WorldWideScience

Sample records for biological sulfate reduction

  1. Effects of various pretreatments on biological sulfate reduction with waste activated sludge as electron donor and waste activated sludge diminution under biosulfidogenic condition

    International Nuclear Information System (INIS)

    The current study focused on the influences of various pretreatments, including alkaline, ultrasonic and thermal pretreatments on biological sulfate reduction with waste activated sludge (WAS) as sole electron donor. Our results showed that thermal and ultrasonic pretreatments increased the sulfate reduction percentage by 14.8% and 7.1%, respectively, compared with experiment with raw WAS, while alkaline pretreatment decreased the sulfate reduction percentage by 46%. By analyzing the WAS structure, particle size distribution, organic component, and enzyme activity after different pretreatments, we studied the effects of these pretreatments on WAS as well as on the mechanisms of how biological sulfate reduction was affected. The reduction of WAS and variation of WAS structure in the process of sulfate reduction were investigated. Our results showed that biosulfidogenesis was an efficient method of diminishing WAS, and various pretreatments could enhance the reduction efficiency of volatile solid in the WAS.

  2. 硫酸盐生物还原中电子供体的选择%Selection of electron donors for biological sulfate reduction

    Institute of Scientific and Technical Information of China (English)

    姬玉欣; 马春; 金仁村; 周萍

    2011-01-01

    Biological sulfate reduction is fit for treating sulfate-containing wastewaters.But sulfate rich wastewaters are usually deficient in electron donors.Theoretically,sulfate conversion requires electron donors,and requires external addition of electron donors in order to achieve complete sulfate reduction.In this papers,various electron donors employed in biological sulfate reduction are reviewed.Widely used electron donors include hydrogen,formate,methanol,ethanol,lactate,volatile fatty acids(VFA),sugar,hydrocarbons and organic waste.The selection criteria for suitable electron donors are discussed.%硫酸盐生物还原在含硫酸盐废水的处理中具有明显优势,然而富含硫酸盐的废水通常缺乏电子供体,因此电子供体的选择及添加就成了该工艺推广所面临的主要问题。本文综述了用于硫酸盐生物还原的各种电子供体,包括氢、甲酸、甲醇、乙醇、乳酸、挥发性脂肪酸、糖类、烃类和有机废物,讨论了适宜电子供体的选择标准。

  3. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process.

    Science.gov (United States)

    Rasool, Kashif; Mahmoud, Khaled A; Lee, Dae Sung

    2015-12-15

    This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB. PMID:26241771

  4. Sulfate reduction and methanogenesis in marine sediments

    Science.gov (United States)

    Oremland, R. S.; Taylor, B. F.

    1978-01-01

    Methanogenesis and sulfate-reduction were followed in laboratory incubations of sediments taken from tropical seagrass beds. Methanogenesis and sulfate-reduction occurred simultaneously in sediments incubated under N2, thereby indicating that the two processes are not mutually exclusive. Sediments incubated under an atmosphere of H2 developed negative pressures due to the oxidation of H2 by sulfate-respiring bacteria. H2 also stimulated methanogenesis, but methanogenic bacteria could not compete for H2 with the sulfate-respiring bacteria.

  5. Biotechnological aspects of sulfate reduction with methane as electron donor

    OpenAIRE

    Meulepas, R.J.W.; Stams, A.J.M.; Lens, P.N.L.

    2010-01-01

    Biological sulfate reduction can be used for the removal and recovery of oxidized sulfur compounds and metals from waste streams. However, the costs of conventional electron donors, like hydrogen and ethanol, limit the application possibilities. Methane from natural gas or biogas would be a more attractive electron donor. Sulfate reduction with methane as electron donor prevails in marine sediments. Recently, several authors succeeded in cultivating the responsible microorganisms in vitro. In...

  6. Dimethylsulfoxide reduction by marine sulfate-reducing bacteria

    OpenAIRE

    Jonkers, Henk M.; van der Maarel, Marc J. E. C.; van Gemerden, Hans; Hansen, Theo A.

    1996-01-01

    Dimethylsulfoxide (DMSO) reduction occurred in five out of nine strains of sulfate-reducing bacteria from marine or saline environments, but not in three freshwater isolates. DMSO reduction supported growth in all positive strains. In Desulfovibrio desulfuricans strain PA2805, DMSO reduction occurred simultaneously-with sulfate reduction and was not effectively inhibited by molybdate, a specific inhibitor of sulfate reduction. The growth yield per mol lactate was 26% higher with DMSO than wit...

  7. An intertwined evolutionary history of methanogenic archaea and sulfate reduction.

    Directory of Open Access Journals (Sweden)

    Dwi Susanti

    Full Text Available Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F(420-dependent sulfite reductase (Fsr where N- and C-terminal halves (Fsr-N and Fsr-C are homologs of F(420H(2 dehydrogenase and dissimilatory sulfite reductase (Dsr, respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP, both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest, carrying a coupled siroheme-[Fe(4-S(4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex, with group I features, a Dsr-type peripheral [Fe(4-S(4] cluster and an additional [Fe(4-S(4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe(4-S(4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F(420H(2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago biologically produced sulfide deposit.

  8. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments

    DEFF Research Database (Denmark)

    Jørgensen, BB; Weber, A.; Zopfi, J.

    2001-01-01

    Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea sediments from the surface down to the sulfate-methane transition at 2-4 m depth. Sulfate reduction rates were measured experimentally with (SO42-)-S-35...... the process was very sluggish with turnover times of methane within the sulfate-methane transition zone of 20 yr or more. (C) 2001 Elsevier Science Ltd. All rights reserved.Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea...... sediments from the surface down to the sulfate-methane transition at 2-4 m depth. Sulfate reduction rates were measured experimentally with (SO42-)-S-35, and the rates were compared with results of two diffusion-reaction models. The results showed that, even in these non-bioirrigated sediments without...

  9. Pressure effect on dissimilatory sulfate reduction

    Science.gov (United States)

    Williamson, A. J.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Biosouring is the production of H2S by sulfate reducing microorganisms (SRM) in-situ or in the produced fluids of oil reservoirs. Sulfide is explosive, toxic and corrosive which can trigger equipment and transportation failure, leading to environmental catastrophe. As oil exploration and reservoir development continue, subsequent enhanced recovery is occurring in progressively deeper formations and typical oil reservoir pressures range from 10-50 MPa. Therefore, an understanding of souring control effects will require an accurate understanding of the influence of pressure on SRM metabolism and the efficacy of souring control treatments at high pressure. Considerable work to date has focussed on souring control at ambient pressure; however, the influence of pressure on biogeochemical processes and souring treatments in oil reservoirs is poorly understood. To explore the impact of pressure on SRM, wild type Desulfovibrio alaskensis G20 (isolated from a producing oil well in Ventura County, California) was grown under a range of pressures (0.1-14 MPa) at 30 °C. Complete sulfate reduction occurred in all pressures tested within 3 days, but microbial growth was inhibited with increasing pressure. Bar-seq identified several genes associated with flagella biosynthesis (including FlhB) and assembly as important for survival at elevated pressure and fitness was confirmed using individual transposon mutants. Flagellar genes have previously been implicated with biofilm formation and confocal microscopy on glass slides incubated with wild type D. alaskensis G20 showed more biomass associated with surfaces under pressure, highlighting the link between pressure, flagellar and biofilm formation. To determine the effect of pressure on the efficacy of SRM inhibitors, IC50 experiments were conducted and D. alaskensis G20 showed a greater resistance to nitrate and the antibiotic chloramphenicol, but a lower resistance to perchlorate. These results will be discussed in the context of

  10. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration

    International Nuclear Information System (INIS)

    Highlights: • Novel biological technique for gypsum removal from CDD. • CDDS leachate treatment performed using different sulfate reducing bioreactors. • Gypsum in CDD can be used as a source of sulfate for sulfate reducing bacteria. • High calcium concentration (1000 mg L−1) did not affect the bioreactor performance. - Abstract: Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75–85% was achieved at a hydraulic retention time (HRT) of 15.5 h. A high calcium concentration up to 1000 mg L−1 did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems

  11. Sulfate reduction at low pH in organic wastewaters

    NARCIS (Netherlands)

    Lopes, S.I.C.

    2007-01-01

    The objective of the research described in this thesis was to investigate the operational window of dissimilatory sulfate reduction at low pH (6, 5 and 4) during the acidification of organic wastewaters. High sulfate reduction efficiencies at low pH are desirable for a more sustainable operation of

  12. Chlorophenol Degradation Coupled to Sulfate Reduction

    OpenAIRE

    Häggblom, M M; Young, L. Y.

    1991-01-01

    We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO2. Forma...

  13. Sulfur and oxygen isotope studies of sulfate reduction

    Science.gov (United States)

    Farquhar, J.; Canfield, D. E.; Bao, H.; Masterson, A.; Johnston, D. T.; Wing, B. A.

    2007-12-01

    I will discuss insights into sulfur and oxygen isotope fractionations of dissimilatory sulfate reduction and specifically insight provided by experiments with natural populations of sulfate-reducing bacteria from Faellestrand, Denmark. The experiments yielded relatively large magnitude sulfur isotope fractionations for dissimilatory sulfate reduction (up to approximately 45 ‰ for 34S/32S), with higher δ18O accompanying higher δ34S, similar to that observed in previous studies. The seawater used in the experiments was spiked by addition of 17O-labelled water and the 17O content of residual sulfate was found to depend on the fraction of sulfate reduced in the experiments. The 17O data provides evidence for recycling of sulfur from metabolic intermediates and for an 18O/16O fractionation of ~25-30 ‰ for dissimilatory sulfate reduction, a magnitude that is consistent with isotopic exchange between a sulfite species and cell water. The molar ratio of oxygen exchange to sulfate reduction was found to be about 2.5. Using recent models of sulfur isotope fractionations we find that our combined sulfur and oxygen isotopic data places constraints on the proportion of sulfate recycled to the medium (78-96 %), the proportion of sulfur intermediate sulfite that was recycled by way of APS to sulfate and released back to the external sulfate pool (~70%) and also that a fraction of the sulfur intermediates between sulfite and sulfide were recycled to sulfate. These parameters can be constrained because of the independent information provided by δ18O, δ34S, 17O labels, and Δ33S.

  14. Dimethylsulfoxide reduction by marine sulfate-reducing bacteria

    NARCIS (Netherlands)

    Jonkers, Henk M.; Maarel, Marc J.E.C. van der; Gemerden, Hans van; Hansen, Theo A.

    1996-01-01

    Dimethylsulfoxide (DMSO) reduction occurred in five out of nine strains of sulfate-reducing bacteria from marine or saline environments, but not in three freshwater isolates. DMSO reduction supported growth in all positive strains. In Desulfovibrio desulfuricans strain PA2805, DMSO reduction occurre

  15. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    is enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...

  16. Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities

    NARCIS (Netherlands)

    Bowles, M.W.; Mogollón, J.M.; Kasten, S.; Zabel, M.; Hinrichs, K.U.

    2014-01-01

    Sulfate reduction is a globally important yet poorly quantified redox process in marine sediments. We developed an artificial neural network trained with 199 sulfate profiles, constrained with geomorphological and geochemical maps to estimate global sulfate reduction rate distributions. Globally, 11

  17. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kijjanapanich, Pimluck, E-mail: som_cheng00@hotmail.com [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Do, Anh Tien [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Annachhatre, Ajit P. [Environmental Engineering and Management, Asian Institute of Technology, PO Box 4, Klongluang, Pathumthani 12120 (Thailand); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino (Italy); Yeh, Daniel H. [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Lens, Piet N.L. [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands)

    2014-03-01

    Highlights: • Novel biological technique for gypsum removal from CDD. • CDDS leachate treatment performed using different sulfate reducing bioreactors. • Gypsum in CDD can be used as a source of sulfate for sulfate reducing bacteria. • High calcium concentration (1000 mg L{sup −1}) did not affect the bioreactor performance. - Abstract: Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75–85% was achieved at a hydraulic retention time (HRT) of 15.5 h. A high calcium concentration up to 1000 mg L{sup −1} did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems.

  18. Biological sulfate removal from construction and demolition debris leachate: effect of bioreactor configuration.

    Science.gov (United States)

    Kijjanapanich, Pimluck; Do, Anh Tien; Annachhatre, Ajit P; Esposito, Giovanni; Yeh, Daniel H; Lens, Piet N L

    2014-03-30

    Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75-85% was achieved at a hydraulic retention time (HRT) of 15.5h. A high calcium concentration up to 1,000 mg L(-1) did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems. PMID:24211179

  19. Comparative Study of Soluble Sulfate Reduction by Bacterial Consortia from Varied Regions of India

    Directory of Open Access Journals (Sweden)

    Poonam Nasipuri

    2010-01-01

    Full Text Available Soluble sulfate contamination in water is observed due to various industrial activities. Chemical means of reduction are available yet the biological approach is the preferred one. Problem statement: The problem addressed in this study was the isolation of efficient sulfate reducing bacterial consortia for bioremediation of soluble sulfate from mining effluent. Approach: The culture based method using the DSMZ specific media were used for isolation of sulfate reducing bacterial consortia. Their reduction efficiency was measured spectrophotometrically following growth under varied temperature and pH in specified media as well as in effluent water. The microbial consortia were analyzed at the 16SrDNA level to identify the members. The completeness as well as richness of the study was analyzed using OTU saturation curve, Shannon diversity index and equitability index. Results: All the eight consortia were able to tolerate vide range of pH (6-9 and temperature (20-40°C. They could reduce 63-99% of soluble sulfate (~2000 ppm in 48 h. Conclusion: This study reported about the enrichment of few of the most efficient anaerobic microbial consortia that could be employed for environmental soluble sulfate reduction under diverse pH and temperature conditions.

  20. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments

    DEFF Research Database (Denmark)

    Habicht, K S; Canfield, D E

    1997-01-01

    Isotope fractionation during sulfate reduction by natural populations of sulfate-reducing bacteria was investigated in the cyanobacterial microbial mats of Solar Lake, Sinai and the sediments of Logten Lagoon sulfuretum, Denmark. Fractionation was measured at different sediment depths, sulfate...

  1. D-Area Sulfate Reduction Studty Comprehensive Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M

    2005-02-11

    An acidic/metals/sulfate, groundwater contaminant plume emanates from the D-Area Coal Pile Runoff Basin (DCPRB) at the Savannah River Site (SRS), due to the contaminated runoff the basin receives from the D-Area coal pile. A Treatability Study Work Plan (TSWP) (WSRC 2001) was implemented to evaluate the potential for the sulfate reduction remediation of the DCPRB acidic/metals/sulfate, groundwater contaminant plume. The following studies, implemented as part of the TSWP, are documented herein: Bacteria Population and Organic Selection Laboratory Testing; DTT-1 Trench Evaluation; DIW-1 Organic Application Field Study-Part 1; and DIW-1 Organic Application Field Study-Part 2. Evaluation of sulfate reduction applicability actually began with a literature search and feasibility report in mid 2001, which fed into the TSWP. Physical completion of TSWP work occurred in late 2004 with the completion of the DIW-1 Organic Application Field Study-Part 2. The following are the primary conclusions drawn based upon this 3-year effort: (1) Pure soybean oil provides a long-term, indirect, SRB carbon source that floats on top of the water table (by indirect it means that the soybean oil must be degraded by other microbes prior to utilization by SRB) for the promotion of sulfate reduction remediation. Soybean oil produces no known SRB inhibitory response and therefore large quantities can be injected. (2) Sodium lactate provides a short-term, immediately available, direct, SRB carbon source that is miscible with the groundwater and therefore flows with the groundwater until it has been completely utilized for the promotion of sulfate reduction remediation. Lactate at elevated concentrations (greater than 6 g/L) does produce a SRB inhibitory response and therefore small quantities must be injected frequently. (3) The use of limestone to buffer the contaminated groundwater facilitates sulfate reduction remediation through the injection of organic substrate. Additionally conclusions and

  2. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Thamdrup, B; Hansen, Jens Würgler

    1993-01-01

    We used a combination of porewater and solid phase analysis, as well as a series of sediment incubations, to quantify organic carbon oxidation by dissimilatory Fe reduction, Mn reduction, and sulfate reduction, in sediments from the Skagerrak (located off the northeast coast of Jutland, Denmark......). In the deep portion of the basin, surface Mn enrichments reached 3.5 wt%, and Mn reduction was the only important anaerobic carbon oxidation process in the upper 10 cm of the sediment. In the less Mn-rich sediments from intermediate depths in the basin, Fe reduction ranged from somewhat less, to far more...... important than sulfate reduction. Most of the Mn reduction in these sediments may have been coupled to the oxidation of acid volatile sulfides (AVS), rather than to dissimilatory reduction. High rates of metal oxide reduction at all sites were driven by active recycling of both Fe and Mn, encouraged...

  3. Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents.

    Science.gov (United States)

    Frank, Kiana L; Rogers, Daniel R; Olins, Heather C; Vidoudez, Charles; Girguis, Peter R

    2013-07-01

    Few studies have directly measured sulfate reduction at hydrothermal vents, and relatively little is known about how environmental or ecological factors influence rates of sulfate reduction in vent environments. A better understanding of microbially mediated sulfate reduction in hydrothermal vent ecosystems may be achieved by integrating ecological and geochemical data with metabolic rate measurements. Here we present rates of microbially mediated sulfate reduction from three distinct hydrothermal vents in the Middle Valley vent field along the Juan de Fuca Ridge, as well as assessments of bacterial and archaeal diversity, estimates of total biomass and the abundance of functional genes related to sulfate reduction, and in situ geochemistry. Maximum rates of sulfate reduction occurred at 90 °C in all three deposits. Pyrosequencing and functional gene abundance data revealed differences in both biomass and community composition among sites, including differences in the abundance of known sulfate-reducing bacteria. The abundance of sequences for Thermodesulfovibro-like organisms and higher sulfate reduction rates at elevated temperatures suggests that Thermodesulfovibro-like organisms may have a role in sulfate reduction in warmer environments. The rates of sulfate reduction presented here suggest that--within anaerobic niches of hydrothermal deposits--heterotrophic sulfate reduction may be quite common and might contribute substantially to secondary productivity, underscoring the potential role of this process in both sulfur and carbon cycling at vents.

  4. The anaerobic degradation of organic matter in Danish coastal sediments - Iron reduction, manganese reduction, and sulfate reduction

    Science.gov (United States)

    Canfield, Donald E.; Thamdrup, BO; Hansen, Jens W.

    1993-01-01

    A combination of porewater and solid phase analysis as well as a series of sediment incubations are used to quantify organic carbon oxidation by dissimilatory Fe reduction, Mn reduction, and sulfate reduction, in sediments from the Skagerrak (located off the northeast coast of Jutland, Denmark). Solid phase data are integrated with incubation results to define the zones of the various oxidation processes. At S(9), surface Mn enrichments of up to 3.5 wt pct were found, and with such a ready source of Mn, dissimilatory Mn reduction was the only significant anaerobic process of carbon oxidation in the surface 10 cm of the sediment. At S(4) and S(6), active Mn reduction occurred; however, most of the Mn reduction may have resulted from the oxidation of acid volatile sulfides and Fe(2+) rather than by a dissimilatory sulfate. Dissolved Mn(2+) was found to completely adsorb onto sediment containing fully oxidized Mn oxides.

  5. Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments

    DEFF Research Database (Denmark)

    Bruchert, V.; Knoblauch, C.; Jørgensen, BB

    2001-01-01

    Sulfur isotope fractionation experiments during bacterial sulfate reduction were performed with recently isolated strains of cold-adapted sulfate-reducing bacteria from Arctic marine sediments with year-round temperatures below 2 degreesC. The bacteria represent quantitatively important members...... parts per thousand and 8 parts per thousand above 25 degreesC, respectively. In absence of significant differences in sulfate reduction rates in the high and low temperature range, respectively, we infer that different genera of sulfate-reducing bacteria dominate the sulfate-reducing bacterial community...

  6. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water.

    Science.gov (United States)

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 per thousand heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  7. Sulfate reduction at low pH to remediate acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Andrea, Irene, E-mail: irene.sanchezandrea@wur.nl [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Sanz, Jose Luis [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Bijmans, Martijn F.M. [Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden (Netherlands); Stams, Alfons J.M. [Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga (Portugal)

    2014-03-01

    Highlights: • Acid mine drainage (AMD) is an important environmental concern. • Remediation through biological sulfate reduction and metal recovery can be applied for AMD. • Microbial community composition has a major impact on the performance of bioreactors to treat AMD. • Acidophilic SRB are strongly influenced by proton, sulfide and organic acids concentration. - Abstract: Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.

  8. The role of labile sulfur compounds in thermochemical sulfate reduction

    Science.gov (United States)

    Amrani, Alon; Zhang, Tongwei; Ma, Qisheng; Ellis, Geoffrey S.; Tang, Yongchun

    2008-06-01

    The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S°, organic S) at temperatures of 330 and 356 °C under a constant confining pressure. The in-situ pH was buffered to 3.5 (∼6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (∼0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of

  9. COMPARISON OF UASB AND FLUIDIZED-BED REACTORS FOR SULFATE REDUCTION

    Directory of Open Access Journals (Sweden)

    S. M. Bertolino

    2015-03-01

    Full Text Available Abstract Reactor hydrodynamics is important for sulfidogenesis because sulfate reduction bacteria (SRB do not granulate easily. In this work, the sulfate reduction performance of two continuous anaerobic bioreactors was investigated: (i an upflow anaerobic sludge blanket (UASB reactor and (ii a fluidized bed reactor (FBR. Organic loading, sulfate reduction, and COD removal were the main parameters monitored during lactate and glycerol degradation. The UASB reactor with biomass recirculation showed a specific sulfate reduction rate of 0.089±0.014 g.gSSV-1.d-1 (89% reduction, whereas values twice as high were achieved in the FBR treating either lactate (0.200±0.017 g.gSSV-1.d-1 or glycerol (0.178±0.010 g.gSSV-1.d-1. Sulfate reduction with pure glycerol produced a smaller residual COD (1700 mg.L-1 than that produced with lactate (2500 mg.L-1 at the same COD.sulfate-1 mass ratio. It was estimated that 50% of glycerol degradation was due to sulfate reduction and 50% to fermentation, which was supported by the presence of butyrate in the FBR effluent. The UASB reactor was unable to produce effluents with sulfate concentrations below 250 mg.L-1 due to poor mixing conditions, whereas the FBR consistently ensured residual sulfate concentrations below such a value.

  10. Oxidation of fugitive methane in ground water linked to bacterial sulfate reduction.

    Science.gov (United States)

    Van Stempvoort, Dale; Maathuis, Harm; Jaworski, Ed; Mayer, Bernhard; Rich, Kathleen

    2005-01-01

    When fugitive methane migrates upward along boreholes of oil and gas wells, it may migrate into shallow ground water or pass through overlying soil to the atmosphere. Prior to this study, there was little information on the fate of fugitive methane that migrates into ground water. In a field study near Lloydminster, Alberta, Canada, we found hydrogeochemical evidence that fugitive methane from an oil well migrated into a shallow aquifer but has been attenuated by dissimilatory bacterial sulfate reduction at low temperature ( approximately 5 degrees C) under anaerobic conditions. Evidence includes spatial and temporal trends in concentrations of methane and sulfate in ground water and associated trends in concentrations of bicarbonate and sulfide. Within 10 m of the oil well, sulfate concentrations were low, and sulfate was enriched in both 34S and 18O. Sulfate concentrations had a strong positive correlation with delta13C values of bicarbonate, and sulfide was depleted in 34S compared to sulfate. These data indicate that bacterial sulfate reduction occurred near the production well. Near the oil well, elevated concentrations of bicarbonate were observed, and the bicarbonate was depleted in 13C. Modeling indicates that the main source of this excess 13C-depleted bicarbonate is oxidized methane. In concert with the sulfate concentration and isotope data, these results support an interpretation that in situ bacterial oxidation of methane has occurred, linked to bacterial sulfate reduction. Bacterial sulfate reduction may play a major role in bioattenuation of fugitive natural gas in ground water in western Canada. PMID:15819940

  11. Influence of electron donor on the minimum sulfate concentration required for sulfate reduction in a petroleum hydrocarbon-contaminated aquifer

    Science.gov (United States)

    Vroblesky, D.A.; Bradley, P.M.; Chapelle, F.H.

    1996-01-01

    Fluctuations in the availability of electron donor (petroleum hydrocarbons) affected the competition between sulfate-reducing bacteria (SRB) and methanogenic bacteria (MB) for control of electron flow in a petroleum hydrocarbon-contaminated aquifer. The data suggest that abundant electron donor availability allowed MB to sequester a portion of the electron flow even when sulfate was present in sufficient concentrations to support sulfate reduction. For example, in an area of abundant electron-donor availability, SRB appeared to be unable to sequester the electron flow from MB in the presence of 1.4 mg/L sulfate. The data also suggest that when electron-donor availability was limited, SRB outcompeted MB for available substrate at a lower concentration of sulfate than when electron donor was plentiful. For example, in an area of limited electron-donor availability, SRB appeared to maintain dominance of electron flow at sulfate concentrations less than 1 mg/L. The presence of abundant electron donor and a limited amount of sulfate reduced competition for available substrate, allowing both SRB and MB to metabolize available substrates concurrently.

  12. Eutrophication, microbial-sulfate reduction and mass extinctions.

    Science.gov (United States)

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph

    2016-01-01

    In post-Cambrian time, life on Earth experienced 5 major extinction events, likely instigated by adverse environmental conditions. Biodiversity loss among marine taxa, for at least 3 of these mass extinction events (Late Devonian, end-Permian and end-Triassic), has been connected with widespread oxygen-depleted and sulfide-bearing marine water. Furthermore, geochemical and sedimentary evidence suggest that these events correlate with rather abrupt climate warming and possibly increased terrestrial weathering. This suggests that biodiversity loss may be triggered by mechanisms intrinsic to the Earth system, notably, the biogeochemical sulfur and carbon cycle. This climate warming feedback produces large-scale eutrophication on the continental shelf, which, in turn, expands oxygen minimum zones by increased respiration, which can turn to a sulfidic state by increased microbial-sulfate reduction due to increased availability of organic matter. A plankton community turnover from a high-diversity eukaryote to high-biomass bacterial dominated food web is the catalyst proposed in this anoxia-extinction scenario and stands in stark contrast to the postulated productivity collapse suggested for the end-Cretaceous mass extinction. This cascade of events is relevant for the future ocean under predicted greenhouse driven climate change. The exacerbation of anoxic "dead" zones is already progressing in modern oceanic environments, and this is likely to increase due to climate induced continental weathering and resulting eutrophication of the oceans. PMID:27066181

  13. Model identification with BPNN on restrictive ecological factors of SRB for sulfate-reduction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The model of back-propagation neural network(BPNN)was presented to demonstrate the effect of restrictive ecological factors,COD/SO42-ratio,pH value,alkalinity(ALK)and SO42-loading rate(Ns),on sulfate-reduction of Sulfate Reducing Bacteria(SRB)in an acidogenic sulfate-reducing reactor supplied with molasses as sole organic carbon source and sodium sulfate as electron acceptor.The compare of experimental results and computer simulation was also discussed.It was shown that the method of BPNN had a powerful ability to analyze the ecological characteristic of acidogenic sulfate-reducing ecosystem quantitatively.

  14. Reductive and sorptive properties of sulfate green rust (GRSO4)

    DEFF Research Database (Denmark)

    Nedel, Sorin

    The Fe(II), Fe(III) hydroxide containing sulfate in its structure, called sulfate green rust (GRSO4), can effectively reduce and convert contaminants to less mobile and less toxic forms. However, the ability of GRSO4 to remove positively charged species from solution, via sorption, is very limited...

  15. Key factors influencing rates of heterotrophic sulfate reduction in active seafloor hydrothermal massive sulfide deposits

    Directory of Open Access Journals (Sweden)

    Kiana Laieikawai Frank

    2015-12-01

    Full Text Available Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, SO42-, DOC on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50 °C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits.

  16. Key Factors Influencing Rates of Heterotrophic Sulfate Reduction in Active Seafloor Hydrothermal Massive Sulfide Deposits.

    Science.gov (United States)

    Frank, Kiana L; Rogers, Karyn L; Rogers, Daniel R; Johnston, David T; Girguis, Peter R

    2015-01-01

    Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, [Formula: see text], DOC) on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50°C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits.

  17. The Microbial Metabolic Characteristics in the Course of Sulfate-Reduction

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Acid-producing phase reactor of two-phase anaerobic treatment process has remarkable advantages treating sulfate-laden wastewater. In order to investigate SRB population's capability of utilizing substrate and the microbial acidification type formed during the course of sulfate reduction, continuous-flow and batch tests were conducted in a continuous stirred tank bio-film reactor supplied with sodium sulfate as electron acceptor. The experimental results demonstrated that the acidification type formed b...

  18. Sulfate Reduction and Thiosulfate Transformations in a Cyanobacterial Mat during a Diel Oxygen Cycle

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1994-01-01

    Bacterial sulfate reduction and transformations of thiosulfate were studied with radiotracers in a Microcoleus chthono-plastes-dominated microbial mat growing in a hypersaline pond at the Red Sea. The study showed how a diel cycle of oxygen evolution affected respiration by sulfate-reducing...... bacteria and the metabolism of thiosulfate through oxidative and reductive pathways. Sulfate reduction occurred in both oxic and anoxic layers of the mat and varied diurnally, apparently according to temperature rather than to oxygen. Time course experiments showed that the radiotracer method...

  19. Role of sulfate reduction and methane production by organic carbon degradation ineutrophic fjord sediments (Limfjorden, Denmark)

    DEFF Research Database (Denmark)

    Jørgensen, Bo Barker; Parkes, R. John

    2010-01-01

    The anaerobic mineralization of buried organic matter through sulfate reduction and methanogenesis was studied in 2-m-long piston cores of organic-rich, silty-clay sediment from two sites in Limfjorden, Denmark. An extended sulfate-methane transition (SMT) zone was found at 1-1.5-m sediment depth...

  20. Inhibitory Effects of Silver Nanoparticles on Removal of Organic Pollutants and Sulfate in an Anaerobic Biological Wastewater Treatment Process.

    Science.gov (United States)

    Rasool, Kashif; Lee, Dae Sung

    2016-05-01

    The increasing use of silver nanoparticles (AgNPs) in commercial products and industrial processes raises issues regarding the toxicity of sludge biomass in biological wastewater treatment plants, due to potential antimicrobial properties. This study investigated the effects of AgNPs on removal of organic pollutants and sulfate in an anaerobic biological sulfate reduction process. At AgNPs concentrations of up to 10 mg/L, no significant inhibition of sulfate and COD removal was observed. However, at higher concentrations (50-200 mg/L) sulfate and COD removal efficiencies were significantly decreased to 51.8% and 33.6%, respectively. Sulfate and COD reduction followed first-order kinetics at AgNPs concentrations of up to 10 mg/L and second-order kinetics at AgNPs concentrations of 50-200 mg/L. Lactate dehydrogenase release profiles showed increases in cytotoxicity at AgNPs concentrations greater than 50 mg/L suggesting cell membrane disruption. Analysis of extracellular polymeric substances (EPS) from sulfidogenic sludge biomass and of Fourier transform infrared (FT-IR) spectra showed a decrease in concentrations of carbohydrates, proteins, humic substances, and lipids in the presence of AgNPs. Moreover, the interaction of AgNPs with sludge biomass and the damage caused to cell walls were confirmed through scanning electron microscopy with energy dispersive X-ray spectroscopy. PMID:27483773

  1. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction.

    Science.gov (United States)

    Scheller, Silvan; Yu, Hang; Chadwick, Grayson L; McGlynn, Shawn E; Orphan, Victoria J

    2016-02-12

    The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane. PMID:26912857

  2. Biological sulphate reduction with synthesis gas.

    NARCIS (Netherlands)

    Houten, van R.T.

    1996-01-01

    The objectives of this thesis are (1) to study the feasibility of using synthesis gas as electron donor and carbon source for biological sulphate reduction and (2) to develop criteria for design and operation of gas- lift bioreactors for sulphate reduction using immobilized biomass.At appeared that

  3. Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico

    DEFF Research Database (Denmark)

    Weber, A.; Jørgensen, BB

    2002-01-01

    Depth distribution and temperature dependence of bacterial sulfate reduction were studied in hydrothermal surface sediments of the southern trough of the Guaymas Basin at 2000 m water depth. In situ temperatures ranged from 2.8 degreesC at the sediment surface to > 130degreesC at 30 cm depth in t......C. Sulfate reduction was not detected above 100degreesC. (C) 2002 Elsevier Science Ltd. All rights reserved....

  4. Sulfate Reduction at Low Ph To Remediate Acid Mine Drainage

    NARCIS (Netherlands)

    Sánchez-Andrea, I.; Sanz, J.L.; Bijmans, M.F.M.; Stams, A.J.M.

    2014-01-01

    Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, b

  5. Volatile fatty acids as substrates for iron and sulfate reduction in Arctic marine sediments, Svalbard

    Science.gov (United States)

    Finke, N.; Vandieken, V.; Jorgensen, B. B.

    2006-12-01

    Anaerobic degradation of complex organic material in aquatic systems is a multi-step process. The metabolic products of fermentative bacteria serve as electron donors for the terminal oxidizing bacteria. In marine sediments, iron reduction and sulfate reduction are generally the most important terminal oxidation processes in the upper anoxic zone [1]. Microorganisms that reduce iron and sulfate may use a broad range of electron donors, yet the list of potential substrates provides little information about the substrates used in situ by these organisms. Investigations on the electron donors for sulfate reducers in marine sediments have shown that volatile fatty acids (VFA), and in particular acetate, together with hydrogen are the major substrates (e.g. [2-4]). Similar investigations for iron reduction or simultaneous iron and sulfate reduction are lacking for marine sediments. Furthermore, most of these studies were made in temperate sediments and little is known about the substrates for sulfate reducers in permanently cold sediments, which account for >90% of the ocean floor [5]. We investigated the relative contributions of iron reduction and sulfate reduction to the terminal oxidation of organic carbon and the importance of acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in permanently cold, Arctic sediments from Svalbard. In the surface layer (0-2 cm) sulfate reduction accounted for 2/3 of the organic carbon oxidation (determined as DIC production), the remaining 1/3 were attributed to iron reduction. In the 5-9 cm layer sulfate reduction was the sole important terminal oxidation step. The contribution of acetate to terminal oxidation was determined by radiotracer incubation as well as from the accumulation after the inhibition of sulfate reduction by selenate. The rates determined with the two methods varied by less than 20%. Acetate turnover, determined with the tracer incubations, accounted for 10 and 40% of

  6. Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia.

    Science.gov (United States)

    Milucka, Jana; Widdel, Friedrich; Shima, Seigo

    2013-05-01

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) at marine gas seeps is performed by archaeal-bacterial consortia that have so far not been cultivated in axenic binary or pure cultures. Knowledge about possible biochemical reactions in AOM consortia is based on metagenomic retrieval of genes related to those in archaeal methanogenesis and bacterial sulfate reduction, and identification of a few catabolic enzymes in protein extracts. Whereas the possible enzyme for methane activation (a variant of methyl-coenzyme M reductase, Mcr) was shown to be harboured by the archaea, enzymes for sulfate activation and reduction have not been localized so far. We adopted a novel approach of fluorescent immunolabelling on semi-thin (0.3-0.5 μm) cryosections to localize two enzymes of the SR pathway, adenylyl : sulfate transferase (Sat; ATP sulfurylase) and dissimilatory sulfite reductase (Dsr) in microbial consortia from Black Sea methane seeps. Both Sat and Dsr were exclusively found in an abundant microbial morphotype (c. 50% of all cells), which was tentatively identified as Desulfosarcina/Desulfococcus-related bacteria. These results show that ANME-2 archaea in the Black Sea AOM consortia did not express bacterial enzymes of the canonical sulfate reduction pathway and thus, in contrast to previous suggestions, most likely cannot perform canonical sulfate reduction. Moreover, our results show that fluorescent immunolabelling on semi-thin cryosections which to our knowledge has been so far only applied on cell tissues, is a powerful tool for intracellular protein detection in natural microbial associations.

  7. Modelling Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactor with Ethanol as Electron Donor

    Science.gov (United States)

    Sun, Jing; Dai, Xiaohu; Wang, Qilin; Pan, Yuting; Ni, Bing-Jie

    2016-10-01

    In this work, a mathematical model based on growth kinetics of microorganisms and substrates transportation through biofilms was developed to describe methane production and sulfate reduction with ethanol being a key electron donor. The model was calibrated and validated using experimental data from two case studies conducted in granule-based Upflow Anaerobic Sludge Blanket reactors. The results suggest that the developed model could satisfactorily describe methane and sulfide productions as well as ethanol and sulfate removals in both systems. The modeling results reveal a stratified distribution of methanogenic archaea, sulfate-reducing bacteria and fermentative bacteria in the anaerobic granular sludge and the relative abundances of these microorganisms vary with substrate concentrations. It also indicates sulfate-reducing bacteria can successfully outcompete fermentative bacteria for ethanol utilization when COD/SO42‑ ratio reaches 0.5. Model simulation suggests that an optimal granule diameter for the maximum methane production efficiency can be achieved while the sulfate reduction efficiency is not significantly affected by variation in granule size. It also indicates that the methane production and sulfate reduction can be affected by ethanol and sulfate loading rates, and the microbial community development stage in the reactor, which provided comprehensive insights into the system for its practical operation.

  8. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge

    KAUST Repository

    Meulepas, Roel J.W.

    2010-05-01

    This study investigates the oxidation of labeled methane (CH4) and the CH4 dependence of sulfate reduction in three types of anaerobic granular sludge. In all samples, 13C-labeled CH4 was anaerobically oxidized to 13C-labeled CO2, while net endogenous CH4 production was observed. Labeled-CH4 oxidation rates followed CH4 production rates, and the presence of sulfate hampered both labeled-CH4 oxidation and methanogenesis. Labeled-CH4 oxidation was therefore linked to methanogenesis. This process is referred to as trace CH4 oxidation and has been demonstrated in methanogenic pure cultures. This study shows that the ratio between labeled-CH4 oxidation and methanogenesis is positively affected by the CH4 partial pressure and that this ratio is in methanogenic granular sludge more than 40 times higher than that in pure cultures of methanogens. The CH4 partial pressure also positively affected sulfate reduction and negatively affected methanogenesis: a repression of methanogenesis at elevated CH4 partial pressures confers an advantage to sulfate reducers that compete with methanogens for common substrates, formed from endogenous material. The oxidation of labeled CH 4 and the CH4 dependence of sulfate reduction are thus not necessarily evidence of anaerobic oxidation of CH4 coupled to sulfate reduction. © 2010 Federation of European Microbiological Societies.

  9. Thermochemical sulfate reduction in deep petroleum reservoirs: a molecular approach; Thermoreduction des sulfates dans les reservoirs petroliers: approche moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Hanin, S.

