WorldWideScience

Sample records for biological tissue samples

  1. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    International Nuclear Information System (INIS)

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on–off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm2 and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation

  2. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    Science.gov (United States)

    Vavpetič, P.; Vogel-Mikuš, K.; Jeromel, L.; Ogrinc Potočnik, N.; Pongrac, P.; Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M.; Pelicon, P.

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on-off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm2 and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  3. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Vavpetič, P., E-mail: primoz.vavpetic@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, K. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Jeromel, L. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Ogrinc Potočnik, N. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Pongrac, P. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Department of Plant Physiology, University of Bayreuth, Universitätstr. 30, 95447 Bayreuth (Germany); Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Pelicon, P. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on–off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm{sup 2} and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  4. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, Helene, E-mail: helene.rahn@gmail.com [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany); Alexiou, Christoph [ENT-Department, Section for Experimental Oncology and Nanomedicine (Else Kröner-Fresenius-Stiftungsprofessur), University Hospital Erlangen, Waldstraße 1, Erlangen 91054 (Germany); Trahms, Lutz [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, Berlin 10587 (Germany); Odenbach, Stefan [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany)

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration. - Highlights: • Local cancer treatments are promising in reducing negative side effects occurring during conventional chemotherapy. • The nanoparticles play an important role in delivering drugs to the designated area during local cancer treatments as magnetic drug targeting. • We study the nanoparticles distribution in tumor tissue after magnetic drug targeting with X-ray computed tomography. • We achieved a 3-dimensional quantification of the nanoparticles content in tumor tissue out of digital tomographic data.

  5. A New Sample Substrate for Imaging and Correlating Organic and Trace Metal Composition in Biological Cells and Tissues

    International Nuclear Information System (INIS)

    Many disease processes involve alterations in the chemical makeup of tissue. Synchrotron-based infrared (IR) and X-ray fluorescence (XRF) microscopes are becoming increasingly popular tools for imaging the organic and trace metal compositions of biological materials, respectively, without the need for extrinsic labels or stains. Fourier transform infrared microspectroscopy (FTIRM) provides chemical information on the organic components of a material at a diffraction-limited spatial resolution of 2-10 μm in the mid-infrared region. The synchrotron X-ray fluorescence (SXRF) microprobe is a complementary technique used to probe trace element content in the same systems with a similar spatial resolution. However to be most beneficial, it is important to combine the results from both imaging techniques on a single sample, which requires precise overlap of the IR and X-ray images. In this work, we have developed a sample substrate containing a gold grid pattern on its surface, which can be imaged with both the IR and X-ray microscopes. The substrate consists of a low trace element glass slide that has a gold grid patterned on its surface, where the major and minor parts of the grid contain 25 and 12 nm gold, respectively. This grid pattern can be imaged with the IR microscope because the reflectivity of gold differs as a function of thickness. The pattern can also be imaged with the SXRF microprobe because the Au fluorescence intensity changes with gold thickness. The tissue sample is placed on top of the patterned substrate. The grid pattern's IR reflectivity image and the gold SXRF image are used as fiducial markers for spatially overlapping the IR and SXRF images from the tissue. Results show that IR and X-ray images can be correlated precisely, with a spatial resolution of less than one pixel (i.e., 2-3 microns). The development of this new tool will be presented along with applications to paraffin-embedded metalloprotein crystals, Alzheimer's disease, and hair

  6. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  7. Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy

    Science.gov (United States)

    Johnston, Helinor J.; Mouras, Rabah; Brown, David M.; Elfick, Alistair; Stone, Vicki

    2015-12-01

    The uptake of nanomaterials (NMs) by cells is critical in determining their potential biological impact, whether beneficial or detrimental. Thus, investigation of NM internalization by cells is a common consideration in hazard and efficacy studies. There are currently a number of approaches that are routinely used to investigate NM-cell interactions, each of which have their own advantages and limitations. Ideally, imaging modalities used to investigate NM uptake by cells should not require the NM to be labelled (e.g. with fluorophores) to facilitate its detection. We present a multimodal imaging approach employing a combination of label-free microscopies that can be used to investigate NM-cell interactions. Coherent anti-Stokes Raman scattering microscopy was used in combination with either two-photon photoluminescence or four-wave mixing (FWM) to visualize the uptake of gold or titanium dioxide NMs respectively. Live and fixed cell imaging revealed that NMs were internalized by J774 macrophage and C3A hepatocyte cell lines (15-31 μg ml-1). Sprague Dawley rats were exposed to NMs (intratracheal instillation, 62 μg) and NMs were detected in blood and lung leucocytes, lung and liver tissue, demonstrating that NMs could translocate from the exposure site. Obtained data illustrate that multimodal nonlinear optical microscopy may help overcome current challenges in the assessment of NM cellular uptake and biodistribution. It is therefore a powerful tool that can be used to investigate unlabelled NM cellular and tissue uptake in three dimensions, requires minimal sample preparation, and is applicable to live and fixed cells.

  8. Evaluation of postmortem tissue samples

    International Nuclear Information System (INIS)

    Collection and radiochemical analysis of postmortem tissue samples (lung, liver, bone and tracheobronchial lymph nodes) from individuals formerly residing in the vicinity of the Hanford project continued during the past year. Postmortem tissue samples and blood samples were also analyzed for the U. S. Transuranium Registry (USTR). During the year commencing November 1, 1974, 85 analyses for plutonium-238 and plutonium-239+240 were performed on samples from the Hanford locality, and 41 analyses for plutonium-238 and plutonium-239+240 on samples obtained from the USTR. Plutonium-242 is the tracer of choice for yield determination in the alpha energy analysis of tissues for 238Pu and 239Pu

  9. Direct online HPLC-CV-AFS method for traces of methylmercury without derivatisation: a matrix-independent method for urine, sediment and biological tissue samples.

    Science.gov (United States)

    Brombach, Christoph-Cornelius; Gajdosechova, Zuzana; Chen, Bin; Brownlow, Andrew; Corns, Warren T; Feldmann, Jörg; Krupp, Eva M

    2015-01-01

    Mercury (Hg) is a global pollutant which occurs in different species, with methylmercury (MeHg) being the critical compound due to its neurotoxicity and bioaccumulation through the food chain. Methods for trace speciation of MeHg are therefore needed for a vast range of sample matrices, such as biological tissues, fluids, soils or sediments. We have previously developed an ultra-trace speciation method for methylmercury in water, based on a preconcentration HPLC cold vapour atomic fluorescence spectrometry (HPLC-CV-AFS) method. The focus of this work is mercury speciation in a variety of sample matrices to assess the versatility of the method. Certified reference materials were used where possible, and samples were spiked where reference materials were not available, e.g. human urine. Solid samples were submitted for commonly used digestion or extraction processes to obtain a liquid sample for injection into the analytical system. For MeHg in sediment samples, an extraction procedure was adapted to accommodate MeHg separation from high amounts of Hg(2+) to avoid an overload of the column. The recovery for MeHg determination was found to be in the range of 88-104% in fish reference materials (DOLT-2, DOLT-4, DORM-3), lobster (TORT-2), seaweed (IAEA-140/TM), sediments (ERM(®)-CC580) and spiked urine and has been proven to be robust, reliable, virtually matrix-independent and relatively cost-effective. Applications in the ultra-trace concentration range are possible using the preconcentration up to 200 mL, while for higher MeHg-containing samples, lower volumes can be applied. A comparison was carried out between species-specific isotope dilution gas chromatography inductively coupled plasma mass spectrometry (SSID-GC-ICP-MS) as the gold standard and HPLC-CV-AFS for biological tissues (liver, kidney and muscle of pilot whales), showing a slope of 1.008 and R (2) = 0.97, which indicates that the HPLC-CV-AFS method achieves well-correlated results for MeHg in

  10. Enhanced Biological Sampling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of a variety of biological, reproductive, and energetic data collected from fish on the continental shelf in the northwest Atlantic Ocean....

  11. Effect of sample preparation techniques on the concentrations and distributions of elements in biological tissues using µSRXRF: a comparative study

    International Nuclear Information System (INIS)

    Routine tissue sample preparation using chemical fixatives is known to preserve the morphology of the tissue being studied. A competitive method, cryofixation followed by freeze drying, involves no chemical agents and maintains the biological function of the tissue. The possible effects of both sample preparation techniques in terms of the distribution of bio-metals (calcium (Ca), copper (Cu) zinc (Zn), and iron (Fe) specifically) in human skin tissue samples was investigated. Micro synchrotron radiation x-ray fluorescence (μSRXRF) was used to map bio-metal distribution in epidermal and dermal layers of human skin samples from various locations of the body that have been prepared using both techniques. For Ca, Cu and Zn, there were statistically significant differences between the epidermis and dermis using the freeze drying technique (p = 0.02, p < 0.01, and p < 0.01, respectively). Also using the formalin fixed, paraffin embedded technique the levels of Ca, Cu and Zn, were significantly different between the epidermis and dermis layers (p = 0.03, p < 0.01, and p < 0.01, respectively). However, the difference in levels of Fe between the epidermis and dermis was unclear and further analysis was required. The epidermis was further divided into two sub-layers, one mainly composed of the stratum corneum and the other deeper layer, the stratum basale. It was found that the difference between the distribution of Fe in the two epidermal layers using the freeze drying technique resulted in a statistically significant difference (p = 0.012). This same region also showed a difference in Fe using the formalin fixed, paraffin embedded technique (p < 0.01). The formalin fixed, paraffin embedded technique also showed a difference between the deeper epidermal layer and the dermis (p < 0.01). It can be concluded that studies involving Ca, Cu and Zn might show similar results using both sample preparation techniques, however studies involving Fe would need more

  12. Biological Sample Monitoring Database (BSMDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Biological Sample Monitoring Database System (BSMDBS) was developed for the Northeast Fisheries Regional Office and Science Center (NER/NEFSC) to record and...

  13. Processes and procedures for a worldwide biological samples distribution; product assurance and logistic activities to support the mice drawer system tissue sharing event

    Science.gov (United States)

    Benassai, Mario; Cotronei, Vittorio

    The Mice Drawer System (MDS) is a scientific payload developed by the Italian Space Agency (ASI), it hosted 6 mice on the International Space Station (ISS) and re-entered on ground on November 28, 2009 with the STS 129 at KSC. Linked to the MDS experiment, a Tissue Sharing Program (TSP), was developed in order to make available to 16 Payload Investigators (PI) (located in USA, Canada, EU -Italy, Belgium and Germany -and Japan) the biological samples coming from the mice. ALTEC SpA (a PPP owned by ASI, TAS-I and local institutions) was responsible to support the logistics aspects of the MDS samples for the first MDS mission, in the frame of Italian Space Agency (ASI) OSMA program (OSteoporosis and Muscle Atrophy). The TSP resulted in a complex scenario, as ASI, progressively, extended the original OSMA Team also to researchers from other ASI programs and from other Agencies (ESA, NASA, JAXA). The science coordination was performed by the University of Genova (UNIGE). ALTEC has managed all the logistic process with the support of a specialized freight forwarder agent during the whole shipping operation phases. ALTEC formalized all the steps from the handover of samples by the dissection Team to the packaging and shipping process in a dedicated procedure. ALTEC approached all the work in a structured way, performing: A study of the aspects connected to international shipments of biological samples. A coopera-tive work with UNIGE/ASI /PIs to identify all the needs of the various researchers and their compatibility. A complete revision and integration of shipment requirements (addresses, tem-peratures, samples, materials and so on). A complete definition of the final shipment scenario in terms of boxes, content, refrigerant and requirements. A formal approach to identification and selection of the most suited and specialized Freight Forwarder. A clear identification of all the processes from sample dissection by PI Team, sample processing, freezing, tube preparation

  14. Optical imaging of biological tissues

    Science.gov (United States)

    Bouza Dominguez, Jorge

    In this thesis, a new time-dependent model for describing light propagation in biological media is proposed. The model is based on the simplified spherical harmonics approximation and is represented by a set of coupled parabolic partial differential equations (TD-pSPN equations). In addition, the model is extended for modeling the time-dependent response of fluorescent agents in biological tissues and the ensuing time-domain propagation of light therein. In a comparison with Monte Carlo simulations, it is shown that the TD-pSPN equations present unique features in its derivation that makes it a more accurate alternative to the diffusion equation (DE). The TD-pSPN model (for orders N > 1) outperforms the DE in the description of the propagation of light in near-nondiffusive media and in all the physical situations where DE fails. Often, only small orders of the SP N approximation are needed to obtain accurate results. A diffuse optical tomography (DOT) algorithm is also implemented based on the TD-pSPN equations as the forward model using constrained optimization methods. The algorithm uses time-dependent (TD) data directly. Such an approach is benefited from both the accuracy of the SPN models and the richness of TD data. In the calculation of the gradient of the objective function, a time-dependent adjoint differentiation method is introduced that reduces computation time. Several numerical experiments are performed for small geometry media with embedded inclusions that mimic small animal imaging. In these experiments, the values of the optical coefficients are varied within realistic bounds that are representative of those found in the range of the near-infrared spectrum, including high absorption values. Single and multi-parameter reconstructions (absorption and diffusion coefficients) are performed. The reconstructed images based on the TD-pSPN equations (N > 1) give better estimates of the optical properties of the media than the DE. On the other hand

  15. Microholographic imaging of biological samples

    International Nuclear Information System (INIS)

    A camera system suitable for x-ray microholography has been constructed. Visible light Fourier transform microholograms of biological samples and other test targets have been recorded and reconstructed digitally using a glycerol microdrop as a reference wave source. Current results give a resolution of ∼4 - 10 λ with λ = 514.5 nm. 11 refs., 1 fig

  16. Photon-tissue interaction model for quantitative assessment of biological tissues

    Science.gov (United States)

    Lee, Seung Yup; Lloyd, William R.; Wilson, Robert H.; Chandra, Malavika; McKenna, Barbara; Simeone, Diane; Scheiman, James; Mycek, Mary-Ann

    2014-02-01

    In this study, we describe a direct fit photon-tissue interaction model to quantitatively analyze reflectance spectra of biological tissue samples. The model rapidly extracts biologically-relevant parameters associated with tissue optical scattering and absorption. This model was employed to analyze reflectance spectra acquired from freshly excised human pancreatic pre-cancerous tissues (intraductal papillary mucinous neoplasm (IPMN), a common precursor lesion to pancreatic cancer). Compared to previously reported models, the direct fit model improved fit accuracy and speed. Thus, these results suggest that such models could serve as real-time, quantitative tools to characterize biological tissues assessed with reflectance spectroscopy.

  17. Radiation sterilization of biological tissues

    International Nuclear Information System (INIS)

    After years of neglect, the value of sterile non-viable (allograft) tissue grafts in transplant surgery is now being recognised. Sterilization using γ-radiation is now becoming the method of choice for a wide range of tissues in a spectrum of Human Tissues banks throughout the world. The radiation treatment can initiate physical and chemical damage in the tissues. Where necessary methods of protection have been developed. Examples are given of the successful utilization of radiation for tissue sterilization and use. (author)

  18. LASER BIOLOGY: Visualisation of the distributions of melanin and indocyanine green in biological tissues

    Science.gov (United States)

    Genina, E. A.; Fedosov, I. V.; Bashkatov, A. N.; Zimnyakov, D. A.; Altshuler, G. B.; Tuchin, V. V.

    2008-03-01

    A double-wavelength laser scanning microphotometer with the high spectral and spatial resolutions is developed for studying the distribution of endogenic and exogenic dyes in biological tissues. Samples of hair and skin biopsy with hair follicles stained with indocyanine green are studied. The spatial distribution of indocyanine green and melanin in the biological tissue is determined from the measured optical transmittance.

  19. Photoacoustic tomography of water in biological tissue

    Science.gov (United States)

    Xu, Zhun; Li, Changhui; Wang, Lihong V.

    2011-03-01

    As an emerging imaging technique that combines high optical contrast and ultrasonic detection, photoacoustic tomography (PAT) has been widely used to image optically absorptive objects in both human and animal tissues. PAT overcomes the depth limitation of other high-resolution optical imaging methods, and it is also free from speckle artifacts. To our knowledge, water has never been imaged by PAT in biological tissue. Here, for the first time, we experimentally imaged water in both tissue phantoms and biological tissues using a near infrared (NIR) light source. The differences among photoacoustic images of water with different concentrations indicate that laser-based PAT can usefully detect and image water content in tissue.

  20. Assessment of ultrasound-assisted extraction as sample pre-treatment for the measurement of lead isotope ratios in marine biological tissues by multicollector inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    In this work, ultrasound-assisted extraction (UAE) was evaluated as a sample preparation procedure for lead isotope ratio measurements in marine biological tissues by multicollector inductively coupled plasma-mass spectrometry. 20 mg of marine biological tissue and 1 mL of acid extractant were sonicated for 3 min at 60% ultrasound amplitude. Matrix separation was performed in the supernatant using a chromatographic exchange resin (Sr-SpecTM). Total elimination of organic matter was achieved during the separation step. Microwave-assisted digestion and dry-ashing were used for comparative purposes. No significant differences were found in lead isotope ratios at 95% of confidence level. UAE emerges as an advantageous alternative to classical methods for sample preparation owing to its simplicity and rapidity (i.e. operation steps were reduced), low reagent consumption and low contamination risks.

  1. Interaction of electromagnetic fields and biological tissues

    Science.gov (United States)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  2. Nonlinear spectral imaging of biological tissues

    NARCIS (Netherlands)

    Palero, J.A.

    2007-01-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal.

  3. Nonlinear spectral imaging of biological tissues

    Science.gov (United States)

    Palero, J. A.

    2007-07-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.

  4. Multiscale mechanical modeling of soft biological tissues

    Science.gov (United States)

    Stylianopoulos, Triantafyllos

    2008-10-01

    Soft biological tissues include both native and artificial tissues. In the human body, tissues like the articular cartilage, arterial wall, and heart valve leaflets are examples of structures composed of an underlying network of collagen fibers, cells, proteins and molecules. Artificial tissues are less complex than native tissues and mainly consist of a fiber polymer network with the intent of replacing lost or damaged tissue. Understanding of the mechanical function of these materials is essential for many clinical treatments (e.g. arterial clamping, angioplasty), diseases (e.g. arteriosclerosis) and tissue engineering applications (e.g. engineered blood vessels or heart valves). This thesis presents the derivation and application of a multiscale methodology to describe the macroscopic mechanical function of soft biological tissues incorporating directly their structural architecture. The model, which is based on volume averaging theory, accounts for structural parameters such as the network volume fraction and orientation, the realignment of the fibers in response to strain, the interactions among the fibers and the interactions between the fibers and the interstitial fluid in order to predict the overall tissue behavior. Therefore, instead of using a constitutive equation to relate strain to stress, the tissue microstructure is modeled within a representative volume element (RVE) and the macroscopic response at any point in the tissue is determined by solving a micromechanics problem in the RVE. The model was applied successfully to acellular collagen gels, native blood vessels, and electrospun polyurethane scaffolds and provided accurate predictions for permeability calculations in isotropic and oriented fiber networks. The agreement of model predictions with experimentally determined mechanical properties provided insights into the mechanics of tissues and tissue constructs, while discrepancies revealed limitations of the model framework.

  5. Desiccation tolerance in biological tissue

    International Nuclear Information System (INIS)

    Full text: Severe dehydration is lethal for most biological species. However, there are a number of organisms or organelles which have evolved mechanisms to avoid damage during dehydration. One of these mechanisms is the accumulation of small solutes (such as sugars), which has been shown to preserve membranes by inhibiting deleterious phase changes at low hydration. The aim of this project is to use small angle x-ray scattering (SAXS) to investigate the effects of small solutes on the phase behaviour and packing parameters of multilamellar membranes as a function of hydration. In the experiment a synthetic phospholipid 1,2-dipalmitoyl-sn-glycero-3- phosphatidylcholine (DPPC) will be used as a model system, as it is the most well characterized phospholipid. Hence the repeat spacings (distance between consecutive bilayers ∼50 Angstroms) and the intra-lipid spacing (distance between a lipid and its neighbor ∼5 Angstroms) are well documented. An appropriate solute, and solute concentration range will be chosen, and its effect on the freezing temperature of DPPC will be observed. To determine the effectiveness of the added solute the repeat spacings need to be measured. Experiments will be conducted at a number of hydrations to accurately model the phase behavior for DPPC over the entire range of hydrations and solute concentrations. Experiments using an alternate configuration of the SAXS may be attempted if time permits to measure the interlipid spacing to obtain more information regarding the phase transition. Although SAXS has been performed extensively on DPPC, experiments with solutes over a range of hydrations, particularly very low hydrations, have not been attempted

  6. Clearing and Labeling Techniques for Large-Scale Biological Tissues.

    Science.gov (United States)

    Seo, Jinyoung; Choe, Minjin; Kim, Sung-Yon

    2016-06-30

    Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems. PMID:27239813

  7. LASER BIOLOGY: Optomechanical tests of hydrated biological tissues subjected to laser shaping

    Science.gov (United States)

    Omel'chenko, A. I.; Sobol', E. N.

    2008-03-01

    The mechanical properties of a matrix are studied upon changing the size and shape of biological tissues during dehydration caused by weak laser-induced heating. The cartilage deformation, dehydration dynamics, and hydraulic conductivity are measured upon laser heating. The hydrated state and the shape of samples of separated fascias and cartilaginous tissues were controlled by using computer-aided processing of tissue images in polarised light.

  8. Human Cell Line and Tissue Sample Authentication

    OpenAIRE

    Ewing, Margaret M.; McLaren, Robert S.; Hebble, Kathryn D.; Ready, Kim; Storts, Douglas R.; Hooper, Kyle

    2013-01-01

    Background: Short Tandem Repeat (STR) genotyping analysis is a proven technology for uniquely identifying virtually all human samples. STR genotyping was adopted as the preferred technology for identification of human tissue culture cell lines by the ATCC Standards Development Organization (ASN-0002: Authentication of Human Cell Lines: Standardization of STR Profiling). We developed new automation-compatible protocols/systems for generating STR profiles from human cell lines or tissue samples...

  9. Tissue Sampling Guides for Porcine Biomedical Models.

    Science.gov (United States)

    Albl, Barbara; Haesner, Serena; Braun-Reichhart, Christina; Streckel, Elisabeth; Renner, Simone; Seeliger, Frank; Wolf, Eckhard; Wanke, Rüdiger; Blutke, Andreas

    2016-04-01

    This article provides guidelines for organ and tissue sampling adapted to porcine animal models in translational medical research. Detailed protocols for the determination of sampling locations and numbers as well as recommendations on the orientation, size, and trimming direction of samples from ∼50 different porcine organs and tissues are provided in the Supplementary Material. The proposed sampling protocols include the generation of samples suitable for subsequent qualitative and quantitative analyses, including cryohistology, paraffin, and plastic histology; immunohistochemistry;in situhybridization; electron microscopy; and quantitative stereology as well as molecular analyses of DNA, RNA, proteins, metabolites, and electrolytes. With regard to the planned extent of sampling efforts, time, and personnel expenses, and dependent upon the scheduled analyses, different protocols are provided. These protocols are adjusted for (I) routine screenings, as used in general toxicity studies or in analyses of gene expression patterns or histopathological organ alterations, (II) advanced analyses of single organs/tissues, and (III) large-scale sampling procedures to be applied in biobank projects. Providing a robust reference for studies of porcine models, the described protocols will ensure the efficiency of sampling, the systematic recovery of high-quality samples representing the entire organ or tissue as well as the intra-/interstudy comparability and reproducibility of results. PMID:26883152

  10. Adipose Tissue Biology: An Update Review

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  11. Specimen Sample Preservation for Cell and Tissue Cultures

    Science.gov (United States)

    Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert

    1996-01-01

    The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.

  12. Morpho-chemistry and functionality of diseased biological tissues

    Science.gov (United States)

    Lange, Marta; Cicchi, Riccardo; Pavone, Francesco

    2014-09-01

    Heart and cardiovascular diseases are one of the most common in the world, in particular - arthrosclerosis. The aim of the research is to distinguish pathological and healthy tissue regions in biological samples, in this case - to distinguish collagen and lipid rich regions within the arterial wall. In the work a specific combination of such methods are used: FLIM and SHG in order to evaluate the biological tissue morphology and functionality, so that this research could give a contribution for creating a new biological tissue imaging standard in the closest future. During the study the most appropriate parameter for fluorescence lifetime decay was chosen in order to evaluate lifetime decay parameters and the isotropy of the arterial wall and deposition, using statistical methods FFT and GLCM. The research gives a contribution or the future investigations for evaluating lipid properties when it can de-attach from the arterial wall and cause clotting in the blood vessel or even a stroke.

  13. Computational Laser Spectroscopy in a Biological Tissue

    Directory of Open Access Journals (Sweden)

    R. Ben Salah

    2010-01-01

    Full Text Available We present a numerical spectroscopic study of visible and infrared laser radiation in a biological tissue. We derive a solution of a general two-dimensional time dependent radiative transfer equation in a tissue-like medium. The used model is suitable for many situations especially when the external source is time-dependent or continuous. We use a control volume-discrete ordinate method associated with an implicit three-level second-order time differencing scheme. We consider a very thin rectangular biological-tissue-like medium submitted to a visible or a near infrared light sources. The RTE is solved for a set of different wavelength source. All sources are assumed to be monochromatic and collimated. The energetic fluence rate is computed at a set of detector points on the boundaries. According to the source type, we investigate either the steady-state or transient response of the medium. The used model is validated in the case of a heterogeneous tissue-like medium using referencing experimental results from the literature. Also, the developed model is used to study changes on transmitted light in a rat-liver tissue-like medium. Optical properties depend on the source wavelength and they are taken from the literature. In particular, light-transmission in the medium is studied for continuous wave and for short pulse.

  14. In-air micro-pixe analysis of tissue samples

    International Nuclear Information System (INIS)

    Micro-PIXE is capable of providing spatial distributions of elements in the micro-meter scale and its application to biology is useful to elucidate the cellular metabolism. Since, in this method, a sample target is usually irradiated with proton or α-particle beams in vacuum, beam heating results in evaporation of volatile elements an shrinking of the sample. In order to avoid these side effects, we previously developed a technique of in-air micro-PIXE analysis for samples of cultured cells. In addition to these, analysis of exposed tissue samples from living subjects is highly desirable in biological and medical research. Here, we describe a technique of in-air micro-PIXE analysis of such tissue samples. The target samples of exposed tissue slices from a Donryu rat, in which a tumor had been transplanted, were analyzed with proton micro-beams of 2.6 MeV. We report that the shape of cells and the distribution of volatile elements in the tissue sample remain uncharged when using a target preparation based on a freeze-drying method. (author)

  15. SEM investigation of heart tissue samples

    International Nuclear Information System (INIS)

    We used the scanning electron microscope to examine the cardiac tissue of a cow (Bos taurus), a pig (Sus scrofa), and a human (Homo sapiens). 1mm3 blocks of left ventricular tissue were prepared for SEM scanning by fixing in 96% ethanol followed by critical point drying (cryofixation), then sputter-coating with gold. The typical ridged structure of the myofibrils was observed for all the species. In addition crystal like structures were found in one of the samples of the heart tissue of the pig. These structures were investigated further using an EDVAC x-ray analysis attachment to the SEM. Elemental x-ray analysis showed highest peaks occurred for gold, followed by carbon, oxygen, magnesium and potassium. As the samples were coated with gold for conductivity, this highest peak is expected. Much lower peaks at carbon, oxygen, magnesium and potassium suggest that a cystallized salt such as a carbonate was present in the tissue before sacrifice.

  16. SEM investigation of heart tissue samples

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, R; Amoroso, M [Physics Department, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies (Trinidad and Tobago)

    2010-07-01

    We used the scanning electron microscope to examine the cardiac tissue of a cow (Bos taurus), a pig (Sus scrofa), and a human (Homo sapiens). 1mm{sup 3} blocks of left ventricular tissue were prepared for SEM scanning by fixing in 96% ethanol followed by critical point drying (cryofixation), then sputter-coating with gold. The typical ridged structure of the myofibrils was observed for all the species. In addition crystal like structures were found in one of the samples of the heart tissue of the pig. These structures were investigated further using an EDVAC x-ray analysis attachment to the SEM. Elemental x-ray analysis showed highest peaks occurred for gold, followed by carbon, oxygen, magnesium and potassium. As the samples were coated with gold for conductivity, this highest peak is expected. Much lower peaks at carbon, oxygen, magnesium and potassium suggest that a cystallized salt such as a carbonate was present in the tissue before sacrifice.

  17. Sterilization of biological tissues with ionizing radiation

    International Nuclear Information System (INIS)

    On June 1994, the National Institute of Nuclear Research (ININ) and the South Central Hospital for High Specialty of PEMEX (HCSAE) began a joint work with the finality to obtain radio sterilized amniotic membranes for to be used as cover (biological bandage) in burnt patients. Subsequently the Chemistry Faculty of UNAM and the National Institute of Cardiology began to collaborate this last with interest on cardiac valves for graft. Starting from 1997, the International Atomic Energy Agency (IAEA) supports this project (MEX/7/008) whose main objective is to set up the basis to establish in Mexico a Radio sterilized Tissue Bank (amniotic membranes, skin, bones, tendons, cardiac valves, etc.) to be used with therapeutic purposes (grafts). The IAEA support has consisted in the equipment acquisition which is fundamental for the Tissue Bank performance such as an experimental irradiator, laminar flow bell, lyophilizer, vacuum sealer and special knives for tissues. Also visits to Mexico of experts have been authorized with the aim of advising to the personnel which participate in the project and scientific visits of this personnel to another tissue banks (Sri Lanka and Argentine). The establishment in Mexico of a Tissue bank will be a great benefit because it will have availability of distinct tissues for grafts and it will reduce the synthetic materials importation which is very expensive. (Author)

  18. The Optical Properties of Biological Tissue.

    Science.gov (United States)

    Bews, Jeffrey Alan

    The ability of light to propagate through biological tissue has found much application in medicine (ie. Photodynamic therapy and Diaphanography). However, a poor understanding of this transport phenomenon has served to limit the effectiveness of those modalities employing it in their operation. This thesis is a study of light propagation through biological tissue, its goal being to improve on the lack of knowledge that presently exists. A spectrophotometer type instrument (DICOM-8) was developed to measure the diffuse spectra extinction of biological tissue. Results were obtained for both normal and diseased breast tissue. Extinction curves for the two tissues exhibited a similar shape (extinction monotonically decreasing with increasing wavelength) but differed in magnitude below 700 nm with carcinoma possessing a higher extinction than normal. Data obtained from these tissue measurements served as the basis for developing a homogeneous liquid (TEM) for simulating the optical properties of tissue over the range 550 to 900 nm. Bench-top Diaphanography studies carried out on a breast phantom constructed of TEM demonstrated the improved tumor visualization attainable with short wavelength light. TEM also functioned as a test medium in which light distributions resulting from highly controlled irradiation geometries (isotropic point and planar sources) were measured and compared with those predicted by Linear Transport (LT) theory. The mean free path (MFP) of TEM ranged from 0.206 mm at 550 nm to 0.495 mm at 900 nm and was found to be directly proportional to the square of the wavelength. The scatter/absorption coefficient (c) was 0.9986459 at 550 nm and 0.9997315 at 850 nm. Agreement between experimental and theoretical distributions was found to be extremely good. Theoretical distributions generated with LT theory revealed the fact that small changes in MFP will have little effect on light transport. Similar changes in c, meanwhile, will drastically alter the

  19. Evaluation of ultrasound-assisted extraction as sample pre-treatment for quantitative determination of rare earth elements in marine biological tissues by inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    In this work, the determination of rare earth elements (REEs), i.e. Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in marine biological tissues by inductively coupled-mass spectrometry (ICP-MS) after a sample preparation method based on ultrasound-assisted extraction (UAE) is described. The suitability of the extracts for ICP-MS measurements was evaluated. For that, studies were focused on the following issues: (i) use of clean up of extracts with a C18 cartridge for non-polar solid phase extraction; (ii) use of different internal standards; (iii) signal drift caused by changes in the nebulization efficiency and salt deposition on the cones during the analysis. The signal drift produced by direct introduction of biological extracts in the instrument was evaluated using a calibration verification standard for bracketing (standard-sample bracketing, SSB) and cumulative sum (CUSUM) control charts. Parameters influencing extraction such as extractant composition, mass-to-volume ratio, particle size, sonication time and sonication amplitude were optimized. Diluted single acids (HNO3 and HCl) and mixtures (HNO3 + HCl) were evaluated for improving the extraction efficiency. Quantitative recoveries for REEs were achieved using 5 mL of 3% (v/v) HNO3 + 2% (v/v) HCl, particle size <200 μm, 3 min of sonication time and 50% of sonication amplitude. Precision, expressed as relative standard deviation from three independent extractions, ranged from 0.1 to 8%. In general, LODs were improved by a factor of 5 in comparison with those obtained after microwave-assisted digestion (MAD). The accuracy of the method was evaluated using the CRM BCR-668 (mussel tissue). Different seafood samples of common consumption were analyzed by ICP-MS after UAE and MAD.

  20. Carotenoids in Adipose Tissue Biology and Obesity.

    Science.gov (United States)

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition. PMID:27485231

  1. Biological tissues analysis by XRF microtomography.

    Science.gov (United States)

    Pereira, G R; Rocha, H S; Calza, C; Anjos, M J; Pérez, C A; Lopes, R T

    2010-01-01

    The main of this work is to determine the elemental distribution in breast and prostate tissue samples in order to verify the concentration of some elements correlated with characteristics and pathology of each tissue observed by the X-ray transmission microtomography (microCT). The experiments were performed at the X-ray fluorescence beamline of the Brazilian Synchrotron Light Laboratory. The microCT images were reconstructed using a filtered-back-projection algorithm and the XRF microtomographies were reconstructed using a filtered-back-projection algorithm with absorption corrections. PMID:20122839

  2. Biological tissues analysis by XRF microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, G.R.; Rocha, H.S.; Calza, C. [Nuclear Instrumentation Laboratory (LIN), COPPE, UFRJ, P.O. Box 68509, 21941-972 Rio de Janeiro (Brazil); Anjos, M.J. [Physics Institute-UERJ (Brazil); Perez, C.A. [Brazilian Synchrotron Light Laboratory (Brazil); Lopes, R.T. [Nuclear Instrumentation Laboratory (LIN), COPPE, UFRJ, P.O. Box 68509, 21941-972 Rio de Janeiro (Brazil)], E-mail: Ricardo@lin.ufrj.br

    2010-04-15

    The main of this work is to determine the elemental distribution in breast and prostate tissue samples in order to verify the concentration of some elements correlated with characteristics and pathology of each tissue observed by the X-ray transmission microtomography ({mu}CT). The experiments were performed at the X-ray fluorescence beamline of the Brazilian Synchrotron Light Laboratory. The {mu}CT images were reconstructed using a filtered-back-projection algorithm and the XRF microtomographies were reconstructed using a filtered-back-projection algorithm with absorption corrections.

  3. Fluorine ion transmission through thin biological samples

    International Nuclear Information System (INIS)

    F2+ beam with 3 MeV is used to irradiate thin biological samples (onion inner surface membrane and kidney bean coat) in the transmission measurement, its current density is 400∼800 nA/cm2. Results show that the onion samples can be broken up quickly under ion irradiating; as to kidney bean samples, about 60% of the implanted ions penetrate the samples, most of them lose part of their energy, fewer ions are found to be able to transmit through the sample without energy loss. SEM experiments are carried out to study sample's damage induced by the ions irradiation

  4. Fluorine ion transmission through thin biological samples

    Institute of Scientific and Technical Information of China (English)

    XueJian-Ming; WangYu-Gang; 等

    1998-01-01

    F2+ beam with 3MeV is used to irradiate thin biological samples(onion inner suface membrane and kidney bean coat)in the transmission measurement ,its current density is 400-800nA/cm2,Results show that the onion samples can be broken up quickly under ion irradiating;as to kidney bean samples,about 60% of the implanted ions penetrate the samples,most of them lose part of their eneregy,fewer ions are found to be able to transmit through the sample without energy loss.SEM experiments are carried out to study sample's damage induced by the ions irradiation.

  5. Modular microfluidic system for biological sample preparation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  6. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  7. Neutron interactions with biological tissue. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-17

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of neutrons with tissue through the ejected secondary charged particles. The authors used theoretical calculations whose input includes neutron cross section data; range, stopping power, ion yield, and straggling information; and geometrical properties. Outputs are initial and slowing-down spectra of charged particles, kerma factors, average values of quality factors, microdosimetric spectra, and integral microdosimetric parameters such as {bar y}{sub F}, {bar y}{sub D}, y{sup *}. Since it has become apparent that nanometer site sizes are also relevant to radiobiological effects, the calculations of event size spectra and their parameters were extended to these smaller diameters. This information is basic to radiological physics, radiation biology, radiation protection of workers, and standards for neutron dose measurement.

  8. Neutron interactions with biological tissue. Final report

    International Nuclear Information System (INIS)

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of neutrons with tissue through the ejected secondary charged particles. The authors used theoretical calculations whose input includes neutron cross section data; range, stopping power, ion yield, and straggling information; and geometrical properties. Outputs are initial and slowing-down spectra of charged particles, kerma factors, average values of quality factors, microdosimetric spectra, and integral microdosimetric parameters such as bar yF, bar yD, y*. Since it has become apparent that nanometer site sizes are also relevant to radiobiological effects, the calculations of event size spectra and their parameters were extended to these smaller diameters. This information is basic to radiological physics, radiation biology, radiation protection of workers, and standards for neutron dose measurement

  9. Preparation of biological samples for SIMS analyses

    International Nuclear Information System (INIS)

    Full text: For the first time at ANSTO, a program of SIMS analysis of biological samples was undertaken. This presentation will discuss how the wide variety of samples were prepared, and the methods used to gain useful information from SIMS analysis. Lack of matrix-matched standards made quantification difficult, but the strength of SIMS lies in the ability to detect a wide range of stable isotopes with good spatial resolution. This makes the technique suitable for studying organisms that archive signature elements in their structure. Samples such as bivalve shells and crocodile osteoderms were vacuum-impregnated in resin to a size suitable for the SIMS sample holder. Polishing was followed by a sputter coating with gold to alleviate charging of the sample during SIMS analysis. Some samples were introduced directly on the sample holder, either stuck to a glass slide or simply held in place with spring and backing plate. The only treatment in this case was gold coating and degassing in a vacuum pumping station. The porous nature of materials such as leaves and stromatolites requires a period of time under vacuum to remove gases which could interfere with the ultra high vacuum required for SIMS analysis. A calcite standard was used for comparison of oxygen isotopic ratios, but the only matrix-matched standard was available for metal analysis of coral skeletons. Otherwise, the calcium content of the material was assumed to be uniform and acted as an internal standard from which isotopic ratios of other elements could be determined. SIMS analysis of biological samples demonstrated that some matrices could reveal an archive of pollution histories. These samples require matrix-matched standards if the trends observed from analyses are to be quantified

  10. Atomic force microscopy of biological samples.

    Science.gov (United States)

    Allison, David P; Mortensen, Ninell P; Sullivan, Claretta J; Doktycz, Mitchel J

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH). PMID:20672388

  11. Atomic force microscopy of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).

  12. PIXE and its applications to biological samples

    International Nuclear Information System (INIS)

    Throughout this century, industrialized society has seriously affected the ecology by introducing huge amounts of pollutants into the atmosphere as well as marine and soil environments. On the other hand, it is known that these pollutants, in excess of certain levels of concentration, not only put at risk the life of living beings but may also cause the extinction of some species. It is therefore of basic importance to substantially increase quantitative determinations of trace element concentrations in biological specimens in order to assess the effects of pollutants. It is in this field that PIXE plays a key role in these studies, where its unique analytical properties are decisive. Moreover, since the importance of these research has been recognized in many countries, many scientists have been encouraged to continue or initiate new research programmes aimed to solve the worldwide pollution problem. This document presents an overview of those papers reporting the application of PIXE analysis to biological samples during this last decade of the 20th century and recounts the number of PIXE laboratories dedicating their efforts to find the clues of the biological effects of the presence of pollutants introduced in living beings. Sample preparation methods, different kinds of samples under study and the use of complementary analytical techniques are also illustrated. (author). 108 refs

  13. Optical properties of biological tissues: a review

    International Nuclear Information System (INIS)

    A review of reported tissue optical properties summarizes the wavelength-dependent behavior of scattering and absorption. Formulae are presented for generating the optical properties of a generic tissue with variable amounts of absorbing chromophores (blood, water, melanin, fat, yellow pigments) and a variable balance between small-scale scatterers and large-scale scatterers in the ultrastructures of cells and tissues. (topical review)

  14. Confocal Imaging of Biological Tissues Using Second Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B-M.; Stoller, P.; Reiser, K.; Eichler, J.; Yan, M.; Rubenchik, A.; Da Silva, L.

    2000-03-06

    A confocal microscopy imaging system was devised to selectively detect Second harmonic signals generated by biological tissues. Several types of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in tissue is collagen. Collagen, the predominant component of most tissues, is known to have second order nonlinear susceptibility. This technique may have diagnostic usefulness in pathophysiological conditions characterized by changes in collagen structure including malignant transformation of nevi, progression of diabetic complications, and abnormalities in wound healing.

  15. Confocal Imaging of Biological Tissues Using Second Harmonic Generation

    International Nuclear Information System (INIS)

    A confocal microscopy imaging system was devised to selectively detect Second harmonic signals generated by biological tissues. Several types of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in tissue is collagen. Collagen, the predominant component of most tissues, is known to have second order nonlinear susceptibility. This technique may have diagnostic usefulness in pathophysiological conditions characterized by changes in collagen structure including malignant transformation of nevi, progression of diabetic complications, and abnormalities in wound healing

  16. Thermal property of biological tissues characterized by piezoelectric photoacoustic technique

    Institute of Scientific and Technical Information of China (English)

    GAO Chunming; ZHANG Shuyi; CHEN Yan; SHUI Xiuji; YANG Yuetao

    2004-01-01

    A photoacoustic piezoelectric method based on a simplified thermoelastic theory is employed to determine thermal diffusivities of biological tissues. The thermal diffusivities of porcine tissues with different preparation conditions, including fresh, dry and specially prepared conditions, are characterized. Comparing the experimental evaluated diffusivities of the tissues in three conditions with each other, it can be seen that the diffusivities of the fresh tissues are the biggest and the diffusivities of the specially prepared tissues are bigger than that of the dry ones generally. The results show that the piezoelectric photoacoustic method is especially effective for determining macro-effective (average) thermal diffusivities of biological materials with micro- inhomogeneity and easy to be performed, which can provide useful information for researching thermal characters of biological tissues.

  17. Orthopaedic Interface Tissue Engineering for the Biological Fixation of Soft Tissue Grafts

    OpenAIRE

    Moffat, Kristen L.; Wang, I-Ning Elaine; Rodeo, Scott A.; Lu, Helen H.

    2009-01-01

    Interface tissue engineering is a promising new strategy aimed at the regeneration of tissue interfaces and ultimately enabling the biological fixation of soft tissue grafts utilized in orthopaedic repair and sports medicine. Many ligaments and tendons with direct insertions into subchondral bone exhibit a complex enthesis consisting of several distinct yet continuous regions of soft tissue, noncalcified fibrocartilage, calcified fibrocartilage and bone. Regeneration of this multi-tissue inte...

  18. Measurement of n-alkanals and hydroxyalkenals in biological samples.

    Science.gov (United States)

    Holley, A E; Walker, M K; Cheeseman, K H; Slater, T F

    1993-09-01

    A modified method was developed to measure nM levels of a range of n-alkanals and hydroxyalkenals in biological samples such as blood plasma and tissue homogenates and also in Folch lipid extracts of these samples. Butylated hydroxytoluene (BHT) and desferrioxamine (Desferal) were added to samples to prevent artifactual peroxidation. Aldehydes were reacted with 1,3-cyclohexanedione (CHD), cleaned up by solid-phase extraction on a Sep-Pak C18 cartridge and the fluorescent decahydroacridine derivatives resolved by reverse-phase high-performance liquid chromatography (HPLC) with gradient elution. A wider range of aldehydes was detected in lipid extracts of plasma and liver homogenate compared to whole (unextracted) samples. Human plasma contained nM levels of acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal. 4-Hydroxynonenal (0.93 nmol/g) and alkanals with two to six carbons (up to 7.36 nmol/g) were detected in rat liver. Recovery of aldehydes added to whole plasma or to lipid extracts of plasma was dependent on carbon chain length, varying from 95% for acetaldehyde to 8% for decanal. Recovery from biological samples was significantly less than that of standards taken through the Sep-Pak clean-up procedure, suggesting that aldehydes can bind to plasma protein and lipid components. PMID:8406128

  19. Adipose tissue and fat cell biology

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Jan

    New York: Springer International Publishing, 2015 - (Pappas, A.), s. 201-224 ISBN 978-3-319-09942-2 R&D Projects: GA MŠk(CZ) 7E12073; GA ČR(CZ) GA13-00871S Institutional support: RVO:67985823 Keywords : adipose tissue * endocrine function * lipid mediators Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  20. Transillumination imaging through biological tissue by single-pixel detection

    Science.gov (United States)

    Durán, Vicente; Soldevila, Fernando; Irles, Esther; Clemente, Pere; Tajahuerce, Enrique; Andrés, Pedro; Lancis, Jesús

    2015-07-01

    One challenge that has long held the attention of scientists is that of clearly seeing objects hidden by turbid media, as smoke, fog or biological tissue, which has major implications in fields such as remote sensing or early diagnosis of diseases. Here, we combine structured incoherent illumination and bucket detection for imaging an absorbing object completely embedded in a scattering medium. A sequence of low-intensity microstructured light patterns is launched onto the object, whose image is accurately reconstructed through the light fluctuations measured by a single-pixel detector. Our technique is noninvasive, does not require coherent sources, raster scanning nor time-gated detection and benefits from the compressive sensing strategy. As a proof of concept, we experimentally retrieve the image of a transilluminated target both sandwiched between two holographic diffusers and embedded in a 6mm-thick sample of chicken breast.

  1. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  2. THz near-field imaging of biological tissues employing synchrotronradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried,Daniel

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  3. Photoacoustic tomography imaging of biological tissues

    Science.gov (United States)

    Su, Yixiong; Wang, Ruikang K.; Xu, Kexin; Zhang, Fan; Yao, Jianquan

    2005-01-01

    Non-invasive laser-induced photoacoustic tomography is attracting more and more attentions in the biomedical optical imaging field. This imaging modality takes the advantages in that the tomography image has the optical contrast similar to the optical techniques while enjoying the high spatial resolution comparable to the ultrasound. Currently, its biomedical applications are mainly focused on breast cancer diagnosis and small animal imaging. In this paper, we report in detail a photoacoustic tomography experiment system constructed in our laboratory. In our system, a Q-switched ND:YAG pulse laser operated at 532nm with a 10ns pulse width is employed to generate photoacoustic signal. A tissue-mimicking phantom was built to test the system. When imaged, the phantom and detectors were immersed in a water tank to facilitate the acoustic detection. Based on filtered back-projection process of photoacoustic imaging, the two-dimension distribution of optical absorption in tissue phantom was reconstructed.

  4. Multidisciplinary approach to thoracic tissue sampling

    OpenAIRE

    Quint, L.E.

    2010-01-01

    Abstract When choosing the best method to undertake a biopsy of a lesion in the lung or mediastinum, it is important to consider the entire range of possible options, such as surgical, bronchoscopic/endoscopic, and radiologic techniques. Features to be considered include the anatomic location of the lesion, the amount of tissue needed, cost, availability of specific techniques, safety and risks, and expected diagnostic yield/accuracy.

  5. Thermal effects of laser radiation in biological tissue.

    OpenAIRE

    Cummins, L; Nauenberg, M.

    1983-01-01

    A theoretical model is presented that simulates the thermal effects of laser radiation incident on biological tissue. The multiple scattering and absorption of the laser beam and the thermal diffusion process in the tissue are evaluated by a numerical technique that is well suited for microcomputers. Results are compared with recent empirical observations.

  6. Depth Determination of an Abnormal Heat Source in Biological Tissues

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-Hua; LI Zhen-Hua; LAI Jian-Cheng; HE An-Zhi

    2011-01-01

    We deduce the surface temperature distribution generated by the inner point heat source in biological tissues and propose a graphic method to retrieve the depth of the point heat source. The practical surface temperature distribution can be regarded as the convolution of the temperature distribution of the inner point heat source with the heat source shape function. The depth of an abnormal heat source in biological tissues can be retrieved by using the graphic method combined with the blind deconvolution scheme.%We deduce the surface temperature distribution generated by the inner point heat source in biological tissues and propose a graphic method to retrieve the depth of the point heat source.The practical surface temperature distribution can be regarded as the convolution of the temperature distribution of the inner point heat source with the heat source shape function.The depth of an abnormal heat source in biological tissues can be retrieved by using the graphic method combined with the blind deconvolution scheme.Surface temperature distribution of the biological tissues is closely related to the neighboring metabolic heat production,blood circulation in an organism and environmental temperature.[1] The abnormal metabolic performances of a local region in biological tissue imply malignant changes occurring,which can be distinguished from the variance of surface temperature.Modern development of thermal infrared (TIR) imaging has made the surface temperature measurement of biological tissue easier.Nowadays,several types of tumors,e.g.skin or breast can be recognized with TIR imaging.[2] The diagnostics with TIR imaging require more experienced operators and can not accurately ascertain the site of pathological changes,which limits the value of this technology.Therefore ascertaining the depth of inner heat source in biological body has the extremely important clinical value.

  7. Biological sampling for marine radioactivity monitoring

    International Nuclear Information System (INIS)

    Strategies and methodologies for using marine organisms to monitor radioactivity in marine waters are presented. When the criteria for monitoring radioactivity is to determine routes of radionuclide transfer to man, the ''critical pathway'' approach is often applied. Alternatively, where information on ambient radionuclide levels and distributions is sought, the approach of selecting marine organisms as ''bioindicators'' of radioactivity is generally used. Whichever approach is applied, a great deal of knowledge is required about the physiology and ecology of the specific organism chosen. In addition, several criteria for qualifying as a bioindicator species are discussed; e.g., it must be a sedentary species which reflects the ambient radionuclide concentration at a given site, sufficiently long-lived to allow long-term temporal sampling, widely distributed to allow spatial comparisons, able to bioconcentrate the radionuclide to a relatively high degree, while showing a simple correlation between radionuclide content in its tissues with that in the surrounding waters. Useful hints on the appropriate species to use and the best way to collect and prepare organisms for radioanalysis are also given. It is concluded that benthic algae and bivalve molluscs generally offer the greatest potential for use as a ''bioindicator'' species in radionuclide biomonitoring programmes. Where knowledge on contribution to radiological dose is required, specific edible marine species should be the organisms of choice; however, both purposes can be served when the edible species chosen through critical pathway analysis is also an excellent bioaccumulator of the radionuclide of interest. (author)

  8. DNA Damage in Preserved Specimens and Tissue Samples: A Molecular Assessment

    OpenAIRE

    Cantin Elizabeth; Hanken James; Blackburn David C; Hajibabaei Mehrdad; Zimmermann Juergen; Posfai Janos; Evans Thomas C

    2008-01-01

    Abstract The extraction of genetic information from preserved tissue samples or museum specimens is a fundamental component of many fields of research, including the Barcode of Life initiative, forensic investigations, biological studies using scat sample analysis, and cancer research utilizing formaldehyde-fixed, paraffin-embedded tissue. Efforts to obtain genetic information from these sources are often hampered by an inability to amplify the desired DNA as a consequence of DNA damage. Prev...

  9. Irradiation of advanced health care products – Tissues and biologics

    International Nuclear Information System (INIS)

    Radiation sterilization of tissues and biologics has become more common in recent years. As a result it has become critical to understand how to adapt the typical test methods and validation approaches to a tissue or biological product scenario. Also data evaluation sometimes becomes more critical than with traditional medical devices because for many tissues and biologics a low radiation dose is required. It is the intent behind this paper to provide information on adapting bioburden tests used in radiation validations such that the data can be most effectively used on tissues and biologics. In addition challenges with data evaluation are discussed, particularly the use of less-than values for bioburden results in radiation validation studies. - Highlights: • MPN testing can provide good bioburden results for tissue/biologics. • There are appropriate situations to pool products for bioburden testing. • Options on dealing with bioburden results of “less-than” the limit of detection. • Underestimation and overestimation of bioburden and the dangers of both

  10. Relationships of the internodal distance of biological tissue with its sound velocity and attenuation at high frequency in doublet mechanics

    Institute of Scientific and Technical Information of China (English)

    程凯旋; 吴融融; 刘晓宙; 刘杰惠; 龚秀芬; 吴君汝

    2015-01-01

    In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency (>10 MHz) ultrasound. In this paper, we take human breast biopsies as an example to study the influence of the internodal distance, a microscope parameter in biological tissue in doublet mechanics, on the sound velocity and attenuation by numerical simulation. The internodal distance causes the sound velocity and attenuation in biological tissue to change with the increase of frequency. The magnitude of such a change in pathological tissue is distinctly different from that in normal tissue, which can be used to differentiate pathological tissue from normal tissue and can depict the diseased tissue structure by obtaining the sound and attenuation distribution in the sample at high ultrasound frequency. A comparison of sensitivity between the doublet model and conventional continuum model is made, indicating that this is a new method of characterizing ultrasound tissue and diagnosing diseases.

  11. Leaf tissue sampling and DNA extraction protocols.

    Science.gov (United States)

    Semagn, Kassa

    2014-01-01

    Taxonomists must be familiar with a number of issues in collecting and transporting samples using freezing methods (liquid nitrogen and dry ice), desiccants (silica gel and blotter paper), and preservatives (CTAB, ethanol, and isopropanol), with each method having its own merits and limitations. For most molecular studies, a reasonably good quality and quantity of DNA is required, which can only be obtained using standard DNA extraction protocols. There are many DNA extraction protocols that vary from simple and quick ones that yield low-quality DNA but good enough for routine analyses to the laborious and time-consuming standard methods that usually produce high quality and quantities of DNA. The protocol to be chosen will depend on the quality and quantity of DNA needed, the nature of samples, and the presence of natural substances that may interfere with the extraction and subsequent analysis. The protocol described in this chapter has been tested for extracting DNA from eight species and provided very good quality and quantity of DNA for different applications, including those genotyping methods that use restriction enzymes. PMID:24415469

  12. Dissipative particle dynamics simulations for biological tissues: rheology and competition

    International Nuclear Information System (INIS)

    In this work, we model biological tissues using a simple, mechanistic simulation based on dissipative particle dynamics. We investigate the continuum behavior of the simulated tissue and determine its dependence on the properties of the individual cell. Cells in our simulation adhere to each other, expand in volume, divide after reaching a specific size checkpoint and undergo apoptosis at a constant rate, leading to a steady-state homeostatic pressure in the tissue. We measure the dependence of the homeostatic state on the microscopic parameters of our model and show that homeostatic pressure, rather than the unconfined rate of cell division, determines the outcome of tissue competitions. Simulated cell aggregates are cohesive and round up due to the effect of tissue surface tension, which we measure for different tissues. Furthermore, mixtures of different cells unmix according to their adhesive properties. Using a variety of shear and creep simulations, we study tissue rheology by measuring yield stresses, shear viscosities, complex viscosities as well as the loss tangents as a function of model parameters. We find that cell division and apoptosis lead to a vanishing yield stress and fluid-like tissues. The effects of different adhesion strengths and levels of noise on the rheology of the tissue are also measured. In addition, we find that the level of cell division and apoptosis drives the diffusion of cells in the tissue. Finally, we present a method for measuring the compressibility of the tissue and its response to external stress via cell division and apoptosis

  13. Plasma tissue inhibitor of metalloproteinases-1 as a biological marker?

    DEFF Research Database (Denmark)

    Lomholt, Anne F.; Frederiksen, Camilla B.; Christensen, Ib J.;

    2007-01-01

    Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during ...... collection and storage. The aim of this study was to evaluate the influence of platelet TIMP-1 contamination on plasma TIMP-1 levels in healthy volunteers.......Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during...

  14. Application of Biological Tissue Grafts for Burns in Zambia

    International Nuclear Information System (INIS)

    The author discusses the advances made in the use of Biological Tissue Grafts for the treatment of burns.The paper outlines research activities and clinical trials done in the use of gamma radiation sterilised Amnion membranes and Pig skin grafts in the zambian Heath Care System for treatment of Burns.Ethical issues of Tissue Banking are also discussed in relation to religious and cultural beliefs and Good Manufacturing Practices

  15. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    OpenAIRE

    Ye-Rang Yun; Jong Eun Won; Eunyi Jeon; Sujin Lee; Wonmo Kang; Hyejin Jo; Jun-Hyeog Jang; Ueon Sang Shin; Hae-Won Kim

    2010-01-01

    Fibroblast growth factors (FGFs) that signal through FGF receptors (FGFRs) regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain opt...

  16. Simple Empirical Model for Identifying Rheological Properties of Soft Biological Tissues

    CERN Document Server

    Kobayashi, Yo; Miyashita, Tomoyuki; Fujie, Masakatsu G

    2015-01-01

    Understanding the rheological properties of soft biological tissue is a key issue for mechanical systems used in the healthcare field. We propose a simple empirical model using Fractional Dynamics and Exponential Nonlinearity (FDEN) to identify the rheological properties of soft biological tissue. The model is derived from detailed material measurements using samples isolated from porcine liver. We conducted dynamic viscoelastic and creep tests on liver samples using a rheometer. The experimental results indicated that biological tissue has specific properties: i) power law increases in storage elastic modulus and loss elastic modulus with the same slope; ii) power law gain decrease and constant phase delay in the frequency domain over two decades; iii) log-log scale linearity between time and strain relationships under constant force; and iv) linear and log scale linearity between strain and stress relationships. Our simple FDEN model uses only three dependent parameters and represents the specific propertie...

  17. Biological Sample Ambient Preservation (BioSAP) Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for alternative methods for ambient preservation of human biological samples collected during extended spaceflight and planetary operations,...

  18. Detection of heavy metals in biological samples through anodic stripping voltammetry

    OpenAIRE

    Buzea, Vlad; Florescu, Monica; Badea, Mihaela

    2012-01-01

    The toxicological aspects due to the presence of heavy metals in biological samples impose to have accurate and rapid methods for their detection. This paper is aimed to review approaches to anodic stripping voltammetry (ASV) determination of several heavy metals (lead, cadmium, copper, mercury, zinc) in biological matrices (blood, urine, saliva, tissue sample). Analytical performances (LOD, data linearity range, sensitivity) of the reviewed methods were presented for several electrochemical ...

  19. A density-independent glass transition in biological tissues

    CERN Document Server

    Bi, Dapeng; Schwarz, J M; Manning, M Lisa

    2014-01-01

    Cells must move through tissues in many important biological processes, including embryonic development, cancer metastasis, and wound healing. In these tissues, a cell's motion is often strongly constrained by its neighbors, leading to glassy dynamics. Recent work has demonstrated the existence of a non-equilibrium glass transition in self-propelled particle models for active matter, where the transition is driven by changes in density. However, this may not explain liquid-to-solid transitions in confluent tissues, where there are no gaps between cells and the packing fraction remains fixed and equal to unity. Here we demonstrate the existence of a different type of glass transition that occurs in the well-studied vertex model for confluent tissue monolayers. In this model, the onset of rigidity is governed by changes to single-cell properties such as cell-cell adhesion, cortical tension, and volume compressibility, providing an explanation for a liquid-to-solid transitions in confluent tissues.

