biological samples imaged in air, tip shape presents a greater obstacle than tip -sample interaction forces to obtaining high-resolution images. Tip contamination increases tip-sample friction and can occasionally improve resolution (chapter 9). For a separate project I have designed a general -purpose nearfield scanning optical microscope (chapter 10).

  18. Assessment of bioburden on human and animal tissues: part 2--results of testing of human tissue and qualification of a composite sample for routine bioburden determination.

    Science.gov (United States)

    Kowalski, John B; Merritt, Karen; Gocke, David; Osborne, Joel

    2012-08-01

    A quantitative method was developed and validated to assess bioburden on tissue from human donors and to compare bioburden determination results to swab culture results from the same donor. An initial study with allograft tissue from 101 donors showed a wide range of bioburden levels; values from no colony-forming units (CFU) detected to >28,000 CFU were observed. Tissues from donors that had swab cultures negative for objectionable microorganisms generally had lower bioburden than tissues from donors where objectionable microorganisms were recovered by swab culturing. In a follow-up study with 1,445 donors, a wide range of bioburden levels was again observed on tissues from donors that were swab culture negative for objectionable microorganisms. Tissues from 885 (61%) of these donors had no recoverable bioburden (donors had recoverable bioburden which ranged from 1 to >24,000 CFU. Identification of bioburden isolates showed a diversity of genera and species. In compliance with the recent revision of the American Association of Tissue Banks K2.210 Standard, the quantitative bioburden determination method was validated with a composite tissue sample that contains bone and soft tissue sections tested together in one extraction vessel. A recovery efficiency of 68% was validated and the composite sample was shown to be representative of all of the tissues recovered from a donor. The use of the composite sample in conjunction with the quantitative bioburden determination method will facilitate an accurate assessment of the numbers and types of contaminating microorganisms on allografts prior to disinfection/sterilization. This information will ensure that disinfection/sterilization processes are properly validated and the capability of the overall allograft process is understood on a donor by donor basis.

  19. Liquid Microjunction Surface Sampling Probe Electrospray Mass Spectrometry for Detection of Drugs and Metabolites in Thin Tissue Sections

    Energy Technology Data Exchange (ETDEWEB)

    Van Berkel, Gary J [ORNL; Kertesz, Vilmos [ORNL; Koeplinger, Kenneth A. [Merck Research Laboratories; Vavek, Marissa [Merck Research Laboratories; Kong, Ah-Ng Tony [Rutgers University

    2008-01-01

    A self-aspirating, liquid micro-junction surface sampling probe/electrospray emitter mass spectrometry system was demonstrated for use in the direct analysis of spotted and dosed drugs and their metabolites in thin tissue sections. Proof-of-principle sampling and analysis directly from tissue without the need for sample preparation was demonstrated first by raster scanning a region on a section of rat liver onto which reserpine was spotted. The mass spectral signal from selected reaction monitoring was used to develop a chemical image of the spotted drug on the tissue. The probe was also used to selectively spot sample areas of sagittal whole mouse body tissue sections that had been dosed orally (90 mg/kg) with R,S-sulforaphane 3 hrs prior to sacrifice. Sulforaphane and its glutathione and N-acetyl cysteine conjugates were monitored with selected reaction monitoring and detected in the stomach and various other tissues from the dosed mouse. No signal for these species was observed in the tissue from a control mouse. The same dosed tissue section was used to illustrate the possibility of obtaining a line scan across the whole body section. In total these results illustrate the potential for rapid screening of the distribution of drugs and metabolites in tissue sections with the micro-liquid junction surface sampling probe/electrospray mass spectrometry approach.

  20. Scanning transmission ion microscopy mass measurements for quantitative trace element analysis within biological samples and validation using atomic force microscopy thickness measurements

    Science.gov (United States)

    Devès, Guillaume; Cohen-Bouhacina, Touria; Ortega, Richard

    2004-10-01

    We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm).

  1. Scanning transmission ion microscopy mass measurements for quantitative trace element analysis within biological samples and validation using atomic force microscopy thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Deves, Guillaume [Laboratoire de chimie nucleaire analytique et bioenvironnementale, UMR 5084, CNRS-Universite de Bordeaux 1, BP 120 Chemin du solarium, F33175 Gradignan cedex (France)]. E-mail: deves@cenbg.in2p3.fr; Cohen-Bouhacina, Touria [Centre de Physique Moleculaire Optique et Hertzienne, Universite de Bordeaux 1, 351, cours de la Liberation, F33405 Talence cedex (France); Ortega, Richard [Laboratoire de chimie nucleaire analytique et bioenvironnementale, UMR 5084, CNRS-Universite de Bordeaux 1, BP 120 Chemin du solarium, F33175 Gradignan cedex (France)

    2004-10-08

    We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm)

  2. Assessment of alginate hydrogel degradation in biological tissue using viscosity-sensitive fluorescent dyes

    Science.gov (United States)

    Shkand, Tatiana V.; Chizh, Mykola O.; Sleta, Iryna V.; Sandomirsky, Borys P.; Tatarets, Anatoliy L.; Patsenker, Leonid D.

    2016-12-01

    The main goal of this study is to investigate a combination of viscosity-sensitive and viscosity-insensitive fluorescent dyes to distinguish different rheological states of hydrogel based biostructural materials and carriers in biological tissues and to assess their corresponding location areas. The research is done in the example of alginate hydrogel stained with viscosity-sensitive dyes Seta-470 and Seta-560 as well as the viscosity-insensitive dye Seta-650. These dyes absorb/emit at 469/518, 565/591 and 651/670 nm, respectively. The rheological state of the alginate, the area of the fluorescence signal and the mass of the dense alginate versus the calcium gluconate concentration utilized for alginate gelation were studied in vitro. The most pronounced change in the fluorescence signal area was found at the same concentrations of calcium gluconate (below ~1%) as the change in the alginate plaque mass. The stained alginate was also implanted in situ in rat hip and myocardium and monitored using fluorescence imaging. In summary, our data indicate that the viscosity sensitive dye in combination with the viscosity-insensitive dye allow tracking the biodegradation of the alginate hydrogel and determining the rheological state of hydrogel in biological tissue, which both should have relevance for research and clinical applications. Using this method we estimated the half-life of the dense alginate hydrogel in a rat hip to be in the order of 4 d and about 6-8 d in rat myocardium. The half-life of the dense hydrogel in the myocardium was found to be long enough to prevent aneurysm rupture of the left ventricle wall, one of the more severe complications of the early post-infarction period.

  3. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Abou Neel, Ensanya Ali, E-mail: eabouneel@kau.edu.sa [Division of Biomaterials, Conservative Dental Sciences Department, King Abdulaziz University, Jeddah (Saudi Arabia); Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta (Egypt); Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray' s Inn Road, London WC1X 8LD (United Kingdom); Chrzanowski, Wojciech [The University of Sydney, Faculty of Pharmacy, Pharmacy and Bank Building, NSW2006 (Australia); Department of Nanobiomedical Science and BK21 Plus NBM Global Reserch Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Knowles, Jonathan Campbell, E-mail: j.knowles@ucl.ac.uk [Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray' s Inn Road, London WC1X 8LD (United Kingdom); Department of Nanobiomedical Science and BK21 Plus NBM Global Reserch Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2014-02-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. - Highlights: • This study investigated the role of titania on the biological response of phosphate glasses. • Incorporation of titania improved HOS cell attachment, viability and proliferation. • Titania modified glasses regulated osteoblastic cell differentiation. • Using osteogenic media had no significant effect on cell differentiation. • Titania modified glasses may have future use as bone tissue engineering scaffolds.

  4. Potentiometric detection in UPLC as an easy alternative to determine cocaine in biological samples.

    Science.gov (United States)

    Daems, Devin; van Nuijs, Alexander L N; Covaci, Adrian; Hamidi-Asl, Ezat; Van Camp, Guy; Nagels, Luc J

    2015-07-01

    The analytical methods which are often used for the determination of cocaine in complex biological matrices are a prescreening immunoassay and confirmation by chromatography combined with mass spectrometry. We suggest an ultra-high-pressure liquid chromatography combined with a potentiometric detector, as a fast and practical method to detect and quantify cocaine in biological samples. An adsorption/desorption model was used to investigate the usefulness of the potentiometric detector to determine cocaine in complex matrices. Detection limits of 6.3 ng mL(-1) were obtained in plasma and urine, which is below the maximum residue limit (MRL) of 25 ng mL(-1). A set of seven plasma samples and 10 urine samples were classified identically by both methods as exceeding the MRL or being inferior to it. The results obtained with the UPLC/potentiometric detection method were compared with the results obtained with the UPLC/MS method for samples spiked with varying cocaine concentrations. The intraclass correlation coefficient was 0.997 for serum (n =7) and 0.977 for urine (n =8). As liquid chromatography is an established technique, and as potentiometry is very simple and cost-effective in terms of equipment, we believe that this method is potentially easy, inexpensive, fast and reliable.

  5. RNA SAMPLE PREPARATION APPLIED TO GENE EXPRESSION PROFILING FOR THE HORSE BIOLOGICAL PASSPORT.

    Science.gov (United States)

    Bailly-Chouriberry, Ludovic; Baudoin, Florent; Cormant, Florence; Glavieux, Yohan; Loup, Benoit; Garcia, Patrice; Popot, Marie-Agnès; Bonnaire, Yves

    2017-04-05

    The improvement of doping control is an on-going race. Techniques to fight against doping are usually based on the direct detection of drugs or their metabolites by analytical methods such as chromatography hyphenated to mass spectrometry after ad hoc sample preparation. Nowadays, omic methods constitute an attractive development and advances have been achieved particularly by application of molecular biology tools for detection of anabolic androgenic steroids (AAS), erythropoiesis-stimulating agent (ESA) or to control human growth hormone misuses. These interesting results across different animal species have suggested that modification of gene expression offers promising new methods of improving the window of detection of banned substances by targeting their effects on blood cell gene expression. In this context, the present study describes the possibility of using a modified version of the dedicated Human IVD (in vitro Diagnostics) PAXgene® Blood RNA Kit for horse gene expression analysis in blood collected on PAXgene® tubes applied to the Horse Biological Passport. The commercial kit was only approved for human blood samples and has required an optimization of specific technical requirements for equine blood samples. Improvements and recommendations were achieved for sample collection, storage and RNA extraction procedure. Following these developments, RNA yield and quality were demonstrated to be suitable for downstream gene expression analysis by qPCR techniques.

  6. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Subhash [Cornell SIMS Laboratory, Department of Earth and Atmospheric Sciences, Snee Hall, Cornell University, Ithaca, NY 14853 (United States)], E-mail: sc40@cornell.edu

    2008-12-15

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O{sub 2}{sup +}) revealed local secondary ion signal enhancements correlated with the water image signals of {sup 19}(H{sub 3}O){sup +}. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K{sup +} and Na{sup +} in physiologically relevant concentrations. The high K

  7. Numerical modelling of thermal effects on biological tissue during laser-material interaction

    Science.gov (United States)

    Latinovic, Z.; Sreckovic, M.; Janicijevic, M.; Ilic, J.; Radovanovic, J.

    2014-09-01

    Among numerous methods of the modelling of laser interaction with the material equivalent of biological tissue (including macroscopic and microscopic cell interaction), the case of pathogenic prostates is chosen to be studied. The principal difference between the inorganic and tissue equivalent material is the term which includes blood flow. Thermal modelling is chosen for interaction mechanisms, i.e. bio-heat equation. It was noticed that the principal problems are in selecting appropriate numerical methods, available mathematical program packages and finding all exact parameters for performing the needed calculations. As principal parameters, among them density, heat conduction, and specific heat, there are many other parameters which depend on the chosen approach (there could be up to 20 parameters, among them coefficient of time scaling, arterial blood temperature, metabolic heat source, etc). The laser type, including its wavelength which defines the quantity of absorbed energy and dynamic of irradiation, presents the term which could be modulated for the chosen problem. In this study, the program Comsol Multiphysics 3.5 is used in the simulation of prostate exposed to Nd3+:YAG laser in its fundamental mode.

  8. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  9. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications.

  10. 3-D ultrasound-guided robotic needle steering in biological tissue.

    Science.gov (United States)

    Adebar, Troy K; Fletcher, Ashley E; Okamura, Allison M

    2014-12-01

    Robotic needle steering systems have the potential to greatly improve medical interventions, but they require new methods for medical image guidance. Three-dimensional (3-D) ultrasound is a widely available, low-cost imaging modality that may be used to provide real-time feedback to needle steering robots. Unfortunately, the poor visibility of steerable needles in standard grayscale ultrasound makes automatic segmentation of the needles impractical. A new imaging approach is proposed, in which high-frequency vibration of a steerable needle makes it visible in ultrasound Doppler images. Experiments demonstrate that segmentation from this Doppler data is accurate to within 1-2 mm. An image-guided control algorithm that incorporates the segmentation data as feedback is also described. In experimental tests in ex vivo bovine liver tissue, a robotic needle steering system implementing this control scheme was able to consistently steer a needle tip to a simulated target with an average error of 1.57 mm. Implementation of 3-D ultrasound-guided needle steering in biological tissue represents a significant step toward the clinical application of robotic needle steering.

  11. Extruded collagen fibres for tissue engineering applications: effect of crosslinking method on mechanical and biological properties.

    Science.gov (United States)

    Enea, Davide; Henson, Frances; Kew, Simon; Wardale, John; Getgood, Alan; Brooks, Roger; Rushton, Neil

    2011-06-01

    Reconstituted collagen fibres are promising candidates for tendon and ligament tissue regeneration. The crosslinking procedure determines the fibres' mechanical properties, degradation rate, and cell-fibre interactions. We aimed to compare mechanical and biological properties of collagen fibres resulting from two different types of crosslinking chemistry based on 1-ethyl-3-(3-dimethyllaminopropyl)carbodiimide (EDC). Fibres were crosslinked with either EDC or with EDC and ethylene-glycol-diglycidyl-ether (EDC/EGDE). Single fibres were mechanically tested to failure and bundles of fibres were seeded with tendon fibroblasts (TFs) and cell attachment and proliferation were determined over 14 days in culture. Collagen type I and tenascin-C production were assessed by immunohistochemistry and dot-blotting. EDC chemistry resulted in fibres with average mechanical properties but the highest cell proliferation rate and matrix protein production. EDC/EGDE chemistry resulted in fibres with improved mechanical properties but with a lower biocompatibility profile. Both chemistries may provide useful structures for scaffolding regeneration of tendon and ligament tissue and will be evaluated for in vivo tendon regeneration in future experiments.