    2002-11-01

    The thermochemical sulfate reduction (TSR) is a set of chemical reactions leading to hydrocarbon oxidation and production of carbon dioxide and sour gas (H{sub 2}S) which is observed in deep petroleum reservoirs enriched in anhydrites (calcium sulfate). Molecular and isotopic studies have been conducted on several crude oil samples to determine which types of compounds could have been produced during TSR. Actually, we have shown that the main molecules formed by TSR were organo-sulfur compounds. Indeed, sulfur isotopic measurements. of alkyl-di-benzothiophenes, di-aryl-disulfides and thia-diamondoids (identified by NMR or synthesis of standards) shows that they are formed during TSR as their value approach that of the sulfur of the anhydrite. Moreover, thia-diamondoids are apparently exclusively formed during this phenomenon and can thus be considered as true molecular markers of TSR. In a second part, we have investigated with laboratory experiments the formation mechanism of the molecules produced during TSR. A first model has shown that sulfur incorporation into the organic matter occurred with mineral sulfur species of low oxidation degree. The use of {sup 34}S allowed to show that the sulfates reduction occurred during these simulations. At least, some experiments on polycyclic hydrocarbons, sulfurized or not, allowed to establish that thia-diamondoids could be formed by acid-catalysed rearrangements at high temperatures in a similar way as the diamondoids. (author)

  10. Sulfated glycopolymer thin films - preparation, characterization, and biological activity.

    Science.gov (United States)

    Grombe, Ringo; Gouzy, Marie F; Maitz, Manfred F; Freundenberg, Uwe; Zschoche, Stefan; Simon, Frank; Pompe, Tilo; Sperling, Claudia; Werner, Carsten

    2007-02-12

    The impact of heparinoid characteristics on model surfaces obtained from immobilization of sole sulfate groups as well as sulfated glycosides, sulfated cellulose, and definite heparin has been investigated. The obtained layers were physico-chemically characterized regarding film thickness, chemical composition, wettability, and surface morphology. Antithrombin adsorption, studied by fluorescence labeling, revealed a strong dependence on the presence of glycosidic structures and on the molecular weight of the grafted saccharide. On contact with whole blood, the coatings resulted in a diminished plasmatic and cellular coagulation in vitro, which did not reflect well the antithrombin binding. Therefore, more complex activating pathways are discussed. PMID:17295407

  11. Antiquity and evolutionary status of bacterial sulfate reduction: sulfur isotope evidence.

    Science.gov (United States)

    Schidlowski, M

    1979-09-01

    The presently available sedimentary sulfur isotope record for the Precambrian seems to allow the following conclusions: (1) In the Early Archaean, sedimentary delta 34S patterns attributable to bacteriogenic sulfate reduction are generally absent. In particular, the delta 34S spread observed in the Isua banded iron formation (3.7 x 10(9) yr) is extremely narrow and coincides completely with the respective spreads yielded by contemporaneous rocks of assumed mantle derivation. Incipient minor differentiation of the isotope pattersn notably of Archaean sulfates may be accounted for by photosynthetic sulfur bacteria rather than by sulfate reducers. (2) Isotopic evidence of dissimilatory sulfate reduction is first observed in the upper Archaean of the Aldan Shield, Siberia (approximately 3.0 x 10(9) yr) and in the Michipicoten and Woman River banded iron formations of Canada (2.75 x 10(9) yr). This narrows down the possible time of appearance of sulfate respirers to the interval 2.8--3.1 x 10(9) yr. (3) Various lines of evidence indicate that photosynthesis is older than sulfate respiration, the SO4(2-) Utilized by the first sulfate reducers deriving most probably from oxidation of reduced sulfur compounds by photosynthetic sulfur bacteria. Sulfate respiration must, in turn, have antedated oxygen respiration as O2-respiring multicellular eucaryotes appear late in the Precambrian. (4) With the bulk of sulfate in the Archaean oceans probably produced by photosynthetic sulfur bacteria, the accumulation of SO4(2-) in the ancient seas must have preceded the buildup of appreciable steady state levels of free oxygen. Hence, the occurrence of sulfate evaporites in Archaean sediments does not necessarily provide testimony of oxidation weathering on the ancient continents and, consequently, of the existence of an atmospheric oxygen reservoir.

  12. Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis

    Science.gov (United States)

    Meshoulam, Alexander; Ellis, Geoffrey S.; Said Ahmad, Ward; Deev, Andrei; Sessions, Alex L.; Tang, Yongchun; Adkins, Jess F.; Liu, Jinzhong; Gilhooly, William P.; Aizenshtat, Zeev; Amrani, Alon

    2016-09-01

    The sulfur isotopic fractionation associated with the formation of organic sulfur compounds (OSCs) during thermochemical sulfate reduction (TSR) was studied using gold-tube pyrolysis experiments to simulate TSR. The reactants used included n-hexadecane (n-C16) as a model organic compound with sulfate, sulfite, or elemental sulfur as the sulfur source. At the end of each experiment, the S-isotopic composition and concentration of remaining sulfate, H2S, benzothiophene, dibenzothiophene, and 2-phenylthiophene (PT) were measured. The observed S-isotopic fractionations between sulfate and BT, DBT, and H2S in experimental simulations of TSR correlate well with a multi-stage model of the overall TSR process. Large kinetic isotope fractionations occur during the first, uncatalyzed stage of TSR, 12.4‰ for H2S and as much as 22.2‰ for BT. The fractionations decrease as the H2S concentration increases and the reaction enters the second, catalyzed stage. Once all of the oxidizable hydrocarbons have been consumed, sulfate reduction ceases and equilibrium partitioning then dictates the fractionation between H2S and sulfate (∼17‰). Experiments involving sparingly soluble CaSO4 show that during the second catalytic phase of TSR the rate of sulfate reduction exceeds that of sulfate dissolution. In this case, there is no apparent isotopic fractionation between source sulfate and generated H2S, as all of the available sulfate is effectively reduced at all reaction times. When CaSO4 is replaced with fully soluble Na2SO4, sulfate dissolution is no longer rate limiting and significant S-isotopic fractionation is observed. This supports the notion that CaSO4 dissolution can lead to the apparent lack of fractionation between H2S and sulfate produced by TSR in nature. The S-isotopic composition of individual OSCs record information related to geochemical reactions that cannot be discerned from the δ34S values obtained from bulk phases such as H2S, oil, and sulfate minerals, and

  13. Bacterial Sulfate Reduction Above 100-Degrees-C in Deep-Sea Hydrothermal Vent Sediments

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; ISAKSEN, MF; JANNASCH, HW

    1992-01-01

    The currently known upper temperature limit for growth of organisms, shared by a number of archaebacteria, is 110-degrees-C. However, among the sulfate-reducing bacteria, growth temperatures of greater than 100-degrees-C have not been found. A search for high-temperature activity of sulfate-reducing...... bacteria was done in hot deep-sea sediments at the hydrothermal vents of the Guaymas Basin tectonic spreading center in the Gulf of California. Radiotracer studies revealed that sulfate reduction can occur at temperatures up to 110-degrees-C, with an optimum rate at 103-degrees to 106-degrees...

  14. Role of sedimentary organic matter in bacterial sulfate reduction: the G model tested

    International Nuclear Information System (INIS)

    Laboratory study of the bacterial decomposition of Long Island Sound plankton in oxygenated seawater over a period of 2 years shows that the organic material undergoes decomposition via first-order kinetics and can be divided into two decomposable fractions, of considerably different reactivity, and a nonmetabolized fraction. This planktonic material, after undergoing varying degrees of oxic degradation, was added in the laboratory to anoxic sediment taken from a depth of 1 m at the NWC site of Long Island Sound and the rate of bacterial sulfate reduction in the sediment measured by the 35S radiotracer technique. The stimulated rate of sulfate reduction was in direct proportion to the amount of planktonic carbon added. This provides direct confirmation of the first-order decomposition, or G model, for marine sediments and proves that the in situ rate of sulfate reduction is organic-matter limited. Slower sulfate reduction rates resulted when oxically degraded plankton rather than fresh plankton was added, and the results confirm the presence of the same two fractions of organic matter deduced from the oxic degradation studies. Near-surface Long Island Sound sediment, which already contains abundant readily decomposable organic matter, was also subjected to anoxic decomposition by bacterial sulfate reduction. The decrease in sulfate reduction rate with time parallels decreases in the amount of organic matter, and these results also indicate the presence of two fractions of organic carbon of distinctly different reactivity. From plots of the log of reduction rate vs. time two first-order rate constants were obtained that agree well with those derived from the plankton addition experiment. Together, the two experiments confirm the use of a simple multi-first-order rate law for organic matter decomposition in marine sediments

  15. Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.

    Science.gov (United States)

    Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang

    2016-01-01

    Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. PMID:26372940

  16. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.

    Science.gov (United States)

    Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie

    2015-05-15

    Zero valent iron (ZVI) packed anaerobic granular sludge reactors have been developed for improved anaerobic wastewater treatment. In this work, a mathematical model is developed to describe the enhanced methane production and sulfate reduction in anaerobic granular sludge reactors with the addition of ZVI. The model is successfully calibrated and validated using long-term experimental data sets from two independent ZVI-enhanced anaerobic granular sludge reactors with different operational conditions. The model satisfactorily describes the chemical oxygen demand (COD) removal, sulfate reduction and methane production data from both systems. Results show ZVI directly promotes propionate degradation and methanogenesis to enhance methane production. Simultaneously, ZVI alleviates the inhibition of un-dissociated H2S on acetogens, methanogens and sulfate reducing bacteria (SRB) through buffering pH (Fe(0) + 2H(+) = Fe(2+) + H2) and iron sulfide precipitation, which improve the sulfate reduction capacity, especially under deterioration conditions. In addition, the enhancement of ZVI on methane production and sulfate reduction occurs mainly at relatively low COD/ [Formula: see text] ratio (e.g., 2-4.5) rather than high COD/ [Formula: see text] ratio (e.g., 16.7) compared to the reactor without ZVI addition. The model proposed in this work is expected to provide support for further development of a more efficient ZVI-based anaerobic granular system.

  17. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    Science.gov (United States)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-01

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. PMID:27318730

  18. Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis

    Science.gov (United States)

    Alexander Meshoulam,; Ellis, Geoffrey S.; Ward Said Ahmad,; Andrei Deev,; Alex L. Sessions,; Yongchun Tang,; Jess Adkins,; Liu Jinzhong,; William P. Gilhooly III,; Zeev Aizenshtat,; Alon Amrani,

    2016-01-01

    The sulfur isotopic fractionation associated with the formation of organic sulfur compounds (OSCs) during thermochemical sulfate reduction (TSR) was studied using gold-tube pyrolysis experiments to simulate TSR. The reactants used included n-hexadecane (n-C16) as a model organic compound with sulfate, sulfite, or elemental sulfur as the sulfur source. At the end of each experiment, the S-isotopic composition and concentration of remaining sulfate, H2S, benzothiophene, dibenzothiophene, and 2-phenylthiophene (PT) were measured. The observed S-isotopic fractionations between sulfate and BT, DBT, and H2S in experimental simulations of TSR correlate well with a multi-stage model of the overall TSR process. Large kinetic isotope fractionations occur during the first, uncatalyzed stage of TSR, 12.4‰ for H2S and as much as 22.2‰ for BT. The fractionations decrease as the H2S concentration increases and the reaction enters the second, catalyzed stage. Once all of the oxidizable hydrocarbons have been consumed, sulfate reduction ceases and equilibrium partitioning then dictates the fractionation between H2S and sulfate (∼17‰).

  19. High rate sulfate reduction at pH 6 in a Ph-auxostat submerged membrane bioreactor fed with formate

    NARCIS (Netherlands)

    Bijmans, M.F.M.; Peeters, T.W.T.; Lens, P.N.L.; Buisman, C.J.N.

    2008-01-01

    Many industrial waste and process waters contain high concentrations of sulfate, which can be removed by sulfate-reducing bacteria (SRB). This paper reports on mesophilic (30 °C) sulfate reduction at pH 6 with formate as electron donor in a membrane bioreactor with a pH-auxostat dosing system. A mix

  20. Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions

    Science.gov (United States)

    Komlos, John; Peacock, Aaron; Kukkadapu, Ravi K.; Jaffé, Peter R.

    2008-08-01

    The biological reduction and precipitation of uranium in groundwater has the potential to prevent uranium migration from contaminated sites. Although previous research has shown that uranium bioremediation is maximized during iron reduction, little is known on how long-term iron/uranium reducing conditions can be maintained. Questions also remain about the stability of uranium and other reduced species after a long-term biostimulation scheme is discontinued and oxidants (i.e., oxygen) re-enter the bioreduced zone. To gain further insights into these processes, four columns, packed with sediment containing iron as Fe-oxides (mainly Al-goethite) and silicate Fe (Fe-containing clays), were operated in the laboratory under field-relevant flow conditions to measure the long-term (>200 day) removal efficiency of uranium from a simulated groundwater during biostimulation with an electron donor (3 mM acetate) under low sulfate conditions. The biostimulation experiments were then followed by reoxidation of the reduced sediments with oxygen. During biostimulation, Fe(III) reduction occurred simultaneously with U(VI) reduction. Both Fe-oxides and silicate Fe(III) were partly reduced, and silicate Fe(III) reduction was detected only during the first half of the biostimulation phase while Fe-oxide reduction occurred throughout the whole biostimulation period. Mössbauer measurements indicated that the biogenic Fe(II) precipitate resulting from Fe-oxide reduction was neither siderite nor FeS 0.09 (mackinawite). U(VI) reduction efficiency increased throughout the bioreduction period, while the Fe(III) reduction gradually decreased with time. Effluent Fe(II) concentrations decreased linearly by only 30% over the final 100 days of biostimulation, indicating that bioreducible Fe(III) in the sediment was not exhausted at the termination of the experiment. Even though Fe(III) reduction did not change substantially with time, microorganisms not typically associated with Fe(III) and U

  1. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  2. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    Science.gov (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  3. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone

    DEFF Research Database (Denmark)

    Bruchert, V.; Jørgensen, BB; Neumann, K.;

    2003-01-01

    and the low capacity to oxidize and trap sulfide. The inner shelf break marks the seaward border of sulfidic bottom waters, and separates two different regimes of bacterial sulfate reduction. In the sulfidic bottom waters on the shelf, up to 55% of sulfide oxidation is mediated by the large nitrate......The coastal upwelling system off central Namibia is one of the most productive regions of the oceans and is characterized by frequently occurring shelf anoxia with severe effects for the benthic life and fisheries. We present data on water column dissolved oxygen, sulfide, nitrate and nitrite, pore...... water profiles for dissolved,sulfide and sulfate, S-35-sulfate reduction rates, as well as bacterial counts of large sulfur bacteria from 20 stations across the continental shelf and slope. The stations covered two transects and included the inner shelf with its anoxic and extremely oxygen...

  4. Thermophilic Sulfate Reduction in Hydrothermal Sediment of Lake Tanganyika, East-Africa

    DEFF Research Database (Denmark)

    ELSGAARD, L.; PRIEUR, D.; MUKWAYA, GM;

    1994-01-01

    In environments with temperatures above 60 degrees C, thermophilic prokaryotes are the only metabolically active life-forms. By using the (SO42-)-S-35 tracer technique, we studied the activity of sulfate-reducing microorganisms (SRM) in hot sediment from a hydrothermal vent site in the northern...... population of SRM in the hydrothermal sediment. Thermophilic sulfate reduction had a pH optimum of about 7 and was completely inhibited at pH 8.8 to 9.2. SRM could be enriched from hydrothermal chimney and sediment samples at 60 and 75 degrees C. In lactate-grown enrichments, sulfide production occurred...... at up to 70 and 75 degrees C, with optima at 63 and 71 degrees C, respectively. Several sporulating thermophilic enrichments were morphologically similar to Desulfotomaculum spp. Dissimilatory sulfate reduction in the studied hydrothermal area of Lake Tanganyika apparently has an upper temperature limit...

  5. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian;

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...

  6. METHANOGENESIS AND SULFATE REDUCTION IN CHEMOSTATS: II. MODEL DEVELOPMENT AND VERIFICATION

    Science.gov (United States)

    A comprehensive dynamic model is presented that simulates methanogenesis and sulfate reduction in a continuously stirred tank reactor (CSTR). This model incorporates the complex chemistry of anaerobic systems. A salient feature of the model is its ability to predict the effluent ...

  7. Pathways and Microbiology of Thiosulfate Transformations and Sulfate Reduction in a Marine Sediment (Kattegat, Denmark)

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; BAK, F.

    1991-01-01

    Reductive and oxidative pathways of the sulfur cycle were studied in a marine sediment by parallel radiotracer experiments with (SO4(2-))-S-35, (H2S)-S-35, and (S2O3(2-))-S-35 injected into undisturbed sediment cores. The distributions of viable populations of sulfate- and thiosulfate-reducing ba...

  8. Reduction of sulfate by hydrogen in natural systems: A literature review: Salt Repository Project

    International Nuclear Information System (INIS)

    The results of this literature search indicate that the reduction of sulfate by hydrogen gas can occur in nature, but that temperature appears to be a key factor in the rate of this reaction. At temperatures below 200/degree/C, the key factor in the rate of reaction appears to be extremely slow. At low pH the rate of reaction is faster than at high pH. The solution composition also influences the reaction rate; the most recent research available (Yanisagawa 1983) suggests that the concentration of sulfide in solution influences the rate of this reaction. The reduction reaction appears to proceed through a thiosulfate intermediate, so the presence and distribution of other sulfur species will influence the reaction rate. If the reaction mechanism proposed by Yanisagawa is correct, then higher concentrations of sulfide will result in faster rates of sulfate reduction. In conclusion, the reduction of sulfate by hydrogen to form significant amounts of sulfide is a function of temperature, sulfate and sulfide concentrations, pH, and solution composition. The rate of this reaction appears to be very slow under the conditions anticipated in this repository, but given the length of time required to maintain the integrity of the containers (300 to 1000 years) and the unusual solution compositions present, a better understanding of the reaction mechanism is needed. 16 refs., 1 tab

  9. A New Model for Electron Flow for Sulfate Reduction in Desulfovibrio alaskensis G20

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Kimberly L [University of Missouri, Columbia; Rapp-Giles, Barbara J [University of Missouri, Columbia; Semkiw, Elizabeth M. [University of Missouri; Porat, Iris [ORNL; Brown, Steven D [ORNL; Wall, Judy D. [University of Missouri

    2013-01-01

    To understand the energy conversion activities of the anaerobic sulfate-reducing bacteria, it is necessary to identify the components involved in electron flow. The importance of the abundant type I tetraheme cytochrome c3 (TpIc3) as an electron carrier during sulfate respiration was questioned by the previous isolation of a null mutation in the encoding gene, cycA, in Desulfovibrio alaskensis G20. Whereas respiratory growth of the CycA mutant with lactate and sulfate was little affected, growth with pyruvate and sulfate was significantly impaired. We have explored the phenotype of the CycA mutant through physiological tests and transcriptomic and proteomic analyses. Data reported here show that electrons from pyruvate oxidation do not reach adenylyl sulfate reductase, the enzyme catalyzing the first redox reaction during sulfate reduction, in the absence of either CycAor the type I cytochrome c3:menaquinone oxidoreductase, QrcABCD transmembrane complex. In contrast to the wild type, neither CycA and QrcA mutants do not grow with H2 or formate and sulfate as electron acceptor. Transcriptomic and proteomic analyses of the CycA mutant showed that transcripts and enzymes for the pathway from pyruvate to succinate were strongly decreased in the CycA mutant regardless of growth mode. Neither the CycA nor the QrcA mutant grew on fumarate alone, consistent with the omics results and a redox regulation of gene expression. We conclude that TpIc3 and the Qrc complex are essential D. alaskensis components for transfer of electrons released in the periplasm to reach the cytoplasmic adenylyl sulfate reductase and present a model that may explain the CycA phenotype through confurcation of electrons.

  10. New Model for Electron Flow for Sulfate Reduction in Desulfovibrio alaskensis G20

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Kimberly L.; Rapp-Giles, Barbara J.; Semkiw, Elizabeth S.; Porat, Iris; Brown, Steven D.; Wall, Judy D.

    2014-02-01

    To understand the energy conversion activities of the anaerobic sulfate-reducing bacteria, it is necessary to identify the components involved in electron flow. The importance of the abundant type I tetraheme cytochrome c3 (TpIc3) as an electron carrier during sulfate respiration was questioned by the previous isolation of a null mutation in the gene encoding TpIc3, cycA, in Desulfovibrio alaskensis G20. Whereas respiratory growth of the CycA mutant with lactate and sulfate was little affected, growth with pyruvate and sulfate was significantly impaired. We have explored the phenotype of the CycA mutant through physiological tests and transcriptomic and proteomic analyses. Data reported here show that electrons from pyruvate oxidation do not reach adenylyl sulfate reductase, the enzyme catalyzing the first redox reaction during sulfate reduction, in the absence of either CycA or the type I cytochrome c3:menaquinone oxidoreductase transmembrane complex, QrcABCD. In contrast to the wild type, the CycA and QrcA mutants did not grow with H2 or formate and sulfate as the electron acceptor. Transcriptomic and proteomic analyses of the CycA mutant showed that transcripts and enzymes for the pathway from pyruvate to succinate were strongly decreased in the CycA mutant regardless of the growth mode. Neither the CycA nor the QrcA mutant grew on fumarate alone, consistent with the omics results and a redox regulation of gene expression. We conclude that TpIc3 and the Qrc complex are D. alaskensis components essential for the transfer of electrons released in the periplasm to reach the cytoplasmic adenylyl sulfate reductase and present a model that may explain the CycA phenotype through confurcation of electrons.

  11. New Model for Electron Flow for Sulfate Reduction in Desulfovibrio alaskensis G20

    Energy Technology Data Exchange (ETDEWEB)

    Rapp-Giles, Barbara J [University of Missouri, Columbia; Keller, Kimberly L [University of Missouri, Columbia; Porat, Iris [ORNL; Brown, Steven D [ORNL; Semkiw, Elizabeth M. [University of Missouri; Wall, Judy D. [University of Missouri

    2014-01-01

    To understand the energy conversion activities of the anaerobic sulfate-reducing bacteria, it is necessary to identify the components involved in electron flow. The importance of the abundant type I tetraheme cytochrome c3 (TpIc3) as an electron carrier during sulfate respiration was questioned by the previous isolation of a null mutation in the gene encoding TpIc3, cycA, in Desulfovibrio alaskensis G20. Whereas respiratory growth of the CycA mutant with lactate and sulfate was little affected, growth with pyruvate and sulfate was significantly impaired. We have explored the phenotype of the CycA mutant through physiological tests and transcriptomic and proteomic analyses. Data reported here show that electrons from pyruvate oxidation do not reach adenylyl sulfate reductase, the enzyme catalyzing the first redox reaction during sulfate reduction, in the absence of either CycA or the type I cytochrome c3:menaquinone oxidoreductase transmembrane complex, QrcABCD. In contrast to the wild type, the CycA and QrcA mutants did not grow with H2 or formate and sulfate as the electron acceptor. Transcriptomic and proteomic analyses of the CycA mutant showed that transcripts and enzymes for the pathway from pyruvate to succinate were strongly decreased in the CycA mutant regardless of the growth mode. Neither the CycA nor the QrcA mutant grew on fumarate alone, consistent with the omics results and a redox regulation of gene expression. We conclude that TpIc3 and the Qrc complex are D. alaskensis components essential for the transfer of electrons released in the periplasm to reach the cytoplasmic adenylyl sulfate reductase and present a model that may explain the CycA phenotype through confurcation of electrons.

  12. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard

    DEFF Research Database (Denmark)

    Finke, Niko; Vandieken, Verona; Jørgensen, Bo Barker

    2007-01-01

    The contribution of volatile fatty acids (VFA) as e--donors for anaerobic terminal oxidation of organic carbon through iron and sulfate reduction was studied in Arctic fjord sediment. Dissolved inorganic carbon, Fe2+, VFA concentrations, and sulfate reduction were monitored in slurries from...

  13. Temperature effect on the sulfur isotope fractionation during sulfate reduction by two strains of the hyperthermophilic Archaeoglobus fulgidus

    NARCIS (Netherlands)

    Mitchell, K.; Heyer, A.; Canfield, D.E.; Hoek, J.; Habicht, K.S.

    2009-01-01

    Summary Sulfur isotope fractionation during dissimilatory sulfate reduction by two strains of the thermophilic archaeon Archaeoglobus fulgidus (strains VC-16 and Z) was explored over the entire temperature range of growth. The optimal cell-specific sulfate reduction rate (14 fmol cell-1 h -1) was fo

  14. Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments

    Science.gov (United States)

    Laverman, Anniet M.; Pallud, Céline; Abell, Jeffrey; Cappellen, Philippe Van

    2012-01-01

    Nitrate and sulfate are two major terminal electron acceptors of anaerobic respiration in nearshore sediments. Potential nitrate and sulfate reduction rates (NRR and SRR) were determined on surficial sediments sampled at 14 sites representing a wide range of shallow-water depositional environments. The rates were obtained by supplying undisturbed slices of sediments with nitrate, sulfate or both using a flow-through reactor technique. No external electron donor was added to the sediments. The results indicate that all studied sediments harbored viable and coexisting nitrate- and sulfate-reducing communities, which were able to instantaneously consume the electron acceptors supplied to the reactors. On average, NRR exceeded SRR by about one order of magnitude (309 ± 180 nmol NO3- cm-3 h-1versus 37 ± 29 nmol SO42- cm-3 h-1). The NRR:SRR molar ratio, however, varied significantly from site to site, with values ranging from 1.7 to 59. Nitrite production, indicative of incomplete nitrate reduction, was observed in all studied sediments and, on average, accounted for 45% of NRR (range 3-80%). Production of sulfate under nitrate-reducing conditions was observed in 10 out of 14 of the studied sediments, suggesting a common occurrence of sulfide oxidation coupled to nitrate reduction. Oxidation of sulfide accounted for 0 to 40% of NRR in the nitrate-only experiments. When both electron acceptors were supplied simultaneously, net sulfate consumption decreased on average by 45%. The effect of nitrate on SRR was highly variable, however, ranging from near complete inhibition to a 25% enhancement of SRR. Overall, the results of this study point to the need to critically reassess the model formulations used to represent anaerobic respiration processes and their interactions in early diagenetic models.

  15. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  16. Kinetics of microbially mediated reactions: dissimilatory sulfate reduction in saltmarsh sediments (Sapelo Island, Georgia, USA)

    Science.gov (United States)

    Roychoudhury, Alakendra N.; Van Cappellen, Philippe; Kostka, Joel E.; Viollier, Eric

    2003-04-01

    A sediment disk reactor was tested in once flow-through mode to retrieve kinetic parameters for the Monod rate law that describes sulfate reduction. The experimental method was compared with a previously described procedure by the authors where a sediment plug-flow reactor was operated in a recirculation mode. In recirculation mode, accumulation of metabolic byproducts in certain cases may result in negative feedback, thus preventing accurate determination of kinetic information. The method described in this article provides an alternative to the recirculation sediment plug-flow-through reactor technique for retrieving kinetic parameters of microbially mediated reactions in aquatic sediments. For sulfate reduction in a saltmarsh site, a maximum estimate of the half-saturation concentration, Ks, of 204±26 μM and a maximum reaction rate, Rm, of 2846±129 nmol cm( wet sediment ) 3 d-1 was determined. The Ks value obtained was consistent with the one estimated previously (K s=240±20 μM) from a different site within the same saltmarsh mud flat using a recirculating reactor. From the Rm value and reduction rates determined using 35SO 42- incubation experiments, we infer that sulfate reduction is limited in the field. Substrate availability is not the main contributor for the limitation, however. Competition from other microbes, such as iron reducers affects the activity of sulfate reducers in the suboxic to anoxic zones, whereas aerobes compete in the oxic zone. High sulfide concentration in the pore water may also have acted as a toxin to the sulfate reducers in the field.

  17. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source.

    Science.gov (United States)

    Timmers, Peer Ha; Suarez-Zuluaga, Diego A; van Rossem, Minke; Diender, Martijn; Stams, Alfons Jm; Plugge, Caroline M

    2016-06-01

    The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with (13)C-labeled CH4 ((13)CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, (13)C-labeled CO2 ((13)CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with (13)CO2 production and no methanogenesis occurred, excluding TMO as a possible source for (13)CO2 production from (13)CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment. PMID:26636551

  18. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source

    Science.gov (United States)

    Timmers, Peer HA; Suarez-Zuluaga, Diego A; van Rossem, Minke; Diender, Martijn; Stams, Alfons JM; Plugge, Caroline M

    2016-01-01

    The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment. PMID:26636551

  19. Biological activities of the sulfated polysaccharide from the vascular plant Halodule wrightii

    Directory of Open Access Journals (Sweden)

    Juliana M. C. Silva

    2012-02-01

    Full Text Available A sulfated polysaccharide (SPSG was successfully isolated from seagrass Halodule wrightii Asch., Cymodoceaceae, and its antioxidant and anticoagulant activities were investigated. The data presented here showed that the SPSG is a 11 kDa sulfated heterogalactan with a sulfatation degree of 20.63% and it also contains glucose and xylose. SPSG antioxidant activities were evaluated using several in vitro assays and the anticoagulant activity was evaluated by aPTT and PT tests. These assays suggested that the SPSG possessed remarkable antioxidant properties in different in vitro assays and an outstanding anticoagulant activity 2.5-fold higher than that of heparin Clexane® in the aPTT test. This data represents the first reported on the sulfated polysaccharide biological activities from seagrass. These results indicate that SPSG can be considered in the future as a drug utilized in treating diseases from these systems.

  20. Sulfate reduction and copper precipitation by a Citrobacter sp. isolated from a mining area

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Rongliang, E-mail: eesqrl@mail.sysu.edu.cn [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)] [Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Zhao Benliang; Liu Jinling [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Huang, Xiongfei [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)] [Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Li, Qingfei [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Brewer, Eric [Viridian Environmental LLC, VA 22207 (United States); Wang, Shizhong; Shi, Ning [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2009-05-30

    A strain of sulfate-reducing bacteria, designated strain 'DBM', was isolated from sediments of a mining area. Phylogenetic analysis of the 16S rRNA gene sequence of the isolate revealed that it was related to members of the genus Citrobacter, with C. AzoR-4, C. freundii, C. braakii and C. werkmanii being the most closely related species (sequence similarity up to 98%). Few studies have been done on sulfate reduction ability in Citrobacter. Electron microscopy studies showed that the morphology of the strain DBM was rod-shaped. Strain DBM reduced 10 mM of sulfate completely to sulfide within 7 d, and it recovered its sulfate reduction ability after 7 d of aerobic growth. Furthermore, strain DBM effectively precipitated 0.40 mM copper during its growth. Elemental composition of the resulting microbial precipitate was studied using electro-dispersive X-ray spectroscopy, and it was found that the ratio of S:Cu was 1.07. The result was consistent with the formation of copper sulfide. Heavy metal precipitation by Citrobacter sp. strain DBM was a phenomenon that may be useful in the bioremediation of acid mine drainage.

  1. The effects of acid deposition on sulfate reduction and methane production in peatlands

    Science.gov (United States)

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  2. Linkage of High Rates of Sulfate Reduction in Yellowstone Hot Springs to Unique Sequence Types in the Dissimilatory Sulfate Respiration Pathway

    OpenAIRE

    Fishbain, Susan; Dillon, Jesse G.; Heidi L Gough; Stahl, David A

    2003-01-01

    Diversity, habitat range, and activities of sulfate-reducing prokaryotes within hot springs in Yellowstone National Park were characterized using endogenous activity measurements, molecular characterization, and enrichment. Five major phylogenetic groups were identified using PCR amplification of the dissimilatory sulfite reductase genes (dsrAB) from springs demonstrating significant sulfate reduction rates, including a warm, acidic (pH 2.5) stream and several nearly neutral hot springs with ...

  3. Kinetics of uncatalyzed thermochemical sulfate reduction by sulfur-free paraffin

    Science.gov (United States)

    Zhang, Tongwei; Ellis, Geoffrey S.; Ma, Qisheng; Amrani, Alon; Tang, Yongchun

    2012-11-01

    To determine kinetic parameters of sulfate reduction by hydrocarbons (HC) without the initial presence of low valence sulfur, we carried out a series of isothermal gold-tube hydrous-pyrolysis experiments at 320, 340, and 360 °C under a constant confined pressure of 24.1 MPa. The reactants used consisted of saturated HC (sulfur-free) and CaSO4 in an aqueous solution buffered to three different pH conditions without the addition of elemental sulfur (S8) or H2S as initiators. H2S produced in the course of reaction was proportional to the extent of the reduction of CaSO4 that was initially the only sulfur-containing reactant. Our results show that the in situ pH of the aqueous solution (herein, in situ pH refers to the calculated pH value of the aqueous solution at certain experimental conditions) can significantly affect the rate of the thermochemical sulfate reduction (TSR) reaction. A substantial increase in the TSR reaction rate was observed with a decrease in the in situ pH. Our experimental results show that uncatalyzed TSR is a first-order reaction. The temperature dependence of experimentally measured H2S yields from sulfate reduction was fit with the Arrhenius equation. The determined activation energy for HC (sulfur-free) reacting with HSO4- in our experiments is 246.6 kJ/mol at pH values ranging from 3.0 to 3.5, which is slightly higher than the theoretical value of 227.0 kJ/mol using ab initio quantum chemical calculations on a similar reaction. Although the availability of reactive sulfate significantly affects the rate of reaction, a consistent rate constant was determined by accounting for the HSO4- ion concentration. Our experimental and theoretical approach to the determination of the kinetics of TSR is further validated by a reevaluation of several published experimental TSR datasets without the initial presence of native sulfur or H2S. When the effect of reactive sulfate concentration is appropriately accounted for, the published experimental TSR

  4. Kinetics of uncatalyzed thermochemical sulfate reduction by sulfur-free paraffin

    Science.gov (United States)

    Zhang, Tongwei; Ellis, Geoffrey S.; Ma, Qisheng; Amrani, Alon; Tang, Yongchun

    2012-01-01

    To determine kinetic parameters of sulfate reduction by hydrocarbons (HC) without the initial presence of low valence sulfur, we carried out a series of isothermal gold-tube hydrous-pyrolysis experiments at 320, 340, and 360 °C under a constant confined pressure of 24.1 MPa. The reactants used consisted of saturated HC (sulfur-free) and CaSO4 in an aqueous solution buffered to three different pH conditions without the addition of elemental sulfur (S8) or H2S as initiators. H2S produced in the course of reaction was proportional to the extent of the reduction of CaSO4 that was initially the only sulfur-containing reactant. Our results show that the in situ pH of the aqueous solution (herein, in situ pH refers to the calculated pH value of the aqueous solution at certain experimental conditions) can significantly affect the rate of the thermochemical sulfate reduction (TSR) reaction. A substantial increase in the TSR reaction rate was observed with a decrease in the in situ pH. Our experimental results show that uncatalyzed TSR is a first-order reaction. The temperature dependence of experimentally measured H2S yields from sulfate reduction was fit with the Arrhenius equation. The determined activation energy for HC (sulfur-free) reacting with View the MathML sourceHSO4− in our experiments is 246.6 kJ/mol at pH values ranging from 3.0 to 3.5, which is slightly higher than the theoretical value of 227.0 kJ/mol using ab initio quantum chemical calculations on a similar reaction. Although the availability of reactive sulfate significantly affects the rate of reaction, a consistent rate constant was determined by accounting for the HSO4− ion concentration. Our experimental and theoretical approach to the determination of the kinetics of TSR is further validated by a reevaluation of several published experimental TSR datasets without the initial presence of native sulfur or H2S. When the effect of reactive sulfate concentration is appropriately accounted for, the

  5. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    Directory of Open Access Journals (Sweden)

    Arpita eBose

    2013-12-01

    Full Text Available Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5 and longer alkanes. C2-C4 alkanes such as ethane, propane and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4 then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist. Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4‰ and 4.5‰ respectively. The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively. Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  6. Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis

    OpenAIRE

    Treude, Tina; Smith, C. R.; Wenzhöfer, F.; Carney, E; Bernardino, A. F.; A. K. Hannides; Krüger, M.; A. Boetius

    2009-01-01

    Deep-sea whale falls create sulfidic habits Supporting chemoautotrophic communities, but microbial processes underlying the formation Of Such habitats remain poorly evaluated. Microbial degradation processes (sulfate reduction, methanogenesis) and biogeochemical gradients were studied in a whale-fall habitat created by a 30 t whale carcass deployed at 1675 m depth for 6 to 7 yr on the California margin. A variety of measurements were conducted including photomosaicking, microsensor measuremen...

  7. Compositional and stable carbon isotopic fractionation during non-autocatalytic thermochemical sulfate reduction by gaseous hydrocarbons

    Science.gov (United States)

    Xia, Xinyu; Ellis, Geoffrey S.; Ma, Qisheng; Tang, Yongchun

    2014-01-01

    The possibility of autocatalysis during thermochemical sulfate reduction (TSR) by gaseous hydrocarbons was investigated by examination of previously reported laboratory and field data. This reaction was found to be a kinetically controlled non-autocatalytic process, and the apparent lack of autocatalysis is thought to be due to the absence of the required intermediate species. Kinetic parameters for chemical and carbon isotopic fractionations of gaseous hydrocarbons affected by TSR were calculated and found to be consistent with experimentally derived values for TSR involving long-chain hydrocarbons. Model predictions based on these kinetic values indicate that TSR by gaseous hydrocarbon requires high-temperature conditions. The oxidation of C2–5 hydrocarbons by sulfate reduction is accompanied by carbon isotopic fractionation with the residual C2–5 hydrocarbons becoming more enriched in 13C. Kinetic parameters were calculated for the stable carbon isotopic fractionation of gaseous hydrocarbons that have experienced TSR. Model predictions based on these kinetics indicate that it may be difficult to distinguish the effects of TSR from those of thermal maturation at lower levels of hydrocarbon oxidation; however, unusually heavy δ13C2+ values (>−10‰) can be diagnostic of high levels of conversion (>50%). Stoichiometric and stable carbon isotopic data show that methane is stable under the investigated reaction conditions and is likely a product of TSR by other gaseous hydrocarbons rather than a significant reactant. These results indicate that the overall TSR reaction mechanism for oxidation of organic substrates containing long-chain hydrocarbons involves three distinct phases as follows: (1) an initial slow and non-autocatalytic stage characterized by the reduction of reactive sulfate by long-chain saturated hydrocarbons; (2) a second autocatalytic reaction phase dominated by reactions involving reduced sulfur species and partially oxidized hydrocarbons; (3

  8. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms

    DEFF Research Database (Denmark)

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R;

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community ...

  9. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Weijma, J.; Stams, A.J.M.; Pol, L.W.H.; Lettinga, G.