  20. Developmental biology of Cystoisospora (Apicomplexa: Sarcocystidae) monozoic tissue cysts.

    Science.gov (United States)

    Lindsay, David S; Houk, Alice E; Mitchell, Sheila M; Dubey, J P

    2014-08-01

    Tissue cyst stages are an intriguing aspect of the developmental cycle and transmission of species of Sarcocystidae. Tissue-cyst stages of Toxoplasma, Hammondia, Neospora, Besnoitia, and Sarcocystis contain many infectious stages (bradyzoites). The tissue cyst stage of Cystoisospora (syn. Isospora) possesses only 1 infectious stage (zoite), and is therefore referred to as a monozoic tissue cyst (MZTC). No tissue cyst stages are presently known for members of Nephroisospora. The present report examines the developmental biology of MZTC stages of Cystoisospora Frenkel, 1977 . These parasites cause intestinal coccidiosis in cats, dogs, pigs, and humans. The MZTC stages of C. belli are believed to be associated with reoccurrence of clinical disease in humans. PMID:24841928

  1. A theoretical framework for jamming in confluent biological tissues

    Science.gov (United States)

    Manning, M. Lisa

    2015-03-01

    For important biological functions such as wound healing, embryonic development, and cancer tumorogenesis, cells must initially rearrange and move over relatively large distances, like a liquid. Subsequently, these same tissues must undergo buckling and support shear stresses, like a solid. Our work suggests that biological tissues can accommodate these disparate requirements because the tissues are close to glass or jamming transition. While recent self propelled particle models generically predict a glass/jamming transition that is driven by packing density φ and happens at some critical φc less than unity, many biological tissues that are confluent with no gaps between cells appear to undergo a jamming transition at a constant density (φ = 1). I will discuss a new theoretical framework for predicting energy barriers and rates of cell migration in 2D tissue monolayers, and show that this model predicts a novel type of rigidity transition, which takes place at constant φ = 1 and depends only on single cell properties such as cell-cell adhesion, cortical tension and cell elasticity. This model additionally predicts that an experimentally observable parameter, the ratio between a cell's perimeter and the square root of its cross-sectional area, attains a specific, critical value at the jamming transition. We show that this prediction is precisely realized in primary epithelial cultures from human patients, with implications for asthma pathology.

  2. Uranium-233 analysis of biological samples

    International Nuclear Information System (INIS)

    Two liquid scintillation techniques were compared for 233U analysis: a two-phase extraction system (D2EHPA) developed by Keough and Powers, 1970, for Pu analysis; and a single-phase emulsion system (TT21) that holds the total sample in suspension with the scintillator. The first system (D2EHPA) was superior in reducing background (two- to threefold) and in accommodating a larger sample volume (fivefold). Samples containing > 50 mg/ml of slats were not extracted quantitatively by D2EHPA

  3. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    Energy Technology Data Exchange (ETDEWEB)

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  4. Micro-radiography of biological samples with medical contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J., E-mail: jiri.dammer@lf1.cuni.cz [Charles University in Prague, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2 (Czech Republic); Hospital Na Bulovce, Department of Radiological Physics, Budinova 2, 180 81 Prague 8 (Czech Republic); Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Weyda, F. [Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice (Czech Republic); Benes, J. [Charles University in Prague, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2 (Czech Republic); Sopko, V. [Hospital Na Bulovce, Department of Radiological Physics, Budinova 2, 180 81 Prague 8 (Czech Republic); Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Gelbic, I. [Biology Centre, AS CR, Institute of Entomology, Department of Biochemistry and Physiology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic)

    2013-12-01

    Micro-radiography is an imaging technique that uses X-rays to study the internal structures of objects. This fast and easy imaging tool is based on differential X-ray attenuation by various tissues and structures within biological samples. The experimental setup described is based on the semiconductor pixel X-ray detector Medipix2 and X-ray micro-focus tube. Our micro-radiographic system has been recently used not only for the examination of internal structures of various arthropods and other biological objects but also for tracing some processes in selected model species (we used living larvae of mosquito Culex quinquefasciatus). Low concentrations of iodine, lanthanum or gold particles were used as a tracer (contrast agent). Such contrast agents increase the absorption of X-rays and allow a better visibility of internal structures of model organisms (especially the various cavities, pores, etc.). In addition, the movement of tracers in selected timing experiments demonstrates some physiological functions of digestive and excretory system.

  5. Micro-radiography of biological samples with medical contrast agents

    International Nuclear Information System (INIS)

    Micro-radiography is an imaging technique that uses X-rays to study the internal structures of objects. This fast and easy imaging tool is based on differential X-ray attenuation by various tissues and structures within biological samples. The experimental setup described is based on the semiconductor pixel X-ray detector Medipix2 and X-ray micro-focus tube. Our micro-radiographic system has been recently used not only for the examination of internal structures of various arthropods and other biological objects but also for tracing some processes in selected model species (we used living larvae of mosquito Culex quinquefasciatus). Low concentrations of iodine, lanthanum or gold particles were used as a tracer (contrast agent). Such contrast agents increase the absorption of X-rays and allow a better visibility of internal structures of model organisms (especially the various cavities, pores, etc.). In addition, the movement of tracers in selected timing experiments demonstrates some physiological functions of digestive and excretory system

  6. Interstitial growth and remodeling of biological tissues: tissue composition as state variables.

    Science.gov (United States)

    Myers, Kristin; Ateshian, Gerard A

    2014-01-01

    Growth and remodeling of biological tissues involves mass exchanges between soluble building blocks in the tissue's interstitial fluid and the various constituents of cells and the extracellular matrix. As the content of these various constituents evolves with growth, associated material properties, such as the elastic modulus of the extracellular matrix, may similarly evolve. Therefore, growth theories may be formulated by accounting for the evolution of tissue composition over time in response to various biological and mechanical triggers. This approach has been the foundation of classical bone remodeling theories that successfully describe Wolff's law by establishing a dependence between Young's modulus and bone apparent density and by formulating a constitutive relation between bone mass supply and the state of strain. The goal of this study is to demonstrate that adding tissue composition as state variables in the constitutive relations governing the stress-strain response and the mass supply represents a very general and straightforward method to model interstitial growth and remodeling in a wide variety of biological tissues. The foundation for this approach is rooted in the framework of mixture theory, which models the tissue as a mixture of multiple solid and fluid constituents. A further generalization is to allow each solid constituent in a constrained solid mixture to have its own reference (stress-free) configuration. Several illustrations are provided, ranging from bone remodeling to cartilage tissue engineering and cervical remodeling during pregnancy. PMID:23562499

  7. Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy

    Science.gov (United States)

    Musio, Roberta; Sciacovelli, Oronzo

    2001-12-01

    The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

  8. PIXE - Analysis for environmental and biological samples

    International Nuclear Information System (INIS)

    The usefulness and accuracy of PIXE as an analytical tool in the study of trace elements in environmental samples of the Brazilian Cerrado are discussed. The report lists actual and forthcoming publications resulting from the study. The mechanism of exchange of elements in solution in water to aerosols has been investigated. For details of the procedure the reader is referred to an earlier report

  9. A density-independent rigidity transition in biological tissues

    Science.gov (United States)

    Bi, Dapeng; Lopez, J. H.; Schwarz, J. M.; Manning, M. Lisa

    2015-12-01

    Cell migration is important in many biological processes, including embryonic development, cancer metastasis and wound healing. In these tissues, a cell’s motion is often strongly constrained by its neighbours, leading to glassy dynamics. Although self-propelled particle models exhibit a density-driven glass transition, this does not explain liquid-to-solid transitions in confluent tissues, where there are no gaps between cells and therefore the density is constant. Here we demonstrate the existence of a new type of rigidity transition that occurs in the well-studied vertex model for confluent tissue monolayers at constant density. We find that the onset of rigidity is governed by a model parameter that encodes single-cell properties such as cell-cell adhesion and cortical tension, providing an explanation for liquid-to-solid transitions in confluent tissues and making testable predictions about how these transitions differ from those in particulate matter.

  10. Motility-driven glass and jamming transitions in biological tissues

    CERN Document Server

    Bi, Dapeng; Marchetti, M Cristina; Manning, M Lisa

    2015-01-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi (SPV) model that simultaneously captures polarized cell motility and multi-body cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solid-like state to a fluid-like state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrat...

  11. Microradiagraphy of biological samples with Timepix

    Czech Academy of Sciences Publication Activity Database

    Dammer, J.; Weyda, František; Beneš, J.; Sopko, V.; Jakůbek, J.; Vondráček, V.

    2011-01-01

    Roč. 6, C11005 (2011), s. 1-6. ISSN 1748-0221. [International workshop on radiation imaging detectors /13./. Zurich, 03.07.2011-07.07.2011] R&D Projects: GA MŠk 2B06005 Grant ostatní: GA MŠk(CZ) LC06041; GA AV ČR(CZ) IAA600550614; GA MŠk(CZ) 2B06007; Research Program(CZ) 6840770029; Research Program(CZ) 6840770040; GA MŠk-spolupráce s CERN(CZ) 1P04LA211 Institutional research plan: CEZ:AV0Z50070508 Keywords : X-ray detectors * X-ray radiography and digital radiography (DR) * pixelated detectors and associated VLSI electronics Subject RIV: EA - Cell Biology Impact factor: 1.869, year: 2011 http://iopscience.iop.org/1748-0221/6/11/C11005/pdf/1748-0221_6_11_C11005.pdf

  12. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples.

    Science.gov (United States)

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-07-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345

  13. A Novel Method for Single Sample Multi-Axial Nanoindentation of Hydrated Heterogeneous Tissues Based on Testing Great White Shark Jaws

    OpenAIRE

    Ferrara, Toni L.; Philip Boughton; Eve Slavich; Stephen Wroe

    2013-01-01

    Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard) and ...

  14. Preparation of tissue samples for X-ray fluorescence microscopy

    Science.gov (United States)

    Chwiej, Joanna; Szczerbowska-Boruchowska, Magdalena; Lankosz, Marek; Wojcik, Slawomir; Falkenberg, Gerald; Stegowski, Zdzislaw; Setkowicz, Zuzanna

    2005-12-01

    As is well-known, trace elements, especially metals, play an important role in the pathogenesis of many disorders. The topographic and quantitative elemental analysis of pathologically changed tissues may shed some new light on processes leading to the degeneration of cells in the case of selected diseases. An ideal and powerful tool for such purpose is the Synchrotron Microbeam X-ray Fluorescence technique. It enables the carrying out of investigations of the elemental composition of tissues even at the single cell level. The tissue samples for histopathological investigations are routinely fixed and embedded in paraffin. The authors try to verify the usefulness of such prepared tissue sections for elemental analysis with the use of X-ray fluorescence microscopy. Studies were performed on rat brain samples. Changes in elemental composition caused by fixation in formalin or paraformaldehyde and embedding in paraffin were examined. Measurements were carried out at the bending magnet beamline L of the Hamburger Synchrotronstrahlungslabor HASYLAB in Hamburg. The decrease in mass per unit area of K, Br and the increase in P, S, Fe, Cu and Zn in the tissue were observed as a result of the fixation. For the samples embedded in paraffin, a lower level of most elements was observed. Additionally, for these samples, changes in the composition of some elements were not uniform for different analyzed areas of rat brain.

  15. Workflow for large-scale analysis of melanoma tissue samples

    Directory of Open Access Journals (Sweden)

    Maria E. Yakovleva

    2015-09-01

    Full Text Available The aim of the present study was to create an optimal workflow for analysing a large cohort of malignant melanoma tissue samples. Samples were lysed with urea and enzymatically digested with trypsin or trypsin/Lys C. Buffer exchange or dilution was used to reduce urea concentration prior to digestion. The tissue digests were analysed directly or following strong cation exchange (SCX fractionation by nano LC–MS/MS. The approach which resulted in the largest number of protein IDs involved a buffer exchange step before enzymatic digestion with trypsin and chromatographic separation in 120 min gradient followed by SCX–RP separation of peptides.

  16. The interaction between Terahertz radiation and biological tissue

    International Nuclear Information System (INIS)

    Terahertz (THz) radiation occupies that region of the electromagnetic (EM) spectrum between approximately 0.3 and 20 THz. Recent advances in methods of producing THz radiation have stimulated interest in studying the interaction between radiation and biological molecules and tissue. Given that the photon energies associated with this region of the spectrum are 2.0x10-22 to 1.3x10-20 J, an analysis of the interactions requires an understanding of the permittivity and conductivity of the medium (which describe the bulk motions of the molecules) and the possible transitions between the molecular energy levels. This paper reviews current understanding of the interactions between THz radiation and biological molecules, cells and tissues. At frequencies below approximately 6 THz, the interaction may be understood as a classical EM wave interaction (using the parameters of permittivity and conductivity), whereas at higher frequencies, transitions between different molecular vibrational and rotational energy levels become increasingly important and are more readily understood using a quantum-mechanical framework. The latter is of particular interest in using THz to probe transitions between different vibrational modes of deoxyribonucleic acid. Much additional experimental work is required in order to fully understand the interactions between THz radiation and biological molecules and tissue. (author)

  17. TissueCypher™: A systems biology approach to anatomic pathology

    Directory of Open Access Journals (Sweden)

    Jeffrey W Prichard

    2015-01-01

    Full Text Available Background: Current histologic methods for diagnosis are limited by intra- and inter-observer variability. Immunohistochemistry (IHC methods are frequently used to assess biomarkers to aid diagnoses, however, IHC staining is variable and nonlinear and the manual interpretation is subjective. Furthermore, the biomarkers assessed clinically are typically biomarkers of epithelial cell processes. Tumors and premalignant tissues are not composed only of epithelial cells but are interacting systems of multiple cell types, including various stromal cell types that are involved in cancer development. The complex network of the tissue system highlights the need for a systems biology approach to anatomic pathology, in which quantification of system processes is combined with informatics tools to produce actionable scores to aid clinical decision-making. Aims: Here, we describe a quantitative, multiplexed biomarker imaging approach termed TissueCypher™ that applies systems biology to anatomic pathology. Applications of TissueCypher™ in understanding the tissue system of Barrett's esophagus (BE and the potential use as an adjunctive tool in the diagnosis of BE are described. Patients and Methods: The TissueCypher™ Image Analysis Platform was used to assess 14 epithelial and stromal biomarkers with known diagnostic significance in BE in a set of BE biopsies with nondysplastic BE with reactive atypia (RA, n = 22 and Barrett's with high-grade dysplasia (HGD, n = 17. Biomarker and morphology features were extracted and evaluated in the confirmed BE HGD cases versus the nondysplastic BE cases with RA. Results: Multiple image analysis features derived from epithelial and stromal biomarkers, including immune biomarkers and morphology, showed significant differences between HGD and RA. Conclusions: The assessment of epithelial cell abnormalities combined with an assessment of cellular changes in the lamina propria may serve as an adjunct to conventional

  18. Manipulation of biological samples using micro and nano techniques

    DEFF Research Database (Denmark)

    Castillo, Jaime; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    The constant interest in handling, integrating and understanding biological systems of interest for the biomedical field, the pharmaceutical industry and the biomaterial researchers demand the use of techniques that allow the manipulation of biological samples causing minimal or no damage to thei...

  19. Micro and Nano Techniques for the Handling of Biological Samples

    DEFF Research Database (Denmark)

    Micro and Nano Techniques for the Handling of Biological Samples reviews the different techniques available to manipulate and integrate biological materials in a controlled manner, either by sliding them along a surface (2-D manipulation), or by gripping and moving them to a new position (3-D...

  20. Imaging of the interaction of low frequency electric fields with biological tissues by optical coherence tomography

    Science.gov (United States)

    Peña, Adrian F.; Devine, Jack; Doronin, Alexander; Meglinski, Igor

    2014-03-01

    We report the use of conventional Optical Coherence Tomography (OCT) for visualization of propagation of low frequency electric field in soft biological tissues ex vivo. To increase the overall quality of the experimental images an adaptive Wiener filtering technique has been employed. Fourier domain correlation has been subsequently applied to enhance spatial resolution of images of biological tissues influenced by low frequency electric field. Image processing has been performed on Graphics Processing Units (GPUs) utilizing Compute Unified Device Architecture (CUDA) framework in the frequencydomain. The results show that variation in voltage and frequency of the applied electric field relates exponentially to the magnitude of its influence on biological tissue. The magnitude of influence is about twice more for fresh tissue samples in comparison to non-fresh ones. The obtained results suggest that OCT can be used for observation and quantitative evaluation of the electro-kinetic changes in biological tissues under different physiological conditions, functional electrical stimulation, and potentially can be used non-invasively for food quality control.

  1. Efficient Sample Preparation from Complex Biological Samples Using a Sliding Lid for Immobilized Droplet Extractions

    OpenAIRE

    Casavant, Benjamin P.; Guckenberger, David J.; Beebe, David J.; Berry, Scott M

    2014-01-01

    Sample preparation is a major bottleneck in many biological processes. Paramagnetic particles (PMPs) are a ubiquitous method for isolating analytes of interest from biological samples and are used for their ability to thoroughly sample a solution and be easily collected with a magnet. There are three main methods by which PMPs are used for sample preparation: (1) removal of fluid from the analyte-bound PMPs, (2) removal of analyte-bound PMPs from the solution, and (3) removal of the substrate...

  2. Motility-Driven Glass and Jamming Transitions in Biological Tissues

    Science.gov (United States)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2016-04-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solidlike state to a fluidlike state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum soft glassy rheology model precisely captures this transition in the limit of small persistence times and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with epithelial-to-mesenchymal transition in these tissues.

  3. Development of an algorithm for quantifying extremity biological tissue

    International Nuclear Information System (INIS)

    The computerized radiology (CR) has become the most widely used device for image acquisition and production, since its introduction in the 80s. The detection and early diagnosis, obtained via CR, are important for the successful treatment of diseases such as arthritis, metabolic bone diseases, tumors, infections and fractures. However, the standards used for optimization of these images are based on international protocols. Therefore, it is necessary to compose radiographic techniques for CR system that provides a secure medical diagnosis, with doses as low as reasonably achievable. To this end, the aim of this work is to develop a quantifier algorithm of tissue, allowing the construction of a homogeneous end used phantom to compose such techniques. It was developed a database of computed tomography images of hand and wrist of adult patients. Using the Matlab ® software, was developed a computational algorithm able to quantify the average thickness of soft tissue and bones present in the anatomical region under study, as well as the corresponding thickness in simulators materials (aluminium and lucite). This was possible through the application of mask and Gaussian removal technique of histograms. As a result, was obtained an average thickness of soft tissue of 18,97 mm and bone tissue of 6,15 mm, and their equivalents in materials simulators of 23,87 mm of acrylic and 1,07mm of aluminum. The results obtained agreed with the medium thickness of biological tissues of a patient's hand pattern, enabling the construction of an homogeneous phantom

  4. Evaluation of sample holders designed for long-lasting X-ray micro-tomographic scans of ex-vivo soft tissue samples

    Science.gov (United States)

    Dudak, J.; Zemlicka, J.; Krejci, F.; Karch, J.; Patzelt, M.; Zach, P.; Sykora, V.; Mrzilkova, J.

    2016-03-01

    X-ray microradiography and microtomography are imaging techniques with increasing applicability in the field of biomedical and preclinical research. Application of hybrid pixel detector Timepix enables to obtain very high contrast of low attenuating materials such as soft biological tissue. However X-ray imaging of ex-vivo soft tissue samples is a difficult task due to its structural instability. Ex-vivo biological tissue is prone to fast drying-out which is connected with undesired changes of sample size and shape producing later on artefacts within the tomographic reconstruction. In this work we present the optimization of our Timepix equipped micro-CT system aiming to maintain soft tissue sample in stable condition. Thanks to the suggested approach higher contrast of tomographic reconstructions can be achieved while also large samples that require detector scanning can be easily measured.

  5. Evaluation of sample holders designed for long-lasting X-ray micro-tomographic scans of ex-vivo soft tissue samples

    International Nuclear Information System (INIS)

    X-ray microradiography and microtomography are imaging techniques with increasing applicability in the field of biomedical and preclinical research. Application of hybrid pixel detector Timepix enables to obtain very high contrast of low attenuating materials such as soft biological tissue. However X-ray imaging of ex-vivo soft tissue samples is a difficult task due to its structural instability. Ex-vivo biological tissue is prone to fast drying-out which is connected with undesired changes of sample size and shape producing later on artefacts within the tomographic reconstruction. In this work we present the optimization of our Timepix equipped micro-CT system aiming to maintain soft tissue sample in stable condition. Thanks to the suggested approach higher contrast of tomographic reconstructions can be achieved while also large samples that require detector scanning can be easily measured

  6. Quantitative mapping of collagen fiber alignment in thick tissue samples using transmission polarized-light microscopy.

    Science.gov (United States)

    Yakovlev, Dmitry D; Shvachkina, Marina E; Sherman, Maria M; Spivak, Andrey V; Pravdin, Alexander B; Yakovlev, Dmitry A

    2016-07-01

    Immersion optical clearing makes it possible to use transmission polarized-light microscopy for characterization of thick (200 to 2000  μm) layers of biological tissues. We discuss polarization properties of thick samples in the context of the problem of characterization of collagen fiber alignment in connective tissues such as sclera and dermis. Optical chirality caused by azimuthal variations of the macroscopic (effective) optic axis of the medium across the sample thickness should be considered in polarization mapping of thick samples of these tissues. We experimentally evaluate to what extent the optical chirality affects the measurement results in typical situations and show under what conditions it can be easily taken into account and does not hinder, but rather helps, in characterization of collagen fiber alignment. PMID:27027930

  7. Laser ablation sample transfer for localized LC-MS/MS proteomic analysis of tissue.

    Science.gov (United States)

    Donnarumma, Fabrizio; Murray, Kermit K

    2016-04-01

    We have developed a mid-infrared laser ablation sampling technique for nano-flow liquid chromatography coupled with tandem mass spectrometry proteomic profiling of discrete regions from biological samples. Laser ablation performed in transmission geometry was used to transfer material from 50-µm thick tissue sections mounted on a glass microscope slide to a capturing solvent. Captured samples were processed using filter-aided sample preparation and enzymatically digested to produce tryptic peptides for data-dependent analysis with an ion trap mass spectrometer. Comparison with ultraviolet laser capture microdissection from neighboring regions on the same tissue section revealed that infrared laser ablation transfer has higher reproducibility between samples from different consecutive sections. Both techniques allowed for proteomics investigation of different organelles without the addition of surfactants. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27041656

  8. High stability of microRNAs in tissue samples of compromised quality.

    Science.gov (United States)

    Peiró-Chova, Lorena; Peña-Chilet, María; López-Guerrero, José Antonio; García-Giménez, José Luis; Alonso-Yuste, Elisa; Burgues, Octavio; Lluch, Ana; Ferrer-Lozano, Jaime; Ribas, Gloria

    2013-12-01

    Degradation of tissue samples limits performing RNA-based molecular studies, but little is known about the potential usefulness of samples of compromised quality for studies focused on miRNAs. In this work we analyze a series of cryopreserved tissue samples (n = 14), frozen samples that underwent a severe thawing process (n = 10), and their paired formalin-fixed paraffin-embedded (FFPE) tissue samples (n = 24) from patients with breast cancer obtained during primary surgical resection and collected in 2011. Quality and integrity analyses of the total and small fraction of RNA were carried out. Recovery of specific RNA molecules (miRNAs hsa-miR-21, hsa-miR-125b, and hsa-miR-191; snoRNA RNU6B; and mRNAs GAPDH and HPRT1) was also analyzed by quantitative RT-PCR. Our results suggest that visualisation of the small RNA electrophoretic profiles obtained using the Agilent 2100 bioanalyzer makes it possible to differentiate between the three groups of samples (optimally frozen, thawed, and FFPE). We demonstrate that specific miRNA molecules can be similarly recovered from different tissue sample sources, which supports their high degree of stability. We conclude that miRNAs are robustly detected irrespective of the quality of the tissue sample. In this regard, a word of caution should be raised before degraded samples are discarded: although prior quality assessment of the biological material to be analyzed is recommended, our work demonstrates that degraded tissue samples are also suitable for miRNA studies. PMID:24197449

  9. Plastinated tissue samples as three-dimensional models for optical instrument characterization.

    Science.gov (United States)

    Marks, Daniel L; Chaney, Eric J; Boppart, Stephen A

    2008-09-29

    Histology of biological specimens is largely limited to investigating two-dimensional structure because of the sectioning required to produce optically thin samples for conventional microscopy. With the advent of three-dimensional optical imaging technologies such as optical coherence tomography (OCT), diffuse optical tomography (DOT), and multiphoton microscopy (MPM), methods of tissue preparation that minimally disrupt three-dimensional structure are needed. We propose plastination as a means of transforming tissues into three-dimensional models suitable for optical instrument characterization. Tissues are plastinated by infusing them with transparent polymers, after which they can be safely handled, unlike fresh or fixed tissues. Such models are useful for investigating three-dimensional structure, testing and comparing the performance of optical instruments, and potentially investigating tissue properties not normally observed after the three-dimensional scattering properties of a biological samples are lost. We detail our plastination procedures and show examples of imaging several plastinated tissues from a pre-clinical rat model using optical coherence tomography. PMID:18825267

  10. Hydration Sensing in Biological Tissues with the Terahertz Band

    Science.gov (United States)

    Bennett, David Bart

    This work evaluates the utility of terahertz (THz) sensing technologies to applications in medicine and then develops, characterizes, and demonstrates applications in skin and cornea sensing ex vivo and in vivo. Hie application of THz sensing to biological tissues is motivated by recent research which has confirmed THz retlectometry's unique ability to detect small changes in the water content of phantom materials, with the achievement of sensitivities on the order of one part water in a thousand by mass reported in the literature. Non-invasive methods to accurately measure and map tissue hydration are needed for a variety of medical applications. This work will examine diagnostic applications for conditions of the skin and cornea. These will include diagnostic imaging of thermal and chemical burns in the skin as well as structural and inflammation-causing conditions in the cornea including Fuchs Dystrophy, Keratoconus, and corneal graft rejection. Medical sensing using electromagnetic (EM) radiation with a focus on the specific benefits and considerations of the THz region will be discussed, followed by the presentation of THz-matter phenomenology and simulation tools which will allow the interaction between THz waves and biological tissues to be better understood. THz sensing will be demonstrated in experiments on skin and corneal tissues. Fast-imaging capability will be used to obtain time-resolved images of hydration in biological tissues including ex vivo skin affected by chemical burns. Next the systems and techniques needed for the realization of corneal imaging will be described. These will be evaluated by examining first phantom materials followed by ex vivo porcine corneas. The design trade-offs that govern the design of THz hydration sensing systems for the cornea will be examined from the vantage point of these empirical measurements. The first examination of corneal tissue hydration in vivo will be reported. The strengths and challenges of this

  11. On multielement analysis of biological samples with the aid of neutron activation

    International Nuclear Information System (INIS)

    A main objective of this study was elucidation of problems of sampling and sample preparation methods for multielement analysis of environmental and biological specimens. Another was assessment of the potentials of multielement neutron activation analysis (NAA) in environmental and biological research. In an attempt to explain the great differences in the elemental concentration ranges between biopsy and autopsy samples as reported in the literature, it was shown that post mortem changes induce great variations in the apparent elemental composition of autopsy specimens resulting in serious systematic errors. Applications of NAA to analysis of tissues of experimental animals, human tissues in health and disease, and environmental samples are illustrated with several examples. The suitability of NAA for routine analysis of elements such as Cr, Mo and Se, which are difficult to determine by other methods has been specially discussed. (author)

  12. Microbiological studies of tissue bank samples for radiation sterilization

    International Nuclear Information System (INIS)

    Tissue bank samples such as femoral head, amnion membrane and bone dust received for radiation sterilization when analyzed for pre-sterilization microbial count. One type of fungal strain and two types of bacterial strains were isolated. The bacterial strains resemble the characteristics of Staphylococcus aureus but surprisingly shows no growth on Pca even after 48 hrs. of incubation at 37degC but grows well on SCD agar. Thus these bacterial strains seem to be fastidious organisms having some special nutritional requirements and may be having some pathological significance in tissue processing. The fungal strain isolated was found to be Aspergillus spp. (author)

  13. Proteomic analysis of tissue samples in translational breast cancer research

    DEFF Research Database (Denmark)

    Gromov, Pavel; Moreira, José; Gromova, Irina

    2014-01-01

    In the last decade, many proteomic technologies have been applied, with varying success, to the study of tissue samples of breast carcinoma for protein expression profiling in order to discover protein biomarkers/signatures suitable for: characterization and subtyping of tumors; early diagnosis, ...... translation of basic discoveries into the daily breast cancer clinical practice. In particular, we address major issues in experimental design by reviewing the strengths and weaknesses of current proteomic strategies in the context of the analysis of human breast tissue specimens....

  14. Low Level Laser Therapy: laser radiation absorption in biological tissues

    Science.gov (United States)

    Di Giacomo, Paola; Orlando, Stefano; Dell'Ariccia, Marco; Brandimarte, Bruno

    2013-07-01

    In this paper we report the results of an experimental study in which we have measured the transmitted laser radiation through dead biological tissues of various animals (chicken, adult and young bovine, pig) in order to evaluate the maximum thickness through which the power density could still produce a reparative cellular effect. In our experiments we have utilized a pulsed laser IRL1 ISO model (based on an infrared diode GaAs, λ=904 nm) produced by BIOMEDICA s.r.l. commonly used in Low Level Laser Therapy. Some of the laser characteristics have been accurately studied and reported in this paper. The transmission results suggest that even with tissue thicknesses of several centimeters the power density is still sufficient to produce a cell reparative effect.

  15. Confocal microscopy, a tool for biological dosimetry in tissues

    International Nuclear Information System (INIS)

    Because standard histological methods and related observation are very time consuming, only a few studies have concerned biological dosimetry in tissues. This experimental approach is however the only one that could characterize a heterogeneous irradiation such as that induced after internal contamination with α and/or β emitters. The aim advantage of CM is to observe thin optical sections (50μm) which allows observation of many cells and to score events even those occurring at a low frequency if an appropriate staining has been performed. Two rat tissues have been studies, cerebellum during its histogenesis which was irradiated from bone after 90Sr contamination, and lungs from adults after radon daughter inhalation. In conclusion, our results demonstrate that CM might be an appropriate method to characterize the heterogeneous distribution of doses after internal contamination. (authors)

  16. Ionizing radiation for sterilization of medical products and biological tissues

    International Nuclear Information System (INIS)

    The article reviews the deliberations of the International Symposium on Ionizing Radiation for Sterilization of Medical Products and Biological Tissues which was held during 9-13 December 1974 under the auspices of the IAEA at the Bhabha Atomic Research Centre, Bombay. 42 papers were presented in the following broad subject areas: (1) Microbiological Control aspects of radiation sterilization, (2) Dosimetry aspects of radiation sterilization practices, (3) Effects of sterilizing radiation dose on the constituents of medical products, (4) Application of radiation sterilization of medical products of biological origin, (5) Technological aspects of radiation sterilization facilities, (6) Radiation sterilization of pharmaceutical substances, (7) Reports on current status of radiation sterilization of medical products in IAEA member states and (8) Working group discussion on the revision of the IAEA recommended code of practice for radiation sterilization of medical products. (S.K.K.)

  17. Quantitative fluorescence microscopy of macromolecules in gel and biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Tatarkova, Svetlana A [Department of Physics, University of Durham, Durham DH1 3LE (United Kingdom); School of Pharmacy, University of Manchester, Manchester M13 9PL (United Kingdom); Verma, Anita Kamra [School of Pharmacy, University of Manchester, Manchester M13 9PL (United Kingdom); Department of Zoology, K M College, University of Delhi, Delhi-110 007 (India); Berk, David A [School of Pharmacy, University of Manchester, Manchester M13 9PL (United Kingdom); Lloyd, Christopher J [School of Pharmacy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2005-12-07

    Quantitative fluorescence microscopy provides valuable insight into drug delivery and pharmacokinetics. The technique is based on analysis of statistical fluctuations in fluorescence that arises as fluorophores pass through a small volume illuminated by a focused laser beam, and has been applied to measure particle motion and binding interactions in solutions, on surfaces and inside the cells. We examined the use of fluorescence correlation spectroscopy combined with a microscope (FCSM) to assess the transport of fluorescent beads and macromolecules in aqueous solutions, gels and living biological tissue. Obstructed diffusion of fluorescent beads in gels of various densities was tested to get a sensible estimate of diffusion in the interstitial tissue matrix consistent with previous reports. Fluorescently labelled liposomes as an artificial drug or gene carrying vehicles were used for pharmacokinetic tests of drug delivery in living tissue. The results indicate that FCS is an accurate and valuable tool for measuring the physical properties of gene vectors in vitro and for characterizing interactions with tissue in vivo.

  18. Infrared light scattering in biological tissues and fluids

    Science.gov (United States)

    Thomas, Gordon A.; Koo, Tae-Woong; Dasari, Ramachandra R.; Feld, Michael S.

    2001-03-01

    We have studied the elastic and Raman scattering from whole blood, blood serum and related biological fluids and tissues. The motivation of this work is to determine the composition and elastic scattering properties with a non-invasive, optical method. An example of the possible applications is the determination of the glucose concentration and its variations in a way that would be clinically effective for patients with diabetes. We have imaged the elastically scattered light and determined the scattering parameters in order to assess appropriate geometries for efficient collection of the Raman scattering. Using the Raman apectra we have determined the concentration of glucose and the other analytes under laboratory conditions.

  19. Computational adaptive optics for broadband optical interferometric tomography of biological tissue

    Science.gov (United States)

    Boppart, Stephen A.

    2015-03-01

    High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.

  20. Plastinated tissue samples as three-dimensional models for optical instrument characterization

    OpenAIRE

    Marks, Daniel L.; Chaney, Eric J.; Boppart, Stephen A.

    2008-01-01

    Histology of biological specimens is largely limited to investigating two-dimensional structure because of the sectioning required to produce optically thin samples for conventional microscopy. With the advent of three-dimensional optical imaging technologies such as optical coherence tomography (OCT), diffuse optical tomography (DOT), and multiphoton microscopy (MPM), methods of tissue preparation that minimally disrupt three-dimensional structure are needed. We propose plastination as a mea...

  1. Fast quantitative retardance imaging of biological samples using quadri-wave interferometry (Conference Presentation)

    Science.gov (United States)

    Aknoun, Sherazade; Bon, Pierre; Savatier, Julien; Monneret, Serge; Wattellier, Benoit F.

    2016-03-01

    We describe the use of polarized spatially coherent illumination to perform linear retardance imaging and measurements of semi-transparent biological samples using a quantitative phase imaging technique [1]. Quantitative phase imaging techniques [2-5] are used in microscopy for the imaging of semi-transparent samples and gives information about the optical path difference (OPD). The strength of those techniques is their non-invasive (the sample is not labelled) and fast approach. However, this high contrast is non-specific and cannot be linked to specific properties of the sample. To overcome this limitation, we propose to use polarized light in combination with QPI. Indeed, anisotropy has been used to reveal ordered fibrous structures in biological samples without any staining or labelling with polarized light microscopy [6-8]. Recent studies have shown polarimetry as a potential diagnostic tool for various dermatological diseases on thick tissue samples [9]. Particularly, specific collagen fibers spatial distribution has been demonstrated to be a signature for the optical diagnosis and prognosis of cancer in tissues [10]. In this paper, we describe a technical improvement of our technique based on high-resolution quadri-wave lateral shearing interferometry (QWLSI) and liquid crystal retarder to perform quantitative linear birefringence measurements on biological samples. The system combines a set of quantitative phase images with different excitation polarizations to create birefringence images. These give information about the local retardance and orientation of biological anisotropic components. We propose using a commercial QWLSI [11] (SID4Bio, Phasics SA, Saint Aubin, France) directly plugged onto a lateral video port of an inverted microscope (TE2000-U, Nikon, Japan). We are able to take retardance images in less than 1 second which allows us to record dynamic phenomena (living cells study) and make high speed acquisitions to reconstruct tissues virtual

  2. Photoacoustic imaging in both soft and hard biological tissue

    International Nuclear Information System (INIS)

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  3. Photoacoustic imaging in both soft and hard biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Li, T; Dewhurst, R J, E-mail: richard.dewhurst@manchester.ac.u [Photon Science Institute, University of Manchester, Alan Turing Building, Oxford road, Manchester, M13 9PL (United Kingdom)

    2010-03-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  4. Magnetoacoustic imaging of magnetic iron oxide nanoparticles embedded in biological tissues with microsecond magnetic stimulation

    Science.gov (United States)

    Hu, Gang; He, Bin

    2012-01-01

    We present an experimental study on magnetoacoustic imaging of superparamagnetic iron oxide (SPIO) nanoparticles embedded in biological tissues. In experiments, a large-current-carrying coil is used to deliver microsecond pulsed magnetic stimulation to samples. The ultrasound signals induced by magnetic forces on SPIO nanoparticles are measured by a rotating transducer. The distribution of nanoparticles is reconstructed by a back-projection imaging algorithm. The results demonstrated the feasibility to obtain cross-sectional image of magnetic nanoparticle targets with faithful dimensional and positional information, which suggests a promising tool for tomographic reconstruction of magnetic nanoparticle-labeled diseased tissues (e.g., cancerous tumor) in molecular or clinic imaging.

  5. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue

    Science.gov (United States)

    Horstmeyer, Roarke; Ruan, Haowen; Yang, Changhuei

    2015-09-01

    In the field of biomedical optics, optical scattering has traditionally limited the range of imaging within tissue to a depth of one millimetre. A recently developed class of wavefront-shaping techniques now aims to overcome this limit and achieve diffraction-limited control of light beyond one centimetre. By manipulating the spatial profile of an optical field before it enters a scattering medium, it is possible to create a micrometre-scale focal spot deep within tissue. To successfully operate in vivo, these wavefront-shaping techniques typically require feedback from within the biological sample. This Review summarizes recently developed 'guidestar' mechanisms that provide feedback for intra-tissue focusing. Potential applications of guidestar-assisted focusing include optogenetic control over neurons, targeted photodynamic therapy and deep tissue imaging.

  6. A phase-field model for fracture in biological tissues.

    Science.gov (United States)

    Raina, Arun; Miehe, Christian

    2016-06-01

    This work presents a recently developed phase-field model of fracture equipped with anisotropic crack driving force to model failure phenomena in soft biological tissues at finite deformations. The phase-field models present a promising and innovative approach to thermodynamically consistent modeling of fracture, applicable to both rate-dependent or rate-independent brittle and ductile failure modes. One key advantage of diffusive crack modeling lies in predicting the complex crack topologies where methods with sharp crack discontinuities are known to suffer. The starting point is the derivation of a regularized crack surface functional that [Formula: see text]-converges to a sharp crack topology for vanishing length-scale parameter. A constitutive balance equation of this functional governs the crack phase-field evolution in a modular format in terms of a crack driving state function. This allows flexibility to introduce alternative stress-based failure criteria, e.g., isotropic or anisotropic, whose maximum value from the deformation history drives the irreversible crack phase field. The resulting multi-field problem is solved by a robust operator split scheme that successively updates a history field, the crack phase field and finally the displacement field in a typical time step. For the representative numerical simulations, a hyperelastic anisotropic free energy, typical to incompressible soft biological tissues, is used which degrades with evolving phase field as a result of coupled constitutive setup. A quantitative comparison with experimental data is provided for verification of the proposed methodology. PMID:26165516

  7. Fundamental Mechanisms of Pulsed Laser Ablation of Biological Tissue

    Science.gov (United States)

    Albagli, Douglas

    The ability to cut and remove biological tissue with short pulsed laser light, a process called laser ablation, has the potential to revolutionize many surgical procedures. Ablation procedures using short pulsed lasers are currently being developed or used in many fields of medicine, including cardiology, ophthalmology, dermatology, dentistry, orthopedics, and urology. Despite this, the underlying physics of the ablation process is not well understood. In fact, there is wide disagreement over whether the fundamental mechanism is primarily photothermal, photomechanical, or photochemical. In this thesis, both experimental and theoretical techniques are developed to explore this issue. The photothermal model postulates that ablation proceeds through vaporization of the target material. The photomechanical model asserts that ablation is initiated when the laser-induced tensile stress exceeds the ultimate tensile strength of the target. I have developed a three dimensional model of the thermoelastic response of tissue to short pulsed laser irradiation which allows the time dependent stress distribution to be calculated given the optical, thermal and mechanical properties of the target. A complimentary experimental technique has been developed to verify this model, measure the needed physical properties of the tissue, and record the thermoelastic response of the tissue at the onset of ablation. The results of this work have been widely disseminated to the international research community and have led to significant findings which support the photomechanical model of ablation of tissue. First, the energy deposited in tissue is an order of magnitude less than that required for vaporization. Second, unlike the one-dimensional thermoelastic model of laser-induced stress generation that has appeared in the literature, the full three-dimensional model predicts the development of significant tensile stresses on the surface of the target, precisely where ablation is observed to

  8. Inverse Parameter Fitting of Biological Tissues: A Response Surface Approach

    Energy Technology Data Exchange (ETDEWEB)

    Einstein, Daniel R.; Freed, Alan D.; Stander, Nielen; Fata, Bahar; Vesely, Ivan

    2005-12-01

    In this paper, we present the application of a semi-global inverse method for determining material parameters of biological tissues. The approach is based on the successive response surface method, and is illustrated by fitting constitutive parameters to two nonlinear anisotropic constitutive equations, one for aortic sinus and aortic wall, the other for aortic valve tissue. Material test data for the aortic sinus consisted of two independent orthogonal uniaxial tests. Material test data for the aortic valve was obtained from a dynamic inflation test. In each case, a numerical simulation of the experiment was performed and predictions were compared to the real data. For the uniaxial test simulation, the experimental targets were force at a measured displacement. For the inflation test, the experimental targets were the three-dimensional coordinates of material markers at a given pressure. For both sets of tissues, predictions with converged parameters showed excellent agreement with the data, and we found that the method was able to consistently identify model parameters. We believe the method will find wide application in biomedical material characterization and in diagnostic imaging.

  9. Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples

    Science.gov (United States)

    O'Hagan, Joseph J.; Samani, Abbas

    2009-04-01

    The elastic and hyperelastic properties of biological soft tissues have been of interest to the medical community. There are several biomedical applications where parameters characterizing such properties are critical for a reliable clinical outcome. These applications include surgery planning, needle biopsy and brachtherapy where tissue biomechanical modeling is involved. Another important application is interpreting nonlinear elastography images. While there has been considerable research on the measurement of the linear elastic modulus of small tissue samples, little research has been conducted for measuring parameters that characterize the nonlinear elasticity of tissues included in tissue slice specimens. This work presents hyperelastic measurement results of 44 pathological ex vivo breast tissue samples. For each sample, five hyperelastic models have been used, including the Yeoh, N = 2 polynomial, N = 1 Ogden, Arruda-Boyce, and Veronda-Westmann models. Results show that the Yeoh, polynomial and Ogden models are the most accurate in terms of fitting experimental data. The results indicate that almost all of the parameters corresponding to the pathological tissues are between two times to over two orders of magnitude larger than those of normal tissues, with C11 showing the most significant difference. Furthermore, statistical analysis indicates that C02 of the Yeoh model, and C11 and C20 of the polynomial model have very good potential for cancer classification as they show statistically significant differences for various cancer types, especially for invasive lobular carcinoma. In addition to the potential for use in cancer classification, the presented data are very important for applications such as surgery planning and virtual reality based clinician training systems where accurate nonlinear tissue response modeling is required.

  10. Chemometric and Statistical Analyses of ToF-SIMS Spectra of Increasingly Complex Biological Samples

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Wu, L; Fortson, S L; Nelson, D O; Kulp, K S; Wu, K J

    2007-10-24

    Characterizing and classifying molecular variation within biological samples is critical for determining fundamental mechanisms of biological processes that will lead to new insights including improved disease understanding. Towards these ends, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to examine increasingly complex samples of biological relevance, including monosaccharide isomers, pure proteins, complex protein mixtures, and mouse embryo tissues. The complex mass spectral data sets produced were analyzed using five common statistical and chemometric multivariate analysis techniques: principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares discriminant analysis (PLSDA), soft independent modeling of class analogy (SIMCA), and decision tree analysis by recursive partitioning. PCA was found to be a valuable first step in multivariate analysis, providing insight both into the relative groupings of samples and into the molecular basis for those groupings. For the monosaccharides, pure proteins and protein mixture samples, all of LDA, PLSDA, and SIMCA were found to produce excellent classification given a sufficient number of compound variables calculated. For the mouse embryo tissues, however, SIMCA did not produce as accurate a classification. The decision tree analysis was found to be the least successful for all the data sets, providing neither as accurate a classification nor chemical insight for any of the tested samples. Based on these results we conclude that as the complexity of the sample increases, so must the sophistication of the multivariate technique used to classify the samples. PCA is a preferred first step for understanding ToF-SIMS data that can be followed by either LDA or PLSDA for effective classification analysis. This study demonstrates the strength of ToF-SIMS combined with multivariate statistical and chemometric techniques to classify increasingly complex biological samples

  11. The measurement of radioactive microspheres in biological samples

    International Nuclear Information System (INIS)

    Measurements of the distribution of radioactive microspheres are used in investigations of regional coronary blood flow, but the size and shape of the heart varies for different test animals, and the organ is frequently divided into smaller pieces for studies of regional perfusion. Errors are introduced by variations in the distribution of the radioactive source and the amount of Compton scatter in different samples. A technique has therefore been developed to allow the counting of these tissue samples in their original form, and correction factors have been derived to inter-relate the various counting geometries thus encountered. Dogs were injected with microspheres labelled with 141Ce, 51Cr or 85Sr. The tissue samples did not require remodelling to fit a standard container, and allowance was made for the inhomogeneous distribution in the blood samples. The activities in the centrifuged blood samples were correlated with those from the tissue samples by a calibration procedure involving comparisons of the counts from samples of microspheres embedded in sachets of gelatine, and similar samples mixed with blood and then centrifuged. The calibration data have indicated that 51Cr behaves anomalously, and its use as a label for microspheres may introduce unwarranted errors. A plane cylindrical 10 x 20 cm NaI detector was used, and a 'worst case' correction of 20% was found to be necessary for geometry effects. The accuracy of this method of correlating different geometries was tested by remodelling the same tissue sample into different sizes and comparing the results, and the validity of the technique was supported by agreement of the final results with previously published data. (U.K.)

  12. Tabletop magnetic resonance elastography for the measurement of viscoelastic parameters of small tissue samples

    Science.gov (United States)

    Ipek-Ugay, Selcan; Drießle, Toni; Ledwig, Michael; Guo, Jing; Hirsch, Sebastian; Sack, Ingolf; Braun, Jürgen

    2015-02-01

    We demonstrate the feasibility of low-cost tabletop MR elastography (MRE) for quantifying the complex shear modulus G∗ of small soft biological tissue samples as provided by pathologists. The MRE system was developed based on a tabletop MRI scanner equipped with a 0.5 T permanent magnet and a tissue sample holder mounted to a loudspeaker. A spin echo sequence was enhanced with motion-encoding gradients of 250 mT/m amplitude synchronized to acoustic vibration frequencies. Shear wave images suitable for elastography were acquired between vibration frequencies of 0.5 and 1 kHz in agarose, ultrasound gel, porcine liver, porcine skeletal muscle, and bovine heart with a spatial resolution of 234 μm pixel edge length. The measured frequency dependence of G∗ agreed well with previous work based on high-field MR systems. The ratio between loss and storage moduli was highest in liver and ultrasound gel, followed by muscle tissue and agarose gel while ultrasound gel and liver showed similarly low storage moduli compared to the other samples. The shear wave to noise ratio is an important imaging criteria for MRE and was about 4.2 times lower for the preliminary setup of the 0.5 T tabletop system compared to a 7 T animal scanner. In the future, the new tabletop MRE system may serve as a low cost device for preclinical research on the correlation of viscoelastic parameters with histopathology of biological samples.

  13. The relationship between decorrelation time and sample thickness in acute rat brain tissue slices (Conference Presentation)

    Science.gov (United States)

    Brake, Joshua; Jang, Mooseok; Yang, Changhuei

    2016-03-01

    The optical opacity of biological tissue has long been a challenge in biomedical optics due to the strong scattering nature of tissue in the optical regime. While most conventional optical techniques attempt to gate out multiply scattered light and use only unscattered light, new approaches in the field of wavefront shaping exploit the time reversible symmetry of optical scattering in order to focus light inside or through scattering media. While these approaches have been demonstrated effectively on static samples, it has proven difficult to apply them to dynamic biological samples since even small changes in the relative positions of the scatterers within will cause the time symmetry that wavefront shaping relies upon to decorrelate. In this paper we investigate the decorrelation curves of acute rat brain slices for thicknesses in the range 1-3 mm (1/e decorrelation time on the order of seconds) using multi-speckle diffusing wave spectroscopy (MSDWS) and compare the results with theoretical predictions. The results of this study demonstrate that the 1/L^2 relationship between decorrelation time and thickness predicted by diffusing wave spectroscopy provides a good rule of thumb for estimating how the decorrelation of a sample will change with increasing thickness. Understanding this relationship will provide insight to guide the future development of biophotonic wavefront shaping tools by giving an estimate of how fast wavefront shaping systems need to operate to overcome the dynamic nature of biological samples.

  14. Presence of pesticide residues in water, sediment and biological samples taken from aquatic environments in Honduras

    International Nuclear Information System (INIS)

    The objective of this study was to detect the presence of persistent pesticides in water, sediment and biological samples taken from aquatic environments in Honduras during the period 1995-98. Additionally, the LC50 for 2 fungicides and 2 insecticides on post-larval Penaeus vannamei was determined in static water bioassays. A total of 80 water samples, 16 sediment samples and 7 biological samples (fish muscle tissue) were analyzed for detection of organochlorine and organophosphate pesticide residues. The results of sample analyses indicate a widespread contamination of Honduran continental and coastal waters with organochlorine pesticides. Most detections were of low (50 values and were therefore found to be much more toxic to the post-larval shrimp than the fungicides tridemorph and propiconazole. (author)

  15. Quantitation of vitamin B6 in biological samples by isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Methods have been developed for the simultaneous quantitative analysis of vitamin B6 forms in biological samples by isotope dilution mass spectrometry using deuterated forms of pyridoxine, pyridoxal, pyridoxamine, and pyridoxic acid. The biological fluid or tissue sample was homogenized and then treated with a cocktail containing appropriate amounts of each deuterated vitamer, as well as the deuterated, phosphorylated vitamer forms. The individual vitamers were isolated from the homogenate by a complex high-performance liquid chromatographic procedure that provided separate fractions for each of the six vitamers found in biological samples. Aldehydic B6 vitamers were reduced to the alcohol form prior to acetylation and analysis by gas chromatography/mass spectrometry (GC/MS). The three resulting vitamers were analyzed by electron ionization GC/MS using a silicone capillary column. The methods have been applied to analysis of vitamin B6 in liver, milk, urine, and feces at levels as low as 0.02 nmol/ml

  16. Quantitation of vitamin B6 in biological samples by isotope dilution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hachey, D.L.; Coburn, S.P.; Brown, L.T.; Erbelding, W.F.; DeMark, B.; Klein, P.D.

    1985-11-15

    Methods have been developed for the simultaneous quantitative analysis of vitamin B6 forms in biological samples by isotope dilution mass spectrometry using deuterated forms of pyridoxine, pyridoxal, pyridoxamine, and pyridoxic acid. The biological fluid or tissue sample was homogenized and then treated with a cocktail containing appropriate amounts of each deuterated vitamer, as well as the deuterated, phosphorylated vitamer forms. The individual vitamers were isolated from the homogenate by a complex high-performance liquid chromatographic procedure that provided separate fractions for each of the six vitamers found in biological samples. Aldehydic B6 vitamers were reduced to the alcohol form prior to acetylation and analysis by gas chromatography/mass spectrometry (GC/MS). The three resulting vitamers were analyzed by electron ionization GC/MS using a silicone capillary column. The methods have been applied to analysis of vitamin B6 in liver, milk, urine, and feces at levels as low as 0.02 nmol/ml.

  17. LASER METHODS IN BIOLOGY: Optical anisotropy of fibrous biological tissues: analysis of the influence of structural properties

    Science.gov (United States)

    Zimnyakov, D. A.; Sinichkin, Yu P.; Ushakova, O. V.

    2007-08-01

    The results of theoretical analysis of the optical anisotropy of multiply scattering fibrillar biological tissues based on the model of an effective anisotropic medium are compared with the experimental in vivo birefringence data for the rat derma obtained earlier in spectral polarisation measurements of rat skin samples in the visible region. The disordered system of parallel dielectric cylinders embedded into an isotropic dielectric medium was considered as a model medium. Simulations were performed taking into account the influence of a partial mutual disordering of the bundles of collagen and elastin fibres in derma on birefringence in samples. The theoretical optical anisotropy averaged over the spectral interval 550-650 nm for the model medium with parameters corresponding to the structural parameters of derma is in good agreement with the results of spectral polarisation measurements of skin samples in the corresponding wavelength range.

  18. Fast x-ray fluorescence microtomography of hydrated biological samples.

    Directory of Open Access Journals (Sweden)

    Enzo Lombi

    Full Text Available Metals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly hydrated biological systems is technically challenging. In the case of roots, this is mainly due to the possibility of artifacts arising during sample preparation such as cross sectioning. Synchrotron x-ray fluorescence microtomography has been used to obtain virtual cross sections of elemental distributions. However, traditionally this technique requires long data acquisition times. This has prohibited its application to highly hydrated biological samples which suffer both radiation damage and dehydration during extended analysis. However, recent advances in fast detectors coupled with powerful data acquisition approaches and suitable sample preparation methods can circumvent this problem. We demonstrate the heightened potential of this technique by imaging the distribution of nickel and zinc in hydrated plant roots. Although 3D tomography was still impeded by radiation damage, we successfully collected 2D tomograms of hydrated plant roots exposed to environmentally relevant metal concentrations for short periods of time. To our knowledge, this is the first published example of the possibilities offered by a new generation of fast fluorescence detectors to investigate metal and metalloid distribution in radiation-sensitive, biological samples.

  19. Theory of sampling and its application in tissue based diagnosis

    Directory of Open Access Journals (Sweden)

    Kayser Gian

    2009-02-01

    Full Text Available Abstract Background A general theory of sampling and its application in tissue based diagnosis is presented. Sampling is defined as extraction of information from certain limited spaces and its transformation into a statement or measure that is valid for the entire (reference space. The procedure should be reproducible in time and space, i.e. give the same results when applied under similar circumstances. Sampling includes two different aspects, the procedure of sample selection and the efficiency of its performance. The practical performance of sample selection focuses on search for localization of specific compartments within the basic space, and search for presence of specific compartments. Methods When a sampling procedure is applied in diagnostic processes two different procedures can be distinguished: I the evaluation of a diagnostic significance of a certain object, which is the probability that the object can be grouped into a certain diagnosis, and II the probability to detect these basic units. Sampling can be performed without or with external knowledge, such as size of searched objects, neighbourhood conditions, spatial distribution of objects, etc. If the sample size is much larger than the object size, the application of a translation invariant transformation results in Kriege's formula, which is widely used in search for ores. Usually, sampling is performed in a series of area (space selections of identical size. The size can be defined in relation to the reference space or according to interspatial relationship. The first method is called random sampling, the second stratified sampling. Results Random sampling does not require knowledge about the reference space, and is used to estimate the number and size of objects. Estimated features include area (volume fraction, numerical, boundary and surface densities. Stratified sampling requires the knowledge of objects (and their features and evaluates spatial features in relation to

  20. [Critical aspects in determining total radioactivity of biological samples].

    Science.gov (United States)

    Del Vecchio, M P; Paolini, M; Corsi, C; Bauer, C

    1989-03-01

    During measurements of radioactivity in some milk samples with liquid scintillation counter (about one year after the nuclear accident of Chernobyl) we have observed an increase of the values of scintillation fluid with the passing of time. Although this enhancement is absolutely small (about 2 c.p.m. in 500 min), it is very important for an exact measurement of samples at low counting, as those tested. Our protocol of measure provides for insertion of alternate blanks and samples in the automatic sample-holders of liquid scintillation counter. The values of measurement of samples are taken during the increase phase subtracting the value of blank interpolated on the increasing straight line from c.p.m. of sample. Finally, we report the collected values of the whole radioactivity in some milk samples: at least 5-6 nCi/L contrary to about 1 nCi/L of 137Cs reported by USL. In our opinion it is important to consider the whole radioactivity as measure of the overall biological danger of radioactive samples. In fact, this measurement takes into account also biologically very dangerous radionuclides as 3H, 14C, 90Sr. PMID:2765252

  1. DNA damage in preserved specimens and tissue samples: a molecular assessment

    Directory of Open Access Journals (Sweden)

    Cantin Elizabeth

    2008-10-01

    Full Text Available Abstract The extraction of genetic information from preserved tissue samples or museum specimens is a fundamental component of many fields of research, including the Barcode of Life initiative, forensic investigations, biological studies using scat sample analysis, and cancer research utilizing formaldehyde-fixed, paraffin-embedded tissue. Efforts to obtain genetic information from these sources are often hampered by an inability to amplify the desired DNA as a consequence of DNA damage. Previous studies have described techniques for improved DNA extraction from such samples or focused on the effect of damaging agents – such as light, oxygen or formaldehyde – on free nucleotides. We present ongoing work to characterize lesions in DNA samples extracted from preserved specimens. The extracted DNA is digested to single nucleosides with a combination of DNase I, Snake Venom Phosphodiesterase, and Antarctic Phosphatase and then analyzed by HPLC-ESI-TOF-MS. We present data for moth specimens that were preserved dried and pinned with no additional preservative and for frog tissue samples that were preserved in either ethanol, or formaldehyde, or fixed in formaldehyde and then preserved in ethanol. These preservation methods represent the most common methods of preserving animal specimens in museum collections. We observe changes in the nucleoside content of these samples over time, especially a loss of deoxyguanosine. We characterize the fragmentation state of the DNA and aim to identify abundant nucleoside lesions. Finally, simple models are introduced to describe the DNA fragmentation based on nicks and double-strand breaks.

  2. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  3. Sampling and sample preparation methods for the analysis of trace elements in biological material

    International Nuclear Information System (INIS)

    The authors attempt to give a most systamtic possible treatment of the sample taking and sample preparation of biological material (particularly in human medicine) for trace analysis (e.g. neutron activation analysis, atomic absorption spectrometry). Contamination and loss problems are discussed as well as the manifold problems of the different consistency of solid and liquid biological materials, as well as the stabilization of the sample material. The process of dry and wet ashing is particularly dealt with, where new methods are also described. (RB)

  4. Assessment of the differential linear coherent scattering coefficient of biological samples

    International Nuclear Information System (INIS)

    New differential linear coherent scattering coefficient, μCS, data for four biological tissue types (fat pork, tendon chicken, adipose and fibroglandular human breast tissues) covering a large momentum transfer interval (0.07≤q≤70.5 nm-1), resulted from combining WAXS and SAXS data, are presented in order to emphasize the need to update the default data-base by including the molecular interference and the large-scale arrangements effect. The results showed that the differential linear coherent scattering coefficient demonstrates influence of the large-scale arrangement, mainly due to collagen fibrils for tendon chicken and fibroglandular breast samples, and triacylglycerides for fat pork and adipose breast samples at low momentum transfer region. While, at high momentum transfer, the μCS reflects effects of molecular interference related to water for tendon chicken and fibroglandular samples and, fatty acids for fat pork and adipose samples.