  12. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

    Science.gov (United States)

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R

    2015-07-06

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

  13. A review on determination of steroids in biological samples exploiting nanobio-electroanalytical methods.

    Science.gov (United States)

    Yadav, Saurabh K; Chandra, Pranjal; Goyal, Rajendra N; Shim, Yoon-Bo

    2013-01-31

    The applications of nanomaterial modified sensors, molecularly imprinting polymer based, aptamer based, and immunosensors have been described in the determination of steroids using electroanalytical techniques. After a brief description of the steroids and assays in biological fluids, the principles of electrochemical detection with the advantages and the limitations of the various sensors are presented. The nanomaterial modified sensors catalyze the oxidation/reduction of steroids and are suitable for sensing them in environmental samples and biological fluids. The determination of steroids based on their reduction has been found more useful in comparison to oxidation as the common metabolites present in the biological fluids do not undergo reduction in the usual potential window and hence, do not interfere in the determination. The sensors based on immunosensors and aptamers were found more sensitive and selective for steroid determination. Conducting polymer modified bio-sensors and microchip devices are suggested as possible future prospects for the ultra sensitive and simultaneous determination of steroids and their metabolites in various samples.

  14. High-resolution monochromator for iron nuclear resonance vibrational spectroscopy of biological samples

    Science.gov (United States)

    Yoda, Yoshitaka; Okada, Kyoko; Wang, Hongxin; Cramer, Stephen P.; Seto, Makoto

    2016-12-01

    A new high-resolution monochromator for 14.4-keV X-rays has been designed and developed for the Fe nuclear resonance vibrational spectroscopy of biological samples. In addition to high resolution, higher flux and stability are especially important for measuring biological samples, because of the very weak signals produced due to the low concentrations of Fe-57. A 24% increase in flux while maintaining a high resolution better than 0.9 meV is achieved in the calculation by adopting an asymmetric reflection of Ge, which is used as the first crystal of the three-bounce high-resolution monochromator. A 20% increase of the exit beam size is acceptable to our biological applications. The higher throughput of the new design has been experimentally verified. A fine rotation mechanics that combines a weak-link hinge with a piezoelectric actuator was used for controlling the photon energy of the monochromatic beam. The resulting stability is sufficient to preserve the intrinsic resolution.

  15. Hydrodynamics and convection enhanced macromolecular fluid transport in soft biological tissues: Application to solid tumor.

    Science.gov (United States)

    Dey, Bibaswan; Sekhar, G P Raja

    2016-04-21

    This work addresses a theoretical framework for transvascular exchange and extravascular transport of solute macromolecules through soft interstitial space inside a solid tumor. Most of the soft biological tissues show materialistic properties similar to deformable porous material. They exhibit mechanical behavior towards the fluid motion since the solid phase of the tumor tissue gets compressed by the drag force that is associated with the extracellular fluid flow. This paper presents a general view about the transvascular and interstitial transport of solute nutrients inside a tumor in the macroscopic level. Modified Starling׳s equation is used to describe transvascular nutrient transport. On the macroscopic level, motion of extracellular fluid within the tumor interstitium is modeled with the help of biphasic mixture theory and a spherical symmetry solution is given as a simpler case. This present model describes the average interstitial fluid pressure (IFP), extracellular fluid velocity (EFV) and flow rate of extracellular fluid, as well as the deformation of the solid phase of the tumor tissue as an immediate cause of extracellular fluid flow. When the interstitial transport is diffusion dominated, an analytical treatment of advection-diffusion-reaction equation finds the overall nutrient distribution. We propose suitable criteria for the formation of necrosis within the tumor interstitium. This study introduces some parameters that represent the nutrient supply from tumor blood vessels into the tumor extracellular space. These transport parameters compete with the reversible nutrient metabolism of the tumor cells present in the interstitium. The present study also shows that the effectiveness factor corresponding to a first order nutrient metabolism may reach beyond unity if the strength of the distributive solute source assumes positive non-zero values.

  16. Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology

    Science.gov (United States)

    Harms, F.; Dalimier, E.; Vermeulen, P.; Fragola, A.; Boccara, A. C.

    2012-03-01

    Optical Coherence Tomography (OCT) is an efficient technique for in-depth optical biopsy of biological tissues, relying on interferometric selection of ballistic photons. Full-Field Optical Coherence Tomography (FF-OCT) is an alternative approach to Fourier-domain OCT (spectral or swept-source), allowing parallel acquisition of en-face optical sections. Using medium numerical aperture objective, it is possible to reach an isotropic resolution of about 1x1x1 ìm. After stitching a grid of acquired images, FF-OCT gives access to the architecture of the tissue, for both macroscopic and microscopic structures, in a non-invasive process, which makes the technique particularly suitable for applications in pathology. Here we report a multimodal approach to FF-OCT, combining two Full-Field techniques for collecting a backscattered endogeneous OCT image and a fluorescence exogeneous image in parallel. Considering pathological diagnosis of cancer, visualization of cell nuclei is of paramount importance. OCT images, even for the highest resolution, usually fail to identify individual nuclei due to the nature of the optical contrast used. We have built a multimodal optical microscope based on the combination of FF-OCT and Structured Illumination Microscopy (SIM). We used x30 immersion objectives, with a numerical aperture of 1.05, allowing for sub-micron transverse resolution. Fluorescent staining of nuclei was obtained using specific fluorescent dyes such as acridine orange. We present multimodal images of healthy and pathological skin tissue at various scales. This instrumental development paves the way for improvements of standard pathology procedures, as a faster, non sacrificial, operator independent digital optical method compared to frozen sections.

  17. Spectrochemical analysis of powdered biological samples using transversely excited atmospheric carbon dioxide laser plasma excitation

    Science.gov (United States)

    Zivkovic, Sanja; Momcilovic, Milos; Staicu, Angela; Mutic, Jelena; Trtica, Milan; Savovic, Jelena

    2017-02-01

    The aim of this study was to develop a simple laser induced breakdown spectroscopy (LIBS) method for quantitative elemental analysis of powdered biological materials based on laboratory prepared calibration samples. The analysis was done using ungated single pulse LIBS in ambient air at atmospheric pressure. Transversely-Excited Atmospheric pressure (TEA) CO2 laser was used as an energy source for plasma generation on samples. The material used for the analysis was a blue-green alga Spirulina, widely used in food and pharmaceutical industries and also in a few biotechnological applications. To demonstrate the analytical potential of this particular LIBS system the obtained spectra were compared to the spectra obtained using a commercial LIBS system based on pulsed Nd:YAG laser. A single sample of known concentration was used to estimate detection limits for Ba, Ca, Fe, Mg, Mn, Si and Sr and compare detection power of these two LIBS systems. TEA CO2 laser based LIBS was also applied for quantitative analysis of the elements in powder Spirulina samples. Analytical curves for Ba, Fe, Mg, Mn and Sr were constructed using laboratory produced matrix-matched calibration samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used as the reference technique for elemental quantification, and reasonably well agreement between ICP and LIBS data was obtained. Results confirm that, in respect to its sensitivity and precision, TEA CO2 laser based LIBS can be successfully applied for quantitative analysis of macro and micro-elements in algal samples. The fact that nearly all classes of materials can be prepared as powders implies that the proposed method could be easily extended to a quantitative analysis of different kinds of materials, organic, biological or inorganic.

  18. Simple Sensitive Spectrophotometric Determination of Vanadium in Biological and Environmental Samples

    Directory of Open Access Journals (Sweden)

    B. Krishna Priya

    2006-01-01

    Full Text Available Novel, rapid, highly sensitive and selective spectrophotometric method for the determination of traces of vanadium (V in environmental and biological samples, pharmaceutical and steel samples was studied. The method is based on oxidation of 2,4- dinitro phenyl hydrazine(2,4-DNPH by vanadium (V followed by coupling reaction with N-(1-naphthalene-1-ylethane-1,2-diamine-dihydrochloride (NEDA in acidic medium to give red colored derivative or on oxidation of 4-Amino Pyridine by vanadium (V followed by coupling reaction with NEDA in basic medium to give pink colored derivative. The red colored derivative having an λmax 495 nm which is stable for 8 days and the pink colored derivative with 525 nm is stable for more than 7 days at 350C. Beer's law is obeyed for vanadium (V in the concentration range of 0.02 - 3.5 μg mL–1 (red derivative and 0.03 – 4.5 μg mL–1 (pink derivative at the wave length of maximum absorption. The optimum reaction conditions and other analytical parameters were investigated to enhance the sensitivity of the present method. The detailed study of various interferences made the method more selective. The proposed method was successfully applied to the analysis of vanadium in natural water samples, plant material, soil samples, synthetic mixtures, pharmaceutical samples and biological samples. The results obtained were agreed with the reported methods at the 95 % confidence level. The performance of proposed method was evaluated in terms of Student's t-test and Variance ratio f-test which indicates the significance of proposed method over reported method.

  19. Multimodal Raman-fluorescence spectroscopy of formalin fixed samples is able to discriminate brain tumors from dysplastic tissue

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Buccoliero, Anna Maria; Pavone, Francesco Saverio

    2014-05-01

    In the recent years, there has been a considerable surge in the application of spectroscopy for disease diagnosis. Raman and fluorescence spectra provide characteristic spectral profile related to biochemical and morphological changes when tissues progress from normal state towards malignancy. Spectroscopic techniques offer the advantage of being minimally invasive compared to traditional histopathology, real time and quantitative. In biomedical optical diagnostics, freshly excised specimens are preferred for making ex-vivo spectroscopic measurements. With regard to fresh tissues, if the lab is located far away from the clinic it could pose a problem as spectral measurements have to be performed immediately after dissection. Tissue samples are usually placed in a fixative agent such as 4% formaldehyde to preserve the samples before processing them for routine histopathological studies. Fixation prevents the tissues from decomposition by arresting autolysis. In the present study, we intend to investigate the possibility of using formalin fixed samples for discrimination of brain tumours from dysplastic tissue using Raman and fluorescence spectroscopy. Formalin fixed samples were washed with phosphate buffered saline for about 5 minutes in order to remove the effects of formalin during spectroscopic measurements. In case of fluorescence spectroscopy, changes in spectral profile have been observed in the region between 550-670 nm between dysplastic and tumor samples. For Raman measurements, we found significant differences in the spectral profiles between dysplasia and tumor. In conclusion, formalin fixed samples can be potentially used for the spectroscopic discrimination of tumor against dysplastic tissue in brain samples.

  20. Review of methods for determination of total protein and peptide concentration in biological samples.

    Science.gov (United States)

    Sapan, Christine V; Lundblad, Roger L

    2015-04-01

    Clinical proteomics can be defined as the use of proteomic technologies to identify and measure biomarkers in fluids and tissues. The current work is intended to review various methods used for the determination of the total concentration of protein or peptide in fluids and tissues and the application of such methods to clinical proteomics. Specifically, this article considers the approaches to the measurement of total protein concentration, not the measurement of the concentration of a specific protein or group of proteins in a larger mixture of proteins. The necessity of understanding various concepts such as fit-for-use, quality-by-design, and other regulatory elements is discussed, as is the significance of using suitable standards for the protein quality of various samples.

  1. Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    Souza, Gilberto B.; Carrilho, Elma Neide V. M.; Oliveira, Camila V.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2002-12-01

    A rapid sample preparation method is proposed for decomposition of milk powder, corn bran, bovine and fish tissues, containing certified contents of the analytes. The procedure involves sample combustion in a commercial stainless steel oxygen bomb operating at 25 bar. Most of the samples were decomposed within 5 min. Diluted nitric acid or water-soluble tertiary amines 10% v/v were used as absorption solutions. Calcium, Cu, K, Mg, Na, P, S and Zn were recovered with the bomb washings and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ethanol mixed with paraffin was used as a combustion aid to allow complete combustion. A cooling step prior releasing of the bomb valve was employed to increase the efficiency of sample combustion. Iodine was also determined in milk samples spiked with potassium iodide to evaluate the volatilization and collection of iodine in amine CFA-C medium and the feasibility of its determination by ICP-OES with axial view configuration. Most of the element recoveries in the samples were between 91 and 105% and the certified and found contents exhibited a fair agreement at a 95% confidence level.

  2. Practical Guide to Using Cryoprotectants in Biological Sample Preparation at Cryogenic temperature for Electron Microscopic Studies

    Directory of Open Access Journals (Sweden)

    A-Reum Je

    2011-10-01

    Full Text Available Cryo-fixation enables the preservation of the fine structures of intracellular organelles in a condition that is as close to their native state as possible compared with chemical fixation and room temperature processing. Fixation is the initial step for biological sample preparation in electron microscopy. This step is critically important because the goals of electron microscopic observation are fundamentally dependent on well-preserved specimens resulting from this fixation. In the present work, key components of cryo-fixation, cryoprotectants, are tested with various cell types of interest. The results show that dextran can be easily adapted for use with animal cells and cyanobacteria, whereas 1-hexadecene is applicable to plant and yeast cells. The current report provides useful information on the preparation of cryo-fixed biological specimens using high pressure freezing and freeze-substitution aimed at electron microscopic observation.

  3. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples.