    2000-02-05

    Sulfate reduction outcompeted methanogenesis at 65 C and pH 7.5 in methanol and sulfate-fed expanded granular sludge bed reactors operated at hydraulic retention times (HRT) of 14 and 2.5 h, both under methanol-limiting and methanol-overloading conditions. After 100 and 50 days for the reactors operated at 14 and 3.5 h, respectively, sulfide production accounted for 80% of the methanol-COD consumed by the sludge. The specific methanogenic activity on methanol of the sludge from a reactor operated at HRTs of down to 3.5 h for a period of 4 months gradually decreased from 0.83 gCOD {sm_bullet} gVSS{sup {minus}1} {sm_bullet} day{sup {minus}1} at the start to a value of less than 0.05 gCOD {sm_bullet} gVSS{sup {minus}1} {sm_bullet} day{sup {minus}1}, showing that the relative number of methanogens decreased and eventually became very low. By contrast, the increase of the specific sulfidogenic activity of sludge from 0.22 gCOD {sm_bullet} gVSS{sup {minus}1} {sm_bullet} day{sup {minus}1} to a final value of 1.05 gCOD {sm_bullet} gVSS{sup {minus}1} {sm_bullet} day{sup {minus}1} showed that sulfate reducing bacteria were enriched. Methanol degradation by a methanogenic culture obtained from a reactor by serial dilution of the sludge was inhibited in the presence of vancomycin, indicating that methanogenesis directly from methanogenic culture obtained from a reactor by serial dilution of the sludge was inhibited in the presence of vancomycin, indicating that methanogenesis directly from methanol was not important. H{sub 2}/CO{sub 2} and formate, but not acetate, were degraded to methane in the presence of vancomycin. These results indicated that methanol degradation to methane occurs via the intermediates H{sub 2}/CO{sub 2} and formate. The high and low specific methanogenic activity of sludge on H{sub 2}/CO{sub 2} and formate, respectively, indicated that the former substrate probably acts as the main electron donor for the methanogens during methanol degradation. As

  10. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record

    Science.gov (United States)

    Leavitt, William D.; Halevy, Itay; Bradley, Alexander S.; Johnston, David T.

    2013-07-01

    Phanerozoic levels of atmospheric oxygen relate to the burial histories of organic carbon and pyrite sulfur. The sulfur cycle remains poorly constrained, however, leading to concomitant uncertainties in O2 budgets. Here we present experiments linking the magnitude of fractionations of the multiple sulfur isotopes to the rate of microbial sulfate reduction. The data demonstrate that such fractionations are controlled by the availability of electron donor (organic matter), rather than by the concentration of electron acceptor (sulfate), an environmental constraint that varies among sedimentary burial environments. By coupling these results with a sediment biogeochemical model of pyrite burial, we find a strong relationship between observed sulfur isotope fractionations over the last 200 Ma and the areal extent of shallow seafloor environments. We interpret this as a global dependency of the rate of microbial sulfate reduction on the availability of organic-rich sea-floor settings. However, fractionation during the early/mid-Paleozoic fails to correlate with shelf area. We suggest that this decoupling reflects a shallower paleoredox boundary, primarily confined to the water column in the early Phanerozoic. The transition between these two states begins during the Carboniferous and concludes approximately around the Triassic-Jurassic boundary, indicating a prolonged response to a Carboniferous rise in O2. Together, these results lay the foundation for decoupling changes in sulfate reduction rates from the global average record of pyrite burial, highlighting how the local nature of sedimentary processes affects global records. This distinction greatly refines our understanding of the S cycle and its relationship to the history of atmospheric oxygen.

  11. Inhibition of sulfate reduction by iron, cadmium and sulfide in granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Silva, Blanca M. [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a. Seccion, 78216, San Luis Potosi, S.L.P. (Mexico); Briones-Gallardo, Roberto [Facultad de Ingenieria-Instituto de Metalurgia, Universidad Autonoma de San Luis Potosi, Sierra Leona 550, Lomas 2a. Seccion, 78210, San Luis Potosi, S.L.P. (Mexico); Razo-Flores, Elias [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a. Seccion, 78216, San Luis Potosi, S.L.P. (Mexico); Celis, Lourdes B., E-mail: celis@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a. Seccion, 78216, San Luis Potosi, S.L.P. (Mexico)

    2009-12-15

    This study investigated the inhibition effect of iron, cadmium and sulfide on the substrate utilization rate of sulfate reducing granular sludge. A series of batch experiments in a UASB reactor were conducted with different concentrations of iron (Fe{sup 2+}, 4.0-8.5 mM), cadmium (Cd{sup 2+}, 0.53-3.0 mM) and sulfide (4.2-10.6 mM), the reactor was fed with ethanol at 1 g chemical oxygen demand (COD)/L and sulfate to yield a COD/SO{sub 4}{sup 2-} (g/g) ratio of 0.5. The addition of iron, up to a concentration of 8.1 mM, had a positive effect on the substrate utilization rate which increased 40% compared to the rate obtained without metal addition (0.25 g COD/g VSS-d). Nonetheless, iron concentration of 8.5 mM inhibited the specific substrate utilization rate by 57% compared to the substrate utilization rate obtained in the batch amended with 4.0 mM Fe{sup 2+} (0.44 g COD/g VSS-d). Cadmium had a negative effect on the specific substrate utilization rate at the concentrations tested; at 3.0 mM Cd{sup 2+} the substrate utilization rate was inhibited by 44% compared with the substrate utilization rate without metal addition. Cadmium precipitation with sulfide did not decrease the inhibition of cadmium on sulfate reduction. These results could have important practical implications mainly when considering the application of the sulfate reducing process to treat effluents with high concentrations of sulfate and dissolved metals such as iron and cadmium.

  12. Toxicity of xenobiotics during sulfate, iron, and nitrate reduction in primary sewage sludge suspensions

    DEFF Research Database (Denmark)

    Elsgaard, Lars

    2010-01-01

    The effect and persistence of six organic xenobiotics was tested under sulfate-, iron-, and nitrate-reducing conditions in primary sewage sludge suspensions. The xenobiotics tested were acenaphthene, phenanthrene, di(2-ethylhexyl)phthalate (DEHP), 4-nonylphenol (4-NP), linear alkylbenzene sulfonate...... (LAS), and 1,2,4-trichlorobenzene (1,2,4-TCB) added to initial analytical concentrations of 54–117 mg L−1. The suspensions were incubated at 30 °C for 15 weeks and rates of sulfate, iron, and nitrate reduction were estimated from the time course of hydrogen sulfide accumulation, Fe(II) accumulation......, and nitrate depletion, respectively. Chemical analysis showed that the xenobiotics were persistent under the different electron acceptor regimes for the duration of the experiment. This was partly attributed to low bioavailability and microbial toxicity of the xenobiotics....

  13. Kinetics of Reductive Acid Leaching of Cadmium-Bearing Zinc Ferrite Mixture Using Hydrazine Sulfate

    Science.gov (United States)

    Zhang, Chun; Zhang, Jianqiang; Min, Xiaobo; Wang, Mi; Zhou, Bosheng; Shen, Chen

    2015-09-01

    The reductive acid leaching kinetics of synthetic cadmium-bearing zinc ferrite was investigated, and the influence of reaction temperature, sulfuric acid and hydrazine sulfate were studied. The results illustrated that an increase in the reaction temperature, initial sulfuric acid and hydrazine sulfate significantly enhanced the extraction efficiencies of cadmium, zinc and iron. The leaching kinetics were controlled by a surface chemical reaction based on a shrinking core model. The empirical equation applied was found to fit well with the kinetics analysis; the leaching processes of cadmium, zinc and iron were similar and the activation energies were 79.9 kJ/mol, 77.9 kJ/mol and 79.7 kJ/mol, respectively. The apparent orders of cadmium-bearing zinc ferrite dissolution with respect to sulfuric acid concentration were 0.83, 0.83 and 0.84 for Cd, Zn and Fe, respectively.

  14. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments

    Directory of Open Access Journals (Sweden)

    J. E. Sawicka

    2012-01-01

    Full Text Available The temperature responses of sulfate-reducing microbial communities were used as fingerprints for their in situ temperature adaptation, their origin, and dispersal in the deep-sea. Sediments were collected from a suite of coastal, continental shelf, and slope sediments from the southwest and southeast Atlantic and permanently cold Arctic fjords from water depths ranging from the intertidal zone to 4327 m. In situ temperatures ranged from 8 °C on the shelf to 1 °C on the lower slope and in the Arctic. Temperature characteristics of the active sulfate-reducing community were determined in short-term incubations with 35S-sulfate in a temperature gradient block spanning a temperature range from 0 to 40 °C. An optimum temperature (Topt between 27 °C and 30 °C for the South Atlantic shelf sediments and for the intertidal flat sediment from Svalbard was indicative of a psychrotolerant/mesophilic sulfate-reducing community, whereas Topt ≤ 20 °C in South Atlantic slope and Arctic shelf sediments suggested a predominantly psychrophilic community. High sulfate reduction rates (20–50% at in-situ temperatures compared to those at Topt further support this interpretation, and point to the importance of the ambient temperature regime for regulating the short-term temperature response of sulfate-reducing communities. A number of cold (<4 °C continental slope sediments showed broad temperature optima reaching as high as 30 °C suggesting the additional presence of apparently mesophilic sulfate-reducing bacteria. Since the temperature characteristics of these mesophiles do not fit with the permanently cold deep-sea environment, we suggest that these mesophilic microorganisms are of allochthonous origin and transported to this site. It is likely that they were deposited along with the mass-flow movement of warmer shelf-derived sediment. These data therefore suggest that temperature

  15. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments

    Directory of Open Access Journals (Sweden)

    J. E. Sawicka

    2012-08-01

    Full Text Available The temperature responses of sulfate-reducing microbial communities were used as community temperature characteristics for their in situ temperature adaptation, their origin, and dispersal in the deep sea. Sediments were collected from a suite of coastal, continental shelf, and slope sediments from the southwest and southeast Atlantic and permanently cold Arctic fjords from water depths ranging from the intertidal zone to 4327 m. In situ temperatures ranged from 8 °C on the shelf to −1 °C in the Arctic. Temperature characteristics of the active sulfate-reducing community were determined in short-term incubations with 35S-sulfate in a temperature gradient block spanning a temperature range from 0 to 40 °C. An optimum temperature (Topt between 27 °C and 30 °C for the South Atlantic shelf sediments and for the intertidal flat sediment from Svalbard was indicative of a psychrotolerant/mesophilic sulfate-reducing community, whereas Topt ≤20 °C in South Atlantic slope and Arctic shelf sediments suggested a predominantly psychrophilic community. High sulfate reduction rates (20–50% at in situ temperatures compared to those at Topt further support this interpretation and point to the importance of the ambient temperature regime for regulating the short-term temperature response of sulfate-reducing communities. A number of cold (<4 °C continental slope sediments showed broad temperature optima reaching as high as 30 °C, suggesting the additional presence of apparently mesophilic sulfate-reducing bacteria. Since the temperature characteristics of these mesophiles do not fit with the permanently cold deep-sea environment, we suggest that these mesophilic microorganisms are of allochthonous origin and transported to this site. It is likely that they were deposited along with the mass-flow movement of warmer shelf-derived sediment. These data therefore suggest that temperature

  16. Studies on the pore water sulfate, chloride and sedimentary methane to understand the sulfate reduction process in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; Borole, D.V.; Rao, B.R.; Paropkari, A.L.; Joao, H.M.; Kocherla, M.; Sarkar, G.P.; Biswas, G.; Kumar, N.

    - reduction. Similarly chloride concentration varies from 561 to 407 mM. The SO42- / Cl- ratio is in the range of 0.025 to 0.072 with an average ratio of ~ 0.05 indicating that there is no significant loss of sulfate in the pore water. The down-core methane...

  17. Microbial sulfate reduction, multiple sulfur isotopes, and the ca. 3.46 Ga Dresser Formation (Western Australia)

    Science.gov (United States)

    Mojzsis, S. J.

    2006-12-01

    . Black chert with finely disseminated pyrite from the Dresser Fm. has average Δ^{33}S values = +3.67‰ and average δ34SVCDT = +2.07‰ that form a poorly defined (r2=0.893) linear array of non-MDF slope λ = 0.837. When plotted in Δ^{33}S vs. δ34S space, data are consistent with SO2 (or SO) photolysis at short UV (193 nm) wavelengths (Farquhar and Wing, 2003). The pyrite and barite multiple S-isotope compositions show that deposition was swift once MIF sulfur reached the water column. Because hydrothermal and/or biological cycling of sulfate had insufficient time to homogenize Δ^{33}S values, neither process was important at time deposition. Hence, the entire ~20‰ range in 34S/^{32}S as reported in Shen et al. (2001) can be reproduced abiotically by the formation of MIF S-isotopes. The presence of sulfate and sulfide with MIF signatures and a large range in δ34S for an Eoarchean rock can be simply a consequence of the local volcanogenic deposition regime with an input from sulfur aerosols, and cannot be de- convoluted from microbial sulfate reduction.

  18. High-throughput screening to identify selective inhibitors of microbial sulfate reduction (and beyond)

    Science.gov (United States)

    Carlson, H. K.; Coates, J. D.; Deutschbauer, A. M.

    2015-12-01

    The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive and corrosive. Current strategies to selectively inhibit sulfidogenesis are based on non-specific biocide treatments, bio-competitive exclusion by alternative electron acceptors or sulfate-analogs which are competitive inhibitors or futile/alternative substrates of the sulfate reduction pathway. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to target SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Once inhibitor selectivity is defined, high-throughput characterization of microbial community structure across compound gradients and identification of fitness determinants using isolate bar-coded transposon mutant libraries can give insights into the genetic mechanisms whereby compounds structure microbial communities. The high-throughput (HT) approach we present can be readily applied to target SRM in diverse environments and more broadly, could be used to identify and quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant for engineering environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.

  19. Sulfur and oxygen isotope study of sulfate reduction in experiments with natural populations from Fællestrand, Denmark

    Science.gov (United States)

    Farquhar, James; Canfield, Don E.; Masterson, Andrew; Bao, Huiming; Johnston, David

    2008-06-01

    This study investigates the sulfur and oxygen isotope fractionations of dissimilatory sulfate reduction and works to reconcile the relationships between the oxygen and sulfur isotopic and elemental systems. We report results of experiments with natural populations of sulfate-reducing bacteria using sediment and seawater from a marine lagoon at Fællestrand on the northern shore of the island of Fyn, Denmark. The experiments yielded relatively large magnitude sulfur isotope fractionations for dissimilatory sulfate reduction (up to approximately 45‰ for 34S/32S) with higher δ18O accompanying higher δ34S, similar to that observed in previous studies. The seawater used in the experiments was spiked by addition of 17O-labeled water and the 17O content of residual sulfate was found to depend on the fraction of sulfate reduced in the experiments. The 17O data provides evidence for recycling of sulfur from metabolic intermediates and for an 18O/16O fractionation of ∼25-30‰ for dissimilatory sulfate reduction. The close correlation between the 17O data and the sulfur isotope data suggests that isotopic exchange between cell water and external water (reactor water) was rapid under experimental conditions. The molar ratio of oxygen exchange to sulfate reduction was found to be about 2.5. This value is slightly lower than observed in studies of natural ecosystems [e.g., Wortmann U. G., Chernyavsky B., Bernasconi S. M., Brunner B., Böttcher M. E. and Swart P. K. (2007) Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochim. Cosmochim. Acta71, 4221-4232]. Using recent models of sulfur isotope fractionations we find that our combined sulfur and oxygen isotopic data places constraints on the proportion of sulfate recycled to the medium (78-96%), the proportion of sulfur intermediate sulfite that was recycled by way of APS to sulfate

  20. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms.

    Science.gov (United States)

    Hausmann, Bela; Knorr, Klaus-Holger; Schreck, Katharina; Tringe, Susannah G; Glavina Del Rio, Tijana; Loy, Alexander; Pester, Michael

    2016-10-01

    Dissimilatory sulfate reduction in peatlands is sustained by a cryptic sulfur cycle and effectively competes with methanogenic degradation pathways. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16-174 nmol cm(-3) per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (⩾0.1% estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. Most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems. PMID:27015005

  1. Post-Translational Modifications of Desulfovibrio vulgaris Hildenborough Sulfate Reduction Pathway Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gaucher, S.P.; Redding, A.M.; Mukhopadhyay, A.; Keasling, J.D.; Singh, A.K.

    2008-03-01

    , Desulfovibrio desulfuricans G20, also showed similar +42 Da modifications in the same pathway. Here, we discuss our methods and implications of potential trimethylation in the D. vulgaris sulfate reduction pathway.

  2. Biodegradation of BTEX and Other Petroleum Hydrocarbons by Enhanced and Controlled Sulfate Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Song Jin

    2007-07-01

    High concentrations of sulfide in the groundwater at a field site near South Lovedale, OK, were inhibiting sulfate reducing bacteria (SRB) that are known to degrade contaminants including benzene, toluene, ethylbenzene, and m+p-xylenes (BTEX). Microcosms were established in the laboratory using groundwater and sediment collected from the field site and amended with various nutrient, substrate, and inhibitor treatments. All microcosms were initially amended with FeCl{sub 2} to induce FeS precipitation and, thereby, reduce sulfide concentrations. Complete removal of BTEX was observed within 39 days in treatments with various combinations of nutrient and substrate amendments. Results indicate that elevated concentration of sulfide is a limiting factor to BTEX biodegradation at this site, and that treating the groundwater with FeCl{sub 2} is an effective remedy to facilitate and enhance BTEX degradation by the indigenous SRB population. On another site in Moore, OK, studies were conducted to investigate barium in the groundwater. BTEX biodegradation by SRB is suspected to mobilize barium from its precipitants in groundwater. Data from microcosms demonstrated instantaneous precipitation of barium when sulfate was added; however, barium was detected redissolving for a short period and precipitating eventually, when active sulfate reduction was occurring and BTEX was degraded through the process. SEM elemental spectra of the evolved show that sulfur was not present, which may exclude BaSO{sub 4} and BaS as a possible precipitates. The XRD analysis suggests that barium probably ended in BaS complexing with other amorphous species. Results from this study suggest that SRB may be able to use the sulfate from barite (BaSO{sub 4}) as an electron acceptor, resulting in the release of free barium ions (Ba{sup 2+}), and re-precipitate it in BaS, which exposes more toxicity to human and ecological health.

  3. Methanotrophy and sulfate reduction at the interface between Mediterranean seawater and the MgCl2-dominated Kryos brine basin

    Science.gov (United States)

    Steinle, Lea; Felber, Nicole; Casalino, Claudia; de Lange, Gert J.; Lehmann, Moritz F.; Stadnitskaia, Alina; Sinninghe Damste, Jaap S.; Tessarolo, Chiara; Treude, Tina; Zopfi, Jakob; Niemann, Helge

    2014-05-01

    The Kryos brine basin is located at ˜3000m water depth in the Eastern Mediterranean Sea. The anoxic brine originates from subsurface Messinian evaporites and is dominated by very high concentrations of MgCl2-equivalents (˜5M), making this environment challenging for live. The strong density difference between the brine and the overlying Mediterranean seawater impedes mixing, and the seawater-brine interface is thus characterized by a strong redox gradient. In the redoxcline, we observed sharp sulfate, sulfide and methane concentration gradients, from seawater background concentrations to high concentrations in the brine (˜150 mM sulfate, ˜250 μM sulfide, ˜50 μM methane). Right at the interface, under micro-oxic conditions, we determined methane oxidation rates of up to 60 nM/day, and sulfate reduction rates of up to 15 μM/day. Our findings of 13C-depleted biomarkers typical for aerobic methanotrophs (diplopterol, fatty acid C16:1ω8) indicate an aerobic mode of methane oxidation independent of sulfate reduction. Below the interface (within the anoxic brine), the presence of both methane and sulfate would make the anaerobic oxidation of methane with sulfate (AOM) thermodynamically feasible. However, while sulfate reduction rates were very high (500 μM/day), methane oxidation rates were not detectable suggesting inhibition of AOM. In the brine, we detected high concentrations of an unusual fatty acid (10Me-C16:0) indicative for sulfate reducing bacteria, which might be responsible for the high sulfate reduction rates. In addition, we also found archaeal lipids (archaeol, PMI) moderately depleted in 13C. Considering the absence of AOM activity, these lipids suggest a methanogenic, rather than methanotrophic origin of the archaea within the brine. All these results provide new and exciting insight into life in an extreme environment.

  4. Physicochemical and biological characterization of long-term operated sulfate reducing granular sludge in the SANI® process.

    Science.gov (United States)

    Hao, Tianwei; Luo, Jinghai; Wei, Li; Mackey, Hamish R; Liu, Rulong; Rey Morito, Guillermo; Chen, Guang-Hao

    2015-03-15

    The SANI(®) process (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated) is a treatment system with low energy demands. The major bioreactor of this new technology is a sulfate-reducing up-flow sludge bed (SRUSB) that converts organics and provides electron donors for subsequent autotrophic denitrification. This research characterizes the granules inside the SRUSB, with the aim of improving its efficiency, maximizing its operational flexibility, and minimizing its footprint. The unique sulfate-reducing bacteria (SRB) granules serving in the SRUSB were found to increase the resilience and compactness of the SRUSB. The granules, with a compact and porous structure, showed high cohesion resisting breakage with a shear force G > 3400 s(-1). The hydrophobicity of the external surface of the mature granules remained stable at around 70% and acid volatile sulfide (AVS) accumulated at the bottom of the SRUSB. 16s rRNA gene analysis of the microbial communities revealed that Desulfobulbus (42.1%), Prosthecochloris (19%) and Trichococcus (12%) dominated the mature granular sludge. Fluorescence in situ hybridization (FISH) further showed that SRB organisms were located internally and then surrounded by non-SRB. According to the FISH results, the spatial distribution of extracellular polymeric substances (EPS) displayed protein and α-polysaccharides in the exterior and β-polysaccharide in the core of the granules. Such biological structure suggests that each SRB granule acts as an efficient and independent unit, capable of achieving both fermentation and organic conversion. The present investigation sheds light on the physicochemical and biological characteristics of the SRB granulate. This information provides valuable information for scaling-up the SANI(®) process to treat real saline sewage in Hong Kong. PMID:25600299

  5. Inhibition of microbial sulfate reduction in a flow-through column system by (perchlorate treatment

    Directory of Open Access Journals (Sweden)

    Anna eEngelbrektson

    2014-06-01

    Full Text Available Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (perchlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 mM treatment after an initial inhibition period. In contrast, no effluent sulfide was observed with (perchlorate (10 mM. Microbial community analyses indicated temporal community shifts and phylogenetic clustering by treatment. Nitrate addition stimulated Xanthomonadaceae and Rhizobiaceae growth, supporting their role in nitrate metabolism. (Perchlorate showed distinct effects on microbial community structure compared with nitrate and resulted in a general suppression of the community relative to the untreated control combined with a significant decrease in sulfate reducing species abundance indicating specific toxicity. Furthermore, chlorate stimulated Pseudomonadaceae and Pseudoalteromonadaceae, members of which are known chlorate respirers, suggesting that chlorate may also control sulfidogenesis by biocompetitive exclusion of sulfate-reduction. Perchlorate addition stimulated Desulfobulbaceae and Desulfomonadaceae, which contain sulfide oxidizing and elemental sulfur-reducing species respectively, suggesting that effluent sulfide concentrations may be controlled through sulfur redox cycling in addition to toxicity and biocompetitive exclusion. Sulfur isotope analyses further support sulfur cycling in the columns, even when sulfide is not detected. This study indicates that (perchlorate show great promise as inhibitors of sulfidogenesis in natural communities and provides insight into which organisms and respiratory processes are involved.

  6. Sulfated polysaccharides from Loligo vulgaris skin: potential biological activities and partial purification.

    Science.gov (United States)

    Abdelmalek, Baha Eddine; Sila, Assaâd; Krichen, Fatma; Karoud, Wafa; Martinez-Alvarez, Oscar; Ellouz-Chaabouni, Semia; Ayadi, Mohamed Ali; Bougatef, Ali

    2015-01-01

    The characteristics, biological properties, and purification of sulfated polysaccharides extracted from squid (Loligo vulgaris) skin were investigated. Their chemical and physical characteristics were determined using X-ray diffraction and infrared spectroscopic analysis. Sulfated polysaccharides from squid skin (SPSS) contained 85.06% sugar, 2.54% protein, 1.87% ash, 8.07% sulfate, and 1.72% uronic acid. The antioxidant properties of SPSS were investigated based on DPPH radical-scavenging capacity (IC50 = 19.42 mg mL(-1)), hydrogen peroxide-scavenging activity (IC50 = 0.91 mg mL(-1)), and β-carotene bleaching inhibition (IC50 = 2.79 mg mL(-1)) assays. ACE-inhibitory activity of SPSS was also investigated (IC50 = 0.14 mg mL(-1)). Further antimicrobial activity assays indicated that SPSS exhibited marked inhibitory activity against the bacterial and fungal strains tested. Those polysaccharides did not display hemolytic activity towards bovine erythrocytes. Fractionation by DEAE-cellulose column chromatography showed three major absorbance peaks. Results of this study suggest that sulfated polysaccharides from squid skin are attractive sources of polysaccharides and promising candidates for future application as dietary ingredients.

  7. Structure and biological activity of a fucosylated chondroitin sulfate from the sea cucumber Cucumaria japonica.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Bilan, Maria I; Dmitrenok, Andrey S; Shashkov, Alexander S; Kusaykin, Mikhail I; Stonik, Valentin A; Nifantiev, Nikolay E; Usov, Anatolii I

    2016-05-01

    A fucosylated chondroitin sulfate (FCS) was isolated from the body wall of Pacific sea cucumber Cucumaria japonicaby extraction in the presence of papain followed by Cetavlon precipitation and anion-exchange chromatography. FCS was shown to contain D-GalNAc, D-GlcA, L-Fuc and sulfate in molar proportions of about 1:1:1:4.5. Structure of FCS was elucidated using NMR spectroscopy and methylation analysis of the native polysaccharide and products of its desulfation and carboxyl reduction. The polysaccharide was shown to contain a typical chondroitin core → 3)-β-D-GalNAc-(1 → 4)-β-D-GlcA-(1 →. Sulfate groups in this core occupy O-4 and the majority of O-6 of GalNAc. Fucosyl branches are represented by 3,4- and 2,4-disulfated units in a ratio of 4:1 and are linked to O-3 of GlcA. In addition, ∼ 33% of GlcA are 3-O-sulfated, and hence, the presence of short fucooligosaccharide chains side by side with monofucosyl branches cannot be excluded. FCS was shown to inhibit platelets aggregation in vitro mediated by collagen and ristocetin, but not adenosine diphosphate, and demonstrated significant anticoagulant activity, which is connected with its ability to enhance inhibition of thrombin and factor Xa by antithrombin III, as well as to influence von Willebrand factor activity. The latest property significantly distinguished FCS from low-molecular-weight heparin. PMID:26681734

  8. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment

    OpenAIRE

    Meulepas, R.J.W.; Jagersma, C.G.; Khadem, A.F.; Buisman, C.J.N.; Stams, A.J.M.; Lens, P. N. L.

    2010-01-01

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did ...

  9. Microbial Sulfate Reduction in Deep-Sea Sediments at the Guaymas Basin - Hydrothermal Vent Area - Influence of Temperature and Substrates

    DEFF Research Database (Denmark)

    ELSGAARD, L.; ISAKSEN, MF; JØRGENSEN, BB;

    1994-01-01

    Microbial sulfate reduction was studied by a S-35 tracer technique in sediments from the hydrothermal vent site in Guaymas Basin, Gulf of California, Mexico. In situ temperatures ranged from 2.7-degrees-C in the overlying seawater to > 120-degrees-C at 30 cm depth in the hydrothermal sediment......-1 at 70-degrees-C. The rates of sulfate reduction rapidly decreased with depth in the upper 0- 10 cm of the sediment and the maximal depth-integrated rate (0-10 cm) was 70.3 mmol SO42- m-2 d-1 at 70-degrees-C. In comparison, the sulfate reduction rate in nonhydrothermal sediment from the vent area...... was 0.85 mmol m-2 d-1 at the in situ temperature of about 3-degrees-C. The high subsurface rates of sulfate reduction in the hydrothermal vent area was attributed to an enhanced local substrate availability. In slurries of hydrothermal sediment, incubated at 10-120-degrees-C, microbial sulfate reduction...

  10. Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities.

    Science.gov (United States)

    Zhang, Zhihong; Liu, Zhengqi; Tao, Xueying; Wei, Hua

    2016-11-20

    An exopolysaccharide (EPS) from probiotics Lactobacillus plantarum ZDY2013 was purified to illustrate its molecular weight, monosaccharide composition and biological activities. The yield of EPS (429.4±30.3mg/L) was obtained with a purity of 96.06%. The EPS was characterized to have only one symmetrical sharp peak by high-performance size-exclusion chromatography and its molecular weight was 5.17×10(4)Da. The GC analysis revealed that EPS only consisted of xylose and galactose, and the galactose possessed as high as 98.3% (w/w) of the total monosaccharides. By sulfonation, a sulfated EPS was successfully synthesized with the degree of substitution (DS) of 0.29, which was confirmed using FT-IR spectroscopy. Both EPS and sulfated EPS showed radical scavenging activities, and the antioxidant activities increased after sulfonation. In addition, sulfated EPS was more effective in counteracting the cytotoxicity induced by B. cereus enterotoxins on Caco-2 cells when compared with EPS. In summary, sulfonation is a feasible strategy for improving the biological activities of EPS from L. plantarum ZDY203. PMID:27561468

  11. [Reduction of biology to fundamental physics].

    Science.gov (United States)

    Okhonin, V A

    2001-01-01

    It was shown that, while interpreting life as a physical phenomenon, fundamental physics allows for the following alternatives: relativity of animate and inanimate upon canonical transformations; the impossibility of the change from animate to inanimate state of isolated systems; the abandonment of attempts to reduce biology to the physics of isolated systems. The possibility of reducing biology to phenomenological physics was considered. A number of equations for the general phenomenological dynamics of density matrix was proposed.

  12. Determination of kinetic coefficients for the simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans bacteria

    International Nuclear Information System (INIS)

    Uranium contamination of groundwaters and surface waters near abandoned mill tailings piles is a serious concern in many areas of the western United States. Uranium usually exists in either the U(IV) or the U(VI) oxidation state. U(VI) is soluble in water and, as a result, is very mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain anaerobic microorganisms, such as the sulfate-reducing bacteria Desulfovibrio desulfuricans, can mediate the reduction of U(VI) to U(IV). Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reactions have not been characterized. The purpose of this research was to perform kinetic studies on Desulfovibrio desulficans bacteria during simultaneous reduction of sulfate and uranium and to determine the phase in which uranium exists after it has been reduced and precipitated from solution. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. Kinetic coefficients for substrate utilization and cell growth were calculated using the Monod equation. The maximum rate of substrate utilization (k) was determined to be 4.70 days-1 while the half-velocity constant (Ks) was 140 mg/l COD. The yield coefficient (Y) was determined to be 0.17 mg cells/mg COD while the endogenous decay coefficient (kd) was calculated as 0.072 days-1. After reduction, U(IV) Precipitated from solution in the uraninite (UO2) phase. Uranium removal efficiency as high as 90% was achieved in the chemostat

  13. Determination of kinetic coefficients for the simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, M.D.

    1995-05-01

    Uranium contamination of groundwaters and surface waters near abandoned mill tailings piles is a serious concern in many areas of the western United States. Uranium usually exists in either the U(IV) or the U(VI) oxidation state. U(VI) is soluble in water and, as a result, is very mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain anaerobic microorganisms, such as the sulfate-reducing bacteria Desulfovibrio desulfuricans, can mediate the reduction of U(VI) to U(IV). Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reactions have not been characterized. The purpose of this research was to perform kinetic studies on Desulfovibrio desulficans bacteria during simultaneous reduction of sulfate and uranium and to determine the phase in which uranium exists after it has been reduced and precipitated from solution. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. Kinetic coefficients for substrate utilization and cell growth were calculated using the Monod equation. The maximum rate of substrate utilization (k) was determined to be 4.70 days{sup {minus}1} while the half-velocity constant (K{sub s}) was 140 mg/l COD. The yield coefficient (Y) was determined to be 0.17 mg cells/mg COD while the endogenous decay coefficient (k{sub d}) was calculated as 0.072 days{sup {minus}1}. After reduction, U(IV) Precipitated from solution in the uraninite (UO{sub 2}) phase. Uranium removal efficiency as high as 90% was achieved in the chemostat.

  14. Galvanic interpretation of self-potential signals associated withmicrobial sulfate-reduction

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2007-05-02

    We have evaluated the usefulness of the self-potential (SP)geophysical method to track the onset and location of microbialsulfate-reduction in saturated sediments during organic carbon amendment.Following stimulation of sulfate-reducing bacteria (SRB) by addition oflactate, anomalous voltages exceeding 600 mV correlated in space and timewith the accumulation of dissolved sulfide. Abiotic experiments in whichthe sulfide concentration at the measurement electrode was systematicallyvaried showed a positive correlation between the magnitude of the SPanomaly and differences in the half-cell potential associated with themeasurement and reference electrodes. Thus, we infer that the SPanomaliesresulted from electrochemical differences that developedbetween sulfide-rich regions and areas having higher oxidation potential.In neither experiment did generation of an SP anomaly require thepresence of an in situ electronic conductor, as is required by othermodels. These findings emphasize the importance of incorporation ofelectrochemical effects at electrode surfaces in interpretation of SPdata from geophysical studies. We conclude that SP measurements provide aminimally invasive means for monitoring stimulated sulfate-reductionwithin saturated sediments.

  15. Geochemical signatures of thermochemical sulfate reduction in controlled hydrous pyrolysis experiments

    Science.gov (United States)

    Zhang, T.; Ellis, G.S.; Walters, C.C.; Kelemen, S.R.; Wang, K.-s.; Tang, Y.

    2008-01-01

    A series of gold tube hydrous pyrolysis experiments was conducted in order to investigate the effect of thermochemical sulfate reduction (TSR) on gas generation, residual saturated hydrocarbon compositional alteration, and solid pyrobitumen formation. The intensity of TSR significantly depends on the H2O/MgSO4 mole ratio, the smaller the ratio, the stronger the oxidizing conditions. Under highly oxidizing conditions (MgSO4/hydrocarbon wt/wt 20/1 and hydrocarbon/H2O wt/wt 1/1), large amounts of H2S and CO2 are generated indicating that hydrocarbon oxidation coupled with sulfate reduction is the dominant reaction. Starting with a mixture of C21-C35 n-alkanes, these hydrocarbons are consumed totally at temperatures below the onset of hydrocarbon thermal cracking in the absence of TSR (400 ??C). Moreover, once the longer chain length hydrocarbons are oxidized, secondarily formed hydrocarbons, even methane, are oxidized to CO2. Using whole crude oils as the starting reactants, the TSR reaction dramatically lowers the stability of hydrocarbons leading to increases in gas dryness and gas/oil ratio. While their concentrations decrease, the relative distributions of n-alkanes do not change appreciably from the original composition, and consequently, are non-diagnostic for TSR. However, distinct molecular changes related to TSR are observed, Pr/n-C17 and Ph/n-C18 ratios decrease at a faster rate under TSR compared to thermal chemical alteration (TCA) alone. TSR promotes aromatization and the incorporation of sulfur and oxygen into hydrocarbons leading to a decrease in the saturate to aromatic ratio in the residual oil and in the generation of sulfur and oxygen rich pyrobitumen. These experimental findings could provide useful geochemical signatures to identify TSR in settings where TSR has occurred in natural systems. ?? 2008 Elsevier Ltd. All rights reserved.

  16. Iduronic Acid in Chondroitin/Dermatan Sulfate: Biosynthesis and Biological Function

    OpenAIRE

    Malmström, Anders; Bartolini, Barbara; Thelin, Martin A.; Pacheco, Benny; Maccarana, Marco

    2012-01-01

    The ability of chondroitin/dermatan sulfate (CS/DS) to convey biological information is enriched by the presence of iduronic acid. DS-epimerases 1 and 2 (DS-epi1 and 2), in conjunction with DS-4-O-sulfotransferase 1, are the enzymes responsible for iduronic acid biosynthesis and will be the major focus of this review. CS/DS proteoglycans (CS/DS-PGs) are ubiquitously found in connective tissues, basement membranes, and cell surfaces or are stored intracellularly. Such wide distr...

  17. Effect of COD:SO4 2− Ratio, HRT and Linoleic Acid Concentration on Mesophilic Sulfate Reduction: Reactor Performance and Microbial Population Dynamics

    OpenAIRE

    Chungman Moon; Rajesh Singh; Sathyanarayan S. Veeravalli; Saravanan R. Shanmugam; Subba Rao Chaganti; Jerald A. Lalman; Heath, Daniel D.

    2015-01-01

    Biological sulfate (SO42−) reduction was examined in anaerobic sequential batch reactors (ASBRs) operated under different hydraulic retention times (HRTs) ranging from 12 to 36 h and COD (Chemical Oxygen Demand)/SO42−) ratios of 2.4, 1.6 and 0.8. Competition between SO42− reducing bacteria (SRBs), methane producing archaea (MPAs) and homoacetogens (HACs) was examined in controls and cultures treated with linoleic acid (LA). The ASBR performance was influenced by the COD/SO42− ratio in control...

  18. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; JØRGENSEN, BB

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO4(2-) reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100-mu-m) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured......, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying...... water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO4(2-) or organic substrate...

  19. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions

    International Nuclear Information System (INIS)

    Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.

  20. Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan

    Science.gov (United States)

    Glombitza, Clemens; Adhikari, Rishi R.; Riedinger, Natascha; Gilhooly, William P.; Hinrichs, Kai-Uwe; Inagaki, Fumio

    2016-01-01

    Sulfate reduction is the predominant anaerobic microbial process of organic matter mineralization in marine sediments, with recent studies revealing that sulfate reduction not only occurs in sulfate-rich sediments, but even extends to deeper, methanogenic sediments at very low background concentrations of sulfate. Using samples retrieved off the Shimokita Peninsula, Japan, during the Integrated Ocean Drilling Program (IODP) Expedition 337, we measured potential sulfate reduction rates by slurry incubations with 35S-labeled sulfate in deep methanogenic sediments between 1276.75 and 2456.75 meters below the seafloor. Potential sulfate reduction rates were generally extremely low (mostly below 0.1 pmol cm−3 d−1) but showed elevated values (up to 1.8 pmol cm−3 d−1) in a coal-bearing interval (Unit III). A measured increase in hydrogenase activity in the coal-bearing horizons coincided with this local increase in potential sulfate reduction rates. This paired enzymatic response suggests that hydrogen is a potentially important electron donor for sulfate reduction in the deep coalbed biosphere. By contrast, no stimulation of sulfate reduction rates was observed in treatments where methane was added as an electron donor. In the deep coalbeds, small amounts of sulfate might be provided by a cryptic sulfur cycle. The isotopically very heavy pyrites (δ34S = +43‰) found in this horizon is consistent with its formation via microbial sulfate reduction that has been continuously utilizing a small, increasingly 34S-enriched sulfate reservoir over geologic time scales. Although our results do not represent in-situ activity, and the sulfate reducers might only have persisted in a dormant, spore-like state, our findings show that organisms capable of sulfate reduction have survived in deep methanogenic sediments over more than 20 Ma. This highlights the ability of sulfate-reducers to persist over geological timespans even in sulfate-depleted environments. Our study

  1. Change of Ecological Characteristics Due to Decrease of COD/SO42- Ratio During Sulfate-reduction

    Institute of Scientific and Technical Information of China (English)

    王爱杰; 任南琪; 刘广民; 杜大仲

    2004-01-01

    In order to investigate the change of ecological characteristics due to the decrease of COD/SO42- ratio during sulfate reduction, continuous-flew tests were conducted in an acidogenic sulfate-reducing reactor with molasses wastewater as sole organic carbon source and sodium sulfate as electron acceptor, and the change of pH value, oxidation reduction potential (ORP), volatile fat acids (VFAs), alkalinity (ALK) and the predominant populations with COD/SO42- ratio decreasing from 4. 2 to 2. 0 were investigated. The experimental results demonstrated that, with decreasing COD/SO42- ratio, ORP and ALK increased, pH value decreased, and the proportion of acetic acid in terminal products decreased significantly, and a stable - type microbial community with high COD/SO42- ratio was converted into a sub -stable -type one with low COD/SO42- ratio.