  5. Long-term room temperature preservation of corpse soft tissue: an approach for tissue sample storage

    OpenAIRE

    Caputo, Mariela; Bosio, Luis A; Corach, Daniel

    2011-01-01

    Background Disaster victim identification (DVI) represents one of the most difficult challenges in forensic sciences, and subsequent DNA typing is essential. Collected samples for DNA-based human identification are usually stored at low temperature to halt the degradation processes of human remains. We have developed a simple and reliable procedure for soft tissue storage and preservation for DNA extraction. It ensures high quality DNA suitable for PCR-based DNA typing after at least 1 year o...

  6. A method for the determination of potassium concentration in organic tissue samples

    International Nuclear Information System (INIS)

    An original method has been developed to detect small variations of potassium in several samples of organic tissue. These variations are relative to elements that are biologically representative, such as carbon, oxygen, and nitrogen. The samples are irradiated with a beam of protons from a Van de Graaff accelerator (4MV). Vacancies are created in the K-shell of potassium, and x-rays are emitted when these vacancies are filled with outer electrons. These X-rays and the protons elastically scattered by the nuclei of carbon, nitrogen and oxygen are detected and their energy spectra are analysed by computer programs especially elaborated for this purpose. A technique for routine preparation of samples in the laboratory was developed including the production of aluminum support layers, and the preparation of organic tissue samples with a low temperature microtome. The unique features of this method are that it does not destroy the tissue, permitting further analysis with the microscope, and the normalization of the amount of potassium using other elements (C,O,N) instead of the total mass of the sample. (Author)

  7. RELATIONSHIP AMONG COX-2 PROTEIN EXPRESSION, PGs LEVELS AND BIOLOGIC BEHAVIOR IN OVARIAN CARCINOMA TISSUES

    Institute of Scientific and Technical Information of China (English)

    王敏; 王欣彦; 唐丽霞; 高岩

    2004-01-01

    Objective: To study the relationship among cyclooxygenase-2 (COX-2) protein expression, prostaglandins levels and biologic behavior in ovarian carcinoma tissues. Methods: The expression of COX-2 protein, levels of prostaglandin (PG)E2, 6-keto-PGF1( and thromboxane (TX)B2 in 54 biopsy specimens from patients with ovarian serous tumors which included three groups: 33 samples of ovarian serous carcinoma; 10 samples of borderline ovarian serous tumors and 11 samples of benign ovarian serous tumors and 10 samples of normal ovarian tissues were detected by Western blot analysis and radioimmunoassay to investigate their clinical significance. Results: The expression of COX-2 protein (82%, 27/33) and its relative content (20.08±3.53) in ovarian serous carcinoma tissues were statistically higher than those in benign ovarian serous tumor tissues and normal ovary tissues i.e., 0 and (15.04(0.12), 0 and (15.33(0.60) (P0.05). The levels of PGE2, 6-keto-PGF1( and TXB2 showed no significant differences in ovarian carcinoma tissues with different clinical stages (I to II and III to IV), different histological grades, with or without ascites and lymph metastasis. COX-2 expression was correlated with the levels of PGE2, 6-KETO-PGF1( and TXB2 (P<0.01). Conclusion: Our data suggest that COX-2 overexpression leads to increased PGE2, 6-KETA-PGF1( and TXB2 biosynthesis, which may be mechanisms underlying the contribution of COX-2 to the development of ovarian serous carcinoma. BGF2, 6-keto-PGF1( and TXB2 may be helpful parameters of diagnosis and differentiate diagnosis in ovarian serous carcinoma.

  8. Hyperspectral imaging of nanoparticles in biological samples: Simultaneous visualization and elemental identification.

    Science.gov (United States)

    Peña, María Del Pilar Sosa; Gottipati, Abhishek; Tahiliani, Sahil; Neu-Baker, Nicole M; Frame, Mary D; Friedman, Adam J; Brenner, Sara A

    2016-05-01

    While engineered nanomaterials (ENMs) are increasingly incorporated into industrial processes and consumer products, the potential biological effects and health outcomes of exposure remain unknown. Novel advanced direct visualization techniques that require less time, cost, and resource investment than electron microscopy (EM) are needed for identifying and locating ENMs in biological samples. Hyperspectral imaging (HSI) combines spectrophotometry and imaging, using advanced optics and algorithms to capture a spectrum from 400 to 1000 nm at each pixel in an enhanced dark-field microscopic (EDFM) image. HSI-EDFM can be used to confirm the identity of the materials of interest in a sample and generate an image "mapping" their presence and location in a sample. Hyperspectral mapping is particularly important for biological samples, where ENM morphology is visually indistinct from surrounding tissue structures. While use of HSI (without mapping) is increasing, no studies to date have compared results from hyperspectral mapping with conventional methods. Thus, the objective of this study was to utilize EDFM-HSI to locate, identify, and map metal oxide ENMs in ex vivo histological porcine skin tissues, a toxicological model of cutaneous exposure, and compare findings with those of Raman spectroscopy (RS), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Results demonstrate that EDFM-HSI mapping is capable of locating and identifying ENMs in tissue, as confirmed by conventional methods. This study serves as initial confirmation of EDFM-HSI mapping as a novel and higher throughput technique for ENM identification in biological samples, and serves as the basis for further protocol development utilizing EDFM-HSI for semiquantitation of ENMs. Microsc. Res. Tech. 79:349-358, 2016. © 2016 Wiley Periodicals, Inc. PMID:26864497

  9. Activation Analysis of Biological Samples of Forensic Interest

    International Nuclear Information System (INIS)

    In forensic (crime investigation) studies, samples of a biological origin are frequently used as evidence. Often it is necessary to compare one sample (associated with a victim or the scene of a crime) with another sample of the same general type (associated with a suspect in some way). The purpose of such comparisons is to establish, if possible, that - to a high degree of probability - the two samples have a common origin. Typically, all available relevant methods of comparison are utilized in such cases by the criminalist: microscopic examination; X-ray diffraction; infra-red, visible, and ultra-violet spectrometry; and various methods of elemental analysis. The forensic applications of high-flux thermal-neutron activation analysis (NAA) have shown great promise and are attracting considerable attention. The authors' laboratory has been engaged in such forensic NAA research and development studies for the past five years. (It also operates a non-profit Forensic Activation Analysis Service, available to all law enforcement agencies, for the NAA comparison of evidence samples involved in actual criminal cases. Samples from many actual cases have been thus examined.) In the United States, NAA results have now been successfully presented in court in some 20 actual cases. Some of the evidence-type materials of interest are non-biological; others are biological. Only the latter will be discussed in this paper. The principal evidence-type materials of a biological nature that have been examined in this laboratory by high-flux thermal-NAA to date are the following: hair, blood, faeces, urine, fingernails, skin, wood, tobacco, whisky, green plants, and marijuana. (In addition, a number of these evidence-type materials have also been studied in this laboratory by high-flux photonuclear activation analysis (PNAA); attention in this paper will be largely devoted to the thermal-NAA forensic studies.) The main topics to be reported upon in this paper are: (1) limits of

  10. Can OCT be sensitive to nanoscale structural alterations in biological tissue?

    Science.gov (United States)

    Yi, Ji; Radosevich, Andrew J; Rogers, Jeremy D; Norris, Sam C P; Çapoğlu, İlker R; Taflove, Allen; Backman, Vadim

    2013-04-01

    Exploration of nanoscale tissue structures is crucial in understanding biological processes. Although novel optical microscopy methods have been developed to probe cellular features beyond the diffraction limit, nanometer-scale quantification remains still inaccessible for in situ tissue. Here we demonstrate that, without actually resolving specific geometrical feature, OCT can be sensitive to tissue structural properties at the nanometer length scale. The statistical mass-density distribution in tissue is quantified by its autocorrelation function modeled by the Whittle-Mateŕn functional family. By measuring the wavelength-dependent backscattering coefficient μb(λ) and the scattering coefficient μs, we introduce a technique called inverse spectroscopic OCT (ISOCT) to quantify the mass-density correlation function. We find that the length scale of sensitivity of ISOCT ranges from ~30 to ~450 nm. Although these sub-diffractional length scales are below the spatial resolution of OCT and therefore not resolvable, they are nonetheless detectable. The sub-diffractional sensitivity is validated by 1) numerical simulations; 2) tissue phantom studies; and 3) ex vivo colon tissue measurements cross-validated by scanning electron microscopy (SEM). Finally, the 3D imaging capability of ISOCT is demonstrated with ex vivo rat buccal and human colon samples. PMID:23571994

  11. Toxicological Analysis of Some Drugs of Abuse in Biological Samples

    Directory of Open Access Journals (Sweden)

    Anne Marie Ciobanu

    2015-10-01

    Full Text Available Consumption of drugs of abuse is a scourge of modern world. Abuse, drug addiction and their consequences are one of the major current problems of European society because of the significant repercussions in individual, family, social and economic level. In this context, toxicological analysis of the drugs of abuse in biological samples is a useful tool for: diagnosis of drug addiction, checking an auto-response, mandatory screening in some treatment programs, identification of a substance in the case of an overdose, determining compliance of the treatment. The present paper aims to address the needs of healthcare professionals involved in drugs addiction treatment through systematic presentation of information regarding their toxicological analysis. Basically, it is a tool that help you to select the suitable biological sample and the right collecting time, as well as the proper analysis technique, depending on the purpose of analysis, pharmacokinetic characteristics of the drugs of abuse, available equipment and staff expertise.

  12. Incubation Station for the Bacterial Growth Study in Biological Samples

    OpenAIRE

    Carlos Rafael Duharte Rodríguez; Ibrain Ceballo Acosta; Carmen B. Busoch Morlán; Ángel Regueiro Gómez

    2015-01-01

    This work shows the designing and characterization of a prototype of laboratory incubator as support of Microbiology research, in particular for the research of the bacterial growth in biological samples through optic methods (Turbidimetry) and electrometric measurements of bioimpedance. It shows the results of simulation and experimentation of the design proposed for the canals of measurement of the variables: temperature and humidity, with a high linearity from the adequate selection of the...

  13. Toxicological Analysis of Some Drugs of Abuse in Biological Samples

    OpenAIRE

    Anne Marie Ciobanu; Daniela Baconi; Cristian Bălălău; Carolina Negrei; Miriana Stan; Maria Bârcă

    2015-01-01

    Consumption of drugs of abuse is a scourge of modern world. Abuse, drug addiction and their consequences are one of the major current problems of European society because of the significant repercussions in individual, family, social and economic level. In this context, toxicological analysis of the drugs of abuse in biological samples is a useful tool for: diagnosis of drug addiction, checking an auto-response, mandatory screening in some treatment programs, identification of a substance ...

  14. Chiral speciation of selenoamino acids in biological samples.

    Science.gov (United States)

    Chen, Beibei; He, Man; Zhong, Cheng; Hu, Bin

    2014-10-10

    In this paper, the "state of the art" of chiral speciation of selenoamino acids (SeAAs) in biological samples is critically reviewed. The significance and the features of such studies are highlighted. A special focus lies on chiral speciation of SeAAs by hyphenation techniques in which a chiral separation method (such as gas chromatography (GC), high performance liquid chromatography (HPLC) and capillary electrophoresis (CE)) is on-line coupled with an elemental specific detector, especially inductively coupled plasma mass spectrometry (ICP-MS). The advances in the development and application of hyphenation techniques in chiral speciation of SeAAs in biological samples are summarized and a perspective for future developments including sophisticated and innovative applications is discussed. Overall, HPLC-ICP-MS is more applicable than GC/CE-ICP-MS for chiral speciation of SeAAs. In the future, more novel chiral HPLC methods with high enantio-resolution, low cost and robustness, and their more applications in real biological samples analysis are expected. PMID:25130085

  15. Radionuclides in animal tissue samples from various regions of Austria

    International Nuclear Information System (INIS)

    An investigation of the concentration of radioactive substances in animal species from various regions of Austria has been carried out. For bone and liver of deer, radionuclide concentrations typical for central Europe were found. The content of 90Sr were higher in gasteropod shells than in deer bone. Similar concentrations of 90Sr were found in isopods as in snail shells related to fresh weight, but related to Ca content the values in isopods were higher than in all other animals. Based on these results, a study of snail shells and of isopods as bioindicators for 90Sr content in environmental control is indicated. In tissue samples of the same species, but from different regions of Austria, the fallout radionuclide concentrations were found to be related to altitude (90Sr) and to the amount of precipitation (137Cs). These correlation differences could point to a different deposition behaviours of 90Sr and 137Cs, the former being deposited mainly with solid precipitation. This seems plausible since aerosols carried over continental distances show a high sulfate content and alkaline earth metal sulfates are less soluble than alkali sulfates. Examination of absolute concentration values related to fresh tissue weight show high fallout radionuclide concentrations, as compared to natural radionuclide concentration, especially in hard tissues. These fallout levels constitute a significant radioactive load on the biosphere. Due to the long physical half-life of 90Sr and 137Cs, this situation will remain virtually unchanged during the next decades, even if no further nuclear weapons tests are carried out. (G.G.)

  16. Quantum cascade laser-based hyperspectral imaging of biological tissue.

    Science.gov (United States)

    Kröger, Niels; Egl, Alexander; Engel, Maria; Gretz, Norbert; Haase, Katharina; Herpich, Iris; Kränzlin, Bettina; Neudecker, Sabine; Pucci, Annemarie; Schönhals, Arthur; Vogt, Jochen; Petrich, Wolfgang

    2014-01-01

    The spectroscopy of analyte-specific molecular vibrations in tissue thin sections has opened up a path toward histopathology without the need for tissue staining. However, biomedical vibrational imaging has not yet advanced from academic research to routine histopathology due to long acquisition times for the microscopic hyperspectral images and/or cost and availability of the necessary equipment. Here we show that the combination of a fast-tuning quantum cascade laser with a microbolometer array detector allows for a rapid image acquisition and bares the potential for substantial cost reduction. A 3.1 x 2.8 mm2 unstained thin section of mouse jejunum has been imaged in the 9.2 to 9.7 μm wavelength range (spectral resolution ~1 cm(-1)) within 5 min with diffraction limited spatial resolution. The comparison of this hyperspectral imaging approach with standard Fourier transform infrared imaging or mapping of the identical sample shows a reduction in acquisition time per wavenumber interval and image area by more than one or three orders of magnitude, respectively. PMID:24967840

  17. Measurement of phthalates in small samples of mammalian tissue

    Energy Technology Data Exchange (ETDEWEB)

    Acott, P.D.; Murphy, M.G.; Ogborn, M.R.; Crocker, J.F.S.

    1987-03-01

    Di-(2-ethylhexyl)-phthalate (DEHP) is a phthalic acid ester that is used as a plasticizer in polyvinyl chloride products, many of which have widespread medical application. DEHP has been shown to be leached from products used for storage and delivery of blood transfusions during procedures such as plasmaphoresis, hemodialysis and open heart surgery. Results of studies in this laboratory have suggested that there is an association between the absorption and deposition of DEHP (and/or related chemicals) in the kidney and the acquired renal cystic disease (ACD) frequently seen in patients who have undergone prolonged dialysis treatment. In order to determine the relationship between the two, it has been necessary to establish a method for extracting and accurately quantitating minute amounts of these chemicals in small tissue samples. The authors have now established such a method using kidneys from normal rats and from a rat model for ACD.

  18. Measurement of phthalates in small samples of mammalian tissue

    International Nuclear Information System (INIS)

    Di-(2-ethylhexyl)-phthalate (DEHP) is a phthalic acid ester that is used as a plasticizer in polyvinyl chloride products, many of which have widespread medical application. DEHP has been shown to be leached from products used for storage and delivery of blood transfusions during procedures such as plasmaphoresis, hemodialysis and open heart surgery. Results of studies in this laboratory have suggested that there is an association between the absorption and deposition of DEHP (and/or related chemicals) in the kidney and the acquired renal cystic disease (ACD) frequently seen in patients who have undergone prolonged dialysis treatment. In order to determine the relationship between the two, it has been necessary to establish a method for extracting and accurately quantitating minute amounts of these chemicals in small tissue samples. The authors have now established such a method using kidneys from normal rats and from a rat model for ACD

  19. Ablation of biological tissues by radiation of strontium vapor laser

    International Nuclear Information System (INIS)

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage

  20. Ablation of biological tissues by radiation of strontium vapor laser

    Science.gov (United States)

    Soldatov, A. N.; Vasilieva, A. V.

    2015-11-01

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 - 6.45 μm, with a generation pulse length of 50 - 150 ns, and pulse energy of ˜ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  1. Ablation of biological tissues by radiation of strontium vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Soldatov, A. N., E-mail: general@tic.tsu.ru; Vasilieva, A. V., E-mail: anita-tomsk@mail.ru [National Research Tomsk State University, Lenin ave., 36, 634050, Tomsk (Russian Federation)

    2015-11-17

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  2. The tensile strength characteristics study of the laser welds of biological tissue using the nanocomposite solder

    Science.gov (United States)

    Rimshan, I. B.; Ryabkin, D. I.; Savelyev, M. S.; Zhurbina, N. N.; Pyanov, I. V.; Eganova, E. M.; Pavlov, A. A.; Podgaetsky, V. M.; Ichkitidze, L. P.; Selishchev, S. V.; Gerasimenko, A. Y.

    2016-04-01

    Laser welding device for biological tissue has been developed. The main device parts are the radiation system and adaptive thermal stabilization system of welding area. Adaptive thermal stabilization system provided the relation between the laser radiation intensity and the weld temperature. Using atomic force microscopy the structure of composite which is formed by the radiation of laser solder based on aqua- albuminous dispersion of multi-walled carbon nanotubes was investigated. AFM topograms nanocomposite solder are mainly defined by the presence of pores in the samples. In generally, the surface structure of composite is influenced by the time, laser radiation power and MWCNT concentration. Average size of backbone nanoelements not exceeded 500 nm. Bulk density of nanoelements was in the range 106-108 sm-3. The data of welding temperature maintained during the laser welding process and the corresponding tensile strength values were obtained. Maximum tensile strength of the suture was reached in the range 50-55°C. This temperature and the pointwise laser welding technology (point area ~ 2.5mm) allows avoiding thermal necrosis of healthy section of biological tissue and provided reliable bonding construction of weld join. In despite of the fact that tensile strength values of the samples are in the range of 15% in comparison with unbroken strips of pigskin leather. This situation corresponds to the initial stage of the dissected tissue connection with a view to further increasing of the joint strength of tissues with the recovery of tissue structure; thereby achieved ratio is enough for a medical practice in certain cases.

  3. Mapping the functional properties of soft biological tissues under shear loading

    Science.gov (United States)

    Buckley, Mark Raymond

    The structure and composition of articular cartilage and other load-bearing biological tissues are highly complex and heterogeneous. As a result, their functional mechanical properties exhibit clear spatial variations. Unlocking the structure-function relationship in these materials is critical for devising strategies to restore tissue impaired by injury or disease and can provide a template for successful implant design. Here, we describe a tissue deformation imaging stage (TDIS) allowing for simultaneous force measurement and visualization of microscale deformation in soft biological tissues under controlled shear strain. In combination with a fast confocal microscope, the TDIS is used to test the microscale response of articular cartilage to shear loading. To obtain the location-specific shear modulus of this tissue, we employ a high-resolution technique that involves tracking the deformation of a line photobleached into a fluorescently stained sample loaded in the TDIS. We find that the quasi-static and dynamic shear moduli are lowest roughly 100 mum below the articular surface. Here, articular cartilage is highly nonlinear, stiffening under increased shear strain and becoming more compliant under increased compressive strain. Using a simple thought model, we relate these results to structural features of the collagen network in articular cartilage. Furthermore, we demonstrate that the region of maximum compliance is also the primary site of shear energy dissipation in articular cartilage. Our findings suggest that damage to or surgical removal of the surface of this tissue will increase the joint's susceptibility to shear-induced damage. Finally, similar experiments are performed on intervertebral disc and growth plate, demonstrating the versatility of our in-situ strain mapping techniques.

  4. Biological Tissue Imaging with a Position and Time Sensitive Pixelated Detector

    CERN Document Server

    Jungmann, Julia H; MacAleese, Luke; Klinkert, Ivo; Visser, Jan; Heeren, Ron M A

    2013-01-01

    We demonstrate the capabilities of a highly parallel, active pixel detector for large-area, mass spectrometric imaging of biological tissue sections. A bare Timepix assembly (512x512 pixels) is combined with chevron microchannel plates on an ion microscope matrix-assisted laser desorption time-of-flight mass spectrometer (MALDI TOF-MS). The detector assembly registers position- and time-resolved images of multiple m/z species in every measurement frame. We prove the applicability of the detection system to bio-molecular mass spectrometry imaging on biologically relevant samples by mass-resolved images from Timepix measurements of a peptide-grid benchmark sample and mouse testis tissue slices. Mass-spectral and localization information of analytes at physiological concentrations are measured in MALDI-TOF-MS imaging experiments. We show a high spatial resolution (pixel size down to 740x740 nm2 on the sample surface) and a spatial resolving power of 6 {\\mu}m with a microscope mode laser field of view of 100-335 ...

  5. The models of experimental magnetic measurements of various biological samples

    International Nuclear Information System (INIS)

    Complete text of publication follows. At the Geomagnetic Institute, in the Laboratory for paleomagnetism and archeomagnetism research and at the Geomagnetic Observatory, Grocka (GCK) during the period from November 2004 to February 2008 the researchers carried out experimental magnetic measurements of the total-intensity gradient of the magnetic field vector (changes in the total magnetisation vector) of various biomaterials. Measurements of the gradient total intensity of the magnetic field vector were carried out by GSM-19 magnetometers of high accuracy and recording resolution (accuracy: ΔF=0.1 nT; sampling rate: 1-5 per second). During these experimental biomagnetic measurements samples of water, tissue, blood, cotton, wool, pitch and magnetite-powder were used. In this study, the part of the biomagnetic measurement results relate to the water, blood and tissue. The results of the measurements of gradient total-intensity of the magnetic field for the biomaterial samples showed physical processes which are connected with the diamagnetic and paramagnetic properties of such biomaterials.

  6. MEMS scanner enabled real-time depth sensitive hyperspectral imaging of biological tissue.

    Science.gov (United States)

    Wang, Youmin; Bish, Sheldon; Tunnell, James W; Zhang, Xiaojing

    2010-11-01

    We demonstrate a hyperspectral and depth sensitive diffuse optical imaging microsystem, where fast scanning is provided by a CMOS compatible 2-axis MEMS mirror. By using lissajous scanning patterns, large field-of-view (FOV) of 1.2 cmx1.2 cm images with lateral resolution of 100 µm can be taken at 1.3 frames-per-second (fps). Hyperspectral and depth-sensitive images were acquired on tissue simulating phantom samples containing quantum dots (QDs) patterned at various depths in Polydimethylsiloxane (PDMS). Device performance delivers 6 nm spectral resolution and 0.43 wavelengths per second acquisition speed. A sample of porcine epithelium with subcutaneously placed QDs was also imaged. Images of the biological sample were processed by spectral unmixing in order to qualitatively separate chromophores in the final images and demonstrate spectral performance of the imaging system. PMID:21164757

  7. Long-term room temperature preservation of corpse soft tissue: an approach for tissue sample storage

    Science.gov (United States)

    2011-01-01

    Background Disaster victim identification (DVI) represents one of the most difficult challenges in forensic sciences, and subsequent DNA typing is essential. Collected samples for DNA-based human identification are usually stored at low temperature to halt the degradation processes of human remains. We have developed a simple and reliable procedure for soft tissue storage and preservation for DNA extraction. It ensures high quality DNA suitable for PCR-based DNA typing after at least 1 year of room temperature storage. Methods Fragments of human psoas muscle were exposed to three different environmental conditions for diverse time periods at room temperature. Storage conditions included: (a) a preserving medium consisting of solid sodium chloride (salt), (b) no additional substances and (c) garden soil. DNA was extracted with proteinase K/SDS followed by organic solvent treatment and concentration by centrifugal filter devices. Quantification was carried out by real-time PCR using commercial kits. Short tandem repeat (STR) typing profiles were analysed with 'expert software'. Results DNA quantities recovered from samples stored in salt were similar up to the complete storage time and underscored the effectiveness of the preservation method. It was possible to reliably and accurately type different genetic systems including autosomal STRs and mitochondrial and Y-chromosome haplogroups. Autosomal STR typing quality was evaluated by expert software, denoting high quality profiles from DNA samples obtained from corpse tissue stored in salt for up to 365 days. Conclusions The procedure proposed herein is a cost efficient alternative for storage of human remains in challenging environmental areas, such as mass disaster locations, mass graves and exhumations. This technique should be considered as an additional method for sample storage when preservation of DNA integrity is required for PCR-based DNA typing. PMID:21846338

  8. Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples

    Science.gov (United States)

    Samek, O.; Beddows, D. C. S.; Telle, H. H.; Kaiser, J.; Liška, M.; Cáceres, J. O.; Gonzáles Ureña, A.

    2001-06-01

    We report on the application of laser-induced breakdown spectroscopy (LIBS) to the analysis of important minerals and the accumulation of potentially toxic elements in calcified tissue, to trace e.g. the influence of environmental exposure, and other medical or biological factors. This theme was exemplified for quantitative detection and mapping of Al, Pb and Sr in representative samples, including teeth (first teeth of infants, second teeth of children and teeth of adults) and bones (tibia and femur). In addition to identifying and quantifying major and trace elements in the tissues, one- and two-dimensional profiles and maps were generated. Such maps (a) provide time/concentration relations, (b) allow to follow mineralisation of the hydroxyapatite matrix and the migration of the elements within it and (c) enable to identify disease states, such as caries in teeth. In order to obtain quantitative calibration, reference samples in the form of pressed pellets with calcified tissue-equivalent material (majority compound of pellets is CaCO 3) were used whose physical properties closely resembled hydroxyapatite. Compounds of Al, Sr and Pb were added to the pellets, containing atomic concentrations in the range 100-10 000 ppm relative to the Ca content of the matrix. Analytical results based on this calibration against artificial samples for the trace elements under investigation agree with literature values, and with our atomic absorption spectroscopy (AAS) cross-validation measurements.

  9. Exercise and Regulation of Bone and Collagen Tissue Biology

    DEFF Research Database (Denmark)

    Kjær, Michael; Jørgensen, Niklas Rye; Heinemeier, Katja Maria;

    2015-01-01

    molecular and cellular signaling pathways and their adaptation to exercise is available. In contrast to tissue responses with exercise, lack of mechanical tissue loading through inactivity or immobilization of the human body will result in a dramatic loss of connective tissue content, structure, and...

  10. Determinate the BPA in biological samples by spectrophotometry

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a new radiation therapy, of which clinical interest has focused primarily on the treatment of high-grade gliomas. At present, the most effective drug for BNCT is p-Boronophenylalanine (BPA), because it has little side effect and low toxicity, persisted longer in tumors compared with related molecules. The method of 3-Methoxy-Methylenimine H spectrophotometry was established to measure the concentration of 10B in biological samples. The biodistribution of the BPA was studied in normal mice. (authors)

  11. Incubation Station for the Bacterial Growth Study in Biological Samples

    Directory of Open Access Journals (Sweden)

    Carlos Rafael Duharte Rodríguez

    2015-12-01

    Full Text Available This work shows the designing and characterization of a prototype of laboratory incubator as support of Microbiology research, in particular for the research of the bacterial growth in biological samples through optic methods (Turbidimetry and electrometric measurements of bioimpedance. It shows the results of simulation and experimentation of the design proposed for the canals of measurement of the variables: temperature and humidity, with a high linearity from the adequate selection of the corresponding sensors and the analogue components of every canal, controlled with help of a microcontroller AT89C51 (ATMEL with adequate benefi ts for this type of application.

  12. Ethanol analysis from biological samples by dual rail robotic autosampler.

    Science.gov (United States)

    Morris-Kukoski, Cynthia L; Jagerdeo, Eshwar; Schaff, Jason E; LeBeau, Marc A

    2007-05-01

    Detection, identification, and quantitation of ethanol and other low molecular weight volatile compounds in liquid matrices by headspace gas chromatography-flame ionization detection (HS-GC-FID) and headspace gas chromatography-mass spectrometry (HS-GC-MS) are becoming commonly used practices in forensic laboratories. Although it is one of the most frequently utilized procedures, sample preparation is usually done manually. Implementing the use of a dual-rail, programmable autosampler can minimize many of the manual steps in sample preparation. The autosampler is configured so that one rail is used for sample preparation and the other rail is used as a traditional autosampler for sample introduction into the gas chromatograph inlet. The sample preparation rail draws up and sequentially adds a saturated sodium chloride solution and internal standard (0.08%, w/v acetonitrile) to a headspace vial containing a biological sample, a calibrator, or a control. Then, the analytical rail moves the sample to the agitator for incubation, followed by sampling of the headspace for analysis. Using DB-624 capillary columns, the method was validated on a GC-FID and confirmed with a GC-MS. The analytes (ethanol, acetonitrile) and possible interferences (acetaldehyde, methanol, pentane, diethyl ether, acetone, isopropanol, methylene chloride, n-propanol, and isovaleraldehyde) were baseline resolved for both the GC-FID and GC-MS methods. This method demonstrated acceptable linearity from 0 to 1500 mg/dL. The lower limit of quantitation (LOQ) was determined to be 17 mg/dL and the limit of detection was 5 mg/dL. PMID:17223393

  13. Changes of color coordinates of biological tissue with superficial skin damage due to mechanical trauma

    Science.gov (United States)

    Pteruk, Vail; Mokanyuk, Olexander; Kvaternuk, Olena; Yakenina, Lesya; Kotyra, Andrzej; Romaniuk, Ryszard S.; Dussembayeva, Shynar

    2015-12-01

    Change of color coordinates of normal and pathological biological tissues is based on calculated spectral diffuse reflection. The proposed color coordinates of normal and pathological biological tissues of skin provided using standard light sources, allowing accurately diagnose skin damage due to mechanical trauma with a blunt object for forensic problems.

  14. Adaptive optics for deeper imaging of biological samples.

    Science.gov (United States)

    Girkin, John M; Poland, Simon; Wright, Amanda J

    2009-02-01

    Optical microscopy has been a cornerstone of life science investigations since its first practical application around 400 years ago with the goal being subcellular resolution, three-dimensional images, at depth, in living samples. Nonlinear microscopy brought this dream a step closer, but as one images more deeply the material through which you image can greatly distort the view. By using optical devices, originally developed for astronomy, whose optical properties can be changed in real time, active compensation for sample-induced aberrations is possible. Submicron resolution images are now routinely recorded from depths over 1mm into tissue. Such active optical elements can also be used to keep conventional microscopes, both confocal and widefield, in optimal alignment. PMID:19272766

  15. Quantitative and dynamic measurements of biological fresh samples with X-ray phase contrast tomography

    International Nuclear Information System (INIS)

    Quantitative measurements of biological fresh samples based on three-dimensional densitometry using X-ray phase contrast tomography are presented. X-ray phase contrast tomography using a Talbot grating interferometer was applied to biological fresh samples which were not fixed by any fixatives. To achieve a high-throughput measurement for the fresh samples the X-ray phase contrast tomography measurement procedure was improved. The three-dimensional structure of a fresh mouse fetus was clearly depicted as a mass density map using X-ray phase contrast tomography. The mouse fetus measured in the fresh state was then fixed by formalin and measured in the fixed state. The influence of the formalin fixation on soft tissue was quantitatively evaluated by comparing the fresh and fixed samples. X-ray phase contrast tomography was also applied to the dynamic measurement of a biological fresh sample. Morphological changes of a ring-shaped fresh pig aorta were measured tomographically under different degrees of stretching

  16. Quantitative and dynamic measurements of biological fresh samples with X-ray phase contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Masato, E-mail: hoshino@spring8.or.jp; Uesugi, Kentaro [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tsukube, Takuro [Japanese Red Cross Kobe Hospital, 1-3-1 Wakinohamakaigandori, Chuo-ku, Kobe, Hyogo 651-0073 (Japan); Yagi, Naoto [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2014-10-08

    Quantitative measurements of biological fresh samples based on three-dimensional densitometry using X-ray phase contrast tomography are presented. X-ray phase contrast tomography using a Talbot grating interferometer was applied to biological fresh samples which were not fixed by any fixatives. To achieve a high-throughput measurement for the fresh samples the X-ray phase contrast tomography measurement procedure was improved. The three-dimensional structure of a fresh mouse fetus was clearly depicted as a mass density map using X-ray phase contrast tomography. The mouse fetus measured in the fresh state was then fixed by formalin and measured in the fixed state. The influence of the formalin fixation on soft tissue was quantitatively evaluated by comparing the fresh and fixed samples. X-ray phase contrast tomography was also applied to the dynamic measurement of a biological fresh sample. Morphological changes of a ring-shaped fresh pig aorta were measured tomographically under different degrees of stretching.

  17. Theoretical and observational analysis of individual ionizing particle effects in biological tissue

    International Nuclear Information System (INIS)

    The microstructural damage to living tissue caused by heavy ion radiation was studied. Preliminary tests on rat corneal tissue, rat cerebellar tissue grown in culture, and rat retinal tissue indicated that the best assay for heavy ion damage is the rat cornea. The corneal tissue of the living rat was exposed to beams of carbon at 474 MeV/amu, neon at 8.5 MeV/amu, argon at 8.5 MeV/amu, silicon at 530 MeV/amu, iron at 500 MeV/amu, and iron at 600 MeV/amu. X-rays were also used on corneas to compare with the heavy ion irradiated corneas. Scanning electron microscopy revealed lesions with circular symmetry on the external plasma membranes of corneal epithelium which were irradiated with heavy ions, but similar lesions were not observed on the plasma membranes of x-ray irradiated or non-irradiated control samples. These data verify the special way in which heavy ions interact with matter: each ion interacts coulombically with electrons all along its trajectory to generate a track. The dose from heavy ion radiation is not distributed homogeneously on a tissue microstructural scale but is concentrated along the individual particle track. Even along a single particle track the dose is discontinuous except at the Bragg peak when the LET is maximum. Micrographs of heavy-ion-irradiated corneas demonstrated two significant correlations with the heavy ion beam: (1) the number of plasma membrane lesions per unit area was correlated with the particle fluence, and (2) the diameter of the lesions were linearly related to the energy loss or LET of the individual particle. These observations corroborate what has already been suggested theoretically about heavy ion tracks and what has been shown experimentally. But the new data indicate that particle tracks occur in biological tissues as well, and that a single heavy ion is responsible for each membrane lesion

  18. Microsystem strategies for sample preparation in biological detection.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D.; Galambos, Paul C.; Bennett, Dawn Jonita (University of Maryland Baltimore County, Baltimore, MD); Manginell, Monica; Okandan, Murat; Acrivos, Andreas (The City College of New York, NY); Brozik, Susan Marie; Khusid, Boris (New Jersey Institute of Technology, Newark, NJ)

    2005-03-01

    The objective of this LDRD was to develop microdevice strategies for dealing with samples to be examined in biological detection systems. This includes three sub-components: namely, microdevice fabrication, sample delivery to the microdevice, and sample processing within the microdevice. The first component of this work focused on utilizing Sandia's surface micromachining technology to fabricate small volume (nanoliter) fluidic systems for processing small quantities of biological samples. The next component was to develop interfaces for the surface-micromachined silicon devices. We partnered with Micronics, a commercial company, to produce fluidic manifolds for sample delivery to our silicon devices. Pressure testing was completed to examine the strength of the bond between the pressure-sensitive adhesive layer and the silicon chip. We are also pursuing several other methods, both in house and external, to develop polymer-based fluidic manifolds for packaging silicon-based microfluidic devices. The second component, sample processing, is divided into two sub-tasks: cell collection and cell lysis. Cell collection was achieved using dielectrophoresis, which employs AC fields to collect cells at energized microelectrodes, while rejecting non-cellular particles. Both live and dead Staph. aureus bacteria have been collected using RF frequency dielectrophoresis. Bacteria have been separated from polystyrene microspheres using frequency-shifting dielectrophoresis. Computational modeling was performed to optimize device separation performance, and to predict particle response to the dielectrophoretic traps. Cell lysis is continuing to be pursued using microactuators to mechanically disrupt cell membranes. Novel thermal actuators, which can generate larger forces than previously tested electrostatic actuators, have been incorporated with and tested with cell lysis devices. Significant cell membrane distortion has been observed, but more experiments need to be

  19. The use of contrast agent for imaging biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J; Sopko, V; Jakubek, J [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ 12800 Prague 2 (Czech Republic); Weyda, F, E-mail: jiri.dammer@utef.cvut.cz [Biological center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic)

    2011-01-15

    The technique of X-ray transmission imaging has been available for over a century and is still among the fastest and easiest approaches to the studies of internal structure of biological samples. Recent advances in semiconductor technology have led to the development of new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Semiconductor pixel detectors seem to be specially promising; compared to the film technique, they provide single-quantum and real-time digital information about the objects being studied. We describe the recently developed radiographic apparatus, equipped with Medipix2 semiconductor pixel detector. The detector is used as an imager that counts individual photons of ionizing radiation, emitted by an X-ray tube (micro- or nano-focus FeinFocus). Thanks to the wide dynamic range of the Medipix2 detector and its high spatial resolution better than 1{mu}m, the setup is particularly suitable for radiographic imaging of small biological samples, including in-vivo observations with contrast agent (Optiray). Along with the description of the apparatus we provide examples of the use iodine contrast agent as a tracer in various insects as model organisms. The motivation of our work is to develop our imaging techniques as non-destructive and non-invasive. Microradiographic imaging helps detect organisms living in a not visible environment, visualize the internal biological processes and also to resolve the details of their body (morphology). Tiny live insects are an ideal object for our studies.

  20. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    Science.gov (United States)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  1. Cone-beam x-ray phase contrast tomography of biological samples; Optimization of contrast, resolution and field of view

    OpenAIRE

    Bartels, Matthias

    2013-01-01

    Three-dimensional information of entire objects can be obtained by the remarkable technique of computed tomography (CT). In combination with phase sensitive X-ray imaging high contrast for soft tissue structures can be achieved as opposed to CT based on classical radiography. In this work biological samples ranging from micrometer sized single cells over multi-cellular nerve tissue to entire millimeter sized organs are investigated by use of cone-beam propagationbased X-ray phase contrast. Op...

  2. Evaluation of impedance on biological Tissues using automatic control measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo [Pusan National University, Yangsan (Korea, Republic of); Lee, Moo Seok; Kim, Sang Sik [Pusan National University, Busan (Korea, Republic of); Kim, Gun FDo; Lee, Jong Kyu [Pukyung National University, Busan (Korea, Republic of)

    2015-08-15

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  3. Radiochemical separation and determination of europium by Ge(Li) detector in biological tissues

    International Nuclear Information System (INIS)

    A simple neutron activation method has been developed for the determination of europium in biological tissues and applied in the analysis of marine organism samples at the nanogram level. The method is based on the separation, by ion-exchange, of the rare earth group from dry or ashed irradiated tissues and subsequent determination of sup(152m)Eu, by γ-spectrometry using a lithium drifted germanium detector. sup(152m)Eu, separated almost completely from other than rare earth elements, with better than 98% chemical yield, is counted on the 121.8 keV photopeak which than is practically free from any other γ-ray energy interfering in this counting. The determination of europium was tested in ten dry tissue samples of a marine organism for precision. The relative standard deviation found, 9%, is good enough compared with the 50% precision of the results given in the literature. The accuracy of the method is not tested, since the results for Eu in BOWEN's kale are dispersed. (T.G.)

  4. Data analysis in Raman measurements of biological tissues using wavelet techniques

    Science.gov (United States)

    Gaeta, Giovanni M.; Zenone, Flora; Camerlingo, Carlo; Riccio, Roberto; Moro, Gianfranco; Lepore, Maria; Indovina, Pietro L.

    2005-03-01

    Raman spectroscopy of oral tissues is a promising tool for in vivo diagnosis of oral pathologies, due to the high chemical and structural information content of Raman spectra. However, measurements on biological tissues are usually hindered by low level signals and by the presence of interfering noise and background components due to light diffusion or fluorescence processes. Numerical methods can be used in data analysis, in order to overcome these problems. In this work the wavelet multicomponent decomposition approach has been tested in a series of micro-Raman measurements performed on "in vitro" animal tissue samples. The experimental set-up was mainly composed by a He-Ne laser and a monochromator equipped with a liquid nitrogen cooled CCD equipped with a grating of 1800 grooves/mm. The laser light was focused on the sample surface by means of a 50 X optical objective. The resulting spectra were analysed using a wavelet software package and the contribution of different vibration modes have been singled out. In particular, the C=C stretching mode, and the CH2 bending mode of amide I and amide III and tyrosine contributions were present. The validity of wavelet approach in the data treatment has been also successfully tested on aspirin.

  5. Exercise and Regulation of Bone and Collagen Tissue Biology

    DEFF Research Database (Denmark)

    Kjær, Michael; Jørgensen, Niklas Rye; Heinemeier, Katja Maria;

    2015-01-01

    The musculoskeletal system and its connective tissue include the intramuscular connective tissue, the myotendinous junction, the tendon, the joints with their cartilage and ligaments, and the bone; they all together play a crucial role in maintaining the architecture of the skeletal muscle...

  6. The determination of americium, curium and californium in biological samples by combined solvent extraction-liquid scintillation counting

    International Nuclear Information System (INIS)

    A method has been developed to extract Am, Cm and Cf from ashed biological samples dissolved in 8 M LiN03-10-2 M HN03 into a liquid/scintillation cocktail. This new method reduces tissue and instrument background and allows use of a larger sample for analysis than when using a commercial gelling cocktail. The extractant cocktail is 20% N,N,N-trioctyl-N-methylammonium chloride dissolved in toluene containing the scintillators p-terphenyl and 1,4-bis-2-(5-phenyl-oxazolyl)-benzene. Several different types of biological samples were analyzed and radionuclide recoveries greater than 90% were obtained in all cases. (author)

  7. Recommendations for sampling for prevention of hazards in civil defense. On analytics of chemical, biological and radioactive contaminations. Brief instruction for the CBRN (chemical, biological, radioactive, nuclear) sampling

    International Nuclear Information System (INIS)

    The recommendation for sampling for prevention of hazards in civil defense is describing the analytics of chemical, biological and radioactive contaminations and includes detail information on the sampling, protocol preparation and documentation procedures. The volume includes a separate brief instruction for the CBRN (chemical, biological, radioactive, nuclear) sampling.

  8. The two coupling fluids method for ultrasonic velocity measurement. Application to biological tissues

    International Nuclear Information System (INIS)

    Measuring the ultrasonic velocity in soft materials, especially in biological tissues, is never easy. One of the main issues is that the thickness of the sample under test is badly defined. From the time-of-flight measurement method, uncertainties in the thickness induce important uncertainties in experimental results. This implies that the ultrasonic velocity is often a poor criterion when it could be a good one. This paper introduces a new method to measure the ultrasonic velocity in soft materials without knowing the sample thickness The main idea of this method is to use two different coupling media to make two relative time-of-flight measurements. The comparison of these two measurements gives the ultrasonic velocity in the sample under test. Furthermore, this comparison can give the local thickness of the sample. The uncertainty calculations show that the effect on the thickness is drastically reduced by using this new ultrasound method. This method is validated on a reference sample (silicone). Before conclusion, some experimental results obtained with mouse skin samples are presented

  9. Pressure pulse induced-damage in live biological samples

    Science.gov (United States)

    Bo, C.; Balzer, J.; Godfrey, S.; Francois, M.; Saffell, J. L.; Rankin, S. M.; Proud, W. G.; Brown, K. A.

    2012-08-01

    Developing a cellular and molecular understanding of the nature of traumatic and post-traumatic effects of blast on live biological samples is critical for improving clinical outcomes. To analyze the effects of blast waves upon the cellular structures and the underlying physiological and biochemical changes, we have constructed an experimental platform capable of delivering compression waves, of amplitudes relevant to blast, to cell suspensions in a contained environment. Initial characterization of the system shows that cell cultures can be subjected to high-intensity compression waves up to 15 MPa in pressure and duration of 80 ± 10μs. Studies of mouse mesenchymal stem cells subjected to two different pressure impulses were analysed by cell counting, cell viability assays and microscopic evaluation: the experiments present evidence suggestive of increased levels of damage and loss of cellular integrity compared to uncompressed cell cultures.

  10. Digital holography microscopy in 3D biologic samples analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ricardo, J O; Palacios, F; Palacios, G F; Sanchez, A [Department of Physics, University of Oriente (Cuba); Muramatsu, M [Department of General Physics, University of Sao Paulo - Sao Paulo (Brazil); Gesualdi, M [Engineering center, Models and Applied Social Science, UFABC - Sao Paulo (Brazil); Font, O [Department of Bio-ingeniering, University of Oriente - Santiago de Cuba (Cuba); Valin, J L [Mechanics Department, ISPJAE, Habana (Cuba); Escobedo, M; Herold, S [Department of Computation, University of Oriente (Cuba); Palacios, D F, E-mail: frpalaciosf@gmail.com [Department of Nuclear physics, University of Simon BolIva (Venezuela, Bolivarian Republic of)

    2011-01-01

    In this work it is used a setup for Digital Holography Microscopy (MHD) for 3D biologic samples reconstruction. The phase contrast image reconstruction is done by using the Double propagation Method. The system was calibrated and tested by using a micrometric scale and pure phase object respectively. It was simulated the human red blood cell (erythrocyte) and beginning from the simulated hologram the digital 3D phase image for erythrocytes it was calculated. Also there was obtained experimental holograms of human erythrocytes and its corresponding 3D phase images, being evident the correspondence qualitative and quantitative between these characteristics in the simulated erythrocyte and in the experimentally calculated by DHM in both cases.

  11. Digital holography microscopy in 3D biologic samples analysis

    International Nuclear Information System (INIS)

    In this work it is used a setup for Digital Holography Microscopy (MHD) for 3D biologic samples reconstruction. The phase contrast image reconstruction is done by using the Double propagation Method. The system was calibrated and tested by using a micrometric scale and pure phase object respectively. It was simulated the human red blood cell (erythrocyte) and beginning from the simulated hologram the digital 3D phase image for erythrocytes it was calculated. Also there was obtained experimental holograms of human erythrocytes and its corresponding 3D phase images, being evident the correspondence qualitative and quantitative between these characteristics in the simulated erythrocyte and in the experimentally calculated by DHM in both cases.

  12. Biological sample preparation and 41Ca AMS measurement at LLNL

    International Nuclear Information System (INIS)

    Calcium metabolism in biology may be better understood by the use of 41Ca tracer, although requiring detection by accelerator mass spectrometry (AMS). Methodologies for preparation of urine samples and subsequent AMS measurement were investigated. Novel attempts at preparing CaH2 were unsuccessful, but CaF2 of sufficient purity could be produced by precipitation of calcium from urine as oxalate, followed by separation of calcium by cation exchange chromatography and washing the CaF2 precipitate. The presence of some remaining impurities could be compensated for by selecting the appropriate accelerated ion charge state for AMS. The use of projectile X-rays for isobar discrimination was explored as an alternative to the co nventional dE/dx detector. (orig.)

  13. Angular dispersive diffraction microCT of small breast tissue samples

    International Nuclear Information System (INIS)

    A diffraction microCT system was used at a synchrotron radiation source to create images of small breast tissue samples which highlight the fatty regions within the samples. Transmission microCT images of the samples were also obtained for correlation with, and attenuation correction of, the diffraction images. The results show that diffraction techniques have the ability to increase contrast between tissue types and also that an attenuation correction has no significant effect when imaging small tissue samples at mammographic energies

  14. An electrical model of biological tissues undergoing hyperaemia

    Science.gov (United States)

    Olmi, R.; Andreoli, S.; Bini, M.; Feroldi, P.; Spiazzi, L.

    1998-11-01

    Tissue hyperaemia is a physiological consequence of the temperature increase that follows, for example, the absorption of electromagnetic or ultrasound power in clinical diathermy. Diathermy, as well as other physical therapies (for example massotherapy), affects the local blood content of tissues through various mechanisms (vasoconstriction/dilatation, opening/closing of precapillary sphincters). A method for evaluating hyperaemia in superficial and medium-depth tissues has been recently proposed, which is based on four-electrode impedance measurements. A microcirculation model has also been developed to describe the hyperaemic effects of local diathermic therapy. This paper describes an electrical model of the tissues in hyperaemic conditions which allows us to correlate electrical impedance measurements to microcirculation modifications.

  15. Biological tissue magnetism in the frame of iron overload diseases

    International Nuclear Information System (INIS)

    The conspicuous magnetic properties of iron, paradoxically, rarely participate in the methods routinely employed in the clinical environment to detect iron containing species in tissues. In the organism iron is just a trace metal and it mostly occurs as part of haemoproteins or ferritin, which show paramagnetic, diamagnetic or antiferromagnetic behaviour, hence resulting in a very low contribution to the tissue susceptibility. Detailed magnetic measurements make it nowadays possible to identify such species in tissues that correspond to individuals with iron overload pathologies. Since, as alternatives to the conventional biopsy, magnetism-based noninvasive techniques to diagnose and manage such diseases are recently under development, the deep knowledge of the magnetic properties of the different forms of iron in tissues is of high applied interest

  16. Mapping molecular orientational distributions for biological sample in 3D (Conference Presentation)

    Science.gov (United States)

    HE, Wei; Ferrand, Patrick; Richter, Benjamin; Bastmeyer, Martin; Brasselet, Sophie

    2016-04-01

    Measuring molecular orientation properties is very appealing for scientists in molecular and cell biology, as well as biomedical research. Orientational organization at the molecular scale is indeed an important brick to cells and tissues morphology, mechanics, functions and pathologies. Recent work has shown that polarized fluorescence imaging, based on excitation polarization tuning in the sample plane, is able to probe molecular orientational order in biological samples; however this applies only to information in 2D, projected in the sample plane. To surpass this limitation, we extended this approach to excitation polarization tuning in 3D. The principle is based on the decomposition of any arbitrary 3D linear excitation in a polarization along the longitudinal z-axis, and a polarization in the transverse xy-sample plane. We designed an interferometer with one arm generating radial polarization light (thus producing longitudinal polarization under high numerical aperture focusing), the other arm controlling a linear polarization in the transverse plane. The amplitude ratio between the two arms can vary so as to get any linear polarized excitation in 3D at the focus of a high NA objective. This technique has been characterized by polarimetry imaging at the back focal plane of the focusing objective, and modeled theoretically. 3D polarized fluorescence microscopy is demonstrated on actin stress fibers in non-flat cells suspended on synthetic polymer structures forming supporting pillars, for which heterogeneous actin orientational order could be identified. This technique shows a great potential in structural investigations in 3D biological systems, such as cell spheroids and tissues.

  17. Large area synchrotron X-ray fluorescence mapping of biological samples

    International Nuclear Information System (INIS)

    Large area mapping of inorganic material in biological samples has suffered severely from prohibitively long acquisition times. With the advent of new detector technology we can now generate statistically relevant information for studying cell populations, inter-variability and bioinorganic chemistry in large specimen. We have been implementing ultrafast synchrotron-based XRF mapping afforded by the MAIA detector for large area mapping of biological material. For example, a 2.5 million pixel map can be acquired in 3 hours, compared to a typical synchrotron XRF set-up needing over 1 month of uninterrupted beamtime. Of particular focus to us is the fate of metals and nanoparticles in cells, 3D tissue models and animal tissues. The large area scanning has for the first time provided statistically significant information on sufficiently large numbers of cells to provide data on intercellular variability in uptake of nanoparticles. Techniques such as flow cytometry generally require analysis of thousands of cells for statistically meaningful comparison, due to the large degree of variability. Large area XRF now gives comparable information in a quantifiable manner. Furthermore, we can now image localised deposition of nanoparticles in tissues that would be highly improbable to 'find' by typical XRF imaging. In addition, the ultra fast nature also makes it viable to conduct 3D XRF tomography over large dimensions. This technology avails new opportunities in biomonitoring and understanding metal and nanoparticle fate ex-vivo. Following from this is extension to molecular imaging through specific anti-body targeted nanoparticles to label specific tissues and monitor cellular process or biological consequence

  18. Methods in Enzymology (MIE): Methods of Adipose Tissue Biology-: Chapter 7: Imaging of Adipose Tissue

    OpenAIRE

    Berry, Ryan; Church, Christopher; Gericke, Martin T; Jeffery, Elise; Colman, Laura; Rodeheffer, Matthew S.

    2014-01-01

    Adipose tissue is an endocrine organ that specializes in lipid metabolism and is distributed throughout the body in distinct white adipose tissue (WAT) and brown adipose tissue (BAT) depots. These tissues have opposing roles in lipid metabolism with WAT storing excessive caloric intake in the form of lipid, and BAT burning lipid through non-shivering thermogenesis. As accumulation of lipid in mature adipocytes of WAT leads to obesity and increased risk of comorbidity (Pi-Sunyer et al., 1998),...

  19. Application of Compton suppression spectrometry in the improvement of nuclear analytical techniques for biological samples

    International Nuclear Information System (INIS)

    Compton Suppression Factors (SF) and Compton Reduction Factors (RF) of the UT Austin's Compton suppression spectrometer being parameters characterizing the system performance were measured using ''1''3''7Cs and ''6''0Co point sources. The system performance was evaluated as a function of energy and geometry. The (P/C), A(P/C), (P/T), Cp, and Ce were obtained for each of the parameters. The natural background reduction factor in the anticoincidence mode and that of normal mode was calculated and its effect on the detection limit of biological samples evaluated. Applicability of the spectrometer and the method for biological samples was tested in the measurement of twenty-four elements (Ba, Sr, I, Br, Cu, V, Mg, Na, Cl, Mn, Ca, Sn, In, K, Mo, Cd, Zn, As, Sb, Ni, Rb, Cs, Fe, and Co) commonly found in food, milk, tea and tobacco items. They were determined from seven National Institute for Standard and Technology (NIST) certified reference materials (rice flour, oyster tissue, non-fat powdered milk, peach leaves, tomato leaves, apple leaves, and citrus leaves). Our results shows good agreement with the NIST certified values, indicating that the method developed in the present study is suitable for the determination of aforementioned elements in biological samples without undue interference problems

  20. Studying Genes in Tissue Samples From Younger and Adolescent Patients With Soft Tissue Sarcomas

    Science.gov (United States)

    2016-05-13

    Childhood Alveolar Soft-part Sarcoma; Childhood Angiosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Childhood Epithelioid Sarcoma; Childhood Fibrosarcoma; Childhood Leiomyosarcoma; Childhood Liposarcoma; Childhood Malignant Mesenchymoma; Childhood Neurofibrosarcoma; Childhood Synovial Sarcoma; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Recurrent Childhood Soft Tissue Sarcoma

  1. Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam.

    Science.gov (United States)

    Little, J P; Tevelen, G; Adam, C J; Evans, J H; Pearcy, M J

    2009-07-01

    Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the

  2. Spectroscopy of Multilayered Biological Tissues for Diabetes Care

    Science.gov (United States)

    Yudovsky, Dmitry

    Neurological and vascular complications of diabetes mellitus are known to cause foot ulceration in diabetic patients. Present clinical screening techniques enable the diabetes care provider to triage treatment by identifying diabetic patients at risk of foot ulceration. However, these techniques cannot effectively identify specific areas of the foot at risk of ulceration. This study aims to develop non-invasive optical techniques for accurate assessment of tissue health and viability with spatial resolution on the order of 1 mm². The thesis can be divided into three parts: (1) the use of hyperspectral tissue oximetry to detect microcirculatory changes prior to ulcer formation, (2) development of a two-layer tissue spectroscopy algorithm and its application to detection of callus formation or epidermal degradation prior to ulceration, and (3) multi-layered tissue fluorescence modeling for identification of bacterial growth in existing diabetic foot wounds. The first part of the dissertation describes a clinical study in which hyperspectral tissue oximetry was performed on multiple diabetic subjects at risk of ulceration. Tissue oxyhemoglobin and deoxyhemoglobin concentrations were estimated using the Modified Beer-Lambert law. Then, an ulcer prediction algorithm was developed based on retrospective analysis of oxyhemoglobin and deoxyhemoglobin concentrations in sites that were known to ulcerate. The ulcer prediction algorithm exhibited a large sensitivity but low specificity of 95 and 80%, respectively. The second part of the dissertation revisited the hyperspectral data presented in part one with a new and novel two-layer tissue spectroscopy algorithm. This algorithm was able to detect not only oxyhemoglobin and deoxyhemoglobin concentrations, but also the thickness of the epidermis, and the tissue's scattering coefficient. Specifically, change in epidermal thickness provided insight into the formation of diabetic foot ulcers over time. Indeed, callus formation or

  3. Analysis of biological slurry samples by total x-ray fluorescence after in situ microwave digestion

    International Nuclear Information System (INIS)

    Biological slurry samples were analyzed by total reflection x-ray fluorescence (TXRF) after an in situ microwave digestion procedure on the quartz reflector. This method lead to the removal of the matrix by the digestion and permits the enrichment of the analites by using sample amounts higher than those normally used in TXRF for the thin layer requirement since the organic matrix is removed. In consequence, the pre-concentration of sample is performed and the detection capability is increased by a quasi direct method. The samples analyzed were the international IAEA blood standard, the SRM bovine liver 1577-a standard and fresh onion tissues. Slurries were prepared in three ways: a.- weighing a sample amount on the reflector and adding suprapure nitric acid and internal standard followed by microwave digestion, b.-weighing a sample amount and water with an appropriate concentration of the internal standard in an Eppendorf vial, taking then an aliquot to the quartz reflector for microwave digestion with suprapure nitric acid, c.- weighing a sample amount of fresh tissue, homogenising with high speed homegenator to obtain a slurry sample which can be diluted in an ependorf vial with water an the internal standard. Then an aliquot is taken to the reflector for microwave digestion with suprapure nitric acid. Further details of sample preparation procedures will be discussed during presentation. The analysis was carried out in a Canberra spectrometer using the Kalpha lines of the Ag and Mo tubes. The elements Ca, K, Fe, Cu, Zn, Se, Mn, Rb, Br, Sr were determined. The effect of the preparation procedure was evaluated by the accuracy and precision of the results for each element and the percent of recovery. (author)

  4. Atmospheric-pressure molecular imaging of biological tissues and biofilms by LAESI mass spectrometry.

    Science.gov (United States)

    Nemes, Peter; Vertes, Akos

    2010-01-01

    Ambient ionization methods in mass spectrometry allow analytical investigations to be performed directly on a tissue or biofilm under native-like experimental conditions. Laser ablation electrospray ionization (LAESI) is one such development and is particularly well-suited for the investigation of water-containing specimens. LAESI utilizes a mid-infrared laser beam (2.94 μm wavelength) to excite the water molecules of the sample. When the ablation fluence threshold is exceeded, the sample material is expelled in the form of particulate matter and these projectiles travel to tens of millimeters above the sample surface. In LAESI, this ablation plume is intercepted by highly charged droplets to capture a fraction of the ejected sample material and convert its chemical constituents into gas-phase ions. A mass spectrometer equipped with an atmospheric-pressure ion source interface is employed to analyze and record the composition of the released ions originating from the probed area (pixel) of the sample. A systematic interrogation over an array of pixels opens a way for molecular imaging in the microprobe analysis mode. A unique aspect of LAESI mass spectrometric imaging is depth profiling that, in combination with lateral imaging, enables three-dimensional (3D) molecular imaging. With current lateral and depth resolutions of ~100 μm and ~40 μm, respectively, LAESI mass spectrometric imaging helps to explore the molecular structure of biological tissues. Herein, we review the major elements of a LAESI system and provide guidelines for a successful imaging experiment. PMID:20834223

  5. Magnetic induction spectroscopy: non-contact measurement of the electrical conductivity spectra of biological samples

    International Nuclear Information System (INIS)

    Measurement of the electrical conductivity of biological tissues as a function of frequency, often termed ‘bioelectrical impedance spectroscopy (BIS)’, provides valuable information on tissue structure and composition. In implementing BIS though, there can be significant practical difficulties arising from the electrode–sample interface which have likely limited its deployment in industrial applications. In magnetic induction spectroscopy (MIS) these difficulties are eliminated through the use of fully non-contacting inductive coupling between the sensors and sample. However, inductive coupling introduces its own set of technical difficulties, primarily related to the small magnitudes of the induced currents and their proportionality with frequency. This paper describes the design of a practical MIS system incorporating new, highly-phase-stable electronics and compares its performance with that of electrode-based BIS in measurements on biological samples including yeast suspensions in saline (concentration 50–400 g l−1) and solid samples of potato, cucumber, tomato, banana and porcine liver. The shapes of the MIS spectra were in good agreement with those for electrode-based BIS, with a residual maximum discrepancy of 28%. The measurement precision of the MIS was 0.05 S m−1 at 200 kHz, improving to 0.01 S m−1 at a frequency of 20 MHz, for a sample volume of 80 ml. The data-acquisition time for each MIS measurement was 52 s. Given the value of spectroscopic conductivity information and the many advantages of obtaining these data in a non-contacting manner, even through electrically-insulating packaging materials if necessary, it is concluded that MIS is a technique with considerable potential for monitoring bio-industrial processes and product quality. (paper)

  6. Elements determination of clinical relevance in biological tissues Dmdmdx/J dystrophic mice strains investigated by NAA

    International Nuclear Information System (INIS)

    In this work the determination of chemistry elements in biological tissues (whole blood, bones and organs) of dystrophic mice, used as animal model of Duchenne Muscular Dystrophy (DMD), was performed using analytical nuclear technique. The aim of this work was to determine reference values of elements of clinical (Ca, Cl, K, Mg, Na) and nutritional (Br and S) relevance in whole blood, tibia, quadriceps and hearts from Dmdmdx/J (10 males and 10 females) dystrophic mice and C57BL/6J (10 males) control group mice, using Neutron Activation Analysis technique (NAA). To show in more details the alterations that this disease may cause in these biological tissues, correlations matrixes of the DMDmdx/J mouse strain were generated and compared with C57BL/6J control group. For this study 119 samples of biological tissue were irradiated in the IEA-R1 nuclear reactor at IPEN (Sao Paulo, Brazil). The concentrations of these elements in biological tissues of Dmdmdx/J and C57B/6J mice are the first indicative interval for reference values. Moreover, the alteration in some correlation coefficients data among the elements in the health status and in the diseased status indicates a connection between these elements in whole blood, tibia, quadriceps and heart. These results may help the researchers to evaluate the efficiency of new treatments and to compare the advantages of different treatment approaches before performing tests in patients with muscular dystrophy. (author)

  7. Label-free three-dimensional reconstruction of biological samples (Conference Presentation)

    Science.gov (United States)

    Aknoun, Sherazade; Bon, Pierre; Savatier, Julien; Monneret, Serge; Wattellier, Benoit F.