    Science.gov (United States)

    Guo, Huiyuan; Xing, Baoshan; Hamlet, Leigh C; Chica, Andrea; He, Lili

    2016-06-01

    Growing concerns over the potential release and threat of silver nanoparticles (AgNPs) to environmental and biological systems urge researchers to investigate their fate and behavior. However, current analytical techniques cannot meet the requirements for rapidly, sensitively and reliably probing AgNPs in complex matrices. Surface-enhanced Raman spectroscopy (SERS) has shown great capability for rapid detection of AgNPs based on an indicator molecule that can bind on the AgNP surface. The objective of this study was to exploit SERS to detect AgNPs in environmental and biological samples through optimizing the Raman indicator for SERS. Seven indicator molecules were selected and determined to obtain their SERS signals at optimal concentrations. Among them, 1,2-di(4-pyridyl)ethylene (BPE), crystal violet and ferric dimethyl-dithiocarbamate (ferbam) produced the highest SERS intensities. Further experiments on binding competition between each two of the three candidates showed that ferbam had the highest AgNPs-binding ability. The underlying mechanism lies in the strong binding affinity of ferbam with AgNPs via multiple sulfur atoms. We further validated ferbam to be an effective indicator for SERS detection of as low as 0.1mg/L AgNPs in genuine surface water and 0.57 mg/L in spinach juice. Moreover, limited interference on SERS detection of AgNPs was found from environmentally relevant inorganic ions, organic matter, inorganic particles, as well as biologically relevant components, demonstrating the ferbam-assisted SERS is an effective and sensitive method to detect AgNPs in complex environmental and biological samples.

  4. Magnetic thermal ablation using ferrofluids: influence of administration mode on biological effect in different porcine tissues.

    Science.gov (United States)

    Bruners, Philipp; Hodenius, Michael; Baumann, Martin; Oversohl, Jessica; Günther, Rolf W; Schmitz-Rode, Thomas; Mahnken, Andreas H

    2008-01-01

    The purpose of this study was to compare the effects of magnetic thermal ablation in different porcine tissues using either a singular injection or a continuous infusion of superparamagnetic iron oxide nanoparticles. In the first setting samples of three ferrofluids containing different amounts of iron (1:171, 2:192, and 3:214 mg/ml) were singularly interstitially injected into specimens of porcine liver, kidney, and muscle (n = 5). Then the specimens were exposed to an alternating magnetic field (2.86 kA/m, 190 kHz) generated by a circular coil for 5 min. In the second experimental setup ferrofluid samples were continuously interstitially infused into the tissue specimens during the exposure to the magnetic field. To measure the temperature increase two fiber-optic temperature probes with a fixed distance of 0.5 cm were inserted into the specimens along the puncture tract of the injection needle and the temperature was measured every 15 s. Finally, the specimens were dissected, the diameters of the created thermal lesions were measured, and the volumes were calculated and compared. Compared to continuous infusion, a single injection of ferrofluids resulted in smaller coagulation volumes in all tissues. Significant differences regarding coagulation volume were found in kidney and muscle specimens. The continuous infusion technique led to more elliptically shaped coagulation volumes due to larger diameters along the puncture tract. Our data show the feasibility of magnetic thermal ablation using either a single interstitial injection or continuous infusion for therapy of lesions in muscle, kidney, and liver. Continuous infusion of ferrofluids results in larger zones of necrosis compared to a single injection technique.

  5. Correction of the data generated by mass spectrometry analyses of biological tissues: application to food authentication.

    Science.gov (United States)

    Engel, Erwan; Ratel, Jérémy

    2007-06-22

    The objective of the work was to assess the relevance for the authentication of food of a novel chemometric method developed to correct mass spectrometry (MS) data from instrumental drifts, namely, the comprehensive combinatory standard correction (CCSC). Applied to gas chromatography (GC)-MS data, the method consists in analyzing a liquid sample with a mixture of n internal standards and in using the best combination of standards to correct the MS signal provided by each compound. The paper focuses on the authentication of the type of feeding in farm animals based on the composition in volatile constituents of their adipose tissues. The first step of the work enabled on one hand to ensure the feasibility of the conversion of the adipose tissue sample into a liquid phase required for the use of the CCSC method and on the other hand, to determine the key parameters of the extraction of the volatile fraction from this liquid phase by dynamic headspace. The second step showed the relevance of the CCSC pre-processing of the MS fingerprints generated by dynamic headspace-MS analysis of lamb tissues, for the discrimination of animals fed exclusively with pasture (n=8) or concentrate (n=8). When compared with filtering of raw data, internal normalization and correction by a single standard, the CCSC method increased by 17.1-, 3.3- and 1.3-fold, respectively, the number of mass fragments which discriminated the type of feeding. The final step confirmed the advantage of the CCSC pre-processing of dynamic headspace-gas chromatography-MS data for revealing molecular tracers of the type of feeding those number (n=72) was greater when compared to the number of tracers obtained with raw data (n=42), internal normalization (n=63) and correction by a single standard (n=57). The relevance of the information gained by using the CCSC method is discussed.

  6. The scope of detector Medipix2 in micro-radiography of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J., E-mail: jiri.dammer@utef.cvut.cz [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic); Weyda, F. [Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic); Faculty of Science, University of South Bohemia, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic); Jakubek, J. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic); Skrabal, P. [Faculty of Biomedical Engineering, Czech Technical University in Prague, Nam. Sitna 3105, CZ-272 01 Kladno (Czech Republic); Sopko, V.; Vavrik, D. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic)

    2011-05-15

    We present our experimental setup devoted to high resolution X-ray micro-radiography that is suitable for imaging of small biological samples. The photon source is a FeinFocus micro-focus X-ray tube. The single photon counting pixel device Medipix2 serves as imaging area. Recently used imaging detectors as radiography films or scintillator detectors, cannot visualize required information about inner structure of scanned sample. Detectors Medipix2 do not suffer from so-called dark current noise and work in unlimited dynamic range. These features of detectors confer high quality and high contrast of final images. The radiographic imaging with detectors Medipix2 represents non-invasive and non-destructive method of investigation. Hereby, we demonstrate results of micro-radiographic study of internal structures of tiny biological samples. In addition to morphological and anatomical studies, we would like to present preliminary study of dynamic processes inside of organisms using micro-radiographic video-capturing.

  7. Applications of a DAD-HPLC method for determination of loratadine on biological samples

    Directory of Open Access Journals (Sweden)

    Pavalache Georgeta

    2015-06-01

    Full Text Available The aim of research is to assess the active substance by a HPLC method for the separation and quantitative determination of loratadine. The method has been developed and validated on the standard solutions, in previous research. The current study was undertaken to present the results obtained from loratadine determination in biological samples (human serum, urine and breast milk. These results may be applicable on patients with different physiological conditions (aging, pregnancy or recently giving birth, etc. and pathological conditions which may interfere with the metabolism of loratadine. The used HPLC method detected loratadine concentrations in human serum samples, respectively urine samples, at 2 hours after drug administration. The method detected traces of loratadine which passed into breast milk, as well. Data were statistically interpreted using MED CALC 10.2 software. These results show that the applied method can be used for quantitative analysis of loratadine in biological fluids (all permissible limits of quality specifications being in the range 95- 105%.

  8. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Huiyuan [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); Xing, Baoshan, E-mail: bx@umass.edu [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); Hamlet, Leigh C.; Chica, Andrea [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); He, Lili, E-mail: lilihe@foodsci.umass.edu [Department of Food Science, University of Massachusetts, Amherst, MA 01003 (United States)

    2016-06-01

    Growing concerns over the potential release and threat of silver nanoparticles (AgNPs) to environmental and biological systems urge researchers to investigate their fate and behavior. However, current analytical techniques cannot meet the requirements for rapidly, sensitively and reliably probing AgNPs in complex matrices. Surface-enhanced Raman spectroscopy (SERS) has shown great capability for rapid detection of AgNPs based on an indicator molecule that can bind on the AgNP surface. The objective of this study was to exploit SERS to detect AgNPs in environmental and biological samples through optimizing the Raman indicator for SERS. Seven indicator molecules were selected and determined to obtain their SERS signals at optimal concentrations. Among them, 1,2-di(4-pyridyl)ethylene (BPE), crystal violet and ferric dimethyl-dithiocarbamate (ferbam) produced the highest SERS intensities. Further experiments on binding competition between each two of the three candidates showed that ferbam had the highest AgNPs-binding ability. The underlying mechanism lies in the strong binding affinity of ferbam with AgNPs via multiple sulfur atoms. We further validated ferbam to be an effective indicator for SERS detection of as low as 0.1 mg/L AgNPs in genuine surface water and 0.57 mg/L in spinach juice. Moreover, limited interference on SERS detection of AgNPs was found from environmentally relevant inorganic ions, organic matter, inorganic particles, as well as biologically relevant components, demonstrating the ferbam-assisted SERS is an effective and sensitive method to detect AgNPs in complex environmental and biological samples. - Graphical abstract: SERS signal intensity of ferbam indicates the concentration of AgNPs. - Highlights: • Ferbam was found to be the best indicator for SERS detection of AgNPs. • SERS was able to detect AgNPs in both environmental and biological samples. • Major components in the two matrices had limited effect on AgNP detection.

  9. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    Science.gov (United States)

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-01-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.

  10. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    Science.gov (United States)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  11. The correlation of arsenic levels in drinking water with the biological samples of skin disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, Tasneem Gul [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: tgkazi@yahoo.com; Arain, Muhammad Balal [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: bilal_ku2004@yahoo.com; Baig, Jameel Ahmed [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: jab_mughal@yahoo.com; Jamali, Muhammad Khan [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: mkhanjamali@yahoo.com; Afridi, Hassan Imran [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: hassanimranafridi@yahoo.com; Jalbani, Nusrat [Pakistan Council for Scientific and Industrial Research, University Road Karachi-75280 (Pakistan)], E-mail: nusratjalbani_21@yahoo.com; Sarfraz, Raja Adil [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: rajaadilsarfraz@gmail.com; Shah, Abdul Qadir [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: aqshah07@yahoo.com; Niaz, Abdul [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)], E-mail: niazchemist2k6@yahoo.com

    2009-01-15

    Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n = 187). The referent samples of both genders were also collected from the areas having low level of As (< 10 {mu}g/L) in drinking water (n = 121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 {mu}g/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 {mu}g As/g for hair and < 0.5-4.2 {mu}g/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R{sup 2} = 0.852 and 0.718) as compared to non-diseased subjects (R{sup 2} = 0.573 and 0.351), respectively.

  12. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    Energy Technology Data Exchange (ETDEWEB)

    Gallyamov, Marat O., E-mail: glm@spm.phys.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Chaschin, Ivan S. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Khokhlova, Marina A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Grigorev, Timofey E. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E. [Bakulev Scientific Center for Cardiovascular Surgery of the Russian Academy of Medical Sciences, Roublyevskoe Sh. 135, Moscow 121552 (Russian Federation); Badun, Gennadii A.; Chernysheva, Maria G. [Radiochemistry Division, Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Khokhlov, Alexei R. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation)

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H{sub 2}O and CO{sub 2}. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA

  13. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    Science.gov (United States)

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (Pepithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  14. Evaluation of Botanical Reference Materials for the Determination of Vanadium in Biological Samples

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1982-01-01

    Three botanical reference materials prepared by the National Bureau of Standards have been studied by neutron activation analysis to evaluate their suitability with respect to the determination of vanadium in biological samples. Various decomposition methods were applied in connection with chemic....... A reference value of 1.15 mg/kg of this material is recommended, based on results from 3 different methods. All three materials are preferable to SRM 1571 Orchard Leaves, while Bowen's Kale remains the material of choice because of its lower concentration....

  15. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth, Devon (United Kingdom) and Paignton Zoological Park, Paignton, Devon (United Kingdom); Thermal Wave Imaging, Inc., 845 Livernoise St, Ferndale, MI (United States); Buckfast Butterfly and Otter Sanctuary, Buckfast, Devon (United Kingdom)

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  16. Biological and biomedical (14)C-accelerator mass spectrometry and graphitization of carbonaceous samples.

    Science.gov (United States)

    Chung, Ill-Min; Kim, Seung-Hyun

    2013-06-21

    Accelerator mass spectrometry (AMS) is the ultimate technique for measuring rare isotopes in small samples. Biological and biomedical applications of (14)C-AMS (bio-(14)C-AMS) commenced in the early 1990s and are now widely used in many research fields including pharmacology, toxicology, food, and nutrition. For accurate, precise, and reproducible bio-(14)C-AMS analysis, the graphitization step in sample preparation is the most critical step. So, various sample preparation methods for a process called graphitization have been reported for specific applications. Catalytic graphitization using either a flame-sealed borosilicate tube or a septa-sealed vial is a popular sample preparation method for bio-(14)C-AMS. In this review, we introduce the AMS system, especially for bio-(14)C-AMS. In addition, we also review the graphitization method for bio-(14)C-AMS to promote further understanding and improvement of sample preparation for this technique. Examples of catalytic graphitization methods over the past two decades are described.

  17. Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A., E-mail: dan-paiva@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: marcelo_rlm@hotmail.com, E-mail: maensoal@yahoo.com.br, E-mail: chazin@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-07-01

    Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)

  18. Correlative 3D imaging: CLSM and FIB-SEM tomography using high-pressure frozen, freeze-substituted biological samples.

    Science.gov (United States)

    Lucas, Miriam S; Guenthert, Maja; Gasser, Philippe; Lucas, Falk; Wepf, Roger

    2014-01-01

    Correlative light and electron microscopy aims at combining data from different imaging modalities, ideally from the same area of the one sample, in order to achieve a more holistic view of the hierarchical structural organization of cells and tissues. Modern 3D imaging techniques opened up new possibilities to expand morphological studies into the third dimension at the nanometer scale. Here we present an approach to correlate 3D light microscopy data with volume data from focused ion beam-scanning electron microscopy. An adapted sample preparation method based on high-pressure freezing for structure preservation, followed by freeze-substitution for multimodal en bloc imaging, is described. It is based on including fluorescent labeling during freeze-substitution, which enables histological context description of the structure of interest by confocal laser scanning microscopy prior to high-resolution electron microscopy. This information can be employed to relocate the respective structure in the electron microscope. This approach is most suitable for targeted small 3D volume correlation and has the potential to extract statistically relevant data of structural details for systems biology.