  2. Self-potential and Geochemical Measurements of Microbially Mediated Bacterial Sulfate Reduction in Saturated Sediments

    Science.gov (United States)

    Park, S.; Wolf, L. W.; Lee, M.; Saunders, J.

    2004-12-01

    In situ bioremediation is a non-invasive groundwater remediation technique that stimulates microorganisms to catalyze desirable redox reactions. Using a series of laboratory experiments, we explored the suitability of self-potential methods for monitoring bioremediation of metals contamination. Each experiment was designed to quantify the relationship between electrical potential and changing redox conditions and to determine factors influencing this relationship. In the first experiment, we introduced sulfate-reducting bacteria (SRB) into a Plexiglas tank containing autoclaved quartz sand saturated with an iron-rich Desulfovibrio (a sulfate-reducing bacteria) media. An array of non-polarizable electrodes positioned on the sediment surface was used to record electrical potentials both prior to and after inoculation for about 40 days. Changes in water chemistry were determined through a series of samples taken before, during and after the experiments. A significant decrease in total iron occurred after 3 days near the injection site; however, a clearly discernable decrease in electrical potential was not perceived until ~ day 10. Contoured SP data indicate that the redox front migrated away from the injection site over time. This change probably reflects the changing water chemistry as well as bacterial migration, as iron close to the injection site was consumed. The second experiment consisted of 4 glass columns, two of which were inoculated with SRB. The first pair contained sediment similar to the tank experiment saturated with an iron-rich media. The second pair contained the same sediment but was saturated with acid-mine drainage (AMD) collected from a contaminated field site. Each column was identically instrumented with a system of four electrodes. In the active columns, an increase in pH, a decrease in sulfate and a significant decrease in total iron in the media column accompany a decrease in electrical potential after about 10 days. Results of the study

  3. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration

    Science.gov (United States)

    Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J.; Afeworki, M.; Sansone, M.; Freund, H.; Pottorf, R.J.; Machel, H.G.; Zhang, T.; Ellis, G.S.; Tang, Y.; Peters, K.E.

    2008-01-01

    Insoluble solid bitumens are organic residues that can form by the thermal chemical alteration (TCA) or thermochemical sulfate reduction (TSR) of migrated petroleum. TCA may actually encompass several low temperature processes, such as biodegradation and asphaltene precipitation, followed by thermal alteration. TSR is an abiotic redox reaction where petroleum is oxidized by sulfate. It is difficult to distinguish solid bitumens associated with TCA of petroleum from those associated with TSR when both processes occur at relatively high temperature. The focus of the present work was to characterize solid bitumen samples associated with TCA or TSR using X-ray photoelectron spectroscopy (XPS). XPS is a surface analysis conducted on either isolated or in situ (>25 ??m diameter) solid bitumen that can provide the relative abundance and chemical speciation of carbon, organic and inorganic heteroatoms (NSO). In this study, naturally occurring solid bitumens from three locations, Nisku Fm. Brazeau River area (TSR-related), LaBarge Field Madison Fm. (TSR-related), and the Alaskan Brooks range (TCA-related), are compared to organic solids generated during laboratory simulation of the TSR and TCA processes. The abundance and chemical nature of organic nitrogen and sulfur in solid bitumens can be understood in terms of the nature of (1) petroleum precursor molecules, (2) the concentration of nitrogen by way of thermal stress and (3) the mode of sulfur incorporation. TCA solid bitumens originate from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. Organic sulfur in TCA organic solids remains fairly constant with increasing maturation (3.5 to ???17 sulfur per 100 carbons) into aromatic structures and to the low levels of nitrogen in their hydrocarbon precursors. Hence, XPS results provide organic chemical composition information that helps to

  4. Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor

    NARCIS (Netherlands)

    Sipma, J.; Osuna, M.B.; Lettinga, G.; Stams, A.J.M.; Lens, P.N.L.

    2007-01-01

    Thermophilic hydrogenogenic carbon monoxide (CO) converting microorganisms present in anaerobic sludge play a crucial role in the application of CO as electron donor for sulfate reduction. Hydrogenogenic CO conversion was investigated in a gas lift reactor (55 °C) at different hydraulic retention ti

  5. Effect of Sulfide Removal on Sulfate Reduction at pH 5 in a Hydrogen fed Gas-Lift Bioreactor

    NARCIS (Netherlands)

    Bijmans, M.F.M.; Dopson, M.; Lens, P.N.L.; Buisman, C.J.N.

    2008-01-01

    UNCORRECTED PROOF J. Microbiol. Biotechnol. (2007), 17(4), ¿ Effect of Sulfide Removal on Sulfate Reduction at pH 5 in a Hydrogen fed Gas-Lift Bioreactor Bijmans, Martijn F. M.1*, Mark Dopson2, Frederick Ennin1, Piet N. L. Lens1, and Cees J. N. Buisman1 1Sub Department of Environmental Technology, W

  6. Large-scale demonstration of the sulfate reduction autotrophic denitrification nitrification integrated (SANI(®)) process in saline sewage treatment.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Chui, Ho-Kwong; Wang, Bo; Cui, Yan-Xiang; Hao, Tian-Wei; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2016-09-01

    Recently, the Sulfate reduction Autotrophic denitrification Nitrification Integrated (SANI(®)) process was developed for the removal of organics and nitrogen with sludge minimization in the treatment of saline sewage (with a Sulfate-to-COD ratio > 0.5 mg SO4(2-)-S/mg COD) generated from seawater used for toilet flushing or salt water intrusion. Previously investigated in lab- and pilot-scale, this process has now been scaled up to a 800-1000 m(3)/d full-scale demonstration plant. In this paper, the design and operating parameters of the SANI demo plant built in Hong Kong are analyzed. After a 4-month start-up period, a stable sulfur cycle-based biological nitrogen removal system having a hydraulic retention time (HRT) of 12.5 h was developed, thereby reducing the amount of space needed by 30-40% compared with conventional activated sludge (CAS) plants in Hong Kong. The demo plant satisfactorily met the local effluent discharge limits during both the summer and winter periods. In winter (sewage temperature of 21 ± 1 °C), the maximum volumetric loading rates for organic conversion, nitrification, and denitrification were 2 kg COD/(m(3)·d), 0.39 kg N/(m(3)·d), and 0.35 kg N/(m(3)·d), respectively. The biological sludge production rate of SANI process was 0.35 ± 0.08 g TSSproduced/g BOD5 (or 0.19 ± 0.05 g TSS/g COD), which is 60-70% lower than that of the CAS process in Hong Kong. While further process optimization is possible, this study demonstrates the SANI process can be potentially implemented for the treatment of saline sewage. PMID:27232994

  7. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium

    Science.gov (United States)

    Liu, D.; Dong, H.; Bishop, M.E.; Zhang, Jiahua; Wang, Hongfang; Xie, S.; Wang, Shaoming; Huang, L.; Eberl, D.D.

    2012-01-01

    Clay minerals are ubiquitous in soils, sediments, and sedimentary rocks and could coexist with sulfate-reducing bacteria (SRB) in anoxic environments, however, the interactions of clay minerals and SRB are not well understood. The objective of this study was to understand the reduction rate and capacity of structural Fe(III) in dioctahedral clay minerals by a mesophilic SRB, Desulfovibrio vulgaris and the potential role in catalyzing smectite illitization. Bioreduction experiments were performed in batch systems, where four different clay minerals (nontronite NAu-2, mixed-layer illite-smectite RAr-1 and ISCz-1, and illite IMt-1) were exposed to D. vulgaris in a non-growth medium with and without anthraquinone-2,6-disulfonate (AQDS) and sulfate. Our results demonstrated that D. vulgaris was able to reduce structural Fe(III) in these clay minerals, and AQDS enhanced the reduction rate and extent. In the presence of AQDS, sulfate had little effect on Fe(III) bioreduction. In the absence of AQDS, sulfate increased the reduction rate and capacity, suggesting that sulfide produced during sulfate reduction reacted with the phyllosilicate Fe(III). The extent of bioreduction of structural Fe(III) in the clay minerals was positively correlated with the percentage of smectite and mineral surface area of these minerals. X-ray diffraction, and scanning and transmission electron microscopy results confirmed formation of illite after bioreduction. These data collectively showed that D. vulgaris could promote smectite illitization through reduction of structural Fe(III) in clay minerals. ?? 2011 Blackwell Publishing Ltd.

  8. Thermophilic nitrate-reducing microorganisms prevent sulfate reduction in cold marine sediments incubated at high temperature

    Science.gov (United States)

    Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey

    2014-05-01

    Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the

  9. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction.

    Science.gov (United States)

    Thabet, Olfa Ben Dhia; Bouallagui, Hassib; Cayol, Jean-luc; Ollivier, Bernard; Fardeau, Marie-Laure; Hamdi, Moktar

    2009-08-15

    This study evaluated the anaerobic degradation of landfill leachate and sulfate reduction as a function of COD/(SO(4)(2-)) ratio in an upflow anaerobic fixed-bed reactor. The reactor, which was inoculated with a mixed consortium, was operated under a constant hydraulic retention time (HRT) of 5 days. We investigated the effect of COD/(SO(4)(2-)) ratio variation on the sulfate reduction efficiency, hydrogen sulfide production, chemical oxygen demand (COD) removal, conductivity, and pH variation. The best reactor performance, with significant sulfate reduction efficiency and COD removal efficiency of 91% and 87%, respectively, was reached under a COD/(SO(4)(2-)) ratio of 1.17. Under these conditions, microscopic analysis showed the abundance of vibrios and rod-shaped bacterial cells. Two anaerobic bacteria were isolated from the reactor sludge. Phylogenetic studies performed on these strains identified strain A1 as affiliated to Clostridium genus and strain H1 as a new species of sulfate-reducing bacteria affiliated to the Desulfovibrio genus. The closest phylogenetic relative of strain H1 was Desulfovibrio desulfuricans, at 96% similarity for partial 16S RNA gene sequence data. Physiological and metabolic characterization was performed for this strain.

  10. Sulfated phenolic compounds from Limonium caspium: Isolation, structural elucidation, and biological evaluation

    Science.gov (United States)

    Gadetskaya, Anastassiya V.; Tarawneh, Amer H.; Zhusupova, Galiya E.; Gemejiyeva, Nadezhda G.; Cantrell, Charles L.; Cutler, Stephen J.; Ross, Samir A.

    2016-01-01

    Three new compounds, (2S,3S)-5-methyldihydromyricetin (1), (2S,3S)-5-methyldihydromyricetin-3′-O-sulfate (2) and β-D-glucopyranoside, 3-methyl, but-3-en-1-yl 4-O-α-L-rhamnopyranosyl (3) have been isolated from the Limonium caspium, together with dihydromyricetin (4), dihydromyricetin-3′-O-sulfate (5), myricetin-3′-O-sulfate (6), 5-methylmyricetin (7), myricetin (8), myricetin-3-O-β-glucoside (9), as well as phloridzin (10), and tyramine (11). Compounds 5 and 6 were isolated for the first time as acids. This is the first report of all these compounds from this plant. Their structures were established by extensive NMR studies (1H NMR, 13C NMR, DEPT, 1H–1H COSY, HSQC, HMBC) as well as HRESIMS. All isolated compounds were evaluated for their antibacterial, antifungal, antimalarial and antileishmanial activities. Compounds 7, 8 and 9 exhibited good antifungal activity against Candida glabrata with IC50 values of 6.79, 15.37 and 8.53 μg/mL, respectively. Compound 8 displayed significant antimalarial activity against resistant and sensitive strains of Plasmodium falciparum with IC50 values of 1.82 and 1.51 μg/mL, respectively. Compounds 1, 4, 6, 8 and 9 showed excellent activity against Trypanosoma brucei with IC50 values of 6.93, 9.65, 8.52, 7.67 and 6.31 μg/mL, respectively. To date, this is the first report on the phytochemical and biological activity of secondary metabolites from L. caspium. PMID:26025854

  11. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico

    Science.gov (United States)

    Pohlman, J.W.; Ruppel, C.; Hutchinson, D.R.; Downer, R.; Coffin, R.B.

    2008-01-01

    Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum ??13C dissolved inorganic carbon (DIC) values of -55.9??? to -64.8??? at the sulfate-methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the ??13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.

  12. FACE Analysis as a Fast and Reliable Methodology to Monitor the Sulfation and Total Amount of Chondroitin Sulfate in Biological Samples of Clinical Importance

    Directory of Open Access Journals (Sweden)

    Evgenia Karousou

    2014-06-01

    Full Text Available Glycosaminoglycans (GAGs due to their hydrophilic character and high anionic charge densities play important roles in various (pathophysiological processes. The identification and quantification of GAGs in biological samples and tissues could be useful prognostic and diagnostic tools in pathological conditions. Despite the noteworthy progress in the development of sensitive and accurate methodologies for the determination of GAGs, there is a significant lack in methodologies regarding sample preparation and reliable fast analysis methods enabling the simultaneous analysis of several biological samples. In this report, developed protocols for the isolation of GAGs in biological samples were applied to analyze various sulfated chondroitin sulfate- and hyaluronan-derived disaccharides using fluorophore-assisted carbohydrate electrophoresis (FACE. Applications to biologic samples of clinical importance include blood serum, lens capsule tissue and urine. The sample preparation protocol followed by FACE analysis allows quantification with an optimal linearity over the concentration range 1.0–220.0 µg/mL, affording a limit of quantitation of 50 ng of disaccharides. Validation of FACE results was performed by capillary electrophoresis and high performance liquid chromatography techniques.

  13. The Mineralogy and Microstructure of Sedimentary Zinc Sulfides Formed by Bacterial Sulfate Reduction.

    Science.gov (United States)

    Moreau, J. W.; Webb, R. I.; Banfield, J. F.

    2001-12-01

    Bacterial sulfate reduction (BSR) is considered to be the predominant mechanism for low-temperature conversion of sulfate to sulfide [1] and is inferred to have existed since the early Proterozoic [2, 3]. Because BSR leads to precipitation of abundant metal sulfide minerals, some ancient, low-temperature sedimentary ore deposits are now hypothesized to have biogenic origins [4]. We have studied zinc sulfide minerals produced by sulfate-reducing bacteria (SRB) living in anoxic, 8 oC waters of a flooded mine near Tennyson, Wisconsin [5]. Our objectives were to characterize the morphology, mineralogy, and microstructure of the biominerals and to look for potential biosignatures. Scanning electron microscope images from cryofixed, freeze-fractured samples and transmission electron microscope (TEM) images from ultramicrotomed samples show a close association between cells and spherical aggregates of ZnS. However, SRB cells are generally not coated by ZnS, implying that the particles form and aggregate in solution after sulfide is expelled from the cell. High-resolution TEM images reveal that the few-micron diameter spheres are comprised of about a billion ZnS particles that are typically 1.5-5 nm in diameter. More coarsely crystalline regions appear to have grown via oriented aggregation of smaller nanoparticles. In some cases, orientation gives rise to twinning on \\{111\\} sphalerite. ZnS particles are primarily sphalerite, but domains of wurtzite are not uncommon. Even some of the smallest particles have periodic structure and well-defined morphologies. Reasons for the formation of wurtzite remain unclear, but may be related to the sulfide concentration during aggregation of multinuclear clusters [6] or size-dependent phase stability. In addition, the ZnS spheres are not of uniform density throughout, but contain concentric zones separated from each other by 5-7 nm-wide (average) regions of low particle density. The number of zones per sphere is variable, as is the

  14. Are there dangers in biologic dose reduction strategies?

    Science.gov (United States)

    Chan, Christopher K Y; Holroyd, Christopher R; Mason, Alice; Zarroug, Jalaa; Edwards, Christopher J

    2016-07-01

    Biologic dose reduction strategies, for patients with inflammatory rheumatic diseases, have been assessed in multiple studies to assess outcomes compared to ongoing maintenance dosing. Whilst cessation in established disease usually leads to disease flare, dose tapering approaches for those achieving low disease activity often appear to be successful in the short term. However, tapering can be associated with a higher risk of losing disease control and rates of recapture of disease control using the original biologic dose vary between studies. Over relatively short periods of follow-up, a number of studies have shown no statistical difference in radiographic progression in patients tapering or discontinuing biologics. However, a Cochrane review found that radiographic and functional outcomes may be worse after TNF inhibitor discontinuation, and over long-term disease follow-up flares have been associated with radiographic progression and worse patient reported outcomes. To date, no studies of biological therapy dose reduction have specifically investigated the risk of increased immunogenicity or the effects on cardiovascular risk and other co-morbidities, although these remain important potential risks. In addition, whether there are greater dangers in certain dose reduction approaches such as a reduction in dose at the same frequency or a spacing of doses is not established. PMID:26970488

  15. Are there dangers in biologic dose reduction strategies?

    Science.gov (United States)

    Chan, Christopher K Y; Holroyd, Christopher R; Mason, Alice; Zarroug, Jalaa; Edwards, Christopher J

    2016-07-01

    Biologic dose reduction strategies, for patients with inflammatory rheumatic diseases, have been assessed in multiple studies to assess outcomes compared to ongoing maintenance dosing. Whilst cessation in established disease usually leads to disease flare, dose tapering approaches for those achieving low disease activity often appear to be successful in the short term. However, tapering can be associated with a higher risk of losing disease control and rates of recapture of disease control using the original biologic dose vary between studies. Over relatively short periods of follow-up, a number of studies have shown no statistical difference in radiographic progression in patients tapering or discontinuing biologics. However, a Cochrane review found that radiographic and functional outcomes may be worse after TNF inhibitor discontinuation, and over long-term disease follow-up flares have been associated with radiographic progression and worse patient reported outcomes. To date, no studies of biological therapy dose reduction have specifically investigated the risk of increased immunogenicity or the effects on cardiovascular risk and other co-morbidities, although these remain important potential risks. In addition, whether there are greater dangers in certain dose reduction approaches such as a reduction in dose at the same frequency or a spacing of doses is not established.

  16. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment

    OpenAIRE

    Anna eEngelbrektson; Christopher eHubbard; Lauren eTom; Aaron eBOUSSINA; Yong Tae eJin; Hayden eWong; Yvette Marisa Piceno; Hans Karl Carlson; Mark eConrad; Andersen, Gary L.; Coates, John D.

    2014-01-01

    Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (per)chlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 m...

  17. Evaluation of Radiation Dose Reduction during CT Scans Using Oxide Bismuth and Nano-Barium Sulfate Shields

    OpenAIRE

    Seoung, Youl-Hun

    2015-01-01

    The purpose of the present study was to evaluate radiation dose reduction and image quality during CT scanning by using a new dose reduction fiber sheet (DRFS) with commercially available bismuth shields. These DRFS were composed of nano-barium sulfate (BaSO4), filling the gaps left by the large oxide bismuth (Bi2O3) particle sizes. The radiation dose was measured five times at directionss of 12 o'clock from the center of the polymethyl methacrylate (PMMA) head phantom to calculate an average...

  18. Reduction of Uranium(VI) under Sulfate-reducing Conditions in the Presence of Fe(III)-(hydr)oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sani, Rajesh K.; Peyton, Brent M.; Amonette, James E.; Geesey, Gill G.

    2004-06-01

    U(VI) dissolved in a modified lactate-C medium (either sulfate- or lactate-limited) was reacted with a mixture of an Fe(III)-(hydr)oxide mineral (hematite, goethite, or ferrihydrite) and quartz under anoxic conditions and equivalent mineral surface areas. After sorption equilibration, the suspensions were inoculated with a sulfate-reducing bacterium (SRB, Desulfovibrio desulfuricans G20). Inoculation of the suspensions containing sulfate-limited medium yielded significant SRB growth, along with concomitant reduction of sulfate and removal of U(VI) from solution. Inoculation of the suspensions containing lactate-limited medium yielded similar results while lactate was still present. Once the lactate was depleted, however, some of the U that had been removed from solution was re-solubilized in the hematite treatment and, to a lesser extent, in the goethite treatment. No re-solubilization was observed in the lactate-limited ferrihydrite treatment even after a prolonged incubation of four months. Analysis by U L3-edge XANES spectroscopy of mineral specimens sampled without inoculation yielded a typical U(VI) spectrum. Mineral specimens sampled at the end of the experiment yielded spectra similar to that of uraninite, thus providing strong evidence for SRB-promoted removal of U(VI) from solution by reductive precipitation of uraninite. Consequently, U re-solubilization was attributed to re-oxidation of the uraninite by Fe(III) present in the (hydr)oxide phases. Our results thus suggest that inoculation with SRB mediates reduction of soluble U(VI) to an insoluble U(IV) oxide so long as a suitable electron donor is available. Depletion of the electron donor may result in partial re-oxidation of the U(IV) to soluble U(VI) species when the surfaces of crystalline Fe(III) (hydr)oxides are incompletely reduced by reaction with SRB-generated sulfide.

  19. Biological sulfate removal from acrylic fiber manufacturing wastewater using a two-stage UASB reactor

    Institute of Scientific and Technical Information of China (English)

    Jin Li; Jun Wang; Zhaokun Luan; Zhongguang Ji; Lian Yu

    2012-01-01

    A two-stage UASB reactor was employed to remove sulfate from acrylic fiber manufacturing wastewater.Mesophilic operation (35±0.5℃) was performed with hydraulic retention time (HRT) varied between 28 and 40 hr.Mixed liquor suspended solids (MLSS)in the reactor was maintained about 8000 mg/L.The results indicated that sulfate removal was enhanced with increasing the ratio of COD/SO42-.At low COD/SO42-,the growth of the sulfate-reducing bacteria (SRB) was carbon-limited.The optimal sulfate removal efficiencies were 75% when the HRT was no less than 38 hr.Sulfidogenesis mainly happened in the sulfate-reducing stage,while methanogenesis in the methane-producing stage.Microbes in sulfate-reducing stage performed granulation better than that in methaneproducing stage.Higher extracellular polymeric substances (EPS) content in sulfate-reducing stage helped to adhere and connect the flocculent sludge particles together.SRB accounted for about 31% both in sulfate-reducing stage and methane-producing stage at COD/SO42- ratio of 0.5,while it dropped dramatically from 34% in sulfate-reducing stage to 10% in methane-producing stage corresponding to the COD/SO42- ratio of 4.7.SRB and MPA were predominant in sulfate-reducing stage and methane-producing stage respectively.

  20. Discrepancies in Composition and Biological Effects of Different Formulations of Chondroitin Sulfate

    OpenAIRE

    Martel-Pelletier, Johanne; Farran D??az Cano, Aina; Montell, Eul??lia; Verg??s, Josep; Pelletier, Jean-Pierre

    2015-01-01

    Osteoarthritis is a common, progressive joint disease, and treatments generally aim for symptomatic improvement. However, SYmptomatic Slow-Acting Drugs in Osteoarthritis (SYSADOAs) not only reduce joint pain, but slow structural disease progression. One such agent is chondroitin sulfate-a complex, heterogeneous polysaccharide. It is extracted from various animal cartilages, thus has a wide range of molecular weights and different amounts and patterns of sulfation. Chondroitin sulfate has an e...

  1. Effect of activated sludge in the bottom zone on biogenic sulfate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yagafarov, G.G.; Bikchentayeva, A.G.; Yagafarov, R.G.

    1981-01-01

    It is shown that sulfate destruction in the Arlansk group of fields is caused by infection of the formation by sulfate reducing bacteria in the drilling process and flooding by surface water. For the first time, the necessity is shown of considering the activated sludge formed from particles suspended in water and biocenosis of microorganisms during microbiological investigation of wells. It is suggested that biodecomposition of surfactants is possible only in the area of formation of activated sludge around the bottom of the injection well.

  2. Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20

    Directory of Open Access Journals (Sweden)

    William D. Leavitt

    2014-11-01

    Full Text Available Dissimilatory sulfate reduction serves as a key metabolic carbon remineralization process in anoxic marine environments. Sulfate reducing microorganisms can impart a wide range in mass-dependent sulfur isotopic fractionation. As such, the presence and relative activity of these organisms is identifiable from geological materials. By extension, sulfur isotope records are used to infer the redox balance of marine sedimentary environments, and the oxidation state of Earth’s oceans and atmosphere. However, recent work suggests that our understanding of microbial sulfate reducers (MSRs may be missing complexity associated with the presence and role of key chemical intermediates in the reductive process. This study provides a test of proposed metabolic models of sulfate reduction by growing an axenic culture of the well-studied MSRs, Desulfovibrio alaskensis strain G20, under electron donor limited conditions on the terminal electron acceptors sulfate, sulfite or thiosulfate, and tracking the multiple S isotopic consequences of each condition set. The dissimilatory reduction of thiosulfate and sulfite produce unique minor isotope effects, as compared to the reduction of sulfate. Further, these experiments reveal a complex biochemistry associated with sulfite reduction. That is, under high sulfite concentrations, sulfur is shuttled to an intermediate pool of thiosulfate. Site-specific isotope fractionation (within thiosulfate is very large (34ε ~ 30‰ while terminal product sulfide carries only a small fractionation from the initial sulfite (34ε < 10‰: a signature similar in magnitude to sulfate and thiosulfate reduction. Together these findings show that microbial sulfate reduction (MSR is highly sensitive to the concentration of environmentally important sulfur-cycle intermediates (sulfite and thiosulfate, especially when thiosulfate and the large site-specific isotope effects are involved.

  3. Rock magnetic properties in the sulfate reduction zone in IODP 350 Hole 1437B, Izu Bonin rear arc: preliminary results

    Science.gov (United States)

    Musgrave, R. J.; Kars, M. A. C.; Kodama, K.

    2014-12-01

    During the northern Spring 2014 (April-May), IODP Expedition 350 drilled a 1806.5 m deep hole at Site U1437 in the Izu-Bonin rear arc, in order to understand, among other objectives, the compositional evolution of the arc since the Miocene and track the missing half of the subduction factory. The good recovery of mostly fine grained sediments at this site enables a high resolution paleomagnetic and rock magnetic study. Particularly, variations in magnetic properties and mineralogy are well documented. The onboard magnetostratigraphy established from the study of the archive halves highlighted remagnetized intervals that produced "ghost" repetitions of geomagnetic reversals ~10's meters below their actual stratigraphic position in specific intervals. Onboard paleo- and rock magnetic analyses showed that remagnetization is probably due to a chemical remanence carried by iron sulfides (putatively identified as greigite). The rock magnetic parameters, SIRM/k and the S-ratio are consistent with the presence of ferromagnetic iron sulfides in Site U1437. A mixture of iron oxides and iron sulfides was found within the sulfate reduction zone, which was identified by onboard pore water analyses at ~50-60 meters below sea floor (mbsf) by a minimum in sulfate (~5 mM) coupled with a maximum in alkalinity. Below 50 mbsf, the sulfate content increases up to ~29 mM at ~460 mbsf. The particular downhole profile of the sulfate content in Site U1437 is probably triggered by fluid circulation. Evolution of sulfate content, pyritization process and fluid circulation are closely linked. Onshore research is focusing on further downhole characterization of the iron sulfides including their abundance, grain size and composition. Routine magnetic properties (NRM, magnetic susceptibility) and rock magnetic analyses at high resolution (every ~20-50 cm), including hysteresis properties and low temperature magnetic measurements, have been conducted on about 400 discrete samples in the first 200

  4. RATES OF SULFATE REDUCTION AND THIOSULFATE CONSUMPTION IN A MARINE MICROBIAL MAT

    NARCIS (Netherlands)

    VISSCHER, PT; PRINS, RA; VANGEMERDEN, H

    1992-01-01

    The sulfur cycle in a microbial mat was studied by determining viable counts of sulfate-reducing bacteria, chemolithoautotrophic sulfur bacteria and anoxygenic phototrophic bacteria. All three functional groups of sulfur bacteria revealed a maximum population density in the uppermost 5 mm of the mat

  5. Mathematical modeling of biogenous sulfate reduction in flooded carbonate petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ametov, A.M.

    1981-07-01

    A mathematical model of the activity of biocenosis of hydrocarbon oxidizing and sulfate reducing bacteria in flooded carbonate petroleum reservoirs, which leads to hydrogen sulfide generation which makes the working of deposits difficult, is investigated. A method of suppressing the bacterial processes in the bottom hole zones of injection wells is proposed. It presupposes that no viable bacteria reach the stratum.

  6. Biomolecular and Isotopic Signatures Related to Cr(VI) Reduction by a Sulfate-Reducing Bacterium Isolated from the Hanford 100H Aquifer

    Science.gov (United States)

    Han, R.; Qin, L.; Geller, J. T.; Chakraborty, R.; Christensen, J. N.; Beller, H. R.

    2011-12-01

    Chromium contamination of groundwater is widespread within the Dept. of Energy (DOE) complex. At DOE's Hanford 100H area, we have conducted Cr bioremediation (in situ reductive immobilization) studies involving injection of a lactate-containing polymer, and have observed sequential use of the dissolved electron acceptors present in groundwater (namely, oxygen, nitrate, and sulfate). Sulfate-reducing bacteria are of particular interest for chromate reduction because they can reduce Cr(VI) enzymatically (e.g., using cytochrome c3 or thioredoxin reductase) and abiotically with hydrogen sulfide, the end product of their respiration. In this poster, we use studies of a sulfate-reducing bacterium isolated from the Hanford 100H aquifer, Desulfovibrio vulgaris strain RCH1, to explore (a) isotopic signatures that might allow us to distinguish between enzymatic and sulfide-mediated Cr(VI) reduction and (b) biomolecular signatures (gene or transcript copy number of diagnostic genes) that might be used as proxies of in situ metabolic rates. In order to differentiate between the mechanisms of Cr reduction by sulfate reducers, we analyzed the isotopic fractionation during Cr(VI) reduction by strain RCH1. Cell suspension studies of strain RCH1 demonstrated that Cr(VI) reduction could occur in the presence of lactate (electron donor) alone or with both lactate and sulfate. Cr(VI) reduction in the presence of lactate and sulfate was 25-30% more rapid than enzymatic Cr reduction when only lactate was added, suggesting that biogenic hydrogen sulfide increases the specific rate of Cr(VI) reduction beyond purely enzymatic activity. Cr isotopic measurements showed different fractionation behavior for the lactate-only and lactate+sulfate systems, with fractionation (epsilon) values of 2.3 and 1.66 per mil, respectively. In order to determine whether gene or transcript copy number for diagnostic sulfate and chromate reduction genes could serve as proxies to estimate in situ metabolic

  7. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey

    Directory of Open Access Journals (Sweden)

    Clemens eGlombitza

    2013-07-01

    Full Text Available As part of the International Continental Drilling Program (ICDP deep lake drilling project PaleoVan, we investigated sulfate reduction (SR in deep sediment cores of the saline, alkaline (salinity 21.4 ‰, alkalinity 155 m mEq-1, pH 9.81 Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB and at Ahlat Ridge (AR and reached a maximum depth of 220 m. Additionally, 65-75 cm long gravity cores were taken at both sites. Sulfate reduction rates (SRR were low (≤ 22 nmol cm-3 d-1 compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. Sulfate reduction (SR could be detected down to 19 meters below lake floor (mblf at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM. We thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical or chemical parameters over relatively short distances. 

  8. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin

    DEFF Research Database (Denmark)

    Treude, T.; Niggemann, J.; Kallmeyer, J.;

    2005-01-01

    with high organic input, to analyze the impact of AOM on the methane budget, and to determine the contribution of AOM to SR within the sulfate-methane transition zone (SMT). Furthermore, we investigated the formation of authigenic carbonates correlated with AOM. We determined the vertical distribution...... of AOM and SR activity, methane, sulfate, sulfide, pH, total chlorins, and a variety of other geochemical parameters. Depth-integrated rates of AOM within the SMT were between 7 and 1124 mmol m(-2) a(-1), effectively removing methane below the sediment-water interface. Single measurements revealed AOM...... peaks of 2 to 51 nmol cm(-3) d(-1), with highest rates at the shallowest station (800 m). The methane turnover was higher than in other diffusive systems of similar ocean depth. This higher turnover was most likely due to elevated organic matter input in this upwelling region offering significant...

  9. Mathematical modeling of biogenic sulfate reduction in floodable carbonate oil collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ametov, A.M.

    1981-01-01

    A mathematical model for the activity of biocenosis of hydrocarbon-oxidizing and sulfate reducing bacteria is studied in floodable carbonate oil collectors. It results in the formation of hydrogen sulfide. This complicates working the fields. A method is proposed for suppressing bacterial processes in the near-face zone of the injection wells on the condition that the viable bacteria cease to enter the bed.

  10. Discrepancies in Composition and Biological Effects of Different Formulations of Chondroitin Sulfate

    OpenAIRE

    Johanne Martel-Pelletier; Aina Farran; Eulàlia Montell; Josep Vergés; Jean-Pierre Pelletier

    2015-01-01

    Osteoarthritis is a common, progressive joint disease, and treatments generally aim for symptomatic improvement. However, SYmptomatic Slow-Acting Drugs in Osteoarthritis (SYSADOAs) not only reduce joint pain, but slow structural disease progression. One such agent is chondroitin sulfate—a complex, heterogeneous polysaccharide. It is extracted from various animal cartilages, thus has a wide range of molecular weights and different amounts and patterns of sulfation. Chondroitin sulfate has an e...

  11. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment.

    Science.gov (United States)

    Engelbrektson, Anna; Hubbard, Christopher G; Tom, Lauren M; Boussina, Aaron; Jin, Yong T; Wong, Hayden; Piceno, Yvette M; Carlson, Hans K; Conrad, Mark E; Anderson, Gary; Coates, John D

    2014-01-01

    Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (per)chlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 mM) treatment after an initial inhibition period. In contrast, no effluent sulfide was observed with (per)chlorate (10 mM). Microbial community analyses indicated temporal community shifts and phylogenetic clustering by treatment. Nitrate addition stimulated Xanthomonadaceae and Rhizobiaceae growth, supporting their role in nitrate metabolism. (Per)chlorate showed distinct effects on microbial community structure compared with nitrate and resulted in a general suppression of the community relative to the untreated control combined with a significant decrease in sulfate reducing species abundance indicating specific toxicity. Furthermore, chlorate stimulated Pseudomonadaceae and Pseudoalteromonadaceae, members of which are known chlorate respirers, suggesting that chlorate may also control sulfidogenesis by biocompetitive exclusion of sulfate-reduction. Perchlorate addition stimulated Desulfobulbaceae and Desulfomonadaceae, which contain sulfide oxidizing and elemental sulfur-reducing species respectively, suggesting that effluent sulfide concentrations may be controlled through sulfur redox cycling in addition to toxicity and biocompetitive exclusion. Sulfur isotope analyses further support sulfur cycling in the columns, even when sulfide is not detected. This study indicates that (per)chlorate show great promise as inhibitors of sulfidogenesis in natural communities and provides insight into which organisms and respiratory processes are involved. PMID:25071731

  12. Sulfation of β-chitosan and evaluation of biological activity from gladius of Sepioteuthis lessoniana.

    Science.gov (United States)

    Subhapradha, Namasivayam; Ramasamy, Pasiyappazham; Srinivasan, Alagiri; Madeswaran, Perumal; Shanmugam, Vairamani; Shanmugam, Annaian

    2013-11-01

    β-Chitosan extracted from the gladius of Sepioteuthis lessoniana was sulfated with chlorosufonic acid. The structural features of sulfated chitosan were analyzed by NMR spectroscopy. The elemental composition was analyzed using elemental analyzer. The molecular weight of sulfated chitosan estimated through viscometry was calculated as 12.47 × 10(4) Da. The water solubility of sulfated chitosan was found to be 81%. The sulfated chitosan was able to scavenge the DPPH, superoxide and hydroxyl radicals and the inhibitory concentration (IC50) of those free radicals was found to be 4, 0.428 and 0.473 mg/ml respectively. Sulfated chitosan also showed reducing and chelating property. The IC50 value of reducing and chelating ability was found to be 0.316 and 5.64 mg/ml respectively. The anticoagulant activity was determined for human plasma with respect to activated partial thromboplastin time and prothrombin time and it was 7.13 IU and 1.26 IU, respectively. PMID:24064206

  13. Discrepancies in Composition and Biological Effects of Different Formulations of Chondroitin Sulfate

    Directory of Open Access Journals (Sweden)

    Johanne Martel-Pelletier

    2015-03-01

    Full Text Available Osteoarthritis is a common, progressive joint disease, and treatments generally aim for symptomatic improvement. However, SYmptomatic Slow-Acting Drugs in Osteoarthritis (SYSADOAs not only reduce joint pain, but slow structural disease progression. One such agent is chondroitin sulfate—a complex, heterogeneous polysaccharide. It is extracted from various animal cartilages, thus has a wide range of molecular weights and different amounts and patterns of sulfation. Chondroitin sulfate has an excellent safety profile, and although various meta-analyses have concluded that it has a beneficial effect on symptoms and structure, others have concluded little or no benefit. This may be due, at least partly, to variations in the quality of the chondroitin sulfate used for a particular study. Chondroitin sulfate is available as pharmaceutical- and nutraceutical-grade products, and the latter have great variations in preparation, composition, purity and effects. Moreover, some products contain a negligible amount of chondroitin sulfate and among samples with reasonable amounts, in vitro testing showed widely varying effects. Of importance, although some showed anti-inflammatory effects, others demonstrated weak effects, and some instances were even pro-inflammatory. This could be related to contaminants, which depend on the origin, production and purification process. It is therefore vitally important that only pharmaceutical-grade chondroitin sulfate be used for treating osteoarthritis patients.

  14. The Role of Geoelectrical Methods in Monitoring Stimulated Sulfate-Reduction: Insights Gained From Field-Scale Experiments

    Science.gov (United States)

    Williams, K. H.; Kemna, A.; Long, P.; Druhan, J.; Hubbard, S.; Banfield, J.