    2016-03-01

    We describe the use of spatially incoherent illumination combined with quantitative phase imaging (QPI) [1] to make tridimensional reconstruction of semi-transparent biological samples. Quantitative phase imaging is commonly used with coherent illumination for the relatively simple interpretation of the phase measurement. We propose to use spatially incoherent illumination which is known to increase lateral and axial resolution compared to classical coherent illumination. The goal is to image thick samples with intracellular resolution [2]. The 3D volume is imaged by axially scanning the sample with a quadri-wave lateral shearing interferometer used as a conventional camera while using spatially incoherent white-light illumination (native microscope halogen source) or NIR light. We use a non-modified inverted microscope equipped with a Z-axis piezo stage. A z-stack is recorded by objective translation along the optical axis. The main advantages of this approach are its easy implementation, compared to the other state-of-the-art diffraction tomographic setups, and its speed which makes even label-free 3D living sample imaging possible. A deconvolution algorithm is used to compensate for the loss in contrast due to spatially incoherent illumination. This makes the tomographic volume phase values quantitative. Hence refractive index could be recovered from the optical slices. We will present tomographic reconstruction of cells, thick fixed tissue of few tens of micrometers using white light, and the use of NIR light to reach deeper planes in the tissue.

  8. Label-free three dimensional reconstruction of biological samples (Conference Presentation)

    Science.gov (United States)

    Aknoun, Sherazade; Bon, Pierre; Savatier, Julien; Monneret, Serge; Wattellier, Benoit F.

    2016-03-01

    We describe the use of spatially incoherent illumination combined with quantitative phase imaging (QPI) [1] to make tridimensional reconstruction of semi-transparent biological samples. Quantitative phase imaging is commonly used with coherent illumination for the relatively simple interpretation of the phase measurement. We propose to use spatially incoherent illumination which is known to increase lateral and axial resolution compared to classical coherent illumination. The goal is to image thick samples with intracellular resolution [2]. The 3D volume is imaged by axially scanning the sample with a quadri-wave lateral shearing interferometer used as a conventional camera while using spatially incoherent white-light illumination (native microscope halogen source) or NIR light. We use a non-modified inverted microscope equipped with a Z-axis piezo stage. A z-stack is recorded by objective translation along the optical axis. The main advantages of this approach are its easy implementation, compared to the other state-of-the-art diffraction tomographic setups, and its speed which makes even label-free 3D living sample imaging possible. A deconvolution algorithm is used to compensate for the loss in contrast due to spatially incoherent illumination. This makes the tomographic volume phase values quantitative. Hence refractive index could be recovered from the optical slices. We will present tomographic reconstruction of cells, thick fixed tissue of few tens of micrometers using white light, and the use of NIR light to reach deeper planes in the tissue.

  9. Three approaches for direct analysis of biological samples by Total reflection X-Ray Fluorescence analysis

    International Nuclear Information System (INIS)

    One of the main advantages of the Total reflection X-Ray Fluorescence technique is feasibility of the direct analysis of the sample. taking in account this fact, three methods for the direct analysis of biological samples were evaluated For the evaluation of the method of Compton peak standardization serum, brain tissue, urine and amniotic fluid matrices were analyzed using compton Peak and the elements Co, and V as internal standard. In the case the sample itself is used as calibration standard. The method is reliable for the analysis of serum and brain tissue samples. The analytical quality of the results was similar to that obtained by the conventional method. The results were in good agreements with those obtained by the atomic absorption technique. The second method was applied to the certified Bovine Liver Standard sample 1577a. Experimental conditions for the microwave acid digestion of the solid sample directly on the quartz reflector were found, The percent of recovery of the elements S, Ci, K, Ca, Mn, Fe, Cu, Zn, Se, Br, and Rb carried between 85% and 115% and The precision was below the 10% of relative standards deviations for ten independent replicates. In the third method the concept of chemical modifications is adapted to the Total reflection X-Ray Fluorescence technique. In these experiments the main objective was the elimination of Chlorine from the matrix following the in situ addition of the reactive ammonium nitrate and heating. The method was applied to high saline content samples, i.e. amniotic fluid samples, Special care was given to the volatile elements and to the quality of the thin layer. an enhancement of the sensitivity was found for those elements with signals near the chlorine k-Alfa signal after the modifications procedure

  10. Elemental analysis of biological tissues of animal models in muscular dystrophies investigation

    International Nuclear Information System (INIS)

    Element concentrations in biological tissues of Dmdmdx/J and C57BL/6 J mice strains were determined using the neutron activation analysis technique. Samples of whole blood, bones and organs (heart and muscle) of these strains were irradiated in the IEA-R1 nuclear reactor at IPEN-CNEN/SP (Brazil). To perform this investigation biological samples of two-month-old adult females (n = 10) and males (n = 9) for Dmdmdx/J (dystrophic mice), and males (n 12) for C57BL/6 J (control group), originally obtained from the Jackson Laboratory (Maine, USA) and further inbred at IPEN-CNEN/SP (Sao Paulo, Brazil), were used. A significant change was observed in the analysis of the heart of dystrophic mice suggesting that this dysfunction affects severely the heart muscle. These data may, in the future, contribute to the healthcare area, in veterinary medicine and in the pharmaceutical industry allowing the evaluation of the best procedures in diagnosis, treatment and investigations of neuromuscular diseases (muscular dystrophy) of patients through the use of animal models. (author)

  11. Evaluation of a gas chromatography method for azelaic acid determination in selected biological samples

    Directory of Open Access Journals (Sweden)

    Mahdi Garelnabi

    2010-09-01

    Full Text Available Background: Azelaic acid (AzA is the best known dicarboxilic acid to have pharmaceutical benefits and clinical applications and also to be associated with some diseases pathophysiology. Materials and Methods: We extracted and methylesterified AzA and determined its concentration in human plasma obtained from healthy individuals and also in mice fed AzA containing diet for three months. Results: AzA was detected in Gas Chromatography (GC and confirmed by Liquid chromatography mass spectrometry (LCMS, and gas chromatography mass spectrometry (GCMC. Our results have shown that AzA can be determined efficiently in selected biological samples by GC method with 1nM limit of detection (LoD and the limit of quantification (LoQ; was established at 50nM. Analytical Sensitivity as assayed by hexane demonstrated an analytical sensitivity at 0.050nM. The method has demonstrated 8-10% CV batch repeatability across the sample types and 13-18.9% CV for the Within-Lab Precision analysis. The method has shown that AzA can efficiently be recovered from various sample preparation including liver tissue homogenate (95% and human plasma (97%. Conclusions: Because of its simplicity and lower limit of quantification, the present method provides a useful tool for determining AzA in various biological sample preparations.

  12. Analysis of micro-composition of biological tissue by means of induced radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, C.A.; Dunn, R.W.

    1948-05-24

    The use of radioactive isotopes as tracers promises a wealth of information regarding the biochemical role of most elements and their components. Usually a radioactive sample of the element to be studied is administered to the plant or animal in a convenient form, and its distribution and rate of exchange are determined in later assays. This technique has, however, certain limitations, two of which will be discussed here: (1) radioactive isotopes are not generally useful for measurements of the concentration of elements in the body or its parts. They can be used only to give a measure of the rate of exchange of the elements and (2) the use of radioactive isotopes for tracer experiments requires that the radiation dose delivered to the tissue should be small in order not to disturb normal biological function.

  13. High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues

    CERN Document Server

    Camp, Charles H; Heddleston, John M; Hartshorn, Christopher M; Walker, Angela R Hight; Rich, Jeremy N; Lathia, Justin D; Cicerone, Marcus T

    2014-01-01

    We have developed a coherent Raman imaging platform using broadband coherent anti-Stokes Raman scattering (BCARS) that provides an unprecedented combination of speed, sensitivity, and spectral breadth. The system utilizes a unique configuration of laser sources that probes the Raman spectrum over 3,000 cm$^{-1}$ and generates an especially strong response in the typically weak Raman "fingerprint" region through heterodyne amplification of the anti-Stokes photons with a large nonresonant background (NRB) while maintaining high spectral resolution of $<$ 13 cm$^{-1}$. For histology and pathology, this system shows promise in highlighting major tissue components in a non-destructive, label-free manner. We demonstrate high-speed chemical imaging in two- and three-dimensional views of healthy murine liver and pancreas tissues and interfaces between xenograft brain tumors and the surrounding healthy brain matter.

  14. TissueCypher™: A systems biology approach to anatomic pathology

    OpenAIRE

    Prichard, Jeffrey W.; Davison, Jon M.; Campbell, Bruce B.; Repa, Kathleen A.; Lia M Reese; Xuan M Nguyen; Jinhong Li; Tyler Foxwell; Lansing D Taylor; Critchley-Thorne, Rebecca J.

    2015-01-01

    Background: Current histologic methods for diagnosis are limited by intra- and inter-observer variability. Immunohistochemistry (IHC) methods are frequently used to assess biomarkers to aid diagnoses, however, IHC staining is variable and nonlinear and the manual interpretation is subjective. Furthermore, the biomarkers assessed clinically are typically biomarkers of epithelial cell processes. Tumors and premalignant tissues are not composed only of epithelial cells but are interacting system...

  15. A pilot study of sampling subcutaneous adipose tissue to examine biomarkers of cancer risk

    OpenAIRE

    Campbell, Kristin L.; Makar, Karen W.; Kratz, Mario; Foster-Schubert, Karen E.; McTiernan, Anne; Ulrich, Cornelia M.

    2009-01-01

    Examination of adipose tissue biology may provide important insight into mechanistic links for the observed association between higher body fat and risk of several types of cancer, in particular colorectal and breast cancer. We tested two different methods of obtaining adipose tissue from healthy individuals.

  16. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding. PMID:26738200

  17. Quantifying the refractive index dispersion of a pigmented biological tissue using Jamin-Lebedeff interference microscopy

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Leertouwer, Hein L.; Wilts, Bodo D.

    2013-01-01

    Jamin-Lebedeff polarizing interference microscopy is a classical method for determining the refractive index and thickness of transparent tissues. Here, we extend the application of this method to pigmented, absorbing biological tissues, based on a theoretical derivation using Jones calculus. This n

  18. Micro-PIXE on thin plant tissue samples in frozen hydrated state: A novel addition to JSI nuclear microprobe

    International Nuclear Information System (INIS)

    Recently we completed a construction of a cryostat at Jožef Stefan Institute (JSI) nuclear microprobe enabling us to analyze various types of biological samples in frozen hydrated state using micro-PIXE/STIM/RBS. Sample load-lock system was added to our existing setup to enable us to quickly insert a sample holder with frozen hydrated tissue samples onto a cold goniometer head cooled with liquid nitrogen inside the measuring chamber. Cryotome-cut slices of frozen hydrated plant samples were mounted between two thin silicon nitride foils and then attached to the sample holder. Sufficient thermal contact between silicon nitride foils and sample holder must be achieved, as well as between the sample holder and the cold goniometer head inside the measuring chamber to prevent melting of the samples. Matrix composition of frozen hydrated tissue is consisted mostly of ice. Thinning of the sample as well as water evaporation during high vacuum and proton beam exposure was inspected by the measurements with RBS and STIM method simultaneously with micro-PIXE. For first measuring attempts a standard micro-PIXE configuration for tissue mapping was used with proton beam cross section of 1.2 × 1.2 μm2 and a beam current of 100 pA. The temperature of the cold goniometer head was kept below 130 K throughout the entire proton beam exposure. First measurements of thin plant tissue samples in frozen hydrated state show minute sample degradation during the 10 h period of micro-PIXE measurements

  19. Can OCT be sensitive to nanoscale structural alterations in biological tissue?

    OpenAIRE

    Yi, Ji; Radosevich, Andrew J.; Rogers, Jeremy D.; Norris, Sam C.P.; Çapoğlu, İlker R.; Taflove, Allen; Backman, Vadim

    2013-01-01

    Exploration of nanoscale tissue structures is crucial in understanding biological processes. Although novel optical microscopy methods have been developed to probe cellular features beyond the diffraction limit, nanometer-scale quantification remains still inaccessible for in situ tissue. Here we demonstrate that, without actually resolving specific geometrical feature, OCT can be sensitive to tissue structural properties at the nanometer length scale. The statistical mass-density distributio...

  20. Macroscopic characterization of cell electroporation in biological tissue based on electrical measurements

    Science.gov (United States)

    Cima, Lionel F.; Mir, Lluis M.

    2004-11-01

    A method is described to experimentally determine the temporal evolution of state variables involved in the electroporation of biological tissue, i.e., the transmembrane voltage and the macroscopic current flowing in the electropores. Indeed, the electrical parameters of the extracellular, intracellular, and unaltered membrane contributions as well as the electropores electrical characteristics can be deduced from the measurement of the tissue bioimpedance and from the variations of both the macroscopic voltage applied to the tissue and the delivered current.

  1. Protocol: High-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples

    Directory of Open Access Journals (Sweden)

    Liu Xing

    2012-08-01

    Full Text Available Abstract Background The plant hormone auxin, indole-3-acetic acid (IAA, plays important roles in plant growth and development. The signaling response to IAA is largely dependent on the local concentration of IAA, and this concentration is regulated by multiple mechanisms in plants. Therefore, the precise quantification of local IAA concentration provides insights into the regulation of IAA and its biological roles. Meanwhile, pathways and genes involved in IAA biosynthesis are not fully understood, so it is necessary to analyze the production of IAA at the metabolite level for unbiased studies of IAA biosynthesis. Results We have developed high-throughput methods to quantify plant endogenous IAA and its biosynthetic precursors including indole, tryptophan, indole-3-pyruvic acid (IPyA, and indole-3-butyric acid (IBA. The protocol starts with homogenizing plant tissues with stable-labeled internal standards added, followed by analyte purification using solid phase extraction (SPE tips and analyte derivatization. The derivatized analytes are finally analyzed by selected reaction monitoring on a gas chromatograph-mass spectrometer (GC-MS/MS to determine the precise abundance of analytes. The amount of plant tissue required for the assay is small (typically 2–10 mg fresh weight, and the use of SPE tips is simple and convenient, which allows preparation of large sets of samples within reasonable time periods. Conclusions The SPE tips and GC-MS/MS based method enables high-throughput and accurate quantification of IAA and its biosynthetic precursors from minute plant tissue samples. The protocol can be used for measurement of these endogenous compounds using isotope dilution, and it can also be applied to analyze IAA biosynthesis and biosynthetic pathways using stable isotope labeling. The method will potentially advance knowledge of the role and regulation of IAA.

  2. Physical characterization of ultrashort laser pulse drilling of biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Feit, M.D.; Rubenchik, A.M.; Kim, B.M.; Da Silva, L.D.; Stuart, B.C.; Perry, M.D.

    1997-07-21

    Ultrashort laser pulse ablation removes material with low energy fluence required and minimal collateral damage. The ultimate usefulness of this technology for biomedical applications depends, in part, on characterization of the physical conditions attained and determination of the zone of shockwave and heat affected material in particular tissues. Detailed numerical modeling of the relevant physics (deposition, plasma formation, shockwave generation and propagation, thermal conduction) are providing this information. A wide range of time scales is involved, ranging from picosecond for energy deposition and peak pressure and temperature, to nanosecond for development of shockwave, to microsecond for macroscopic thermophysical response.

  3. Neutron interactions with biological tissue. Progress report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The first area of research focuses on track structure effects in neutron microdosimetry and nanodosimetry. This is an investigation of the effect of proton energy-loss straggling and the associated transport of energy by secondary electrons on neutron event-size distributions in small sites. Secondly, energy deposition spectra and their moments for fast neutrons are investigated. Using calculated charged particle initial spectra and slowing-down spectra the authors can calculate the energy deposition in spherical cavities. Lastly, an attempt was made to study the relation of neutron energy deposition calculations to biology and biophysical models.

  4. Rapid methods to detect organic mercury and total selenium in biological samples

    Directory of Open Access Journals (Sweden)

    Basu Niladri

    2011-01-01

    Full Text Available Abstract Background Organic mercury (Hg is a global pollutant of concern and selenium is believed to afford protection against mercury risk though few approaches exist to rapidly assess both chemicals in biological samples. Here, micro-scale and rapid methods to detect organic mercury ( Results For organic Hg, samples are digested using Tris-HCl buffer (with sequential additions of protease, NaOH, cysteine, CuSO4, acidic NaBr followed by extraction with toluene and Na2S2O3. The final product is analyzed via commercially available direct/total mercury analyzers. For Se, a fluorometric assay has been developed for microplate readers that involves digestion (HNO3-HClO4 and HCl, conjugation (2,3-diaminonaphthalene, and cyclohexane extraction. Recovery of organic Hg (86-107% and Se (85-121% were determined through use of Standard Reference Materials and lemon shark kidney tissues. Conclusions The approaches outlined provide an easy, rapid, reproducible, and cost-effective platform for monitoring organic Hg and total Se in biological samples. Owing to the importance of organic Hg and Se in the pathophysiology of Hg, integration of such methods into established research monitoring efforts (that largely focus on screening total Hg only will help increase understanding of Hg's true risks.

  5. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological

  6. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    International Nuclear Information System (INIS)

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and

  7. Relationship between the temperature and the acoustic nonlinearity parameter in biological tissues

    Institute of Scientific and Technical Information of China (English)

    LU Ying; LIU Xiaozhou; GONG Xiufen; ZHANG Dong

    2004-01-01

    Recently with the rapid development of the high-intensity focused ultrasound (HIFU) in biomedical ultrasound, much attention has been paid to the noninvasive temperature estimation in biological tissue in order to determine the region and degree of the ultrasound-induced lesions. In ultrasound hyperthermal therapy it is highly desirable to study the real-time noninvasive monitoring of temperature distribution in biological tissue. In this paper, the relationship between the nonlinearity parameter B/A and the temperature in biological tissue is studied and compared with the theoretical model as well as the experimental results from the thermocouple. Results indicated that B/A could be used as an effective tool to monitor the temperature distribution in biological media.

  8. A system for the obtention and analysis of diffuse reflection spectra from biological tissue

    International Nuclear Information System (INIS)

    The diffuse reflection spectroscopy is a technique with is possible to study biological tissue. In the field of the biomedical applications is useful for diagnostic purposes, since is possible to analyze biological tissue in a non invasive way. also, can be used with therapeutical purposes, for example in photodynamic therapy or laser surgery because with this technique it can be determined the biological effects produced by these treatments. In this paper is shown the development of a system to obtain and analyze diffuse reflection spectra of biological tissues, using a LED as a light source, that emits light between 400-700nm. The system has an interface for the regulation of the emittance of the LED. For diffuse reflectance spectra analysis, we use an HR4000CG-UV-NIR spectrometer. (Author)

  9. Investigation upon the radiofrequency radiation impact in the biological tissues

    International Nuclear Information System (INIS)

    The radiation with the frequency of 400 MHz was generated within a transverse electromagnetic cell having adequate geometry and sizes. Exposures of different time durations were applied to samples of liver, muscle and bone - characterized by different contents of water, protein and lipids. The extraction of DNA and RNA biomolecules was carried out in adequate selective solvents. Spectrophotometric device type Metertek was used to assay the levels of nucleic acids in the exposed samples in comparison to the control ones. The main results concern the slight stimulatory effect of low radiation doses in contrast with the disruptive effect of high doses. (authors)

  10. A direct solid sampling analysis method for the detection of silver nanoparticles in biological matrices.

    Science.gov (United States)

    Feichtmeier, Nadine S; Ruchter, Nadine; Zimmermann, Sonja; Sures, Bernd; Leopold, Kerstin

    2016-01-01

    Engineered silver nanoparticles (AgNPs) are implemented in food contact materials due to their powerful antimicrobial properties and so may enter the human food chain. Hence, it is desirable to develop easy, sensitive and fast analytical screening methods for the determination of AgNPs in complex biological matrices. This study describes such a method using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (GFAAS). A recently reported novel evaluation strategy uses the atomization delay of the respective GFAAS signal as significant indicator for AgNPs and thereby allows discrimination of AgNPs from ionic silver (Ag(+)) in the samples without elaborate sample pre-treatment. This approach was further developed and applied to a variety of biological samples. Its suitability was approved by investigation of eight different food samples (parsley, apple, pepper, cheese, onion, pasta, maize meal and wheat flour) spiked with ionic silver or AgNPs. Furthermore, the migration of AgNPs from silver-impregnated polypropylene food storage boxes to fresh pepper was observed and a mussel sample obtained from a laboratory exposure study with silver was investigated. The differences in the atomization delays (Δt(ad)) between silver ions and 20-nm AgNPs vary in a range from -2.01 ± 1.38 s for maize meal to +2.06 ± 1.08 s for mussel tissue. However, the differences were significant in all investigated matrices and so indicative of the presence/absence of AgNPs. Moreover, investigation of model matrices (cellulose, gelatine and water) gives the first indication of matrix-dependent trends. Reproducibility and homogeneity tests confirm the applicability of the method. PMID:26483187

  11. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.

    Science.gov (United States)

    Ferrara, Toni L; Boughton, Philip; Slavich, Eve; Wroe, Stephen

    2013-01-01

    Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard) and non-mineralized (soft) layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias). A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method that is applicable

  12. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.

    Directory of Open Access Journals (Sweden)

    Toni L Ferrara

    Full Text Available Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard and non-mineralized (soft layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias. A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method

  13. The focus on sample quality: Influence of colon tissue collection on reliability of qPCR data.

    Science.gov (United States)

    Korenkova, Vlasta; Slyskova, Jana; Novosadova, Vendula; Pizzamiglio, Sara; Langerova, Lucie; Bjorkman, Jens; Vycital, Ondrej; Liska, Vaclav; Levy, Miroslav; Veskrna, Karel; Vodicka, Pavel; Vodickova, Ludmila; Kubista, Mikael; Verderio, Paolo

    2016-01-01

    Successful molecular analyses of human solid tissues require intact biological material with well-preserved nucleic acids, proteins, and other cell structures. Pre-analytical handling, comprising of the collection of material at the operating theatre, is among the first critical steps that influence sample quality. The aim of this study was to compare the experimental outcomes obtained from samples collected and stored by the conventional means of snap freezing and by PAXgene Tissue System (Qiagen). These approaches were evaluated by measuring rRNA and mRNA integrity of the samples (RNA Quality Indicator and Differential Amplification Method) and by gene expression profiling. The collection procedures of the biological material were implemented in two hospitals during colon cancer surgery in order to identify the impact of the collection method on the experimental outcome. Our study shows that the pre-analytical sample handling has a significant effect on the quality of RNA and on the variability of qPCR data. PAXgene collection mode proved to be more easily implemented in the operating room and moreover the quality of RNA obtained from human colon tissues by this method is superior to the one obtained by snap freezing. PMID:27383461

  14. The focus on sample quality: Influence of colon tissue collection on reliability of qPCR data

    Science.gov (United States)

    Korenkova, Vlasta; Slyskova, Jana; Novosadova, Vendula; Pizzamiglio, Sara; Langerova, Lucie; Bjorkman, Jens; Vycital, Ondrej; Liska, Vaclav; Levy, Miroslav; Veskrna, Karel; Vodicka, Pavel; Vodickova, Ludmila; Kubista, Mikael; Verderio, Paolo

    2016-01-01

    Successful molecular analyses of human solid tissues require intact biological material with well-preserved nucleic acids, proteins, and other cell structures. Pre-analytical handling, comprising of the collection of material at the operating theatre, is among the first critical steps that influence sample quality. The aim of this study was to compare the experimental outcomes obtained from samples collected and stored by the conventional means of snap freezing and by PAXgene Tissue System (Qiagen). These approaches were evaluated by measuring rRNA and mRNA integrity of the samples (RNA Quality Indicator and Differential Amplification Method) and by gene expression profiling. The collection procedures of the biological material were implemented in two hospitals during colon cancer surgery in order to identify the impact of the collection method on the experimental outcome. Our study shows that the pre-analytical sample handling has a significant effect on the quality of RNA and on the variability of qPCR data. PAXgene collection mode proved to be more easily implemented in the operating room and moreover the quality of RNA obtained from human colon tissues by this method is superior to the one obtained by snap freezing. PMID:27383461

  15. Pomraning-Eddington calculation for the biological tissues

    International Nuclear Information System (INIS)

    Two flux model approximation has been derived for source-free radiation transfer equation for anisotropic scattering in turbid media by the Pomraning-Eddington method (Asymptotic like approximation). Relations have derived between the Kubelka-Munk coefficients and the transport parameters σa σs and g = . The calculations of the Kubelka-Munk coefficients for isotropic and anisotropic scattering and then the reflectivity and transmissivity are carried out for some tissues of different optical properties. The mathematical approach of the calculation for a single layer could be extended to a multi-layers medium. The results are compared with the published data and show good agreement. (author). 20 refs, 5 tabs

  16. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies.

    Science.gov (United States)

    Fernandez-Yague, Marc A; Abbah, Sunny Akogwu; McNamara, Laoise; Zeugolis, Dimitrios I; Pandit, Abhay; Biggs, Manus J

    2015-04-01

    The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering. PMID:25236302

  17. Sources of Technical Variability in Quantitative LC-MS Proteomics: Human Brain Tissue Sample Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Piehowski, Paul D.; Petyuk, Vladislav A.; Orton, Daniel J.; Xie, Fang; Moore, Ronald J.; Ramirez Restrepo, Manuel; Engel, Anzhelika; Lieberman, Andrew P.; Albin, Roger L.; Camp, David G.; Smith, Richard D.; Myers, Amanda J.

    2013-05-03

    To design a robust quantitative proteomics study, an understanding of both the inherent heterogeneity of the biological samples being studied as well as the technical variability of the proteomics methods and platform is needed. Additionally, accurately identifying the technical steps associated with the largest variability would provide valuable information for the improvement and design of future processing pipelines. We present an experimental strategy that allows for a detailed examination of the variability of the quantitative LC-MS proteomics measurements. By replicating analyses at different stages of processing, various technical components can be estimated and their individual contribution to technical variability can be dissected. This design can be easily adapted to other quantitative proteomics pipelines. Herein, we applied this methodology to our label-free workflow for the processing of human brain tissue. For this application, the pipeline was divided into four critical components: Tissue dissection and homogenization (extraction), protein denaturation followed by trypsin digestion and SPE clean-up (digestion), short-term run-to-run instrumental response fluctuation (instrumental variance), and long-term drift of the quantitative response of the LC-MS/MS platform over the 2 week period of continuous analysis (instrumental stability). From this analysis, we found the following contributions to variability: extraction (72%) >> instrumental variance (16%) > instrumental stability (8.4%) > digestion (3.1%). Furthermore, the stability of the platform and its’ suitability for discovery proteomics studies is demonstrated.

  18. Metabolism and toxicological analysis of synthetic cannabinoids in biological fluids and tissues.

    Science.gov (United States)

    Presley, B C; Gurney, S M R; Scott, K S; Kacinko, S L; Logan, B K

    2016-07-01

    Synthetic cannabinoids, which began proliferating in the United States in 2009, have gone through numerous iterations of modification to their chemical structures. More recent generations of compounds have been associated with significant adverse outcomes following use, including cognitive and psychomotor impairment, seizures, psychosis, tissue injury and death. These effects increase the urgency for forensic and public health laboratories to develop methods for the detection and identification of novel substances, and apply these to the determination of their metabolism and disposition in biological samples. This comprehensive review describes the history of the appearance of the drugs in the United States, discusses the naming conventions emerging to designate new structures, and describes the most prominent new compounds linked to the adverse effects now associated with their use. We review in depth the metabolic pathways that have been elucidated for the major members of each of the prevalent synthetic cannabinoid drug subclasses, the enzyme systems responsible for their metabolism, and the use of in silico approaches to assist in predicting and identifying the metabolites of novel compounds and drug subclasses that will continue to appear. Finally, we review and critique analytical methods applied to the detection of the drugs and their metabolites, including immunoassay screening, and liquid chromatography mass spectrometry confirmatory techniques applied to urine, serum, whole blood, oral fluid, hair, and tissues. PMID:27257717

  19. Development and characterization of a radioimmunoassay to measure human tissue kallikrein in biological fluids

    International Nuclear Information System (INIS)

    A direct radioimmunoassay has been developed to measure tissue kallikrein in human biological fluids, including serum, plasma, urine, pancreatic juice and saliva. Purified kallikreins from human urine and human saliva were used to raise rabbit antibody and each labelled with Na125I for use in the radioimmunoassay. Comparison of the different antigen-antibody systems was then made. Bound and free enzyme were separated by a double-antibody technique. The usable range of the standard curve was from 2.5 to 100 μg kallikrein/1. The intra-assay coefficient of variation was 4.7%, the interassay coefficient of variation 8.9% and the recoveries of purified kallikrein added to the samples were 99.3, 96.0, 110.8 and 81.2% for urine, saliva, serum and plasma respectively. Parallel dilution curves were obtained for serum and plasma, as well as urine, saliva and pancreatic juice. Plasma anticoagulated with EDTA or heparin gave consistently lower values than serum, when measured in the radioimmunoassay. From eight different subjects plasma (EDTA) values were on average 50% lower than those of serum, and subsequent experiments revealed that treatment of blood with some anticoagulants, in particular heparin and EDTA, resulted in a marked reduction in measurable tissue kallikrein. (author)

  20. High-resolution atmospheric pressure infrared laser desorption/ionization mass spectrometry imaging of biological tissue.

    Science.gov (United States)

    Römpp, Andreas; Schäfer, Karl Christian; Guenther, Sabine; Wang, Zheng; Köstler, Martin; Leisner, Arne; Paschke, Carmen; Schramm, Thorsten; Spengler, Bernhard

    2013-09-01

    An atmospheric pressure laser desorption/ionization mass spectrometry imaging ion source has been developed that combines high spatial resolution and high mass resolution for the in situ analysis of biological tissue. The system is based on an infrared laser system working at 2.94 to 3.10 μm wavelength, employing a Nd:YAG laser-pumped optical parametrical oscillator. A Raman-shifted Nd:YAG laser system was also tested as an alternative irradiation source. A dedicated optical setup was used to focus the laser beam, coaxially with the ion optical axis and normal to the sample surface, to a spot size of 30 μm in diameter. No additional matrix was needed for laser desorption/ionization. A cooling stage was developed to reduce evaporation of physiological cell water. Ions were formed under atmospheric pressure and transferred by an extended heated capillary into the atmospheric pressure inlet of an orbital trapping mass spectrometer. Various phospholipid compounds were detected, identified, and imaged at a pixel resolution of up to 25 μm from mouse brain tissue sections. Mass accuracies of better than 2 ppm and a mass resolution of 30,000 at m/z = 400 were achieved for these measurements. PMID:23877173

  1. Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth.

    Science.gov (United States)

    Mo, Jianhua; de Groot, Mattijs; de Boer, Johannes F

    2015-02-23

    Optical coherence tomography (OCT) has proven to be able to provide three-dimensional (3D) volumetric images of scattering biological tissues for in vivo medical diagnostics. Unlike conventional optical microscopy, its depth-resolving ability (axial resolution) is exclusively determined by the laser source and therefore invariant over the full imaging depth. In contrast, its transverse resolution is determined by the objective's numerical aperture and the wavelength which is only approximately maintained over twice the Rayleigh range. However, the prevailing laser sources for OCT allow image depths of more than 5 mm which is considerably longer than the Rayleigh range. This limits high transverse resolution imaging with OCT. Previously, we reported a novel method to extend the depth-of-focus (DOF) of OCT imaging in Mo et al.Opt. Express 21, 10048 (2013)]. The approach is to create three different optical apertures via pupil segmentation with an annular phase plate. These three optical apertures produce three OCT images from the same sample, which are encoded to different depth positions in a single OCT B-scan. This allows for correcting the defocus-induced curvature of wave front in the pupil so as to improve the focus. As a consequence, the three images originating from those three optical apertures can be used to reconstruct a new image with an extended DOF. In this study, we successfully applied this method for the first time to both an artificial phantom and biological tissues over a four times larger depth range. The results demonstrate a significant DOF improvement, paving the way for 3D high resolution OCT imaging beyond the conventional Rayleigh range. PMID:25836528

  2. High Resolution Magic Angle Spinning 1H-NMR Metabolic Profiling of Nanoliter Biological Tissues at High Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ju; Hu, Jian Z.; Burton, Sarah D.; Hoyt, David W.

    2013-03-05

    It is demonstrated that a high resolution magic angle spinning 1H-NMR spectrum of biological tissue samples with volumes as small as 150 nanoliters, or 0.15 mg in weight, can be acquired in a few minutes at 21.1 T magnetic field using a commercial 1.6 mm fast-MAS probe with minor modification of the MAS rotor. The strategies of sealing the samples inside the MAS rotor to avoid fluid leakage as well as the ways of optimizing the signal to noise are discussed.

  3. The physiology and molecular biology of sponge tissues.

    Science.gov (United States)

    Leys, Sally P; Hill, April

    2012-01-01

    Sponges have become the focus of studies on molecular evolution and the evolution of animal body plans due to their ancient branching point in the metazoan lineage. Whereas our former understanding of sponge function was largely based on a morphological perspective, the recent availability of the first full genome of a sponge (Amphimedon queenslandica), and of the transcriptomes of other sponges, provides a new way of understanding sponges by their molecular components. This wealth of genetic information not only confirms some long-held ideas about sponge form and function but also poses new puzzles. For example, the Amphimedon sponge genome tells us that sponges possess a repertoire of genes involved in control of cell proliferation and in regulation of development. In vitro expression studies with genes involved in stem cell maintenance confirm that archaeocytes are the main stem cell population and are able to differentiate into many cell types in the sponge including pinacocytes and choanocytes. Therefore, the diverse roles of archaeocytes imply differential gene expression within a single cell ontogenetically, and gene expression is likely also different in different species; but what triggers cells to enter one pathway and not another and how each archaeocyte cell type can be identified based on this gene knowledge are new challenges. Whereas molecular data provide a powerful new tool for interpreting sponge form and function, because sponges are suspension feeders, their body plan and physiology are very much dependent on their physical environment, and in particular on flow. Therefore, in order to integrate new knowledge of molecular data into a better understanding the sponge body plan, it is important to use an organismal approach. In this chapter, we give an account of sponge body organization as it relates to the physiology of the sponge in light of new molecular data. We focus, in particular, on the structure of sponge tissues and review descriptive as

  4. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  5. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhaarathy, V. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Lee Kong Chian School of Medicine, Nanyang Technological University, 138673 (Singapore); Venugopal, J., E-mail: nnijrv@nus.edu.sg [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Gandhimathi, C. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Ramakrishna, S. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore)

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  6. Ultrasonic array of thick film transducers for biological tissue characterization.

    Science.gov (United States)

    Gwirc, Sergio N; Negreira, Carlos A; Marino, Nestor R

    2010-01-01

    The initial motivation for this work was to accomplish an easy way to manufacture different geometries of ultrasonic transducers and arrays using a PZT powder, combined with a standard process to have repetitive series of them. The piezoelectric thick film was obtained using a PZT paste and applying it by screen printing on an alumina substrate. Then, the film was drying and sintered with a temperature-time profile determined by the paste characteristics. Each transducer is composed by three layers, one by PZT and two acting as electrodes. The active element of the paste is a PZT powder which is dispersed in a commercial vehicle to obtain rheological properties suitable for use the screen printing process. The connection between PZT particles is improved by adding a lead borosilicate frit glass that also helps to attach the film to the substrate due to the relatively low temperature of sintered that has been used in this process. The PZT film has low density that is generated by internal porosity, so its acoustic impedance is lower than for a bulk ceramic transducer and so is well adapted to testing human tissues. At the same time the thick film technology is well suited to make medium size transducers and also arrays performed with tiny ultrasonic transducers. PMID:21097177

  7. Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues.

    Science.gov (United States)

    Zhu, Yilin; Kang, Guozheng; Yu, Chao; Poh, Leong Hien

    2016-08-01

    Based on the logarithmic rate and piecewise linearization theory, a thermodynamically consistent elasto-viscoplastic constitutive model is developed in the framework of finite deformations to describe the nonlinear time-dependent biomechanical performances of soft biological tissues, such as nonlinear anisotropic monotonic stress-strain responses, stress relaxation, creep and ratchetting. In the proposed model, the soft biological tissue is assumed as a typical composites consisting of an isotropic matrix and anisotropic fiber aggregation. Accordingly, the free energy function and stress tensor are divided into two parts related to the matrix and fiber aggregation, respectively. The nonlinear biomechanical responses of the tissues are described by the piecewise linearization theory with hypo-elastic relations of fiber aggregation. The evolution equations of viscoplasticity are formulated from the dissipation inequalities by the co-directionality hypotheses. The anisotropy is considered in the hypo-elastic relations and viscoplastic flow rules by introducing some material parameters dependent on the loading direction. Then the capability of the proposed model to describe the nonlinear time-dependent deformation of soft biological tissues is verified by comparing the predictions with the corresponding experimental results of three tissues. It is seen that the predicted monotonic stress-strain responses, stress relaxation, creep and ratchetting of soft biological tissues are in good agreement with the corresponding experimental ones. PMID:27108349

  8. Evaluation of a multi-electrode bioimpedance spectroscopy tensor probe to detect the anisotropic conductivity spectra of biological tissues

    International Nuclear Information System (INIS)

    This paper presents bioimpedance spectroscopy measurements of anisotropic tissues using a 16 electrode probe and reconstruction method of estimating the anisotropic impedance spectrum in a local region just underneath the center of the probe. This may enable in-vivo surface bioimpedance measurements with similar performance to the ex-vivo gold standard that requires excising and placing the entire tissue sample in a unit measurement cell with uniform electric field. The multiple surface electrodes enable us to create a focused current pattern so that the resulting measured voltage is more sensitive to a local region and less sensitive to other areas. This is exploited in a reconstruction method to provide improved bioimpedance and anisotropy measurements. In this paper, we describe the current pattern for localized electrical energy concentration, performance with the spring loaded pin electrodes, data calibration and experimental results on anisotropic agar phantoms and different tissue types. The anisotropic conductivity spectra are able to differentiate insulating films of different thickness and detect their orientation. Bioimpedance spectra of biological tissues are in agreement with published data and reference instruments. The anisotropy expressed as the ratio of eigenvalues and the orientation of eigenfunctions were reconstructed at 45° intervals. This information is used to predict the underlying anisotropy of the region under the probe. Tissue measurements clearly demonstrate the expected higher anisotropy of muscle tissue compared to liver tissue and spectral changes. (paper)

  9. Evaluation of a multi-electrode bioimpedance spectroscopy tensor probe to detect the anisotropic conductivity spectra of biological tissues

    Science.gov (United States)

    Karki, Bishal; Wi, Hun; McEwan, Alistair; Kwon, Hyeuknam; In Oh, Tong; Woo, Eung Je; Seo, Jin Keun

    2014-07-01

    This paper presents bioimpedance spectroscopy measurements of anisotropic tissues using a 16 electrode probe and reconstruction method of estimating the anisotropic impedance spectrum in a local region just underneath the center of the probe. This may enable in-vivo surface bioimpedance measurements with similar performance to the ex-vivo gold standard that requires excising and placing the entire tissue sample in a unit measurement cell with uniform electric field. The multiple surface electrodes enable us to create a focused current pattern so that the resulting measured voltage is more sensitive to a local region and less sensitive to other areas. This is exploited in a reconstruction method to provide improved bioimpedance and anisotropy measurements. In this paper, we describe the current pattern for localized electrical energy concentration, performance with the spring loaded pin electrodes, data calibration and experimental results on anisotropic agar phantoms and different tissue types. The anisotropic conductivity spectra are able to differentiate insulating films of different thickness and detect their orientation. Bioimpedance spectra of biological tissues are in agreement with published data and reference instruments. The anisotropy expressed as the ratio of eigenvalues and the orientation of eigenfunctions were reconstructed at 45° intervals. This information is used to predict the underlying anisotropy of the region under the probe. Tissue measurements clearly demonstrate the expected higher anisotropy of muscle tissue compared to liver tissue and spectral changes.

  10. High resolution x-ray microtomography of biological samples: Requirements and strategies for satisfying them

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W. Jr. [Univ. of California, San Francisco, CA (United States)]|[Univ. of California, Davis, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States); Rothman, S.S. [Univ. of California, San Francisco, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-02-01

    High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetration depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography (XMT).

  11. Swab or biopsy samples for bioburden testing of allograft musculoskeletal tissue?

    Science.gov (United States)

    Varettas, Kerry

    2014-12-01

    Swab and biopsy samples of allograft musculoskeletal tissue are most commonly collected by tissue banks for bacterial and fungal bioburden testing. An in vitro study was performed using the National Committee for Clinical Laboratory Standards standard 'Quality control of microbiological transport systems' (2003) to validate and evaluate the recovery of six challenge organisms from swab and biopsy samples of allograft musculoskeletal tissue. On average, 8.4 to >100 and 7.2 to >100 % of the inoculum was recovered from swab and biopsy samples respectively. A retrospective review of donor episodes was also performed, consisting of paired swab and biopsy samples received in this laboratory during the period 2001-2012. Samples of allograft femoral heads were collected from living donors during hip operations. From the 3,859 donor episodes received, 21 paired swab and biopsy samples each recovered an isolate, 247 swab samples only and 79 biopsy samples only were culture positive. Low numbers of challenge organisms were recovered from inoculated swab and biopsy samples in the in vitro study and validated their use for bioburden testing of allograft musculoskeletal tissue. Skin commensals were the most common group of organisms isolated during a 12-year retrospective review of paired swab and biopsy samples from living donor allograft femoral heads. Paired swab and biopsy samples are a suitable representative sample of allograft musculoskeletal tissue for bioburden testing. PMID:24599706

  12. Plasmophore sensitized imaging of ammonia release from biological tissues using optodes

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Niklas, E-mail: niklas.stromberg@sp.se [SP Technical Research Institute of Sweden, Box 857, SE-501 15 Boras (Sweden); Hakonen, Aron, E-mail: hakonen@chem.gu.se [University of Gothenburg, Kemivaegen 10, SE-412 96 Gothenburg (Sweden)

    2011-10-17

    Highlights: {yields} A plasmophore sensitized optode for imaging ammonia (NH{sub 3}) concentrations in muscle tissues was developed. {yields} Ammonia concentrations ranging from 10 nM and upwards can be quantified reversibly with an optical resolution of 127 {mu}m. {yields} The general sensing scheme offers new possibilities for the development of artificial optical noses and tongues. - Abstract: A plasmophore sensitized optode was developed for imaging ammonia (NH{sub 3}) concentrations in muscle tissues. The developed ammonia sensor and an equivalent non plasmophore version of the sensor were tested side by side to compare their limit of detection, dynamic range, reversibility and overall imaging quality. Bio-degradation patterns of ammonia release from lean porcine skeletal muscle were studied over a period of 11 days. We demonstrate that ammonia concentrations ranging from 10 nM can be quantified reversibly with an optical resolution of 127 {mu}m in a sample area of 25 mm x 35 mm. The plasmophore ammonia optode showed improved reversibility, less false pixels and a 2 nM ammonia detection limit compared to 200 nM for the non-plasmophore sensor. Main principles of the sensing mechanism include ammonia transfer over a gas permeable film, ammonia protonation, nonactin facilitated merocyanine-ammonium coextraction and plasmophore enhancement. The vast signal improvement is suggested to rely on solvatochroism, nanoparticle scattering and plasmonic interactions that are utilized constructively in a fluorescence ratio. In addition to fundamental medicinal and biological research applications in tissue physiology, reversible ammonia quantification will be possible for a majority of demanding imaging and non imaging applications such as monitoring of low ammonia background concentrations in air and non-invasive medicinal diagnosis through medical breath or saliva analysis. The nanoparticle doped sensor constitutes a highly competitive technique for ammonia sensing in

  13. Heavy metal pathways and archives in biological tissue

    International Nuclear Information System (INIS)

    Nuclear milli and microprobes at the Australian Nuclear Science and Technology Organisation (ANSTO) were used to determine lead accumulation in native Australian plants and animals. Three species of eucalypt plants (Eucalyptus camaldulensis, Eucalyptus globulus and Eucalyptus lesouefii), one species of salt bush (Atriplex burbhanyana) and one species each of acacia (Acacia saligna) and estuarine crocodiles (Crocodylus porosus) were investigated. Experimentally grown plants were subjected to a nutrient solution with a pH of 5 and spiked with a 200 μmol concentration of Pb. Lead concentrations in leaves of both E. globulus and E. camaldulensis showed an almost exponential decrease from the base of the main vein to the tip. Similarly, Pb concentrations decreased from the main vein to secondary veins. Concentrations of essential elements such as K, Fe, Zn and Br in the main and secondary veins were constant within experimental uncertainty. In contrast, the concentrations of Pb in the leaf veins of E. lesouefii were much lower and showed no systematic pattern. In stem and root samples the highest concentration of Pb was found in roots and stem of E. globulus and A. burbhanyana followed by E. camaldulensis. Some Pb was found in roots of A. saligna and only very low concentration in stem of the same plant. More detailed analysis of thin cross-sectional samples of roots and stem showed that Pb is present in much higher concentration in the growth area of the plant structure (i.e. meristemic region) and in relatively low concentration within the pith region and outer cortex. The osteoderms (dermal bones) of estuarine crocodiles, exposed to lead ammunition in food from the hunting activities of traditional Aboriginal owners, were sampled at two sites in Kakadu National Park, northern Australia. PIXE analyses showed enhanced, but relatively constant, ratios of Pb/Ca in the annual laminations. This was consistent with both their history of long term exposure to elevated

  14. Heavy metal pathways and archives in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Orlic, I. E-mail: ivo@ansto.gov.au; Siegele, R.; Menon, D.D.; Markich, S.J.; Cohen, D.D.; Jeffree, R.A.; McPhail, D.C.; Sarbutt, A.; Stelcer, E

    2002-05-01

    Nuclear milli and microprobes at the Australian Nuclear Science and Technology Organisation (ANSTO) were used to determine lead accumulation in native Australian plants and animals. Three species of eucalypt plants (Eucalyptus camaldulensis, Eucalyptus globulus and Eucalyptus lesouefii), one species of salt bush (Atriplex burbhanyana) and one species each of acacia (Acacia saligna) and estuarine crocodiles (Crocodylus porosus) were investigated. Experimentally grown plants were subjected to a nutrient solution with a pH of 5 and spiked with a 200 {mu}mol concentration of Pb. Lead concentrations in leaves of both E. globulus and E. camaldulensis showed an almost exponential decrease from the base of the main vein to the tip. Similarly, Pb concentrations decreased from the main vein to secondary veins. Concentrations of essential elements such as K, Fe, Zn and Br in the main and secondary veins were constant within experimental uncertainty. In contrast, the concentrations of Pb in the leaf veins of E. lesouefii were much lower and showed no systematic pattern. In stem and root samples the highest concentration of Pb was found in roots and stem of E. globulus and A. burbhanyana followed by E. camaldulensis. Some Pb was found in roots of A. saligna and only very low concentration in stem of the same plant. More detailed analysis of thin cross-sectional samples of roots and stem showed that Pb is present in much higher concentration in the growth area of the plant structure (i.e. meristemic region) and in relatively low concentration within the pith region and outer cortex. The osteoderms (dermal bones) of estuarine crocodiles, exposed to lead ammunition in food from the hunting activities of traditional Aboriginal owners, were sampled at two sites in Kakadu National Park, northern Australia. PIXE analyses showed enhanced, but relatively constant, ratios of Pb/Ca in the annual laminations. This was consistent with both their history of long term exposure to elevated

  15. Heavy metal pathways and archives in biological tissue

    Science.gov (United States)

    Orlic, I.; Siegele, R.; Menon, D. D.; Markich, S. J.; Cohen, D. D.; Jeffree, R. A.; McPhail, D. C.; Sarbutt, A.; Stelcer, E.

    2002-05-01

    Nuclear milli and microprobes at the Australian Nuclear Science and Technology Organisation (ANSTO) were used to determine lead accumulation in native Australian plants and animals. Three species of eucalypt plants ( Eucalyptus camaldulensis, Eucalyptus globulus and Eucalyptus lesouefii), one species of salt bush ( Atriplex burbhanyana) and one species each of acacia ( Acacia saligna) and estuarine crocodiles ( Crocodylus porosus) were investigated. Experimentally grown plants were subjected to a nutrient solution with a pH of 5 and spiked with a 200 μmol concentration of Pb. Lead concentrations in leaves of both E. globulus and E. camaldulensis showed an almost exponential decrease from the base of the main vein to the tip. Similarly, Pb concentrations decreased from the main vein to secondary veins. Concentrations of essential elements such as K, Fe, Zn and Br in the main and secondary veins were constant within experimental uncertainty. In contrast, the concentrations of Pb in the leaf veins of E. lesouefii were much lower and showed no systematic pattern. In stem and root samples the highest concentration of Pb was found in roots and stem of E. globulus and A. burbhanyana followed by E. camaldulensis. Some Pb was found in roots of A. saligna and only very low concentration in stem of the same plant. More detailed analysis of thin cross-sectional samples of roots and stem showed that Pb is present in much higher concentration in the growth area of the plant structure (i.e. meristemic region) and in relatively low concentration within the pith region and outer cortex. The osteoderms (dermal bones) of estuarine crocodiles, exposed to lead ammunition in food from the hunting activities of traditional Aboriginal owners, were sampled at two sites in Kakadu National Park, northern Australia. PIXE analyses showed enhanced, but relatively constant, ratios of Pb/Ca in the annual laminations. This was consistent with both their history of long term exposure to elevated

  16. 9 CFR 113.3 - Sampling of biological products.

    Science.gov (United States)

    2010-01-01

    ... bacterial vaccines; (iii) Two samples of Coccidiosis Vaccine; (iv) Eighteen samples of Rabies Vaccine...) Twenty-two single-dose or 14 multiple-dose samples of Rabies Vaccine, Killed Virus; (viii) Sixteen single... be stated in the filed Outline of Production. (b) Unless otherwise prescribed by the...

  17. speciation of selenium in human biological samples using online hyphenation of HPLC and ICP-MS

    International Nuclear Information System (INIS)

    Selenium is an important trace element that plays specific biological role in organism. Since bioactivity of selenium is a consequence of individual chemical species, there is considerable interest in the speciation of selenium in the mammalian organism. Inasmuch as selenium is primarily present in the form of selenoproteins in mammalian tissues, speciation studies of Se-containing proteins are focused on the various organs and tissues. Serum and urine samples can be used for study of Se metabolites in vivo. Hyphenation of chromatographic separation with element-specific detection has been proved as a powerful technique for Se speciation analysis recently. In present study, using an ion-pair reversed-phase liquid chromatography, Se species such as selenite (Se(IV>), selenate (Se(VI>), trimethyl selenonium (TMSe+), selenocystine (SeCys), selenourea (SeUr), selenomethionine (SeMet), and selenocystamine (SeCM) are separated and followed by the online coupling detection as introduced below. A 5-μm Symmetry Shield RP18 column was applied for the analysis of Se compounds using 0.1% HFBA in 1:99 methanol-water buffer as mobile phase. Elemental signal detected by ICP-MS geminated in case of collision cell technique (CCT) mode, since the most abundant isotope 80Se instead of 82Se or 78Se monitored in ordinary model. More sensitive technique based on ICP-MS and CCT can recognize signals of Se standard compounds, whose concentrations were less than l ppb in hyphenation experiment, and Se concentrations of quantitative analysis could reach several ppb. Human liver cytoplasm and serum samples gave legible chromatograms with a few peaks recognized easily, while urine samples of human gave much more complex chromatograms according to the intricate components. The uncertainty of measurement will be estimated too.Nevertheless, both of serum and urine samples give quantifiable elemental signals, while cytoplasm samples gave weaker signals referring to the lower concentrations of Se

  18. Changes in diffusion properties of biological tissues associated with mechanical strain

    International Nuclear Information System (INIS)

    Mechanical strain in biological tissues causes a change in the diffusion properties of water molecules. This paper proposes a method of estimating mechanical strain in biological tissues using diffusion magnetic resonance imaging (MRI). Measurements were carried out on uncompressed and compressed chicken skeletal muscles. A theoretical model of the diffusion of water molecules in muscle fibers was derived based on Tanner's equation. Diameter of the muscle fibers was estimated by fitting the model equation to the measured signals. Changes in the mean diffusivity (MD), the fractional anisotropy (FA), and diameter of the muscle fiber did not have any statistical significance. The intracellular diffusion coefficient (Dint) was changed by mechanical strain (p<.05). This method has potential applications in the quantitative evaluation of strain in biological tissues, a though it poses several technical challenges. (author)

  19. Frequency domain photoacoustic correlation (radar) imaging: a novel methodology for non-invasive imaging of biological tissues

    Science.gov (United States)

    Telenkov, Sergey A.; Alwi, Rudolf; Mandelis, Andreas; Shi, Willa; Chen, Emily; Vitkin, Alex I.

    2012-02-01

    We report the development of a novel frequency-domain biomedical photoacoustic (PA) system that utilizes a continuous-wave laser source with a custom intensity modulation pattern for spatially-resolved imaging of biological tissues. The feasibility of using relatively long duration and low optical power laser sources for spatially-resolved PA imaging is presented. We demonstrate that B-mode PA imaging can be performed using an ultrasonic phased array coupled with multi-channel correlation processing and a frequency-domain beamforming algorithm. Application of the frequency-domain PA correlation methodology is shown using tissue-like phantoms with embedded optical contrast, tissue ex-vivo samples and a small animal model in-vivo.

  20. Determination of total mercury and methylmercury in biological samples by photochemical vapor generation

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Mariana A.; Ribeiro, Anderson S.; Curtius, Adilson J. [Universidade Federal de Santa Catarina, Departamento de Quimica, Florianopolis, SC (Brazil); Sturgeon, Ralph E. [National Research Council Canada, Institute for National Measurement Standards, Ottawa, ON (Canada)

    2007-06-15

    Cold vapor atomic absorption spectrometry (CV-AAS) based on photochemical reduction by exposure to UV radiation is described for the determination of methylmercury and total mercury in biological samples. Two approaches were investigated: (a) tissues were digested in either formic acid or tetramethylammonium hydroxide (TMAH), and total mercury was determined following reduction of both species by exposure of the solution to UV irradiation; (b) tissues were solubilized in TMAH, diluted to a final concentration of 0.125% m/v TMAH by addition of 10% v/v acetic acid and CH{sub 3}Hg{sup +} was selectively quantitated, or the initial digests were diluted to 0.125% m/v TMAH by addition of deionized water, adjusted to pH 0.3 by addition of HCl and CH{sub 3}Hg{sup +} was selectively quantitated. For each case, the optimum conditions for photochemical vapor generation (photo-CVG) were investigated. The photochemical reduction efficiency was estimated to be {proportional_to}95% by comparing the response with traditional SnCl{sub 2} chemical reduction. The method was validated by analysis of several biological Certified Reference Materials, DORM-1, DORM-2, DOLT-2 and DOLT-3, using calibration against aqueous solutions of Hg{sup 2+}; results showed good agreement with the certified values for total and methylmercury in all cases. Limits of detection of 6 ng/g for total mercury using formic acid, 8 ng/g for total mercury and 10 ng/g for methylmercury using TMAH were obtained. The proposed methodology is sensitive, simple and inexpensive, and promotes ''green'' chemistry. The potential for application to other sample types and analytes is evident. (orig.)