  19. Proton Transmitting Energy Spectra and Transmission Electron Microscope Examinations of Biological Samples

    Science.gov (United States)

    Tan, Chun-yu; Xia, Yue-yuan; Zhang, Jian-hua; Mu, Yu-guang; Wang, Rui-jin; Liu, Ji-tian; Liu, Xiang-dong; Yu, Zeng-liang

    1999-02-01

    Transmission energy spectra of 530 keV H+ ion penetrating 140 μm thick seed coat of maize and fruit peel of grape with thickness of 100 μm were measured. The result indicates that these thick biological targets, as seen by the penetrating ions, are inhomogeneous, and there are open "channel like" paths along which the incident ions can transmit the targets easily. While most of the incident ions are stopped in the targets, some of the transmitting ions only lose a small fraction of their initial incident energy. The transmission energy spectra show a pure electronic stopping feature. Transmission electron microscope (TEM) micrographes taken from the samples of seed coat of maize and fruit peel of tomato with thickness of 60 μm indicate that 150 keV electron beam from the TEM can penetrate the thick samples to give very good images with clear contrasts.

  20. Analytical Methodologies for the Determination of Endocrine Disrupting Compounds in Biological and Environmental Samples

    Science.gov (United States)

    Sosa-Ferrera, Zoraida; Mahugo-Santana, Cristina; Santana-Rodríguez, José Juan

    2013-01-01

    Endocrine-disruptor compounds (EDCs) can mimic natural hormones and produce adverse effects in the endocrine functions by interacting with estrogen receptors. EDCs include both natural and synthetic chemicals, such as hormones, personal care products, surfactants, and flame retardants, among others. EDCs are characterised by their ubiquitous presence at trace-level concentrations and their wide diversity. Since the discovery of the adverse effects of these pollutants on wildlife and human health, analytical methods have been developed for their qualitative and quantitative determination. In particular, mass-based analytical methods show excellent sensitivity and precision for their quantification. This paper reviews recently published analytical methodologies for the sample preparation and for the determination of these compounds in different environmental and biological matrices by liquid chromatography coupled with mass spectrometry. The various sample preparation techniques are compared and discussed. In addition, recent developments and advances in this field are presented. PMID:23738329

  1. Analytical methodologies for the determination of endocrine disrupting compounds in biological and environmental samples.

    Science.gov (United States)

    Sosa-Ferrera, Zoraida; Mahugo-Santana, Cristina; Santana-Rodríguez, José Juan

    2013-01-01

    Endocrine-disruptor compounds (EDCs) can mimic natural hormones and produce adverse effects in the endocrine functions by interacting with estrogen receptors. EDCs include both natural and synthetic chemicals, such as hormones, personal care products, surfactants, and flame retardants, among others. EDCs are characterised by their ubiquitous presence at trace-level concentrations and their wide diversity. Since the discovery of the adverse effects of these pollutants on wildlife and human health, analytical methods have been developed for their qualitative and quantitative determination. In particular, mass-based analytical methods show excellent sensitivity and precision for their quantification. This paper reviews recently published analytical methodologies for the sample preparation and for the determination of these compounds in different environmental and biological matrices by liquid chromatography coupled with mass spectrometry. The various sample preparation techniques are compared and discussed. In addition, recent developments and advances in this field are presented.

  2. Phytochemical analysis and biological evaluation of selected African propolis samples from Cameroon and Congo.

    Science.gov (United States)

    Papachroni, Danai; Graikou, Konstantia; Kosalec, Ivan; Damianakos, Harilaos; Ingram, Verina; Chinou, Ioanna

    2015-01-01

    The objective of this study was the chemical analysis of four selected samples of African propolis (Congo and Cameroon) and their biological evaluation. Twenty-one secondary metabolites belonging to four different chemical groups were isolated from the 70% ethanolic extracts of propolis and their structures were elucidated on the basis of spectral evidence. Three triterpenes and two diprenyl-flavonoids were identified from Congo propolis, which has been investigated for the first time, while thirteen triterpenes, three diprenyl-flavonoids, two monoterpenic alcohols and one fatty acid ester have been identified from Cameroon propolis samples. To our knowledge, the identified diprenyl-flavonoids, as well as five of the isolated and determined triterpenes, are reported for the first time in propolis. Moreover, the total polyphenol content was estimated in all extracts and the antimicrobial activities of all four extracts were studied against six Gram-positive and -negative bacteria and three pathogenic fungi, showing an interesting antibacterial profile.

  3. A round-robin determination of boron in botanical and biological samples.

    Science.gov (United States)

    Downing, R G; Strong, P L

    1998-01-01

    The accurate determination of boron (B) at trace and ultratrace concentrations is an important step toward establishing the role of B in biological functions. However, low-level B concentrations are difficult to determine accurately, especially for many botanical and biological matrices. A round-robin study was conducted to assess analytical agreement for low-level B determinations. Ten experienced research groups from analytical laboratories extending across Europe, Asia, and the US participated in this study. These groups represent a cross-section of academic, commercial, and government facilities. The researchers employed both ion-coupled plasma and neutron techniques in the study. Results from this round-robin study indicate good agreement between participating laboratories at the mg/kg level, but at the lowest levels, microg/kg, only three laboratories participated, and agreement was poor. By encouraging discussion among scientists over these data, the secondary goal of this round-robin study is to stimulate continued improvement in analytical procedures and techniques for accurate low-level B determinations. Furthermore, it is intended to encourage the development of a variety of low-level (low mg/kg and microg/kg) B certified reference samples in biological and botanical matrices. The results from the round-robin analyses were compiled and are summarized in this article.

  4. 4D x-ray phase contrast tomography for repeatable motion of biological samples

    Science.gov (United States)

    Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto

    2016-09-01

    X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm3. A maximum volume size of 13 × 13 × 6 mm3 was obtained with a single tomographic measurement with a voxel size of 6.5 μm. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.

  5. New vibro-acoustic paradigms in biological tissues with application to diagnosis of pulmonary disorders

    Science.gov (United States)

    Zhang, Xiangling

    The fundamental objective of the present study is to improve our understanding of audible sound propagation in the pulmonary system and torso. A related applied objective is to assess the feasibility of using audible acoustics for diagnosis of specific pulmonary conditions, such as pneumothorax (PTX). To accomplish these objectives, this study includes theoretical, computational and experimental developments aimed at: (1) better identifying the mechanical dynamic properties of soft biological tissues found in the torso region, (2) investigating the mechanisms of sound attenuation that occur when a PTX is present using greatly simplified theoretical and computational models, and (3) exploring the feasibility and utility of more comprehensive and precise computational finite element models of audible sound propagation in the pulmonary system and torso that would aid in related diagnostic developments. Mechanical material properties of soft biological tissue are studied for the low audible frequency range. The sensitivity to shear viscoelastic material constants of theoretical solutions for radiation impedance and surface wave motion are compared. Theoretical solutions are also compared to experimental measurements and numerical results from finite element analysis. It is found that, while prior theoretical solutions for radiation impedance are accurate, use of such measurements to estimate shear viscoelastic constants is not as precise as the use of surface wave measurements. The feasibility of using audible sound for diagnosis of pneumothorax is studied. Simplified one- and two-dimensional theoretical and numerical models of sound transmission through the pulmonary system and chest region to the chest wall surface are developed to more clearly understand the mechanism of energy loss when a pneumothorax is present, relative to a baseline case. A canine study on which these models are based predicts significant decreases in acoustic transmission strength when a

  6. Rapid release of tissue enzymes into blood after blast exposure: potential use as biological dosimeters.

    Directory of Open Access Journals (Sweden)

    Peethambaran Arun

    Full Text Available Explosive blast results in multiple organ injury and polytrauma, the intensity of which varies with the nature of the exposure, orientation, environment and individual resilience. Blast overpressure alone may not precisely indicate the level of body or brain injury after blast exposure. Assessment of the extent of body injury after blast exposure is important, since polytrauma and systemic factors significantly contribute to blast-induced traumatic brain injury. We evaluated the activity of plasma enzymes including aspartate aminotransferase (AST, alanine aminotransferase (ALT, lactate dehydrogenase (LDH and creatine kinase (CK at different time points after blast exposure using a mouse model of single and repeated blast exposures to assess the severity of injury. Our data show that activities of all the enzymes in the plasma were significantly increased as early as 1 h after blast exposure. The elevated enzyme activity remained up to 6 h in an overpressure dose-dependent manner and returned close to normal levels at 24 h. Head-only blast exposure with body protection showed no increase in the enzyme activities suggesting that brain injury alone does not contribute to the systemic increase. In contrast to plasma increase, AST, ALT and LDH activity in the liver and CK in the skeletal muscle showed drastic decrease at 6 h after blast exposures. Histopathology showed mild necrosis at 6 h and severe necrosis at 24 h after blast exposures in liver and no changes in the skeletal muscle suggesting that the enzyme release from the tissue to plasma is probably triggered by transient cell membrane disruption from shockwave and not due to necrosis. Overpressure dependent transient release of tissue enzymes and elevation in the plasma after blast exposure suggest that elevated enzyme activities in the blood can be potentially used as a biological dosimeter to assess the severity of blast injury.

  7. Method for calculation of light field characteristics in optical diagnosis problems and personalized laser treatment of biological tissues

    Science.gov (United States)

    Lisenko, S. A.; Kugeiko, M. M.

    2013-05-01

    We have developed a simple method for solving the radiation transport equation, permitting us to rapidly calculate (with accuracy acceptable in practice) the diffuse reflection coeffi cient for a broad class of biological tissues in the spectral region of strong and weak absorption of light, and also the light flux distribution over the depth of the tissue. We show that it is feasible to use the proposed method for quantitative estimates of tissue parameters from its diffuse reflectance spectrum and also for selecting the irradiation dose which is optimal for a specifi c patient in laser therapy for various diseases.

  8. Study on immunocapture-chemiluminescence assay of lipase activity in a biological sample.

    Science.gov (United States)

    Ichibangase, Tomoko; Hamabe, Chie; Ohba, Yoshihito; Kishikawa, Naoya; Nakashima, Kenichiro; Kayamori, Yuzo; Kang, Dongchon; Hamasaki, Naotaka; Kuroda, Naotaka

    2006-01-01

    A new approach for the determination of lipase (triacylglycerol lipase, EC.3.1.1.3) activity in a biological sample was investigated by combining an immunocapture technique with a chemiluminescence (CL) assay method in order to eliminate interference with CL detection. The proposed method consists of an immunocapture step to trap lipase and a subsequent step for CL detection of the activity of the captured lipase. The CL detection is based on the luminol-hydrogen peroxide (H(2)O(2))-horseradish peroxidase (HRP) reaction and utilizes a proenhancer substrate [a lauric acid ester of 2-(4-hydroxyphenyl)-4,5-diphenylimidazole (HDI)] which liberates an active enhancer, HDI, by enzymatic hydrolysis. A polyclonal antibody prepared with porcine pancreas lipase was used for the immunocapture. The proposed immunocapture-CL method effectively eliminated the interference with the CL reaction from biological components and enabled the determination of spiked porcine pancreas lipase activity in serum samples in the range 0.41-1.1 U(HDI) (1 U(HDI) corresponds to the amount which liberates 1 pmol HDI/min at 37 degrees C from the substrate). The method was further applied to the assay of the activity for human pancreas lipase in serum and the results showed good correlation (r = 0.871) with those by the conventional colorimetric method.

  9. [The biomonitoring of toxic substances in biological samples of general population].

    Science.gov (United States)

    Ibarluzea, Jesús; Aurrekoetxea, Juan José; Porta, Miquel; Sunyer, Jordi; Ballester, Ferran

    2016-11-01

    Many of the world's most developed countries have adopted biomonitoring of toxic substances in order to ascertain their levels in biological samples. These substances get into the body through different environmental exposures. Monitoring toxic substances in biological samples should allow us to ascertain their levels in vulnerable groups, assess their evolution over time, make comparisons with levels observed in other countries, identify groups at risk or with high toxic levels and promote research. The main objective of biomonitoring is to act as a policy design tool to facilitate the implementation of particular measures in various sectors: health, environmental, agricultural and livestock or food industry sectors. In Spain, information on levels of toxic substances of environmental origin is provided by specific studies on health effects from environmental sources, such as the INMA project (INfancia y Medio Ambiente [childhood and environment]). In addition, biomonitoring projects have been implemented in Catalonia and the Canary Islands, together with a national biomonitoring programme in the adult working population. However, further progress is needed to develop a system that covers the general population as well as subgroups at risk, which relies on the collaboration of the involved authorities and the participation of professionals from different sectors and citizen organisations interested in the relationship between health and the environment.

  10. Respondent driven sampling for HIV biological and behavioral surveillance in Latin America and the Caribbean.

    Science.gov (United States)

    Montealegre, Jane R; Johnston, Lisa G; Murrill, Christopher; Monterroso, Edgar

    2013-09-01

    Since 2005, respondent driven sampling (RDS) has been widely used for HIV biological and behavioral surveillance surveys (BBSS) in Latin America and the Caribbean (LAC). In this manuscript, we provide a focused review of RDS among hard-to-reach high-risk populations in LAC and describe their principal operational, design, and analytical considerations. We reviewed published and unpublished reports, protocols, and manuscripts for RDS studies conducted in LAC between January 1, 2005 and December 31, 2011. We abstracted key operational information and generated summary statistics across all studies. Between 2005 and 2011, 87 RDS studies were conducted in 15 countries in LAC (68 % in South America, 18 % in Mexico and Central America, and 14 % in the Caribbean). The target populations were primarily men who have sex with men (43 %), sex workers (29 %), and drug users (26 %). Study considerations included establishing clear eligibility criteria, measuring social network sizes, collecting specimens for biological testing, among others. Most of the reviewed studies are the first in their respective countries to collect data on hard-to-reach populations and the first attempt to use a probability-based sampling method. These RDS studies allowed researchers and public health practitioners in LAC to access hard-to-reach HIV high-risk populations and collect valuable data on the prevalence of HIV and other infections, as well as related risk behaviors.