    2006-12-01

    Understanding how microorganisms influence the physical and chemical properties of the subsurface is hindered by our inability to observe microbial dynamics in real time and with high spatial resolution. Here we investigate the use of time-lapse geoelectrical methods to monitor stimulated sulfate-reduction at the field scale during in-situ acetate amendment at the Rifle, Colorado uranium mill tailings site. Modification of the pore fluid and sediment composition as a result of bisulfide production and mineral precipitation was concomitant with changes in induced polarization (IP) and self-potential (SP) signals. With data collected from both the surface and between boreholes, temporal variations in the IP response were characterized by the development of pronounced phase anomalies related to the precipitation of disordered mackinawite (FeS). Sediment samples recovered from the aquifer showed a close correlation between the location of the IP phase anomalies and the enrichment of acid volatile sulfides. Variations in borehole SP signals closely tracked the onset of sulfate-reduction and primarily resulted from an increase in the concentration of bisulfide adjacent to the measurement electrodes. The magnitude of the SP response was dominated by the galvanic interaction of metallic copper and bisulfide, and it closely approximated the electrochemical cell potential of the anodic and cathodic reactions occurring at the electrode surfaces. Both geolectrical techniques delineated spatially discrete anomalies that appear to reflect the interaction of biostimulation with lithological variability within the aquifer.

  15. Role of oxbow lakes in controlling redox geochemistry of shallow groundwater under a heterogeneous fluvial sedimentary environment in an agricultural field: Coexistence of iron and sulfate reduction.

    Science.gov (United States)

    Choi, Byoung-Young; Yun, Seong-Taek; Kim, Kyoung-Ho

    2016-01-01

    This study aimed to extend the knowledge of the vertical distribution of redox conditions of shallow groundwater in heterogeneous fluvial sediments near oxbow lakes. For this study, we revisited the study area of Kim et al. (2009) to examine the redox zoning in details. Three multi-level samplers were installed along a flow path near two oxbow lakes to obtain vertical profiles of the subsurface geology and hydrochemical and isotopic data (δ(18)O and δD of water, δ(15)N and δ(18)O of nitrate, and δ(34)S of sulfate) of groundwater. Geologic logging showed that characteristics of the heterogeneous subsurface geology are closely related to the pattern of vertical redox zoning. Hydrochemical data in conjunction with nitrogen and sulfur isotope data show that the redox status of groundwater near oxbow lakes is controlled by denitrification, iron reduction, and sulfate reduction. The oxidizing condition of groundwater occurs in the sand-dominant alluvium located in the up-gradient of oxbow lakes, whereas the reducing condition accompanying denitrification, iron reduction, and local sulfate reduction is developed in silt-rich alluvium in and the downgradient of oxbow lakes. The occurrence of sulfate reduction was newly found in this study. However, the vertical profiles of redox-sensitive parameters show that iron reduction and sulfate reduction occur concurrently near oxbow lakes, although the measured redox potentials suggest that thermodynamic conditions are controlled by the stability of Fe(2+)/Fe-oxides. Therefore, this study shows that the redox condition of groundwater in the iron-rich zone should be carefully interpreted. For this purpose, depth-specific sampling and careful examination of sulfur isotope data will be very useful for identifying the redox processes occurring in the zone with overlapping iron reduction and sulfate reduction in heterogeneous fluvial sediments. PMID:26788873

  16. Role of oxbow lakes in controlling redox geochemistry of shallow groundwater under a heterogeneous fluvial sedimentary environment in an agricultural field: Coexistence of iron and sulfate reduction

    Science.gov (United States)

    Choi, Byoung-Young; Yun, Seong-Taek; Kim, Kyoung-Ho

    2016-02-01

    This study aimed to extend the knowledge of the vertical distribution of redox conditions of shallow groundwater in heterogeneous fluvial sediments near oxbow lakes. For this study, we revisited the study area of Kim et al. (2009) to examine the redox zoning in details. Three multi-level samplers were installed along a flow path near two oxbow lakes to obtain vertical profiles of the subsurface geology and hydrochemical and isotopic data (δ18O and δD of water, δ15N and δ18O of nitrate, and δ34S of sulfate) of groundwater. Geologic logging showed that characteristics of the heterogeneous subsurface geology are closely related to the pattern of vertical redox zoning. Hydrochemical data in conjunction with nitrogen and sulfur isotope data show that the redox status of groundwater near oxbow lakes is controlled by denitrification, iron reduction, and sulfate reduction. The oxidizing condition of groundwater occurs in the sand-dominant alluvium located in the up-gradient of oxbow lakes, whereas the reducing condition accompanying denitrification, iron reduction, and local sulfate reduction is developed in silt-rich alluvium in and the downgradient of oxbow lakes. The occurrence of sulfate reduction was newly found in this study. However, the vertical profiles of redox-sensitive parameters show that iron reduction and sulfate reduction occur concurrently near oxbow lakes, although the measured redox potentials suggest that thermodynamic conditions are controlled by the stability of Fe2 +/Fe-oxides. Therefore, this study shows that the redox condition of groundwater in the iron-rich zone should be carefully interpreted. For this purpose, depth-specific sampling and careful examination of sulfur isotope data will be very useful for identifying the redox processes occurring in the zone with overlapping iron reduction and sulfate reduction in heterogeneous fluvial sediments.

  17. Effect of dissimilatory iron and sulfate reduction on arsenic dynamics in the wetland rhizosphere and its bioaccumulation in plants

    Science.gov (United States)

    Jaffe, P. R.; Zhang, Z.; Moon, H. S.; Myneni, S.

    2015-12-01

    The mobility of arsenic in soils is linked to biogeochemical redox processes. The presence of wetland plants in riparian wetlands has a significant impact on the biogeochemical dynamics of the soil/sediment-redoxcline due to the release of root exudates and root turnover and oxygen transfer from the roots into the surrounding sediment. Micro-environmental redox conditions in the rhizosphere affect As, Fe, and S speciation as well as Fe(III) plaque deposition, which affects arsenic transport and uptake by plants. To investigate the dynamics of As coupled to S and Fe cycling in wetlands, mesocosms were operated in a greenhouse under various conditions (high and low Fe, high and low sulfate, with plant and without plants) for four months. Results show that the presence of plants, high Fe, and high SO42- levels enhanced As sequestration in these soils. We hypothesize that this compounding effect is because plants release biodegradable organic carbon, which is used by microorganism to reduce ferrihydrite and SO42- to generate FeS, FeS2, and/or orpiment (As2S3). Over the concentration range studied, As immobilization in soil and uptake by Scirpus actus was mainly controlled by SO42- rather than Fe levels. Under high sulfate levels, As immobilization in soil increased by 50% and As concentrations in plant roots increased by 97%, whereas no significant changes in plant As levels were seen for varying Fe concentrations. More than 80% of As was sequestrated in soils rather than plant uptake. Pore water As speciation analyses indicate that 20% more As(V) was reduced to As(III) under high sulfate as than low sulfate levels and that low Fe was more favorable to the As dissimilatory reduction. More dissimilatory arsenate-respiring bacteria (DARB) under high sulfate were confirmed by quantitative PCR. Arsenic distribution in plant leafs and roots after 30 days of exposure to As was analyzed via Synchrotron X-ray fluorescence analyses. The uptake of As by plants was distributed

  18. In vitro evaluation of the compatibility of a novel collagen-heparan sulfate biological scaffold with olfactory ensheathing cells

    Institute of Scientific and Technical Information of China (English)

    TANG Zhou-ping; YANG Jie; PAN Deng-ji; LIU Na; LI Zai-wang; XIE Xue-wei; CHEN Yun; SHI Yuan-hong; ZENG Wen-gao; WANG Shu-xin; CHEN Juan

    2010-01-01

    Background Stroke and traumatic injury to the nerve system may trigger axonal destruction and the formation of scar tissue, cystic cavitations and physical gaps.Olfactory ensheathing cells (OECs) can secrete neurotrophic factors to promote neurite growth and thus act as a prime candidate for autologous transplantation.Biological scaffolds can provide a robust delivery vehicle to injured nerve tissue for neural cell transplantation strategies, owing to the porous three-dimensional structures (3D).So transplantation of the purposeful cells seeded scaffolds may be a promising method for nerve tissue repair.This study aimed to evaluate the compatibility of a novel collagen-heparan sulfate biological scaffold with olfactory ensheathing cells in vitro.Methods Collagen-heparan sulfate (CHS) biological scaffolds were made, and then the scaffolds and OECs were co-cultured in vitro.The viability of OECs was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay at days 1, 3, 5 and 7.Statistical analysis was evaluated by student's t test.Significance was accepted at P <0.05.OECs were labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE), and the CFSE-labeled OECs were seeded into CHS scaffolds.The attachment and growth of OECs in CHS scaffolds were observed and traced directly by fluorescent microscopy and environmental scanning electron microscope (ESEM).Results CHS biological scaffolds had steady porous 3D structures and no cytotoxicity to OECs (F=0.14, P=0.9330).CHS biological scaffolds were good bridging materials for OECs attachment and proliferation, and they promoted the axonal growth.Conclusion The compatibility of CHS biological scaffolds with OECs is pretty good and CHS biological scaffold is a promising cell carrier for the implantation of OECs in nerve tissue bioengineering.

  19. Determination of four sulfated vitamin D compounds in human biological fluids by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Gomes, Fabio P; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-01-15

    The determination of both the water-soluble and lipid-soluble vitamin D compounds in human biological fluids is necessary to illuminate potentially significant biochemical mechanisms. The lack of analytical methods to quantify the water-soluble forms precludes studies on their role and biological functions; currently available liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods are able to determine only a single sulfated form of Vitamin D. We describe here a highly sensitive and specific LC-MS/MS method for the quantification of four sulfated forms of vitamin D: vitamins D2- and D3-sulfate (D2-S and D3-S) and 25-hydroxyvitamin D2- and D3-sulfate (25(OH)D2-S and 25(OH)D3-S). A comparative evaluation showed that the ionization efficiencies of underivatized forms in negative ion mode electrospray ionisation (ESI) are superior to those of the derivatized (using 4-phenyl-l,2,4-triazoline-3,5-dione (PTAD)) forms in positive ion mode ESI. Separation was optimised to minimise co-elution with endogenous matrix compounds, thereby reducing ion suppression/enhancement effects. Isotopically labelled analogues of each compound were used as internal standards to correct for ion suppression/enhancement effects. The method was validated and then applied for the analysis of breastmilk and human serum. The detection limits, repeatability standard deviations, and recoveries ranged from 0.20 to 0.28fmol, 2.8 to 10.2%, and 81.1 to 102%, respectively. PMID:26708628

  20. Atmospheric oxygen levels, anaerobic methane oxidation, and the coupling of the global COS cycles by sulfate reduction

    Science.gov (United States)

    Wortmann, U. G.; Chernyavsky, B. M.

    2007-12-01

    Changes in the partitioning between the reduced and oxidized reservoirs of carbon and sulfur are the dominant control on atmospheric oxygen levels, and the partitioning itself depends to a large degree on microbial redox processes remineralizing organic matter (OM). However, the controls of organic matter preservation in marine sediments are one of the most complex and controversial issues in contemporary biochemistry. Knowledge how the transition from one electron acceptor to another affects OM remineralization rates is scant even for the transition from aerobic to anaerobic respiration. Much less is known about the transition from anaerobic respiration to fermentation. Although the individual pathways of methane generation are known, our understanding of the complex interactions between different bacterial groups remains limited, resulting in considerable difficulties to resolve these questions in microcosm experiments. Here we show that a dramatic drop in seawater sulfate concentrations during the Early Cretaceous (Wortmann & Chernyavsky, Nature 2007) resulted in a global breakdown of microbial sulfate reduction in the marine subsurface biosphere. This event resulted in a positive excursion of the global δ13C-value, suggesting that organic matter remineralization rates dropped by more than 50%. This implies that the methanogenic microbial community was unable to increase their metabolic rates, despite the increased supply of organic matter. the reduced availability of sulfate for anaerobic methane oxidation did not increase the flux of isotopically light carbon into the ocean/atmosphere system. We therefore speculate that the capacity of marine methanogenic ecosystems to synthesize extracellular enzymes to hydrolyze organic matter is specific to the prevailing type of organic matter. This results in a positive coupling of the metabolic activity of both ecosystems, which in turn is a necessary prerequisite to decouple reduced carbon and sulfur burial, a key

  1. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment.

    KAUST Repository

    Meulepas, Roel J W

    2010-05-06

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did these substrates trigger methanogenesis. Carbon monoxide also enhanced SR but slightly inhibited AOM. Methanol did not enhance SR nor did it inhibit AOM, and methanethiol inhibited both SR and AOM completely. Subsequently, it was calculated at which candidate-IEC concentrations no more Gibbs free energy can be conserved from their production from methane at the applied conditions. These concentrations were at least 1,000 times lower can the final candidate-IEC concentration in the bulk liquid. Therefore, the tested candidate-IECs could not have been produced from methane during the incubations. Hence, acetate, formate, methanol, carbon monoxide, and hydrogen can be excluded as sole IEC in AOM coupled to SR. Methanethiol did inhibit AOM and can therefore not be excluded as IEC by this study.

  2. Sulfate inhibition effect on sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Sulaiman Al Zuhair

    2008-12-01

    Full Text Available There is an increasing interest in the potential of bacterial sulfate reduction as an alternative method for sulfate removal from wastewater. Under anaerobic conditions, sulfate-reducing bacteria (SRB utilize sulfate to oxidize organic compounds and generate sulfide (S2-. SRB were successfully isolated from sludge samples obtained from a local petroleum refinery, and used for sulfate removal. The effects of initial sulfate concentration, temperature and pH on the rate of bacterial growth and anaerobic sulfate removal were investigated and the optimum conditions were identified. The experimental data were used to determine the parameters of two proposed kinetic model, which take into consideration substrate inhibition effect. Keywords: Sulfate Reducing Bacteria, Sulfate, Kinetic Model, Biotreatement, Inhibition Received: 31 August 2008 / Received in revised form: 18 September 2008, Accepted: 18 September 2008 Published online: 28 September 2008

  3. Strategies for the reduction of Legionella in biological treatment systems.

    Science.gov (United States)

    Nogueira, R; Utecht, K-U; Exner, M; Verstraete, W; Rosenwinkel, K-H

    2016-01-01

    A community-wide outbreak of Legionnaire's disease occurred in Warstein, Germany, in August 2013. The epidemic strain, Legionella pneumophila Serogruppe 1, was isolated from an industrial wastewater stream entering the municipal wastewater treatment plant (WWTP) in Wartein, the WWTP itself, the river Wäster and air/water samples from an industrial cooling system 3 km downstream of the WWTP. The present study investigated the effect of physical-chemical disinfection methods on the reduction of the concentration of Legionella in the biological treatment and in the treated effluent entering the river Wäster. Additionally, to gain insight into the factors that promote the growth of Legionella in biological systems, growth experiments were made with different substrates and temperatures. The dosage rates of silver micro-particles, hydrogen peroxide, chlorine dioxide and ozone and pH stress to the activated sludge were not able to decrease the number of culturable Legionella spp. in the effluent. Nevertheless, the UV treatment of secondary treated effluent reduced Legionella spp. on average by 1.6-3.4 log units. Laboratory-scale experiments and full-scale measurements suggested that the aerobic treatment of warm wastewater (30-35 °C) rich in organic nitrogen (protein) is a possible source of Legionella infection. PMID:27533856

  4. Sulfation and Desulfation Behavior of Pt-BaO/MgO-Al2O3 NOx Storage Reduction Catalyst.

    Science.gov (United States)

    Jeong, Soyeon; Kim, Do Heui

    2016-05-01

    The comparative study between Pt-BaO/Al2O3 and Pt-BaO/MgO-Al2O3 gives the information about the effect of MgO addition to Al2O3 support on the sulfation and desulfation behavior of Pt-BaO/MgO-Al2O3 NOx storage reduction catalyst. The sulfated two samples were analyzed by using element analysis (EA), X-ray diffraction (XRD), H2 temperature programmed reaction (H2 TPRX) and NOx uptake measurement. The amount of sulfur uptake on 2 wt% Pt-20 wt% BaO/Al2O3 and 2 wt% Pt-20 wt% BaO/MgO-Al2O3 are almost identical as 0.45 and 0.40 of S/Ba, respectively, which yields the drastic decrease in NOx uptake for both sulfated samples. However, after desulfa- tion with H2 at 600 degrees C, the residual sulfur amount on MgO-Al2O3 supported catalyst is three times larger than that on Al2O3 supported one, indicating that sulfur species formed on the former are more stable than those on the latter. It is also well corresponding to the H2 TPRX results where the main H2S peak from MgO-Al2O3 supported sample is observed at higher temperature than Al2O3 supported one, resulting in the lower NOx uptake activity of former sample than the latter one. Meanwhile, after desulfation of MgO-Al2O3 supported sample at 700 degrees C and 800 degrees C, the activity is recovered more significantly due to the removal of the large amount of sulfur while Al2O3 supported one decreases monotonically due to the sintering of Pt crystallite and the formation of BaAl2O4 phase. It is summarized that MgO-Al2O3 supported catalyst enhances the thermal stability of the catalyst, however, forms the stable sulfate species, which needs to be improved to develop the more sulfur resistant NSR catalyst system.

  5. Sulfation and Desulfation Behavior of Pt-BaO/MgO-Al2O3 NOx Storage Reduction Catalyst.

    Science.gov (United States)

    Jeong, Soyeon; Kim, Do Heui

    2016-05-01

    The comparative study between Pt-BaO/Al2O3 and Pt-BaO/MgO-Al2O3 gives the information about the effect of MgO addition to Al2O3 support on the sulfation and desulfation behavior of Pt-BaO/MgO-Al2O3 NOx storage reduction catalyst. The sulfated two samples were analyzed by using element analysis (EA), X-ray diffraction (XRD), H2 temperature programmed reaction (H2 TPRX) and NOx uptake measurement. The amount of sulfur uptake on 2 wt% Pt-20 wt% BaO/Al2O3 and 2 wt% Pt-20 wt% BaO/MgO-Al2O3 are almost identical as 0.45 and 0.40 of S/Ba, respectively, which yields the drastic decrease in NOx uptake for both sulfated samples. However, after desulfa- tion with H2 at 600 degrees C, the residual sulfur amount on MgO-Al2O3 supported catalyst is three times larger than that on Al2O3 supported one, indicating that sulfur species formed on the former are more stable than those on the latter. It is also well corresponding to the H2 TPRX results where the main H2S peak from MgO-Al2O3 supported sample is observed at higher temperature than Al2O3 supported one, resulting in the lower NOx uptake activity of former sample than the latter one. Meanwhile, after desulfation of MgO-Al2O3 supported sample at 700 degrees C and 800 degrees C, the activity is recovered more significantly due to the removal of the large amount of sulfur while Al2O3 supported one decreases monotonically due to the sintering of Pt crystallite and the formation of BaAl2O4 phase. It is summarized that MgO-Al2O3 supported catalyst enhances the thermal stability of the catalyst, however, forms the stable sulfate species, which needs to be improved to develop the more sulfur resistant NSR catalyst system. PMID:27483765

  6. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction.

    Science.gov (United States)

    Zhu, Meng; Tu, Chen; Hu, Xuefeng; Zhang, Haibo; Zhang, Lijuan; Wei, Jing; Li, Yuan; Luo, Yongming; Christie, Peter

    2016-11-01

    Diphenylarsinic acid (DPAA) is a major organic arsenic (As) compound derived from abandoned chemical weapons. The solid-solution partitioning and transformation of DPAA in flooded soils are poorly understood but are of great concern. The identification of the mechanisms responsible for the mobilization and transformation of DPAA may help to develop effective remediation strategies. Here, soil and Fe mineral incubation experiments were carried out to elucidate the partitioning and transformation of DPAA in anoxic (without addition of sulfate or sodium lactate) and sulfide (with the addition of sulfate and sodium lactate) soil and to examine the impact of sulfate and Fe(III) reduction on these processes. Results show that DPAA was more effectively mobilized and thionated in sulfide soil than in anoxic soil. At the initial incubation stages (0-4weeks), 6.7-74.5% of the total DPAA in sulfide soil was mobilized likely by sorption competition with sodium lactate. At later incubation stage (4-8weeks), DPAA was almost completely released into the solution likely due to the near-complete Fe(III) reduction. Scanning transmission X-ray microscopy (STXM) results provide further direct evidence of elevated DPAA release coupled with Fe(III) reduction in sulfide environments. The total DPAA fraction decreased significantly to 24.5% after two weeks and reached 3.4% after eight weeks in sulfide soil, whereas no obvious elimination of DPAA occurred in anoxic soil at the initial two weeks and the total DPAA fraction decreased to 10.9% after eight weeks. This can be explained in part by the enhanced mobilization of DPAA and sulfate reduction in sulfide soil compared with anoxic soil. These results suggest that under flooded soil conditions, Fe(III) and sulfate reduction significantly promote DPAA mobilization and thionation, respectively, and we suggest that it is essential to consider both sulfate and Fe(III) reduction to further our understanding of the environmental fate of DPAA.

  7. Elevated acetate concentrations in the rhizosphere of Spartina alterniflora and potential influences on sulfate reduction

    Science.gov (United States)

    Hines, Mark E.; Tugel, Joyce B.; Giblin, A. E.; Banta, G. T.; Hobbie, J. E.

    1992-01-01

    Acetate is important in anaerobic metabolism of non-vegetated sediments but its role in salt marsh soils was not investigated thoroughly. Acetate concentrations, oxidation (C-14) and SO4(2-) reduction (S-35) were measured in S. alterniflora soils in NH and MA. Pore water from cores contained greater than 0.1 mM acetate and in some instances greater than 1.0 mM. Non-destructive samples contained less than 0.01 mM. Acetate was associated with roots and concentrations were highest during vegetative growth and varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of SO4(2-) reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a significant percentage of SO4(2-) reduction. These results differ markedly from data for non-vegetated coastal sediments where acetate levels are low, oxidation rate constants are high and acetate oxidation rates greatly exceed rates of SO4(2-) reduction. The discrepancy between rates of acetate oxidation and SO4(2-) reduction in marsh soils may be due either to the utilization of substrates other than acetate by SO4(2-) reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria.

  8. Hexavalent Molybdenum Reduction to Mo-Blue by a Sodium-Dodecyl-Sulfate-Degrading Klebsiella oxytoca Strain DRY14

    Directory of Open Access Journals (Sweden)

    M. I. E. Halmi

    2013-01-01

    Full Text Available Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS- degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v, between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.

  9. Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input.

    Science.gov (United States)

    Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Yu, Hao; Zhou, Xu; Guo, Hong-liang; Yuan, Ye; Lee, Duu-jong; Zhou, Jizhong; Ren, Nan-qi

    2014-08-15

    Limited-oxygen mediated synergistic relationships between sulfate-reducing bacteria (SRB), nitrate-reducing bacteria (NRB) and sulfide-oxidizing bacteria (SOB, including nitrate-reducing, sulfide-oxidizing bacteria NR-SOB) were predicted to simultaneously remove contaminants of nitrate, sulfate and high COD, and eliminate sulfide generation. A lab-scale experiment was conducted to examine the impact of limited oxygen on these oxy-anions degradation, sulfide oxidation and associated microbial functional responses. In all scenarios tested, the reduction of both nitrate and sulfate was almost complete. When limited-oxygen was fed into bioreactors, S(0) formation was significantly improved up to ∼ 70%. GeoChip 4.0, a functional gene microarray, was used to determine the microbial gene diversity and functional potential for nitrate and sulfate reduction, and sulfide oxidation. The diversity of the microbial community in bioreactors was increased with the feeding of limited oxygen. Whereas the intensities of the functional genes involved in sulfate reduction did not show a significant difference, the abundance of the detected denitrification genes decreased in limited oxygen samples. More importantly, sulfide-oxidizing bacteria may alter their populations/genes in response to limited oxygen potentially to function more effectively in sulfide oxidation, especially to elemental sulfur. The genes fccA/fccB from nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB), such as Paracoccus denitrificans, Thiobacillus denitrificans, Beggiatoa sp., Thiomicrospira sp., and Thioalkalivibrio sp., were more abundant under limited-oxygen condition. PMID:24981676

  10. Effect of the deletion of qmoABC and the promoter distal gene encoding a hypothetical protein on sulfate-reduction in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zane, Grant M.; Yen, Huei-chi Bill; Wall, Judy D.

    2010-03-18

    The pathway of electrons required for the reduction of sulfate in sulfate-reducing bacteria (SRB) is not yet fully characterized. In order to determine the role of a transmembrane protein complex suggested to be involved in this process, a deletion of Desulfovibrio vulgaris Hildenborough was created by marker exchange mutagenesis that eliminated four genes putatively encoding the QmoABC complex and a hypothetical protein (DVU0851). The Qmo complex (quinone-interacting membrane-bound oxidoreductase) is proposed to be responsible for transporting electrons to the dissimilatory adenosine-5?phosphosulfate (APS) reductase in SRB. In support of the predicted role of this complex, the deletion mutant was unable to grow using sulfate as its sole electron acceptor with a range of electron donors. To explore a possible role for the hypothetical protein in sulfate reduction, a second mutant was constructed that had lost only the gene that codes for DVU0851. The second constructed mutant grew with sulfate as the sole electron acceptor; however, there was a lag that was not present with the wild-type or complemented strain. Neither deletion strain was significantly impaired for growth with sulfite or thiosulfate as terminal electron acceptor. Complementation of the D(qmoABC-DVU0851) mutant with all four genes or only the qmoABC genes restored its ability to grow by sulfate respiration. These results confirmed the prediction that the Qmo complex is in the electron pathway for sulfate-reduction and revealed that no other transmembrane complex could compensate when Qmo was lacking.

  11. Morphological properties and proliferation analysis of olfactory ensheathing cells seeded onto three-dimensional collagen-heparan sulfate biological scaffolds

    Institute of Scientific and Technical Information of China (English)

    Na Liu; Zhouping Tang; Zhiyuan Yu; Minjie Xie; Yu Zhang; Erfang Yang; Shabei Xu

    2012-01-01

    This study aimed to examine the differences in the morphological properties and proliferation of ol-factory ensheathing cells in three-dimensional culture on collagen-heparan sulfate biological scaf-folds and in two-dimensional culture on common flat culture plates. The proliferation rate of olfactory ensheathing cells in three-dimensional culture was higher than that in two-dimensional culture, as detected by an MTT assay. In addition, more than half of the olfactory ensheathing cells subcultured using the trypsinization method in three-dimensional culture displayed a spindly Schwann cell-like morphology with extremely long processes, while they showed a flat astrocyte-like morphology in two-dimensional culture. Moreover, spindle-shaped olfactory ensheathing cells tended to adopt an elongated bipolar morphology under both culture conditions. Experimental findings indicate that the morphological properties and proliferation of olfactory ensheathing cells in three-dimensional culture on collagen-heparan sulfate biological scaffolds are better than those in two-dimensional culture.

  12. Evaluation of Radiation Dose Reduction during CT Scans Using Oxide Bismuth and Nano-Barium Sulfate Shields

    CERN Document Server

    Seoung, Youl-Hun

    2015-01-01

    The purpose of the present study was to evaluate radiation dose reduction and image quality during CT scanning by using a new dose reduction fiber sheet (DRFS) with commercially available bismuth shields. These DRFS were composed of nano-barium sulfate (BaSO4), filling the gaps left by the large oxide bismuth (Bi2O3) particle sizes. The radiation dose was measured five times at directionss of 12 o'clock from the center of the polymethyl methacrylate (PMMA) head phantom to calculate an average value using a CT ionization chamber. The image quality measured CT transverse images of the PMMA head phantom depending on X-ray tube voltages and the type of shielding. Two regions of interest in CT transverse images were chosen from the right and left areas under the surface of the PMMA head phantom and from ion chamber holes located at directions of 12 o'clock from the center of the PMMA head phantom. The results of this study showed that the new DRFS shields could reduce dosages to 15.61%, 23.05%, and 22.71% more in ...

  13. Sulfate reduction during the acidification of sucrose at pH 5 under thermophilic (55 degrees C) conditions. II: Effect of sulfide and COD/SO42- ratio

    NARCIS (Netherlands)

    Lopes, S.I.C.; Capela, M.I.; Lens, P.N.L.

    2010-01-01

    This work studied the effect of the sulfide concentration and COD/SO42- ratios (4 and 1) on sulfate reduction and acidification in a thermophilic (55 degrees C) UASB reactor fed with sucrose (4 g COD (I-reactor d)(-1)) operated at a reactor mixed liquor pH controlled at 5 for a period of 301 days. W

  14. Effect of COD/SO42- ratio and sulfide on thermophilic (55°C) sulfate reduction during the acidification of sucrose at pH 6

    NARCIS (Netherlands)

    Lopes, S.I.C.; Wang, X.; Capela, M.I.; Lens, P.N.L.

    2007-01-01

    This study investigated the effect of the COD/SO42¿ ratio (4 and 1) and the sulfide concentration on the performance of thermophilic (55 °C) acidifying (pH 6) upflow anaerobic sludge bed reactors fed with sucrose at an organic loading rate of 4.5 g COD lreactor¿1 day¿1. Sulfate reduction efficiencie

  15. Using a Statistical Model to Examine the Effect of COD: SO42− Ratio, HRT and LA Concentration on Sulfate Reduction in an Anaerobic Sequencing Batch Reactor

    OpenAIRE

    Rajesh Singh; Chungman Moon; Sathyanarayan S. Veeravalli; Saravanan R. Shanmugam; Subba Rao Chaganti; Jerald A. Lalman

    2014-01-01

    Taguchi statistical design, an orthogonal array (OA) method, was used to study the impact of the COD/SO42− ratio, hydraulic retention time (HRT) and linoleic acid (LA) concentration on sulfate (SO42−) reduction in an anaerobic sequencing batch reactor using glucose as the electron donor. Based on the OA, optimum condition for maximum SO42− reduction was evaluated. Increasing the COD/SO42− ratio and HRT caused decreasing SO42− reduction while increased SO42− reduction was observed with increas...

  16. Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment

    Science.gov (United States)

    Zhang, Liang; Lin, Xiaojuan; Wang, Jinting; Jiang, Feng; Wei, Li; Chen, Guanghao; Hao, Xiaodi

    2016-01-01

    Biological sulfate-reducing bacteria (SRB) may be effective in removing toxic lead and mercury ions (Pb(II) and Hg(II)) from wet flue gas desulfurization (FGD) wastewater through anaerobic sulfite reduction. To confirm this hypothesis, a sulfite-reducing up-flow anaerobic sludge blanket reactor was set up to treat FGD wastewater at metal loading rates of 9.2 g/m3-d Pb(II) and 2.6 g/m3-d Hg(II) for 50 days. The reactor removed 72.5 ± 7% of sulfite and greater than 99.5% of both Hg(II) and Pb(II). Most of the removed lead and mercury were deposited in the sludge as HgS and PbS. The contribution of cell adsorption and organic binding to Pb(II) and Hg(II) removal was 20.0 ± 0.1% and 1.8 ± 1.0%, respectively. The different bioavailable concentration levels of lead and mercury resulted in different levels of lethal toxicity. Cell viability analysis revealed that Hg(II) was less toxic than Pb(II) to the sludge microorganisms. In the batch tests, increasing the Hg(II) feeding concentration increased sulfite reduction rates. In conclusion, a sulfite-reducing reactor can efficiently remove sulfite, Pb(II) and Hg(II) from FGD wastewater. PMID:27455890

  17. Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment.

    Science.gov (United States)

    Zhang, Liang; Lin, Xiaojuan; Wang, Jinting; Jiang, Feng; Wei, Li; Chen, Guanghao; Hao, Xiaodi

    2016-01-01

    Biological sulfate-reducing bacteria (SRB) may be effective in removing toxic lead and mercury ions (Pb(II) and Hg(II)) from wet flue gas desulfurization (FGD) wastewater through anaerobic sulfite reduction. To confirm this hypothesis, a sulfite-reducing up-flow anaerobic sludge blanket reactor was set up to treat FGD wastewater at metal loading rates of 9.2 g/m(3)-d Pb(II) and 2.6 g/m(3)-d Hg(II) for 50 days. The reactor removed 72.5 ± 7% of sulfite and greater than 99.5% of both Hg(II) and Pb(II). Most of the removed lead and mercury were deposited in the sludge as HgS and PbS. The contribution of cell adsorption and organic binding to Pb(II) and Hg(II) removal was 20.0 ± 0.1% and 1.8 ± 1.0%, respectively. The different bioavailable concentration levels of lead and mercury resulted in different levels of lethal toxicity. Cell viability analysis revealed that Hg(II) was less toxic than Pb(II) to the sludge microorganisms. In the batch tests, increasing the Hg(II) feeding concentration increased sulfite reduction rates. In conclusion, a sulfite-reducing reactor can efficiently remove sulfite, Pb(II) and Hg(II) from FGD wastewater. PMID:27455890

  18. Effect of COD:SO4 2− Ratio, HRT and Linoleic Acid Concentration on Mesophilic Sulfate Reduction: Reactor Performance and Microbial Population Dynamics

    Directory of Open Access Journals (Sweden)

    Chungman Moon

    2015-05-01

    Full Text Available Biological sulfate (SO42− reduction was examined in anaerobic sequential batch reactors (ASBRs operated under different hydraulic retention times (HRTs ranging from 12 to 36 h and COD (Chemical Oxygen Demand/SO42− ratios of 2.4, 1.6 and 0.8. Competition between SO42− reducing bacteria (SRBs, methane producing archaea (MPAs and homoacetogens (HACs was examined in controls and cultures treated with linoleic acid (LA. The ASBR performance was influenced by the COD/SO42− ratio in control cultures with a SO42− reduction of 87% at a COD/SO42− ratio of 0.8. At a 12 h HRT, in both control and LA treated cultures, greater than 75% SO42− removal was observed under all the conditions examined. In control reactors operating at a 36 h HRT, high levels of MPAs belonging to Methanobacteriales and Methanosarcinales were detected; however, in comparison, under low COD/SO42− ratio and with decreasing HRT conditions, a relative increase in SRBs belonging to Desulfovibrio and Desulfatibacillum was observed. Adding 0.5 g·L−1 LA suppressed Methanobacteriales, while increasing the LA concentration to 1 g·L−1 completely suppressed MPAs with a relative increase in SRBs. HACs belonging to Bacteroidetes were observed in the control and in cultures operated at 12 h HRT with a COD/SO42− ratio of 1.6 and fed 0.5 g·L−1 LA; however, with all other LA levels (0.5 and 1.0 g·L−1 and HRTs (12, 24 and 36 h, HACs were not detected.

  19. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  20. The perlecan heparan sulfate proteoglycan mediates cellular uptake of HIV-1 Tat through a pathway responsible for biological activity

    International Nuclear Information System (INIS)

    Cell surface heparan sulfate proteoglycans (HSPGs) mediate internalization of HIV-1 Tat. Herein, we report that human WiDr cells, which express perlecan but no other HSPGs, can internalize 125I-labeled Tat with minimal lysosomal degradation. Pre-treatment of cells with heparitinase almost completely abolished 125I-Tat surface binding, while the use of an HIV-1 long terminal repeat (LTR) promoter-reporter construct demonstrated that transactivation was potently blocked by pretreatment of cells with heparitinase, indicating an essential role for perlecan in the biologic effects of Tat. We conclude that the perlecan mediates Tat uptake and is required for HIV-1 LTR-directed transactivation in this human cell type

  1. The effect of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the United States during 1995-2013

    Science.gov (United States)

    Keppel-Aleks, G.; Washenfelder, R. A.

    2016-09-01

    Aerosol optical depth (AOD) has been shown to influence the global carbon sink by increasing the fraction of diffuse light, which increases photosynthesis over a greater fraction of the vegetated canopy. Between 1995 and 2013, U.S. SO2 emissions declined by over 70%, coinciding with observed AOD reductions of 3.0 ± 0.6% yr-1 over the eastern U.S. In the Community Earth System Model (CESM), these trends cause diffuse light to decrease regionally by almost 0.6% yr-1, leading to declines in gross primary production (GPP) of 0.07% yr-1. Integrated over the analysis period and domain, this represents 0.5 Pg C of omitted GPP. A separate upscaling calculation that used published relationships between GPP and diffuse light agreed with the CESM model results within 20%. The agreement between simulated and data-constrained upscaling results strongly suggests that anthropogenic sulfate trends have a small impact on carbon uptake in temperate forests due to scattered light.

  2. Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Ying eHe

    2013-06-01

    Full Text Available Deep-sea hydrothermal vent chimneys contain a high diversity of microorganisms, yet the metabolic activity and the ecological functions of the microbial communities remain largely unexplored. In this study, a metagenomic approach was applied to characterize the metabolic potential in a Guaymas hydrothermal vent chimney and to conduct comparative genomic analysis among a variety of environments with sequenced metagenomes. Complete clustering of functional gene categories with a comparative metagenomic approach showed that this Guaymas chimney metagenome was clustered most closely with a chimney metagenome from Juan de Fuca. All chimney samples were enriched with genes involved in recombination and repair, chemotaxis and flagellar assembly, highlighting their roles in coping with the fluctuating extreme deep-sea environments. A high proportion of transposases was observed in all the metagenomes from deep-sea chimneys, supporting the previous hypothesis that horizontal gene transfer may be common in the deep-sea vent chimney biosphere. In the Guaymas chimney metagenome, thermophilic sulfate reducing microorganisms including bacteria and archaea were found predominant, and genes coding for the degradation of refractory organic compounds such as cellulose, lipid, pullullan, as well as a few hydrocarbons including toluene, ethylbenzene and o-xylene were identified. Therefore, this oil-immersed chimney supported a thermophilic microbial community capable of oxidizing a range of hydrocarbons that served as electron donors for sulphate reduction under anaerobic conditions.

  3. Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2014-12-23

    The degradation of our environment and the depletion of fossil fuels make the exploration of alternative fuels evermore imperative. Among the alternatives is biohydrogen which has high energy content by weight and produces only water when combusted. Considerable effort is being expended to develop photosynthetic systems -- algae, cyanobacteria, and anaerobic phototrophs -- for sustainable H2 production. While promising, this approach also has hurdles such as the harvesting of light in densely pigmented cultures that requires costly constant mixing and large areas for exposure to sunlight. Little attention is given to fermentative H2 generation. Thus understanding the microbial pathways to H2 evolution and metabolic processes competing for electrons is an essential foundation that may expand the variety of fuels that can be generated or provide alternative substrates for fine chemical production. We studied a widely found soil anaerobe of the class Deltaproteobacteria, a sulfate-reducing bacterium to determine the electron pathways used during the oxidation of substrates and the potential for hydrogen production.

  4. Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [University of Missouri-Columbia

    2014-12-23

    The degradation of our environment and the depletion of fossil fuels make the exploration of alternative fuels evermore imperative. Among the alternatives is biohydrogen which has high energy content by weight and produces only water when combusted. Considerable effort is being expended to develop photosynthetic systems -- algae, cyanobacteria, and anaerobic phototrophs -- for sustainable H2 production. While promising, this approach also has hurdles such as the harvesting of light in densely pigmented cultures that requires costly constant mixing and large areas for exposure to sunlight. Little attention is given to fermentative H2 generation. Thus understanding the microbial pathways to H2 evolution and metabolic processes competing for electrons is an essential foundation that may expand the variety of fuels that can be generated or provide alternative substrates for fine chemical production. We studied a widely found soil anaerobe of the class Deltaproteobacteria, a sulfate-reducing bacterium to determine the electron pathways used during the oxidation of substrates and the potential for hydrogen production.