  1. Tissue Microarray Technology for Molecular Applications: Investigation of Cross-Contamination between Tissue Samples Obtained from the Same Punching Device

    Directory of Open Access Journals (Sweden)

    Erik Vassella

    2015-04-01

    Full Text Available Background: Tissue microarray (TMA technology allows rapid visualization of molecular markers by immunohistochemistry and in situ hybridization. In addition, TMA instrumentation has the potential to assist in other applications: punches taken from donor blocks can be placed directly into tubes and used for nucleic acid analysis by PCR approaches. However, the question of possible cross-contamination between samples punched with the same device has frequently been raised but never addressed. Methods: Two experiments were performed. (1 A block from mycobacterium tuberculosis (TB positive tissue and a second from an uninfected patient were aligned side-by-side in an automated tissue microarrayer. Four 0.6 mm punches were cored from each sample and placed inside their corresponding tube. Between coring of each donor block, a mechanical cleaning step was performed by insertion of the puncher into a paraffin block. This sequence of coring and cleaning was repeated three times, alternating between positive and negative blocks. A fragment from the 6110 insertion sequence specific for mycobacterium tuberculosis was analyzed; (2 Four 0.6 mm punches were cored from three KRAS mutated colorectal cancer blocks, alternating with three different wild-type tissues using the same TMA instrument (sequence of coring: G12D, WT, G12V, WT, G13D and WT. Mechanical cleaning of the device between each donor block was made. Mutation analysis by pyrosequencing was carried out. This sequence of coring was repeated manually without any cleaning step between blocks. Results/Discussion: In both analyses, all alternating samples showed the expected result (samples 1, 3 and 5: positive or mutated, samples 2, 4 and 6: negative or wild-type. Similar results were obtained without cleaning step. These findings suggest that no cross-contamination of tissue samples occurs when donor blocks are punched using the same device, however a cleaning step is nonetheless recommended. Our

  2. Characterization of the angular memory effect of scattered light in biological tissues

    CERN Document Server

    Schott, Sam; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-01-01

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues. It therefore grants access to superficial layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations (`angular memory effect') are of very short range and, in theory, only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range (and thus the possible field-of-view) by more than an order of magnitude compared to isotropic scattering for $\\sim$1\\,mm thick tissue layers.

  3. Mesenchymal Stem Cells Isolated from Adipose and Other Tissues: Basic Biological Properties and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Hakan Orbay

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs are adult stem cells that were initially isolated from bone marrow. However, subsequent research has shown that other adult tissues also contain MSCs. MSCs originate from mesenchyme, which is embryonic tissue derived from the mesoderm. These cells actively proliferate, giving rise to new cells in some tissues, but remain quiescent in others. MSCs are capable of differentiating into multiple cell types including adipocytes, chondrocytes, osteocytes, and cardiomyocytes. Isolation and induction of these cells could provide a new therapeutic tool for replacing damaged or lost adult tissues. However, the biological properties and use of stem cells in a clinical setting must be well established before significant clinical benefits are obtained. This paper summarizes data on the biological properties of MSCs and discusses current and potential clinical applications.

  4. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using harmonic motion imaging (HMI).

    Science.gov (United States)

    Vappou, Jonathan; Hou, Gary Y; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E

    2015-04-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young's modulus and the HMI modulus in the numerical study (r(2) > 0.99, relative error <10%) and on polyacrylamide gels (r(2) = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62  ±  0.41 kPa, compared to EMechTesting = 4.2  ±  2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens. PMID:25776065

  5. Double integrating spheres: A method for assessment of optical properties of biological tissues

    OpenAIRE

    Poppendieck, Wigand

    2004-01-01

    The determination of the optical properties of biological tissue is an important issue in laser medicine. The optical properties define the tissue´s absorption and scattering behaviour, and can be expressed by quantities such as the albedo, the optical thickness and the anisotropy coefficient. During this project, a measurement system for the determination of the optical properties was built up. The system consists of a double integrating sphere set-up to perform the necessary reflection and ...

  6. Quantifying the refractive index dispersion of a pigmented biological tissue using Jamin-Lebedeff interference microscopy

    OpenAIRE

    Stavenga, Doekele G; Leertouwer, Hein L.; WILTS, Bodo D.

    2013-01-01

    Jamin-Lebedeff polarizing interference microscopy is a classical method for determining the refractive index and thickness of transparent tissues. Here, we extend the application of this method to pigmented, absorbing biological tissues, based on a theoretical derivation using Jones calculus. This novel method is applied to the wings of the American Rubyspot damselfly, Hetaerina americana. The membranes in the red-colored parts of the damselfly's wings, with a thickness of similar to 2.5 mu m...

  7. Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering

    Science.gov (United States)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.

  8. Isolation of high quality protein samples from punches of formalin fixed and paraffin embedded tissue blocks

    OpenAIRE

    J. Kroll(Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America); Becker, K.F.; Kuphal, S; Hein, R.; Hofstädter, F; Bosserhoff, A K

    2008-01-01

    In general, it is believed that the extraction of proteins from formalin-fixed paraffin embedded samples is not feasible. However, recently a new technique was developed, presenting the extraction of non-degraded, full length proteins from formalin fixed tissues, usable for western blotting and protein arrays. In the study presented here, we applied this technique to punch biopsies of formalin fixed tissues embedded in paraffin to reduce heterogeneity of the tissue rep...

  9. Entropic Sampling and Natural Selection in Biological Evolution

    OpenAIRE

    Choi, M. Y.; Lee, H. Y.; Kim, D.; Park, S H

    1996-01-01

    With a view to connecting random mutation on the molecular level to punctuated equilibrium behavior on the phenotype level, we propose a new model for biological evolution, which incorporates random mutation and natural selection. In this scheme the system evolves continuously into new configurations, yielding non-stationary behavior of the total fitness. Further, both the waiting time distribution of species and the avalanche size distribution display power-law behaviors with exponents close...

  10. Application of scanning electrochemical microscopy to biological samples

    OpenAIRE

    Lee, C.(Institute of Physics, Academia Sinica, Taipei, Taiwan); Kwak, J.; Bard, A J

    1990-01-01

    The scanning electrochemical microscope can be used in the feedback mode in two-dimensional scans over biological substrates to obtain topographic information at the micrometer level. In this mode, the effect of distance between a substrate (either conductive or insulating) and a scanning ultramicroelectrode tip on the electrolytic current flowing at the tip is recorded as a function of the tip x-y position. Scans of the upper surface of a grass leaf and the lower surface of a Ligustrum sinen...

  11. Theoretical and observational analysis of individual ionizing particle effects in biological tissue

    International Nuclear Information System (INIS)

    This investigation was conducted in an effort to gain a deeper understanding of the microstructural damage to living tissue caused by heavy ion radiation. Preliminary tests on rat corneal tissue, rat cerebellar tissue grown in culture, and rat retinal tissue indicated that of these three tissues the best assay for heavy ion damage might be the rat cornea. The anterior surface of the cornea consists of squamous epithelial cells whose plasma membrane morphology is readily characterized under high resolution scanning electron microscopy (SEM). Thus any structural changed leading to alterations in corneal morphology should be relatively easy to detect if they are within the resolution capability of the SEM. Prior to this work, biological lesions caused by ionizing radiation were almost never observed shortly after a dose was delivered even if the dose was lethal

  12. Diagnostic Necropsy and Selected Tissue and Sample Collection in Rats and Mice

    OpenAIRE

    Parkinson, Christina M.; O'Brien, Alexandra; Albers, Theresa M.; Simon, Meredith A.; Clifford, Charles B.; Pritchett-Corning, Kathleen R

    2011-01-01

    There are multiple sample types that may be collected from a euthanized animal in order to help diagnose or discover infectious agents in an animal colony. Proper collection of tissues for further histological processing can impact the quality of testing results. This article describes the conduct of a basic gross examination including identification of heart, liver, lungs, kidneys, and spleen, as well as how to collect those organs. Additionally four of the more difficult tissue/sample co...

  13. Sample preparation techniques of biological material for isotope analysis

    International Nuclear Information System (INIS)

    Sample preparation is an essential step in all isotope-aided experiments but often it is not given enough attention. The methods of sample preparation are very important to obtain reliable and precise analytical data and for further interpretation of results. The size of a sample required for chemical analysis is usually very small (10mg-1500mg). On the other hand the amount of harvested plant material from plots in a field experiment is often bulky (several kilograms) and the entire sample is too large for processing. In addition, while approaching maturity many crops show not only differences in physical consistency but also a non-uniformity in 15N content among plant parts, requiring a plant fractionation or separation into parts (vegetative and reproductive) e.g. shoots and spikes, in case of small grain cereals, shoots and pods in case of grain legumes and tops and roots or beets (including crown) in case of sugar beet, etc. In any case the ultimate goal of these procedures is to obtain representative subsample harvested from greenhouse or field experiments for chemical analysis. Before harvesting an isotopic-aided experiment the method of sampling has to be selected. It should be based on the type of information required in relation to the objectives of the research and the availability of resources (staff, sample preparation equipment, analytical facilities, chemicals and supplies, etc.). 10 refs, 3 figs, 3 tabs

  14. Activation methods of retrospective dosimetry using biological samples

    International Nuclear Information System (INIS)

    23Na and 32S are stable isotopes which are present in humans - 23Na in blood and other tissues, 32S in hair. When human body is irradiated by neutrons, nuclear reactions 23Na(n,γ)24Na and 32S(n,p)32P occur, the products, 24Na and 32P, being radioactive. The induced activity can be used for retrospective assessment of the neutron dose. The principle of this dosimetry application is described. As a particular case, the relations between the activity and neutron dose were derived for irradiation of a human by the fission neutron spectrum. (orig.)

  15. Determination of steroid hormones in biological and environmental samples using green microextraction techniques: an overview.

    Science.gov (United States)

    Aufartová, Jana; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan; Nováková, Lucie; Solich, Petr

    2011-10-17

    Residues of steroid hormones have become a cause for concern because they can affect the biological activity of non-target organisms. Steroid hormones are a potential risk for wildlife and humans through the consumption of contaminated food or water. Their determination requires extraction and clean-up steps, prior to detection, to reach low concentration levels. In recent years, a great effort has been made to develop new analytical methodologies, such as microextraction techniques, that reduce environmental pollution. Researchers have modified old methods to incorporate procedures that use less-hazardous chemicals or that use smaller amounts of them. They are able to do direct analysis using miniaturised equipment and reduced amounts of solvents and wastes. These accomplishments are the main objectives of green analytical chemistry. In this overview, we focus on microextraction techniques for the determination of steroid hormones in biological (e.g., human urine, human serum, fish, shrimp and prawn tissue and milk) and environmental (e.g., wastewaters, surface waters, tap waters, river waters, sewage sludges, marine sediments and river sediments) samples. We comment on the most recent applications in sorptive-microextraction modes, such as solid phase microextraction (SPME) with molecularly imprinted polymers (MIPs), in-tube solid-phase microextraction (IT-SPME), stir-bar sorptive extraction (SBSE) and microextraction in packed sorbent (MEPS). We also describe liquid-phase microextraction (LPME) approaches reported in the literature that are applied to the determination of steroid hormones. PMID:21907019

  16. A stress driven growth model for soft tissue considering biological availability

    International Nuclear Information System (INIS)

    Some of the key factors that regulate growth and remodeling of tissues are fundamentally mechanical. However, it is important to take into account the role of bioavailability together with the stresses and strains in the processes of normal or pathological growth. In this sense, the model presented in this work is oriented to describe the growth of soft biological tissue under 'stress driven growth' and depending on the biological availability of the organism. The general theoretical framework is given by a kinematic formulation in large strain combined with the thermodynamic basis of open systems. The formulation uses a multiplicative decomposition of deformation gradient, splitting it in a growth part and visco-elastic part. The strains due to growth are incompatible and are controlled by an unbalanced stresses related to a homeostatic state. Growth implies a volume change with an increase of mass maintaining constant the density. One of the most interesting features of the proposed model is the generation of new tissue taking into account the contribution of mass to the system controlled through biological availability. Because soft biological tissues in general have a hierarchical structure with several components (usually a soft matrix reinforced with collagen fibers), the developed growth model is suitable for the characterization of the growth of each component. This allows considering a different behavior for each of them in the context of a generalized theory of mixtures. Finally, we illustrate the response of the model in case of growth and atrophy with an application example.

  17. Elemental analysis of biological samples using deuteron induced X-rays and charged particles

    International Nuclear Information System (INIS)

    A method for elemental analysis in biological samples is presented. Samples were exposed to 4 MeV deuterons and both charged particle and X-ray spectra were recorded. The method was tested on a biopsi of mouseliver and a blood-serum-sample and was found promising for rapid analysis of samples associated with small amounts of material (μg). (Auth.)

  18. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Chisvert, Alberto, E-mail: alberto.chisvert@uv.es [Departamento de Quimica Analitica, Facultad de Quimica, Universitat de Valencia, Doctor Moliner St. 50, 46100 Burjassot, Valencia (Spain); Leon-Gonzalez, Zacarias [Unidad Analitica, Instituto de Investigacion Sanitaria Fundacion Hospital La Fe, 46009 Valencia (Spain); Tarazona, Isuha; Salvador, Amparo [Departamento de Quimica Analitica, Facultad de Quimica, Universitat de Valencia, Doctor Moliner St. 50, 46100 Burjassot, Valencia (Spain); Giokas, Dimosthenis [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2012-11-08

    Highlights: Black-Right-Pointing-Pointer Papers describing the determination of UV filters in fluids and tissues are reviewed. Black-Right-Pointing-Pointer Matrix complexity and low amounts of analytes require effective sample treatments. Black-Right-Pointing-Pointer The published papers do not cover the study of all the substances allowed as UV filters. Black-Right-Pointing-Pointer New analytical methods for UV filters determination in these matrices are encouraged. - Abstract: Organic UV filters are chemical compounds added to cosmetic sunscreen products in order to protect users from UV solar radiation. The need of broad-spectrum protection to avoid the deleterious effects of solar radiation has triggered a trend in the cosmetic market of including these compounds not only in those exclusively designed for sun protection but also in all types of cosmetic products. Different studies have shown that organic UV filters can be absorbed through the skin after topical application, further metabolized in the body and eventually excreted or bioaccumulated. These percutaneous absorption processes may result in various adverse health effects, such as genotoxicity caused by the generation of free radicals, which can even lead to mutagenic or carcinogenic effects, and estrogenicity, which is associated with the endocrine disruption activity caused by some of these compounds. Due to the absence of official monitoring protocols, there is a demand for analytical methods that enable the determination of UV filters in biological fluids and tissues in order to retrieve more information regarding their behavior in the human body and thus encourage the development of safer cosmetic formulations. In view of this demand, there has recently been a noticeable increase in the development of sensitive and selective analytical methods for the determination of UV filters and their metabolites in biological fluids (i.e., urine, plasma, breast milk and semen) and tissues. The complexity of

  19. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues

    International Nuclear Information System (INIS)

    Highlights: ► Papers describing the determination of UV filters in fluids and tissues are reviewed. ► Matrix complexity and low amounts of analytes require effective sample treatments. ► The published papers do not cover the study of all the substances allowed as UV filters. ► New analytical methods for UV filters determination in these matrices are encouraged. - Abstract: Organic UV filters are chemical compounds added to cosmetic sunscreen products in order to protect users from UV solar radiation. The need of broad-spectrum protection to avoid the deleterious effects of solar radiation has triggered a trend in the cosmetic market of including these compounds not only in those exclusively designed for sun protection but also in all types of cosmetic products. Different studies have shown that organic UV filters can be absorbed through the skin after topical application, further metabolized in the body and eventually excreted or bioaccumulated. These percutaneous absorption processes may result in various adverse health effects, such as genotoxicity caused by the generation of free radicals, which can even lead to mutagenic or carcinogenic effects, and estrogenicity, which is associated with the endocrine disruption activity caused by some of these compounds. Due to the absence of official monitoring protocols, there is a demand for analytical methods that enable the determination of UV filters in biological fluids and tissues in order to retrieve more information regarding their behavior in the human body and thus encourage the development of safer cosmetic formulations. In view of this demand, there has recently been a noticeable increase in the development of sensitive and selective analytical methods for the determination of UV filters and their metabolites in biological fluids (i.e., urine, plasma, breast milk and semen) and tissues. The complexity of the biological matrix and the low concentration levels of these compounds inevitably impose sample

  20. A laser microdissection-based workflow for FFPE tissue microproteomics: Important considerations for small sample processing.

    Science.gov (United States)

    Longuespée, Rémi; Alberts, Deborah; Pottier, Charles; Smargiasso, Nicolas; Mazzucchelli, Gabriel; Baiwir, Dominique; Kriegsmann, Mark; Herfs, Michael; Kriegsmann, Jörg; Delvenne, Philippe; De Pauw, Edwin

    2016-07-15

    Proteomic methods are today widely applied to formalin-fixed paraffin-embedded (FFPE) tissue samples for several applications in research, especially in molecular pathology. To date, there is an unmet need for the analysis of small tissue samples, such as for early cancerous lesions. Indeed, no method has yet been proposed for the reproducible processing of small FFPE tissue samples to allow biomarker discovery. In this work, we tested several procedures to process laser microdissected tissue pieces bearing less than 3000 cells. Combined with appropriate settings for liquid chromatography mass spectrometry-mass spectrometry (LC-MS/MS) analysis, a citric acid antigen retrieval (CAAR)-based procedure was established, allowing to identify more than 1400 proteins from a single microdissected breast cancer tissue biopsy. This work demonstrates important considerations concerning the handling and processing of laser microdissected tissue samples of extremely limited size, in the process opening new perspectives in molecular pathology. A proof of the proposed method for biomarker discovery, with respect to these specific handling considerations, is illustrated using the differential proteomic analysis of invasive breast carcinoma of no special type and invasive lobular triple-negative breast cancer tissues. This work will be of utmost importance for early biomarker discovery or in support of matrix-assisted laser desorption/ionization (MALDI) imaging for microproteomics from small regions of interest. PMID:26690073

  1. A method to measure the hyperelastic parameters of ex vivo breast tissue samples

    Science.gov (United States)

    Samani, Abbas; Plewes, Donald

    2004-09-01

    Over the past decade, there has been increasing interest in modelling soft tissue deformation. This topic has several biomedical applications ranging from medical imaging to robotic assisted telesurgery. In these applications, tissue deformation can be very large due to low tissue stiffness and lack of physical constraints. As a result, deformation modelling of such organs often requires a treatment, which reflects nonlinear behaviour. While computational techniques such as nonlinear finite element methods are well developed, the required intrinsic nonlinear mechanical parameters of soft tissues that are critical to develop reliable tissue deformation models are not well known. To address this issue, we developed a system to measure the hyperelastic parameters of small ex vivo tissue samples. This measurement technique consists of indenting an unconfined small block of tissue using a computer controlled loading system while measuring the resulting indentation force. The nonlinear tissue force-displacement response is used to calculate the hyperelastic parameters via an appropriate inversion technique. This technique is based on a nonlinear least squares formulation that uses a nonlinear finite element model as the direct problem solver. The features of the system are demonstrated with two samples of breast tissue and typical hyperelastic results are presented.

  2. Application of scanning electrochemical microscopy to biological samples.

    Science.gov (United States)

    Lee, C; Kwak, J; Bard, A J

    1990-03-01

    The scanning electrochemical microscope can be used in the feedback mode in two-dimensional scans over biological substrates to obtain topographic information at the micrometer level. In this mode, the effect of distance between a substrate (either conductive or insulating) and a scanning ultramicroelectrode tip on the electrolytic current flowing at the tip is recorded as a function of the tip x-y position. Scans of the upper surface of a grass leaf and the lower surface of a Ligustrum sinensis leaf (which show open stomata structures) immersed in aqueous solution are shown. Scans of the upper surface of an elodea leaf in the dark and under irradiation, where the tip reaction is the reduction of oxygen produced by photosynthesis, demonstrate the possibility of obtaining information about the distribution of reaction sites on the substrate surface. PMID:2308933

  3. The use contrast agent for imaging biological samples

    Czech Academy of Sciences Publication Activity Database

    Dammer, J.; Weyda, František; Sopko, V.; Jakůbek, J.

    2011-01-01

    Roč. 6, C01096 (2011), s. 1-7. ISSN 1748-0221. [International Workshop on Radiation Imaging Detectors /12./. Cambridge, 11.07.2010-15.7.2010] R&D Projects: GA MŠk 2B06005 Grant ostatní: Research Program(CZ) 6840770029; Research Program(CZ) 6840770040; GA AV ČR(CZ) IAA600550614; GA MŠk(CZ) 2B06007; GA MŠk(CZ) 1PO4LA211; GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z50070508 Keywords : x-ray radiography and digital radiography (DR) * x-ray detectors * inspections with x-rays Subject RIV: EA - Cell Biology Impact factor: 1.869, year: 2011

  4. 3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue

    Science.gov (United States)

    Wang, Minjie; Shen, Shuwei; Yang, Jie; Dong, Erbao; Xu, Ronald

    2014-03-01

    The performance of biomedical optical imaging devices heavily relies on appropriate calibration. However, many of existing calibration phantoms for biomedical optical devices are based on homogenous materials without considering the multi-layer heterogeneous structures observed in biological tissue. Using such a phantom for optical calibration may result in measurement bias. To overcome this problem, we propose a 3D printing method for freeform fabrication of tissue simulating phantoms with multilayer heterogeneous structure. The phantom simulates not only the morphologic characteristics of biological tissue but also absorption and scattering properties. The printing system is based on a 3D motion platform with coordinated control of the DC motors. A special jet nozzle is designed to mix base, scattering, and absorption materials at different ratios. 3D tissue structures are fabricated through layer-by-layer printing with selective deposition of phantom materials of different ingredients. Different mixed ratios of base, scattering and absorption materials have been tested in order to optimize the printing outcome. A spectrometer and a tissue spectrophotometer are used for characterizing phantom absorption and scattering properties. The goal of this project is to fabricate skin tissue simulating phantoms as a traceable standard for the calibration of biomedical optical spectral devices.

  5. A multiscale analysis of nutrient transport and biological tissue growth in vitro

    KAUST Repository

    O'Dea, R. D.

    2014-10-15

    © The authors 2014. In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterized by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport, and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection-reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally relevant microstructural information to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.

  6. Cadmium contamination of tissues and organs of delphinids species (Stenella attenuata)--influence of biological and ecological factors

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J.M.; Amiard, J.C.; Amiard-Triquet, C.; Boudou, A.; Ribeyre, F. (Universite de Bordeaux I, (France))

    1990-12-01

    Based on a sample of 27 dolphins (Stenella attenuata) captured in the Eastern tropical zone of the Pacific Ocean, this study was carried out to analyze the cadmium accumulation levels and distribution in 12 organs or tissue samples. The average cadmium concentrations were between 0.2 mg Cd.kg-1 in the brain and muscle and 48 mg Cd.kg-1 in the kidneys. For most of organs and tissues the average values were between 1 and 5 mg Cd.kg-1. Kidneys, liver, muscle, and intestine contained almost 85% of the total cadmium burden of all tissues considered in this study. Most of the biological and ecological factors taken into account (age, sex, total weight, and length of the dolphins, weight of the organs, place and date of capture) interacted with the cadmium concentrations and burdens in the collected organs or tissues. Three factors appear to be of prime importance: age, body weight, and geographical location of the area of capture.

  7. Cadmium contamination of tissues and organs of delphinids species (Stenella attenuata)--influence of biological and ecological factors.

    Science.gov (United States)

    André, J M; Amiard, J C; Amiard-Triquet, C; Boudou, A; Ribeyre, F

    1990-12-01

    Based on a sample of 27 dolphins (Stenella attenuata) captured in the Eastern tropical zone of the Pacific Ocean, this study was carried out to analyze the cadmium accumulation levels and distribution in 12 organs or tissue samples. The average cadmium concentrations were between 0.2 mg Cd.kg-1 in the brain and muscle and 48 mg Cd.kg-1 in the kidneys. For most of organs and tissues the average values were between 1 and 5 mg Cd.kg-1. Kidneys, liver, muscle, and intestine contained almost 85% of the total cadmium burden of all tissues considered in this study. Most of the biological and ecological factors taken into account (age, sex, total weight, and length of the dolphins, weight of the organs, place and date of capture) interacted with the cadmium concentrations and burdens in the collected organs or tissues. Three factors appear to be of prime importance: age, body weight, and geographical location of the area of capture. PMID:2090444

  8. Soft Robotic Grippers for Biological Sampling on Deep Reefs

    Science.gov (United States)

    Galloway, Kevin C.; Becker, Kaitlyn P.; Phillips, Brennan; Kirby, Jordan; Licht, Stephen; Tchernov, Dan; Gruber, David F.

    2016-01-01

    Abstract This article presents the development of an underwater gripper that utilizes soft robotics technology to delicately manipulate and sample fragile species on the deep reef. Existing solutions for deep sea robotic manipulation have historically been driven by the oil industry, resulting in destructive interactions with undersea life. Soft material robotics relies on compliant materials that are inherently impedance matched to natural environments and to soft or fragile organisms. We demonstrate design principles for soft robot end effectors, bench-top characterization of their grasping performance, and conclude by describing in situ testing at mesophotic depths. The result is the first use of soft robotics in the deep sea for the nondestructive sampling of benthic fauna.

  9. Specific methods for theophylline assay in biological samples

    International Nuclear Information System (INIS)

    The objective of monitoring theophylline plasma levels in in therapeutic work is well established, and the consequences of using unspecific analytical methods are obvious. For the determination of pharmacokinetic parameters, concentrations far below the therapeutic range must often be measured. Interferences acceptable in therapeutic monitoring of theophylline could cause severe inaccuracy at these drug levels. The term specificity and its meaning are discussed in general and in relation to the different steps of the analytical procedure (e.g., sampling and sample work-up). Different analytical methods for theophylline are discussed in terms of specificity. Plasma concentrations of paraxanthine (1,7-dimethylxanthine) - a metabolite of caffeine - as high as 3 μg/ml have been observed, and the compound can interfere in various theophylline assay methods. An example is given of the pharmacokinetic consequences. (author)

  10. Use of STM for analysis of surfaces of biological samples

    Science.gov (United States)

    Permjakov, N. K.; Ananyan, M. A.; Luskinovich, P. N.; Sorokovoi, V. I.; Saveliev, S. V.

    1999-04-01

    Scanning tunnelling microscopy (STM) was used to image the cell surfaces of the olfactory organ of the shark Carcharhinus longimanus and ectoderm of the frog Xenopus laevis blastulae of 1024 stages, as well as human low-density lipoproteins surface. The samples from two of these objects were prepared by using traditional techniques for scanning electron microscopy (SEM). The lipoprotein samples were prepared by drying in the air. A comparison of the STM images with the earlier obtained SEM images indicates that there are some earlier unknown details of the surface structures of receptor microvilli and support cell membranes of the olfactory organ of the shark. There was found a fold of membrane on the surface of the ectodermal frog embryo cells, which covered yolk granules. STM images of the lipoprotein surface were obtained without increasing conductivity treatment.

  11. Evaluation of biological sample preparation for immunosignature-based diagnostics.

    Science.gov (United States)

    Chase, Brian Andrew; Johnston, Stephen Albert; Legutki, Joseph Barten

    2012-03-01

    To address the need for a universal system to assess health status, we previously described a method termed "immunosignaturing" which splays the entire humoral antibody repertoire across a peptide microarray. Two important issues relative to the potential broad use of immunosignatures are sample preparation and stability. In the present study, we compared the immunosignatures developed from serum, plasma, saliva, and antibodies eluted from blood dried onto filter paper. We found that serum and plasma provide identical immunosignatures. Immunosignatures derived from dried blood also correlated well with those from nondried serum from the same individual. Immunosignatures derived from dried blood were capable of distinguishing naïve mice from those infected with influenza virus. Saliva was applied to the arrays, and the IgA immunosignature correlated strongly with that from dried blood. Finally, we demonstrate that dried blood retains immunosignature information even when exposed to high temperature. This work expands the potential diagnostic uses for immunosignatures. These features suggest that different forms of archival samples can be used for diagnosis development and that in prospective studies samples can be easily procured. PMID:22237890

  12. Transuranium analysis methodologies for biological and environmental samples

    International Nuclear Information System (INIS)

    Analytical procedures for the most abundant transuranium nuclides in the environment (i.e., plutonium and, to a lesser extent, americium) are available. There is a lack of procedures for doing sequential analysis for Np, Pu, Am, and Cm in environmental samples, primarily because of current emphasis on Pu and Am. Reprocessing requirements and waste disposal connected with the fuel cycle indicate that neptunium and curium must be considered in environmental radioactive assessments. Therefore it was necessary to develop procedures that determine all four of these radionuclides in the environment. The state of the art of transuranium analysis methodology as applied to environmental samples is discussed relative to different sample sources, such as soil, vegetation, air, water, and animals. Isotope-dilution analysis with 243Am (239Np) and 236Pu or 242Pu radionuclide tracers is used. Americium and curium are analyzed as a group, with 243Am as the tracer. Sequential extraction procedures employing bis(2-ethyl-hexyl)orthophosphoric acid (HDEHP) were found to result in lower yields and higher Am--Cm fractionation than ion-exchange methods

  13. Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects.

    Science.gov (United States)

    Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V

    2015-09-01

    The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as

  14. Assessment of DDT levels in selected environmental media and biological samples from Mexico and Central America.

    Science.gov (United States)

    Pérez-Maldonado, Iván N; Trejo, Antonio; Ruepert, Clemens; Jovel, Reyna del Carmen; Méndez, Mónica Patricia; Ferrari, Mirtha; Saballos-Sobalvarro, Emilio; Alexander, Carlos; Yáñez-Estrada, Leticia; Lopez, Dania; Henao, Samuel; Pinto, Emilio R; Díaz-Barriga, Fernando

    2010-03-01

    Taking into account the environmental persistence and the toxicity of DDT, the Pan American Health Organization (PAHO) organized a surveillance program in Mesoamerica which included the detection of residual DDT in environmental (soil) and biological samples (fish tissue and children's blood). This program was carried out in communities from Mexico, Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica and Panama. This paper presents the first report of that program. As expected, the results show that the levels for [summation operator] DDT in soil (outdoor or indoor) and fish samples in the majority of the locations studied are below guidelines. However, in some locations, we found children with high concentrations of DDT as in Mexico (mean level 50.2 ng/mL). Furthermore, in some communities and for some matrices, the DDT/DDE quotient is higher than one and this may reflect a recent DDT exposure. Therefore, more efforts are needed to avoid exposure and to prevent the reintroduction of DDT into the region. In this regard it is important to know that under the surveillance of PAHO and with the support of UNEP, a regional program in Mesoamerica for the collection and disposal of DDT and other POPs stockpiles is in progress. PMID:20092871

  15. Online recovery of radiocesium from soil, tissue paper and plant samples by supercritical fluid extraction

    International Nuclear Information System (INIS)

    The feasibility of recovery of radio-cesium from soil, tissue papers, and plant samples has been evaluated by supercritical fluid extraction (SFE) route employing calix(4)arene-mono(crown-6) (CC) dissolved in acetonitrile. These studies showed that quantitative recovery of 137Cs from soil samples was difficult under the conditions of these studies. However, experiments performed on tissue papers (cellulose matrix) showed quantitative recovery of 137Cs. On the other hand, 137Cs recovery from plant samples varied between ∼50 % (for stems) and ∼67.2 % (for leaves) employing 1x10-3 M CC + 4 M HNO3 dissolved in acetonitrile. (author)

  16. New derivation method and simulation of skin effect in biological tissue.

    Science.gov (United States)

    Fan, Xiaoli; Zhou, Qianxiang; Liu, Zhongqi; Xie, Fang

    2015-01-01

    Based on the electrical properties of biological tissues, bioimpedance measurement technology can be employed to collect physiologic and pathologic information by measuring changes in human bioimpedance. When an alternating current (AC) is applied as a detection signal to a tissue, the current field distribution, which is affected by skin effect, is related to both the bioimpedance of the tissue and the AC frequency. These relations would possibly reduce the accuracy and reliability of the measurement. In this study, an electromagnetic theory-based method, in which cylindrical conductor were divided into layers, was used to obtain current field distribution models of human limbs. Model simulations were conducted in MATLAB. The skin effect phenomenon and its characteristics in human tissues at different frequencies were observed, thus providing essential data on skin effect, which are useful in the development of bioimpedance measurement technology. PMID:26406033

  17. Determination of Alkali Ions in Biological and Environmental Samples.

    Science.gov (United States)

    Hauser, Peter C

    2016-01-01

    An overview of the common methods for the determination of the alkali metals is given. These are drawn from all of the three principle branches of quantitative analysis and consist mainly of optical atomic spectrometric methods, ion-selective electrodes, and the separation methods of ion-chromatography and capillary electrophoresis. Their main characteristics and performance parameters are discussed. Important specific applications are also examined, namely clinical analysis, single cell analysis, the analysis of soil samples and hydroponic nutrient solutions, as well as the detection of the radioactive (137)Cs isotope. PMID:26860298

  18. Solution of a Radiative Transfer Problem in a Biological Tissue. An Optical Tomography Model.

    Science.gov (United States)

    Gantri, M.; Trabelsi, H.; Bensalah, R.; Sediki, E.

    2007-09-01

    In this work, we present a solution of the radiative transfer equation in a biological tissue like-medium. This solution is obtained using a finite volume discrete ordinate method. In medical imaging, this could be an optical tomography forward model. We consider a very thin rectangular biological-tissue-like medium submitted to a visible or an infrared light source. The source is assumed to be monochromatic, isotropic and time-independent. Transmitted fluences, in the detector points, are calculated. The model is validated in the case of a homogeneous tissue-like medium. The proposed model is also used to study changes on the transmitted light in multilayer media. We simulate skin, fat and muscle. Next, we study the effect of the wavelength light source on the distribution of the transmitted luminance. This is done by using biological tissue spectral properties reported in literature. This gives some validity conditions for the use of the computed optical tomography as a medical imaging technique.

  19. Single-step microwave assisted headspace liquid-phase microextraction of trihalomethanes and haloketones in biological samples.

    Science.gov (United States)

    Alsharaa, Abdulnaser; Basheer, Chanbasha; Sajid, Muhammad

    2015-12-15

    A single-step microwave assisted headspace liquid-phase microextraction (MA-HS-LPME) method was developed for determination of trihalomethanes (THMs) and haloketones (HKs) in biological samples. In this method, a porous membrane envelope was filled with few microliters of extraction solvent and then placed inside the microwave extraction vial. A PTFE ring was designed to support the membrane envelope over a certain height inside the vial. An optimum amount of biological sample was placed in the vial equipped with magnetic stirrer. After that nitric acid was added to the vial for digestion of biological sample. The sample was digested and the volatile THMs and HKs were extracted at headspace in the solvent containing porous membrane. After simultaneous digestion and extraction, the extract was injected to gas chromatography/mass spectrometry for analysis. Factors affecting the extraction efficiency were optimized to achieve higher extraction performance. Quantification was carried out over a concentration range of 0.3-100ngg(-1) for brominated compounds while for the chlorinated ones linear range was between 0.5-100ngg(-1). Limit of detections (LODs) were ranged from 0.051 to 0.110ngg(-1) while limit of quantification (LOQ) were in the range of 0.175-0.351ngg(-1). The relative standard deviations (RSDs) of the calibrations were ranged between 1.1 and 6.8%. The MA-HS-LPME was applied for the determination of trace level THMs and HKs in fish tissue and green alga samples. PMID:26571453

  20. Validated capillary electrophoretic assays for disaccharide composition analysis of galactosaminoglycans in biologic samples and drugs/nutraceuticals.

    Science.gov (United States)

    Asimakopoulou, Athanasia P; Malavaki, Christina; Afratis, Nikolaos A; Theocharis, Achilleas D; Lamari, Fotini N; Karamanos, Nikos K

    2015-01-01

    Capillary electrophoresis is a separation technique with high resolving power and sensitivity with applications in glycosaminoglycan analysis. In this chapter, we present validated protocols for determining the variously sulfated chondroitin or dermatan sulfate-derived disaccharides. These approaches involve degradation of the polysaccharides with specific chondro/dermato-lyases and electrophoretic analysis with capillary zone electrophoresis in a low pH operating buffer and reversed polarity. This methodology has been applied to drug/nutraceutical formulations or to biologic samples (blood serum, lens capsule) and has been validated. Analysis of biologic tissue samples is often more demanding in terms of detection sensitivity, and thus concentration pretreatment steps and/or a derivatization step with 2-aminoacridone are often advisable. PMID:25325950

  1. Primary and secondary damage to biological tissue induced by laser radiation

    International Nuclear Information System (INIS)

    A simply analytic model describing the evolution of the thermal injury during and after exposure of biological tissue to pulses of intense laser radiation is presented. Estimates for the upper and lower bounds of the extent of the thermal injury associated with protein and enzyme denaturization (secondary damage) relative to the extent of burned tissue (primary damage) are presented. The energy necessary for burn threshold and the energy required to induce both types of thermal injury increase with laser pulse duration. An optimal duration of laser pulse exists at which the extent of the secondary damage relative to the primary damage is the smallest

  2. Discrete frequency infrared imaging using quantum cascade lasers for biological tissue analysis

    Science.gov (United States)

    Yeh, Kevin; Bhargava, Rohit

    2016-03-01

    Infrared (IR) spectroscopic imaging is an emerging modality for biological tissue analysis that has traditionally employed an interferometer for spectral discrimination. Recent technology developments have made discrete frequency sources, both lasers and filters, practical for imaging. The use of quantum cascade lasers in particular, presents new opportunities as well as challenges. Here we describe results from a novel point scanning confocal IR microscope and demonstrate the performance imaging several important spectral bands of lung tissue. Results show the possibility of discrete frequency (DF) absorbance measurements with RMS noise levels down to 0.34 mAU in 0.25 ms.

  3. X-ray scattering for the characterization of lyophilized breast tissue samples

    Science.gov (United States)

    Elshemey, Wael M.; Mohamed, Fayrouz S.; Khater, Ibrahim M.

    2013-09-01

    This work investigates the possibility of characterizing breast cancer by measuring the X-ray scattering profiles of lyophilized excised breast tissue samples. Since X-ray scattering from water-rich tissue is dominated by scattering from water, the removal of water by lyophilization would enhance the characterization process. In the present study, X-ray scattering profiles of 22 normal, 22 malignant and 10 benign breast tissue samples are measured. The cut-offs of scatter diagrams, sensitivity, specificity and diagnostic accuracy of three characterization parameters (full width at half maximum (FWHM) for the peak at 1.1 nm-1, area under curve (AUC), and ratio of 1st to 2nd scattering peak intensities (I1/I2%)) are calculated and compared to the data from non-lyophilized samples. Results show increased sensitivity (up to 100%) of the present data on lyophilized breast tissue samples compared to previously reported data for non-lyophilized samples while the specificity (up to 95.4%), diagnostic accuracy (up to 95.4%) and receiver operating characteristic (ROC) curve values (up to 0.9979) for both sets of data are comparable. The present study shows significant differences between normal samples and each of malignant and benign samples. Only subtle differences exist between malignant and benign lyophilized breast tissue samples where FWHM=0.7±0.1 and 0.8±0.3, AUC=1.3±0.2 and 1.4±0.2 and I1/I2%=44.9±11.0 and 52.4±7.6 for malignant and benign samples respectively.

  4. Measurement of X-ray mass attenuation coefficients in biological and geological samples in the energy range of 7–12 keV

    International Nuclear Information System (INIS)

    Information about X-ray mass attenuation coefficients in different materials is necessary for accurate X-ray fluorescent analysis. The X-ray mass attenuation coefficients for energy of 7–12 keV were measured in biological (Mussel and Oyster tissues, blood, hair, liver, and Cabbage leaves) and geological (Baikal sludge, soil, and Alaskite granite) samples. The measurements were carried out at the EXAFS Station of Siberian Synchrotron Radiation Center (VEPP-3). Obtained experimental mass attenuation coefficients were compared with theoretical values calculated for some samples. - Highlights: • The X-ray attenuation coefficients were measured in biological and geological samples. • The difference between the attenuation coefficients in biological samples reached 47%. • The liver sample had the smallest attenuation coefficients. • The theoretical values for liver sample differ from the experimental ones by 2%

  5. Cadmium determination in biological samples using neutron activation analysis with radiochemical separations

    International Nuclear Information System (INIS)

    Chile has 7500 km of coastline on the Southern Pacific ocean,with about 4500 km of continental coastline that contains a variety of different geographical zones.This variety means that there is a great diversity of marine resources such as fish, shellfish and seaweeds. The utilization of these resources has been increasing in recent years making this sector an economically important one. The catch as of May 2002 came to 1.9 million tons and exports of the different species amounted to US$611.5 million as of April.But this important economic resource is being threatened by the technical demands imposed by importing countries, mainly the specific requirements for sanitary certification for fishery export products, depending on the markets of destination. The chemical element cadmium is one of the most strictly controlled elements due some shellfish accumulate a large amount of this element and to its high toxicity. The Chilean standard's analytical procedures for cadmium determination in hydro biological products, which must be met by laboratories that certify and control these products for export, are now being evaluated. Through its Chemical Metrology Unit, the Chilean Nuclear Energy Commission is strongly supporting this sector by preparing the secondary reference or control materials, and it has developed and implemented nuclear analytical methods for the certification of these materials, which will be used mostly in collaborative studies. This work describes the methodology developed for the determination of cadmium in biological samples, particularly in shellfish and fish. The method is based on neutron activation analysis with radiochemical separations, using the radioisotopes 115Cd and 115mIn, generated in the samples by bombarding with neutrons in a nuclear reactor. The samples were digested at 110oC with H2SO4 and H2O2 and then the radioactive cadmium element was separated from the other elements present in the samples using a Bio Rad AG 2-X8 resin

  6. Environmental contaminants in water, sediment and biological samples from Playa Lakes in southeastern New Mexico - 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment, water, bird tissue, and invertebrates were collected from 10 playa lakes in Southeastern New Mexico in 1991 and 1992. These samples were analyzed for a...

  7. Cellular burdens and biological effects on tissue level caused by inhaled radon progenies

    CERN Document Server

    Madas, Balázs G; Farkas, Árpád; Szőke, István

    2014-01-01

    In the case of radon exposure, the spatial distribution of deposited radioactive particles is highly inhomogeneous in the central airways. The objective of this research is to investigate the consequences of this heterogeneity regarding cellular burdens in the bronchial epithelium and to study the possible biological effects on tissue level. Applying a computational fluid dynamics program, the deposition distribution of inhaled radon daughters has been determined in a bronchial airway model for 23 minutes of work in the New Mexico uranium mine corresponding to 0.0129 WLM exposure. A numerical epithelium model based on experimental data has been utilized in order to quantify cellular hits and doses. Finally, a carcinogenesis model considering cell death induced cell cycle shortening has been applied to assess the biological responses. Computations present, that cellular dose may reach 1.5 Gy, which is several orders of magnitude higher than tissue dose. The results are in agreement with the histological findin...

  8. An Approximate Numerical Technique for Characterizing Optical Pulse Propagation in Inhomogeneous Biological Tissue

    Directory of Open Access Journals (Sweden)

    Chintha C. Handapangoda

    2008-01-01

    Full Text Available An approximate numerical technique for modeling optical pulse propagation through weakly scattering biological tissue is developed by solving the photon transport equation in biological tissue that includes varying refractive index and varying scattering/absorption coefficients. The proposed technique involves first tracing the ray paths defined by the refractive index profile of the medium by solving the eikonal equation using a Runge-Kutta integration algorithm. The photon transport equation is solved only along these ray paths, minimizing the overall computational burden of the resulting algorithm. The main advantage of the current algorithm is that it enables to discretise the pulse propagation space adaptively by taking optical depth into account. Therefore, computational efficiency can be increased without compromising the accuracy of the algorithm.

  9. Nonlinear effects of the finite amplitude ultrasound wave in biological tissues

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nonlinear effects will occur during the transmission of the finite amplitude wave in biological tissues.The theoretical prediction and experimental demonstration of the nonlinear effects on the propagation of the finite amplitude wave at the range of biomedical ultrasound frequency and intensity are studied.Results show that the efficiency factor and effective propagation distance will decrease while the attenuation coefficient increases due to the existence of nonlinear effects.The experimental results coincided quite well with the theory.This shows that the effective propagation distance and efficiency factor can be used to describe quantitatively the influence of nonlinear effects on the propagation of the finite amplitude sound wave in biological tissues.

  10. Theoretical and experimental study of the intensity distribution in biological tissues

    Institute of Scientific and Technical Information of China (English)

    Xu Tang; Zhang Chun-Ping; Chen Gui-Ying; Tian Jian-Guo; Zhang Guang-Yin; Zhao Cheng-Mei

    2005-01-01

    Based on the diffusion approximate theory (DA ), a theoretical model about the distribution of the intensity of a narrow collimation beam illuminating on a semi-infinite biological tissue is developed. In order to verify the correctness of the model, a novel method of measuring the distributions of the intensity of light in Intralipid-10% suspension at 650 nm is presented and measurements of the distributions of the distance-dependent intensity of scattering light in different directions are made. The investigations show that the results from our diffusion model are in good agreement with the experimental results beyond and in the areas around the light source, and the distance-dependent intensity in the incident direction attenuates approximately in the exponential form. Furthermore, our theoretic results indicate the anisotropic characteristics of the intensity in different directions of scattering light inside the biological tissue.

  11. Poro_Thermoelastic Duality and FE-based strategies for the analysis of biological tissues

    OpenAIRE

    Capone, Claudia Cristiana Chiara

    2010-01-01

    Many analytical and numerical approaches have been proposed in order to solve poroelastic problems describing the behavior of biological tissues. The main difficulty associated to numerical strategies concerns the solution of the coupled poroelastic equations for determining the solid response in terms of deformation and filtration. The proposal of this work is to find a strategy to numerically solve poroelastic problems employing the Finite Element Method (FEM). In particular, the strategy p...

  12. Deposition rates in growing tissue: Implications for physiology, molecular biology, and response to environmental variation

    OpenAIRE

    Silk, Wendy K.; Bogeat-Triboulot, Marie-Béatrice

    2014-01-01

    Net rates of biosynthesis and mineral deposition are needed to understand the physiology and molecular biology of growth and plant responses to environmental variation. Many popular models ignore cell expansion and displacement. In contrast, the continuity equation, used with empirical data on growth velocity and concentration, allows computation of biosynthesis and deposition rates in growing tissue. This article describes data and methods needed to calculate deposition rates and reviews som...

  13. Preface to Special Topic: Microfluidics in cell biology and tissue engineering

    OpenAIRE

    Dokmeci, Mehmet R.; Khademhosseini, Ali

    2011-01-01

    In this special issue of Biomicrofluidics, a wide variety of applications of microfluidics to tissue engineering and cell biology are presented. The articles illustrate the benefits of using microfluidics for controlling the cellular environment in a precise yet high rate manner using minimum reagents. The topic is very timely and takes a stab at portraying a glimpse of what is to come in this exciting and emerging field of research.

  14. 'TISUCROMA': A Software for Color Processing of Biological Tissue's Images

    International Nuclear Information System (INIS)

    In this work a software intended to plot and analyze digital image RGB histograms from normal and abnormal regions of biological tissue. The obtained RGB histograms from each zone can be used to show the image in only one color or the mixture of some of them. The Software was developed in Lab View to process the images in a laptop. Some medical application examples are shown. (Author)

  15. Phosphorus in biological standards and samples by thermal neutron irradiation and β-counting

    International Nuclear Information System (INIS)

    A nondestructive NAA method based on the reaction 31P(n,γ)32P (T1/2 = 14.23 d) has been developed where the product nucleus, a pure β-emitter with end point energy 1.71 MeV is measured by using an end window G.M counter and an Al filter of 27 mg x cm-2. 32P was identified by measuring Eβ using Feather's analysis and its half-life was found to be 15.3±0.2 days in standard reference materials (SRMs) and samples. For most reference materials (RMs) from NIST (USA) and IAEA (Vienna), our values agree within ±5% of the certified values. A variety of biological samples have also been analyzed and our values are in the range; medicinal herbs (n 43), 0.29-5.23 mg/g; bhasmas (n = 19), 0.09-51.4 mg/g; vegetables (n = 8), 1.85-5.73 mg/g; lentils (n = 6), 2.1-5.5 mg/g; flours (n = 6), 1.3-3.3 mg/g; vegetarian diet (n = 5), 2.41-2.90 mg/g; fish (n = 43), 3.61-36.8 mg/g; human and animal milk (n = 6), 1.24-7.95 mg/g; commercial milk powders (n = 14), 2.76-11.9 mg/g; water from various sources (n = 14), 1-417 μg/l; human and animal blood (n = 9), 1.00-15.0 mg/g; cancerous and healthy breast tissue (n = 60), 1.00-8.63 mg/g; human hair (n = 43), 0.12-5.81 mg/g, where n is the number of samples analyzed. The method is simple, fast, and nondestructive and provides data within ±5% error limit with a detection limit of 0.1 mg/g. (author)

  16. Collecting and Storing Tissue, Blood, and Bone Marrow Samples From Patients With Rhabdomyosarcoma or Other Soft Tissue Sarcoma

    Science.gov (United States)

    2016-03-18

    Adult Rhabdomyosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Previously Untreated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  17. Robotic, MEMS-based Multi Utility Sample Preparation Instrument for ISS Biological Workstation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a multi-functional, automated sample preparation instrument for biological wet-lab workstations on the ISS. The instrument is based on a...

  18. X-ray scattering for the characterization of lyophilized breast tissue samples

    International Nuclear Information System (INIS)

    This work investigates the possibility of characterizing breast cancer by measuring the X-ray scattering profiles of lyophilized excised breast tissue samples. Since X-ray scattering from water-rich tissue is dominated by scattering from water, the removal of water by lyophilization would enhance the characterization process. In the present study, X-ray scattering profiles of 22 normal, 22 malignant and 10 benign breast tissue samples are measured. The cut-offs of scatter diagrams, sensitivity, specificity and diagnostic accuracy of three characterization parameters (full width at half maximum (FWHM) for the peak at 1.1 nm−1, area under curve (AUC), and ratio of 1st to 2nd scattering peak intensities (I1/I2%)) are calculated and compared to the data from non-lyophilized samples. Results show increased sensitivity (up to 100%) of the present data on lyophilized breast tissue samples compared to previously reported data for non-lyophilized samples while the specificity (up to 95.4%), diagnostic accuracy (up to 95.4%) and receiver operating characteristic (ROC) curve values (up to 0.9979) for both sets of data are comparable. The present study shows significant differences between normal samples and each of malignant and benign samples. Only subtle differences exist between malignant and benign lyophilized breast tissue samples where FWHM=0.7±0.1 and 0.8±0.3, AUC=1.3±0.2 and 1.4±0.2 and I1/I2%=44.9±11.0 and 52.4±7.6 for malignant and benign samples respectively. - Highlights: • X-ray scattering profiles of breast tissue samples are acquired. • Three X-ray profile characterization parameters are calculated. • The cut-offs, sensitivity, specificity and diagnostic accuracy are calculated. • They are compared to the data from non-lyophilized samples. • Results show increased sensitivity in case of lyophilized samples

  19. Determination of Magnesium in Needle Biopsy Samples of Muscle Tissue by Means of Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Magnesium has been determined by means of neutron-activation analysis in needle biopsy samples of the order of magnitude 1 mg dry weight. The procedure applied was to extract the Mg-27 activity from irradiated muscle tissue with concentrated hydrochloric acid followed by a fast hydroxide precipitation and gamma-spectrometric measurements. The Mg activity was recovered in the muscle tissue samples to (97 ± 2) per cent. The sensitivity for the magnesium determination is estimated as 0.3 μg

  20. Role of structural anisotropy of biological tissues in poroelastic wave propagation.

    Science.gov (United States)

    Cardoso, Luis; Cowin, Stephen C

    2012-01-01

    Ultrasound waves have a broad range of clinical applications as a non-destructive testing approach in imaging and in the diagnoses of medical conditions. Generally, biological tissues are modeled as an homogenized equivalent medium with an apparent density through which a single wave propagates. Only the first wave arriving at the ultrasound probe is used for the measurement of the speed of sound. However, the existence of a second wave in tissues such as cancellous bone has been reported and its existence is an unequivocal signature of Biot type poroelastic media. To account for the fact that ultrasound is sensitive to microarchitecture as well as density, a fabric-dependent anisotropic poroelastic ultrasound (PEU) propagation theory was recently developed. Key to this development was the inclusion of the fabric tensor - a quantitative stereological measure of the degree of structural anisotropy of bone - into the linear poroelasticity theory. In the present study, this framework is extended to the propagation of waves in several soft and hard tissues. It was found that collagen fibers in soft tissues and the mineralized matrix in hard tissues are responsible for the anisotropy of the solid tissue constituent through the fabric tensor in the model. PMID:22162897

  1. Sterilization of biological tissues with ionizing radiation; Esterilizacion de tejidos biologicos con radiacion ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M.L.; Martinez P, M.E.; Luna Z, D. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    On June 1994, the National Institute of Nuclear Research (ININ) and the South Central Hospital for High Specialty of PEMEX (HCSAE) began a joint work with the finality to obtain radio sterilized amniotic membranes for to be used as cover (biological bandage) in burnt patients. Subsequently the Chemistry Faculty of UNAM and the National Institute of Cardiology began to collaborate this last with interest on cardiac valves for graft. Starting from 1997, the International Atomic Energy Agency (IAEA) supports this project (MEX/7/008) whose main objective is to set up the basis to establish in Mexico a Radio sterilized Tissue Bank (amniotic membranes, skin, bones, tendons, cardiac valves, etc.) to be used with therapeutic purposes (grafts). The IAEA support has consisted in the equipment acquisition which is fundamental for the Tissue Bank performance such as an experimental irradiator, laminar flow bell, lyophilizer, vacuum sealer and special knives for tissues. Also visits to Mexico of experts have been authorized with the aim of advising to the personnel which participate in the project and scientific visits of this personnel to another tissue banks (Sri Lanka and Argentine). The establishment in Mexico of a Tissue bank will be a great benefit because it will have availability of distinct tissues for grafts and it will reduce the synthetic materials importation which is very expensive. (Author)

  2. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ronald M.; Laprevote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F.

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  3. Prediction equation for lower limbs lean soft tissue in circumpubertal boys using anthropometry and biological maturation.

    Directory of Open Access Journals (Sweden)

    João Valente-dos-Santos

    Full Text Available Lean soft tissue (LST, a surrogate of skeletal muscle mass, is largely limited to appendicular body regions. Simple and accurate methods to estimate lower limbs LST are often used in attempts to partition out the influence of body size on performance outputs. The aim of the current study was to develop and cross-validate a new model to predict lower limbs LST in boys aged 10-13 years, using dual-energy X-ray absorptiometry (DXA as the reference method. Total body and segmental (lower limbs composition were assessed with a Hologic Explorer-W QDR DXA scanner in a cross-sectional sample of 75 Portuguese boys (144.8±6.4 cm; 40.2±9.0 kg. Skinfolds were measured at the anterior and posterior mid-thigh, and medial calf. Circumferences were measured at the proximal, mid and distal thigh. Leg length was estimated as stature minus sitting height. Current stature expressed as a percentage of attained predicted mature stature (PMS was used as an estimate of biological maturity status. Backward proportional allometric models were used to identify the model with the best statistical fit: ln (lower limbs LST  = 0.838× ln (body mass +0.476× ln (leg length - 0.135× ln (mid-thigh circumference - 0.053× ln (anterior mid-thigh skinfold - 0.098× ln (medial calf skinfold - 2.680+0.010× (percentage of attained PMS (R = 0.95. The obtained equation was cross-validated using the predicted residuals sum of squares statistics (PRESS method (R2PRESS = 0.90. Deming repression analysis between predicted and current lower limbs LST showed a standard error of estimation of 0.52 kg (95% limits of agreement: 0.77 to -1.27 kg. The new model accurately predicts lower limbs LST in circumpubertal boys.

  4. Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ushenko, Yu A; Sidor, M I; Bodnar, G B [Yuriy Fedkovych Chernivtsi National University, Chernivtsi (Ukraine); Koval' , G D [Bukovinian State Medical University, Chernivtsi (Ukraine)

    2014-08-31

    We report the results of studying the polarisation manifestations of laser autofluorescence of optically anisotropic structures in biological tissues. A Mueller-matrix model is proposed to describe their complex anisotropy (linear and circular birefringence, linear and circular dichroism). The relationship is established between the mechanisms of optical anisotropy and polarisation manifestations of laser autofluorescence of histological sections of rectal tissue biopsy in different spectral regions. The ranges of changes in the statistical moments of the 1st-to-4th orders, which describe the distribution of the azimuth-invariant elements of Mueller matrices of rectal tissue autofluorescence, are found. Effectiveness of laser autofluorescence polarimetry is determined and the histological sections of biopsy of benign (polyp) and malignant (adenocarcinoma) tumours of the rectal wall are differentiated for the first time. (laser biophotonics)

  5. Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer

    Science.gov (United States)

    Ushenko, Yu A.; Sidor, M. I.; Bodnar, G. B.; Koval', G. D.

    2014-08-01

    We report the results of studying the polarisation manifestations of laser autofluorescence of optically anisotropic structures in biological tissues. A Mueller-matrix model is proposed to describe their complex anisotropy (linear and circular birefringence, linear and circular dichroism). The relationship is established between the mechanisms of optical anisotropy and polarisation manifestations of laser autofluorescence of histological sections of rectal tissue biopsy in different spectral regions. The ranges of changes in the statistical moments of the 1st-to-4th orders, which describe the distribution of the azimuth-invariant elements of Mueller matrices of rectal tissue autofluorescence, are found. Effectiveness of laser autofluorescence polarimetry is determined and the histological sections of biopsy of benign (polyp) and malignant (adenocarcinoma) tumours of the rectal wall are differentiated for the first time.

  6. Laser autofluorescence polarimetry of optically anisotropic structures of biological tissues in cancer diagnostics

    Science.gov (United States)

    Ushenko, Yu. A.

    2015-06-01

    The results of a new physical study of polarization manifestations of laser autofluorescence of optically anisotropic structures in human female reproductive tissues are presented. A Mueller-matrix model of describing the complex anisotropy (linear and circular birefringence, linear and circular dichroism) of such biological layers is proposed. Interrelations between mechanisms of optical anisotropy and polarization manifestations of laser autofluorescence of histological layers of the uterine cervix tissue in different spectral regions are determined. Magnitudes and variation ranges of statistical moments from the first to the fourth order describing the distributions of azimuthally stable elements of Mueller matrices of autofluorescence in human female reproductive tissues in different physiological states are found. The informative value of the proposed method is determined and the differentiation of histological biopsy sections of benign (dysplasia) and malignant (adenocarcinoma) uterine cervix tumors is implemented for the first time.