  11. A comparison of quantitative reconstruction techniques for PIXE-tomography analysis applied to biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, D.G., E-mail: dgbeasley@ctn.ist.utl.pt [IST/C2TN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Alves, L.C. [IST/C2TN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Barberet, Ph.; Bourret, S.; Devès, G.; Gordillo, N.; Michelet, C. [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Le Trequesser, Q. [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB, UPR9048) CNRS, Université de Bordeaux, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Marques, A.C. [IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Seznec, H. [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Silva, R.C. da [IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal)

    2014-07-15

    The tomographic reconstruction of biological specimens requires robust algorithms, able to deal with low density contrast and low element concentrations. At the IST/ITN microprobe facility new GPU-accelerated reconstruction software, JPIXET, has been developed, which can significantly increase the speed of quantitative reconstruction of Proton Induced X-ray Emission Tomography (PIXE-T) data. It has a user-friendly graphical user interface for pre-processing, data analysis and reconstruction of PIXE-T and Scanning Transmission Ion Microscopy Tomography (STIM-T). The reconstruction of PIXE-T data is performed using either an algorithm based on a GPU-accelerated version of the Maximum Likelihood Expectation Maximisation (MLEM) method or a GPU-accelerated version of the Discrete Image Space Reconstruction Algorithm (DISRA) (Sakellariou (2001) [2]). The original DISRA, its accelerated version, and the MLEM algorithm, were compared for the reconstruction of a biological sample of Caenorhabditis elegans – a small worm. This sample was analysed at the microbeam line of the AIFIRA facility of CENBG, Bordeaux. A qualitative PIXE-T reconstruction was obtained using the CENBG software package TomoRebuild (Habchi et al. (2013) [6]). The effects of pre-processing and experimental conditions on the elemental concentrations are discussed.

  12. Production and use of mycotoxins uniformly enriched with stable isotopes for their dosage in biological samples: (3) Tools for pharmacokinetics and as internal standards

    Energy Technology Data Exchange (ETDEWEB)

    Bravin, F.; Delaforge, M.; Duca, R.C. [CNRS, URA 2096, F-91191 Gif Sur Yvette (France); Bravin, F.; Delaforge, M.; Duca, R.C. [CEA Saclay, DSV, DBJC, SBFM, F-91191 Gif Sur Yvette (France); Pean, M. [CEA Cadarache, DEVM, GRAP, St Paul Les Durance (France); Puel, O. [INRA, Lab Pharmacol Toxicol, UR 66, Toulouse (France)

    2007-07-01

    Pharmacological studies of exogenous compounds often encounter problems: these compounds are in such infinitesimal amount in their biological matrices, that they require particular detection method. We have implemented an alternative method to the usual radioactivity, based on incorporation of stable isotopes, through the example of biosynthesis of uniformly {sup 13}C enriched mycotoxins. The isotopic cluster obtained from a 10% {sup 13}C enrichment of several mycotoxins (and their metabolites) can be easily recovered from biological tissue samples by mass spectrometry allowing an easy discrimination from natural non-enriched compounds. We illustrate such pharmacological approaches by in vitro zearalenone metabolism. Such enriched compound can also be used as internal standard with high reliability in order to quantify mycotoxins in contaminated food samples. (authors)

  13. ASTM lights the way for tissue engineered medical products standards: jump start for combination medical products that restore biological function of human tissues.

    Science.gov (United States)

    Picciolo, G L; Stocum, D L

    2001-01-01

    Everybody hopes for better health and restoration of impaired bodily function, and now that hope is illuminated by the promise of powerful biological tools that make human cells grow and replace human tissue. ASTM Committee F04 on Medical and Surgical Materials and Devices is taking the lead by defining some of those tools as standards that can be used for the development, production, testing, and regulatory approval of medical products.

  14. Preparative divergent flow IEF without carrier ampholytes for separation of complex biological samples.

    Science.gov (United States)

    Stastna, Miroslava; Slais, Karel

    2010-01-01

    Efficient separation method is a crucial part of the process in which components of highly complex biological sample are identified and characterized. Based on the principles of recently newly established electrophoretic method called divergent flow IEF (DF IEF), we have tested the DF IEF instrument which is able to operate without the use of background carrier ampholytes. We have verified that during separation and focusing of sample consisting of high numbers of proteins (yeast lysate and wheat flour extract), the pH gradient of preparative DF IEF can be created by autofocusing of the sample components themselves without any addition of carrier ampholytes. In DF IEF, the proteins are separated, desalted and concentrated in one step. The fractions of yeast lysate sample, collected at the DF IEF output and subjected to gel IEF, contained the zones of proteins gradually covering the pI values from 3.7 to 8.5. In our experimental arrangement, the highest number of proteins has been found in fractions with pI values around 5.3 as detected by polyacrylamide gel IEF with CBB staining. During DF IEF, the selected protein bands have been concentrated up to 16.8-fold.

  15. Detection of Cryptococcus neoformans DNA in Tissue Samples by Nested and Real-Time PCR Assays

    Science.gov (United States)

    Bialek, Ralf; Weiss, Michael; Bekure-Nemariam, Kubrom; Najvar, Laura K.; Alberdi, Maria B.; Graybill, John R.; Reischl, Udo

    2002-01-01

    Two PCR protocols targeting the 18S rRNA gene of Cryptococcus neoformans were established, compared, and evaluated in murine cryptococcal meningitis. One protocol was designed as a nested PCR to be performed in conventional block thermal cyclers. The other protocol was designed as a quantitative single-round PCR adapted to LightCycler technology. One hundred brain homogenates and dilutions originating from 20 ICR mice treated with different azoles were examined. A fungal burden of 3 × 101 to 2.9 × 104 CFU per mg of brain tissue was determined by quantitative culture. Specific PCR products were amplified by the conventional and the LightCycler methods in 86 and 87 samples, respectively, with products identified by DNA sequencing and real-time fluorescence detection. An analytical sensitivity of 1 CFU of C. neoformans per mg of brain tissue and less than 10 CFU per volume used for extraction was observed for both PCR protocols, while homogenates of 70 organs from mice infected with other fungi were PCR negative. Specificity testing was performed with genomic DNA from 31 hymenomycetous fungal species and from the ustilaginomycetous yeast Malassezia furfur, which are phylogenetically related to C. neoformans. Twenty-four strains, including species of human skin flora like M. furfur and Trichosporon spp., were PCR negative. Amplification was observed with Cryptococcus amylolentus, Filobasidiella depauperata, Cryptococcus laurentii, and five species unrelated to clinical specimens. LightCycler PCR products from F. depauperata and Trichosporon faecale could be clearly discriminated by melting curve analysis. The sensitive and specific nested PCR assay as well as the rapid and quantitative LightCycler PCR assay might be useful for the diagnosis and monitoring of human cryptococcal infections. PMID:11874894

  16. Quality control in diagnostic molecular pathology in the Netherlands; proficiency testing for patient identification in tissue samples.

    NARCIS (Netherlands)

    Thunnissen, F.B.J.M.; Tilanus, M.G.J.; Ligtenberg, M.J.L.; Nederlof, P.M.; Dinjens, W.N.; Meulemans, E.; Brule, A.J. van den; Noesel, C.J. van; Leeuw, W. de; Schuuring, E.

    2004-01-01

    AIMS: To describe the evolution of proficiency testing for molecular diagnostic pathology with respect to determining unambiguously the patient identity of tissue samples by microsatellite analysis. METHOD: Four rounds of quality control exchanges of samples from different patients were sent with th

  17. Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS

    DEFF Research Database (Denmark)

    Löschner, Katrin; Brabrand, Myung Suk Jung; Sloth, Jens Jørgen

    2014-01-01

    , not much is known about the applicability of spICPMS for determination of NPs in complex matrices such as biological tissues. In the present study, alkaline and enzymatic treatments were applied to solubilize spleen samples from rats, which had been administered 60-nm gold nanoparticles (Au......Inductively coupled plasma mass spectrometry in single-particle mode (spICPMS) is a promising method for the detection of metal-containing nanoparticles (NPs) and the quantification of their size and number concentration. Whereas existing studies mainly focus on NPs suspended in aqueous matrices......NPs) intravenously. The results showed that similar size distributions of AuNPs were obtained independent of the sample preparation method used. Furthermore, the quantitative results for AuNP mass concentration obtained with spICPMS following alkaline sample pretreatment coincided with results for total gold...

  18. An enzyme-based DNA preparation method for application to forensic biological samples and degraded stains.

    Science.gov (United States)

    Lounsbury, Jenny A; Coult, Natalie; Miranian, Daniel C; Cronk, Stephen M; Haverstick, Doris M; Kinnon, Paul; Saul, David J; Landers, James P

    2012-09-01

    Extraction of DNA from forensic samples typically uses either an organic extraction protocol or solid phase extraction (SPE) and these methods generally involve numerous sample transfer, wash and centrifugation steps. Although SPE has been successfully adapted to the microdevice, it can be problematic because of lengthy load times and uneven packing of the solid phase. A closed-tube enzyme-based DNA preparation method has recently been developed which uses a neutral proteinase to lyse cells and degrade proteins and nucleases [14]. Following a 20 min incubation of the buccal or whole blood sample with this proteinase, DNA is polymerase chain reaction (PCR)-ready. This paper describes the optimization and quantitation of DNA yield using this method, and application to forensic biological samples, including UV- and heat-degraded whole blood samples on cotton or blue denim substrates. Results demonstrate that DNA yield can be increased from 1.42 (±0.21)ng/μL to 7.78 (±1.40)ng/μL by increasing the quantity of enzyme per reaction by 3-fold. Additionally, there is a linear relationship between the amount of starting cellular material added and the concentration of DNA in the solution, thereby allowing DNA yield estimations to be made. In addition, short tandem repeat (STR) profile results obtained using DNA prepared with the enzyme method were comparable to those obtained with a conventional SPE method, resulting in full STR profiles (16 of 16 loci) from liquid samples (buccal swab eluate and whole blood), dried buccal swabs and bloodstains and partial profiles from UV or heat-degraded bloodstains on cotton or blue denim substrates. Finally, the DNA preparation method is shown to be adaptable to glass or poly(methyl methacrylate) (PMMA) microdevices with little impact on STR peak height but providing a 20-fold reduction in incubation time (as little as 60 s), leading to a ≥1 h reduction in DNA preparation time.

  19. Effects of space environment on biological characters of tissue cultured rose seedlings

    Institute of Scientific and Technical Information of China (English)

    XUE Huai; LIU Min; LU Jinying; PAN Yi; ZHANG Chunhua

    2005-01-01

    Tissue cultured rose seedlings were carried into space by SHENZHOU-4 spacecraft and then used as the experimental material to investigate effects of the space environmental conditions on morphology, cytology, physiology and molecular biology of the seedlings. After loaded on the space flight, the plant's height, number of leaves, and fresh weight per seedling were all increased significantly compared to the ground controls. The content of chlorophyll was basically unchanged. In some cells, the ultrastructural changes involved twist, contraction and deformation of cell wall, curvature and loose arrangement of lamellae of some chloroplasts, and a significant increase in number of starch grains per chloroplast. In addition, the number of mitochondria increased, but some mitochondrial outer membrane broke, and some mitochondrial cristae disappeared. The activities of the defense enzymes, such as superoxide dismutase, peroxidase and catalyse, in rose leaves increased and the content of malondialdehyde decreased. In the RAPD analysis with 40 10-mer primers, 36 primers generated 148 DNA bands from both of the space flight treated seedlings and the ground controls, and five primers amplified polymorphic products. The rate of DNA variation was 6.34 %.

  20. Diffuse reflectance spectroscopy and optical polarization imaging of in-vivo biological tissue

    Science.gov (United States)

    Mora-Núñez, A.; Castillejos, Y.; García-Torales, G.; Martínez-Ponce, G.

    2013-11-01

    A number of optical techniques have been reported in the scientific literature as accomplishable methodologies to diagnose diseases in biological tissue, for instance, diffuse reflectance spectroscopy (DRS) and optical polarization imaging (OPI). The skin is the largest organ in the body and consists of three primary layers, namely, the epidermis (the outermost layer exposed to the world), the dermis, and the hypodermis. The epidermis changes from to site to site, mainly because of difference in hydration. A lower water content increase light scattering and reduce the penetration depth of radiation. In this work, two hairless mice have been selected to evaluate their skin features by using DRS and OPI. Four areas of the specimen body were chosen to realize the comparison: back, abdomen, tail, and head. From DRS, it was possible to distinguish the skin nature because of different blood irrigation at dermis. In the other hand, OPI shows pseudo-depolarizing regions in the measured Mueller images related to a spatially varying propagation of the scattered light. This provides information about the cell size in the irradiated skin.

  1. Stable reconstruction of piecewise continuous plane stratified biological tissues via electrical impedance tomography.

    Science.gov (United States)

    Dolgin, Madlena; Einziger, Pinchas D

    2010-05-01

    Image reconstruction in electrical impedance tomography is, generally, an ill-posed nonlinear inverse problem. Regularization methods are widely used to ensure a stable solution. Herein, we present a case study, which uses a novel electrical impedance tomography method for reconstruction of layered biological tissues with piecewise continuous plane-stratified profiles. The algorithm implements the recently proposed reconstruction scheme for piecewise constant conductivity profiles, utilizing Legendre expansion in conjunction with improved Prony method. It is shown that the proposed algorithm is capable of successfully reconstructing piecewise continuous conductivity profiles with moderate slop. This reconstruction procedure, which calculates both the locations and the conductivities, repetitively provides inhomogeneous depth discretization, i.e., the depths grid is not equispaced. Incorporation of this specific inhomogeneous grid in the widely used mean least square reconstruction procedure results in a stable and accurate reconstruction, whereas, the commonly selected equispaced depth grid leads to unstable reconstruction. This observation establishes the main result of our investigation, highlighting the impact of physical phenomenon (the image series expansion) on electrical impedance tomography, leading to a physically motivated stabilization of the inverse problem, i.e., an inhomogeneous depth discretization renders an inherent regularization of the mean least square algorithm. The effectiveness and the significance of inhomogeneous discretization in electrical impedance tomography reconstruction procedure is further demonstrated and verified via numerical simulations.