  5. Introduction manner of sulfate acid for improving the performance of SO42-/CeO2 on selective catalytic reduction of NO by NH3

    Institute of Scientific and Technical Information of China (English)

    宋忠贤; 张秋林; 宁平; 刘昕; 樊洁; 黄真真

    2016-01-01

    A series of sulfated CeO2 catalysts were synthesized by impregnation and sol-gel methods and used for selective catalytic reduction (SCR) of NOx by NH3. The results showed that the sulfated CeO2 catalysts prepared by sol-gel method showed excellent catalytic activity at 150–450 °C, and more than 90% NOx conversion was obtained at 232–450 °C with a gas hourly space velocity of 60000 h–1. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption, Raman, thermogravimetry (TG), H2-tem-perature-programmed reduction (H2-TPR) and Py-infrared spectroscopy (Py-IR). The excellent SCR performance was associated with the surface acidity and the micro-structure. The introduction of sulfate acid into CeO2 could increase the amount of Brönsted and Lewis acid sites over the catalysts, resulting in the improvement of the low temperature activity. The sulfated CeO2 catalysts prepared by sol-gel method possessed lower crystallization degree, excellent redox property and larger specific surface areas, which were re-sponsible for the superior SCR performance.

  6. Influence of Sulfation on the Catalytic Activity of Ni-ZrO2 for NO Reduction with Propane in Excess Oxygen

    Institute of Scientific and Technical Information of China (English)

    Shujuan Zhang; Landong Li; Fuxiang Zhang; Naijia Guan

    2005-01-01

    Selective catalytic reduction (SCR) of nitric oxide with propane in excess oxygen was investigated on Ni-ZrO2 (NZ) and sulfated Ni-ZrO2 (SNZ), prepared by coprecipitation from a mixture of nickel nitrate-zirconium oxychloride followed by modifying with (NH4)2SO4. It was found that sulfated Ni-ZrO2catalyst showed higher activity for the SCR of NO with propane than that of Ni-ZrO2. The structural and surface properties of catalysts were studied by XRD, BET, SEM and FT-IR of pyridine adsorption. The experimental results indicated that the modification of (NH4)2SO4 resulted in the generation of strong Bronsted and Lewis acid sites and promoted the dispersion of the Ni species, which could lead to higher NO conversion and propane efficiency in NO reduction.

  7. Studies on biological reduction of chromate by Streptomyces griseus

    Energy Technology Data Exchange (ETDEWEB)

    Poopal, Ashwini C. [Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 (India); Laxman, R. Seeta, E-mail: rseetalaxman@yahoo.co.in [Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 (India)

    2009-09-30

    Chromium is a toxic heavy metal used in various industries and leads to environmental pollution due to improper handling. The most toxic form of chromium Cr(VI) can be converted to less toxic Cr(III) by reduction. Among the actinomycetes tested for chromate reduction, thirteen strains reduced Cr(VI) to Cr(III), of which one strain of Streptomyces griseus (NCIM 2020) was most efficient showing complete reduction within 24 h. The organism was able to use a number of carbon sources as electron donors. Sulphate, nitrate, chloride and carbonate had no effect on chromate reduction during growth while cations such as Cd, Ni, Co and Cu were inhibitory to varying degrees. Chromate reduction was associated with the bacterial cells and sonication was the best method of cell breakage to release the enzyme. The enzyme was constitutive and did not require presence of chromate during growth for expression of activity. Chromate reduction with cell free extract (CFE) was observed without added NADH. However, addition of NAD(P)H resulted in 2-3-fold increase in activity. Chromate reductase showed optimum activity at 28 deg. C and pH 7.

  8. Reductive Leaching of Iron from Sulfate Slag%硫酸烧渣还原浸取铁

    Institute of Scientific and Technical Information of China (English)

    金程; 李登新

    2012-01-01

    采用硫化物作助剂还原浸出硫酸烧渣中的三价铁.采用L9(43)四因素三水平正交试验,考察助剂用量、硫酸用量、温度、时间对浸出效果的影响,并确定最佳配比.结果表明:影响的显著顺序为助剂用量>时间>硫酸用量>温度.在下述最佳条件下铁浸取率可以达到87.8%:起始液固比2∶1、搅拌转速1 300 r/min、助剂用量17.2g、硫酸23 mL、85℃反应3h.%The ferric iron was reductive leached from sulfate slag with sulfide. The effects of leaching agent dosage, sulfuric acid consumption, reaction temperature and time on leaching rate of iron were investigated with L9(43) orthogonal test. The results show that the sequence of effecting is leaching agent dosage, reaction time, sulfuric acid consumption and reaction temperature. The iron leaching rate reaches 87. 8% on the following optimum conditions: ratio of liquid to solid of 2 : 1, stirring rate of 1 300 r/min, leaching a-gent dosage of 17. 2 g, sulfuric acid consumption of 23 mL, leaching temperature of 85 °C and leaching time of 3 h.

  9. 硫酸烧渣加压浸取铁%Pressure Reduction Leaching Iron from Sulfate Slag

    Institute of Scientific and Technical Information of China (English)

    金程; 王恩强; 李登新

    2011-01-01

    Ferric iron was reduction leached from sulfate slag with sulfide agent. Effects of the following factors on leaching were studied, such as, dosage of additives, sulfuric acid consumption, initial sulfuric acid concentration, reaction temperature, stirring speed, and reaction time. The results show that iron leaching rate reaches 99. 4%, efficiency of additive usage reaches 98. 9% on the following conditions: surplus coefficient of leaching agent is 1. 1, surplus coefficient of sulfuric acid is 1. 4, 3. 5 mol/L initial sulfuric acid concentration with 800 r/min stirring rate, 95 °C? 3 h.%采用自制硫化物助浸剂在密闭反应釜中还原浸出硫酸烧渣中的铁.分别进行了助浸剂用量、硫酸用量、始酸浓度、反应温度、搅拌速度、反应时间等条件试验,考察各因素对浸取效果的影响.结果表明:当酸浸渣25.0 g,助浸剂过剩系数1.1,硫酸过剩系数1.4,始酸浓度3.5 mol/L,反应温度95℃,搅拌速度800 r/min,反应时间3h时,铁浸取率达99.4%,助浸剂有效利用率达98.9%.

  10. Low pH (6, 5, and 4) sulfate reduction during the acidification of sucrose under thermophilic (55°C) conditions

    NARCIS (Netherlands)

    Lopes, S.I.C.; Sulistyawati, I.; Capela, M.I.; Lens, P.N.L.

    2007-01-01

    The effect of a low pH (6, 5 and 4) and different COD/SO42¿ ratios (9 and 3.5) on thermophilic (55 °C) sulfate reduction and acidification of sucrose was investigated using three upflow anaerobic sludge bed reactors fed with sucrose at an organic loading rate of 3.5 gCOD (lreactor d)¿1. The three re

  11. Sulfate reduction during the acidification of sucrose at pH 5 under thermophilic (55 degrees C) conditions. I: Effect of trace metals

    NARCIS (Netherlands)

    Lopes, S.I.C.; Capela, M.I.; Lens, P.N.L.

    2010-01-01

    This work studied the effect of supplying trace metals (7.5 mu M Fe and 0.5 mu M Co, Ni, Mn, Zn, Cu, B, Se, Mo and W) on sulfate reduction and acidification in thermophilic (55 degrees C) UASB reactors fed with sucrose (4 gCOD (I-reactor d)(-1)) operated at a reactor mixed liquor pH controlled at 5.

  12. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    Science.gov (United States)

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium. PMID:26717697

  13. Biological and Abiological Sulfur Reduction at High Temperatures †

    OpenAIRE

    Belkin, Shimshon; Wirsen, Carl O.; Jannasch, Holger W.

    1985-01-01

    Reduction of elemental sulfur was studied in the presence and absencè of thermophilic sulfur-reducing bacteria, at temperatures ranging from 65 to 110°C, in anoxic artificial seawater media. Above 80°C, significant amounts of sulfide were produced abiologically at linear rates, presumably by the disproportionation of sulfur. These rates increased with increasing temperature and pH and were enhanced by yeast extract. In the same medium, the sulfur respiration of two recent thermophilic isolate...

  14. Application of acidic calcium sulfate and e-polylysine to pre-rigor beef rounds for reduction of pathogens

    Science.gov (United States)

    Foodborne illness continues to be a serious public health problem and is a major concern for the United States food industry. This study evaluated the effectiveness of warm solutions of acidic calcium sulfate (ACS), lactic acid (LA), episolon-polylysine (EPL), ACS plus EPL, and sterile distilled wa...

  15. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    1970-01-01

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation...

  16. Biological reduction of nitrate wastewater using fluidized-bed bioreactors

    International Nuclear Information System (INIS)

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt % NO3- and as large as 2000 m3/d, in the nuclear fuel cycle as well as in many commercial processes such as fertilizer production, paper manufacturing, and metal finishing. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO3-)/m3 by the use of a fluidized-bed bioreactor. The major strain of denitrification bacteria is Pseudomonas which was derived from garden soil. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25 to 0.50-mm-diam coal particles, which are fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m3. A description is given of the results of two biodenitrification R and D pilot plant programs based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m3 and achieving denitrification rates as high as 80 gN(NO3-)/d per liter of empty bioreactor volume. The first of these pilot plant programs consisted of two 0.2-m-diam bioreactors, each with a height of 6.3 m and a volume of 208 liters, operating in series. The second pilot plant was used to determine the diameter dependence of the reactors by using a 0.5-m-diam reactor with a height of 6.3 m and a volume of 1200 liters. These pilot plants operated for a period of six months and two months respectively, while using both a synthetic waste and the actual waste from a gaseous diffusion plant operated by Goodyear Atomic Corporation

  17. Highly-defective nanocrystals of ZnS formed via dissimilatory bacterial sulfate reduction: A comparative study with their abiogenic analogues

    Science.gov (United States)

    Xu, Jie; Murayama, Mitsuhiro; Roco, Charles M.; Veeramani, Harish; Michel, F. Marc; Rimstidt, J. Donald; Winkler, Christopher; Hochella, Michael F.

    2016-05-01

    The physicochemical properties of a (nano)mineral are strongly affected by its formation processes, and thus, may indicate the (nano)mineral's formation environment and mechanism. This correlation, although relevant to a myriad of geological, environmental, and material-science processes, has not yet been fully appreciated and systematically explored. Here, using the Zn-S system, we demonstrate that biological and abiotic processes at similar experimental conditions can produce distinctive particle size, morphology, and crystal structure in the formed ZnS. Specifically, bacterial sulfate reduction led to the formation of highly-defective nanocrystals of mixed sphalerite and wurtzite in a range of ∼4-12 nm. By comparison, the abiotic procedures of titration- or diffusion-controlled precipitation resulted in the formation of polycrystalline aggregates that contained randomly-oriented, ultrafine crystals below ∼2-3 nm. The poor crystallinity in the abiogenic samples, regardless of the sulfide addition rates, reveals an overall nucleation-dominated, crystal growth-restricted pathway for the formation of ZnS from low-temperature aqueous solutions. The difficulty in the ZnS crystallization likely stems from the intrinsic surface instability of the ZnS growth units (i.e., in the form of nanoclusters) resulting from the dipole-dipole interactions of the unit with surrounding water molecules. In the biogenic samples, the ZnS crystallinity was significantly improved, indicating that the presence of bacterial metabolites somehow promoted the crystallization process. With evidence for the enlarged {1 1 1} planes in the biogenic nanocrystals, we attribute this enhancement mainly to the selective interaction of the bacterial metabolites with polar faces of the ZnS growth units, which might have effectively screened the dipole moments in the growth units and enabled their crystallographic assembly. By revealing the intrinsic difficulty and specific pathways for the Zn

  18. Chondroitin sulfate

    Science.gov (United States)

    ... in combination with glucosamine sulfate, shark cartilage, and camphor. Some people also inject chondroitin sulfate into the ... in combination with glucosamine sulfate, shark cartilage, and camphor seems to reduce arthritis symptoms. However, any symptom ...

  19. Major cost savings associated with biologic dose reduction in patients with inflammatory arthritis.

    LENUS (Irish Health Repository)

    Murphy, C L

    2015-01-01

    The purpose of this study was to explore whether patients with Inflammatory Arthritis (IA) (Rheumatoid Arthritis (RA), Psoriatic Arthritis (PsA) or Ankylosing Spondylitis (AS)) would remain in remission following a reduction in biologic dosing frequency and to calculate the cost savings associated with dose reduction. This prospective non-blinded non-randomised study commenced in 2010. Patients with Inflammatory Arthritis being treated with a biologic agent were screened for disease activity. A cohort of those in remission according to standardized disease activity indices (DAS28 < 2.6, BASDAI < 4) was offered a reduction in dosing frequency of two commonly used biologic therapies (etanercept 50 mg once per fortnight instead of weekly, adalimumab 40 mg once per month instead of fortnightly). Patients were assessed for disease activity at 3, 6, 12, 18 and 24 months following reduction in dosing frequency. Cost saving was calculated. 79 patients with inflammatory arthritis in remission were recruited. 57% had rheumatoid arthritis (n = 45), 13% psoriatic arthritis (n = 10) and 30% ankylosing spondylitis (n = 24). 57% (n = 45) were taking etanercept and 43% (n = 34) adalimumab. The percentage of patients in remission at 24 months was 56% (n = 44). This resulted in an actual saving to the state of approximately 600,000 euro over two years. This study demonstrates the reduction in biologic dosing frequency is feasible in Inflammatory Arthritis. There was a considerable cost saving at two years. The potential for major cost savings in biologic usage should be pursued further.

  20. Simulation of the inhibition of microbial sulfate reduction in a two-compartment upflow bioreactor subjected to molybdate injection.

    Science.gov (United States)

    de Jesus, E B; de Andrade Lima, L R P

    2016-08-01

    Souring of oil fields during secondary oil recovery by water injection occurs mainly due to the action of sulfate-reducing bacteria (SRB) adhered to the rock surface in the vicinity of injection wells. Upflow packed-bed bioreactors have been used in petroleum microbiology because of its similarity to the oil field near the injection wells or production. However, these reactors do not realistically describe the regions near the injection wells, which are characterized by the presence of a saturated zone and a void region close to the well. In this study, the hydrodynamics of the two-compartment packing-free/packed-bed pilot bioreactor that mimics an oil reservoir was studied. The packed-free compartment was modeled using a continuous stirred tank model with mass exchange between active and stagnant zones, whereas the packed-bed compartment was modeled using a piston-dispersion-exchange model. The proposed model adequately represents the hydrodynamic of the packed-free/packed-bed bioreactor while the simulations provide important information about the characteristics of the residence time distribution (RTD) curves for different sets of model parameters. Simulations were performed to represent the control of the sulfate-reducing bacteria activity in the bioreactor with the use of molybdate in different scenarios. The simulations show that increased amounts of molybdate cause an effective inhibition of the souring sulfate-reducing bacteria activity. PMID:27126499

  1. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea

    Directory of Open Access Journals (Sweden)

    V. J. Bertics

    2013-03-01

    Full Text Available Despite the worldwide occurrence of marine hypoxic regions, benthic nitrogen (N cycling within these areas is poorly understood and it is generally assumed that these areas represent zones of intense fixed N loss from the marine system. Sulfate reduction can be an important process for organic matter degradation in sediments beneath hypoxic waters and many sulfate-reducing bacteria (SRB have the genetic potential to fix molecular N (N2. Therefore, SRB may supply fixed N to these systems, countering some of the N lost via microbial processes, such as denitrification and anaerobic ammonium oxidation. The objective of this study was to evaluate if N2 fixation, possibly by SRB, plays a role in N cycling within the seasonally hypoxic sediments from the Eckernförde Bay, Baltic Sea. Monthly samplings were performed over the course of one year to measure nitrogenase activity (NA and sulfate reduction rates, to determine the seasonal variations in bioturbation (bioirrigation activity and important benthic geochemical profiles, such as sulfur and N compounds, and to monitor changes in water column temperature and oxygen concentrations. Additionally, at several time points, the active N-fixing community was examined via molecular tools. Integrated rates of N2 fixation (approximated from NA and sulfate reduction showed a similar seasonality pattern, with highest rates occurring in August (approx. 22 and 880 nmol cm−3 d−1 of N and SO42−, respectively and October (approx. 22 and 1300 nmol cm−3 d−1 of N and SO42− respectively, and lowest rates occurring in February (approx. 8 and 32 nmol cm−3 d−1 of N and SO42−, respectively. These rate changes were positively correlated with bottom water temperatures and previous reported plankton bloom activities, and negatively correlated with bottom water oxygen concentrations. Other variables that also appeared to play a role in rate determination were bioturbation, bubble irrigation and winter storm

  2. Efficient reconstruction of biological networks via transitive reduction on general purpose graphics processors

    OpenAIRE

    Bošnački Dragan; Odenbrett Maximilian R; Wijs Anton; Ligtenberg Willem; Hilbers Peter

    2012-01-01

    Abstract Background Techniques for reconstruction of biological networks which are based on perturbation experiments often predict direct interactions between nodes that do not exist. Transitive reduction removes such relations if they can be explained by an indirect path of influences. The existing algorithms for transitive reduction are sequential and might suffer from too long run times for large networks. They also exhibit the anomaly that some existing direct interactions are also remove...

  3. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer

    Science.gov (United States)

    Hellal, Jennifer; Guédron, Stéphane; Huguet, Lucie; Schäfer, Jörg; Laperche, Valérie; Joulian, Catherine; Lanceleur, Laurent; Burnol, André; Ghestem, Jean-Philippe; Garrido, Francis; Battaglia-Brunet, Fabienne

    2015-09-01

    Mercury (Hg) mobility and speciation in subsurface aquifers is directly linked to its surrounding geochemical and microbial environment. The role of bacteria on Hg speciation (i.e., methylation, demethylation and reduction) is well documented, however little data is available on their impact on Hg mobility. The aim of this study was to test if (i) Hg mobility is due to either direct iron oxide reduction by iron reducing bacteria (IRB) or indirect iron reduction by sulfide produced by sulfate reducing bacteria (SRB), and (ii) to investigate its subsequent fate and speciation. Experiments were carried out in an original column setup combining geochemical and microbiological approaches that mimic an aquifer including an interface of iron-rich and iron depleted zones. Two identical glass columns containing iron oxides spiked with Hg(II) were submitted to (i) direct iron reduction by IRB and (ii) to indirect iron reduction by sulfides produced by SRB. Results show that in both columns Hg was leached and methylated during the height of bacterial activity. In the column where IRB are dominant, Hg methylation and leaching from the column was directly correlated to bacterial iron reduction (i.e., FeII release). In opposition, when SRB are dominant, produced sulfide induced indirect iron oxide reduction and rapid adsorption of leached Hg (or produced methylmercury) on neoformed iron sulfides (e.g., Mackinawite) or its precipitation as HgS. At the end of the SRB column experiment, when iron-oxide reduction was complete, filtered Hg and Fe concentrations increased at the outlet suggesting a leaching of Hg bound to FeS colloids that may be a dominant mechanism of Hg transport in aquifer environments. These experimental results highlight different biogeochemical mechanisms that can occur in stratified sub-surface aquifers where bacterial activities play a major role on Hg mobility and changes in speciation.

  4. Using a Statistical Model to Examine the Effect of COD: SO42− Ratio, HRT and LA Concentration on Sulfate Reduction in an Anaerobic Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Rajesh Singh

    2014-11-01

    Full Text Available Taguchi statistical design, an orthogonal array (OA method, was used to study the impact of the COD/SO42− ratio, hydraulic retention time (HRT and linoleic acid (LA concentration on sulfate (SO42− reduction in an anaerobic sequencing batch reactor using glucose as the electron donor. Based on the OA, optimum condition for maximum SO42− reduction was evaluated. Increasing the COD/SO42− ratio and HRT caused decreasing SO42− reduction while increased SO42− reduction was observed with increasing LA concentration (1 g L−1. In control (not fed LA cultures, higher SO42− reduction (87% ± 3% was observed at a low COD/SO42− ratio of 0.8. This indicates that increasing SO42− reduction was observed at increasing SO42− loading rates. In general, results from this study reveal that limiting the substrate concentration with high SO42− levels (low COD/SO42− ratio favors high SO42− removal. Surface plots were used to evaluate the significant interactions between the experimental factors. Accuracy of the model was verified using an analysis of residuals. Optimum conditions for maximum SO42− reduction (97.61% were observed at a COD/SO42− ratio of 0.8 (level 1, 12 h HRT (level 1 together with 1000 mg L−1 LA addition (level 3. In general, the Taguchi OA provided a useful approach for predicting the percent SO42− reduction in inhibited mixed anaerobic cultures within the factor levels investigated.

  5. Improved Understanding of Microbial Iron and Sulfate Reduction Through a Combination of Bottom-up and Top-down Functional Proteomics Assays

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Ruth [Cornell Univ., Ithaca, NY (United States)

    2016-02-28

    Our overall goal was to improve the understanding of microbial iron and sulfate reduction by evaluating a diverse iron and sulfate reducing organisms utilizing a multi-omics approach combining “top-down” and “bottom-up” omics methodologies. We initiated one of the first combined comparative genomics, shotgun proteomics, RTqPCR, and heterologous expression studies in pursuit of our project objectives. Within the first year of this project, we created a new bioinformatics tool for ortholog identification (“SPOCS”). SPOCS is described in our publication, Curtis et al., 2013. Using this tool we were able to identify conserved orthologous groups across diverse iron and sulfate reducing microorganisms from Firmicutes, gamma-proteobacteria and delta-proteobacteria. For six iron and sulfate reducers we also performed shotgun proteomics (“bottom-up” proteomics including accurate mass and time (AMT) tag and iTRAQ approaches). Cultures include Gram (-) and Gram (+) microbes. Gram (-) were: Geobacter sulfureducens (grown on iron citrate and fumarate), Geobacter bemidjiensis (grown on iron citrate and fumarate), Shewanella oneidiensis (grown on iron citrate and fumarate) and Anaeromyxobacter dehalogenans (grown on iron citrate and fumarate). Although all cultures grew on insoluble iron, the iron precipitates interfered with protein extraction and analysis; which remains a major challenge for researchers in disparate study systems. Among the Gram (-) organisms studied, Anaeromyxobacter dehalogenans remains the most poorly characterized. Yet, it is arguably the most versatile organisms we studied. In this work we have used comparative proteomics to hypothesize which two of the dozens of predicted c-type cytochromes within Anaeromyxobacter dehalogenans may be directly involved in soluble iron reduction. Unfortunately, heterologous expression of these Anaeromyxobacter dehalogenans ctype cytochromes led to poor protein production and/or formation of inclusion bodies

  6. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  7. Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater.

    Science.gov (United States)

    Yuan, Qing-Bin; Guo, Mei-Ting; Wei, Wu-Ji; Yang, Jian

    2016-10-01

    Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors. Results demonstrated that membrane bioreactor (MBR) and sequencing batch reactor (SBR) significantly reduced ARB abundances in the ranges of 2.80∼3.54 log and 2.70∼3.13 log, respectively, followed by activated sludge (AS). Biological filter (BF) and anaerobic (upflow anaerobic sludge blanket, UASB) techniques led to relatively low reductions. In contrast, ARGs were not equally reduced as ARB. AS and SBR also showed significant potentials on ARGs reduction, whilst MBR and UASB could not reduce ARGs effectively. Redundancy analysis implied that the purification of wastewater quality parameters (COD, NH4 (+)-N, and turbidity) performed a positive correlation to ARB and ARGs reductions. PMID:27384166

  8. Microbial community of granules in expanded granular sludge bed reactor for simultaneous biological removal of sulfate, nitrate and lactate.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Yu, Zhenguo; Lee, Duu-Jong

    2008-07-01

    This study studied the cultivation of granules from an expanded granular sludge bed reactor that simultaneously transforms sulfates, nitrates, and oxygen to elementary sulfur, nitrogen gas, and carbon dioxides, respectively. The living cells accumulate at the granule outer layers, as revealed by the multicolor staining and confocal laser scanning microscope technique. The microbial community comprises sulfate-reducing bacteria (SRB, Desulfomicrobium sp.), heterotrophic (Pseudomonas aeruginosa and Sulfurospirillum sp.), and autotrophic denitrifiers (Sulfurovum sp. and Paracoccus denitrificans) whose population dynamics at different sulfate and nitrate loading rates are monitored with the single-strand conformation polymorphism and denaturing gradient gel electrophoresis technique. The Desulfomicrobium sp. presents one of the dominating strains following reactor startup. At high sulfate and nitrate loading rates, the heterotrophic denitrifiers overcompete autotrophic denitrifiers to reduce SRB activities. Conversely, suddenly reducing nitrate loading rates completely removes the heterotrophic denitrifier Sulfurospirillum sp. from the granules and activates the autotrophic denitrifiers. The physical fixation of different groups of functional strains in granules fine-tunes the strains' activities, and hence the reactor performance. PMID:18483736

  9. Research on Catalytic Properties of Palladium Catalyst Prepared by Biological Reduction Method

    Institute of Scientific and Technical Information of China (English)

    Zhang Feng; Fu Jiquan

    2013-01-01

    This paper relates to highly dispersed supported Pd/MWCNTs and Pd/α-Al2O3 catalysts prepared by biological reduction method. The physico-chemical properties and the difference in catalytic activity of Pd catalysts prepared by bio-logical reduction method and chemical method, respectively, were investigated using XRD, TEM and speciifc surface char-acterization methods. The catalytic properties of catalysts were studied through activity evaluation means. The test results showed that the catalysts prepared by biological method were characteristic of small Pd nanoparticle size, good dispersion and low agglomeration, while possessing a high activity and stability in styrene hydrogenation reaction in comparison with catalysts prepared via the chemical method.

  10. Performance of sulfate-dependent anaerobic ammonium oxidation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The performance of sulfate-dependent anaerobic ammonium oxidation was studied.The results showed that both SO42-and NH4+ were chemically stable under anaerobic conditions.They did not react with each other in the absence of biological catalyst(sludge).The anaerobic digested sludge cultivated in an anaerobic reactor for three years took on the ability of oxidizing ammonium with sulfate anaero-bically.The average reduction of sulfate and ammonium was 71.67 mg.L-1 and 56.82 mg.L-1 at high concentrations.The reaction between SO42-and NH4+ was difficult,though feasible,due to its low standard Gibbs free energy change.The experiment demonstrated that high substrate concentrations and low oxidation-reduction potential(ORP) may be favourable for the biological reaction.

  11. Performance of sulfate-dependent anaerobic ammo-nium oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; ZHENG Ping; HE YuHui; JIN RenCun

    2009-01-01

    The performance of sulfate-dependent anaerobic ammonium oxidation was studied. The results showed that both SO42- and NH4+ were chemically stable under anaerobic conditions. They did not react with each other in the absence of biological catalyst (sludge). The anaerobic digested sludge cultivated in an anaerobic reactor for three years took on the ability of oxidizing ammonium with sulfate anaero-bically. The average reduction of sulfate and ammonium was 71.67 mg.L-1 and 56.82 mg.L-1 at high concentrations.The reaction between SO42- and NH4+ was difficult, though feasible, due to its low standard Gibbs free energy change. The experiment demonstrated that high substrate concentrations and low oxidation-reduction potential (ORP) may be favourable for the biological reaction.

  12. The world-class Howard's Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part II: the roles of thermochemical and bacterial sulfate reduction in metal fixation

    Science.gov (United States)

    Gadd, Michael G.; Layton-Matthews, Daniel; Peter, Jan M.; Paradis, Suzanne; Jonasson, Ian R.

    2016-07-01

    against this model. Indeed, the new data indicate that much of the base metal sulfide mineralization was emplaced below the sediment-water interface within sulfidic muds under reducing conditions during early diagenesis. Furthermore, thermochemical sulfate reduction provided most of the reduced sulfur within the Zn-Pb deposits.

  13. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes.

    Science.gov (United States)

    Arellano-González, Miguel Ángel; González, Ignacio; Texier, Anne-Claire

    2016-08-15

    In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of -0.40V vs Ag/AgCl(s)/KCl(sat), achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO2 and N2 as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes. PMID:27131458

  14. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes.

    Science.gov (United States)

    Arellano-González, Miguel Ángel; González, Ignacio; Texier, Anne-Claire

    2016-08-15

    In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of -0.40V vs Ag/AgCl(s)/KCl(sat), achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO2 and N2 as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  15. Barium Sulfate

    Science.gov (United States)

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), stomach, and ... pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque ...

  16. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation

    International Nuclear Information System (INIS)

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO42- ratio. This work relates the feed COD/SO42- ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470 ± 7 mg S/L was obtained at a feed COD/SO42- ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145 ± 10 mg S/L) was observed with a feed COD/SO42- ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO42- ratio of 1.5. It was found that the feed COD/SO42- ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead

  17. INJECTION OF A FERROUS SULFATE/SODIUM DITHIONITE REDUCTANT FOR IN-SITU TREATMENT OF HEXAVALENT CHROMIUM

    Science.gov (United States)

    An in situ pilot study was conducted to evaluate the performance of a ferrous iron-based reductant solution in treating hexavalent chromium within a saturated zone source area at a former industrial site in Charleston, South Carolina (USA). The hexavalent source area, consisting...

  18. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea

    Directory of Open Access Journals (Sweden)

    V. J. Bertics

    2012-06-01

    Full Text Available Despite the worldwide occurrence of marine hypoxic regions, benthic nitrogen (N cycling within these areas is poorly understood and it is generally assumed that these areas represent zones of intense fixed N loss from the marine system. Sulfate reduction can be an important process for organic matter degradation in sediments beneath hypoxic waters and many sulfate-reducing bacteria (SRB have the genetic potential to fix molecular N (N2. Therefore, SRB may supply fixed N to these systems, countering some of the N lost via microbial processes such as denitrification and anaerobic ammonium oxidation. The objective of this study was to evaluate if N2-fixation, possibly by SRB, plays a role in N cycling within the seasonally hypoxic sediments from Eckernförde Bay, Baltic Sea. Monthly samplings were performed over the course of one year to measure N2-fixation and sulfate reduction rates, to determine the seasonal variations in bioturbation (bioirrigation activity and important benthic geochemical profiles, such as sulfur and N compounds, and to monitor changes in water column temperature and oxygen concentrations. Additionally, at several time points, rates of benthic denitrification were also measured and the active N-fixing community was examined via molecular tools. Integrated rates of N2-fixation and sulfate reduction showed a similar seasonality pattern, with highest rates occurring in August (approx. 22 and 880 nmol cm−3 d−1 of N and SO42−, respectively and October (approx. 22 and 1300 nmol cm−3 d−1 of N and SO42−, respectively, and lowest rates occurring in February (approx. 8 and 32 nmol cm−3 d−1 of N and SO42−, respectively. These rate changes were positively correlated with bottom water temperatures and previous reported plankton bloom activities

  19. Kinetic analysis of microbial sulfate reduction by desulfovibrio desulfuricans in an anaerobic upflow porous media biofilm reactor.

    Science.gov (United States)

    Chen, C I; Mueller, R F; Griebe, T

    1994-02-20

    An anaerobic upflow porous media biofilm reactor was designed to study the kinetics and stoichiometry of hydrogen sulfide production by the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans (ATCC 5575) as the first step for the modeling and control of formation souring (H(2)S) in oil field porous media. The reactor was a packed bed (50 x 5.5 cm) tubular reactor. Sea sand (140 to 375 mum) was used as the porous media. The initial indication of souring was the appearance of well-separated black spots (precipitates of iron sulfide) in the sand bed. The blackened zones expanded radially and upward through the column. New spots also appeared and expanded into the cone shapes. Lactate (substrate) was depleted and hydrogen sulfide appeared in the effluent.Analysis of the pseudo-steady state column shows that there were concentration gradients for lactate and hydrogen sulfide along the column. The results indicate that most of the lactate was consumed at the front part of the column. Measurements of SRB biomass on the solid phase (sand) and in the liquid phase indicate that the maximum concentration of SRB biomass resided at the front part of the column while the maximum in the liquid phase occurred further downstream. The stoichiometry regarding lactate consumption and hydrogen sulfide production observed in the porous media reactor was different from that in a chemostat. After analyzing the radial dispersion coefficient for the SRB in porous media and kinetics of microbial growth, it was deduced that transport phenomena dominate the souring process in our porous media reactor system. (c) 1994 John Wiley & Sons, Inc.

  20. The reduction of biological production induced by mesoscale mixing: a modelling study in the Benguela upwelling

    CERN Document Server

    Hernández-Carrasco, Ismael; Hernández-García, Emilio; Garçon, Veronique; López, Cristóbal

    2013-01-01

    Recent studies, both based on remote sensed data and coupled models, showed a reduction of biological productivity due to vigorous horizontal mixing in upwelling systems. In order to better understand this phenomenon, we have considered a system of oceanic flow in the Benguela area coupled with a simple biogeochemical model of Nutrient-Phyto-Zooplankton (NPZ) type. For the flow three different surface velocity fields are considered: one derived from satellite altimetry data, and the other two from a regional numerical model at two different spatial resolutions. We computed horizontal particle dispersion in terms of Lyapunov Exponents, and analyzed their correlations with phytoplankton concentrations. Our modelling approach confirms that in the south Benguela, there is a reduction of biological activity when stirring is increased. Two-dimensional offshore advection seems to be the dominant process involved. In the northern area, other factors not taken into account in our simulation are influencing the ecosyst...

  1. Carbon Monoxide as an Electron Donor for the Biological Reduction of Sulphate

    Directory of Open Access Journals (Sweden)

    Sofiya N. Parshina

    2010-01-01

    Full Text Available Several strains of Gram-negative and Gram-positive sulphate-reducing bacteria (SRB are able to use carbon monoxide (CO as a carbon source and electron donor for biological sulphate reduction. These strains exhibit variable resistance to CO toxicity. The most resistant SRB can grow and use CO as an electron donor at concentrations up to 100%, whereas others are already severely inhibited at CO concentrations as low as 1-2%. Here, the utilization, inhibition characteristics, and enzymology of CO metabolism as well as the current state of genomics of CO-oxidizing SRB are reviewed. Carboxydotrophic sulphate-reducing bacteria can be applied for biological sulphate reduction with synthesis gas (a mixture of hydrogen and carbon monoxide as an electron donor.

  2. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, Antonio [Direccion General del Centro Nacional de Investigacion y Capacitacion Ambiental-Instituto Nacional de Ecologia, Av. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico)], E-mail: jvelasco@ine.gob.mx; Ramirez, Martha [Direccion General del Centro Nacional de Investigacion y Capacitacion Ambiental-Instituto Nacional de Ecologia, Av. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Volke-Sepulveda, Tania [Departamento de Biotecnologia, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Gonzalez-Sanchez, Armando [Departamento de Ingenieria de Procesos, Universidad Autonoma Metropolitana-Iztapalapa, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Revah, Sergio [Departamento de Procesos y Tecnologia, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico)

    2008-03-01

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO{sub 4}{sup 2-} ratio. This work relates the feed COD/SO{sub 4}{sup 2-} ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470 {+-} 7 mg S/L was obtained at a feed COD/SO{sub 4}{sup 2-} ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145 {+-} 10 mg S/L) was observed with a feed COD/SO{sub 4}{sup 2-} ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO{sub 4}{sup 2-} ratio of 1.5. It was found that the feed COD/SO{sub 4}{sup 2-} ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead.

  3. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line.

    Science.gov (United States)

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo

    2016-06-01

    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated.

  4. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line.

    Science.gov (United States)

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo

    2016-06-01

    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated. PMID:27225780

  5. Synthesis, Photophysical, and Biological Evaluation of Sulfated Polyglycerol Dendronized Perylenebisimides (PBIs)--A Promising Platform for Anti-Inflammatory Theranostic Agents?

    Science.gov (United States)

    Heek, T; Kühne, C; Depner, H; Achazi, K; Dernedde, J; Haag, R

    2016-03-16

    A set of four water-soluble perylene bisimides (PBI) based on sulfated polyglycerol (PGS) dendrons were developed, their photophysical properties determined via UV/vis and fluorescence spectroscopy, and their performance as possible anti-inflammatory agents evaluated via biological in vitro studies. It could be shown that in contrast to charge neutral PG-PBIs the introduction of the additional electrostatic repulsion forces leads to a decrease in the dendron generation necessary for aggregation suppression, allowing the preparation of PBIs with fluorescence quantum yields of >95% with a considerable decreased synthetic effort. Furthermore, the values determined for L-selectin binding down to the nanomolar range, their limited impact on blood coagulation, and their minor activation of the complement system renders these systems ideal for anti-inflammatory purposes. PMID:26890394

  6. Biomass reduction of Salvinia molesta exposed to copper sulfate pentahydrate (CuSO4.5H2O

    Directory of Open Access Journals (Sweden)

    João Pedro Alves de Azevedo Barros

    2015-07-01

    Full Text Available Copper in the aquatic ecosystem may remain adsorbed or be incorporated into the biomass and undergo biomagnification causing unwanted effects to aquatic macrophyte communities. This study evaluated the biomass reduction of Salvinia molesta (Mitchell exposed to copper sulphate pentahydrate (CuSO4.5H2O under laboratory conditions. Approximately 20.5 g of fresh mass (FM of S. molesta (0.74 g dry matter, DM were placed in glass tanks with different concentrations (n = 3 of CuSO4.5H2O as follows: 0.0; 2.0; 4.0; 6.0; and 8.0 mg L-1 for 28 days. The dry mass was determined after each seven-day interval over 28 days and submitted to repeated ANOVA measures, followed by a Tukey test (P<0,05. The results show that macrophyte increased until the seventh day of exposure in all treatments. After this period, the biomass of S. molesta decreased; but there was no significant difference between treatments with copper, except for the 8.0 mg L-1 treatment. The copper treatments decreased the S. molesta biomass an average of 43.2% (0.50 g DM after 28 days. At the end of the experiment, copper absorption in the treatments with 6.0 and 8.0 mg L-1 was on average 77.9% higher than in the treatments with 2 and 4 mg L-1 . The treatments with 6.0 and 8.0 mg L-1 reached their maximum bioaccumulation capacity after 14 days. The results show that contamination of the aquatic environment at concentrations above 2 mg L-1 Cu2+ can reduce the S. molesta biomass by approximately 43%.

  7. Impacts of crab bioturbation and local pollution on sulfate reduction, Hg distribution and methylation in mangrove sediments, Rio de Janeiro, Brazil.