  7. Mueller-matrix mapping of optically anisotropic fluorophores of biological tissues in the diagnosis of cancer

    International Nuclear Information System (INIS)

    We report the results of studying the polarisation manifestations of laser autofluorescence of optically anisotropic structures in biological tissues. A Mueller-matrix model is proposed to describe their complex anisotropy (linear and circular birefringence, linear and circular dichroism). The relationship is established between the mechanisms of optical anisotropy and polarisation manifestations of laser autofluorescence of histological sections of rectal tissue biopsy in different spectral regions. The ranges of changes in the statistical moments of the 1st-to-4th orders, which describe the distribution of the azimuth-invariant elements of Mueller matrices of rectal tissue autofluorescence, are found. Effectiveness of laser autofluorescence polarimetry is determined and the histological sections of biopsy of benign (polyp) and malignant (adenocarcinoma) tumours of the rectal wall are differentiated for the first time. (laser biophotonics)

  8. Mueller matrix polarimetry for the characterization of complex random medium like biological tissues

    Indian Academy of Sciences (India)

    Nirmalya Ghosh; Jalpa Soni; M F G Wood; M A Wallenberg; I A Vitkin

    2010-12-01

    The polarization parameters of light scattered from biological tissues contain wealth of morphological and functional information of potential biomedical importance. But, in optically thick turbid media such as tissues, numerous complexities due to multiple scattering and simultaneous occurrences of many polarization events present formidable challenges, in terms of both accurate measurement and unique interpretation of the individual polarimetry characteristics. We have developed and validated an expanded Mueller matrix decomposition approach to overcome this problem. The approach was validated theoretically with a polarization-sensitive Monte Carlo light propagation model and experimentally by recording Mueller matrices from tissue-like complex random medium. In this paper, we discuss our comprehensive turbid polarimetry platform consisting of the experimental polarimetry system, forward Monte Carlo modelling and inverse polar decomposition analysis. Initial biomedical applications of this novel general method for polarimetry analysis in random media are also presented.

  9. Random laser in biological tissues impregnated with a fluorescent anticancer drug

    Science.gov (United States)

    Lahoz, F.; Martín, I. R.; Urgellés, M.; Marrero-Alonso, J.; Marín, R.; Saavedra, C. J.; Boto, A.; Díaz, M.

    2015-04-01

    We have demonstrated that chemically modified anticancer drugs can provide random laser (RL) when infiltrated in a biological tissue. A fluorescent biomarker has been covalently bound to tamoxifen, which is one of the most frequently used drugs for breast cancer therapy. The light emitted by the drug-dye composite is scattered in tissue, which acts as a gain medium. Both non-coherent and coherent RL regimes have been observed. Moreover, the analysis of power Fourier transforms of coherent RL spectra indicates that the tissues show a dominant random laser cavity length of about 18 µm, similar to the average size of single cells. These results show that RL could be obtained from other drugs, if properly marked with a fluorescent tag, which could be appealing for new forms of combined opto-chemical therapies.

  10. Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry

    Science.gov (United States)

    Mounfield, William P.; Garrett, Timothy J.

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  11. Reactive DESI-MS imaging of biological tissues with dicationic ion-pairing compounds.

    Science.gov (United States)

    Lostun, Dragos; Perez, Consuelo J; Licence, Peter; Barrett, David A; Ifa, Demian R

    2015-03-17

    This work illustrates reactive desorption electrospray ionization mass spectrometry (DESI-MS) with a stable dication on biological tissues. Rat brain and zebra fish tissues were investigated with reactive DESI-MS in which the dictation forms a stable bond with biological tissue fatty acids and lipids. Tandem mass spectrometry (MS/MS) was used to characterize the dication (DC9) and to identify linked lipid-dication compounds formed. The fragment m/z 85 common to both DC9 fragmentation and DC9-lipid fragmentation was used to confirm that DC9 is indeed bonded with the lipids. Lipid signals in the range of m/z 250-350 and phosphoethanolamines (PE) m/z 700-800 observed in negative ion mode were also detected in positive ion mode with reactive DESI-MS with enhanced signal intensity. Reactive DESI-MS imaging in positive ion mode of rat brain and zebra fish tissues allowed enhanced detection of compounds commonly observed in the negative ion mode. PMID:25710577

  12. Quantification of titanium from TiO2 particles in biological tissue.

    Science.gov (United States)

    Faucher, Stéphane; Lespes, Gaëtane

    2015-10-01

    This study presents the development of a strategy for the quantification of titanium from titanium dioxide polydisperse particles (TiO2) in dry biological tissue. Calf liver was chosen as laboratory testing material. The challenge was to (i) obtain a complete mineralization of the solid material (biological tissue and TiO2) and (ii) ensure the accuracy of the determined concentrations with a sufficient sensitivity. Mineralization was performed using a mixture of concentrated nitric and hydrofluoric acids. Atomic mass spectrometry associated with light-scattering technique was used to control the physical state (dissolved and particle forms) of titanium and reliably estimate the total titanium concentration in calf liver. The monitoring of (46)Ti and (49)Ti, operating in helium collision/reaction cell mode, and using external calibration with internal standard addition, allowed the quantification of Ti while removing isobaric interferences. The limit of detection and quantification were 0.7 and 2.3μg (Ti)g(-1) (tissue) respectively. The mean analytical recovery over the whole procedure was (103±6)% in a range of concentrations from LOD to 200μg(Ti)g(-1) (tissue). PMID:26302910

  13. Predictive analysis of thermal distribution and damage in thermotherapy on biological tissue

    Science.gov (United States)

    Fanjul-Vélez, Félix; Arce-Diego, José Luis

    2007-05-01

    The use of optical techniques is increasing the possibilities and success of medical praxis in certain cases, either in tissue characterization or treatment. Photodynamic therapy (PDT) or low intensity laser treatment (LILT) are two examples of the latter. Another very interesting implementation is thermotherapy, which consists of controlling temperature increase in a pathological biological tissue. With this method it is possible to provoke an improvement on specific diseases, but a previous analysis of treatment is needed in order for the patient not to suffer any collateral damage, an essential point due to security margins in medical procedures. In this work, a predictive analysis of thermal distribution in a biological tissue irradiated by an optical source is presented. Optical propagation is based on a RTT (Radiation Transport Theory) model solved via a numerical Monte Carlo method, in a multi-layered tissue. Data obtained are included in a bio-heat equation that models heat transference, taking into account conduction, convection, radiation, blood perfusion and vaporization depending on the specific problem. Spatial-temporal differential bio-heat equation is solved via a numerical finite difference approach. Experimental temperature distributions on animal tissue irradiated by laser radiation are shown. From thermal distribution in tissue, thermal damage is studied, based on an Arrhenius analysis, as a way of predicting harmful effects. The complete model can be used for concrete treatment proposals, as a way of predicting treatment effects and consequently decide which optical source parameters are appropriate for the specific disease, mainly wavelength and optical power, with reasonable security margins in the process.

  14. Substrate-zymography: a still worthwhile method for gelatinases analysis in biological samples.

    Science.gov (United States)

    Ricci, Serena; D'Esposito, Vittoria; Oriente, Francesco; Formisano, Pietro; Di Carlo, Angelina

    2016-08-01

    Matrix metallo-proteinases (MMPs) are a family of zinc-dependent endopeptidases, capable of degrading all the molecular components of extracellular matrix. A class of MMPs is gelatinases which includes gelatinase A or MMP-2 (72 kDa) and gelatinase B or MMP-9 (92 kDa), which have been shown to play critical roles in pathophysiology of many human disease and, in particular, cancer progression. For these reasons they obtained a great interest as potential non-invasive biomarker in providing useful clinical information in cancer diagnosis and therapy. A sensitive and unexpensive method for analysis of gelatinases is the gelatine zymography, which allows to measure the relative amounts of active and inactive enzymes in body fluids and tissue extracts. The procedure involves the electrophoretic separation of proteins under denaturing but non reducing conditions through a polyacrylamide gel containing a synthetic substrate (gelatin). The aim of this mini-review has been to describe the general principles of gelatine zymography technique, underling the main advantages and disadvantages. Even though an improvement of this method is necessary for a better applicability in laboratory medicine, gelatine zymography represents the most convenient method to detect the activity of the different gelatinases from a wide range of biological samples. PMID:26641968

  15. The study on human health and environment by neutron activation analysis of biological samples

    International Nuclear Information System (INIS)

    - Choice of samples for the research goal and survey of individual food habit and sampling for the meaningful statistical output - Development of the optimum analytical method for the analysis of trace elements in biological samples such as hair, blood, and foods. - Quantitative analysis of several samples to identify the source of trace elements into human body. - Evaluation in view of health and environment to the trace elements in various sources which can be introduced inside human body

  16. Red laser attenuation in biological tissues: study of the inflammatory process and pigmentation influence

    Science.gov (United States)

    Sabino, Caetano P.; Meneguzzo, Daiane T.; Benetti, Endi; Kato, Ilka T.; Prates, Renato A.; Ribeiro, Martha S.

    2012-03-01

    Several studies indicate that low level laser therapy (LLLT) accelerates the healing process, however, for a determined pathology, dosimetry remains difficult to be established. To understand the tissue optical properties under different conditions is extremely relevant since the dose delivered to the target tissue is known to be critical. The skin pigmentation influence on the laser attenuation is not yet well established on different mice lineages or human ethnical groups, making the dose problematic. Along the same line, inflammatory processes may cause similar problems since the tissues in this condition change their optical properties due to inflammatory cell accumulation. This work evaluated the attenuation pattern of a HeNe laser (λ=632.8 nm) using ex vivo skin samples from Balb/C and C57BL/6 mice under inflammatory stages induced in their paw by local carrageenan inoculation. The samples were placed between two microscope slides, and a CCD camera was placed orthogonal to the beam path. The intensity distribution of the scattered light was photographed in grayscale and analyzed by ImageJ software. Our findings suggest that even slight differences of the epithelial pigmentation could result in a relevant dose loss delivered to the deeper tissues. The increase of the inflammatory cell density in the connective tissue indicated a highly scattering area also resulting in a dose loss for the deeper tissues when compared to control group.

  17. Sample validity in biological trace element and organic nutrient research studies

    International Nuclear Information System (INIS)

    The state of the art of the biological trace element investigations is overviewed. Questions of biological validity, such as the influence of the 'status of sampling' of human subjects on the concentrations of selected elements are studied. Analytical validity problems, e.g. stability of Cd, Hg and Pb concentration in selected specimens, stability of selected organic nutrients in NBS SRMs, etc. are also discussed. Finally, it is concluded that the development of new biological reference materials should take into account the multidisciplinary demands of biological trace element investigations. (author) 20 refs.; 6 tables

  18. Three dimensional imaging of paraffin embedded human lung tissue samples by micro-computed tomography.

    Directory of Open Access Journals (Sweden)

    Anna E Scott

    Full Text Available Understanding the three-dimensional (3-D micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data.FFPE human lung tissue samples (n = 4 were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging.The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15 mm x 7 mm. Resolution (voxel size 6.7 µm in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections.We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis.

  19. Molecular strain identification of the Mycobacterium tuberculosis complex in archival tissue samples

    OpenAIRE

    Zink, A. R.; Nerlich, A G

    2004-01-01

    Aims: To investigate the use of different molecular analyses that can identify distinct strains of human pathogenic mycobacteria in formalin fixed and paraffin wax embedded archival tissue samples to see whether it is possible to differentiate between the members of the Mycobacterium tuberculosis complex (M tuberculosis, M bovis, M africanum, M microti, or M canettii) and/or substrains in a high number of samples. This would be of interest for identifying individual infection traits and super...

  20. Atmospheric-pressure Molecular Imaging of Biological Tissues and Biofilms by LAESI Mass Spectrometry

    OpenAIRE

    Nemes, Peter; Vertes, Akos

    2010-01-01

    Ambient ionization methods in mass spectrometry allow analytical investigations to be performed directly on a tissue or biofilm under native-like experimental conditions. Laser ablation electrospray ionization (LAESI) is one such development and is particularly well-suited for the investigation of water-containing specimens. LAESI utilizes a mid-infrared laser beam (2.94 μm wavelength) to excite the water molecules of the sample. When the ablation fluence threshold is exceeded, the sample mat...

  1. Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples.

    Directory of Open Access Journals (Sweden)

    Marian Willner

    Full Text Available X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. Furthermore, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.

  2. Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples

    International Nuclear Information System (INIS)

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results

  3. Concentration of organochlorines in human brain, liver, and adipose tissue autopsy samples from Greenland

    DEFF Research Database (Denmark)

    Dewailly, Éric; Mulvad, Gert; Pedersen, Henning S.;

    1999-01-01

    Organochlorines are persistent lipophilic compounds that accumulate in Inuit people living in circumpolar countries. Organochlorines accumulate as a result of the Inuits' large consumption of sea mammal fat; however, available data are limited to blood lipids, milk fat, and adipose tissue. We...... report results of organochlorine determination in liver, brain, omental fat, and subcutaneous abdominal fat samples collected from deceased Greenlanders between 1992 and 1994. Eleven chlorinated pesticides and 14 polychlorinated biphenyl congeners were measured in tissue lipid extracts by high...... than those measured using the same analytical method in samples from Canadians in Quebec City, Quebec. Brain lipids contained lower concentrations of all organochlorines than lipids extracted from other tissues. Organochlorine residue levels in lipid extracts from liver, omental fat, and subcutaneous...

  4. Normalization of gene expression measurement of tissue samples obtained by transurethral resection of bladder tumors

    Directory of Open Access Journals (Sweden)

    Pop LA

    2016-06-01

    housekeeping genes and one small nuclear RNA gene using the ViiA 7 platform, with specific primers. Results: Every step of the sample handling protocol, which begins with sample harvest and ends with the data analysis, is of utmost importance due to the fact that it is time consuming, labor intensive, and highly expensive. High temperature of the surgical procedure does not affect the small nucleic acid sequences in comparison with the mRNA. Conclusion: Gene expression is clearly affected by the RNA quality, but less affected in the case of small nuclear RNAs. We proved that the high-temperature, highly invasive transurethral resection of bladder tumor procedure damages the tissue and affects the integrity of the RNA from biological specimens. Keywords: bladder cancer, transurethral resection, RNA quality, real-time PCR

  5. Nonresonant, femtosecond laser vaporization and electrospray post-ionization mass spectrometry as a tool for biological tissue imaging.

    Science.gov (United States)

    Shi, Fengjian; Archer, Jieutonne J; Levis, Robert J

    2016-07-15

    An ambient mass spectrometry imaging (MSI) source is demonstrated with both high spatial and mass resolution that enables measurement of the compositional heterogeneity within a biological tissue sample. The source is based on nonresonant, femtosecond laser electrospray mass spectrometry (LEMS) coupled to a quadrupole time-of-flight (QTOF) mass analyzer. No matrix deposition and minimal sample preparation is necessary for the source. The laser, translation stage, and mass spectrometer are synchronized and controlled using a customized user interface. Single or multiple laser shots may be applied to each pixel. A scanning rate of 2.0s per pixel is achieved. Measurement of a patterned ink film indicates the potential of LEMS for ambient imaging with a lateral resolution of ∼60μm. Metabolites including sugar, anthocyanins and other small metabolites were successfully mapped from plant samples without oversampling using a spot size of 60×70μm(2). Molecular identification of the detected analytes from the tissue was enabled by accurate mass measurement in conjunction with tandem mass spectrometry. Statistical analysis, non-negative matrix factorization and principle component analysis, were applied to the imaging data to extract regions with distinct and/or correlated spectral profiles. PMID:26931651

  6. Study on the determination of palladium in biological samples by the method of neutron activation analysis

    International Nuclear Information System (INIS)

    Palladium is one of platinum group elements present in the nature at very low concentrations. However with the use of this element in the automobile catalyzers Pd became a new pollutant. Besides, Pd has been studied in the preparation of new antitumour drugs. Consequently, there is a need to determine Pd concentrations in biological and environmental samples. This study presents palladium results obtained in the analysis of biological samples and reference materials using instrumental thermal and epithermal neutron activation analysis (INAA and ENAA). The solvent extraction and solid phase extraction separation methods were also applied before ENAA. The samples analyzed in this study were, reference material BCR 723 - Palladium, Platinum and Rhodium in road dust, CCQM-P63 automotive catalyst material of the Proficiency Test and bovine tissue samples containing palladium prepared in the laboratory. Samples and palladium synthetic standard were irradiated at the IEA-R1 nuclear research reactor under thermal neutron flux of about 4 x 10 12 n cm-2 s-1, during a period of 4 and 16 h for INAA and ENAA, respectively. The induced gamma activity of 109Pd to the sample and standard was measured using a hyper pure Ge detector coupled to a gamma ray spectrometer. The palladium concentration was calculated by comparative method. The gamma ray energy of 109Pd radioisotope measured was of 88.0 keV, located in a spectrum region of low energy where occurs the interference of X rays, 'Bremsstrahlung' radiations, as well as Compton effect of 24Na. The pre-separation of palladium from interfering elements by solvent extraction was performed using dimethylglyoxime complexant and chloroform as diluent. In the case of the pre separation procedure using solid reversed phase column, the palladium was retained using N,N-diethyl-N'-benzoyl thiourea complexant and eluted using ethanol. Aliquots of the resulting solutions from the pre-separations, free of interfering elements, were transferred

  7. Analysis of photon transport in biological tissue and the subsequent heating effects

    International Nuclear Information System (INIS)

    Analysis of laser interaction with matter revealed the possibilities of many industrial and therapeutic applications. This research article discusses the theoretical aspects of laser beam interaction with biological tissues. It introduces the numerical analysis of photon distribution and transport in the tissue and its bio-thermal heating effects. The Monte Carlo method has been applied to simulate the variation of photon distribution and photon fluence with the radial distance from the point of interaction as well as laser powers and tissue thickness. For a specific wavelength, the variation of diffuse reflectance with the absorption coefficient was depicted for different values of the anisotropy factor. It has also been used to simulate the bio-heat transfer to obtain the temperature variation with the heating depth. On the other hand, finite difference method (FDM) has been applied to simulate the heating effect resulted from the incident laser beam on the tissue based on Penne's bio-heat equation combined with the obtained photon distribution and transport parameters from the MC method. The heating effect of the laser beam and hence the occurred thermal damage in the tissue was depicted. A linear relationship between the temperature and the rate of thermal damage has been manifested. This result can be used as a threshold reference for various medical applications of lasers. (authors)

  8. Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments

    International Nuclear Information System (INIS)

    The possibility of using the opto-acoustic (OA) method for monitoring high-intensity ultrasonic therapy is studied. The optical properties of raw and boiled liver samples used as the undamaged model tissue and tissue destroyed by ultrasound, respectively, are measured. Experiments are performed with samples consisting of several alternating layers of raw and boiled liver of different thickness. The position and transverse size of the thermal lesion were determined from the temporal shape of the OA signals. The results of measurements are compared with the real size and position of the thermal lesion determined from the subsequent cuts of the sample. It is shown that the OA method permits the diagnostics of variations in biological tissues upon ultrasonic therapy. (special issue devoted to multiple radiation scattering in random media)

  9. Prevalence of antimicrobial residues in eggs, tissue and feed samples in the State of Kuwait

    International Nuclear Information System (INIS)

    A total of 238 locally produced and imported eggs, tissue (meat, poultry and aquacultured fish) and feed and feedstuffs samples were collected at different seasonal periods from different farms and retail outlets in Kuwait and screened for presence of beta-lactams, tetracyclines, sulfonamides, streptomycin, macrolides and chloramphenicol (799 tests) using Charm II system. The results indicated that all of the 222 tests performed on table egg samples were negative for the analyzed antimicrobial residues indicating adherence to the guidelines for microbial use and withdrawal. Similarly, all of the 268 tests performed on tissue samples were negative for the analyzed antimicrobial residues except for chloramphenicol. These chloramphenicol positive samples, all of the 66 tests performed were negative for beta-lactams residues. Out of the 79 feed and feedstuff samples analyzed for teracyclines residues, broiler diet and concentrate samples (5%) were above the tetracyclines MRL (100 ppb.). On the other hands, results have revealed a widespread of sulfonamide residues and to a less extent chloramphenicol in tested feed and feedstuff samples. The Charm II system was reliable for rapid screening of antimicrobial residues. In general, results obtained in our study necessitate more effective and well planned national antimicrobial residues surveillance programs focusing particularly on samples imported from highly risk sources. (author)

  10. Telomere Lengths and Telomerase Activity in Dog Tissues: A Potential Model System to Study Human Telomere and Telomerase Biology

    Directory of Open Access Journals (Sweden)

    Lubna Nasir

    2001-01-01

    Full Text Available Studies on telomere and telomerase biology are fundamental to the understanding of aging and age-related diseases such as cancer. However, human studies have been hindered by differences in telomere biology between humans and the classical murine animal model system. In this paper, we describe basic studies of telomere length and telomerase activity in canine normal and neoplastic tissues and propose the dog as an alternative model system. Briefly, telomere lengths were measured in normal canine peripheral blood mononuclear cells (PBMCs, a range of normal canine tissues, and in a panel of naturally occurring soft tissue tumours by terminal restriction fragment (TRF analysis. Further, telomerase activity was measured in canine cell lines and multiple canine tissues using a combined polymerase chain reaction/enzyme-linked immunosorbent assay method. TRF analysis in canine PBMCs and tissues demonstrated mean TRF lengths to range between 12 and 23 kbp with heterogeneity in telomere lengths being observed in a range of normal somatic tissues. In soft tissue sarcomas, two subgroups were identified with mean TRFs of 22.2 and 18.2 kbp. Telomerase activity in canine tissue was present in tumour tissue and testis with little or no activity in normal somatic tissues. These results suggest that the dog telomere biology is similar to that in humans and may represent an alternative model system for studying telomere biology and telomerase-targeted anticancer therapies.

  11. Determination of uranium in seawater, biological samples and sediments using laser induced fluorescence spectrometry

    International Nuclear Information System (INIS)

    Uranium has been determined in seawater, biological samples and sediments using laser induced fluorescence spectrometry (LIFS). The biological samples and sediments are digested with a mixture of HNO3, HClO4 and HF. The conductivity of the seawater should be below 5.0 mS and the pH of the sample should be in the range 6.5-9.0. The volume of the reagent used to enhance the fluorescence intensity was 0.5 ml. Comparison with other methods was favorable, LIFS being rapid, simple and sensitive, and well suited to environmental monitoring. (author)

  12. The Novel Application of Non-Lethal Citizen Science Tissue Sampling in Recreational Fisheries.

    Directory of Open Access Journals (Sweden)

    Samuel M Williams

    Full Text Available Increasing fishing pressure and uncertainty surrounding recreational fishing catch and effort data promoted the development of alternative methods for conducting fisheries research. A pilot investigation was undertaken to engage the Australian game fishing community and promote the non-lethal collection of tissue samples from the black marlin Istiompax indica, a valuable recreational-only species in Australian waters, for the purpose of future genetic research. Recruitment of recreational anglers was achieved by publicizing the project in magazines, local newspapers, social media, blogs, websites and direct communication workshops at game fishing tournaments. The Game Fishing Association of Australia and the Queensland Game Fishing Association were also engaged to advertise the project and recruit participants with a focus on those anglers already involved in the tag-and-release of marlin. Participants of the program took small tissue samples using non-lethal methods which were stored for future genetic analysis. The program resulted in 165 samples from 49 participants across the known distribution of I. indica within Australian waters which was a sufficient number to facilitate a downstream population genetic analysis. The project demonstrated the potential for the development of citizen science sampling programs to collect tissue samples using non-lethal methods in order to achieve targeted research objects in recreationally caught species.

  13. Sample Preparation for in vitro Analysis of Iodine in Thyroid Tissue using X-ray Fluorescence

    Directory of Open Access Journals (Sweden)

    Gertrud Berg

    2008-01-01

    Full Text Available Iodine is enriched and stored in the thyroid gland. Due to several factors, the size of the thyroid iodine pool varies both between individuals and within individuals over time. Excess iodine as well as iodine deficiency may promote thyroid cancer. Therefore, knowledge of iodine content and distribution within thyroid cancer tissue is of interest. X-ray fluorescence analysis (XRF and secondary ion mass spectrometry (SIMS are two methods that can be used to assess iodine content in thyroid tissue. With both techniques, choice of sample preparation affects the results. Aldehyde fixatives are required for SIMS analysis while a freezing method might be satisfactory for XRF analysis. The aims of the present study were primarily to evaluate a simple freezing technique for preserving samples for XRF analysis and also to use XRF to evaluate the efficacy of using aldehyde fixatives to prepare samples for SIMS analysis. Ten porcine thyroids were sectioned into four pieces that were either frozen or fixed in formaldehyde, glutaraldehyde, or a modified Karnovsky fixative. The frozen samples were assessed for iodine content with XRF after 1 and 2 months, and the fixed samples were analyzed for iodine content after 1 week. Freezing of untreated tissue yielded no significant iodine loss, whereas fixation with aldehydes yielded an iodine loss of 14–30%, with Karnovsky producing the least loss.

  14. PIXE characterization of tissues surrounding metallic prostheses coated with biological glasses

    Energy Technology Data Exchange (ETDEWEB)

    Barbotteau, Y. E-mail: yves.barbotteau@qse.tohoku.ac.jp; Irigaray, J.L.; Moretto, Ph

    2004-01-01

    Biological glasses can be used as coatings for metallic prostheses in order to prevent corrosion. According to their composition, these glasses have different properties. We studied, in vivo, two glasses referred to as BVA and BVH. They are used as coatings of Ti6Al4V metallic implant. BVA glass disappears after 3 months of implantation and is replaced by bone. Prostheses initially coated by this glass have a larger osseous contact perimeter compared to the uncoated prostheses. This ensures a better anchoring of the implant and limits the micro-motions which cause wear debris. BVH glass keeps a constant composition during implantation and it is used like a layer which isolates metal implant from biological environment. In order to characterize the bony environment surrounding implants, we have used PIXE and RBS methods. This paper shows results of the behavior of bony tissue under micro-beam, the quality tests of new bone which replaces the BVA glass coating and the evaluation of corrosion effects. Titanium release in bony tissues begins when the metal surface of the prosthesis is exposed to biological fluids. After a few months of implantation, the titanium contamination is stabilized and remains localized within the first tens of micrometers of surrounding bone.

  15. PIXE characterization of tissues surrounding metallic prostheses coated with biological glasses

    International Nuclear Information System (INIS)

    Biological glasses can be used as coatings for metallic prostheses in order to prevent corrosion. According to their composition, these glasses have different properties. We studied, in vivo, two glasses referred to as BVA and BVH. They are used as coatings of Ti6Al4V metallic implant. BVA glass disappears after 3 months of implantation and is replaced by bone. Prostheses initially coated by this glass have a larger osseous contact perimeter compared to the uncoated prostheses. This ensures a better anchoring of the implant and limits the micro-motions which cause wear debris. BVH glass keeps a constant composition during implantation and it is used like a layer which isolates metal implant from biological environment. In order to characterize the bony environment surrounding implants, we have used PIXE and RBS methods. This paper shows results of the behavior of bony tissue under micro-beam, the quality tests of new bone which replaces the BVA glass coating and the evaluation of corrosion effects. Titanium release in bony tissues begins when the metal surface of the prosthesis is exposed to biological fluids. After a few months of implantation, the titanium contamination is stabilized and remains localized within the first tens of micrometers of surrounding bone

  16. Preparation of Biological Samples Containing Metoprolol and Bisoprolol for Applying Methods for Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Corina Mahu Ştefania

    2015-12-01

    Full Text Available Arterial hypertension is a complex disease with many serious complications, representing a leading cause of mortality. Selective beta-blockers such as metoprolol and bisoprolol are frequently used in the management of hypertension. Numerous analytical methods have been developed for the determination of these substances in biological fluids, such as liquid chromatography coupled with mass spectrometry, gas chromatography coupled with mass spectrometry, high performance liquid chromatography. Due to the complex composition of biological fluids a biological sample pre-treatment before the use of the method for quantitative determination is required in order to remove proteins and potential interferences. The most commonly used methods for processing biological samples containing metoprolol and bisoprolol were identified through a thorough literature search using PubMed, ScienceDirect, and Willey Journals databases. Articles published between years 2005-2015 were reviewed. Protein precipitation, liquid-liquid extraction and solid phase extraction are the main techniques for the extraction of these drugs from plasma, serum, whole blood and urine samples. In addition, numerous other techniques have been developed for the preparation of biological samples, such as dispersive liquid-liquid microextraction, carrier-mediated liquid phase microextraction, hollow fiber-protected liquid phase microextraction, on-line molecularly imprinted solid phase extraction. The analysis of metoprolol and bisoprolol in human plasma, urine and other biological fluids provides important information in clinical and toxicological trials, thus requiring the application of appropriate extraction techniques for the detection of these antihypertensive substances at nanogram and picogram levels.

  17. Tissue expression of TGF-β1 in uterine cervical samples from HIV/AIDS patients.

    Science.gov (United States)

    Carneiro, Thiago X; Pacheco, Juliana T; Xavier, Marilia B; Quaresma, Juarez A S

    2012-07-01

    Case-control study based on the immunohistochemistry for TGF-β1 evaluation of cervical samples obtained from two groups of women: CIN/HIV- and CIN/HIV+. Eleven women infected with HIV and with a histopathological diagnosis of CIN were included. The control group consisted of 12 patients with CIN. Cervical tissue samples obtained from all patients were submitted to histopathology and semiquantitative analysis of immunostaining for TGF-β1 protein. In addition, the peripheral CD4+ cell count and viral load were evaluated in HIV + patients. Tissue expression of the cytokine was higher in the CIN/HIV+ group compared to control (p = 0.0023). In addition, higher TGF-β1 expression was observed in higher grade cervical lesions in the two groups. There was a trend toward a direct correlation between peripheral CD4+ T cell count and tissue TGF-β1, and toward an inverse correlation between viral load and cytokine expression. Thus, TGF-β1 was more marked in situations in which cervical lesions are known to present a more aggressive behavior, suggesting that this cytokine is involved in the pathogenesis of tumor growth in these lesions. Tissue expression of TGF-β1 is increased in cervical samples from HIV-infected women with CIN. PMID:22542711

  18. Recent advances in particle-induced X-ray emission analysis applied to biological samples

    International Nuclear Information System (INIS)

    Papers reporting the application of particle induced X-ray emission (PIXE) analysis to biological samples continue to appear regularly in the literature. The majority of these papers deal with blood, hair, and other common body organs while a few deal with biological samples from the environnment. A variety of sample preparation methods have been demonstrated, a number of which are improvements, refinements and extensions of the thick- and thin-sample preparation methods reported in the early development of PIXE. While many papers describe the development of PIXE techniques some papers are now describing applications of the methods to serious biological problems. The following two factors may help to stimulate more consistant use of the PIXE method. First, each PIXE facility should be organized to give rapid sample processing and should have available several sample preparation and handling methods. Second, those with the skill to use PIXE methods need to become closely associated with researches knowledge able in medical and biological sciences and they also need to become more involved in project planning and sample handling. (orig.)

  19. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    Science.gov (United States)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  20. Do anesthetics and sampling strategies affect transcription analysis of fish tissues?

    Directory of Open Access Journals (Sweden)

    Hevrøy Ernst M

    2007-06-01

    Full Text Available Abstract Background The aim of the current examination was to evaluate if sedation and anesthetic treatment techniques affect the quality of RNA extracted from liver, gill, head kidney and brain tissues in Atlantic salmon Salmo salar L. Blood parameters were measured and tissue specimens sampled in six groups of fish; one control group (0 minutes, two groups kept in pure seawater in 90 liter tanks for 30 and 120 minutes, two groups treated with the anesthetic isoeugenol for 30 and 120 minutes, and one group kept in pure seawater for 105 minutes and then anaesthetized with metacaine for 15 minutes. RNA quality was assessed with the NanoDrop ND-1000 spectrophotometer (260/280 and 260/230 nm ratios and with the Agilent Bioanalyzer (28S/18S ratio and RIN data in samples either preserved in liquefied nitrogen (N2 or in RNAlater. In addition, the transcriptional levels of two fast-responding genes were quantified in gill and brain tissues. Results The results show that physiological stress during sampling does not affect the quality of RNA extracted from fish specimens. However, prolonged sedation (2 hours resulted in a metabolic alkalosis that again affected the transcriptional levels of genes involved in ionoregulation and respiration. In gills, Na+-K+-ATPase α1b was significantly downregulated and hypoxia inducible factor 1 (HIF1 significantly upregulated after two hours of treatment with isoeugenol, suggesting that this commonly used sedative affects osmo-regulation and respiration in the fish. The results also suggest that for tissue preservation in general it is better to flash-freeze fish specimens in liquefied N2 than to use RNAlater. Conclusion Prolonged sedation may affect the transcription of fast-responding genes in tissues of fish. Two hours of sedation with isoeugenol resulted in downregulation of the Na+-K+-ATPase α1b gene and upregulation of the HIF1 gene in gills of Atlantic salmon. The quality of RNA extracted from tissue specimens

  1. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.

    Science.gov (United States)

    Xu, Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao, Weixin; Yoo, James J; Atala, Anthony

    2013-03-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin-collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  2. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  3. Radioisotopic method for the measurement of lipolysis in small samples of human adipose tissue

    International Nuclear Information System (INIS)

    To facilitate the study of adrenoreceptor response in small needle biopsy samples of human subcutaneous adipose tissue, we developed a dual radioisotopic technique for measuring lipolysis rate. Aliquots (20-75 mg) of adipose tissue fragments were incubated in a buffered albumin medium containing [3H]palmitate and [14C]glucose, each of high specific activity. In neutral glycerides synthesized in this system, [14C]glucose is incorporated exclusively into the glyceride-glycerol moiety and 3H appears solely in the esterified fatty acid. Alpha-2 and beta-1 adrenoreceptor activation of tissue incubated in this system does not alter rates of 14C-labeled glyceride accumulation, but does produce a respective increase or decrease in the specific activity of fatty acids esterified into newly synthesized glycerides. This alteration in esterified fatty acid specific activity is reflected in the ratio of 14C:3H in newly synthesized triglycerides extracted from the incubated adipose tissue. There is a high correlation (r . 0.90) between the 14C:3H ratio in triglycerides and the rate of lipolysis as reflected in glycerol release into the incubation medium. The degree of adrenoreceptor activation by various concentrations of lipolytic and anti-lipolytic substances can be assessed by comparing this ratio in stimulated tissue to that characterizing unstimulated tissue or the incubation medium. This technique permits the study of very small, unweighed tissue biopsy fragments, the only limitation on sensitivity being the specific activity of the medium glucose and palmitate. It is, therefore, useful for serial examinations of adipose tissue adrenoreceptor dose-response characteristics under a variety of clinical circumstances

  4. FACE Analysis as a Fast and Reliable Methodology to Monitor the Sulfation and Total Amount of Chondroitin Sulfate in Biological Samples of Clinical Importance

    Directory of Open Access Journals (Sweden)

    Evgenia Karousou

    2014-06-01

    Full Text Available Glycosaminoglycans (GAGs due to their hydrophilic character and high anionic charge densities play important roles in various (pathophysiological processes. The identification and quantification of GAGs in biological samples and tissues could be useful prognostic and diagnostic tools in pathological conditions. Despite the noteworthy progress in the development of sensitive and accurate methodologies for the determination of GAGs, there is a significant lack in methodologies regarding sample preparation and reliable fast analysis methods enabling the simultaneous analysis of several biological samples. In this report, developed protocols for the isolation of GAGs in biological samples were applied to analyze various sulfated chondroitin sulfate- and hyaluronan-derived disaccharides using fluorophore-assisted carbohydrate electrophoresis (FACE. Applications to biologic samples of clinical importance include blood serum, lens capsule tissue and urine. The sample preparation protocol followed by FACE analysis allows quantification with an optimal linearity over the concentration range 1.0–220.0 µg/mL, affording a limit of quantitation of 50 ng of disaccharides. Validation of FACE results was performed by capillary electrophoresis and high performance liquid chromatography techniques.

  5. Frequency doubling and tripling of ultrashort laser pulses in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L. B.; Eichler, J.; Joslin, E. J.; Kim, B.-M.

    1998-07-24

    Structural proteins such as collagen and elastin are known to generate second harmonic at high laser intensities. Second and third harmonic generations (SHG, THG) of 0.4 ps Ti-Sapphire laser radiation at 800 nm were observed in various biological tissues. Dependence of SHG on laser pulse energy and pulse width was investigated. Reflected second harmonic yield was measured for animal tissue in vitro and human skin in vivo. The yield varies about a factor of 20 for various areas of the skin while the scattered laser radiation (diffuse reflectance) varies only by a factor of 2. In some cases the THG efficiency was comparable to the SHG. Possible applications of higher harmonic radiation for diagnostics and microscopy are discussed.

  6. Sex differences in human adipose tissues – the biology of pear shape

    Directory of Open Access Journals (Sweden)

    Karastergiou Kalypso

    2012-05-01

    Full Text Available Abstract Women have more body fat than men, but in contrast to the deleterious metabolic consequences of the central obesity typical of men, the pear-shaped body fat distribution of many women is associated with lower cardiometabolic risk. To understand the mechanisms regulating adiposity and adipose tissue distribution in men and women, significant research attention has focused on comparing adipocyte morphological and metabolic properties, as well as the capacity of preadipocytes derived from different depots for proliferation and differentiation. Available evidence points to possible intrinsic, cell autonomous differences in preadipocytes and adipocytes, as well as modulatory roles for sex steroids, the microenvironment within each adipose tissue, and developmental factors. Gluteal-femoral adipose tissues of women may simply provide a safe lipid reservoir for excess energy, or they may directly regulate systemic metabolism via release of metabolic products or adipokines. We provide a brief overview of the relationship of fat distribution to metabolic health in men and women, and then focus on mechanisms underlying sex differences in adipose tissue biology.

  7. Sample preparation strategies for food and biological samples prior to nanoparticle detection and imaging

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Löschner, Katrin

    2014-01-01

    Accurate and precise characterization of metrics such as size, mass, shape etc. of nanoparticles (NPs) remains a challenging task. In order to determine quantitative metrics that are relevant in food monitoring or in risk assessment, an instrumental separation method like asymmetric field flow...... AFFF-ICP-MS fractograms, which corresponded to the enzymatic digests, showed a major nano-peak (about 80 % recovery of AgNPs spiked to the meat) plus new smaller peaks that eluted close to the void volume of the fractograms. Small, but significant shifts in retention time of AFFF peaks were observed...... for the meat sample extracts and the corresponding neat AgNP suspension, and rendered sizing by way of calibration with AgNPs as sizing standards inaccurate. In order to gain further insight into the sizes of the separated AgNPs, or their possible dissolved state, fractions of the AFFF eluate were...

  8. Swine infectious agents in Tayassu pecari and Pecari tajacu tissue samples from Brazil.

    Science.gov (United States)

    de Castro, Alessandra Marnie Martins Gomes; Brombila, Talita; Bersano, Josete Garcia; Soares, Herbert Sousa; Silva, Sheila Oliveira de Souza; Minervino, Antonio Humberto Hamad; Ogata, Renato Akio; Gennari, Solange Maria; Richtzenhain, Leonardo Jose

    2014-04-01

    Peccaries and pigs, Tayassuidae and Suidae respectively, diverged approximately one million years ago from a common ancestor. Because these families share some pathogens, peccaries can act as reservoirs of infectious pathogens for domestic and wild swine. We evaluated the presence of swine infectious agents in the spleen and lung tissues of white-lipped peccaries (WLP; Tayassu pecari) and collared peccaries (CP; Pecari tajacu) in Brazil. Samples from 10 adult CP and three WLP, which had been hunted by locals or hit by motor vehicles, were obtained from two free-ranging Brazilian populations. The samples were tested by PCR for Mycoplasma hyopneumoniae, Bordetella bronchiseptica, Pasteurella multocida, porcine circovirus 2 (PCV2), Suid herpesvirus 1 (SuHV-1), and porcine parvovirus (PPV). Positive samples were sequenced. Both species were negative for PPV and B. bronchiseptica and positive for PCV2 and SuHV-1. The lungs of two animals were positive for M. hyopneumoniae and P. multocida. This report is the first demonstration of PCV2 and SuHV-1 swine viruses and of M. hyopneumoniae and P. multocida bacteria in peccaries. One factor contributing to this detection was access to tissue samples, which is uncommon. The role of these infectious agents in peccaries is unknown and further epidemiologic studies should be performed. This study identified several infectious agents in peccaries and highlighted the importance of the tissue type used to detect pathogens. PMID:24484498

  9. Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination

    Directory of Open Access Journals (Sweden)

    Laura Hewitson

    2014-01-01

    Full Text Available In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV. Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA, was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR was conducted. The LLMDA technology was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae, Bacteroidaceae, and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.

  10. On The Construction of Models for Electrical Conduction in Biological Tissues

    International Nuclear Information System (INIS)

    Applying RC circuit theory, a theoretical representation for the electrical conduction in a biological multilayer system was developed. In particular an equivalent circuit for the epidermis, dermis and the subcutaneous tissue was constructed. This model includes an equivalent circuit, inside the dermis, in order to model a small formation like tumor. This work shows the feasibility to apply superficial electrodes to detect subcutaneous abnormalities. The behavior of the model is shown in the form of a frequency response chart. The Bode and Nyquist plots are also obtained. This theoretical frame is proposed to be a general treatment to describe the bioelectrical transport in a three layer bioelectrical system.

  11. Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues

    KAUST Repository

    Goriely, A.

    2010-07-01

    Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence of applied loads and could induce cavity opening. Here, we demonstrate the possibility of spontaneous growth-induced cavitation in elastic materials and consider the implications of this phenomenon to biological tissues and in particular to the problem of schizogenous aerenchyma formation. Copyright © EPLA, 2010.

  12. Development of a computational system for management of risks in radiosterilization processes of biological tissues

    International Nuclear Information System (INIS)

    Risk management can be understood to be a systematic management which aims to identify record and control the risks of a process. Applying risk management becomes a complex activity, due to the variety of professionals involved. In order to execute risk management the following are requirements of paramount importance: the experience, discernment and judgment of a multidisciplinary team, guided by means of quality tools, so as to provide standardization in the process of investigating the cause and effects of risks and dynamism in obtaining the objective desired, i.e. the reduction and control of the risk. This work aims to develop a computational system of risk management (software) which makes it feasible to diagnose the risks of the processes of radiosterilization of biological tissues. The methodology adopted was action-research, according to which the researcher performs an active role in the establishment of the problems found, in the follow-up and in the evaluation of the actions taken owing to the problems. The scenario of this action-research was the Laboratory of Biological Tissues (LTB) in the Radiation Technology Center IPEN/CNEN-SP - Sao Paulo/Brazil. The software developed was executed in PHP and Flash/MySQL language, the server (hosting), the software is available on the Internet (www.vcrisk.com.br), which the user can access from anywhere by means of the login/access password previously sent by email to the team responsible for the tissue to be analyzed. The software presents friendly navigability whereby the user is directed step-by-step in the process of investigating the risk up to the means of reducing it. The software 'makes' the user comply with the term and present the effectiveness of the actions taken to reduce the risk. Applying this system provided the organization (LTB/CTR/IPEN) with dynamic communication, effective between the members of the multidisciplinary team: a) in decision-making; b) in lessons learned; c) in knowing the new risk

  13. Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics.

    Science.gov (United States)

    Munchel, Sarah; Hoang, Yen; Zhao, Yue; Cottrell, Joseph; Klotzle, Brandy; Godwin, Andrew K; Koestler, Devin; Beyerlein, Peter; Fan, Jian-Bing; Bibikova, Marina; Chien, Jeremy

    2015-09-22

    Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies. To provide a systematic analysis of formalin-fixation artifacts on Illumina sequencing, we generated 26 DNA sequencing data sets from 13 pairs of matched formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FF) tissue samples. The results indicate high rate of concordant calls between matched FF/FFPE pairs at reference and variant positions in three commonly used sequencing approaches (whole genome, whole exome, and targeted exon sequencing). Global mismatch rates and C · G > T · A substitutions were comparable between matched FF/FFPE samples, and discordant rates were low (<0.26%) in all samples. Finally, low-pass whole genome sequencing produces similar pattern of copy number alterations between FF/FFPE pairs. The results from our studies suggest the potential use of diagnostic FFPE samples for cancer genomic studies to characterize and catalog variations in cancer genomes. PMID:26305677

  14. On the accuracy of protein determination in large biological samples by prompt gamma neutron activation analysis

    International Nuclear Information System (INIS)

    A prompt gamma neutron activation analysis (PGNAA) facility has been developed for the determination of nitrogen and thus total protein in large volume biological samples or the whole body of small animals. In the present work, the accuracy of nitrogen determination by PGNAA in phantoms of known composition as well as in four raw ground meat samples of about 1 kg mass was examined. Dumas combustion and Kjeldahl techniques were also used for the assessment of nitrogen concentration in the meat samples. No statistically significant differences were found between the concentrations assessed by the three techniques. The results of this work demonstrate the applicability of PGNAA for the assessment of total protein in biological samples of 0.25-1.5 kg mass, such as a meat sample or the body of small animal even in vivo with an equivalent radiation dose of about 40 mSv

  15. A pre-treatment device designed for tritium analysis in biological samples

    International Nuclear Information System (INIS)

    Objective: To design a new pre-treatment device and to evaluate its efficiency in order to monitor the tritium levels in biological samples. Methods: The detection efficiency of tritium was determined with standard tritiated water. Recovery of tritiated water and organically bound tritium (OBT) were detected with high, medium and low activities of standard tritiated water and 3H-TdR (tritiated thymidine), respectively. Comparison of three kinds of biological samples using different pre-treatment devices was shown. Results: The standard curve can be used in environmental tritium measurement and the detection efficiency for tritium was 23.3%. When 40.0 g rice with standard HTO or 3H-TdR was pretreated with this device, the average recovery of HTO and OBT was about 95.4% , which showed good reproducibility.The comparison results were similar. Conclusions: The pre-treatment device can be used to survey the OBT in environmental biological samples. (authors)

  16. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes

    CERN Document Server

    Rhinow, Daniel; Weber, Nils-Eike; Beyer, André; Gölzhäuser, Armin; Kühlbrandt, Werner; Hampp, Norbert; Turchanin, Andrey; 10.1016/j.ultramic.2011.01.028

    2011-01-01

    Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl precursors have been tested as support films for energy-filtered transmission electron microscopy (EFTEM) of biological specimens. Due to their high transparency CNM are ideal substrates for electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) of stained and unstained biological samples. Virtually background-free elemental maps of tobacco mosaic virus (TMV) and ferritin have been obtained from samples supported by ~ 1 nm thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM) comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded TMV on cCNM and compared the results with images of ice-embedded TMV on conventional carbon film (CC), thus analyzing the gain in contrast for TMV on cCNM in a quantitative manner. In addition we have developed a method for the preparation of vitrified specimens, sus...

  17. Analysis of dissected tissues with digital holographic microscopy: quantification of inflammation mediated tissue alteration, influence of sample preparation, and reliability of numerical autofocusing

    Science.gov (United States)

    Kemper, Björn; Lenz, Philipp; Bettenworth, Dominik; Krausewitz, Philipp; Domagk, Dirk; Ketelhut, Steffi

    2015-03-01

    Quantitative phase imaging with digital holographic microscopy (DHM) allows label-free imaging of tissue sections and quantification of the spatial refractive index distribution, which is of interest for applications in digital pathology. We show that DHM allows quantitative imaging of different layers in unstained tissue samples by detection of refractive index changes. In addition, we evaluate the automated refocussing feature of DHM for application on dissected tissues and could achieve highly reproducible holographic autofocusing for unstained and moderately stained samples. Finally, it is demonstrated that in human ulcerative colitis patients the average tissue refractive index is reduced significantly in all parts of the inflamed colonic wall in comparison to patients in remission.

  18. Ethical aspects of informed consent for the collection, preservation and use of cells and tissues in biological banks for research purposes.

    Science.gov (United States)

    Petrini, Carlo

    2012-01-01

    This article explores the current and proposed requirements for informed consent for research with biological samples. The establishment of biobanks and the capabilities of collecting, storing, and using cells and tissues for research purposes have noticeably grown. With new abilities come new challenges to ethical questions of consent, specifically concerning genetic information, and unanticipated usage. This paper summarizes these issues in the context of levels of informed consent, subject risk, individual vs. societal benefits, anonymity, legal consensus. PMID:23115828

  19. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes

    International Nuclear Information System (INIS)

    Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl precursors have been tested as support films for energy-filtered transmission electron microscopy (EFTEM) of biological specimens. Due to their high transparency CNM are ideal substrates for electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) of stained and unstained biological samples. Virtually background-free elemental maps of tobacco mosaic virus (TMV) and ferritin have been obtained from samples supported by ∼1 nm thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM) comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded TMV on cCNM and compared the results with images of ice-embedded TMV on conventional carbon film (CC), thus analyzing the gain in contrast for TMV on cCNM in a quantitative manner. In addition we have developed a method for the preparation of vitrified specimens, suspended over the holes of a conventional holey carbon film, while backed by ultrathin cCNM. -- Research highlights: → We examine ultrathin carbon nanomembranes (CNM) as supports for biological TEM. → CNM comprise crosslinked biphenyl precursors. → CNM supports enable background-free elemental mapping of heavy and light elements. → We perform cryoEM of ice-embedded biological samples on graphene-like conductive CNM.

  20. Classification and Cluster Analysis of Complex Time-of-Flight Secondary Ion Mass Spectrometry for Biological Samples

    OpenAIRE

    Reichenbach, Stephen E; Tian, Xue; Tao, Qingping; Henderson, Alex

    2009-01-01

    Identifying and separating subtly different biological samples is one of the most critical tasks in biological analysis. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is becoming a popular and important technique in the analysis of biological samples, because it can detect molecular information and characterize chemical composition. ToF-SIMS spectra of biological samples are enormously complex with large mass ranges and many peaks. As a result the classification and cluster analys...

  1. Detection of Flavobacterium psychrophilum from fish tissue and water samples by PCR amplification

    DEFF Research Database (Denmark)

    Wiklund, T.; Madsen, Lone; Bruun, Morten Sichlau;

    2000-01-01

    more sensitive than agar cultivation of tissue samples from the brain of rainbow trout injected with Fl. psychrophilum. In non-sterile fresh water seeded with Fl. psychrophilum the detection limit of the PCR- assay was 1.7 cfu in the PCR tube, corresponding to 110 cfu ml(-1) water. The PCR......Rainbow trout fry syndrome and cold-water disease, caused by Flavobacterium psychrophilum, are important diseases in farmed salmonids. Some of the presently available techniques for the detection of Fl. psychrophilum are either time consuming or lack sufficient sensitivity. In the present...... investigation, the possible detection of Fl. psychrophilum from fish tissue and water samples was examined using nested PCR with DNA probes against a sequence of the 16S rRNA genes. The DNA was extracted using Chelex(R) 100 chelating resin. The primers, which were tested against strains isolated from diseased...

  2. Integrating clinical and biological information in a shanghai biobank: an introduction to the sample repository and information sharing platform project.

    Science.gov (United States)

    Cui, Wenbin; Zheng, Peiyong; Yang, Jiahong; Zhao, Rong; Gao, Jiechun; Yu, Guangjun

    2015-02-01

    Biobanks are important resources and central tools for translational medicine, which brings scientific research outcomes to clinical practice. The key purpose of biobanking in translational medicine and other medical research is to provide biological samples that are integrated with clinical information. In 2008, the Shanghai Municipal Government launched the "Shanghai Tissue Bank" in an effort to promote research in translational medicine. Now a sharing service platform has been constructed to integrate clinical practice and biological information that can be used in diverse medical and pharmaceutical research studies. The platform collects two kinds of data: sample data and clinical data. The sample data are obtained from the hospital biobank management system, and mainly include the donors' age, gender, marital status, sample source, sample type, collection time, deposit time, and storage method. The clinical data are collected from the "Hospital-Link" system (a medical information sharing system that connects 23 tertiary hospitals in Shanghai). The main contents include donors' corresponding medication information, test reports, inspection reports, and hospital information. As of the end of September 2014, the project has a collection of 16,020 donors and 148,282 samples, which were obtained from 12 medical institutions, and automatically acquired donors' corresponding clinical data from the "Hospital-Link" system for 6830 occurrences. This project will contribute to scientific research at medical institutions in Shanghai, and will also support the development of the biopharmaceutical industry. In this article, we will describe the significance, the construction phases, the application prospects, and benefits of the sample repository and information sharing service platform. PMID:25686046

  3. Reliability of non-invasive tissue sampling methods for DNA extraction in rabbits (Oryctolagus Cuniculus)

    OpenAIRE

    Manel Ben Larbi; Tircazes, A.; K. Feve; TUDELA, F.; Bolet, G

    2012-01-01

    Deoxyribonucleic acid (DNA) can be extracted from different tissue sources. The most common is blood, but in some situations it can be easier to take a biopsy. In some cases when it is difficult to capture animals, especially in wild populations, faeces and hairs can be considered as a source of DNA. This paper presents a pilot study conducted to compare the applicability of invasive and non-invasive sampling methods for extracting DNA for use in genetic studies of rabbits (Oryctolagus cunicu...

  4. Lead content in autopsy liver tissue in samples from Greenlandic Inuit and Danes

    OpenAIRE

    Milman, Nils; Laursen, Jens; Byg, Keld-Erik; Pedersen, Henning Sloth; Mulvad, Gert; Hansen, Jens Carl

    2005-01-01

    Objectives. To measure the quantity of lead (Pb) in liver tissue samples from Greenlandic Inuit, and compare the results with those obtained in Caucasian Danes. Study design. Observational, descriptive survey on environmental pathology. Methods. The setting was related to forensic medicine and hospitalised care in Nuuk, Ilulissat and Copenhagen. Participants were 50 Greenlandic Inuit (27 men) with a median age of 61 years (range 23-83) and 74 Danes (44 men) with a median age of 60 years (rang...

  5. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples

    Science.gov (United States)

    Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  6. Resonant second-harmonic-generation circular-dichroism microscopy reveals molecular chirality in native biological tissues

    CERN Document Server

    Chen, Mei-Yu; Kan, Che-Wei; Lin, Yen-Yin; Ye, Cin-Wei; Wu, Meng-Jer; Liu, Hsiang-Lin; Chu, Shi-Wei

    2016-01-01

    Conventional linear optical activity effects are widely used for studying chiral materials. However, poor contrast and artifacts due to sample anisotropy limit the applicability of these methods. Here we demonstrate that nonlinear second-harmonic-generation circular dichroism spectral microscopy can overcome these limits. In intact collagenous tissues, clear spectral resonance is observed with sub-micrometer spatial resolution. By performing gradual protein denaturation studies, we show that the resonant responses are dominantly due to the molecular chirality.

  7. Analysis of biological tissues in infant chest for the development of an equivalent radiographic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Pina, D. R.; Souza, Rafael T. F.; Duarte, Sergio B.; Alvarez, Matheus; Miranda, Jose R. A. [Faculdade de Medicina de Botucatu, Departamento de Doencas Tropicais e Diagnostico por Imagem, Universidade Estadual Paulista-UNESP, Distrito de Rubiao Junior S/N, Botucatu, 18618-000 Sao Paulo (Brazil); Instituto de Biociencias de Botucatu, Departamento de Fisica e Biofisica, Universidade Estadual Paulista-UNESP, Distrito de Rubiao Junior S/N, Botucatu, 18618-000 Sao Paulo (Brazil); Centro Brasileiro de Pesquisas Fisicas-CBPF/MCT, Rio de Janeiro 22290-180 (Brazil); Instituto de Biociencias de Botucatu, Departamento de Fisica e Biofisica, Universidade Estadual Paulista-UNESP, Distrito de Rubiao Junior S/N, Botucatu, 18618-000 Sao Paulo (Brazil); Instituto de Biociencias de Botucatu, Departamento de Fisica e Biofisica, Universidade Estadual Paulista-UNESP, Distrito de Rubiao Junior S/N, Botucatu, 18618-000 Sao Paulo (Brazil)

    2012-03-15

    Purpose: The main purpose of the present study was to determine the amounts of different tissues in the chest of the newborn patient (age {<=}1 year), with the aim of developing a homogeneous phantom chest equivalent. This type of phantom is indispensable in the development of optimization procedures for radiographic techniques, including dosimetric control, which is a crucial aspect of pediatric radiology. The authors present a systematic set of procedures, including a computational algorithm, to estimate the amounts of tissues and thicknesses of the corresponding simulator material plates used to construct the phantom. Methods: The Gaussian fit of computed tomographic (CT) analysis was applied to classify and quantify different biological tissues. The methodology is summarized with a computational algorithm, which was used to quantify tissues through automated CT analysis. The thicknesses of the equivalent homogeneous simulator material plates were determined to construct the phantom. Results: A total of 180 retrospective CT examinations with anterior-posterior diameter values ranging 8.5-13.0 cm were examined. The amounts of different tissues were evaluated. The results provided elements to construct a phantom to simulate the infant chest in the posterior-anterior or anterior-posterior (PA/AP) view. Conclusions: To our knowledge, this report represents the first demonstration of an infant chest phantom dedicated to the radiology of children younger than one year. This phantom is a key element in the development of clinical charts for optimizing radiographic technique in pediatric patients. Optimization procedures for nonstandard patients were reported previously [Pina et al., Phys. Med. Biol. 49, N215-N226 (2004) and Pina et al., Appl. Radiat. Isot. 67, 61-69 (2009)]. The constructed phantom represents a starting point to obtain radiologic protocols for the infant patient.

  8. Analysis of biological tissues in infant chest for the development of an equivalent radiographic phantom

    International Nuclear Information System (INIS)

    Purpose: The main purpose of the present study was to determine the amounts of different tissues in the chest of the newborn patient (age ≤1 year), with the aim of developing a homogeneous phantom chest equivalent. This type of phantom is indispensable in the development of optimization procedures for radiographic techniques, including dosimetric control, which is a crucial aspect of pediatric radiology. The authors present a systematic set of procedures, including a computational algorithm, to estimate the amounts of tissues and thicknesses of the corresponding simulator material plates used to construct the phantom. Methods: The Gaussian fit of computed tomographic (CT) analysis was applied to classify and quantify different biological tissues. The methodology is summarized with a computational algorithm, which was used to quantify tissues through automated CT analysis. The thicknesses of the equivalent homogeneous simulator material plates were determined to construct the phantom. Results: A total of 180 retrospective CT examinations with anterior-posterior diameter values ranging 8.5-13.0 cm were examined. The amounts of different tissues were evaluated. The results provided elements to construct a phantom to simulate the infant chest in the posterior-anterior or anterior-posterior (PA/AP) view. Conclusions: To our knowledge, this report represents the first demonstration of an infant chest phantom dedicated to the radiology of children younger than one year. This phantom is a key element in the development of clinical charts for optimizing radiographic technique in pediatric patients. Optimization procedures for nonstandard patients were reported previously [Pina et al., Phys. Med. Biol. 49, N215-N226 (2004) and Pina et al., Appl. Radiat. Isot. 67, 61-69 (2009)]. The constructed phantom represents a starting point to obtain radiologic protocols for the infant patient.