  2. Developing a press for static and dynamic testing of orthopedic devices and biological tissue

    Directory of Open Access Journals (Sweden)

    Arlex Leyton Virgen

    2010-05-01

    Full Text Available This paper describes designing and constructing a test machine having a 1,800 N capacity and maximum 3 Hz frequency which will be used in static and dynamic testing of biological tissues and orthopedic devices such as external fixers. It consists of an oc-tagonal base with 500 mm distance between faces and a crosshead which slides between two columns (useful 350 mm opening thus allowing changing the height (maximum 600 mm according to the size of the specimen to be tested. A ball screw actuator is mounted over the crosshead which transforms a servomotor’s rotating movement into a lineal movement (maximum 150 mm stroke. First validations indicated that the machine performed within the design parameters. This project shows that the techno-logy required for supporting research is possible in developing countries thereby avoiding dependence on foreign companies for supporting, maintaining and updating equipment. Some conditions were also produced for the evolution of mechanical engi-neering in Colombia.

  3. Exploring Earth's Atmospheric Biology using a Platform-Extensible Sampling Payload

    Science.gov (United States)

    Gentry, D.; Rothschild, L.

    2012-12-01

    The interactions between Earth's atmosphere and its biosphere, or aerobiology, remain a significant unknown. What few studies have been done conclusively show that Earth's atmosphere has a rich and dynamic microbial presence[Bowers et al., 2010]; that microbes suspended in air survive over long times (1-2 weeks)[Smith et al., 2010] and travel great distances (>5000 km)[Kellogg and Griffin, 2006]; that some airborne bacteria actively nucleate ice crystals, affecting meteorology[Delort et al., 2010]; and that the presence of microbes in the atmosphere has other planetary-scale effects[Delort et al., 2010]. Basic questions, however, such as the number of microbes present, their activity level and state, the different species present and their variance over time and space, remain largely unquantified. Compounding the significant physical and environmental challenges of reliable aerobiological sampling, collection and analysis of biological samples at altitudes above ~10-20 km has traditionally used ad hoc instrumentation and techniques, yielding primarily qualitative analytical results that lack a common basis for comparison[Bowers et al., 2010]. There is a strong need for broad-basis, repeatable, reliably comparable data about aerobiological basics. We describe here a high-altitude environmental and biological sampling project designed specifically to address these issues. The goal is a robust, reliable, re-usable sampling system, with open reproducibility and adaptability for multiple low-cost flight platforms (including ground-tethered systems, high-altitude balloons, and suborbital sounding rockets); by establishing a common modular payload structure for high-altitude sampling with appeal to a broad user base, we hope to encourage widespread collection of comparable aerobiological data. We are on our third prototype iteration, with demonstrated function of two sample capture modules, a support backbone (tracking, data logging, event response, etc.), a simple ground

  4. Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state.

    Science.gov (United States)

    Lopez Molina, J A; Rivera, M J; Berjano, E

    2016-04-01

    It has been suggested that during RF thermal ablation of biological tissue the thermal lesion could reach an equilibrium size after 1-2 minutes. Our objective was to determine under which circumstances of electrode geometry (needle-like vs. ball-tip), electrode type (dry vs. cooled) and blood perfusion the temperature will reach a steady state at any point in the tissue. We solved the bioheat equation analytically both in cylindrical and spherical coordinates and the resultant limit temperatures were compared. Our results demonstrate mathematically that tissue temperature reaches a steady value in all cases except for cylindrical coordinates without the blood perfusion term, both for dry and cooled electrodes, where temperature increases infinitely. This result is only true when the boundary condition far from the active electrode is considered to be at infinitum. In contrast, when a finite and sufficiently large domain is considered, temperature reaches always a steady state.

  5. Investigation of resins suitable for the preparation of biological sample for 3-D electron microscopy.

    Science.gov (United States)

    Kizilyaprak, Caroline; Longo, Giovanni; Daraspe, Jean; Humbel, Bruno M

    2015-02-01

    In the last two decades, the third-dimension has become a focus of attention in electron microscopy to better understand the interactions within subcellular compartments. Initially, transmission electron tomography (TEM tomography) was introduced to image the cell volume in semi-thin sections (∼ 500 nm). With the introduction of the focused ion beam scanning electron microscope, a new tool, FIB-SEM tomography, became available to image much larger volumes. During TEM tomography and FIB-SEM tomography, the resin section is exposed to a high electron/ion dose such that the stability of the resin embedded biological sample becomes an important issue. The shrinkage of a resin section in each dimension, especially in depth, is a well-known phenomenon. To ensure the dimensional integrity of the final volume of the cell, it is important to assess the properties of the different resins and determine the formulation which has the best stability in the electron/ion beam. Here, eight different resin formulations were examined. The effects of radiation damage were evaluated after different times of TEM irradiation. To get additional information on mass-loss and the physical properties of the resins (stiffness and adhesion), the topography of the irradiated areas was analysed with atomic force microscopy (AFM). Further, the behaviour of the resins was analysed after ion milling of the surface of the sample with different ion currents. In conclusion, two resin formulations, Hard Plus and the mixture of Durcupan/Epon, emerged that were considerably less affected and reasonably stable in the electron/ion beam and thus suitable for the 3-D investigation of biological samples.

  6. FTIR spectroscopic imaging and mapping with correcting lenses for studies of biological cells and tissues.

    Science.gov (United States)

    Kimber, James A; Foreman, Liberty; Turner, Benjamin; Rich, Peter; Kazarian, Sergei G

    2016-06-23

    Histopathology of tissue samples is used to determine the progression of cancer usually by staining and visual analysis. It is recognised that disease progression from healthy tissue to cancerous is accompanied by spectral signature changes in the mid-infrared range. In this work, FTIR spectroscopic imaging in transmission mode using a focal plane array (96 × 96 pixels) has been applied to the characterisation of Barrett's oesophageal adenocarcinoma. To correct optical aberrations, infrared transparent lenses were used of the same material (CaF2) as the slide on which biopsies were fixed. The lenses acted as an immersion objective, reducing scattering and improving spatial resolution. A novel mapping approach using a sliding lens is presented where spectral images obtained with added lenses are stitched together such that the dataset contained a representative section of the oesophageal tissue. Images were also acquired in transmission mode using high-magnification optics for enhanced spatial resolution, as well as with a germanium micro-ATR objective. The reduction of scattering was assessed using k-means clustering. The same tissue section map, which contained a region of high grade dysplasia, was analysed using hierarchical clustering analysis. A reduction of the trough at 1077 cm(-1) in the second derivative spectra was identified as an indicator of high grade dysplasia. In addition, the spatial resolution obtained with the lens using high-magnification optics was assessed by measurements of a sharp interface of polymer laminate, which was also compared with that achieved with micro ATR-FTIR imaging. In transmission mode using the lens, it was determined to be 8.5 μm and using micro-ATR imaging, the resolution was 3 μm for the band at a wavelength of ca. 3 μm. The spatial resolution was also assessed with and without the added lens, in normal and high-magnification modes using a USAF target. Spectroscopic images of cells in transmission mode using two

  7. Brevetoxin in blood, biological fluids, and tissues of sea turtles naturally exposed to Karenia brevis blooms in central west Florida.

    Science.gov (United States)

    Fauquier, Deborah A; Flewelling, Leanne J; Maucher, Jennifer; Manire, Charles A; Socha, Victoria; Kinsel, Michael J; Stacy, Brian A; Henry, Michael; Gannon, Janet; Ramsdell, John S; Landsberg, Jan H

    2013-06-01

    In 2005 and 2006, the central west Florida coast experienced two intense Karenia brevis red tide events lasting from February 2005 through December 2005 and August 2006 through December 2006. Strandings of sea turtles were increased in the study area with 318 turtles (n = 174, 2005; n = 144, 2006) stranding between 1 January 2005 and 31 December 2006 compared to the 12-yr average of 43 +/- 23 turtles. Live turtles (n = 61) admitted for rehabilitation showed clinical signs including unresponsiveness, paresis, and circling. Testing of biological fluids and tissues for the presence of brevetoxin activity by enzyme-linked immunosorbent assay found toxin present in 93% (52 of 56) of live stranded sea turtles, and 98% (42 of 43) of dead stranded sea turtles tested. Serial plasma samples were taken from several live sea turtles during rehabilitation and toxin was cleared from the blood within 5-80 days postadmit depending upon the species tested. Among dead animals the highest brevetoxin levels were found in feces, stomach contents, and liver. The lack of significant pathological findings in the majority of animals necropsied supports toxin-related mortality.

  8. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    CERN Document Server

    Smith, Donald F; Leach, Franklin E; Robinson, Errol W; Paša-Tolić, Ljiljana; Heeren, Ron M A

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissu...

  9. Estimation of the fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    The fraction of biologically active methyl tert-butyl ether degraders in reactors is just as important for prediction of removal rates as knowledge of the kinetic parameters. The fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample, taken from a packed...

  10. Gene expression profiling of human breast tissue samples using SAGE-Seq.

    Science.gov (United States)

    Wu, Zhenhua Jeremy; Meyer, Clifford A; Choudhury, Sibgat; Shipitsin, Michail; Maruyama, Reo; Bessarabova, Marina; Nikolskaya, Tatiana; Sukumar, Saraswati; Schwartzman, Armin; Liu, Jun S; Polyak, Kornelia; Liu, X Shirley

    2010-12-01

    We present a powerful application of ultra high-throughput sequencing, SAGE-Seq, for the accurate quantification of normal and neoplastic mammary epithelial cell transcriptomes. We develop data analysis pipelines that allow the mapping of sense and antisense strands of mitochondrial and RefSeq genes, the normalization between libraries, and the identification of differentially expressed genes. We find that the diversity of cancer transcriptomes is significantly higher than that of normal cells. Our analysis indicates that transcript discovery plateaus at 10 million reads/sample, and suggests a minimum desired sequencing depth around five million reads. Comparison of SAGE-Seq and traditional SAGE on normal and cancerous breast tissues reveals higher sensitivity of SAGE-Seq to detect less-abundant genes, including those encoding for known breast cancer-related transcription factors and G protein-coupled receptors (GPCRs). SAGE-Seq is able to identify genes and pathways abnormally activated in breast cancer that traditional SAGE failed to call. SAGE-Seq is a powerful method for the identification of biomarkers and therapeutic targets in human disease.

  11. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms.

    Science.gov (United States)

    Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji

    2016-07-01

    This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

  12. Ultrasensitive techniques for measurement of uranium in biological samples and the nephrotoxicity of uranium: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kathren, R.L.; Weber, J.R. (eds.)

    1988-04-01

    Edited transcripts are provided of two public meetings sponsored by the Division of Radiation Programs and Earth Sciences of the Nuclear Regulatory Commission, Occupational Radiation Protection Branch. The first meeting, held on December 3, 1985, included nine presentations covering ultrasensitive techniques for measurement of uranium in biological specimens. Topics included laser-spectrometric techniques for uranium bioassay, correlation of urinary uranium samples with air sampling results in industrial settings, delayed neutron counting, laser-kinetic phosphometry, isotope dilution mass spectrometry, resonance ionization spectroscopy, fission track analysis, laser-induced fluorescence, and costs of sampling and processing. The nine presentations of the second meeting dealt with the nephrotoxicity of uranium. Among the topics presented were the physiology of the kidney, the effects of heavy metals on the kidney, animal studies in uranium nephrotoxicity, comparisons of kidney histology in nine humans, renal effects in uranium mill workers, renal damage from different uranium isotopes, and Canadian studies on uranium toxicity. Discussions following the presentations are included in the edited transcripts. 30 refs., 9 figs., 9 tabs.

  13. Mercury speciation and total trace element determination of low-biomass biological samples.

    Science.gov (United States)

    Taylor, Vivien F; Jackson, Brian P; Chen, Celia Y

    2008-12-01

    Current approaches to mercury speciation and total trace element analysis require separate extraction/digestions of the sample. Ecologically important aquatic organisms--notably primary consumers such as zooplankton, polychaetes and amphipods--usually yield very low biomass for analysis, even with significant compositing of multiple organisms. Individual organisms in the lower aquatic food chains (mussels, snails, oysters, silversides, killifish) can also have very low sample mass, and analysis of whole single organisms is important to metal uptake studies. A method for the determination of both methyl Hg and total heavy metal concentrations (Zn, As, Se, Cd, Hg, Pb) in a single, low-mass sample of aquatic organisms was developed. Samples (2 to 50 mg) were spiked with enriched with (201)MeHg and (199)Hg, then leached in 4 M HNO(3) at 55 degrees C for extraction of MeHg. After 16 h, an aliquot (0.05 mL) was removed to determine mercury species (methyl and inorganic Hg) by isotope dilution gas chromatography inductively coupled plasma mass spectrometry (ICP-MS). The leachate was then acidified to 9 M HNO(3) and digested in a microwave at 150 degrees C for 10 min, and total metal concentrations were determined by collision cell ICP-MS. The method was validated by analyzing five biological certified reference materials. Average percent recoveries for Zn, As, Se, Cd, MeHg, Hg(total) and Pb were 99.9%, 103.5%, 100.4%, 103.3%, 101%, 97.7%, and 97.1%, respectively. The correlation between the sum of MeHg and inorganic Hg from the speciation analysis and total Hg by conventional digestion of the sample was determined for a large sample set of aquatic invertebrates (n = 285). Excellent agreement between the two measured values was achieved. This method is advantageous in situations where sample size is limited, and where correlations between Hg species and other metals are required in the same sample. The method also provides further validation of speciation data, by

  14. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation

    Science.gov (United States)

    Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V.