    Science.gov (United States)

    Correia, Raquel Rose Silva; Guimarães, Jean Remy Davée

    2016-08-15

    Mercury (Hg) and methylmercury (MeHg) are highly toxic and poorly studied in mangroves. Burrowing Uca crabs change sediment topography and biogeochemistry and thus may affect Hg distribution and MeHg formation. We studied added (203)Hg distribution, Me(203)Hg formation and sulfate reduction rates (SRR) in sediment aquariums containing Uca leptodactyla; and analyzed profiles of Me(203)Hg formation and SRR in sediment cores from two mangroves with distinct environmental impacts. MeHg formation and SRR were higher in the top (≤6cm) sediment and there was no significant difference in Hg methylation in more or less impacted mangroves. In aquariums, crab bioturbation favored Hg retention in the sediment. In the treatment without crabs, Hg volatilization and water Hg concentrations were higher. Hg methylation was higher in bioturbated aquariums but SRR were similar in both treatments. These findings suggest that bioturbating activity favors Hg retention in sediment but also promotes MeHg formation near the surface. PMID:27269386

  8. Off limits: sulfate below the sulfate-methane transition

    Science.gov (United States)

    Brunner, Benjamin; Arnold, Gail; Røy, Hans; Müller, Inigo; Jørgensen, Bo

    2016-07-01

    One of the most intriguing recent discoveries in biogeochemistry is the ubiquity of cryptic sulfur cycling. From subglacial lakes to marine oxygen minimum zones, and in marine sediments, cryptic sulfur cycling - the simultaneous sulfate consumption and production - has been observed. Though this process does not leave an imprint in the sulfur budget of the ambient environment - thus the term cryptic - it may have a massive impact on other element cycles and fundamentally change our understanding of biogeochemical processes in the subsurface. Classically, the sulfate-methane transition (SMT) in marine sediments is considered to be the boundary that delimits sulfate reduction from methanogenesis as the predominant terminal pathway of organic matter mineralization. Two sediment cores from Aarhus Bay, Denmark reveal the constant presence of sulfate (generally 0.1 to 0.2 mM) below the SMT. The sulfur and oxygen isotope signature of this deep sulfate (34S = 18.9‰, 18O = 7.7‰) was close to the isotope signature of bottom-seawater collected from the sampling site (34S = 19.8‰, 18O = 7.3‰). In one of the cores, oxygen isotope values of sulfate at the transition from the base of the SMT to the deep sulfate pool (18O = 4.5‰ to 6.8‰) were distinctly lighter than the deep sulfate pool. Our findings are consistent with a scenario where sulfate enriched in 34S and 18O is removed at the base of the SMT and replaced with isotopically light sulfate below. Here, we explore scenarios that explain this observation, ranging from sampling artifacts, such as contamination with seawater or auto-oxidation of sulfide - to the potential of sulfate generation in a section of the sediment column where sulfate is expected to be absent which enables reductive sulfur cycling, creating the conditions under which sulfate respiration can persist in the methanic zone.

  9. 废铁屑还原软锰矿制备高纯硫酸锰工艺研究%Preparation of High Purity Manganese Sulfate from the Reduction of Pyrolusite Using Scrap Iron as the Reductant

    Institute of Scientific and Technical Information of China (English)

    蔡振勇; 易清风; 刘汉勇; 方明略; 龚学华; 符国庆

    2011-01-01

    研究了采用废铁屑作为还原剂,在稀硫酸介质中湿法还原软锰矿制备硫酸锰的工艺过程.通过单因素实验确定最佳工艺参数,结果表明:当Fe/MnO2的摩尔比为0.78∶1,H2SO4/MnO2的摩尔比为2.1∶1,反应温度50℃,反应时间80 min时,锰的浸出率在95%以上.加入碳酸钙中和调节溶液pH值至5~6,使溶液中的铁、铝等杂质离子水解为氢氧化铁、氢氧化铝等沉淀除去,加入硫化钡使浸出溶液中的重金属离子以硫化物沉淀除去,减压过滤得到硫酸锰粗滤液,向粗滤液中加入二氟化锰使溶液中的Ca2+、Mg2+等离子生成氟化物沉淀,然后溶液经过静置过滤得到硫酸锰净化液,滤液经浓缩、结晶制备硫酸锰产品.经检测产品纯度在99%以上,杂质含量低于国家标准.%In this paper, the leaching of manganese sulfate from pyrolusite with scrap iron as a reductant in dilute sulfuric acid solution was studied. Optimal parameters that affect the leaching efficiency of manganese sulfate were determined by the single factor method. The results shows that the leaching rate of manganese can reach more than 95%under the condition of Fe to MnO2 molar ratio of 0.78, H2SO4 to MnO2 molar ratio of 2.1, reaction temperature 50°C, reaction time 80min. Calcium carbonate was added to the leaching solution to adjust pH 5 ~ 6 so that iron^aluminum and other impurities were removed by becoming iron hydroxide、aluminum hydroxide and other precipitations. Heavy metal ions were removed by adding barium sulfide to the leaching solution to form sulfide precipitations. After being filtrated, manganese difluoride was added to the filtrate to precipitate Ca2+ 、Mg2+ and other impurities. After standing, the solution was then filtrated and high purity manganese sulfate solution was obtained. Crystallized manganese sulfate was obtained after being concentrated. Manganese sulfate purity can reach more than 99% and impurity contents were lower than those

  10. Reduction of overestimation in interval arithmetic simulation of biological wastewater treatment processes

    Science.gov (United States)

    Rauh, Andreas; Kletting, Marco; Aschemann, Harald; Hofer, Eberhard P.

    2007-02-01

    A novel interval arithmetic simulation approach is introduced in order to evaluate the performance of biological wastewater treatment processes. Such processes are typically modeled as dynamical systems where the reaction kinetics appears as additive nonlinearity in state. In the calculation of guaranteed bounds of state variables uncertain parameters and uncertain initial conditions are considered. The recursive evaluation of such systems of nonlinear state equations yields overestimation of the state variables that is accumulating over the simulation time. To cope with this wrapping effect, innovative splitting and merging criteria based on a recursive uncertain linear transformation of the state variables are discussed. Additionally, re-approximation strategies for regions in the state space calculated by interval arithmetic techniques using disjoint subintervals improve the simulation quality significantly if these regions are described by several overlapping subintervals. This simulation approach is used to find a practical compromise between computational effort and simulation quality. It is pointed out how these splitting and merging algorithms can be combined with other methods that aim at the reduction of overestimation by applying consistency techniques. Simulation results are presented for a simplified reduced-order model of the reduction of organic matter in the activated sludge process of biological wastewater treatment.

  11. Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices.

    Science.gov (United States)

    Do, Kee Hun; An, Tae Jin; Oh, Sang-Keun; Moon, Yuseok

    2015-10-14

    Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. Moreover, the health benefits of spices have been extensively recognized in recent studies. However, inevitable contaminants, including mycotoxins, in medicinal herbs and spices can cause serious problems for humans in spite of their health benefits. Along with the different nation-based occurrences of mycotoxins, the ultimate exposure and toxicities can be diversely influenced by the endogenous food components in different commodities of the medicinal herbs and spices. The phytochemicals in these food stuffs can influence mold growth, mycotoxin production and biological action of the mycotoxins in exposed crops, as well as in animal and human bodies. The present review focuses on the occurrence of mycotoxins in medicinal herbs and spices and the biological interaction between mold, mycotoxin and herbal components. These networks will provide insights into the methods of mycotoxin reduction and toxicological risk assessment of mycotoxin-contaminated medicinal food components in the environment and biological organisms.

  12. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    Science.gov (United States)

    Chunbao, Liu; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader. PMID:27752220

  13. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    Directory of Open Access Journals (Sweden)

    Liu Chunbao

    2016-01-01

    Full Text Available Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  14. Sulfur geochemistry and microbial sulfate reduction during low-temperature alteration of uplifted lower oceanic crust: Insights from ODP Hole 735B

    Science.gov (United States)

    Alford, Susan E.; Alt, Jeffrey C.; Shanks, Wayne C., III

    2011-01-01

    Sulfide petrography plus whole rock contents and isotope ratios of sulfur were measured in a 1.5 km section of oceanic gabbros in order to understand the geochemistry of sulfur cycling during low-temperature seawater alteration of the lower oceanic crust, and to test whether microbial effects may be present. Most samples have low SO4/ΣS values (≤ 0.15), have retained igneous globules of pyrrhotite ± chalcopyrite ± pentlandite, and host secondary aggregates of pyrrhotite and pyrite laths in smectite ± iron-oxyhydroxide ± magnetite ± calcite pseudomorphs of olivine and clinopyroxene. Compared to fresh gabbro containing 100–1800 ppm sulfur our data indicate an overall addition of sulfide to the lower crust. Selection of samples altered only at temperatures ≤ 110 °C constrains microbial sulfate reduction as the only viable mechanism for the observed sulfide addition, which may have been enabled by the production of H2 from oxidation of associated olivine and pyroxene. The wide range in δ34Ssulfide values (− 1.5 to + 16.3‰) and variable additions of sulfide are explained by variable εsulfate-sulfide under open system pathways, with a possible progression into closed system pathways. Some samples underwent oxidation related to seawater penetration along permeable fault horizons and have lost sulfur, have high SO4/ΣS (≥ 0.46) and variable δ34Ssulfide (0.7 to 16.9‰). Negative δ34Ssulfate–δ34Ssulfide values for the majority of samples indicate kinetic isotope fractionation during oxidation of sulfide minerals. Depth trends in sulfide–sulfur contents and sulfide mineral assemblages indicate a late-stage downward penetration of seawater into the lower 1 km of Hole 735B. Our results show that under appropriate temperature conditions, a subsurface biosphere can persist in the lower oceanic crust and alter its geochemistry.

  15. Isotope fractionation of 238U and 235U during biologically-mediated uranium reduction

    Science.gov (United States)

    Stirling, Claudine H.; Andersen, Morten B.; Warthmann, Rolf; Halliday, Alex N.

    2015-08-01

    A series of laboratory-controlled microbial experiments using gram-negative sulphate-reducing bacteria (Desulfovibrio brasiliensis) inoculated with natural uranium were performed to investigate 238U/235U fractionation during bacterially-mediated U reduction. Control experiments, without bacteria to drive U reduction, were conducted in parallel. Paired measurements of 238U/235U and U concentration for both the residual growth medium solution and the accumulated biologically-mediated precipitate were obtained using multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS). The control experiments show that only minor (<0.1‰), if any 238U/235U fractionation occurs during co-precipitation with calcite. This implies that carbonate sediments are capable of faithfully recording the signature of the global ocean during Earth's major climatic events, including oxygenation and de-oxygenation transitions in the marine environment. The results for the microbial experiments demonstrate that the 238U/235U composition of the unreacted growth medium containing U(VI) is isotopically lighter than the composition of the U(IV)-bearing precipitate as U(VI) is consumed, in agreement with field-based observations of microbially-mediated U reduction. Uranium isotopic shifts of up to 0.8‰ were observed between the liquid and solid phases. These observations can be modelled using a Rayleigh distillation approach describing kinetic uptake in a closed system, which yields a fractionation factor α of 0.99923 ± 0.00004 (ε = -0.77 ± 04‰) for U(VI)-U(IV) reduction mediated by the D. brasiliensis microbe. This fractionation behaviour is consistent with that observed in field-based redox environments, which give rise to similar α values. Competing processes such as U co-precipitation (e.g. adsorption) may act to lower the apparent value for α and possibly play a secondary role both in the microbial experiments of this study and in natural U reduction settings where

  16. Nitrate isotope fractionations during biological nitrate reduction: Insights from first principles theoretical modeling

    Science.gov (United States)

    Guo, W.; Granger, J.; Sigman, D. M.

    2010-12-01

    Coupled fractionations of N and O isotopes during biological nitrate reduction provide important constraints on the marine nitrogen cycle at present and in the geologic past. Recent laboratory experiments with mono-cultures of nitrate-assimilative algae and plankton, and denitrifying bacteria demonstrate that N and O isotopic compositions of the residual nitrate co-vary linearly with a constant ratio (i.e., Δδ18O: Δδ15N) of ~1 or ~0.6 [1]. These systematic variations have been inferred to derive from the kinetic isotope fractionations associated with nitrate reductases. The isotope fractionation mechanisms at the enzymatic level, however, remain elusive. Here we present models of isotope fractionations accompanying the nitrate reduction (NO3-→NO2-) by three functional types of nitrate reductases, using techniques from ab initio, transition state and statistical thermodynamic theory. We consider three types of nitrate reductases: eukNR (eukaryotic assimilatory nitrate reductase), NAR (prokaryotic respiratory nitrate reductase) and Nap (prokaryotic periplasmic nitrate reductase). All are penta- or hexa-coordinated molybdo-enzymes, but bear considerable differences in protein geometry among functional types. Our models, based on the simplified structures of their active sites, predict N and O isotope effects (15ɛ and 18ɛ) ranging from 32.7 to 36.6‰ and from 33.5 to 34.8‰, respectively, at 300K with 18ɛ:15ɛ ratios of 0.9-1.1. The predicted amplitudes of N and O isotope fractionations are in the range measured for eukNR in vitro (~27‰, Karsh et al. in prep), and also correspond to the upper amplitudes observed for denitrifiers in vivo (~25‰, [1]). Moreover, the computed 18ɛ:15ɛ ratios corroborate the consistent relationships of ~1 observed experimentally for eukNR and the respiratory NAR. These findings indicate the enzymatic reduction is likely the rate-limiting step in most biological nitrate reductions. In addition, the predicted similarity of 18

  17. Metabolic Flexibility of Sulfate-Reducing Bacteria

    OpenAIRE

    Plugge, Caroline M.; Zhang, Weiwen; Scholten, Johannes C. M.; Stams, Alfons J. M.

    2011-01-01

    Dissimilatory sulfate-reducing prokaryotes (SRB) are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas me...

  18. Biological reduction of nitrates in wastewaters from nuclear processing using a fluidized-bed bioreactor

    International Nuclear Information System (INIS)

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt.% NO3- and as large as 2000 m3/day, in the nuclear fuel cycle. The biological reduction of nitrate in wastewater to gaseous nitrogen, accompanied by the oxidation of a nutrient carbon source to gaseous carbon dioxide, is an ecologically sound and cost-effective method of treating wastewaters containing nitrates. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO3-)/m3 by the use of a fluidized-bed bioreactor. The denitrification bacteria are a mixed culture derived from garden soil; the major strain is Pseudomonas. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25- to 0.50-mm-diam coal fluidization particles, which are then fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m3. This paper describes the results of a biodenitrification R and D program based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m3 and achieving denitrification rates as high as 80 g N(NO3-) per day per liter of empty bioreactor volume. 4 figures, 7 tables

  19. Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible.

    Science.gov (United States)

    McKemmish, Laura K; Reimers, Jeffrey R; McKenzie, Ross H; Mark, Alan E; Hush, Noel S

    2009-08-01

    Penrose and Hameroff have argued that the conventional models of a brain function based on neural networks alone cannot account for human consciousness, claiming that quantum-computation elements are also required. Specifically, in their Orchestrated Objective Reduction (Orch OR) model [R. Penrose and S. R. Hameroff, J. Conscious. Stud. 2, 99 (1995)], it is postulated that microtubules act as quantum processing units, with individual tubulin dimers forming the computational elements. This model requires that the tubulin is able to switch between alternative conformational states in a coherent manner, and that this process be rapid on the physiological time scale. Here, the biological feasibility of the Orch OR proposal is examined in light of recent experimental studies on microtubule assembly and dynamics. It is shown that the tubulins do not possess essential properties required for the Orch OR proposal, as originally proposed, to hold. Further, we consider also recent progress in the understanding of the long-lived coherent motions in biological systems, a feature critical to Orch OR, and show that no reformation of the proposal based on known physical paradigms could lead to quantum computing within microtubules. Hence, the Orch OR model is not a feasible explanation of the origin of consciousness.

  20. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  1. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids

    Science.gov (United States)

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-01

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  2. Exploring the potential of anaerobic sulfate reduction process in treating sulfonated diazo dye: Microbial community analysis using bar-coded pyrosequencing.

    Science.gov (United States)

    Rasool, Kashif; Shahzad, Asif; Lee, Dae Sung

    2016-11-15

    Anaerobic decolorization and biotransformation of azo dye was investigated in a sulfate-reducing environment. Batch reactor studies were performed with mixed cultures of anaerobic sulfate-reducing bacteria (SRBs) enriched from anaerobic digester sludge. Complete sulfate and color removal were achieved in batch experiments with different initial dye concentrations (50-2500mg/L) and 1000mg/L of sulfate. Induction of various oxidoreductive enzyme activities such as phenol oxidase, veratryl alcohol oxidase, lignin peroxidase, and azo reductase was studied to understand their involvement in dye metabolism under anoxic environment. The degradation of Cotton Red B was confirmed using high-performance liquid chromatography and gas chromatography-mass spectroscopy. Sulfidogenic sludge demonstrated excellent dye degradation and mineralization ability, producing aniline and 1,4-diamino benzene as metabolites. A barcoded 16S rRNA gene-pyrosequencing approach was used to assess the bacterial diversity in the sludge culture and a phylogenetic tree was constructed for sulfate-reducing bacteria. PMID:27475462

  3. Delta(O-17) of Martian Sulfate: Assessment as a Tool to Recognize the Impact of Biological Sulfur Cycling on Mars

    Science.gov (United States)

    Brunner, B.; Coleman, M. L.

    2005-01-01

    The Mars Rover-missions demonstrate that there are accessible Martian sulfate deposits (evaporites) [1]. These sedimentary rocks could indicate influence of past or present biotic processes even in the absence of traces of extraterrestrial life. We evaluate the potential of the analysis of mass independent isotope fractionation of oxygen in sulfate as a biosignature.

  4. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate.

    Science.gov (United States)

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo

    2016-08-20

    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug. PMID:27178902

  5. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate.

    Science.gov (United States)

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo

    2016-08-20

    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug.

  6. Non-target time trend screening: a data reduction strategy for detecting emerging contaminants in biological samples

    OpenAIRE

    Plassmann, Merle M.; Tengstrand, Erik; Åberg, K. Magnus; Benskin, Jonathan P.

    2016-01-01

    Non-targeted mass spectrometry-based approaches for detecting novel xenobiotics in biological samples are hampered by the occurrence of naturally fluctuating endogenous substances, which are difficult to distinguish from environmental contaminants. Here, we investigate a data reduction strategy for datasets derived from a biological time series. The objective is to flag reoccurring peaks in the time series based on increasing peak intensities, thereby reducing peak lists to only those which m...

  7. Thermophilic (55 - 65°C) and extreme thermophilic (70 - 80°C) sulfate reduction in methanol and formate-fed UASB reactors

    NARCIS (Netherlands)

    Vallero, M.V.G.; Camarero, E.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    The feasibility of thermophilic (55-65 degreesC) and extreme thermophilic (70-80 degreesC) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular slu

  8. Sulfur isotopes as a tracer for biogenic sulfate reduction in natural environments: A link between modern and ancient ecosystems. Geologica Ultraiectina (316)

    NARCIS (Netherlands)

    Stam, M.C.

    2010-01-01

    Sulfur isotopes have been widely used to trace the activity of sulfate reducing prokaryotes in modern and ancient geochemical settings and to estimate the role of this microbial metabolism in global sulfur cycling. Extensive pure culture data provide detailed insight into cellular mechanisms involve

  9. Reduction in toxicity of coking wastewater to aquatic organisms by vertical tubular biological reactor.

    Science.gov (United States)

    Zhou, Siyun; Watanabe, Haruna; Wei, Chang; Wang, Dongzhou; Zhou, Jiti; Tatarazako, Norihisa; Masunaga, Shigeki; Zhang, Ying

    2015-05-01

    We conducted a battery of toxicity tests using photo bacterium, algae, crustacean and fish to evaluate acute toxicity profile of coking wastewater, and to evaluate the performance of a novel wastewater treatment process, vertical tubular biological reactor (VTBR), in the removal of toxicity and certain chemical pollutants. A laboratory scale VTBR system was set up to treat industrial coking wastewater, and investigated both chemicals removal efficiency and acute bio-toxicity to aquatic organisms. The results showed that chemical oxygen demand (COD) and phenol reductions by VTBR were approximately 93% and 100%, respectively. VTBR also reduced the acute toxicity of coking wastewater significantly: Toxicity Unit (TU) decreased from 21.2 to 0.4 for Photobacterium phosphoreum, from 9.5 to 0.6 for Isochrysis galbana, from 31.9 to 1.3 for Daphnia magna, and from 30.0 to nearly 0 for Danio rerio. VTBR is an efficient treatment method for the removal of chemical pollutants and acute bio-toxicity from coking wastewater.

  10. Sulfated compounds from marine organisms.

    Science.gov (United States)

    Kornprobst, J M; Sallenave, C; Barnathan, G

    1998-01-01

    More than 500 sulfated compounds have been isolated from marine organisms so far but most of them originate from two phyla only, Spongia and Echinodermata. The sulfated compounds are presented according to the phyla they have been identified from and to their chemical structures. Biological activities, when available, are also given. Macromolecules have also been included in this review but without structural details. PMID:9530808

  11. Effect of sulfur compounds on biological reduction of nitric oxide in aqueous Fe(II)EDTA2- solutions

    NARCIS (Netherlands)

    Manconi, I.; Maas, van der P.M.F.; Lens, P.N.L.

    2006-01-01

    Biological reduction of nitric oxide (NO) in aqueous solutions of EDTA chelated Fe(II) is one of the main steps in the BioDeNOx process, a novel bioprocess for the removal of nitrogen oxides (NOx) from polluted gas streams. Since NOx contaminated gases usually also contain sulfurous pollutants, the

  12. Off-Label Biologic Regimens in Psoriasis: A Systematic Review of Efficacy and Safety of Dose Escalation, Reduction, and Interrupted Biologic Therapy

    OpenAIRE

    Elizabeth A. Brezinski; Armstrong, April W.

    2012-01-01

    OBJECTIVES: While off-label dosing of biologic treatments may be necessary in selected psoriasis patients, no systematic review exists to date that synthesizes the efficacy and safety of these off-label dosing regimens. The aim of this systematic review is to evaluate efficacy and safety of off-label dosing regimens (dose escalation, dose reduction, and interrupted treatment) with etanercept, adalimumab, infliximab, ustekinumab, and alefacept for psoriasis treatment. DATA SOURCES AND STUDY SE...

  13. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S;

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known....... Sulfate reducers that oxidized the carbon source completely to CO2 showed greater fractionations than sulfate reducers that released acetate as the final product of carbon oxidation. Different metabolic pathways and variable regulation of sulfate transport across the cell membrane all potentially affect...

  14. Effect of nitrogen on phosphate reduction in biological phosphorus removal from wastewater

    OpenAIRE

    Vabolienė, Giedrė; Matuzevičius, Algimantas B.; Valentukevičienė, Marina

    2007-01-01

    Conventional schemes of biological nitrogen removal can be combined with phosphorus removal schemes. One of the common technology schemes for biological nitrogen removal is the aeration zone and the anoxic zone in one tank. The nitrification and denitrification are carried out during the aeration switching on and off. The anaerobic zone is equipped behind the nitrification/denitrification tank for biological phosphorus removal. Exchange of the anaerobic and aerobic conditions is necessary for...

  15. Facilitated biological reduction of nitroaromatic compounds by reduced graphene oxide and the role of its surface characteristics

    Science.gov (United States)

    Li, Lei; Liu, Qi; Wang, Yi-Xuan; Zhao, Han-Qing; He, Chuan-Shu; Yang, Hou-Yun; Gong, Li; Mu, Yang; Yu, Han-Qing

    2016-01-01

    How reduced graphene oxide (RGO) mediates the reductive transformation of nitroaromatic pollutants by mixed cultures and the role of its surface characteristics were evaluated in this study. Different electron donors were applied to investigate the interaction between RGO and anaerobic microbes. Moreover, the influence of the surface properties of RGO on biological nitroaromatic removal was further elucidated. The results show that RGO could achieve an approximate one-fold rate increase of nitrobenzene reduction by mixed culture with glucose as an electron donor. Selective elimination of oxygen moieties on the RGO surface, such as quinone groups, decreased the nitrobenzene transformation rate, whereas doping nitrogen into the RGO framework exhibited a positive effect. The study indicates that graphene-based carbon nanomaterials have the potential to accelerate the biological transformation of nitroaromatic compounds and that the functionalization of these carbon nanomaterials, especially through surface modification, would further enhance the conversion efficiency of contaminants. PMID:27439321

  16. Facilitated biological reduction of nitroaromatic compounds by reduced graphene oxide and the role of its surface characteristics.

    Science.gov (United States)

    Li, Lei; Liu, Qi; Wang, Yi-Xuan; Zhao, Han-Qing; He, Chuan-Shu; Yang, Hou-Yun; Gong, Li; Mu, Yang; Yu, Han-Qing

    2016-01-01

    How reduced graphene oxide (RGO) mediates the reductive transformation of nitroaromatic pollutants by mixed cultures and the role of its surface characteristics were evaluated in this study. Different electron donors were applied to investigate the interaction between RGO and anaerobic microbes. Moreover, the influence of the surface properties of RGO on biological nitroaromatic removal was further elucidated. The results show that RGO could achieve an approximate one-fold rate increase of nitrobenzene reduction by mixed culture with glucose as an electron donor. Selective elimination of oxygen moieties on the RGO surface, such as quinone groups, decreased the nitrobenzene transformation rate, whereas doping nitrogen into the RGO framework exhibited a positive effect. The study indicates that graphene-based carbon nanomaterials have the potential to accelerate the biological transformation of nitroaromatic compounds and that the functionalization of these carbon nanomaterials, especially through surface modification, would further enhance the conversion efficiency of contaminants. PMID:27439321

  17. Chemically enhanced biological NOx removal from flue gases : nitric oxide and ferric EDTA reduction in BioDeNox reactors

    OpenAIRE

    Maas,, F.

    2005-01-01

    The emission of nitrogen oxides (NOx) to the atmosphere is a major environmental problem. To abate NOx emissions from industrial flue gases, to date, mainly chemical processes like selective catalytic reduction (SCR) are applied. All these processes require high temperatures (>300 °C) and expensive catalysts. Therefore, biological NOx removal techniques using denitrification may represent promising alternatives for the conventional SCR techniques. However, water based biofiltration require...

  18. Seasonal and biological variation of blood concentrations of total cholesterol, dehydroepiandrosterone sulfate, hemoglobin A(1c), IgA, prolactin, and free testosterone in healthy women

    DEFF Research Database (Denmark)

    Garde, A H; Hansen, Åse Marie; Skovgaard, L T;

    2000-01-01

    Concentrations of physiological response variables fluctuate over time. The present study describes within-day and seasonal fluctuations for total cholesterol, dehydroepiandrosterone sulfate (DHEA-S), hemoglobin A(1c) (HbA(1c)), IgA, prolactin, and free testosterone in blood, and estimates within...

  19. IN SITU CHEMICAL REDUCTION OF CR(VI) IN GROUNDWATER USING A COMBINATION OF FERROUS SULFATE AND SODIUM DITHIONITE: A FIELD INVESTIGATION

    Science.gov (United States)

    A field pilot test was conducted to evaluate the effectiveness of a FeSO4 + Na2S2O4 reductant solution blend for in situ saturated zone treatment of dissolved-phase Cr(VI) at the former Macalloy Corporation site in Charleston, SC. The reductant blend was injected into the path o...

  20. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content.

    Science.gov (United States)

    Scaglia, Barbara; Salati, Silvia; Di Gregorio, Alessandra; Carrera, Alberto; Tambone, Fulvia; Adani, Fabrizio

    2013-09-01

    The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization. PMID:23792663

  1. A kinetic study of biological Cr(VI) reduction in trickling filters with different filter media types

    International Nuclear Information System (INIS)

    Two pilot-scale trickling filters were used in order to estimate Cr(VI) reduction through biological mechanisms in biofilm reactors operated in SBR mode with recirculation using different filter media types, i.e. plastic media and calcitic gravel. The feed concentrations of Cr(VI) examined were about 5, 10, 20, 30, 50 and 100 mg/l, while the concentration of the organic carbon was constant at 400 mg/l, in order to avoid carbon limitations in the bulk liquid. Maximum reduction rates of 4.8 and 4.7 g Cr(VI)/d were observed for feed Cr(VI) concentration of about 5 mg Cr(VI)/l, for the filters with the plastic support material and the gravel media, respectively. The reduction rates were significantly affected by the feed Cr(VI) concentration in both bioreactors. A dual-enzyme kinetic model was used in order to describe Cr(VI) reduction by aerobically grown mixed cultures. Model predictions were found to correspond very closely to experimental quantitative observations of Cr(VI) reduction at both pilot-scale trickling filters used

  2. Combined Pre-Precipitation, Biological Sludge Hydrolysis and Nitrogen Reduction - A Pilot Demonstration of Integrated Nutrient Removal

    DEFF Research Database (Denmark)

    Kristensen, G. H.; Jørgensen, P. E.; Strube, R.;

    1992-01-01

    A pilot study was performed to investigate advanced wastewater treatment by pre-precipitation in combination with biological nitrogen removal supported by biological sludge hydrolysis. The influent wastewater was pretreated by addition of a pre-polymerized aluminum salt, followed by flocculation...... and sedimentation. Chemical pretreatment resulted in 60% COD-reduction and 75% phosphorus reduction. The chemically precipitated primary sludge was exposed to anaerobic sludge hydrolysis at retention times of 1 and 2 days at temperatures in the range of 15-30°C. At a retention time of two days at 20°C, resulting......, resulting in high denitrification rates. Nitrogen reduction was performed based on the Bio-Denitro principle in an activated sludge system. Nitrogen was reduced from 45 mg/l to 9 mg/l and phosphorus was reduced from 11 mg/l to 0.5 mg/l. The sludge yield was low, approx. 0.3-0.4 gCOD/gCOD removed...

  3. Off-label biologic regimens in psoriasis: a systematic review of efficacy and safety of dose escalation, reduction, and interrupted biologic therapy.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Brezinski

    Full Text Available OBJECTIVES: While off-label dosing of biologic treatments may be necessary in selected psoriasis patients, no systematic review exists to date that synthesizes the efficacy and safety of these off-label dosing regimens. The aim of this systematic review is to evaluate efficacy and safety of off-label dosing regimens (dose escalation, dose reduction, and interrupted treatment with etanercept, adalimumab, infliximab, ustekinumab, and alefacept for psoriasis treatment. DATA SOURCES AND STUDY SELECTION: We searched OVID Medline from January 1, 1990 through August 1, 2011 for prospective clinical trials that studied biologic therapy for psoriasis treatment in adults. Individual articles were screened for studies that examined escalated, reduced, or interrupted therapy with etanercept, adalimumab, infliximab, ustekinumab, or alefacept. DATA SYNTHESIS: A total of 23 articles with 12,617 patients matched the inclusion and exclusion criteria for the systematic review. Data were examined for primary and secondary efficacy outcomes and adverse events including infections, malignancies, cardiovascular events, and anti-drug antibodies. The preponderance of data suggests that continuous treatment with anti-TNF agents and anti-IL12/23 agent was necessary for maintenance of disease control. Among non-responders, dose escalation with etanercept, adalimumab, ustekinumab, and alefacept typically resulted in greater efficacy than standard dosing. Dose reduction with etanercept and alefacept resulted in reduced efficacy. Withdrawal of the examined biologics led to an increase in disease activity; efficacy from retreatment did not result in equivalent initial response rates for most biologics. Safety data on off-label dosing regimens are limited. CONCLUSION: Dose escalation in non-responders generally resulted in increased efficacy in the examined biologics used to treat moderate-to-severe psoriasis. Continuous treatment with anti-TNF agents and anti-IL12/23 agent

  4. INVESTIGATION OF INTERMITTENT CHLORINATION SYSTEM IN BIOLOGICAL EXCESS SLUDGE REDUCTION BY SEQUENCING BATCH REACTORS

    OpenAIRE

    A. Takdastan ، N. Mehrdadi ، A. A. Azimi ، A. Torabian ، G. Nabi Bidhendi

    2009-01-01

    The excessive biological sludge production is one of the disadvantages of aerobic wastewater treatment processes such as sequencing batch reactors. To solve the problem of excess sludge production, oxidizing some of the sludge by chlorine, thus reducing the biomass coefficient as well as the sewage sludge disposal may be a suitable idea. In this study, two sequencing batch reactors, each with 20 L volume and controlled by on-line system were used. After providing the steady state conditions i...

  5. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...

  6. Biologically Based Methods for Control of Fumonisin-Producing Fusarium Species and Reduction of the Fumonisins.

    Science.gov (United States)

    Alberts, Johanna F; van Zyl, Willem H; Gelderblom, Wentzel C A

    2016-01-01

    Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof, or clay minerals pre- and post-harvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Post-harvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although, the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, post-harvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP) production, and storage management, together with

  7. Biologically Based Methods for Control of Fumonisin-producing Fusarium species and Reduction of the Fumonisins

    Directory of Open Access Journals (Sweden)

    Johanna Francina Alberts

    2016-04-01

    Full Text Available Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof or clay minerals pre- and postharvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Postharvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, postharvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP production and storage management

  8. INVESTIGATION OF INTERMITTENT CHLORINATION SYSTEM IN BIOLOGICAL EXCESS SLUDGE REDUCTION BY SEQUENCING BATCH REACTORS

    Directory of Open Access Journals (Sweden)

    A. Takdastan ، N. Mehrdadi ، A. A. Azimi ، A. Torabian ، G. Nabi Bidhendi

    2009-01-01

    Full Text Available The excessive biological sludge production is one of the disadvantages of aerobic wastewater treatment processes such as sequencing batch reactors. To solve the problem of excess sludge production, oxidizing some of the sludge by chlorine, thus reducing the biomass coefficient as well as the sewage sludge disposal may be a suitable idea. In this study, two sequencing batch reactors, each with 20 L volume and controlled by on-line system were used. After providing the steady state conditions in the reactors, sampling and testing of parameters were done during 8 months. The results showed that during the solid retention time of 10 days the kinetic coefficient of Y and Kd were 0.58 mg biomass/mg COD and 0.058/day, respectively. At the next stage, different concentrations of chlorine were used in the reactors intermittently. Results showed that 15 mg chlorine/gMLSS in the reactor was able to reduce the yield coefficient from 0.58 to 0.3 mg biomass/mg COD. In other words, the biological excess sludge was reduced about 48%. But the soluble chemical oxygen demand increased slightly in the effluent and the removal percentage decreased from 95% in the blank reactor to 55% in the test reactor.

  9. Non-target time trend screening: a data reduction strategy for detecting emerging contaminants in biological samples.

    Science.gov (United States)

    Plassmann, Merle M; Tengstrand, Erik; Åberg, K Magnus; Benskin, Jonathan P

    2016-06-01

    Non-targeted mass spectrometry-based approaches for detecting novel xenobiotics in biological samples are hampered by the occurrence of naturally fluctuating endogenous substances, which are difficult to distinguish from environmental contaminants. Here, we investigate a data reduction strategy for datasets derived from a biological time series. The objective is to flag reoccurring peaks in the time series based on increasing peak intensities, thereby reducing peak lists to only those which may be associated with emerging bioaccumulative contaminants. As a result, compounds with increasing concentrations are flagged while compounds displaying random, decreasing, or steady-state time trends are removed. As an initial proof of concept, we created artificial time trends by fortifying human whole blood samples with isotopically labelled standards. Different scenarios were investigated: eight model compounds had a continuously increasing trend in the last two to nine time points, and four model compounds had a trend that reached steady state after an initial increase. Each time series was investigated at three fortification levels and one unfortified series. Following extraction, analysis by ultra performance liquid chromatography high-resolution mass spectrometry, and data processing, a total of 21,700 aligned peaks were obtained. Peaks displaying an increasing trend were filtered from randomly fluctuating peaks using time trend ratios and Spearman's rank correlation coefficients. The first approach was successful in flagging model compounds spiked at only two to three time points, while the latter approach resulted in all model compounds ranking in the top 11 % of the peak lists. Compared to initial peak lists, a combination of both approaches reduced the size of datasets by 80-85 %. Overall, non-target time trend screening represents a promising data reduction strategy for identifying emerging bioaccumulative contaminants in biological samples. Graphical abstract

  10. Non-target time trend screening: a data reduction strategy for detecting emerging contaminants in biological samples.

    Science.gov (United States)

    Plassmann, Merle M; Tengstrand, Erik; Åberg, K Magnus; Benskin, Jonathan P

    2016-06-01

    Non-targeted mass spectrometry-based approaches for detecting novel xenobiotics in biological samples are hampered by the occurrence of naturally fluctuating endogenous substances, which are difficult to distinguish from environmental contaminants. Here, we investigate a data reduction strategy for datasets derived from a biological time series. The objective is to flag reoccurring peaks in the time series based on increasing peak intensities, thereby reducing peak lists to only those which may be associated with emerging bioaccumulative contaminants. As a result, compounds with increasing concentrations are flagged while compounds displaying random, decreasing, or steady-state time trends are removed. As an initial proof of concept, we created artificial time trends by fortifying human whole blood samples with isotopically labelled standards. Different scenarios were investigated: eight model compounds had a continuously increasing trend in the last two to nine time points, and four model compounds had a trend that reached steady state after an initial increase. Each time series was investigated at three fortification levels and one unfortified series. Following extraction, analysis by ultra performance liquid chromatography high-resolution mass spectrometry, and data processing, a total of 21,700 aligned peaks were obtained. Peaks displaying an increasing trend were filtered from randomly fluctuating peaks using time trend ratios and Spearman's rank correlation coefficients. The first approach was successful in flagging model compounds spiked at only two to three time points, while the latter approach resulted in all model compounds ranking in the top 11 % of the peak lists. Compared to initial peak lists, a combination of both approaches reduced the size of datasets by 80-85 %. Overall, non-target time trend screening represents a promising data reduction strategy for identifying emerging bioaccumulative contaminants in biological samples. Graphical abstract

  11. Retention of titanium dioxide nanoparticles in biological activated carbon filters for drinking water and the impact on ammonia reduction.

    Science.gov (United States)

    Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin

    2016-06-01

    Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p  0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.

  12. Retention of titanium dioxide nanoparticles in biological activated carbon filters for drinking water and the impact on ammonia reduction.

    Science.gov (United States)

    Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin

    2016-06-01

    Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p  0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs. PMID:26931341

  13. Evaluation of sulfate reduction at experimentally induced mixing interfaces using small-scale push-pull tests in an aquifer-wetland system

    Science.gov (United States)

    Kneeshaw, T.A.; McGuire, J.T.; Smith, E.W.; Cozzarelli, I.M.

    2007-01-01

    This paper presents small-scale push-pull tests designed to evaluate the kinetic controls on SO42 - reduction in situ at mixing interfaces between a wetland and aquifer impacted by landfill leachate at the Norman Landfill research site, Norman, OK. Quantifying the rates of redox reactions initiated at interfaces is of great interest because interfaces have been shown to be zones of increased biogeochemical transformations and thus may play an important role in natural attenuation. To mimic the aquifer-wetland interface and evaluate reaction rates, SO42 --rich anaerobic aquifer water (??? 100 mg / L SO42 -) was introduced into SO42 --depleted wetland porewater via push-pull tests. Results showed SO42 - reduction was stimulated by the mixing of these waters and first-order rate coefficients were comparable to those measured in other push-pull studies. However, rate data were complex involving either multiple first-order rate coefficients or a more complex rate order. In addition, a lag phase was observed prior to SO42 - reduction that persisted until the mixing interface between test solution and native water was recovered, irrespective of temporal and spatial constraints. The lag phase was not eliminated by the addition of electron donor (acetate) to the injected test solution. Subsequent push-pull tests designed to elucidate the nature of the lag phase support the importance of the mixing interface in controlling terminal electron accepting processes. These data suggest redox reactions may occur rapidly at the mixing interface between injected and native waters but not in the injected bulk water mass. Under these circumstances, push-pull test data should be evaluated to ensure the apparent rate is actually a function of time and that complexities in rate data be considered. ?? 2007 Elsevier Ltd. All rights reserved.