  9. Multiobjective Simulated Annealing-Based Clustering of Tissue Samples for Cancer Diagnosis.

    Science.gov (United States)

    Acharya, Sudipta; Saha, Sriparna; Thadisina, Yamini

    2016-03-01

    In the field of pattern recognition, the study of the gene expression profiles of different tissue samples over different experimental conditions has become feasible with the arrival of microarray-based technology. In cancer research, classification of tissue samples is necessary for cancer diagnosis, which can be done with the help of microarray technology. In this paper, we have presented a multiobjective optimization (MOO)-based clustering technique utilizing archived multiobjective simulated annealing(AMOSA) as the underlying optimization strategy for classification of tissue samples from cancer datasets. The presented clustering technique is evaluated for three open source benchmark cancer datasets [Brain tumor dataset, Adult Malignancy, and Small Round Blood Cell Tumors (SRBCT)]. In order to evaluate the quality or goodness of produced clusters, two cluster quality measures viz, adjusted rand index and classification accuracy ( % CoA) are calculated. Comparative results of the presented clustering algorithm with ten state-of-the-art existing clustering techniques are shown for three benchmark datasets. Also, we have conducted a statistical significance test called t-test to prove the superiority of our presented MOO-based clustering technique over other clustering techniques. Moreover, significant gene markers have been identified and demonstrated visually from the clustering solutions obtained. In the field of cancer subtype prediction, this study can have important impact. PMID:25706936

  10. Spectroscopic analysis of bosentan in biological samples after a liquid-liquid microextraction

    Science.gov (United States)

    Sajedi-Amin, Sanaz; Assadpour-Zeynali, Karim; Panahi-Azar, Vahid; Kebriaeezadeh, Abbas; Khoubnasabjafari, Maryam; Ansarin, Khalil; Jouyban-Gharamaleki, Vahid; Jouyban, Abolghasem

    2015-01-01

    Introduction:Microextraction processes with UV-Vis measurement have been developed and validated for analysis of bosentan in biological samples. Methods:In this work, liquid–liquid microextraction procedures (DLLME & USAEME) were employed for cleanup, pre-concentration, and determination of bosentan in biological samples by UV-Vis spectroscopy at 270 nm. The method was validated and applied to the determination of bosentan in spiked serum, exhaled breath condensate and urine samples. Results:Various experimental factors including type of extraction and dispersive solvents and their volumes, pH, sonication time and centrifuging time were investigated. Under the optimum conditions, the method was linear in the range of 1.0–5.0 μg.mL-1, with coefficient of determination (R2) of > 0.998. The limit of detection (LOD) was 0.07 mg.L-1. Recovery of the target analyte in biological samples was 106.2%. The method could be easily applied for higher concentration of bosentan and needs more improvement for application in the pharmacokinetic investigations where more sensitive methods are required. Conclusion:A simple, low cost, precise and accurate spectrophotometric analysis of bosentan in biological samples after liquid-liquid microextraction were developed and validated for routine analyses. PMID:26929923

  11. Direct polymerase chain reaction from blood and tissue samples for rapid diagnosis of bovine leukemia virus infection.

    Science.gov (United States)

    Nishimori, Asami; Konnai, Satoru; Ikebuchi, Ryoyo; Okagawa, Tomohiro; Nakahara, Ayako; Murata, Shiro; Ohashi, Kazuhiko

    2016-06-01

    Bovine leukemia virus (BLV) infection induces bovine leukemia in cattle and causes significant financial harm to farmers and farm management. There is no effective therapy or vaccine; thus, the diagnosis and elimination of BLV-infected cattle are the most effective method to eradicate the infection. Clinical veterinarians need a simpler and more rapid method of diagnosing infection, because both nested polymerase chain reaction (PCR) and real-time PCR are labor intensive, time-consuming, and require specialized molecular biology techniques and expensive equipment. In this study, we describe a novel PCR method for amplifying the BLV provirus from whole blood, thus eliminating the need for DNA extraction. Although the sensitivity of PCR directly from whole blood (PCR-DB) samples as measured in bovine blood containing BLV-infected cell lines was lower than that of nested PCR, the PCR-DB technique showed high specificity and reproducibility. Among 225 clinical samples, 49 samples were positive by nested PCR, and 37 samples were positive by PCR-DB. There were no false positive samples; thus, PCR-DB sensitivity and specificity were 75.51% and 100%, respectively. However, the provirus loads of the samples detected by nested PCR and not PCR-DB were quite low. Moreover, PCR-DB also stably amplified the BLV provirus from tumor tissue samples. PCR-DB method exhibited good reproducibility and excellent specificity and is suitable for screening of thousands of cattle, thus serving as a viable alternative to nested PCR and real-time PCR. PMID:26911373

  12. Direct polymerase chain reaction from blood and tissue samples for rapid diagnosis of bovine leukemia virus infection

    Science.gov (United States)

    NISHIMORI, Asami; KONNAI, Satoru; IKEBUCHI, Ryoyo; OKAGAWA, Tomohiro; NAKAHARA, Ayako; MURATA, Shiro; OHASHI, Kazuhiko

    2016-01-01

    Bovine leukemia virus (BLV) infection induces bovine leukemia in cattle and causes significant financial harm to farmers and farm management. There is no effective therapy or vaccine; thus, the diagnosis and elimination of BLV-infected cattle are the most effective method to eradicate the infection. Clinical veterinarians need a simpler and more rapid method of diagnosing infection, because both nested polymerase chain reaction (PCR) and real-time PCR are labor intensive, time-consuming, and require specialized molecular biology techniques and expensive equipment. In this study, we describe a novel PCR method for amplifying the BLV provirus from whole blood, thus eliminating the need for DNA extraction. Although the sensitivity of PCR directly from whole blood (PCR-DB) samples as measured in bovine blood containing BLV-infected cell lines was lower than that of nested PCR, the PCR-DB technique showed high specificity and reproducibility. Among 225 clinical samples, 49 samples were positive by nested PCR, and 37 samples were positive by PCR-DB. There were no false positive samples; thus, PCR-DB sensitivity and specificity were 75.51% and 100%, respectively. However, the provirus loads of the samples detected by nested PCR and not PCR-DB were quite low. Moreover, PCR-DB also stably amplified the BLV provirus from tumor tissue samples. PCR-DB method exhibited good reproducibility and excellent specificity and is suitable for screening of thousands of cattle, thus serving as a viable alternative to nested PCR and real-time PCR. PMID:26911373

  13. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples.

    Science.gov (United States)

    Schütz, C L; Brochhausen, C; Hampel, G; Iffland, D; Kuczewski, B; Otto, G; Schmitz, T; Stieghorst, C; Kratz, J V

    2012-10-01

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. PMID:22918535

  14. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, C.L. [University of Mainz, Institute for Nuclear Chemistry, Mainz (Germany); Johannes Gutenberg-University of Mainz, Institute for Nuclear Chemistry, Mainz (Germany); Brochhausen, C. [University of Mainz, Institute of Pathology, Mainz (Germany); Hampel, G.; Iffland, D.; Schmitz, T.; Stieghorst, C.; Kratz, J.V. [University of Mainz, Institute for Nuclear Chemistry, Mainz (Germany); Kuczewski, B. [Regional Council Darmstadt, Darmstadt (Germany); Otto, G. [University of Mainz, Department of Hepatobiliary, Pancreatic and Transplantation Surgery, Mainz (Germany)

    2012-10-15

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. (orig.)

  15. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples

    International Nuclear Information System (INIS)

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. (orig.)

  16. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    OpenAIRE

    Toda, Shuji; Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate...

  17. Relationship between biologic tissue heterogeneity and absorbed dose distribution in therapy of oncologic patients with cyclotron U-120 fast neutrons

    International Nuclear Information System (INIS)

    Effect of biological tissue heterogeneity on the absorbed dose distribution of U-120 cyclotron fast neutron beam was studied by estimation and experimental method. It was found that adipose and bone tissues significantly changes the pattern of neutron absorbed dose distribution in patient body. Absorbed dose in adipose layer increase by 20% as compared to the dose in soft biological tissue. Approximation method for estimation of the absorbed dose distribution of fast neutrons in heterogeneities was proposed which could be applied in the dosimetric planning of U-120 cyclotron neutron therapy of neoplasms

  18. Effect of lipopolysaccharide on the biological characteristics of human skin fibroblasts and hypertrophic scar tissue formation.

    Science.gov (United States)

    Yang, Hongming; Hu, Chao; Li, Fengyu; Liang, Liming; Liu, Lingying

    2013-06-01

    Burn injury-mediated destruction of the skin barrier normally induces microbial invasion, in turn leading to the development of systemic infection and occasional septic shock by the release of endotoxins. The objective of this work was to study the influence of lipopolysaccharide (LPS) on the biological characteristics of normal skin fibroblasts and to elucidate the influence of LPS in the initial stage of skin wound healing. Twenty patients with hypertrophic scar in proliferative stage were selected randomly and primary cultures were established from fibroblasts derived from their hypertrophic scar tissue and normal skin. Normal skin fibroblasts of passage 3 were stimulated with different concentrations of LPS. LPS stimulated the proliferation and collagen synthesis of fibroblasts within a certain extent of concentrations (0.005-0.5 μg/mL) (P effect on normal skin fibroblasts-continuous passage of these fibroblasts resulted in ultrastructural pattern similar to fibroblasts derived from hypertrophic scar tissue, and the findings was substantiated by hematoxylin and eosin staining and immunohistochemistry detection of proliferation cell nuclear antigen, type I procollagen and α-smooth muscle actin. Our results suggest that LPS might convert normal skin fibroblasts to hypertrophic scar tissue fibroblasts and participate in the formation of hypertrophic scar; hence, appropriate concentration of LPS may have no effect or be beneficial to skin wound healing, whereas excessive concentration of LPS may delay the time of wound healing. PMID:23653386

  19. Molecularly Imprinted Solid-Phase Extraction and Liquid Chromatography for Biological Samples

    OpenAIRE

    Möller, Kristina

    2006-01-01

    This thesis focuses on the use of molecularly imprinted polymers as selective sorbents for solid-phase extraction (MISPE). The MISPE methods developed were mainly intended for use with biological samples, such as human urine and blood plasma. These body fluids are complex samples, which often need an effective clean-up step before analysis to reduce the levels of possible interfering substances from the matrix, especially if the analytes are present in trace amounts. Solid-phase extraction (S...

  20. Great Meteor East: an interim report on biological sampling and general relationship to physical oceanography

    International Nuclear Information System (INIS)

    The report deals with work carried out in June/July 1985 on RRS Discovery Cruise 156 to GME. The general physical oceanography of the area and the vertical distribution of chlorophyll a and nutrients are described. Primary production measurements and results are discussed in detail. Biological sampling of benthic and pelagic animals is described together with the subsequent laboratory treatment of the samples and some preliminary data on midwater biomass. (author)

  1. Total Integrated Sample Preparation for Microfluidic Immunoassays in Complex Biological Matrices

    OpenAIRE

    Apori, Akwasi Asare

    2011-01-01

    A high-throughput protein analysis platform with integrated sample preparation is developed to address the identified technology gaps in biomarker validation, clinical and point-of-care diagnostics. The goals of the technology are to automate and integrate protein sample preparation with electrokinetic separations, implement immunoassays capable of processing raw biological fluids, and perform high-throughput protein assays targeted for disease diagnosis.Integration of multiple functions is ...

  2. Determination of element concentrations in biological reference materials by solid sampling and other analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Schauenburg, H.; Weigert, P. (Bundesgesundheitsamt, Berlin (Germany). Centre for Surveillance and Health Evaluation of Environmental Chemicals (ZEBS))

    1992-04-01

    Using solid sampling with graphite furnace atomic absorption spectrometry (GFAAS), values for cadmium, copper, lead and zinc in six biological reference materials were obtained from up to four laboratories participating in three collaborative studies. These results are compared with those obtained with other methods used in routine analysis from laboratories of official food control. Under certain conditions solid sampling with GFAAS seems to be suitable for routine analysis as well as conventional methods. (orig.).

  3. Implementation of immunohistochemistry on frozen ear notch tissue samples in diagnosis of bovine viral diarrhea virus in persistently infected cattle

    Directory of Open Access Journals (Sweden)

    Bedeković Tomislav

    2011-12-01

    Full Text Available Abstract Background Bovine viral diarrhea is a contagious disease of domestic and wild ruminants and one of the most economically important diseases in cattle. Bovine viral diarrhea virus belongs to the genus Pestivirus, within the family Flaviviridae. The identification and elimination of the persistently infected animals from herds is the initial step in the control and eradication programs. It is therefore necessary to have reliable methods for diagnosis of bovine viral diarrhea virus. One of those methods is immunohistochemistry. Immunohistochemistry on formalin fixed, paraffin embedded tissue is a routine technique in diagnosis of persistently infected cattle from ear notch tissue samples. However, such technique is inappropriate due to complicated tissue fixation process and it requires more days for preparation. On the contrary, immunohistochemistry on frozen tissue was usually applied on organs from dead animals. In this paper, for the first time, the imunohistochemistry on frozen ear notch tissue samples was described. Findings Seventeen ear notch tissue samples were obtained during the period 2008-2009 from persistently infected cattle. Samples were fixed in liquid nitrogen and stored on -20°C until testing. Ear notch tissue samples from all persistently infected cattle showed positive results with good section quality and possibility to determinate type of infected cells. Conclusions Although the number of samples was limited, this study indicated that immunohistochemistry on formalin fixed paraffin embedded tissue can be successfully replaced with immunohistochemistry on frozen ear notch tissue samples in diagnosis of persistently infected cattle.

  4. Threshold-dependent sample sizes for selenium assessment with stream fish tissue

    Science.gov (United States)

    Hitt, Nathaniel P.; Smith, David

    2013-01-01

    Natural resource managers are developing assessments of selenium (Se) contamination in freshwater ecosystems based on fish tissue concentrations. We evaluated the effects of sample size (i.e., number of fish per site) on the probability of correctly detecting mean whole-body Se values above a range of potential management thresholds. We modeled Se concentrations as gamma distributions with shape and scale parameters fitting an empirical mean-to-variance relationship in data from southwestern West Virginia, USA (63 collections, 382 individuals). We used parametric bootstrapping techniques to calculate statistical power as the probability of detecting true mean concentrations up to 3 mg Se/kg above management thresholds ranging from 4-8 mg Se/kg. Sample sizes required to achieve 80% power varied as a function of management thresholds and type-I error tolerance (α). Higher thresholds required more samples than lower thresholds because populations were more heterogeneous at higher mean Se levels. For instance, to assess a management threshold of 4 mg Se/kg, a sample of 8 fish could detect an increase of ∼ 1 mg Se/kg with 80% power (given α = 0.05), but this sample size would be unable to detect such an increase from a management threshold of 8 mg Se/kg with more than a coin-flip probability. Increasing α decreased sample size requirements to detect above-threshold mean Se concentrations with 80% power. For instance, at an α-level of 0.05, an 8-fish sample could detect an increase of ∼ 2 units above a threshold of 8 mg Se/kg with 80% power, but when α was relaxed to 0.2 this sample size was more sensitive to increasing mean Se concentrations, allowing detection of an increase of ∼ 1.2 units with equivalent power. Combining individuals into 2- and 4-fish composite samples for laboratory analysis did not decrease power because the reduced number of laboratory samples was compensated by increased precision of composites for estimating mean

  5. Optimization of dielectrophoretic separation and concentration of pathogens in complex biological samples

    Science.gov (United States)

    Bisceglia, E.; Cubizolles, M.; Mallard, F.; Pineda, F.; Francais, O.; Le Pioufle, B.

    2013-05-01

    Sample preparation is a key issue of modern analytical methods for in vitro diagnostics of diseases with microbiological origins: methods to separate bacteria from other elements of the complex biological samples are of great importance. In the present study, we investigated the DEP force as a way to perform such a de-complexification of the sample by extracting micro-organisms from a complex biological sample under a highly non-uniform electric field in a micro-system based on an interdigitated electrodes array. Different parameters were investigated to optimize the capture efficiency, such as the size of the gap between the electrodes and the height of the capture channel. These parameters are decisive for the distribution of the electric field inside the separation chamber. To optimize these relevant parameters, we performed numerical simulations using COMSOL Multiphysics and correlated them with experimental results. The optimization of the capture efficiency of the device has first been tested on micro-organisms solution but was also investigated on human blood samples spiked with micro-organisms, thereby mimicking real biological samples.

  6. Evaluation of sample preparation methods and optimization of nickel determination in vegetable tissues

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernando dos Santos Salazar

    2011-02-01

    Full Text Available Nickel, although essential to plants, may be toxic to plants and animals. It is mainly assimilated by food ingestion. However, information about the average levels of elements (including Ni in edible vegetables from different regions is still scarce in Brazil. The objectives of this study were to: (a evaluate and optimize a method for preparation of vegetable tissue samples for Ni determination; (b optimize the analytical procedures for determination by Flame Atomic Absorption Spectrometry (FAAS and by Electrothermal Atomic Absorption (ETAAS in vegetable samples and (c determine the Ni concentration in vegetables consumed in the cities of Lorena and Taubaté in the Vale do Paraíba, State of São Paulo, Brazil. By means of the analytical technique for determination by ETAAS or FAAS, the results were validated by the test of analyte addition and recovery. The most viable method tested for quantification of this element was HClO4-HNO3 wet digestion. All samples but carrot tissue collected in Lorena contained Ni levels above the permitted by the Brazilian Ministry of Health. The most disturbing results, requiring more detailed studies, were the Ni concentrations measured in carrot samples from Taubaté, where levels were five times higher than permitted by Brazilian regulations.

  7. Integrated quantification and identification of aldehydes and ketones in biological samples

    NARCIS (Netherlands)

    Siegel, David; Meinema, Anne C; Permentier, Hjalmar; Hopfgartner, Gérard; Bischoff, Rainer

    2014-01-01

    The identification of unknown compounds remains to be a bottleneck of mass spectrometry (MS)-based metabolomics screening experiments. Here, we present a novel approach which facilitates the identification and quantification of analytes containing aldehyde and ketone groups in biological samples by

  8. Development of Spectral Domain Optical Coherence Tomography for in vivo Functional Imaging of Biological Tissues

    Science.gov (United States)

    An, Lin

    Optical coherence tomography is a rapidly developing optical imaging modality capable of noninvasively providing depth resolved information of biological tissue at micrometer scale. In this thesis, we described several OCT technologies that can be used to double the imaging depth, realize functional vasculature imaging of biological tissue and increase the imaging speed of OCT system. Aim 1: Use of a scanner to introduce spatial frequency modulation to OCT spectral interferograms for in vivo full-range Fourier-domain optical coherence tomography. A novel method was developed that could easily introduce a modulation frequency onto the X-direction (i.e., B-scan) of the FDOCT scanning system, enabling full-range Fourier-domain Optical Coherence Tomography (frFDOCT). Compared to the conventional FDOCT system, the newly developed frFDOCT system can provide increased system sensitivity and deeper imaging depth. The previous technology that can achieve frFDOCT either needed multiple steps for data capturing, which is time consuming, or required additional components which increased the system's complexity. The newly developed method generates a modulation spatial frequency in the spectral interferogram by simply offsetting the probe beam at the X-scanner. Aim 2: Using optical micro-angiography to achieve in vivo volumetric imaging of vascular perfusion within human retina and choroids. Optical Micro-Angiography (OMAG) is a functional extension of FDOCT technology. It can achieve visualization of vasculature network of biological tissue. In order to apply the OMAG method to image vasculature map of human retina and choroid, a phase compensation algorithm was developed, which could minimize the motion artifacts generated by the movements of human eye and head. Aim 3: Developing ultrahigh sensitive optical micro-angiography to achieve micro vasculature imaging of biological tissue. To improve the vasculature image quality, we developed ultrahigh sensitive OMAG (UHS

  9. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens

    Science.gov (United States)

    Cors, J. F.; Lovchik, R. D.; Delamarche, E.; Kaigala, G. V.

    2014-03-01

    The microfluidic probe (MFP) is a non-contact, scanning microfluidic technology for local (bio)chemical processing of surfaces based on hydrodynamically confining nanoliter volumes of liquids over tens of micrometers. We present here a compact MFP (cMFP) that can be used on a standard inverted microscope and assist in the local processing of tissue sections and biological specimens. The cMFP has a footprint of 175 × 100 × 140 mm3 and can scan an area of 45 × 45 mm2 on a surface with an accuracy of ±15 μm. The cMFP is compatible with standard surfaces used in life science laboratories such as microscope slides and Petri dishes. For ease of use, we developed self-aligned mounted MFP heads with standardized "chip-to-world" and "chip-to-platform" interfaces. Switching the processing liquid in the flow confinement is performed within 90 s using a selector valve with a dead-volume of approximately 5 μl. We further implemented height-compensation that allows a cMFP head to follow non-planar surfaces common in tissue and cellular ensembles. This was shown by patterning different macroscopic copper-coated topographies with height differences up to 750 μm. To illustrate the applicability to tissue processing, 5 μm thick M000921 BRAF V600E+ melanoma cell blocks were stained with hematoxylin to create contours, lines, spots, gradients of the chemicals, and multiple spots over larger areas. The local staining was performed in an interactive manner using a joystick and a scripting module. The compactness, user-friendliness, and functionality of the cMFP will enable it to be adapted as a standard tool in research, development and diagnostic laboratories, particularly for the interaction with tissues and cells.

  10. Computed Biological Relations among Five Select Treatment-Related Organ/Tissue Toxicities.

    Science.gov (United States)

    Sakellaropoulos, Theodore; Herod, Timothy J; Alexopoulos, Leonidas G; Bai, Jane P F

    2016-05-16

    Drug toxicity presents a major challenge in drug development and patient care. We set to build upon previous works regarding select drug-induced toxicities to find common patterns in the mode of action of the drugs associated with these toxicities. In particular, we focused on five disparate organ toxicities, peripheral neuropathy (PN), rhabdomyolysis (RM), Stevens-Johnson syndrome/toxic epidermal necrosis (SJS/TEN), lung injury (LI), and heart contraction-related cardiotoxicity (CT), and identified biological commonalities between and among the toxicities in terms of pharmacological targets and nearest neighbors (indirect effects) using the hyper-geometric test and a distance metric of Spearman correlation. There were 20 significant protein targets associated with two toxicities and 0 protein targets associated with three or more toxicities. Per Spearman distance, PN was closest to SJS/TEN compared to other pairs, whereas the pairs involving RM were more different than others excluding RM. The significant targets associated with RM outnumbered those associated with every one of the other four toxicities. Enrichment analysis of drug targets that are expressed in corresponding organ/tissues determined proteins that should be avoided in drug discovery. The identified biological patterns emerging from the mode of action of these drugs are statistically associated with these serious toxicities and could potentially be used as predictors for new drug candidates. The predictive power and usefulness of these biological patterns will increase with the database of these five toxicities. Furthermore, extension of our approach to all severe adverse reactions will produce useful biological commonalities for reference in drug discovery and development. PMID:27063352

  11. Comparative analysis of housekeeping and tissue-selective genes in human based on network topologies and biological properties.

    Science.gov (United States)

    Yang, Lei; Wang, Shiyuan; Zhou, Meng; Chen, Xiaowen; Zuo, Yongchun; Sun, Dianjun; Lv, Yingli

    2016-06-01

    Housekeeping genes are genes that are turned on most of the time in almost every tissue to maintain cellular functions. Tissue-selective genes are predominantly expressed in one or a few biologically relevant tissue types. Benefitting from the massive gene expression microarray data obtained over the past decades, the properties of housekeeping and tissue-selective genes can now be investigated on a large-scale manner. In this study, we analyzed the topological properties of housekeeping and tissue-selective genes in the protein-protein interaction (PPI) network. Furthermore, we compared the biological properties and amino acid usage between these two gene groups. The results indicated that there were significant differences in topological properties between housekeeping and tissue-selective genes in the PPI network, and housekeeping genes had higher centrality properties and may play important roles in the complex biological network environment. We also found that there were significant differences in multiple biological properties and many amino acid compositions. The functional genes enrichment and subcellular localizations analysis was also performed to investigate the characterization of housekeeping and tissue-selective genes. The results indicated that the two gene groups showed significant different enrichment in drug targets, disease genes and toxin targets, and located in different subcellular localizations. At last, the discriminations between the properties of two gene groups were measured by the F-score, and expression stage had the most discriminative index in all properties. These findings may elucidate the biological mechanisms for understanding housekeeping and tissue-selective genes and may contribute to better annotate housekeeping and tissue-selective genes in other organisms. PMID:26897376

  12. Correlation of energy dispersive diffraction signatures and microCT of small breast tissue samples with pathological analysis

    International Nuclear Information System (INIS)

    Identification of specific tissue types in conventional mammographic examinations is extremely limited. However, the use of x-ray diffraction effects during imaging has the potential to characterize the tissue types present due to the fact that each tissue type produces its own unique diffraction signature. Nevertheless, the analysis and categorization of these diffraction signatures by tissue type can be hampered by the inhomogeneous nature of breast tissue, leading to categorization errors where several types are present. This work aims to reduce sample categorization errors by combining spectral diffraction signature collection with sample imaging, giving more detailed data on the composition of each sample. Diffraction microCT was carried out on 19 unfixed breast tissue samples using an energy resolving translate-rotate CT system. High-resolution transmission microCT images were also recorded for comparison and sample composition analysis. Following imaging, the samples were subjected to histopathological analysis. Reconstructing on various momentum transfer regions allows different tissue types to be identified in the diffraction images. Results show a correlation between measured x-ray diffraction images and stained histopathological tissue sections. X-ray diffraction signatures generated from the measured data were categorized and analysed, with a t-test indicating that they have the potential for use in tissue type identification

  13. Stability of heroin, 6-monoacetylmorphine, and morphine in biological samples and validation of an LC-MS assay for delayed analyses of pharmacokinetic samples in rats.

    Science.gov (United States)

    Jones, Jessica M; Raleigh, Michael D; Pentel, Paul R; Harmon, Theresa M; Keyler, Daniel E; Remmel, Rory P; Birnbaum, Angela K

    2013-02-23

    Degradation of heroin to 6-monoacetylmorphine (6-MAM) and then morphine happens rapidly in vivo and in vitro. The rates of heroin and 6-MAM degradation depend on the type of biological samples, and the duration and conditions of storage. In order to optimize conditions for measuring heroin and its metabolites in samples collected for pharmacokinetic studies in rats, we investigated the time course of degradation of heroin, 6-MAM, and morphine in four biological matrices: rat blood, rat brain homogenate, bovine serum, and human plasma under various conditions. Analyte concentrations were measured by LC-MS. The goal was to identify conditions that allow maximum flexibility in scheduling sample collection and analysis, as well as gain more information on the stability of heroin in blood and tissue samples. A solid-phase extraction method with ice-cold solvents, sodium fluoride (NaF) and a low pH (3.0) maintained sample stability. Quality controls were within 94.0-105% of the target value. Variability was 4.0-8.9% for all analytes within the range of 5-200 ng/mL for heroin, 5-1000 ng/mL for 6-MAM, and 10-200 ng/mL for morphine. Heroin degradation to 6-MAM was faster in rat whole blood than in plasma, and faster in rat plasma than in rat brain homogenate. Maintaining NaF at 4 mg/mL throughout processing enhanced stability; higher NaF concentrations added to whole blood caused hemolysis. Samples processed through solid phase extraction and stored as dried pellets at 80°C constituted the most stable environment for heroin, and was superior to the storing of samples in solution prior to or after extraction. Nevertheless, post-extraction heroin and 6-MAM levels declined by 6.7-8.3% over one week in rat plasma under these conditions, and by <1-4.7% in bovine serum or human plasma. PMID:23245263

  14. Ultrasound-modulated optical microscopy for ex-vivo imaging of scattering biological tissue

    Science.gov (United States)

    Kothapalli, Sri-Rajasekhar; Wang, Lihong V.

    2009-02-01

    Ultrasound-modulated optical microscopy (UOM) based on a long-cavity confocal Fabry-Perot interferometer (CFPI) [J.Biomed.Opt. 13(5), 0504046, (2008)] is used for real time detection of multiply scattered light modulated by high frequency (30 MHz) ultrasound pulses propagating in an optically strongly scattering medium. In this article, we use this microscope to study the dependence of ultrasound-modulated optical signals on the optical absorption of objects embedded about 3 mm deep in tissue mimicking phantoms. These results demonstrate that the dependence is nearly linear. Most importantly, we imaged blood vasculature and melanin in highly scattering tissue samples from a mouse and a rat. Thus UOM can be used to study the morphology of blood vasculature and blood-associated functional parameters, such as oxygen saturation.

  15. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review.

    Science.gov (United States)

    Karle, Marc; Vashist, Sandeep Kumar; Zengerle, Roland; von Stetten, Felix

    2016-07-27

    The last decade has witnessed tremendous advances in employing microfluidic solutions enabling Continuous Processing and Monitoring of Biological Samples (CPMBS), which is an essential requirement for the control of bio-processes. The microfluidic systems are superior to the traditional inline sensors due to their ability to implement complex analytical procedures, such as multi-step sample preparation, and enabling the online measurement of parameters. This manuscript provides a backgound review of microfluidic approaches employing laminar flow, hydrodynamic separation, acoustophoresis, electrophoresis, dielectrophoresis, magnetophoresis and segmented flow for the continuous processing and monitoring of biological samples. The principles, advantages and limitations of each microfluidic approach are described along with its potential applications. The challenges in the field and the future directions are also provided. PMID:27251944

  16. Electromembrane extraction as a rapid and selective miniaturized sample preparation technique for biological fluids

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Pedersen-Bjergaard, Stig; Seip, Knut Fredrik

    2015-01-01

    organic solvent, and into an aqueous receiver solution. The extraction is promoted by application of an electrical field, causing electrokinetic migration of the charged analytes. The method has shown to perform excellent clean-up and selectivity from complicated aqueous matrices like biological fluids......This special report discusses the sample preparation method electromembrane extraction, which was introduced in 2006 as a rapid and selective miniaturized extraction method. The extraction principle is based on isolation of charged analytes extracted from an aqueous sample, across a thin film of....... Technical aspects of electromembrane extraction, important extraction parameters as well as a handful of examples of applications from different biological samples and bioanalytical areas are discussed in the paper....

  17. Toward greener analytical techniques for the absolute quantification of peptides in pharmaceutical and biological samples.

    Science.gov (United States)

    Van Eeckhaut, Ann; Mangelings, Debby

    2015-09-10

    Peptide-based biopharmaceuticals represent one of the fastest growing classes of new drug molecules. New reaction types included in the synthesis strategies to reduce the rapid metabolism of peptides, along with the availability of new formulation and delivery technologies, resulted in an increased marketing of peptide drug products. In this regard, the development of analytical methods for quantification of peptides in pharmaceutical and biological samples is of utmost importance. From the sample preparation step to their analysis by means of chromatographic or electrophoretic methods, many difficulties should be tackled to analyze them. Recent developments in analytical techniques emphasize more and more on the use of green analytical techniques. This review will discuss the progresses in and challenges observed during green analytical method development for the quantification of peptides in pharmaceutical and biological samples. PMID:25864956

  18. Simultaneous determination of arsenic and selenium in biological samples by HG-AFS

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hanwen; Liu, Zhanfeng; Shi, Hongmei [Hebei University, College of Chemistry and Environmental Science, Baoding (China); Wu, Wenjuan [Third Hospital of Hebei Medical University, Department of Radiology, Shijiazhuang 050051 (China); Li, Liqing [Hebei University, College of Chemistry and Environmental Science, Baoding (China); Taishan College, Department of Chemistry, Shan Dong Taian (China)

    2005-06-01

    A new method is proposed for simultaneous determination of traces of arsenic (As) and selenium (Se) in biological samples by hydride-generation double-channel non-dispersive atomic-fluorescence spectrometry (HG-AFS) from tartaric acid media. The effects of analytical conditions on fluorescence signal intensity were investigated and optimized. Interferences from coexisting ions were evaluated. Under optimum conditions linear response ranges above 20 {mu}g L{sup -1} for As and 32 {mu}g L{sup -1} for Se were obtained with detection limits of 0.13 and 0.12 {mu}g L{sup -1}, respectively. The precision for elevenfold determination of As at the 4 {mu}g L{sup -1} level and of Se at the 8 {mu}g L{sup -1} level were 2.7 and 1.9% (RSD), respectively. Recoveries of 92.5-95.5% for As and 101.2-108.4% for Se were obtained for four biological samples and two certified biological reference materials. The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for simultaneous determination of As and Se in biological samples. (orig.)

  19. Injectable 3-D Fabrication of Medical Electronics at the Target Biological Tissues

    Science.gov (United States)

    Jin, Chao; Zhang, Jie; Li, Xiaokang; Yang, Xueyao; Li, Jingjing; Liu, Jing

    2013-12-01

    Conventional transplantable biomedical devices generally request sophisticated surgery which however often causes big trauma and serious pain to the patients. Here, we show an alternative way of directly making three-dimensional (3-D) medical electronics inside the biological body through sequential injections of biocompatible packaging material and liquid metal ink. As the most typical electronics, a variety of medical electrodes with different embedded structures were demonstrated to be easily formed at the target tissues. Conceptual in vitro experiments provide strong evidences for the excellent performances of the injectable electrodes. Further in vivo animal experiments disclosed that the formed electrode could serve as both highly efficient ECG (Electrocardiograph) electrode and stimulator electrode. These findings clarified the unique features and practicability of the liquid metal based injectable 3-D fabrication of medical electronics. The present strategy opens the way for directly manufacturing electrophysiological sensors or therapeutic devices in situ via a truly minimally invasive approach.

  20. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-07-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.

  1. A Polydisperse Sphere Model Describing the Propagation of Light in Biological Tissue

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-Hua; LI Zhen-Hua; LAI Jian-Cheng; HE An-Zhi

    2007-01-01

    A polydisperse sphere model with the complex refractive index is employed to describe the propagation of light in biological tissue.The scattering coefficient,absorption coefficient and scattering phase function are calculated.At the same time,the inverse problem on retrieving the particles size distribution,imaginary part of the refractive index and number density of scatterers is investigated.The result shows that the retrieval scheme together with the Chahine algorithm is effective in dealing with such an inverse problem.IT is also clarified that a group of parameters including the scattering coefficient,absorption coefficient and phase function are associated with another group including the refractive index,particle size distribution and number density of scatterers,which is a problem described in two different ways and the anisotropy factor is not an independent variable,but is determined by the phase function.

  2. A Two-Layer Mathematical Modelling of Drug Delivery to Biological Tissues

    CERN Document Server

    Chakravarty, Koyel

    2016-01-01

    Local drug delivery has received much recognition in recent years, yet it is still unpredictable how drug efficacy depends on physicochemical properties and delivery kinetics. The purpose of the current study is to provide a useful mathematical model for drug release from a drug delivery device and consecutive drug transport in biological tissue, thereby aiding the development of new therapeutic drug by a systemic approach. In order to study the complete process, a two-layer spatio-temporal model depicting drug transport between the coupled media is presented. Drug release is described by considering solubilisation dynamics of drug particle, diffusion of the solubilised drug through porous matrix and also some other processes like reversible dissociation / recrystallization, drug particle-receptor binding and internalization phenomena. The model has led to a system of partial differential equations describing the important properties of drug kinetics. This model contributes towards the perception of the roles...

  3. Will Women Diagnosed with Breast Cancer Provide Biological Samples for Research Purposes?

    Directory of Open Access Journals (Sweden)

    Shelley A Harris

    Full Text Available Little is known about the response rates for biological sample donation and attitudes towards control recruitment, especially in younger women. The goals of this pilot study were to determine in women recently diagnosed with breast cancer, the proportion of cases willing to provide biological samples and for purposes of control recruitment, contact information for friends or colleagues.A population-based sample of breast cancer cases (n = 417, 25-74 years was recruited from the Ontario Cancer Registry in 2010 and self-administered questionnaires were completed to determine willingness to provide samples (spot or 24-hr urine, saliva, blood and contact information for friends/colleagues for control recruitment. Using Χ2 analyses of contingency tables we evaluated if these proportions varied by age group (<45 and 45+ and other factors such as ethnicity, education, income, body mass index (BMI, smoking status and alcohol consumption.Cases were willing to provide blood samples, by visiting a clinic (62% or by having a nurse visit the home (61%. Moreover, they would provide saliva (73%, and morning or 24-hr urine samples (66% and 52%. Younger cases (≤45 were 3 times (OR more likely more than older cases to agree to collect morning urine (95% CI: 1.15-8.35. Only 26% of cases indicated they would provide contact information of friends or work colleagues to act as controls. Educated cases were more likely to agree to provide samples, and cases who consumed alcohol were more willing to provide contact information. Ethnicity, income, BMI and smoking had little effect on response rates.Reasonable response rates for biological sample collection should be expected in future case controls studies in younger women, but other methods of control selection must be devised.

  4. Methods for collection and analysis of aquatic biological and microbiological samples

    Science.gov (United States)

    Britton, L.J.; Greeson, P.E.

    1988-01-01

    Chapter A4, methods for collection and analyses of aquatic biological and microbiological samples, contains methods used by the U.S. Geological Survey to collect, preserve, and analyze waters to determine their biological and microbiological properties. Part 1 consists of detailed descriptions of more than 45 individual methods, including those for bacteria, phytoplankton, zooplankton, seston, periphyton, macrophytes, benthic invertebrates, fish and other vertebrates, cellular contents, productivity and bioassay. Each method is summarized, and the applications, interferences, apparatus, reagents, analyses, calculations, reporting of results, precisions, and references are given. Part 2 consists of a glossary. Part 3 is a list of taxonomic references. (USGS)

  5. A supplement to "Methods for collection and analysis of aquatic biological and microbiological samples"

    Science.gov (United States)

    1979-01-01

    The report contains methods used by the U.S. Geological Survey to collect, preserve, and analyze waters to determine their biological and microbiological properties. It supplements, "Methods for Collection and Analysis of Aquatic Biological and Microbiological Samples" (TWRI, Book 5, Chapter A4, 1977, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack). Included in the supplement are 5 new methods, a new section of selected taxonomic references for Ostracoda, and 6 revised methods.

  6. Evaluation of oxidant-antioxidant status in tissue samples in oral cancer: A case control study

    Science.gov (United States)

    Srivastava, Kumar Chandan; Austin, Ravi David; Shrivastava, Deepti

    2016-01-01

    Background: Imbalances between the oxidant-antioxidant status have been implicated in the pathogenesis of several diseases, including cancer. The aim of this study was to evaluate the extent of lipid peroxidation and antioxidants in the tissue samples of oral squamous cell carcinoma (OSCC) patients of different clinical stages in comparison with the healthy controls. Materials and Methods: A case-control study was designed with 20 new histopathologically proven oral carcinoma patients and an equal number of age, sex, and tobacco chewing habit matched healthy subjects. Their tissue samples were subjected to evaluation of lipid peroxidation product and antioxidant enzymes, namely, superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and glutathione peroxidase (GPx) using spectrophotometric methods. The data are expressed as mean ± standard deviation. The statistical comparisons between the study groups were performed by independent Student's unpaired t-test and one-way analysis of variance. Post-hoc analysis was performed for within study group comparisons. Karl Pearson correlation was performed for the biochemical parameters within the group and between the groups. For statistically significant correlations, simple linear regression was performed using SPSS (α=0.05). Results: Significant reduction in lipid peroxidation (P < 0.001) SOD and CAT (P < 0.001) was observed in the tissue of OSCC patients as compared with the healthy controls. On the other hand, reduced GSH and GPx were significantly increased in tumor samples. Conclusion: Reduced lipid peroxidation and increased activity of reduced GSH and GPx provides the suitable environment for the local growth and invasion of the tumor and metastasis in the later stages. Among the antioxidant enzymes, GSH reductase appears to have a profound role in carcinogenesis and thus it can be considered as potential prognostic marker. PMID:27076834

  7. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Abou Neel, Ensanya Ali, E-mail: eabouneel@kau.edu.sa [Division of Biomaterials, Conservative Dental Sciences Department, King Abdulaziz University, Jeddah (Saudi Arabia); Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta (Egypt); Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray' s Inn Road, London WC1X 8LD (United Kingdom); Chrzanowski, Wojciech [The University of Sydney, Faculty of Pharmacy, Pharmacy and Bank Building, NSW2006 (Australia); Department of Nanobiomedical Science and BK21 Plus NBM Global Reserch Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Knowles, Jonathan Campbell, E-mail: j.knowles@ucl.ac.uk [Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray' s Inn Road, London WC1X 8LD (United Kingdom); Department of Nanobiomedical Science and BK21 Plus NBM Global Reserch Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2014-02-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. - Highlights: • This study investigated the role of titania on the biological response of phosphate glasses. • Incorporation of titania improved HOS cell attachment, viability and proliferation. • Titania modified glasses regulated osteoblastic cell differentiation. • Using osteogenic media had no significant effect on cell differentiation. • Titania modified glasses may have future use as bone tissue engineering scaffolds.

  8. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    International Nuclear Information System (INIS)

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. - Highlights: • This study investigated the role of titania on the biological response of phosphate glasses. • Incorporation of titania improved HOS cell attachment, viability and proliferation. • Titania modified glasses regulated osteoblastic cell differentiation. • Using osteogenic media had no significant effect on cell differentiation. • Titania modified glasses may have future use as bone tissue engineering scaffolds

  9. Gelatin embedding: a novel way to preserve biological samples for terahertz imaging and spectroscopy

    Science.gov (United States)

    Fan, Shuting; Ung, Benjamin; Parrott, Edward P. J.; Pickwell-MacPherson, Emma

    2015-04-01

    Sample dehydration has traditionally been a challenging problem in ex vivo terahertz biomedical experiments as water content changes significantly affect the terahertz properties and can diminish important contrast features. In this paper, we propose a novel method to prevent sample dehydration using gelatin embedding. By looking at terahertz image data and calculating the optical properties of the gelatin-embedded sample, we find that our method successfully preserves the sample for at least 35 h, both for imaging and spectroscopy. Our novel preservation method demonstrates for the first time the capability to simultaneously maintain sample structural integrity and prevent dehydration at room temperature. This is particularly relevant for terahertz studies of freshly excised tissues but could be beneficial for other imaging and spectroscopy techniques.

  10. Numerical modelling of thermal effects on biological tissue during laser-material interaction

    International Nuclear Information System (INIS)

    Among numerous methods of the modelling of laser interaction with the material equivalent of biological tissue (including macroscopic and microscopic cell interaction), the case of pathogenic prostates is chosen to be studied. The principal difference between the inorganic and tissue equivalent material is the term which includes blood flow. Thermal modelling is chosen for interaction mechanisms, i.e. bio-heat equation. It was noticed that the principal problems are in selecting appropriate numerical methods, available mathematical program packages and finding all exact parameters for performing the needed calculations. As principal parameters, among them density, heat conduction, and specific heat, there are many other parameters which depend on the chosen approach (there could be up to 20 parameters, among them coefficient of time scaling, arterial blood temperature, metabolic heat source, etc). The laser type, including its wavelength which defines the quantity of absorbed energy and dynamic of irradiation, presents the term which could be modulated for the chosen problem. In this study, the program Comsol Multiphysics 3.5 is used in the simulation of prostate exposed to Nd3+:YAG laser in its fundamental mode. (paper)

  11. Regulatory inhibition of biological tissue mineralization through post-nucleation shielding

    Science.gov (United States)

    Chang, Joshua; Miura, Robert

    In vertebrates, insufficient availability of calcium and phosphate ions in extracellular fluids leads to loss of bone density and neuronal hyper-excitability. To counteract this problem, calcium ions are present at high concentrations throughout body fluids - at concentrations exceeding the saturation point. This condition leads to the opposite situation where unwanted mineral sedimentation may occur. Remarkably, ectopic or out-of-place sedimentation into soft tissues is rare, in spite of the thermodynamic driving factors. This fortunate fact is due to the presence of auto-regulatory proteins that are found in abundance in bodily fluids. Yet, many important inflammatory disorders such as atherosclerosis and osteoarthritis are associated with this undesired calcification. Hence, it is important to gain an understanding of the regulatory process and the conditions under which it can go awry. We adapted mean-field classical nucleation theory to the case of surface-shielding in order to study the regulation of sedimentation of calcium phosphate salts in biological tissues. Mathematical Biosciences Institute, NSF DMS-1021818, National Institutes of Health, Rehab Medicine.

  12. Transcriptional profiling and genotyping of degraded nucleic acids from autopsy tissue samples after prolonged formalin fixation times

    OpenAIRE

    Ferruelo, Antonio; González, Constancio

    2011-01-01

    [Background]: Samples used for genotyping and transcription studies are obtained and conserved in very specific conditions. The possibility to use autopsy tissue samples, which contain nucleic acids of very poor quality, would open new possibilities for genetic studies. [Methods]: We have used liver tissue samples from autopsy cases to (i) determine its quality; (ii) study gene expression of 13 genes involved in different cell processes, before and after cDNA pre-amplification (quantitative r...

  13. Transcriptional profiling and genotyping of degraded nucleic acids from autopsy tissue samples after prolonged formalin fixation times

    OpenAIRE

    Ferruelo, Antonio; El-Assar, Mariam; Lorente, José A; Nin, Nicolás; Peñuelas, Oscar; Fernández-Segoviano, Pilar; Gonzalez, Constancio; Esteban, Andrés

    2011-01-01

    Background: Samples used for genotyping and transcription studies are obtained and conserved in very specific conditions. The possibility to use autopsy tissue samples, which contain nucleic acids of very poor quality, would open new possibilities for genetic studies. Methods: We have used liver tissue samples from autopsy cases to (i) determine its quality; (ii) study gene expression of 13 genes involved in different cell processes, before and after cDNA pre-amplification (quantitative rever...

  14. Constructing Database for Drugs and its Application to Biological Sample by HPTLC and GC/MS

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y.C.; Park, S.W.; Lim, M.A.; Baeck, S.K.; Park, S.Y.; Lee, J.S.; Lee, J.S. [National Institute of Scientific investigation, Seoul (Korea); Lho, D.S. [Korea Institute of Science and Technology, Seoul (Korea)

    2000-04-01

    For the identification of unknown drugs in biological samples, we attempted rapid high performance thin layer chromatographic method which is sensitive and selective chromatographic analysis of high performance thin layer chromatography (HPTLC) with automated TLC sampler and ultra-violet (UV) scanner. We constructed HPTLC database (DB) on two hundred five drugs by using the data of Rf values and UV spectra (scan 200-360 nm) as well as gas chromatography/mass spectrometry (GC/MS) DB on ninety six drugs by using the data of relative retention time (RRT) on lidocain and mass spectra. After extracting drugs in geological sample by solid phase extraction (Clean Screen ZSDAU020), we applied them to HPTLC and GC/MS DB. Drugs, especially extracted from biological samples, showed good matching ratio to HPTLC DB and these drugs were confirmed by GC/MS. In conclusion, this DB system is thought to be very useful method for the screening of unknown drugs in biological samples. (author). 9 refs., 2 tabs., 6 figs.

  15. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves.

    Science.gov (United States)

    Gallyamov, Marat O; Chaschin, Ivan S; Khokhlova, Marina A; Grigorev, Timofey E; Bakuleva, Natalia P; Lyutova, Irina G; Kondratenko, Janna E; Badun, Gennadii A; Chernysheva, Maria G; Khokhlov, Alexei R

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H2O and CO2. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16-33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. PMID:24582232

  16. How preconditioning affects the measurement of poro-viscoelastic mechanical properties in biological tissues.

    Science.gov (United States)

    Hosseini, Sayyed Mohsen; Wilson, Wouter; Ito, Keita; van Donkelaar, Corrinus C

    2014-06-01

    It is known that initial loading curves of soft biological tissues are substantially different from subsequent loadings. The later loading curves are generally used for assessing the mechanical properties of a tissue, and the first loading cycles, referred to as preconditioning, are omitted. However, slow viscoelastic phenomena related to fluid flow or collagen viscoelasticity are initiated during these first preconditioning loading cycles and may persist during the actual data collection. When these data are subsequently used for fitting of material properties, the viscoelastic phenomena that occurred during the initial cycles are not accounted for. The aim of the present study is to explore whether the above phenomena are significant for articular cartilage, by evaluating the effect of such time-dependent phenomena by means of computational modeling. Results show that under indentation, collagen viscoelasticity dominates the time-dependent behavior. Under UC, fluid-dependent effects are more important. Interestingly, viscoelastic and poroelastic effects may act in opposite directions and may cancel each other out in a stress-strain curve. Therefore, equilibrium may be apparent in a stress-strain relationship, even though internally the tissue is not in equilibrium. Also, the time-dependent effects of viscoelasticity and poroelasticity may reinforce each other, resulting in a sustained effect that lasts longer than suggested by their individual effects. Finally, the results illustrate that data collected from a mechanical test may depend on the preconditioning protocol. In conclusion, preconditioning influences the mechanical response of articular cartilage significantly and therefore cannot be neglected when determining the mechanical properties. To determine the full viscoelastic and poroelastic properties of articular cartilage requires fitting to both preconditioning and post-preconditioned loading cycles. PMID:23864393

  17. Controlled laser delivery into biological tissue via thin-film optical tunneling and refraction

    Science.gov (United States)

    Whiteside, Paul J. D.; Goldschmidt, Benjamin S.; Curry, Randy; Viator, John A.

    2015-02-01

    Due to the often extreme energies employed, contemporary methods of laser delivery utilized in clinical dermatology allow for a dangerous amount of high-intensity laser light to reflect off a multitude of surfaces, including the patient's own skin. Such techniques consistently represent a clear and present threat to both patients and practitioners alike. The intention of this work was therefore to develop a technique that mitigates this problem by coupling the light directly into the tissue via physical contact with an optical waveguide. In this manner, planar waveguides cladded in silver with thin-film active areas were used to illuminate agar tissue phantoms with nanosecond-pulsed laser light at 532nm. The light then either refracted or optically tunneled through the active area, photoacoustically generating ultrasonic waves within the phantom, whose peak-to-peak intensity directly correlated to the internal reflection angle of the beam. Consequently, angular spectra for energy delivery were recorded for sub-wavelength silver and titanium films of variable thickness. Optimal energy delivery was achieved for internal reflection angles ranging from 43 to 50 degrees, depending on the active area and thin film geometries, with titanium films consistently delivering more energy across the entire angular spectrum due to their relatively high refractive index. The technique demonstrated herein therefore not only represents a viable method of energy delivery for biological tissue while minimizing the possibility for stray light, but also demonstrates the possibility for utilizing thin films of high refractive index metals to redirect light out of an optical waveguide.

  18. Hydrodynamics and convection enhanced macromolecular fluid transport in soft biological tissues: Application to solid tumor.

    Science.gov (United States)

    Dey, Bibaswan; Sekhar, G P Raja

    2016-04-21

    This work addresses a theoretical framework for transvascular exchange and extravascular transport of solute macromolecules through soft interstitial space inside a solid tumor. Most of the soft biological tissues show materialistic properties similar to deformable porous material. They exhibit mechanical behavior towards the fluid motion since the solid phase of the tumor tissue gets compressed by the drag force that is associated with the extracellular fluid flow. This paper presents a general view about the transvascular and interstitial transport of solute nutrients inside a tumor in the macroscopic level. Modified Starling׳s equation is used to describe transvascular nutrient transport. On the macroscopic level, motion of extracellular fluid within the tumor interstitium is modeled with the help of biphasic mixture theory and a spherical symmetry solution is given as a simpler case. This present model describes the average interstitial fluid pressure (IFP), extracellular fluid velocity (EFV) and flow rate of extracellular fluid, as well as the deformation of the solid phase of the tumor tissue as an immediate cause of extracellular fluid flow. When the interstitial transport is diffusion dominated, an analytical treatment of advection-diffusion-reaction equation finds the overall nutrient distribution. We propose suitable criteria for the formation of necrosis within the tumor interstitium. This study introduces some parameters that represent the nutrient supply from tumor blood vessels into the tumor extracellular space. These transport parameters compete with the reversible nutrient metabolism of the tumor cells present in the interstitium. The present study also shows that the effectiveness factor corresponding to a first order nutrient metabolism may reach beyond unity if the strength of the distributive solute source assumes positive non-zero values. PMID:26851443

  19. Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach

    Directory of Open Access Journals (Sweden)

    Parida Shreemanta K

    2010-01-01

    Full Text Available Abstract Background For heterogeneous tissues, such as blood, measurements of gene expression are confounded by relative proportions of cell types involved. Conclusions have to rely on estimation of gene expression signals for homogeneous cell populations, e.g. by applying micro-dissection, fluorescence activated cell sorting, or in-silico deconfounding. We studied feasibility and validity of a non-negative matrix decomposition algorithm using experimental gene expression data for blood and sorted cells from the same donor samples. Our objective was to optimize the algorithm regarding detection of differentially expressed genes and to enable its use for classification in the difficult scenario of reversely regulated genes. This would be of importance for the identification of candidate biomarkers in heterogeneous tissues. Results Experimental data and simulation studies involving noise parameters estimated from these data revealed that for valid detection of differential gene expression, quantile normalization and use of non-log data are optimal. We demonstrate the feasibility of predicting proportions of constituting cell types from gene expression data of single samples, as a prerequisite for a deconfounding-based classification approach. Classification cross-validation errors with and without using deconfounding results are reported as well as sample-size dependencies. Implementation of the algorithm, simulation and analysis scripts are available. Conclusions The deconfounding algorithm without decorrelation using quantile normalization on non-log data is proposed for biomarkers that are difficult to detect, and for cases where confounding by varying proportions of cell types is the suspected reason. In this case, a deconfounding ranking approach can be used as a powerful alternative to, or complement of, other statistical learning approaches to define candidate biomarkers for molecular diagnosis and prediction in biomedicine, in

  20. Tissue distribution, excretion and blood distribution of [3H]-acetylshikonin in mice by sample oxidizer

    International Nuclear Information System (INIS)

    Objective: To study the tissue distribution, excretion and blood distribution of [3H]-acetylshikonin in mice by Sample Oxidizer pretreatment technology. Methods: After 0.5% carboxymethyl cellulose suspension containing [3H] - acetylshikonin was administered by gastric gavage at the dose of 120 mg/kg(2.96 x 107 Bq/kg), the tissue, feces, urine and blood samples of the mice were collected. The samples were pretreated by Sample Oxidizer. The radioactivity was determined by Liquid Scintillation Analyzer Tn-Card 29007R. Results: After oral administration of [3H]-acetylshikonin 120 mg/kg with 2.96 x 107 Bq/kg to mice, [3H]-acetylshikonin was mainly distributed in the stomach and intestine, secondarily in the gallbladder, liver, kidneys, lungs, and least in the brain and spinal cord. The cumulative radioactivity rate of the feces and urine was(68.5±3.3)% and (17.6±3.1)% within 271 h, respectively. The total excretion rate was (86.1±5.5)%. Besides, the exploratory study was carried out on acetylshikonin the existing form of in blood, allocation in plasma and blood cells, binding mode and binding rates of plasma proteins. Conclusions: Acetylshikonin has a relatively low absorption rate and wide distribution in mice, and is excreted completely more by fecal route than by urine. Acetylshikonin exits as a binding form in mouse blood. Allocation of acetylshikonin in mouse plasma and blood cells is nearly 4:1. Plasma protein binding rates of three levels (high, medium and low) are (94.7±O.44)%, (94.7±0.29)% and (95.4±0.13)%, respectively. The binding between acetylshikonin and human plasma protein is the coexistence of covalent bonding and hydrophobic interaction. (authors)

  1. A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue.

    Science.gov (United States)

    Bohndiek, Sarah E; Cook, Emily J; Arvanitis, Costas D; Olivo, Alessandro; Royle, Gary J; Clark, Andy T; Prydderch, Mark L; Turchetta, Renato; Speller, Robert D

    2008-02-01

    X-ray diffraction studies give material-specific information about biological tissue. Ideally, a large area, low noise, wide dynamic range digital x-ray detector is required for laboratory-based x-ray diffraction studies. The goal of this work is to introduce a novel imaging technology, the CMOS active pixel sensor (APS) that has the potential to fulfil all these requirements, and demonstrate its feasibility for coherent scatter imaging. A prototype CMOS APS has been included in an x-ray diffraction demonstration system. An industrial x-ray source with appropriate beam filtration is used to perform angle dispersive x-ray diffraction (ADXRD). Optimization of the experimental set-up is detailed including collimator options and detector operating parameters. Scatter signatures are measured for 11 different materials, covering three medical applications: breast cancer diagnosis, kidney stone identification and bone mineral density calculations. Scatter signatures are also recorded for three mixed samples of known composition. Results are verified using two independent models for predicting the APS scatter signature: (1) a linear systems model of the APS and (2) a linear superposition integral combining known monochromatic scatter signatures with the input polychromatic spectrum used in this case. Cross validation of experimental, modelled and literature results proves that APS are able to record biologically relevant scatter signatures. Coherent scatter signatures are sensitive to multiple materials present in a sample and provide a means to quantify composition. In the future, production of a bespoke APS imager for x-ray diffraction studies could enable simultaneous collection of the transmitted beam and scattered radiation in a laboratory-based coherent scatter system, making clinical transfer of the technique attainable. PMID:18199908

  2. Polybrominated diphenyl ethers in water, sediment, soil, and biological samples from different industrial areas in Zhejiang, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junxia; Lin, Zhenkun [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China); Lin, Kuangfei [School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237 (China); Wang, Chunyan [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China); Zhang, Wei [School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237 (China); Cui, Changyuan [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China); Lin, Junda [Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Dong, Qiaoxiang, E-mail: dqxdong@163.com [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We examined PBDE concentrations in various matrices from different industrial areas. Black-Right-Pointing-Pointer Elevated PBDE levels were found in areas with low-voltage electrical manufactures. Black-Right-Pointing-Pointer Areas with e-waste recycling activities also had higher PBDE concentrations. Black-Right-Pointing-Pointer PBDE content and composition in water samples varied from one area to another. Black-Right-Pointing-Pointer PBDE composition in sediment/soil and biological samples was predominated by BDE-209. - Abstract: Polybrominated diphenyl ethers (PBDEs) have been used extensively in electrical and electronic products, but little is known about their distribution in the environment surrounding the manufacturing factories. This study reports PBDE contamination in various matrices from the location (Liushi, Zhejiang province) that produces more than 70% of the low-voltage electrical appliances in China. Additionally, PBDE contamination was compared with other industries such as the e-waste recycling business (Fengjiang) in the same region. Specifically, we measured seven PBDE congeners (BDEs - 47, 99, 100, 153, 154, 183, and 209) in water, sediment, soil, plant, and animal tissues from four different areas in this region. The present study revealed elevated PBDE concentrations in all matrices collected from Liushi and Fengjiang in comparison with highly industrialized areas without significant PBDE contamination sources. In water samples, there were large variations of PBDE content and composition across different areas. In sediment/soil and biological samples, BDE-209 was the predominant congener and this could be due to the abundant usage of deca-BDE mixtures in China. Our findings provide the very first data on PBDE contamination in the local environments surrounding the electronics industry, and also reveal widespread PBDE contamination in highly industrialized coastal regions of China.

  3. A bench-top K X-ray fluorescence system for quantitative measurement of gold nanoparticles for biological sample diagnostics

    Science.gov (United States)

    Ricketts, K.; Guazzoni, C.; Castoldi, A.; Royle, G.

    2016-04-01

    Gold nanoparticles can be targeted to biomarkers to give functional information on a range of tumour characteristics. X-ray fluorescence (XRF) techniques offer potential quantitative measurement of the distribution of such heavy metal nanoparticles. Biologists are developing 3D tissue engineered cellular models on the centimetre scale to optimise targeting techniques of nanoparticles to a range of tumour characteristics. Here we present a high energy bench-top K-X-ray fluorescence system designed for sensitivity to bulk measurement of gold nanoparticle concentration for intended use in such thick biological samples. Previous work has demonstrated use of a L-XRF system in measuring gold concentrations but being a low energy technique it is restricted to thin samples or superficial tumours. The presented system comprised a high purity germanium detector and filtered tungsten X-ray source, capable of quantitative measurement of gold nanoparticle concentration of thicker samples. The developed system achieved a measured detection limit of between 0.2 and 0.6 mgAu/ml, meeting specifications of biologists and being approximately one order of magnitude better than the detection limit of alternative K-XRF nanoparticle detection techniques. The scatter-corrected K-XRF signal of gold was linear with GNP concentrations down to the detection limit, thus demonstrating potential in GNP concentration quantification. The K-XRF system demonstrated between 5 and 9 times less sensitivity than a previous L-XRF bench-top system, due to a fundamental limitation of lower photoelectric interaction probabilities at higher K-edge energies. Importantly, the K-XRF technique is however less affected by overlying thickness, and so offers future potential in interrogating thick biological samples.