    2016-08-01

    Optical phase conjugation (OPC)-based wavefront shaping techniques focus light through or within scattering media, which is critically important for deep-tissue optical imaging, manipulation, and therapy. However, to date, the sample thickness in OPC experiments has been limited to only a few millimeters. Here, by using a laser with a long coherence length and an optimized digital OPC system that can safely deliver more light power, we focused 532-nm light through tissue-mimicking phantoms up to 9.6 cm thick, as well as through ex vivo chicken breast tissue up to 2.5 cm thick. Our results demonstrate that OPC can be achieved even when photons have experienced on average 1000 scattering events. The demonstrated penetration of nearly 10 cm (˜100 transport mean free paths) has never been achieved before by any optical focusing technique, and it shows the promise of OPC for deep-tissue noninvasive optical imaging, manipulation, and therapy.

  15. Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients

    OpenAIRE

    H. I. Afridi; Kazi, T G; Kazi, N G; Jamali, M K; Arain, M B; Sirajuddin,; Baig, J. A.; Kandhro, G A; Wadhwa, S K; Shah, A Q

    2009-01-01

    The objective of this study was to evaluate the association between trace and toxic elements zinc (Zn), cadmium (Cd), nickel (Ni) and lead (Pb) in biological samples (scalp hair, blood and urine) of smoker and nonsmoker hypertensive patients (n=457), residents of Hyderabad, Pakistan. For the purpose of comparison, the biological samples of age-matched healthy controls were selected as referents. The concentrations of trace and toxic elements were measured by atomic absorption spectrophotomete...

  16. Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications

    Energy Technology Data Exchange (ETDEWEB)

    Manno, D; Filippo, E; Fiore, R; Serra, A [Dipartimento di Scienza dei Materiali, Universita del Salento, Lecce (Italy); Urso, E; Rizzello, A; Maffia, M [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita del Salento, Lecce (Italy)

    2010-04-23

    Surface-enhanced Raman spectroscopy (SERS) allows a new insight into the analysis of cell physiology. In this work, the difficulty of producing suitable substrates that, besides permitting the amplification of the Raman signal, do not interact with the biological material causing alteration, has been overcome by a combined method of hydrothermal green synthesis and thermal annealing. The SERS analysis of the cell membrane has been performed with special attention to the cellular prion protein PrP{sup C}. In addition, SERS has also been used to reveal the prion protein-Cu(II) interaction in four different cell models (B104, SH-SY5Y, GN11, HeLa), expressing PrP{sup C} at different levels. A significant implication of the current work consists of the intriguing possibility of revealing and quantifying prion protein expression in complex biological samples by a cheap SERS-based method, replacing the expensive and time-consuming immuno-assay systems commonly employed.

  17. A data-independent acquisition workflow for qualitative screening of new psychoactive substances in biological samples.

    Science.gov (United States)

    Kinyua, Juliet; Negreira, Noelia; Ibáñez, María; Bijlsma, Lubertus; Hernández, Félix; Covaci, Adrian; van Nuijs, Alexander L N

    2015-11-01

    Identification of new psychoactive substances (NPS) is challenging. Developing targeted methods for their analysis can be difficult and costly due to their impermanence on the drug scene. Accurate-mass mass spectrometry (AMMS) using a quadrupole time-of-flight (QTOF) analyzer can be useful for wide-scope screening since it provides sensitive, full-spectrum MS data. Our article presents a qualitative screening workflow based on data-independent acquisition mode (all-ions MS/MS) on liquid chromatography (LC) coupled to QTOFMS for the detection and identification of NPS in biological matrices. The workflow combines and structures fundamentals of target and suspect screening data processing techniques in a structured algorithm. This allows the detection and tentative identification of NPS and their metabolites. We have applied the workflow to two actual case studies involving drug intoxications where we detected and confirmed the parent compounds ketamine, 25B-NBOMe, 25C-NBOMe, and several predicted phase I and II metabolites not previously reported in urine and serum samples. The screening workflow demonstrates the added value for the detection and identification of NPS in biological matrices.

  18. Trace Level Arsenic Quantification through Cloud Point Extraction: Application to Biological and Environmental Samples

    Directory of Open Access Journals (Sweden)

    Kempahanumakkagari Suresh Kumar

    2012-01-01

    Full Text Available A sensitive solvent-free extraction protocol for the quantification of arsenic at trace level has been described. It is based on the reaction of arsenic (V with molybdate in acidic medium in presence of antimony (III and ascorbic acid as a reducing agent to form a blue-colored arsenomolybdenum blue complex. The complex has been extracted into surfactant phase using Triton X-114, and its absorbance was measured at 690 nm. The detection limit, working range, and the relative standard deviation were found to be 1 ng mL−1, 10–200 ng mL−1, and 1.2%, respectively. The effect of common ions was studied, and the method has been applied to determine trace levels of As(III and As(V from a variety of samples like environmental, biological, and commercially procured chemicals.

  19. Determination of Sodium Cromoglycate by a New Kinetic Spectrophotometric Method in Biological Samples

    Directory of Open Access Journals (Sweden)

    Mohsen Keyvanfard

    2013-01-01

    Full Text Available A new kinetic spectrophotometric method is described for the determination of ultratrace amounts of sodium cromoglycate (SCG. The method based on catalytic action of SCG on the oxidation of amaranth with periodate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of the amaranth at 518 nm, for the first 4 min from initiation of the reaction. Calibration curve was linear in the range of 4.0−36.0 ng mL−1 SCG. The limit of detection is 2.7 ng mL−1 SCG. The relative standard deviation (RSD for ten replicate analyses of 12, 20, and 28 ng mL−1 SCG was 0.40%, 0.32%, and 0.53%, respectively. The proposed method was used for the determination of SCG in biological samples.

  20. Selective spectrofluorimetric determination of zinc in biological samples by Flow Injection Analysis (FIA)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Perez Conde, C.; Gutierrez, A.; Camara, C. (Universidad Complutense, Madrid (Spain). Dept. de Quimica Analitica)

    1992-03-01

    The automatization of a spectrofluorimetric method for the determination of zinc at trace level is described. It is based on the formation of the fluorescent complex Zn(II)-5,7-dibromo-8-quinolinol (Zn(II)-DBQ) followed by extraction into diethylether using flow injection analysis. The optimum fluorescent emission is reached in hexamethylenetetramine (H{sub 2}MTA{sup +}/HMTA) buffer pH 6.0. A membrane phase separator was used. The calibration graph is linear up to 1.5 {mu}g/ml of Zn(II). The proposed method (detection limit 3 ng/ml) is very selective and has been successfully applied to determine Zn(II) in biological samples, tap waters and various food items. (orig.).

  1. Grinding and polishing instead of sectioning for the tissue samples with a graft: Implications for light and electron microscopy.

    Science.gov (United States)

    Mukhamadiyarov, Rinat A; Sevostyanova, Victoria V; Shishkova, Daria K; Nokhrin, Andrey V; Sidorova, Olga D; Kutikhin, Anton G

    2016-06-01

    A broad use of the graft replacement requires a detailed investigation of the host-graft interaction, including both histological examination and electron microscopy. A high quality sectioning of the host tissue with a graft seems to be complicated; in addition, it is difficult to examine the same tissue area by both of the mentioned microscopy techniques. To solve these problems, we developed a new technique of epoxy resin embedding with the further grinding, polishing, and staining. Graft-containing tissues prepared by grinding and polishing preserved their structure; however, sectioning frequently required the explantation of the graft and led to tissue disintegration. Moreover, stained samples prepared by grinding and polishing may then be assessed by both light microscopy and backscattered scanning electron microscopy. Therefore, grinding and polishing outperform sectioning when applied to the tissues with a graft.

  2. The Glutamate Dehydrogenase Pathway and Its Roles in Cell and Tissue Biology in Health and Disease

    Science.gov (United States)

    Plaitakis, Andreas; Kalef-Ezra, Ester; Kotzamani, Dimitra; Zaganas, Ioannis; Spanaki, Cleanthe

    2017-01-01

    Glutamate dehydrogenase (GDH) is a hexameric enzyme that catalyzes the reversible conversion of glutamate to α-ketoglutarate and ammonia while reducing NAD(P)+ to NAD(P)H. It is found in all living organisms serving both catabolic and anabolic reactions. In mammalian tissues, oxidative deamination of glutamate via GDH generates α-ketoglutarate, which is metabolized by the Krebs cycle, leading to the synthesis of ATP. In addition, the GDH pathway is linked to diverse cellular processes, including ammonia metabolism, acid-base equilibrium, redox homeostasis (via formation of fumarate), lipid biosynthesis (via oxidative generation of citrate), and lactate production. While most mammals possess a single GDH1 protein (hGDH1 in the human) that is highly expressed in the liver, humans and other primates have acquired, via duplication, an hGDH2 isoenzyme with distinct functional properties and tissue expression profile. The novel hGDH2 underwent rapid evolutionary adaptation, acquiring unique properties that enable enhanced enzyme function under conditions inhibitory to its ancestor hGDH1. These are thought to provide a biological advantage to humans with hGDH2 evolution occurring concomitantly with human brain development. hGDH2 is co-expressed with hGDH1 in human brain, kidney, testis and steroidogenic organs, but not in the liver. In human cerebral cortex, hGDH1 and hGDH2 are expressed in astrocytes, the cells responsible for removing and metabolizing transmitter glutamate, and for supplying neurons with glutamine and lactate. In human testis, hGDH2 (but not hGDH1) is densely expressed in the Sertoli cells, known to provide the spermatids with lactate and other nutrients. In steroid producing cells, hGDH1/2 is thought to generate reducing equivalents (NADPH) in the mitochondria for the biosynthesis of steroidal hormones. Lastly, up-regulation of hGDH1/2 expression occurs in cancer, permitting neoplastic cells to utilize glutamine/glutamate for their growth. In

  3. The Glutamate Dehydrogenase Pathway and Its Roles in Cell and Tissue Biology in Health and Disease

    Directory of Open Access Journals (Sweden)

    Andreas Plaitakis

    2017-02-01

    Full Text Available Glutamate dehydrogenase (GDH is a hexameric enzyme that catalyzes the reversible conversion of glutamate to α-ketoglutarate and ammonia while reducing NAD(P+ to NAD(PH. It is found in all living organisms serving both catabolic and anabolic reactions. In mammalian tissues, oxidative deamination of glutamate via GDH generates α-ketoglutarate, which is metabolized by the Krebs cycle, leading to the synthesis of ATP. In addition, the GDH pathway is linked to diverse cellular processes, including ammonia metabolism, acid-base equilibrium, redox homeostasis (via formation of fumarate, lipid biosynthesis (via oxidative generation of citrate, and lactate production. While most mammals possess a single GDH1 protein (hGDH1 in the human that is highly expressed in the liver, humans and other primates have acquired, via duplication, an hGDH2 isoenzyme with distinct functional properties and tissue expression profile. The novel hGDH2 underwent rapid evolutionary adaptation, acquiring unique properties that enable enhanced enzyme function under conditions inhibitory to its ancestor hGDH1. These are thought to provide a biological advantage to humans with hGDH2 evolution occurring concomitantly with human brain development. hGDH2 is co-expressed with hGDH1 in human brain, kidney, testis and steroidogenic organs, but not in the liver. In human cerebral cortex, hGDH1 and hGDH2 are expressed in astrocytes, the cells responsible for removing and metabolizing transmitter glutamate, and for supplying neurons with glutamine and lactate. In human testis, hGDH2 (but not hGDH1 is densely expressed in the Sertoli cells, known to provide the spermatids with lactate and other nutrients. In steroid producing cells, hGDH1/2 is thought to generate reducing equivalents (NADPH in the mitochondria for the biosynthesis of steroidal hormones. Lastly, up-regulation of hGDH1/2 expression occurs in cancer, permitting neoplastic cells to utilize glutamine/glutamate for their growth

  4. The Glutamate Dehydrogenase Pathway and Its Roles in Cell and Tissue Biology in Health and Disease.

    Science.gov (United States)

    Plaitakis, Andreas; Kalef-Ezra, Ester; Kotzamani, Dimitra; Zaganas, Ioannis; Spanaki, Cleanthe

    2017-02-08

    Glutamate dehydrogenase (GDH) is a hexameric enzyme that catalyzes the reversible conversion of glutamate to α-ketoglutarate and ammonia while reducing NAD(P)⁺ to NAD(P)H. It is found in all living organisms serving both catabolic and anabolic reactions. In mammalian tissues, oxidative deamination of glutamate via GDH generates α-ketoglutarate, which is metabolized by the Krebs cycle, leading to the synthesis of ATP. In addition, the GDH pathway is linked to diverse cellular processes, including ammonia metabolism, acid-base equilibrium, redox homeostasis (via formation of fumarate), lipid biosynthesis (via oxidative generation of citrate), and lactate production. While most mammals possess a single GDH1 protein (hGDH1 in the human) that is highly expressed in the liver, humans and other primates have acquired, via duplication, an hGDH2 isoenzyme with distinct functional properties and tissue expression profile. The novel hGDH2 underwent rapid evolutionary adaptation, acquiring unique properties that enable enhanced enzyme function under conditions inhibitory to its ancestor hGDH1. These are thought to provide a biological advantage to humans with hGDH2 evolution occurring concomitantly with human brain development. hGDH2 is co-expressed with hGDH1 in human brain, kidney, testis and steroidogenic organs, but not in the liver. In human cerebral cortex, hGDH1 and hGDH2 are expressed in astrocytes, the cells responsible for removing and metabolizing transmitter glutamate, and for supplying neurons with glutamine and lactate. In human testis, hGDH2 (but not hGDH1) is densely expressed in the Sertoli cells, known to provide the spermatids with lactate and other nutrients. In steroid producing cells, hGDH1/2 is thought to generate reducing equivalents (NADPH) in the mitochondria for the biosynthesis of steroidal hormones. Lastly, up-regulation of hGDH1/2 expression occurs in cancer, permitting neoplastic cells to utilize glutamine/glutamate for their growth. In