  4. Speciation of trace elements in biological samples by nuclear analytical and related techniques coupled with chemical and biochemical separation

    International Nuclear Information System (INIS)

    indicated quite different distribution patterns between malignant and their adjacent normal liver -tissues by using online technique of HPLC-ICP-MS or offline detection of gel electrophoresis with SRXRF. The imbalances of trace elements related to oxidative stress, e.g. Se-dependent glutathione peroxidase and thioredoxin reductase, Cu Zn-superoxide dismutase, Fe-dependent catalase, were also discussed. In another cohort study, Se and Hg species in human serum, urine or hair samples can be elucidated by reverse phase HPLC-ICP-MS, providing new data for interaction between Se and Hg under Hg exposure. The coordination status of Hg can be further obtained by EXAFS study, In conclusion, the information of elemental speciation based on the application of INAA, HPLC-ICP-MS, XRF, and so on would help to understand their biological function, especially in the occurrence and development of certain diseases in vivo.

  5. Extraction of methylmercury from tissue and plant samples by acid leaching

    Energy Technology Data Exchange (ETDEWEB)

    Hintelmann, Holger; Nguyen, Hong T. [Trent University, Chemistry Department, Peterborough, ON (Canada)

    2005-01-01

    A simple and efficient extraction method based on acidic leaching has been developed for measurement of methylmercury (MeHg) in benthic organisms and plant material. Methylmercury was measured by speciated isotope-dilution mass spectrometry (SIDMS), using gas chromatography interfaced with inductively coupled plasma mass spectrometry (GC-ICP-MS). Reagent concentration and digestion temperature were optimized for several alkaline and acidic extractants. Recovery was evaluated by addition of MeHg enriched with CH{sub 3}{sup 201}Hg{sup +}. Certified reference materials (CRM) were used to evaluate the efficiency of the procedure. The final digestion method used 5 mL of 4 mol L{sup -1} HNO{sub 3} at 55 C to leach MeHg from tissue and plant material. The digest was further processed by aqueous phase ethylation, without interference with the ethylation step, resulting in 96{+-}7% recovery of CH{sub 3}{sup 201}Hg{sup +} from oyster tissue and 93{+-}7% from pine needles. Methylmercury was stable in this solution for at least 1 week and measured concentrations of MeHg in CRM were statistically not different from certified values. The method was applied to real samples of benthic invertebrates and inter-laboratory comparisons were conducted using lyophilized zooplankton, chironomidae, and notonectidae samples. (orig.)

  6. Extraction of methylmercury from tissue and plant samples by acid leaching.

    Science.gov (United States)

    Hintelmann, Holger; Nguyen, Hong T

    2005-01-01

    A simple and efficient extraction method based on acidic leaching has been developed for measurement of methylmercury (MeHg) in benthic organisms and plant material. Methylmercury was measured by speciated isotope-dilution mass spectrometry (SIDMS), using gas chromatography interfaced with inductively coupled plasma mass spectrometry (GC-ICP-MS). Reagent concentration and digestion temperature were optimized for several alkaline and acidic extractants. Recovery was evaluated by addition of MeHg enriched with CH3 201Hg+. Certified reference materials (CRM) were used to evaluate the efficiency of the procedure. The final digestion method used 5 mL of 4 mol L(-1) HNO3 at 55 degrees C to leach MeHg from tissue and plant material. The digest was further processed by aqueous phase ethylation, without interference with the ethylation step, resulting in 96 +/- 7% recovery of CH3 201Hg+ from oyster tissue and 93+/-7% from pine needles. Methylmercury was stable in this solution for at least 1 week and measured concentrations of MeHg in CRM were statistically not different from certified values. The method was applied to real samples of benthic invertebrates and inter-laboratory comparisons were conducted using lyophilized zooplankton, chironomidae, and notonectidae samples. PMID:15662514

  7. Paralytic shellfish poisoning: post-mortem analysis of tissue and body fluid samples from human victims in the Patagonia fjords.

    Science.gov (United States)

    García, Carlos; del Carmen Bravo, María; Lagos, Marcelo; Lagos, Néstor

    2004-02-01

    In July 5, 2002 fishermen working in harvesting sea urchin (Loxechinus albus) in the Patagonia Chilean fjords were intoxicated by consumption of filter-feeder bivalve Aulacomya ater. After the ingestion of 7-9 ribbed mussel, two fishermen died 3-4 h after shellfish consumption. The forensic examination in both victims did not show pathological abnormalities with the exception of the lungs conditions, crackling to the touch, pulmonary congestion and edema. The toxic mussel sample showed a toxicity measured by mouse bioassay of 8575 microg of STX (saxitoxin) equivalent by 100 g of shellfish meat. Using post-column derivatization HPLC method with fluorescent on line detection was possible to measure mass amount of each paralytic shellfish poisoning (PSP) toxin yielding individual toxin concentrations. These PSP toxins were identified in the gastric content, body fluids (urine, bile and cerebrospinal fluid) and tissue samples (liver, kidney, lung, stomach, spleen, heart, brain, adrenal glands, pancreas and thyroids glands). The toxin profiles of each body fluid and tissue samples and the amount of each PSP toxin detected are reported. The PSP toxins found in the gastric content, were STX and the gonyautoxins (GTX4, GTX1, GTX5, GTX3 and GTX2) which showed to be the major amount of PSP toxins found in the victims biological samples. The PSP toxin composition in urine and bile showed as major PSP toxins neoSaxitoxin (neoSTX) and GTX4/GTX1 epimers, both STX analogues with an hydroxyl group (-OH) in the N(1) of the tetrahydropurine nucleus. The neoSTX was not present in the gastric content sample, indicating that the oxidation of N(1) in the STX tetrahydropurine nucleus resulted neoSTX, in a similar way that GTX3/GTX2 epimers were transformed in GTX4/GTX1 epimers. Beside this metabolic transformation, also the hydrolysis of carbamoyl group from STX to form its decarbomoyl analogue decarbamoylsaxitoxin was detected in liver, kidney and lung. These two findings show that PSP

  8. Reliability of non-invasive tissue sampling methods for DNA extraction in rabbits (Oryctolagus cuniculus

    Directory of Open Access Journals (Sweden)

    Manel Ben Larbi

    2012-05-01

    Full Text Available Deoxyribonucleic acid (DNA can be extracted from different tissue sources. The most common is blood, but in some situations it can be easier to take a biopsy. In some cases when it is difficult to capture animals, especially in wild populations, faeces and hairs can be considered as a source of DNA. This paper presents a pilot study conducted to compare the applicability of invasive and non-invasive sampling methods for extracting DNA for use in genetic studies of rabbits (Oryctolagus cuniculus. The study included 24 rabbits from the INRA 1001 strain.  Blood, hair, ear biopsies and faeces were collected and used as DNA sources. Our aim was to verify the quantity of DNA obtained from different tissues using two or three types of extraction. DNA was obtained for all tissue types and all extraction methods. DNA extraction was shown to be optimal with the LGC (Laboratory of Cellular Genetics blood extraction method. With regard to non-invasive methods, DNA extraction for hair using the LGC protocol and QIAamp® DNA mini kit gave very low quantities of DNA that could not be used for PCR reactions. The Chelex extraction protocol gave good results for PCR but could not be quantified. DNA extracted from faeces is a viable source of DNA for determining individual genotypes. The use of such non-invasive samples as a source of genetic material is a recent and very promising technique, especially for the study of endangered species, but these techniques are still too unreliable and costly to altogether replace invasive techniques when the latter are possible.

  9. Magnetic Thermal Ablation Using Ferrofluids: Influence of Administration Mode on Biological Effect in Different Porcine Tissues

    International Nuclear Information System (INIS)

    The purpose of this study was to compare the effects of magnetic thermal ablation in different porcine tissues using either a singular injection or a continuous infusion of superparamagnetic iron oxide nanoparticles. In the first setting samples of three ferrofluids containing different amounts of iron (1:171, 2:192, and 3:214 mg/ml) were singularly interstitially injected into specimens of porcine liver, kidney, and muscle (n = 5). Then the specimens were exposed to an alternating magnetic field (2.86 kA/m, 190 kHz) generated by a circular coil for 5 min. In the second experimental setup ferrofluid samples were continuously interstitially infused into the tissue specimens during the exposure to the magnetic field. To measure the temperature increase two fiber-optic temperature probes with a fixed distance of 0.5 cm were inserted into the specimens along the puncture tract of the injection needle and the temperature was measured every 15 s. Finally, the specimens were dissected, the diameters of the created thermal lesions were measured, and the volumes were calculated and compared. Compared to continuous infusion, a single injection of ferrofluids resulted in smaller coagulation volumes in all tissues. Significant differences regarding coagulation volume were found in kidney and muscle specimens. The continuous infusion technique led to more elliptically shaped coagulation volumes due to larger diameters along the puncture tract. Our data show the feasibility of magnetic thermal ablation using either a single interstitial injection or continuous infusion for therapy of lesions in muscle, kidney, and liver. Continuous infusion of ferrofluids results in larger zones of necrosis compared to a single injection technique.

  10. Electroanalytical Determination of Danofloxacin in Biological Samples Using Square Wave Voltammetry

    Directory of Open Access Journals (Sweden)

    Chirley Vanessa Boone

    2014-10-01

    Full Text Available The voltammetric behavior of danofloxacin (DFX has been studied, in aqueous solution, on a glassy carbon electrode using square wave voltammetry (SWV as electroanalytical technique. After optimization of the experimental conditions, DFX was analyzed in spiked biologic samples using a Britton-Robinson buffer with pH = 5.0 as the supporting electrolyte. Oxidation occurs at 0.98 V vs. Ag/AgCl in a two-electron process controlled by adsorption of the electrogenerated products on the electrode surface. A acceptable recovery was obtained for assay of spiked biologic samples, with value of 98.7% for the swine urine and 95.3 % for the bovine urine.

  11. Estimate of beta and gamma contamination in vegetable and animal biologic samples using GM detectors

    International Nuclear Information System (INIS)

    The paper presents the use of a large area Geiger-Mueller Detector (GMD) with aluminium window of 50 mm thickness (3,4 mg/cm2) in a measuring chain in order to estimate the beta and gamma contamination of biologic samples. The technical data for GMD are: - window area for gamma radiation: 300 cm2; - grid transmission: 80%; - operating voltage: 1100 - 1300 V; - minimum detectable beta energy: 125 keV; - dead time: 250 ms; - background (shielded with 100 mm Pb + 1 mm Cu): 6 pulses/s; - service life: 5 x 108 counts. Using this GMD together with a set of large area beta standard sources and a set of point gamma sources we could estimate beta and gamma contamination in the energy range 125 keV - 2.5 MeV for biologic samples. (authors)

  12. Correction of radiation absorption on biological samples using Rayleigh to Compton scattering ratio

    Science.gov (United States)

    Pereira, Marcelo O.; Conti, Claudio de Carvalho; dos Anjos, Marcelino J.; Lopes, Ricardo T.

    2012-06-01

    The aim of this work was to develop a method to correct the absorbed radiation (the mass attenuation coefficient curve) in low energy (E gamma-ray source of 241Am (59.54 keV) also applied to certified biological samples of milk powder, hay powder and bovine liver (NIST 1557B). In addition, six methods of effective atomic number determination were used as described in literature to determinate the Rayleigh to Compton scattering ratio (R/C), in order to calculate the mass attenuation coefficient. The results obtained by the proposed method were compared with those obtained using the transmission method. The experimental results were in good agreement with transmission values suggesting that the method to correct radiation absorption presented in this paper is adequate for biological samples.

  13. Radioisotope Sample Measurement Techniques in Medicine and Biology. Proceedings of the Symposium on Radioisotope Sample Measurement Techniques

    International Nuclear Information System (INIS)

    The medical and biological applications of radioisotopes depend on two basically different types of measurements, those on living subjects in vivo and those on samples in vitro. The International Atomic Energy Agency has in the past held several meetings on in vivo measurement techniques, notably whole-body counting and radioisotope scanning. The present volume contains the Proceedings of the first Symposium the Agency has organized to discuss the various aspects of techniques for sample measurement in vitro. The range of these sample measurement techniques is very wide. The sample may weigh a few milligrams or several hundred grams, and may be in the gaseous, liquid or solid state. Its radioactive content may consist of a single, known radioisotope or several unknown ones. The concentration of radioactivity may be low, medium or high. The measurements may be made manually or automatically and any one of the many radiation detectors now available may be used. The 53 papers presented at the Symposium illustrate the great variety of methods now in use for radioactive- sample measurements. The first topic discussed is gamma-ray spectrometry, which finds an increasing number of applications in sample measurements. Other sections of the Proceedings deal with: the use of computers in gamma-ray spectrometry and multiple tracer techniques; recent developments in activation analysis where both gamma-ray spectrometry and computing techniques are applied; thin-layer and paper radio chromatographic techniques for use with low energy beta-ray emitters; various aspects of liquid scintillation counting techniques in the measurement of alpha- and beta-ray emitters, including chemical and colour quenching; autoradiographic techniques; calibration of equipment; and standardization of radioisotopes. Finally, some applications of solid-state detectors are presented; this section may be regarded as a preview of important future developments. The meeting was attended by 203 participants

  14. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    Science.gov (United States)

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-08-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications. PMID:26611112

  15. Specific determination of clinical and toxicological important substances in biological samples by LC-MS

    International Nuclear Information System (INIS)

    This thesis of this dissertation is the specific determination of clinical and toxicological important substances in biological samples by LC-MS. Nicotine was determined in serum after application of nicotine plaster and nicotine nasal spray with HPLC-ESI-MS. Cotinine was determined direct in urine with HPLC-ESI-MS. Short time anesthetics were determined in blood and cytostatics were determined in liquor with HPLC-ESI-MS. (botek)

  16. Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics

    OpenAIRE

    Shaked, Natan T.; Zhu, Yizheng; Badie, Nima; Bursac, Nenad; Wax, Adam

    2010-01-01

    We introduce a new interferometric setup for single-exposure wide-field holographic phase imaging of highly dynamic biological samples. In this setup, the interferometric signal originates from a specially designed reflective interferometric chamber (InCh), creating an off-axis interferogram on the output plane of the system. The setup only requires the InCh and a simple reflection-mode two lens imaging system, without the need for additional optical elements such as gratings in the beam path...

  17. Liquid Microjunction Surface Sampling Probe Electrospray Mass Spectrometry for Detection of Drugs and Metabolites in Thin Tissue Sections

    Energy Technology Data Exchange (ETDEWEB)

    Van Berkel, Gary J [ORNL; Kertesz, Vilmos [ORNL; Koeplinger, Kenneth A. [Merck Research Laboratories; Vavek, Marissa [Merck Research Laboratories; Kong, Ah-Ng Tony [Rutgers University

    2008-01-01

    A self-aspirating, liquid micro-junction surface sampling probe/electrospray emitter mass spectrometry system was demonstrated for use in the direct analysis of spotted and dosed drugs and their metabolites in thin tissue sections. Proof-of-principle sampling and analysis directly from tissue without the need for sample preparation was demonstrated first by raster scanning a region on a section of rat liver onto which reserpine was spotted. The mass spectral signal from selected reaction monitoring was used to develop a chemical image of the spotted drug on the tissue. The probe was also used to selectively spot sample areas of sagittal whole mouse body tissue sections that had been dosed orally (90 mg/kg) with R,S-sulforaphane 3 hrs prior to sacrifice. Sulforaphane and its glutathione and N-acetyl cysteine conjugates were monitored with selected reaction monitoring and detected in the stomach and various other tissues from the dosed mouse. No signal for these species was observed in the tissue from a control mouse. The same dosed tissue section was used to illustrate the possibility of obtaining a line scan across the whole body section. In total these results illustrate the potential for rapid screening of the distribution of drugs and metabolites in tissue sections with the micro-liquid junction surface sampling probe/electrospray mass spectrometry approach.

  18. Determination of chromium, cobalt and nickel in tissue samples by radiochemical activation analysis

    International Nuclear Information System (INIS)

    A radiochemical neutron activation analysis method for the determination of chromium, cobalt and nickel in tissue samples. A radiochemical neutron activation analysis method for the determination of chromium, cobalt and nickel has been developed. The destruction device used consisted of a combined wet-ashing-distillation and ion-exchange system. Six samples could be treated at the same time. The samples were wet-ashed with H*L2SO*L4-H*L2O*L2 mixture. Volatile elements were distilled as bromide compounds with HBr*H-. The distillation residue in 8M HCl was passed through hydrated antimony pentoxide (HAP) in order to remove disturbing *H2*H4Na-activity and through a Dowex 2 x 8 column so as to retain *H6*H0Co (formed from *H5*H8Ni). Chromium was elutriated from the column and precipitated as Cr(OH)*L3 for the removal of disturbing *H3*H2P-activity. The standards and samples were treated in a similar manner each so that the yield determination is not necessarily needed. The yields by tracer experiments were (43 +- 5) % for Cr, (93 +- 4) % for Co and (88 +- 14) % for Ni. The precision and accuracy of the method were studied by using reference materials of the National Bureau of Standards (NBS) and the International Atomic Energy Agency (IAEA)

  19. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    Energy Technology Data Exchange (ETDEWEB)

    Gallyamov, Marat O., E-mail: glm@spm.phys.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Chaschin, Ivan S. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Khokhlova, Marina A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Grigorev, Timofey E. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E. [Bakulev Scientific Center for Cardiovascular Surgery of the Russian Academy of Medical Sciences, Roublyevskoe Sh. 135, Moscow 121552 (Russian Federation); Badun, Gennadii A.; Chernysheva, Maria G. [Radiochemistry Division, Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Khokhlov, Alexei R. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation)

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H{sub 2}O and CO{sub 2}. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA

  20. Comparison of Metabolic Network between Muscle and Intramuscular Adipose Tissues in Hanwoo Beef Cattle Using a Systems Biology Approach

    OpenAIRE

    Hyun-Jeong Lee; Hye-Sun Park; Woonsu Kim; Duhak Yoon; Seongwon Seo

    2014-01-01

    The interrelationship between muscle and adipose tissues plays a major role in determining the quality of carcass traits. The objective of this study was to compare metabolic differences between muscle and intramuscular adipose (IMA) tissues in the longissimus dorsi (LD) of Hanwoo (Bos taurus coreanae) using the RNA-seq technology and a systems biology approach. The LD sections between the 6th and 7th ribs were removed from nine (each of three cows, steers, and bulls) Hanwoo beef cattle (carc...

  1. Determination of the sampling factor in biological standards using INAA and PIXE analysis

    International Nuclear Information System (INIS)

    Variations in the distribution of elemental concentrations in most biological materials suggest that a subsample, taken from a specimen containing the elements of interest, may not be representative of the specimen due to lack of homogeneity. It is therefore important when using a trace-element analysis technique, to know the representative mass, defined by a sampling factor for a given relative subsampling error, for whichever material is analysed and for each element detected. We have used two complementary techniques, instrumental neutron activation analysis (INAA) using short-lived radionuclides and proton-induced X-ray emission (PIXE) analysis to determine the concentration of 17 elements and obtain their sampling factors in a number of biological standards. In the case of PIXE a 2 MeV, 0.5 mm diameter proton beam was used and the sampling factor was expressed in terms of the number of spots on the target material required for a representative sample mass to be analysed. Six elements, Cl, Ca, Cu, K, Mn and Br, were detected by both techniques and results show that the values of the sampling factors are technique-dependent. (orig.)

  2. Correction of radiation absorption on biological samples using Rayleigh to Compton scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Marcelo O., E-mail: marcelocefetrj@gmail.com [Nuclear Instrumentation Laboratory, PEN/COPPE/UFRJ, Rio de Janeiro (Brazil); Basic Disciplines Department, CEFET-RJ Uned Nova Iguacu, Rio de Janeiro (Brazil); Conti, Claudio de Carvalho [Radiation Protection and Dosimetry Institute, CNEN/IRD, Rio de Janeiro (Brazil); Anjos, Marcelino J. dos [Nuclear Instrumentation Laboratory, PEN/COPPE/UFRJ, Rio de Janeiro (Brazil); Physics Institute, State University of Rio de Janeiro, Rio de Janeiro (Brazil); Lopes, Ricardo T. [Nuclear Instrumentation Laboratory, PEN/COPPE/UFRJ, Rio de Janeiro (Brazil)

    2012-06-01

    The aim of this work was to develop a method to correct the absorbed radiation (the mass attenuation coefficient curve) in low energy (E < 30 keV) applied to a biological matrix based on the Rayleigh to Compton scattering ratio and the effective atomic number. For calibration, scattering measurements were performed on standard samples of radiation produced by a gamma-ray source of {sup 241}Am (59.54 keV) also applied to certified biological samples of milk powder, hay powder and bovine liver (NIST 1557B). In addition, six methods of effective atomic number determination were used as described in literature to determinate the Rayleigh to Compton scattering ratio (R/C), in order to calculate the mass attenuation coefficient. The results obtained by the proposed method were compared with those obtained using the transmission method. The experimental results were in good agreement with transmission values suggesting that the method to correct radiation absorption presented in this paper is adequate for biological samples.

  3. Biological samples positioning device for irradiations on a radial channel at the nuclear research reactor

    International Nuclear Information System (INIS)

    For the demand of an experimental device for biological samples positioning system for irradiations on a radial channel at the nuclear research reactor in operation was constructed and started up a device for the place and remove of the biological samples from the irradiation channels without interrupting the operation of the reactor. The economical valuations are effected comparing with another type of device with the same functions. This work formed part of an international project between Cuba and Brazil that undertook the study of the induced damages by various types of ionizing radiation in DNA molecules. Was experimentally tested the proposed solution, which demonstrates the practical validity of the device. As a result of the work, the experimental device for biological samples irradiations are installed and operating in the radial beam hole No3(BH3) for more than five years at the IEA-R1 Brazilian research reactor according to the solicited requirements the device. The designed device increases considerably the type of studies can be conducted in this reactor. Its practical application in research taking place in that facility, in the field of radiobiology and dosimetry, and so on is immediate

  4. Sampling designs matching species biology produce accurate and affordable abundance indices

    Directory of Open Access Journals (Sweden)

    Grant Harris

    2013-12-01

    Full Text Available Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling, it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS data from 42 Alaskan brown bears (Ursus arctos. Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion, and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture

  5. Sampling designs matching species biology produce accurate and affordable abundance indices

    Science.gov (United States)

    Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which

  6. Functional analysis of biological matter across dimensions by atomic force microscopy (AFM): from tissues to molecules and, ultimately, atoms

    OpenAIRE

    Stolz, Martin

    2004-01-01

    For a detailed understanding of biological tissues and proteins and their dynamical processes the 3D structures of the components involved must be known. Most of the structural data have been obtained through the combination of three major techniques: X-ray crystallography, NMR and TEM. These three methods enable the determination of the structure of biological macromolecules at near atomic resolution and each of those was developed over many years to perfection. Nevertheless each one has its...

  7. Sampling and Analysis Instruction for the Demolition of the Masonry Block for the 108-F Biological Laboratory

    International Nuclear Information System (INIS)

    This sampling and analysis instruction (SAI) has been prepared to clearly define the sampling and analysis activities to be performed in support of the demolition and disposition (or disposal) of the 108-F Biological Laboratory masonry block walls

  8. Preconcentration and determination of heavy metals in water, sediment and biological samples

    Directory of Open Access Journals (Sweden)

    Shirkhanloo Hamid

    2011-01-01

    Full Text Available In this study, a simple, sensitive and accurate column preconcentration method was developed for the determination of Cd, Cu and Pb ions in river water, urine and sediment samples by flame atomic absorption spectrometry. The procedure is based on the retention of the analytes on a mixed cellulose ester membrane (MCEM column from buffered sample solutions and then their elution from the column with nitric acid. Several parameters, such as pH of the sample solution, volume of the sample and eluent and flow rates of the sample were evaluated. The effects of diverse ions on the preconcentration were also investigated. The recoveries were >95 %. The developed method was applied to the determination of trace metal ions in river water, urine and sediment samples, with satisfactory results. The 3δ detection limits for Cu, Pb and Cd were found to be 2, 3 and 0.2 μg dm−3, respectively. The presented procedure was successfully applied for determination of the copper, lead and cadmium contents in real samples, i.e., river water and biological samples.

  9. Multimodal Raman-fluorescence spectroscopy of formalin fixed samples is able to discriminate brain tumors from dysplastic tissue

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Buccoliero, Anna Maria; Pavone, Francesco Saverio

    2014-05-01

    In the recent years, there has been a considerable surge in the application of spectroscopy for disease diagnosis. Raman and fluorescence spectra provide characteristic spectral profile related to biochemical and morphological changes when tissues progress from normal state towards malignancy. Spectroscopic techniques offer the advantage of being minimally invasive compared to traditional histopathology, real time and quantitative. In biomedical optical diagnostics, freshly excised specimens are preferred for making ex-vivo spectroscopic measurements. With regard to fresh tissues, if the lab is located far away from the clinic it could pose a problem as spectral measurements have to be performed immediately after dissection. Tissue samples are usually placed in a fixative agent such as 4% formaldehyde to preserve the samples before processing them for routine histopathological studies. Fixation prevents the tissues from decomposition by arresting autolysis. In the present study, we intend to investigate the possibility of using formalin fixed samples for discrimination of brain tumours from dysplastic tissue using Raman and fluorescence spectroscopy. Formalin fixed samples were washed with phosphate buffered saline for about 5 minutes in order to remove the effects of formalin during spectroscopic measurements. In case of fluorescence spectroscopy, changes in spectral profile have been observed in the region between 550-670 nm between dysplastic and tumor samples. For Raman measurements, we found significant differences in the spectral profiles between dysplasia and tumor. In conclusion, formalin fixed samples can be potentially used for the spectroscopic discrimination of tumor against dysplastic tissue in brain samples.

  10. Detection and Toxin Typing of Clostridium perfringens in Formalin-Fixed, Paraffin-Embedded Tissue Samples by PCR▿

    OpenAIRE

    Wu, Josephine; Zhang, Wandi; Xie, Boxun; Wu, Maoxin; Tong, Xiaodi; Kalpoe, Jayant; Zhang, David

    2008-01-01

    Since current microbiology methods are not suitable to detect Clostridium perfringens in formalin-fixed, paraffin-embedded tissue samples, we developed a PCR assay to detect toxin-encoding genes and the 16S rRNA gene of C. perfringens. We successfully detected and genotyped C. perfringens in tissue sections from two autopsy cases.

  11. Ambient Molecular Analysis of Biological Tissue Using Low-Energy, Femtosecond Laser Vaporization and Nanospray Postionization Mass Spectrometry

    Science.gov (United States)

    Shi, Fengjian; Flanigan, Paul M.; Archer, Jieutonne J.; Levis, Robert J.

    2016-03-01

    Direct analysis of plant and animal tissue samples by laser electrospray mass spectrometry (LEMS) was investigated using low-energy, femtosecond duration laser vaporization at wavelengths of 800 and 1042 nm followed by nanospray postionization. Low-energy (optimal cutting temperature compounds that are commonly used in animal tissue cryosections.

  12. A Monte-Carlo maplet for the study of the optical properties of biological tissues

    Science.gov (United States)

    Yip, Man Ho; Carvalho, M. J.

    2007-12-01

    Monte-Carlo simulations are commonly used to study complex physical processes in various fields of physics. In this paper we present a Maple program intended for Monte-Carlo simulations of photon transport in biological tissues. The program has been designed so that the input data and output display can be handled by a maplet (an easy and user-friendly graphical interface), named the MonteCarloMaplet. A thorough explanation of the programming steps and how to use the maplet is given. Results obtained with the Maple program are compared with corresponding results available in the literature. Program summaryProgram title:MonteCarloMaplet Catalogue identifier:ADZU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:3251 No. of bytes in distributed program, including test data, etc.:296 465 Distribution format: tar.gz Programming language:Maple 10 Computer: Acer Aspire 5610 (any running Maple 10) Operating system: Windows XP professional (any running Maple 10) Classification: 3.1, 5 Nature of problem: Simulate the transport of radiation in biological tissues. Solution method: The Maple program follows the steps of the C program of L. Wang et al. [L. Wang, S.L. Jacques, L. Zheng, Computer Methods and Programs in Biomedicine 47 (1995) 131-146]; The Maple library routine for random number generation is used [Maple 10 User Manual c Maplesoft, a division of Waterloo Maple Inc., 2005]. Restrictions: Running time increases rapidly with the number of photons used in the simulation. Unusual features: A maplet (graphical user interface) has been programmed for data input and output. Note that the Monte-Carlo simulation was programmed with Maple 10. If attempting to run the simulation with an earlier version of Maple

  13. New vibro-acoustic paradigms in biological tissues with application to diagnosis of pulmonary disorders

    Science.gov (United States)

    Zhang, Xiangling

    The fundamental objective of the present study is to improve our understanding of audible sound propagation in the pulmonary system and torso. A related applied objective is to assess the feasibility of using audible acoustics for diagnosis of specific pulmonary conditions, such as pneumothorax (PTX). To accomplish these objectives, this study includes theoretical, computational and experimental developments aimed at: (1) better identifying the mechanical dynamic properties of soft biological tissues found in the torso region, (2) investigating the mechanisms of sound attenuation that occur when a PTX is present using greatly simplified theoretical and computational models, and (3) exploring the feasibility and utility of more comprehensive and precise computational finite element models of audible sound propagation in the pulmonary system and torso that would aid in related diagnostic developments. Mechanical material properties of soft biological tissue are studied for the low audible frequency range. The sensitivity to shear viscoelastic material constants of theoretical solutions for radiation impedance and surface wave motion are compared. Theoretical solutions are also compared to experimental measurements and numerical results from finite element analysis. It is found that, while prior theoretical solutions for radiation impedance are accurate, use of such measurements to estimate shear viscoelastic constants is not as precise as the use of surface wave measurements. The feasibility of using audible sound for diagnosis of pneumothorax is studied. Simplified one- and two-dimensional theoretical and numerical models of sound transmission through the pulmonary system and chest region to the chest wall surface are developed to more clearly understand the mechanism of energy loss when a pneumothorax is present, relative to a baseline case. A canine study on which these models are based predicts significant decreases in acoustic transmission strength when a

  14. Biological rhythms, metabolic syndrome and current depressive episode in a community sample.

    Science.gov (United States)

    Moreira, Fernanda Pedrotti; Jansen, Karen; Mondin, Thaíse Campos; Cardoso, Taiane de Azevedo; Magalhães, Pedro Vieira da Silva; Kapczinski, Flavio; Frey, Benicio N; Oses, Jean Pierre; Souza, Luciano Dias de Mattos; da Silva, Ricardo Azevedo; Wiener, Carolina David

    2016-10-01

    The purpose of this study was to assess the disruption in biological rhythms and metabolic syndrome (MetS) in individuals with depressive episode. This was a cross-sectional, population-based study with a representative sample of 905 young adults. Current depressive episode were confirmed by a psychologist using the Mini International Neuropsychiatric Interview (MINI)-Plus. Self-reported biological rhythms were assessed using the Biological Rhythms Interview of Assessment in Neuropsychiatry (BRIAN). MetS was defined using modified NCEP/ATPIII criteria. Significant main effects of current depressive episode (p<0.001, η(2)=0.163) and MetS (p=0.001, η(2)=0.011) were observed on total BRIAN score. There was a significant interaction between depression and MetS in total biological rhythm scores (p=0.002, η(2)=0.011) as well as sleep (p=0.001, η(2)=0.016) and social domains (p<0.001, η(2)=0.014). In the depressive group, subjects with MetS had a higher disruption in total BRIAN scores (p=0.010), sleep domain (p=0.004), social domain (p=0.005) and in the eating pattern domain approached the level of significance (p=0.098), when compared to subjects with no MetS. The results of the present study showed that self-reported disruptions in biological rhythms are associated with key components of the MetS in community adults with MDD. The understanding of the complex interactions between biological rhythms, MetS and depression are important in the development of preventive and therapeutic strategies. PMID:27343724

  15. Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy.

    Science.gov (United States)

    Park, Jungwon; Park, Hyesung; Ercius, Peter; Pegoraro, Adrian F; Xu, Chen; Kim, Jin Woong; Han, Sang Hoon; Weitz, David A

    2015-07-01

    Recent development of liquid phase transmission electron microscopy (TEM) enables the study of specimens in wet ambient conditions within a liquid cell; however, direct structural observation of biological samples in their native solution using TEM is challenging since low-mass biomaterials embedded in a thick liquid layer of the host cell demonstrate low contrast. Furthermore, the integrity of delicate wet samples is easily compromised during typical sample preparation and TEM imaging. To overcome these limitations, we introduce a graphene liquid cell (GLC) using multilayer graphene sheets to reliably encapsulate and preserve biological samples in a liquid for TEM observation. We achieve nanometer scale spatial resolution with high contrast using low-dose TEM at room temperature, and we use the GLC to directly observe the structure of influenza viruses in their native buffer solution at room temperature. The GLC is further extended to investigate whole cells in wet conditions using TEM. We also demonstrate the potential of the GLC for correlative studies by TEM and fluorescence light microscopy imaging. PMID:26065925

  16. Offer of rapid testing and alternative biological samples as practical tools to implement HIV screening programs.

    Science.gov (United States)

    Parisi, Maria Rita; Soldini, Laura; Di Perri, Giovanni; Tiberi, Simon; Lazzarin, Adriano; Lillo, Flavia B

    2009-10-01

    Implementation of HIV testing has the objective to increase screening, identify and counsel persons with infection, link them to clinical services and reduce transmission. Rapid tests and/or alternative biological samples (like oral fluid) give the option for a better general consent in approaching screening, immediate referral of HIV positives to medical treatment and partner notification. We tested the performance characteristics of an oral fluid-based rapid HIV test (Rapidtest HIV lateral flow-Healthchem diag. LLC) in comparison with routinely utilized methods in a selected population of known positive (N = 121) or negative (N = 754) subjects. The sensitivity of the rapid test was 99.1% (one false negative sample) and the specificity 98.8%. Five negatives showed a faint reactivity, 3 of these were reactive also in the reference test, one with a p24 only reaction in Western blot. If these 3 samples were excluded from the analysis the specificity increases to 99.2%. Results from our study confirm that, although a continuous improvement of the test performance is still needed to minimize false negative and positive results, rapid test and alternative biological samples may contribute to HIV prevention strategies by reaching a larger population particularly when and where regular screening procedures are difficult to obtain. PMID:20128446

  17. Effects of MRTI sampling characteristics on estimation of HIFU SAR and tissue thermal diffusivity

    International Nuclear Information System (INIS)

    While the non-invasive and three-dimensional nature of magnetic-resonance temperature imaging (MRTI) makes it a valuable tool for high-intensity focused ultrasound (HIFU) treatments, random and systematic errors in MRTI measurements may propagate into temperature-based parameter estimates used for pretreatment planning. This study assesses the MRTI effects of zero-mean Gaussian noise (SD = 0.0–2.0 °C), temporal sampling (tacq = 1.0–8.0 s), and spatial averaging (Res = 0.5–2.0 mm isotropic) on HIFU temperature measurements and temperature-based estimates of the amplitude and full width half maximum (FWHM) of the HIFU specific absorption rate and of tissue thermal diffusivity. The ultrasound beam used in simulations and ex vivo pork loin experiments has lateral and axial FWHM dimensions of 1.4 mm and 7.9 mm respectively. For spatial averaging simulations, beams with lateral FWHM varying from 1.2–2.2 mm are also assessed. Under noisy conditions, parameter estimates are improved by fitting to data from larger voxel regions. Varying the temporal sampling results in minimal changes in measured temperatures (3 or smaller is required to keep errors in temperature and all estimated parameters less than 10%. By quantifying the errors associated with these sampling characteristics, this work provides researchers with appropriate MRTI conditions for obtaining estimates of parameters essential to pretreatment modeling of HIFU thermal therapies. (paper)

  18. Effects of MRTI sampling characteristics on estimation of HIFU SAR and tissue thermal diffusivity

    Science.gov (United States)

    Dillon, C. R.; Todd, N.; Payne, A.; Parker, D. L.; Christensen, D. A.; Roemer, R. B.

    2013-10-01

    While the non-invasive and three-dimensional nature of magnetic-resonance temperature imaging (MRTI) makes it a valuable tool for high-intensity focused ultrasound (HIFU) treatments, random and systematic errors in MRTI measurements may propagate into temperature-based parameter estimates used for pretreatment planning. This study assesses the MRTI effects of zero-mean Gaussian noise (SD = 0.0-2.0 °C), temporal sampling (tacq = 1.0-8.0 s), and spatial averaging (Res = 0.5-2.0 mm isotropic) on HIFU temperature measurements and temperature-based estimates of the amplitude and full width half maximum (FWHM) of the HIFU specific absorption rate and of tissue thermal diffusivity. The ultrasound beam used in simulations and ex vivo pork loin experiments has lateral and axial FWHM dimensions of 1.4 mm and 7.9 mm respectively. For spatial averaging simulations, beams with lateral FWHM varying from 1.2-2.2 mm are also assessed. Under noisy conditions, parameter estimates are improved by fitting to data from larger voxel regions. Varying the temporal sampling results in minimal changes in measured temperatures (HIFU beams studied, a spatial resolution of 1 × 1 × 3 mm3 or smaller is required to keep errors in temperature and all estimated parameters less than 10%. By quantifying the errors associated with these sampling characteristics, this work provides researchers with appropriate MRTI conditions for obtaining estimates of parameters essential to pretreatment modeling of HIFU thermal therapies.

  19. Determination of antisense phosphorothioate oligonucleotides and catabolites in biological fluids and tissue extracts using anion-exchange high-performance liquid chromatography and capillary gel electrophoresis.

    Science.gov (United States)

    Chen, S H; Qian, M; Brennan, J M; Gallo, J M

    1997-04-25

    Chemically modified phosphorothioate oligodeoxynucleotides (ODNs) have become critical tools for research in the fields of gene expression and experimental therapeutics. Bioanalytical assays were developed that utilized fast anion-exchange high-performance liquid chromatography (HPLC) and capillary gel electrophoresis (CGE) for the determination of 20-mer ODNs in biological fluids (plasma and urine) and tissues. A 20 mer ODN in the antisense orientation directed against DNA methyltransferase (denoted as MT-AS) was studied as the model ODN. The anion-exchange HPLC method employed a short column packed with non-porous polymer support and a ternary gradient elution with 2 M lithium bromide containing 30% formamide. Analysis of the MT-AS is accomplished within 5 min with a detection limit of approximately 3 ng on-column at 267 nm. For plasma and urine, samples were diluted with Nonidet P-40 in 0.9% NaCl and directly injected onto the column, resulting in 100% recovery. For tissue homogenates, a protein kinase K digestion and phenol-chloroform extraction were used, with an average recovery of about 50%. Since the HPLC assay cannot provide one-base separation, biological samples were also processed by an anion-exchange solid-phase extraction and a CGE method to characterize MT-AS and its catabolites of 15-20-mer, species most relevant to biological activity. One base separation, under an electric field of 400 V/cm at room temperature, was achieved for a mixture of 15-20-mer with about 50 pg injected. Assay validation studies revealed that the combined HPLC-CGE methods are accurate, reproducible and specific for the determination of MT-AS and its catabolites in biological fluids and tissue homogenates, and can be used for the pharmacokinetic characterization of MT-AS. PMID:9187382

  20. Leptine: an hormone secreted by adipose tissue. First study in Uruguayan population sample

    International Nuclear Information System (INIS)

    The recent discovery of leptine, an hormone secreted by adipose tissue which modulates the energetic expenditure has signified a gigantic advance in studying obesity facts. In spite of a recent description of absence of leptine in humans, the obesity human model answers to leptine resistance. In this paper, we revise the actual concepts and show leptine values of a sample of 101 middle aged uruguayans, male and female, of normal weight and over weighted (table 1), correlated with corporal mass index (CMI) as an indirect measure of total body fat and waist diameter as an indirect measure of visceral fat, and hips (periferical fat). Bioimpedance studies were carried out to get the corporal composition. Results: good correlation between corporal fat and leptine, but fat distribution was not found representative. All in all, this data set confirms the correlation between leptine and total body fat mass

  1. A single lysis solution for the analysis of tissue samples by different proteomic technologies

    DEFF Research Database (Denmark)

    Gromov, P.; Celis, J.E.; Gromova, I.; Rank, Fritz; Timmermans, Vera Jacqueline Marita; Moreira, José

    2008-01-01

    Cancer, being a major healthcare concern worldwide, is one of the main targets for the application of emerging proteomic technologies and these tools promise to revolutionize the way cancer will be diagnosed and treated in the near future. Today, as a result of the unprecedented advances that have...... number of protocols for preparation of tissue lysates has been published, so far no single recipe is able to provide a "one-size fits all" solubilization procedure that can be used to analyse the same lysate using different proteomics technologies. Here we present evidence showing that cell lysis buffer......-based proteomics (reverse-phase lysate arrays or direct antibody arrays), allowing the direct comparison of qualitative and quantitative data yielded by these technologies when applied to the same samples. The usefulness of the CLB1 solution for gel-based proteomics was further established by 2D PAGE analysis of a...

  2. Biologically and mechanically driven design of an RGD-mimetic macroporous foam for adipose tissue engineering applications.

    Science.gov (United States)

    Rossi, Eleonora; Gerges, Irini; Tocchio, Alessandro; Tamplenizza, Margherita; Aprile, Paola; Recordati, Camilla; Martello, Federico; Martin, Ivan; Milani, Paolo; Lenardi, Cristina

    2016-10-01

    Despite clinical treatments for adipose tissue defects, in particular breast tissue reconstruction, have certain grades of efficacy, many drawbacks are still affecting the long-term survival of new formed fat tissue. To overcome this problem, in the last decades, several scaffolding materials have been investigated in the field of adipose tissue engineering. However, a strategy able to recapitulate a suitable environment for adipose tissue reconstruction and maintenance is still missing. To address this need, we adopted a biologically and mechanically driven design to fabricate an RGD-mimetic poly(amidoamine) oligomer macroporous foam (OPAAF) for adipose tissue reconstruction. The scaffold was designed to fulfil three fundamental criteria: capability to induce cell adhesion and proliferation, support of in vivo vascularization and match of native tissue mechanical properties. Poly(amidoamine) oligomers were formed into soft scaffolds with hierarchical porosity through a combined free radical polymerization and foaming reaction. OPAAF is characterized by a high water uptake capacity, progressive degradation kinetics and ideal mechanical properties for adipose tissue reconstruction. OPAAF's ability to support cell adhesion, proliferation and adipogenesis was assessed in vitro using epithelial, fibroblast and endothelial cells (MDCK, 3T3L1 and HUVEC respectively). In addition, in vivo subcutaneous implantation in murine model highlighted OPAAF potential to support both adipogenesis and vessels infiltration. Overall, the reported results support the use of OPAAF as a scaffold for engineered adipose tissue construct. PMID:27428768

  3. Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart.

    Science.gov (United States)

    Shiba, Kenji; Nukaya, Masayuki; Tsuji, Toshio; Koshiji, Kohji

    2008-01-01

    This paper reports on the current density and specific absorption rate (SAR) analysis of biological tissue surrounding an air-core transcutaneous transformer for an artificial heart. The electromagnetic field in the biological tissue is analyzed by the transmission line modeling method, and the current density and SAR as a function of frequency, output voltage, output power, and coil dimension are calculated. The biological tissue of the model has three layers including the skin, fat, and muscle. The results of simulation analysis show SARs to be very small at any given transmission conditions, about 2-14 mW/kg, compared to the basic restrictions of the International Commission on nonionizing radiation protection (ICNIRP; 2 W/kg), while the current density divided by the ICNIRP's basic restrictions gets smaller as the frequency rises and the output voltage falls. It is possible to transfer energy below the ICNIRP's basic restrictions when the frequency is over 250 kHz and the output voltage is under 24 V. Also, the parts of the biological tissue that maximized the current density differ by frequencies; in the low frequency is muscle and in the high frequency is skin. The boundary is in the vicinity of the frequency 600-1000 kHz. PMID:18232363

  4. High mass accuracy and high mass resolving power FT-ICR secondary ion mass spectrometry for biological tissue imaging

    NARCIS (Netherlands)

    Smith, D.F.; Kiss, A.; Leach, F.E.; Robinson, E.W.; Paša-Tolić, L.; Heeren, R.M.A.

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performe

  5. Applying a low energy HPGe detector gamma ray spectrometric technique for the evaluation of Pu/Am ratio in biological samples

    International Nuclear Information System (INIS)

    The estimation of Pu/241Am ratio in the biological samples is an important input for the assessment of internal dose received by the workers. The radiochemical separation of Pu isotopes and 241Am in a sample followed by alpha spectrometry is a widely used technique for the determination of Pu/241Am ratio. However, this method is time consuming and many times quick estimation is required. In this work, Pu/241Am ratio in the biological sample was estimated with HPGe detector based measurements using gamma/X-rays emitted by these radionuclides. These results were compared with those obtained from alpha spectroscopy of sample after radiochemical analysis and found to be in good agreement. - Highlights: • High resolution gamma ray spectroscopy technique with low energy HPGe detector is used for the measurement of Pu isotopes and 241Am in biological samples. • Results obtained with gamma ray spectroscopy compared well with the results obtained from radiochemical analysis of sample followed by α-spectroscopy. • Results of this study will be useful for assessment and medical management of Pu/241Am embedded in tissue of workers

  6. Biological and binding activities of ovine and porcine prolactins in porcine mammary tissue

    International Nuclear Information System (INIS)

    The concentration of prolactin receptors may play a critical role in regulating growth and development of the mammary gland during gestation and tumor development; however, the discrepancy between specific binding of ovine prolactin (oPRL) and porcine prolactin (pPRL) in porcine mammary tissue was disturbing. It was possible that 125I-oPRL may be an unsuitable ligand for the procine prolactin receptor. The validate the use of oPRL in binding assays, the biological and binding activities of oPRL and pPRL were compared. A lactogenic bioassay of pPRL was developed using porcine mammary explants cultured in Medium 199 containing insulin, cortisol, and pPRL. The potencies of oPRL and pPRL were compared using this bioassay. Oxidation of glucose and incorporation of glucose into lipids were similarly enhanced by physiological concentrations of both oPRL and pPRL. However, specific binding of 125I-oPRL was 20%, while less than 1% of 125I-pPRL was bound. 125I-oPRL bound to high affinity sites

  7. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications.

    Science.gov (United States)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Knowles, Jonathan Campbell

    2014-02-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. PMID:24411382

  8. Effects of space environment on biological characters of tissue cultured rose seedlings

    Institute of Scientific and Technical Information of China (English)

    XUE Huai; LIU Min; LU Jinying; PAN Yi; ZHANG Chunhua

    2005-01-01

    Tissue cultured rose seedlings were carried into space by SHENZHOU-4 spacecraft and then used as the experimental material to investigate effects of the space environmental conditions on morphology, cytology, physiology and molecular biology of the seedlings. After loaded on the space flight, the plant's height, number of leaves, and fresh weight per seedling were all increased significantly compared to the ground controls. The content of chlorophyll was basically unchanged. In some cells, the ultrastructural changes involved twist, contraction and deformation of cell wall, curvature and loose arrangement of lamellae of some chloroplasts, and a significant increase in number of starch grains per chloroplast. In addition, the number of mitochondria increased, but some mitochondrial outer membrane broke, and some mitochondrial cristae disappeared. The activities of the defense enzymes, such as superoxide dismutase, peroxidase and catalyse, in rose leaves increased and the content of malondialdehyde decreased. In the RAPD analysis with 40 10-mer primers, 36 primers generated 148 DNA bands from both of the space flight treated seedlings and the ground controls, and five primers amplified polymorphic products. The rate of DNA variation was 6.34 %.

  9. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-01-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications. PMID:27435424

  10. Use of charged particle beams for analysis of biological tissues and fluids

    International Nuclear Information System (INIS)

    PIXE has passed through its demonstration stage and matured into a viable tool supported by a reliable physics data base; the main problem to be solved at the outset of any new project is the preparation of a representative specimen of uniform thickness (or thinness) rather than any aspect of X-ray or accelerator physics or technology. The authors repeats the caution that minimum detection limits are strongly influenced by the nuclear reaction gamma-ray background from trace elements in the specimen. Thus experiment on a new target type is preferable to use of MDL calculations based on the background due to atomic processes (bremsstrahlung) in the known matrix. One hopes to see a more adventurous mood eg a move from routine blood serum analysis towards analyses of different blood fractions that concentrate specific trace elements. PIGE, while promising, must be regarded as developmental until the data-base of elemental gamma-ray yields is extended and made more accurate; work on fluorine in teeth clearly stands to profit from this technique. Finally, RBS, although scarcely used to date in any biological context, is clearly a powerful way of measuring major elemental ratios in mineralized tissues; however, RBS lacks the resolving power of PIXE and so is not a candidate for multi-trace element analysis

  11. Stability of heroin, 6-monoacetylmorphine, and morphine in biological samples and validation of an LC–MS assay for delayed analyses of pharmacokinetic samples in rats

    OpenAIRE

    Jones, Jessica M.; Raleigh, Michael D.; Pentel, Paul R.; Harmon, Theresa M.; Keyler, Daniel E.; Remmel, Rory P.; Birnbaum, Angela K

    2012-01-01

    Degradation of heroin to 6-monoacetylmorphine (6-MAM) and then morphine happens rapidly in vivo and in vitro. The rates of heroin and 6-MAM degradation depend on the type of biological samples, and the duration and conditions of storage. In order to optimize conditions for measuring heroin and its metabolites in samples collected for pharmacokinetic studies in rats, we investigated the time course of degradation of heroin, 6-MAM, and morphine in four biological matrices: rat blood, rat brain ...

  12. FTIR spectroscopic imaging and mapping with correcting lenses for studies of biological cells and tissues.

    Science.gov (United States)

    Kimber, James A; Foreman, Liberty; Turner, Benjamin; Rich, Peter; Kazarian, Sergei G

    2016-06-23

    Histopathology of tissue samples is used to determine the progression of cancer usually by staining and visual analysis. It is recognised that disease progression from healthy tissue to cancerous is accompanied by spectral signature changes in the mid-infrared range. In this work, FTIR spectroscopic imaging in transmission mode using a focal plane array (96 × 96 pixels) has been applied to the characterisation of Barrett's oesophageal adenocarcinoma. To correct optical aberrations, infrared transparent lenses were used of the same material (CaF2) as the slide on which biopsies were fixed. The lenses acted as an immersion objective, reducing scattering and improving spatial resolution. A novel mapping approach using a sliding lens is presented where spectral images obtained with added lenses are stitched together such that the dataset contained a representative section of the oesophageal tissue. Images were also acquired in transmission mode using high-magnification optics for enhanced spatial resolution, as well as with a germanium micro-ATR objective. The reduction of scattering was assessed using k-means clustering. The same tissue section map, which contained a region of high grade dysplasia, was analysed using hierarchical clustering analysis. A reduction of the trough at 1077 cm(-1) in the second derivative spectra was identified as an indicator of high grade dysplasia. In addition, the spatial resolution obtained with the lens using high-magnification optics was assessed by measurements of a sharp interface of polymer laminate, which was also compared with that achieved with micro ATR-FTIR imaging. In transmission mode using the lens, it was determined to be 8.5 μm and using micro-ATR imaging, the resolution was 3 μm for the band at a wavelength of ca. 3 μm. The spatial resolution was also assessed with and without the added lens, in normal and high-magnification modes using a USAF target. Spectroscopic images of cells in transmission mode using two

  13. Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications

    International Nuclear Information System (INIS)

    Surface-enhanced Raman spectroscopy (SERS) allows a new insight into the analysis of cell physiology. In this work, the difficulty of producing suitable substrates that, besides permitting the amplification of the Raman signal, do not interact with the biological material causing alteration, has been overcome by a combined method of hydrothermal green synthesis and thermal annealing. The SERS analysis of the cell membrane has been performed with special attention to the cellular prion protein PrPC. In addition, SERS has also been used to reveal the prion protein-Cu(II) interaction in four different cell models (B104, SH-SY5Y, GN11, HeLa), expressing PrPC at different levels. A significant implication of the current work consists of the intriguing possibility of revealing and quantifying prion protein expression in complex biological samples by a cheap SERS-based method, replacing the expensive and time-consuming immuno-assay systems commonly employed.

  14. Measurement of copper in biological samples by flame or electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Evenson, M A

    1988-01-01

    Guidelines presented here allow for copper analysis of biological materials by methods that are very sensitive, that require little sample preparation, that have few chemical or spectral interferences, that are inexpensive, and that require only usual care in contamination control. The commercial instruments for FAAS and ETAAS from Perkin-Elmer, from Varian, and from Instrumentation Laboratories Inc. (Allied Analytical Systems) all work well in either the flame or the flameless mode. Background correction techniques are not essential for copper analysis if care is taken with the sample preparation to minimize the background signals. Different types of burners will work adequately if one makes certain that the viscosity of the sample and the control products are similar to the calibration standards. Further, dilution of samples is preferred over increasing the viscosity of the calibration standards by the addition of a protein containing solution or a substance such as glycerol. A 1:10 dilution of blood plasma or serum with dilute nitric acid or water is all that is necessary for copper analysis by the FFAS methods. Cation and anion effects should be tested by bracketing the concentrations of the ions found in the sample with known amounts of ions in the sample solutions. Increasing the concentrations of the ions thought to interfere while keeping the copper concentration constant is another way to test for ion interferences.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3374386

  15. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples.

    Science.gov (United States)

    Guo, Huiyuan; Xing, Baoshan; Hamlet, Leigh C; Chica, Andrea; He, Lili

    2016-06-01

    Growing concerns over the potential release and threat of silver nanoparticles (AgNPs) to environmental and biological systems urge researchers to investigate their fate and behavior. However, current analytical techniques cannot meet the requirements for rapidly, sensitively and reliably probing AgNPs in complex matrices. Surface-enhanced Raman spectroscopy (SERS) has shown great capability for rapid detection of AgNPs based on an indicator molecule that can bind on the AgNP surface. The objective of this study was to exploit SERS to detect AgNPs in environmental and biological samples through optimizing the Raman indicator for SERS. Seven indicator molecules were selected and determined to obtain their SERS signals at optimal concentrations. Among them, 1,2-di(4-pyridyl)ethylene (BPE), crystal violet and ferric dimethyl-dithiocarbamate (ferbam) produced the highest SERS intensities. Further experiments on binding competition between each two of the three candidates showed that ferbam had the highest AgNPs-binding ability. The underlying mechanism lies in the strong binding affinity of ferbam with AgNPs via multiple sulfur atoms. We further validated ferbam to be an effective indicator for SERS detection of as low as 0.1mg/L AgNPs in genuine surface water and 0.57 mg/L in spinach juice. Moreover, limited interference on SERS detection of AgNPs was found from environmentally relevant inorganic ions, organic matter, inorganic particles, as well as biologically relevant components, demonstrating the ferbam-assisted SERS is an effective and sensitive method to detect AgNPs in complex environmental and biological samples. PMID:26956173

  16. MODELLING OF RING-SHAPED ULTRASONIC WAVEGUIDES FOR TESTING OF MECHANICAL PROPERTIES AND THERAPEUTIC TREATMENT OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2011-01-01

    Full Text Available The article presents results of modelling of ring-shaped waveguide tool for ultrasonic treatment of biological materials, particularly malignant tumours, and testing of their mechanical properties. Harmonic analysis of forced flexural vibration of the waveguide using ANSYS software and APDL programming language was implemented for determination of waveguide geometric parameters providing its resonance for the given excitation frequency. The developed finite element model accounts for interaction between the waveguide and tumour tissue as well as initial prestressing of tissue radially compressed by the waveguide. Resonant curves of the waveguide in terms of its thickness and diameter are calculated and presented. Principle of application of the developed modeling technique for extraction of diagnostic data on mechanical properties of biological tissues is described.

  17. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    CERN Document Server

    Smith, Donald F; Leach, Franklin E; Robinson, Errol W; Paša-Tolić, Ljiljana; Heeren, Ron M A

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissu...

  18. Bayesian model comparison and parameter inference in systems biology using nested sampling.

    Science.gov (United States)

    Pullen, Nick; Morris, Richard J

    2014-01-01

    Inferring parameters for models of biological processes is a current challenge in systems biology, as is the related problem of comparing competing models that explain the data. In this work we apply Skilling's nested sampling to address both of these problems. Nested sampling is a Bayesian method for exploring parameter space that transforms a multi-dimensional integral to a 1D integration over likelihood space. This approach focuses on the computation of the marginal likelihood or evidence. The ratio of evidences of different models leads to the Bayes factor, which can be used for model comparison. We demonstrate how nested sampling can be used to reverse-engineer a system's behaviour whilst accounting for the uncertainty in the results. The effect of missing initial conditions of the variables as well as unknown parameters is investigated. We show how the evidence and the model ranking can change as a function of the available data. Furthermore, the addition of data from extra variables of the system can deliver more information for model comparison than increasing the data from one variable, thus providing a basis for experimental design. PMID:24523891

  19. Bayesian model comparison and parameter inference in systems biology using nested sampling.

    Directory of Open Access Journals (Sweden)

    Nick Pullen

    Full Text Available Inferring parameters for models of biological processes is a current challenge in systems biology, as is the related problem of comparing competing models that explain the data. In this work we apply Skilling's nested sampling to address both of these problems. Nested sampling is a Bayesian method for exploring parameter space that transforms a multi-dimensional integral to a 1D integration over likelihood space. This approach focuses on the computation of the marginal likelihood or evidence. The ratio of evidences of different models leads to the Bayes factor, which can be used for model comparison. We demonstrate how nested sampling can be used to reverse-engineer a system's behaviour whilst accounting for the uncertainty in the results. The effect of missing initial conditions of the variables as well as unknown parameters is investigated. We show how the evidence and the model ranking can change as a function of the available data. Furthermore, the addition of data from extra variables of the system can deliver more information for model comparison than increasing the data from one variable, thus providing a basis for experimental design.

  20. General guidelines for safe and expeditious international transport of samples subjected to biological dosimetry assessment

    International Nuclear Information System (INIS)

    It has been observed that victims of accidental overexposures show better chance of survival if they receive medical treatment early. The increased risk of scenarios involving mass casualties has stimulated the scientific community to develop tools that would help the medical doctors to treat victims. The biological dosimetry has become a routine test to estimate the dose, supplementing physical and clinical dosimetry. In case of radiation emergencies, in order to provide timely and effectively biological dosimetry assistance it is essential to guarantee an adequate transport of blood samples in principal, for providing support to countries that do not have bio-dosimetry laboratories. The objective of the present paper is to provide general guidelines, summarised in 10 points, for timely and proper receiving and sending of blood samples under National and International regulations, for safe and expeditious international transport. These guidelines cover the classification, packaging, marking, labelling, refrigeration and documentation requirements for the international shipping of blood samples and pellets, to provide assistance missions with a tool that would contribute with the preparedness for an effective bio-dosimetric response in cases of radiological or nuclear emergencies. (authors)