  5. Determination of gadolinium-based MRI contrast agents in biological and environmental samples: A review

    Energy Technology Data Exchange (ETDEWEB)

    Telgmann, Lena [University of Münster, Institute of Inorganic and Analytical Chemistry, Münster (Germany); Sperling, Michael [University of Münster, Institute of Inorganic and Analytical Chemistry, Münster (Germany); European Virtual Institute for Speciation Analysis (EVISA), Münster (Germany); Karst, Uwe, E-mail: uk@uni-muenster.de [University of Münster, Institute of Inorganic and Analytical Chemistry, Münster (Germany)

    2013-02-18

    Highlights: ► All major methods for the analysis of Gd-based MRI contrast agents are discussed. ► Biological and environmental samples are covered. ► Pharmacokinetics and species transformation can be investigated. ► The figures of merit as limit of detection and analysis time are described. -- Abstract: The development of analytical methods and strategies to determine gadolinium and its complexes in biological and environmental matrices is evaluated in this review. Gadolinium (Gd) chelates are employed as contrast agents for magnetic resonance imaging (MRI) since the 1980s. In general they were considered as safe and well-tolerated, when in 2006, the disease nephrogenic systemic fibrosis (NSF) was connected to the administration of MRI contrast agents based on Gd. Pathogenesis and etiology of NSF are yet unclear and called for the development of several analytical methods to obtain elucidation in this field. Determination of Gd complex stability in vitro and in vivo, as well as the quantification of Gd in body fluids like blood and urine was carried out. Separation of the Gd chelates was achieved with high performance liquid chromatography (HPLC) and capillary electrophoresis (CE). For detection, various methods were employed, including UV–vis absorbance and fluorescence spectroscopy, electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS). A second challenge for analysts was the discovery of high concentrations of anthropogenic Gd in surface waters draining populated areas. The source could soon be determined to be the increasing administration of Gd complexes during MRI examinations. Identification and quantification of the contrast agents was carried out in various surface and groundwater samples to determine the behavior and fate of the Gd chelates in the environment. The improvement of limits of detection (LOD) and limits of quantification (LOQ) was and still is the goal of past and ongoing

  6. A bioreactor test system to mimic the biological and mechanical environment of oral soft tissues and to evaluate substitutes for connective tissue grafts.

    Science.gov (United States)

    Mathes, Stephanie H; Wohlwend, Lorenz; Uebersax, Lorenz; von Mentlen, Roger; Thoma, Daniel S; Jung, Ronald E; Görlach, Christoph; Graf-Hausner, Ursula

    2010-12-15

    Gingival cells of the oral connective tissue are exposed to complex mechanical forces during mastication, speech, tooth movement and orthodontic treatments. Especially during wound healing following surgical procedures, internal and external forces may occur, creating pressure upon the newly formed tissue. This clinical situation has to be considered when developing biomaterials to augment soft tissue in the oral cavity. In order to pre-evaluate a collagen sponge intended to serve as a substitute for autogenous connective tissue grafts (CTGs), a dynamic bioreactor system was developed. Pressure and shear forces can be applied in this bioreactor in addition to a constant medium perfusion to cell-material constructs. Three-dimensional volume changes and stiffness of the matrices were analyzed. In addition, cell responses such as cell vitality and extracellular matrix (ECM) production were investigated. The number of metabolic active cells constantly increased under fully dynamic culture conditions. The sponges remained elastic even after mechanical forces were applied for 14 days. Analysis of collagen type I and fibronectin revealed a statistically significant accumulation of these ECM molecules (P tissue remodeling processes, was observed under dynamic conditions only. The results indicate that the tested in vitro cell culture system was able to mimic both the biological and mechanical environments of the clinical situation in a healing wound.

  7. ENO1 Protein Levels in the Tumor Tissues and Circulating Plasma Samples of Non-small Cell Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ying ZHANG

    2010-12-01

    Full Text Available Background and objective Proper tumor markers are useful to diagnosis, prognosis and treatment for lung cancer. The aim of this study is to examine the levels of alpha-enolase (ENO1 protein in the tumor tissues and peripheral plasma samples obtained from non-small cell lung cancer (NSCLC patients, and evaluate its potential clinical significance. Methods The ENO1 protein levels in the tumor tissues and corresponding normal tissues from 16 cases of lung squamous cell carcinoma were analyzed by Western blot. The ENO1 protein levels in the plasma samples from 42 healthy individuals, 34 patients with lung benign disease and 84 patients with NSCLC were measured by double antibody sandwich enzyme-linked immunosorbent assay. Results For 87.5% (14/16 of the patients with lung squamous cell carcinoma, the ENO1 protein level in the tumor tissues was higher than that in the corresponding normal lung tissues. The ENO1 protein level in the plasma of NSCLC patients was significantly higher than that in the plasma of healthy individuals (P=0.031 and patients with lung benign disease (P=0.019. Furthermore, the ENO1 protein level was significantly higher in the plasma of patients with lung adenocarcinoma than that of patients with lung squamous cell carcinoma. Conclusion The elevated levels of ENO1 protein in the tumor tissues and the plasma samples from NSCLC patients indicate ENO1 may be a candidate biomarker of lung cancer.

  8. Spatio-temporal thermal kinetics of in situ MWCNT heating in biological tissues under NIR laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Picou, Laura; McMann, Casey; Boldor, Dorin [Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, 149 E B Doran Building, Baton Rouge, LA 70803-4505 (United States); Elzer, Philip H; Enright, Frederick M [Department of Veterinary Sciences, Louisiana State University Agricultural Center, 111 Dalrymple Building, Baton Rouge, LA 70803 (United States); Biris, Alexandru S, E-mail: DBoldor@agcenter.lsu.edu [Nanotechnology Center, University of Arkansas-Little Rock, 2801 South University Avenue, ETAS 151, Little Rock, AR 72204-1099 (United States)

    2010-10-29

    Carbon nanotubes have many potential applications in life sciences and engineering as they have very high absorbance in the near-infrared (NIR) spectrum, while biological tissues do not. The purpose of this study was to determine the effect of 1064 nm NIR laser power levels on the spatial temperature distribution and the temperature kinetics in mammalian tissue at both macroscopic and microscopic scales. The model tissue was the 'flat' of a chicken wing (the section containing the radius and ulna), which was injected under the skin in the subcutaneous layer of tissue. Specimens were exposed to laser radiation and an infrared thermography system was used to measure and record the temperature distributions in the specimens at both the macroscopic and microscopic scales. Experimental results concluded that power levels of 1536 mW easily achieved hyperthermic temperatures with localized values as high as 172.7 deg. C.

  9. [Bacteria isolated from urine and renal tissue samples and their relation to renal histology].

    Science.gov (United States)

    Gökalp, A; Gültekin, E Y; Bakici, M Z; Ozdeşlik, B

    1988-01-01

    The bacteria from the urine and renal biopsy specimens of 40 patients undergoing renal surgery were isolated and their relations with renal histology investigated. The urine cultures were positive in 14 patients, the same organisms being isolated from the renal tissue in 7 cases. In 6 patients with negative urine cultures, bacteria were isolated from renal tissues. Of the 28 cases pathologically diagnosed as chronic pyelonephritis, bacteria were isolated from the renal tissue in 13 cases, the urine cultures being positive in only 11 cases. E. coli was the most commonly encountered bacteria in both the urine and renal tissues.

  10. When do tissues and cells become products? Regulatory oversight of emerging biological therapies.

    Science.gov (United States)

    Farrugia, Albert

    2006-01-01

    Although therapeutics derived from biological sources have been subjected to regulatory oversight for some time, the products used in transplantation procedures have historically been exempt from this oversight. These products have been viewed as being part of medical practice rather than as the result of mainstream pharmaceutical manufacture. Furthermore, their unique source makes them difficult to assess in traditional regulatory systems based on the tenets of pharmaceutical quality control. With the increasing use of transplantation therapies to both replace dysfunctional organs and to influence genetic and metabolic processes, public health concerns on these therapies have increased. In addition, it is recognized that therapeutic claims for some of these interventions need to be properly assessed. These considerations have led the established regulatory agencies of the developed world to develop new regulatory paradigms for the products of transplantation practice. While a number of concerns have driven these developments, the minimization of infectious disease risk remains the paramount driver for introducing these regulatory systems. More than the regulation of medicines and medical devices manufactured in traditional pharmaceutical modes, the regulation of cell and tissue products is intimately linked to areas of public health policy and funding. This places regulators in a challenging position as they attempt to reconcile their roles as independent assessors with the needs of the overall public health framework. This is particularly difficult when considering measures which may affect access to life saving therapies. Regulators have recognized the need to assess these therapies through systems which incorporate consideration of risk-benefit ratios and include mechanisms for transparent and accountable release of products when full compliance to traditional concepts of manufacturing practice is not possible.

  11. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features

    Directory of Open Access Journals (Sweden)

    Schlegel Karl A

    2010-10-01

    Full Text Available Abstract Background Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL; however, osteonecrosis of the jaw (ONJ is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP-related and denosumab (anti-RANKL antibody-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL in ONJ-altered and healthy periodontal tissue. Methods Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment. Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Results Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p Conclusions These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred exclusively jaw remodelling. Further research on developmental biology-related unique features of jaw bone structures will help to elucidate pathologies restricted to

  12. Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound

    Institute of Scientific and Technical Information of China (English)

    FAN Ting-Bo; LIU Zhen-Bo; ZHANG Zhe; ZHANG DONG; GONG Xiu-Fen

    2009-01-01

    A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals.

  13. Application of ion mobility spectrometry for the determination of tramadol in biological samples

    Directory of Open Access Journals (Sweden)

    Ali Sheibani

    2014-12-01

    Full Text Available In this study, a simple and rapid ion mobility spectrometry (IMS method has been described for the determination of tramadol. The operating instrumental parameters that could influence IMS were investigated and optimized (temperature; injection: 220 and IMS cell: 190°C, flow rate; carrier: 300 and drift: 600 mL/minute, voltage; corona: 2300 and drift: 7000 V, pulse width: 100 μs. Under optimum conditions, the calibration curves were linear within two orders of magnitude with R2 ≥ 0.998 for the determination of tramadol in human plasma, saliva, serum, and urine samples. The limits of detection and the limits of quantitation were between 0.1 and 0.3 and 0.3 and 1 ng/mL, respectively. The relative standard deviations were between 7.5 and 8.8%. The recovery results (90–103.9% indicate that the proposed method can be applied for tramadol analysis in different biological samples.

  14. A new HPLC method for the direct analysis of triglycerides of dicarboxylic acids in biological samples.

    Science.gov (United States)

    Capristo, E; Mingrone, G; De Gaetano, A; Addolorato, G; Greco, A V; Gasbarrini, G

    1999-11-01

    Dicarboxylic acids (DA) are alternate lipid substrates recently proposed in parenteral nutrition. Two new derivatives of DA, a triglyceride of sebacic (TGC10) and one of dodecanedioic (TGC12) acid have been synthesised in order to reduce the amount of sodium given with the unesterified forms. The present paper describes a rapid and direct high-performance liquid chromatographic method (HPLC) for the analysis of these substances in both plasma and urine. Thirty-six male Wistar rats were rapidly injected with 64 mg of TGC10 or 53 mg of TGC12. The triglycerides and their products of hydrolysis were measured in plasma samples taken at different times. For the dose of 500 ng the intra-assay variations ranged from 6. 80+/-0.35% for TGC10 to 18.6+/-3.20% for TGC12 and the inter-assay variations were from 4.44+/-2.21% for TGC10 to 15.0+/-6.72% for TGC12. The detection limit for both triglycerides was 5 ng. This rapid and direct HPLC method could have practical implications in monitoring the concentration of both triglycerides and free forms of DA in biological samples of patients who might benefit from the administration of these substances during parenteral nutrition regimens.

  15. Synchrotron-based X-ray fluorescence, imaging and elemental mapping from biological samples

    Indian Academy of Sciences (India)

    D V Rao; M Swapna; R Cesareo; A Brunetti; T Akatsuka; T Yuasa; T Takeda; G E Gigante

    2011-02-01

    The present study utilized the new hard X-ray microspectroscopy beamline facility, X27A, available at NSLS, BNL, USA, for elemental mapping. This facility provided the primary beam in a small spot of the order of ∼ 10 m, for focussing. With this spatial resolution and high flux throughput, the synchrotron-based X-ray fluorescent intensities for Mn, Fe, Zn, Cr, Ti and Cu were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector. The sample is scanned in a `step-and-repeat’ mode for fast elemental mapping measurements and generated elemental maps at 8, 10 and 12 keV, from a small animal shell (snail). The accumulated trace elements, from these biological samples, in small areas have been identified. Analysis of the small areas will be better suited to establish the physiology of metals in specific structures like small animal shell and the distribution of other elements.

  16. Synchrotron-based X-ray fluorescence imaging and elemental mapping from biological samples

    Energy Technology Data Exchange (ETDEWEB)

    D Rao; M Swapna; R Cesareo; A Brunetti; T Akatsuka; T Yuasa; T Takeda; G Gigante

    2011-12-31

    The present study utilized the new hard X-ray microspectroscopy beamline facility, X27A, available at NSLS, BNL, USA, for elemental mapping. This facility provided the primary beam in a small spot of the order of {approx}10 {mu}m, for focussing. With this spatial resolution and high flux throughput, the synchrotron-based X-ray fluorescent intensities for Mn, Fe, Zn, Cr, Ti and Cu were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector. The sample is scanned in a 'step-and-repeat' mode for fast elemental mapping measurements and generated elemental maps at 8, 10 and 12 keV, from a small animal shell (snail). The accumulated trace elements, from these biological samples, in small areas have been identified. Analysis of the small areas will be better suited to establish the physiology of metals in specific structures like small animal shell and the distribution of other elements.