  14. Volume and activity reduction by biological treatment and ultrafiltration of laundry effluent waste

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Rosenberger; Bernhard Christ [RWE NUKEM GmbH (Germany)

    2006-07-01

    An innovative patented treatment process (BIBRA) combining biological treatment and a separator centrifuge was developed in the Gundremmingen NPP starting in 1995. To date this process has been successfully implemented in the German NPP of Gundremmingen, Kahl, Brunsbuettel, Stade, Isar 1 and Neckarwestheim. This new process has not only significantly reduced the TOC content in the effluent and waste volumes (6,600 m{sup 3} result in only 160 kg final waste) of BWR and PWR but at the same time has increased the decontamination factor to 20 and more. The cost savings experienced within the plant are more than 125000 euros/a. These savings do not account the additional substantial savings on handling, disposal containers, transportation, interim storage and final disposal. In order to advance the biological treatment of radioactive wastes it is therefore required to find an alternative separation mechanism without loosing the advantages of discharging the inactive salts. An engineering review of possible separation processes that could help to remove these residual activity was conducted. It determined that crossflow filtration and in particular micro-filtration or ultrafiltration were the most promising technologies to further improve the separation efficiency. Ultrafiltration is able to remove bacteria, proteins and similar while allowing dissolved materials such ad salts to pass. Drawback for crossflow filtration systems is that they can experience significant problems with fouling (blocking) of the membranes from suspended solids (TSS) which typically requires the introduction of aggressive chemicals and that all these systems generate an effluent concentrate of typically 2% to 10 % of their throughput. In case of e.g. 6600 m{sup 3}/a waste generation a volume between 120 and 600 m{sup 3}/a concentrate would require additional treatment and conditioning. Almost at the same time as the biological treatment process was developed in Germany, RWE NUKEM matured

  15. Biological quality of soils containing hydrocarbons and efficacy of ecological risk reduction by bioremediation alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, A.J.; Napolitano, G.E.; Sample, B.E.

    1996-06-01

    This project provides technical support to the Petroleum Environmental Research Forum (PERF; a consortium of petroleum companies) on environmentally acceptable endpoints that may be used to help assess the ecological risk of petroleum hydrocarbon residuals in soils. The project, was designed in consultation with PERF representatives and focuses on the relationship between {open_quotes}chemically available{close_quotes} and {open_quotes}biologically available{close_quotes} measurements of petroleum hydrocarbon compounds in soils, a discrepancy of considerable interest to the petroleum industry. Presently, clean-up standards for soils contaminated with total petroleum hydrocarbon (TPH) constituents are based on concentrations of TPH, as measured in solvent extracts of soil samples. Interestingly, TPH includes a complex mixture of compounds which differ from one another in molecular weight and toxicity. Based on various studies with insecticides, herbicides and metals, some compounds apparently can slowly permeate into soil particles. If this situation occurs, the particle-embedded compounds may be extractable by use of organic solvents, and yet be unavailable biologically. This hypothesis serves as the central focus for our study. If this hypothesis is correct, then soil clean-up standards based on solvent-extractable TPH data may be more stringent than necessary to achieve a desired level of environmental risk. The economic significance of this possibility is considerable, because clean-up costs to achieve a low-risk status would, in most cases, be lower than those needed to achieve a standard based on present limits, which are based on measurements of {open_quotes}extractable{close_quotes} TPH.

  16. Design improvement for reduction of decommissioning waste of PWR primary biological shield

    International Nuclear Information System (INIS)

    Most operating nuclear power plants were constructed with no attention to the amount of decommissioning waste. Consequently, a large portion of the primary concrete shield wall is irradiated by neutrons escaping from the reactor core to produce high concentration of activation products. These radioactive waste comprises of around 30% of the decommissioning waste. Under the circumstance that the rad waste disposal cost is continuously increasing, reduction of decommissioning waste becomes an important issue. In this study, a design improvement was attempted to reduce activation of the primary shield wall by placing a water-filled neutron shield tank between the reactor pressure vessel and the primary shield wall. Procedure for calculating the amount of activated radionuclides remaining at different cooling times were developed by MCNP-ORIGEN coupled calculations. Particular attention was paid to correction of activation cross sections since the ORIGEN code was designed for use in calculation of isotope generation and depletion in the operating reactor core where temperature is high, while temperature of the shield wall is low. The established procedure was applied to the 1500MWe APR+ model to evaluated the effectiveness of the neutron shield tank. Distributions of activation products for many different thickness of the neutron shield tank were calculated and an effective thickness was selected. Finally, by comparing the resulting activity distributions with the exemption criteria for radioactive waste, the expected cost reduction was assessed. The model applied in this study, however, is limited to preliminary design in terms of neutronics and does not take account any engineering problems which may be caused by installation of the shield tank. Practical engineering needs further detailed design analysis including cooling and cleaning of the shield water and other related engineering issues

  17. Involvement of intermediate sulfur species in biological reduction of elemental sulfur under acidic, hydrothermal conditions.

    Science.gov (United States)

    Boyd, Eric S; Druschel, Gregory K

    2013-03-01

    The thermoacidophile and obligate elemental sulfur (S(8)(0))-reducing anaerobe Acidilobus sulfurireducens 18D70 does not associate with bulk solid-phase sulfur during S(8)(0)-dependent batch culture growth. Cyclic voltammetry indicated the production of hydrogen sulfide (H(2)S) as well as polysulfides after 1 day of batch growth of the organism at pH 3.0 and 81°C. The production of polysulfide is likely due to the abiotic reaction between S(8)(0) and the biologically produced H(2)S, as evinced by a rapid cessation of polysulfide formation when the growth temperature was decreased, inhibiting the biological production of sulfide. After an additional 5 days of growth, nanoparticulate S(8)(0) was detected in the cultivation medium, a result of the hydrolysis of polysulfides in acidic medium. To examine whether soluble polysulfides and/or nanoparticulate S(8)(0) can serve as terminal electron acceptors (TEA) supporting the growth of A. sulfurireducens, total sulfide concentration and cell density were monitored in batch cultures with S(8)(0) provided as a solid phase in the medium or with S(8)(0) sequestered in dialysis tubing. The rates of sulfide production in 7-day-old cultures with S(8)(0) sequestered in dialysis tubing with pore sizes of 12 to 14 kDa and 6 to 8 kDa were 55% and 22%, respectively, of that of cultures with S(8)(0) provided as a solid phase in the medium. These results indicate that the TEA existed in a range of particle sizes that affected its ability to diffuse through dialysis tubing of different pore sizes. Dynamic light scattering revealed that S(8)(0) particles generated through polysulfide rapidly grew in size, a rate which was influenced by the pH of the medium and the presence of organic carbon. Thus, S(8)(0) particles formed through abiological hydrolysis of polysulfide under acidic conditions appeared to serve as a growth-promoting TEA for A. sulfurireducens.

  18. Effects of combining biological treatment and activated carbon on hexavalent chromium reduction.

    Science.gov (United States)

    Orozco, A M Ferro; Contreras, E M; Zaritzky, N E

    2011-02-01

    The objectives of the present work were: (a) to analyze the Cr(VI) removal by combining activated sludge (AS) with powdered activated carbon (PAC), (b) to analyze the effect of PAC and Cr(VI) on the growth kinetics of activated sludge, and (c) to determine if the combined method (AS-PAC) for Cr(VI) removal can be considered additive or synergistic with respect to the individual processes. Chromate removal was improved by increasing PAC concentrations in both PAC and AS-PAC systems. Cr(VI) removal using the AS-PAC system was higher than using AS or PAC. The increase of Cr(VI) caused longer lag phase and lower observed specific growth rate (μ(obs)), biomass yield (Y(X/S)), and specific growth substrate consumption rate (q(S)) of activated sludge; additionally, PAC did not enhance the growth kinetic parameters (μ(obs), Y(X/S), q(S)). Cr(VI) reduction in AS-PAC system was the result of the additive effect of each individual Cr(VI) removal process. PMID:21123053

  19. Farklı Hidrolik Bekletme Sürelerinin Anaerobik Perdeli Reaktörde Sülfat İndirgenmesi Üzerine Etkisi / Effect of Different Hydraulic Retention Time (HRT on Sulfate Reduction in Anaerobic Baffled Reactor

    Directory of Open Access Journals (Sweden)

    Şebnem ÖZDEMİR

    2012-12-01

    üresinin 2 gün olduğu çalışma koşullarında çıkış suyundaki KOİ ve SO4-2 verimleri %84 ile %88 olarak gözlemlenirken bekleme süresinin 0,5 gün olduğu çalışma koşullarında ise bu değer %80 ve %75 olarak gözlemlenmiştir. Ayrıca bekleme süresinin 2 gün olduğu çalışma koşullarında son bölmedeki sülfür oluşum verimi % 75 iken, bekleme süresi 0,5 güne indirildiğinde aynı bölmedeki sülfür oluşum veriminin %96’a çıktığı gözlemlenmiştir. Çıkarımlar ve Özgün Değer: Yapılan bu çalışma ile yüksek sülfat konsantrasyona sahip atıksuların arıtımında anaerobik perdeli reaktörün iyi bir alternatif olabileceği kanıtlanmıştır. Ayrıca çıkış sülfat ve sülfür konsantrasyonlarının değişen HBS’den etkilenmediği gözlenmiştir. Effect of Different Hydraulic Retention Time (HRT on Sulfate Reduction in Anaerobic Baffled Reactor Design and Method: The anaerobic baffled reactor (ABR is a modification of up-flow anaerobic sludge blanket (UASB reactor. A laboratory scale ABR was inoculated with an effluent of a full scale anaerobic digester located in Kayseri Wastewater Treatment Plant, Turkey. Before inoculation, the sludge was sieved to remove coarse materials. The ABR was 20 cm wide, 80 cm long, 20 cm deep and constructed from glass, with a working volume of 19 L. Reactor was divided into four equal 4.75 L compartments by vertical baffles, each compartment having down-comer and riser regions created by further vertical baffle. The lower parts of down-comer baffles were angled at 450 in order to direct the flow evenly through the riser. Ethanol and sulfate are consumed as electron donor and electron acceptor, respectively. Sulfate, dissolved sulfide, pH, alkalinity and chemical oxygen demand (COD have measured three times a week. Aim: There are varying structures and concentrations of sulfate compounds in natural waters. In addition, the amount of sulfate is higher in some industrial wastewaters In addition, some

  20. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  1. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust

    Directory of Open Access Journals (Sweden)

    Alberto eRobador

    2015-01-01

    Full Text Available The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100 °C fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates were measured in laboratory incubations with 35S-sulfate over a range of temperatures, with microbial activity limited by the availability of organic electron donors. Thermodynamic calculations indicate energetic constraints for metabolism in the higher temperature, more altered and isolated fluids, which together with relatively higher cell-specific sulfate reduction rates reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic sulfate-reducing microorganisms. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling.

  2. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration.

    Science.gov (United States)

    Reungoat, J; Macova, M; Escher, B I; Carswell, S; Mueller, J F; Keller, J

    2010-01-01

    Pharmaceutical compounds are found in secondary treated effluents up to microg L(-1) levels and therefore discharged into surface waters. Since the long term effects of these compounds on the environment and human health are, to date, largely unknown, implementation of advanced treatment of wastewaters is envisaged to reduce their discharge. This is of particular relevance where surface waters are used as drinking water sources and when considering indirect potable reuse. This study aimed at assessing the removal of organic micropollutants and the concurrent reduction of their biological activity in a full scale reclamation plant treating secondary effluent. The treatment consists of 6 stages: denitrification, pre-ozonation, coagulation/flocculation/dissolved air flotation and filtration (DAFF), main ozonation, activated carbon filtration and final ozonation for disinfection. For that purpose, representative 24-hour composite samples were collected after each stage. The occurrence of 85 compounds was monitored by LC/MS-MS. A battery of 6 bioassays was also used as a complementary tool to evaluate non-specific toxicity and 5 specific toxic modes of action. Results show that, among the 54 micropollutants quantified in the influent water, 50 were removed to below their limit of quantification representing more than 90% of concentration reduction. Biological activity was reduced, depending on the specific response that was assessed, from a minimum of 62% (AhR response) to more than 99% (estrogenicity). The key processes responsible for the plant's performances were the coagulation/flocculation/DAFF, main ozonation and activated carbon filtration. The effect of these 3 processes varied from one compound or bioassay to another but their combination was almost totally responsible for the overall observed reduction. Bioassays yielded complementary information, e.g. estrogenic compounds were not detected in the secondary effluent by chemical analysis, but the samples had an

  3. Halomonas desiderata as a bacterial model to predict the possible biological nitrate reduction in concrete cells of nuclear waste disposals.

    Science.gov (United States)

    Alquier, Marjorie; Kassim, Caroline; Bertron, Alexandra; Sablayrolles, Caroline; Rafrafi, Yan; Albrecht, Achim; Erable, Benjamin

    2014-01-01

    After closure of a waste disposal cell in a repository for radioactive waste, resaturation is likely to cause the release of soluble species contained in cement and bituminous matrices, such as ionic species (nitrates, sulfates, calcium and alkaline ions, etc.), organic matter (mainly organic acids), or gases (from steel containers and reinforced concrete structures as well as from radiolysis within the waste packages). However, in the presence of nitrates in the near-field of waste, the waste cell can initiate oxidative conditions leading to enhanced mobility of redox-sensitive radionuclides (RN). In biotic conditions and in the presence of organic matter and/or hydrogen as electron donors, nitrates may be microbiologically reduced, allowing a return to reducing conditions that promote the safety of storage. Our work aims to analyze the possible microbial reactivity of nitrates at the bitumen - concrete interface in conditions as close as possible to radioactive waste storage conditions in order (i) to evaluate the nitrate reaction kinetics; (ii) to identify the by-products (NO2(-), NH4(+), N2, N2O, etc.); and (iii) to discriminate between the roles of planktonic bacteria and those adhering as a biofilm structure in the denitrifying activity. Leaching experiments on solid matrices (bitumen and cement pastes) were first implemented to define the physicochemical conditions that microorganisms are likely to meet at the bitumen-concrete interface, e.g. highly alkaline pH conditions (10 < pH < 11) imposed by the cement matrix. The screening of a range of anaerobic denitrifying bacterial strains led us to select Halomonas desiderata as a model bacterium capable of catalyzing the reaction of nitrate reduction in these particular conditions of pH. The denitrifying activity of H. desiderata was quantified in a batch bioreactor in the presence of solid matrices and/or leachate from bitumen and cement matrices. Denitrification was relatively fast in the presence of cement

  4. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  5. Characterization of sulfate-reducing granular sludge in the SANI(®) process.

    Science.gov (United States)

    Hao, Tianwei; Wei, Li; Lu, Hui; Chui, Hokwong; Mackey, Hamish R; van Loosdrecht, Mark C M; Chen, Guanghao

    2013-12-01

    Hong Kong practices seawater toilet flushing covering 80% of the population. A sulfur cycle-based biological nitrogen removal process, the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process, had been developed to close the loop between the hybrid water supply and saline sewage treatment. To enhance this novel process, granulation of a Sulfate-Reducing Up-flow Sludge Bed (SRUSB) reactor has recently been conducted for organic removal and provision of electron donors (sulfide) for subsequent autotrophic denitrification, with a view to minimizing footprint and maximizing operation resilience. This further study was focused on the biological and physicochemical characteristics of the granular sulfate-reducing sludge. A lab-scale SRUSB reactor seeded with anaerobic digester sludge was operated with synthetic saline sewage for 368 days. At 1 h nominal hydraulic retention time (HRT) and 6.4 kg COD/m(3)-d organic loading rate, the SRUSB reactor achieved 90% COD and 75% sulfate removal efficiencies. Granular sludge was observed within 30 days, and became stable after 4 months of operation with diameters of 400-500 μm, SVI5 of 30 ml/g, and extracellular polymeric substances of 23 mg carbohydrate/g VSS. Fluorescence in situ hybridization (FISH) analysis revealed that the granules were enriched with abundant sulfate-reducing bacteria (SRB) as compared with the seeding sludge. Pyrosequencing analysis of the 16S rRNA gene in the sulfate-reducing granules on day 90 indicated that the microbial community consisted of a diverse SRB genera, namely Desulfobulbus (18.1%), Desulfobacter (13.6%), Desulfomicrobium (5.6%), Desulfosarcina (0.73%) and Desulfovibrio (0.6%), accounting for 38.6% of total operational taxonomic units at genera level, with no methanogens detected. The microbial population and physicochemical properties of the granules well explained the excellent performance of the granular SRUSB reactor. PMID:24200003

  6. Establishing the "Biological Relevance" of Dipentyl Phthalate Reductions in Fetal Rat Testosterone Production and Plasma and Testis Testosterone Levels.

    Science.gov (United States)

    Gray, Leon Earl; Furr, Johnathan; Tatum-Gibbs, Katoria R; Lambright, Christy; Sampson, Hunter; Hannas, Bethany R; Wilson, Vickie S; Hotchkiss, Andrew; Foster, Paul M D

    2016-01-01

    Phthalate esters (PEs) constitute a large class of compounds that are used for many consumer product applications. Many of the C2-C7 di-ortho PEs reduce fetal testicular hormone and gene expression levels in rats resulting in adverse effects seen later in life but it appears that relatively large reductions in fetal testosterone (T) levels and testis gene expression may be required to adversely affect reproductive development (Hannas, B. R., Lambright, C. S., Furr, J., Evans, N., Foster, P. M., Gray, E. L., and Wilson, V. S. (2012). Genomic biomarkers of phthalate-induced male reproductive developmental toxicity: a targeted RT-PCR array approach for defining relative potency. Toxicol. Sci. 125, 544-557). The objectives of this study were (1) to model the relationships between changes in fetal male rat plasma testosterone (PT), T levels in the testis (TT), T production (PROD), and testis gene expression with the reproductive malformation rates, and (2) to quantify the "biologically relevant reductions" (BRRs) in fetal T necessary to induce adverse effects in the offspring. In the fetal experiment, Harlan Sprague-Dawley rats were dosed with dipentyl phthalate (DPeP) at 0, 11, 33, 100, and 300 mg/kg/day from gestational days (GD) 14-18 and fetal testicular T, PT levels, and T Prod and gene expression were assessed on GD 18. In the postnatal experiment, rats were dosed with DPeP from GD 8-18 and reproductive development was monitored through adulthood. The dose-response curves for TT levels (ED(50) = 53 mg/kg) and T PROD (ED(50) = 45 mg/kg) were similar, whereas PT was reduced at ED50 = 19 mg/kg. When the reductions in TPROD and Insl3 mRNA were compared with the postnatal effects of in utero DPeP, dose-related reproductive alterations were noted when T PROD and Insl3 mRNA were reduced by >45% and 42%, respectively. The determination of BRR levels may enable risk assessors to utilize fetal endocrine data to help establish points of departure for

  7. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  8. Halomonas desiderata as a bacterial model to predict the possible biological nitrate reduction in concrete cells of nuclear waste disposals

    OpenAIRE

    Alquier, Marjorie; Kassim, Caroline; Bertron, Alexandra; Sablayrolles, Caroline; Rafrafi, Yan; Albrecht, Achim; Erable, Benjamin

    2014-01-01

    After closure of a waste disposal cell in a repository for radioactive waste, resaturation is likely to cause the release of soluble species contained in cement and bituminous matrices, such as ionic species (nitrates, sulfates, calcium and alkaline ions, etc.), organic matter (mainly organic acids), or gases (from steel containers and reinforced concrete structures as well as from radiolysis within the waste packages). However, in the presence of nitrates in the near-field of waste, the wast...

  9. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55 degrees C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges.

    Science.gov (United States)

    Sipma, J; Meulepas, R J W; Parshina, S N; Stams, A J M; Lettinga, G; Lens, P N L

    2004-04-01

    The conversion routes of carbon monoxide (CO) at 55 degrees C by full-scale grown anaerobic sludges treating paper mill and distillery wastewater were elucidated. Inhibition experiments with 2-bromoethanesulfonate (BES) and vancomycin showed that CO conversion was performed by a hydrogenogenic population and that its products, i.e. hydrogen and CO2, were subsequently used by methanogens, homo-acetogens or sulfate reducers depending on the sludge source and inhibitors supplied. Direct methanogenic CO conversion occurred only at low CO concentrations [partial pressure of CO (PCO) hydrogen production from CO, especially since after 30 min exposure to 95 degrees C, the production of CH4 at 55 degrees C was negligible. The paper mill sludge was capable of sulfate reduction with hydrogen, tolerating and using high CO concentrations (PCO>1.6 bar), indicating that CO-rich synthesis gas can be used efficiently as an electron donor for biological sulfate reduction.

  10. Experience with biological denitrification at the Himmerfjaerden Plant

    International Nuclear Information System (INIS)

    The Himmerfjaerden Sewage Treatment Plant is situated in the southwestern region of Stockholm. The plant serves a population of 230 000 people. The treatment includes both mechanical, biological and chemical treatment. The treated water is discharged into the Himmer Bay (Himmerfjaerden), which is a bay of the Baltic Sea. Since nitrogen is regarded as the limiting nutrient in the Baltic the discussion of nitrogen removal at plants in the coastal region has started in Sweden. At the Himmerfjaerden Plant full-scale experiments with biological nitrogen removal have been carried out since 1984. For phosphorus removal both aluminium sulfate and ferrous sulfate have been used during the test period. The removal efficiency in the primary sedimentation tanks was for suspended solids 60-75%, organic matter (COD) 50-60% and phosphorus 45-55%. The higher figures are for the addition of aluminium sulfate. The usual nitrogen reduction for the plant, without denitrification, is only 10-15%

  11. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification

    NARCIS (Netherlands)

    Janssen, A.J.H.; Lens, P.N.L.; Stams, A.J.M.; Plugge, C.M.; Sorokin, D.Y.; Muyzer, G.; Dijkman, H.; Zessen, van E.; Luimes, F.J.T.; Buisman, C.J.N.

    2009-01-01

    In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exempl

  12. Intra-articular use of a medical device composed of hyaluronic acid and chondroitin sulfate (Structovial CS: effects on clinical, ultrasonographic and biological parameters

    Directory of Open Access Journals (Sweden)

    Henrotin Yves

    2012-08-01

    Full Text Available Abstract Background This pilot open noncontrolled study was designed to assess the efficacy of intra-articular injections of a solution combining hyaluronic acid (HA and chondroitin sulphate (CS in the treatment of outpatients affected by knee osteoarthrosis. Findings Thirty patients with knee OA have been included. The primary objective was to assess clinical efficacy as measured by pain and Lequesne’s index. Secondary objectives were to assess potential effect of the treatment on ultrasound parameters, safety and biomarkers of cartilage metabolism and joint inflammation. After a selection visit (V1, the study treatment was administered 3 times on a weekly basis (V2, V3, V4. Follow-up was planned 6 (V5 and 12 weeks (V6 after the first intra-articular injection. Efficacy results showed a reduction in mean pain at V3 and V6 and in functional impairment, the most marked changes being measured at the two follow-up visits (V5 and V6. Although statistical significance was not achieved due to small sample size, a clear tendency towards improvement was detectable for ultrasound assessments as well as biomarkers. Except for a mild injection site hematoma for which the drug causal relationship could not be excluded, no adverse effect of clinical relevance was recorded during the study. Conclusion Although this pilot study was performed according to an open design only, the ultrasound as well as biomarkers changes strongly suggest a non-placebo effect. These preliminary results call now for a randomized controlled study to confirm the clinical relevance of the observed results. Trial registration #ISRCTN91883031

  13. Iron Sulfides and Sulfur Species Produced at (001) Hematite Surfaces in the Presence of Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Andrew L.; Techkarnjanaruk, Somkiet; Dohnalkova, Alice; McCready, David E.; Peyton, Brent M.; Geesey, Gill G.

    2001-01-01

    In the presence of sulfate-reducing bacteria (Desulfovibrio desulfuricans) hematite (a-Fe2O3) dissolution is affected and hydrogen sulfide, the product of sulfate reduction is released. As a consequence, ferrous ions are free to react with excess H2S to form insoluble iron sulfides. X-ray photoelectron spectra indicate binding energies consistent with the iron sulfides having a pyrrhotite structure (Fe2p3/2 708.4 eV; S2p3/2 161.5 eV). Other sulfur species identified at the surface include sulfate, sulfite and polysulfides. X-ray diffraction suggests an unidentifiable crystal structure at the hematite surface develops within 3 months, HRTEM confirms the presence of a hexagonal structure again suggesting the formation of pyrrhotite. The identification of pyrrhotite is inconsistent with previous reports in which mackinawite and greigite were products of biological sulfate reduction (Rickard 1969; Herbert et al 1998). The apparent differences in stoiciometries may be related to the availability of Fe2+(aq.) at the mineral surface through respiratory iron reduction by subsurface bacteria. The significance of pyrrhotite and polysulfide production in relation to the S- and Fe-cycles and to trace metal bioavailability is discussed.

  14. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid-state...... diffusion. The nucleation and crystal grain growth of the solid product, and this mixed control mechanism provide satisfactory explanations of the various phenomena related to the direct sulfation of limestone, such as porosity in the product layer, the variation of the apparent reaction orders of SO2, O-2......The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...

  15. Chemically sulfated natural galactomannans with specific antiviral and anticoagulant activities.

    Science.gov (United States)

    Muschin, Tegshi; Budragchaa, Davaanyam; Kanamoto, Taisei; Nakashima, Hideki; Ichiyama, Koji; Yamamoto, Naoki; Shuqin, Han; Yoshida, Takashi

    2016-08-01

    Naturally occurring galactomannans were sulfated to give sulfated galactomannans with degrees of substitution of 0.7-1.4 per sugar unit and molecular weights of M¯n=0.6×10(4)-2.4×10(4). Sulfated galactomannans were found to have specific biological activities in vitro such as anticoagulant, anti-HIV and anti-Dengue virus activities. The biological activities were compared with those of standard dextran and curdlan sulfates, which are polysaccharides with potent antiviral activity and low cytotoxicity. It was found that sulfated galactomannans had moderate to high anticoagulant activity, 13.4-36.6unit/mg, compared to that of dextran and curdlan sulfates, 22.7 and 10.0unit/mg, and high anti-HIV and anti-Dengue virus activities, 0.04-0.8μg/mL and 0.2-1.1μg/mL, compared to those curdlan sulfates, 0.1μg/mL, respectively. The cytotoxicity on MT-4 and LCC-MK2 cells was low. Surface plasmon resonance (SPR) of sulfated galactomannans revealed strong interaction with poly-l-lysine as a model compound of virus proteins, and suggested that the specific biological activities might originate in the electrostatic interaction of negatively charged sulfate groups of sulfated galactomannans and positively charged amino groups of surface proteins of viruses. These results suggest that sulfated galactomannans effectively prevented the infection of cells by viruses and the degree of substitution and molecular weights played important roles in the biological activities. PMID:27154517

  16. METABOLISM OF SULFATE-REDUCING PROKARYOTES

    NARCIS (Netherlands)

    HANSEN, TA

    1994-01-01

    Dissimilatory sulfate reduction is carried out by a heterogeneous group of bacteria and archaea that occur in environments with temperatures up to 105 degrees C. As a group together they have the capacity to metabolize a wide variety of compounds ranging from hydrogen via typical organic fermentatio

  17. Theoretical study on the reactivity of sulfate species with hydrocarbons

    Science.gov (United States)

    Ma, Q.; Ellis, G.S.; Amrani, A.; Zhang, T.; Tang, Y.

    2008-01-01

    The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42 - are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42 - is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions (HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42 -. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels

  18. Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases

    NARCIS (Netherlands)

    Lens, P.N.L.; Gastesi, R.; Lettinga, G.

    2003-01-01

    This paper describes a novel bioscrubber concept for biological flue gas desulfurization, based on the recycling of a cell suspension of sulfite/sulfate reducing bacteria between a scrubber and a sulfite/sulfate reducing hydrogen fed bioreactor. Hydrogen metabolism in sulfite/sulfate reducing cell s

  19. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    Science.gov (United States)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  20. Commercial Application of Technique for Removing Sulfates from Reforming Catalyst

    Institute of Scientific and Technical Information of China (English)

    JiChangqing

    2002-01-01

    In the course of reduction of reforming catalyst by not hydrogen a certain amount of chlorine containing compounds is added to the recycle hydrogen to facilitate the reduction of sulfates.The outcome of commercial application of this technique has revealed that the procedure of "regeneration by chlorination→reduction→sulfate removal→sulfiding and oil feed-in"aimed at sulate removal is very simple and can recover the reaction activity of reforming catalyst after having been poisoned by sulfates.This procedure can be disseminated for application in refineries.

  1. Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt)

    DEFF Research Database (Denmark)

    Teske, A.; Ramsing, NB; Habicht, K.;

    1998-01-01

    The sulfate-reducing bacteria within the surface layer of the hypersaline cyanobacterial mat of Solar Lake (Sinai, Egypt) were investigated with combined microbiological, molecular, and biogeochemical approaches. The diurnally oxic surface layer contained between 10(6) and 10(7) cultivable sulfate-reducing......, and aggregate formation were the most conspicuous adaptations of Solar Lake sulfate-reducing bacteria to the mat matrix and to diurnal oxygen stress. A comparison of sulfate reduction rates within the mat and previously published photosynthesis rates showed that CO2 from sulfate reduction in the upper 5 mm...... bacteria ml(-1) and showed sulfate reduction rates between 1,000 and 2,200 nmol ml-l day(-1), both in the same range as and sometimes higher than those in anaerobic deeper mat layers. In the oxic surface layer and in the mat layers below, filamentous sulfate-reducing Desulfonema bacteria were found...

  2. Influence of COD/sulfate ratios on the integrated reactor system for simultaneous removal of carbon, sulfur and nitrogen.

    Science.gov (United States)

    Yuan, Ye; Chen, Chuan; Zhao, Youkang; Wang, Aijie; Sun, Dezhi; Huang, Cong; Liang, Bin; Tan, Wenbo; Xu, Xijun; Zhou, Xu; Lee, Duu-Jung; Ren, Nanqi

    2015-01-01

    An integrated reactor system was developed for the simultaneous removal of carbon, sulfur and nitrogen from sulfate-laden wastewater and for elemental sulfur (S°) reclamation. The system mainly consisted of an expanded granular sludge bed (EGSB) for sulfate reduction and organic carbon removal (SR-CR), an EGSB for denitrifying sulfide removal (DSR), a biological aerated filter for nitrification and a sedimentation tank for sulfur reclamation. This work investigated the influence of chemical oxygen demand (COD)/sulfate ratios on the performance of the system. Influent sulfate and ammonium were fixed to the level of 600 mg SO(4)(2-) L⁻¹ and 120 mg NH(4)(+) L⁻¹, respectively. Lactate was introduced to generate COD/SO(4)(2-) = 0.5:1, 1:1, 1.5:1, 2:1, 3:1, 3.5:1 and 4:1. The experimental results indicated that sulfate could be efficiently reduced in the SR-CR unit when the COD/SO(4)(2-) ratio was between 1:1 and 3:1, and sulfate reduction was inhibited by the growth of methanogenic bacteria when the COD/SO(4)(2-) ratio was between 3.5:1 and 4:1. Meanwhile, the Org-C/S²⁻/NO(3)(-) ratios affected the S(0) reclamation efficiency in the DSR unit. When the influent COD/SO(4)(2-) ratio was between 1:1 and 3:1, appropriate Org-C/S²⁻/NO(3)(-) ratios could be achieved to obtain a maximum S° recovery in the DSR unit. For the microbial community of the SR-CR unit at different COD/SO(4)(2-) ratios, 16S rRNA gene-based high throughput Illumina MiSeq sequencing was used to analyze the diversity and potential function of the dominant species. PMID:25768217

  3. Techniques for the conversion to carbon dioxide of oxygen from dissolved sulfate in thermal waters

    Science.gov (United States)

    Nehring, N.L.; Bowen, P.A.; Truesdell, A.H.

    1977-01-01

    The fractionation of oxygen isotopes between dissolved sulfate ions and water provides a useful geothermometer for geothermal waters. The oxygen isotope composition of dissolved sulfate may also be used to indicate the source of the sulfate and processes of formation. The methods described here for separation, purification and reduction of sulfate to prepare carbon dioxide for mass spectrometric analysis are modifications of methods by Rafter (1967), Mizutani (1971), Sakai and Krouse (1971), and Mizutani and Rafter (1969). ?? 1976.

  4. Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme

    International Nuclear Information System (INIS)

    Purpose: To evaluate the impact of dose-volume histogram (DVH) reduction schemes and models of normal tissue complication probability (NTCP) on ranking of radiation treatment plans. Methods and Materials: Data for liver complications in humans and for spinal cord in rats were used to derive input parameters of four different NTCP models. DVH reduction was performed using two schemes: 'effective volume' and 'preferred Lyman'. DVHs for competing treatment plans were derived from a sample DVH by varying dose uniformity in a high dose region so that the obtained cumulative DVHs intersected. Treatment plans were ranked according to the calculated NTCP values. Results: Whenever the preferred Lyman scheme was used to reduce the DVH, competing plans were indistinguishable as long as the mean dose was constant. The effective volume DVH reduction scheme did allow us to distinguish between these competing treatment plans. However, plan ranking depended on the radiobiological model used and its input parameters. Conclusions: Dose escalation will be a significant part of radiation treatment planning using new technologies, such as 3-D conformal radiotherapy and tomotherapy. Such dose escalation will depend on how the dose distributions in organs at risk are interpreted in terms of expected complication probabilities. The present study indicates considerable variability in predicted NTCP values because of the methods used for DVH reduction and radiobiological models and their input parameters. Animal studies and collection of standardized clinical data are needed to ascertain the effects of non-uniform dose distributions and to test the validity of the models currently in use

  5. Biological reduction of iron to the elemental state from ochre deposits of Skelton Beck in Northeast England

    OpenAIRE

    Rahman, Pattanathu K. S. M.; Bastola, Suvechhya

    2014-01-01

    Ochre, consequence of acid mine drainage (AMD), is iron oxides-rich soil pigments that can be found in the water drainage from historic base metal and coal mines. The anaerobic strains of Geobacter sulfurreducens and Shewanella denitrificans were used for the microbial reduction of iron from samples of ochre collected from Skelton Beck (Saltburn Orange River, NZ 66738 21588) in Northeast England. The aim of the research was to determine the ability of the two anaerobic bacteria to reduce the ...

  6. Biological reduction of iron to the elemental state from ochre deposits of Skelton Beck in Northeast England

    OpenAIRE

    PattanathuK S MRahman

    2014-01-01

    Ochre, consequence of acid mine drainage, is iron oxides-rich soil pigments that can be found in the water drainage from historic base metal and coal mines. The anaerobic strains of Geobacter sulfurreducens and Shewanella denitrificans were used for the microbial reduction of iron from samples of ochre collected from Skelton Beck (Saltburn Orange River, NZ 66738 21588) in Northeast England. The aim of the research was to determine the ability of the two anaerobic bacteria to reduce the iron p...

  7. Biological reduction of iron to the elemental state from ochre deposits of Skelton Beck in Northeast England

    Directory of Open Access Journals (Sweden)

    Pattanathu K S M Rahman

    2014-06-01

    Full Text Available Ochre, consequence of acid mine drainage, is iron oxides-rich soil pigments that can be found in the water drainage from historic base metal and coal mines. The anaerobic strains of Geobacter sulfurreducens and Shewanella denitrificans were used for the microbial reduction of iron from samples of ochre collected from Skelton Beck (Saltburn Orange River, NZ 66738 21588 in Northeast England. The aim of the research was to determine the ability of the two anaerobic bacteria to reduce the iron present in ochre and to determine the rate of the reduction process. The physico-chemical changes in the ochre sample after the microbial reduction process were observed by the production of zero-valent iron which was later confirmed by the detection of elemental Fe in XRD spectrum. The XRF results revealed that 69.16% and 84.82% of iron oxide can be reduced using G. sulfurreducens and S. denitrificans respectively after 8 days of incubation. These results could provide the basis for the development of a biohydrometallurgical process for the production of elemental iron from ochre sediments.

  8. Crystal structure of tris­(piperidinium) hydrogen sulfate sulfate

    OpenAIRE

    Lukianova, Tamara J.; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-01-01

    A novel mixed hydrogen sulfate–sulfate piperidinium salt comprises three protonated piperidinium cations, one hydrogen sulfate anion and one sulfate anion in the asymmetric unit. Strong hydrogen bonds exist between the cations and the anions giving rise to a three-dimensional structure.

  9. Hydrazine Sulfate (PDQ)

    Science.gov (United States)

    ... use of hydrazine sulfate as a complementary or alternative treatment for cancer? It has been known since the early 1900s ... of CAM therapies originally considered to be purely alternative approaches are finding a place in cancer treatment—not as cures, but as complementary therapies that ...

  10. Coronary heart disease, chronic inflammation, and pathogenic social hierarchy: a biological limit to possible reductions in morbidity and mortality.

    Science.gov (United States)

    Wallace, Rodrick; Wallace, Deborah; Wallace, Robert G

    2004-05-01

    We suggest that a particular form of social hierarchy, which we characterize as "pathogenic", can, from the earliest stages of life, exert a formal analog to evolutionary selection pressure, literally writing a permanent developmental image of itself upon immune function as chronic vascular inflammation and its consequences. The staged nature of resulting disease emerges "naturally" as a rough analog to punctuated equilibrium in evolutionary theory, although selection pressure is a passive filter rather than an active agent, like structured psychosocial stress. Exposure differs according to the social constructs of race, class, and ethnicity, accounting in large measure for observed population-level differences in rates of coronary heart disease across industrialized societies. American Apartheid, which enmeshes both majority and minority communities in a social construct of pathogenic hierarchy, appears to present a severe biological limit to continuing declines in coronary heart disease for powerful as well as subordinate subgroups: "Culture"--to use the words of the evolutionary anthropologist Robert Boyd--"is as much a part of human biology as the enamel on our teeth". PMID:15160975

  11. Sulfate and dissolved sulfide variation under low COD/Sulfate ratio in Up-flow Anaerobic Sludge Blanket (UASB treating domestic wastewater

    Directory of Open Access Journals (Sweden)

    Sérvio Túlio Alves Cassini

    2012-04-01

    Full Text Available In this study, the dynamics of sulfate reduction and dissolved sulfide generation (S2-, HS-, H2Saq in liquid phase was evaluated in an UASB reactor treating domestic wastewater with low COD/Sulfate content. The evaluation in the UASB reactor was performed at three sludge heights (0.25, 1.25, 2.25 taps and effluent of the reactor. Sulfate reduction was verified in the reactor, with an average reduction of 24 % throughout the experiment period. However, the dissolved sulfide concentration in the reactor was not higher than 5.0 mg Sdiss/L. The kinetic model of first order showed good fit to describe the sulfate reduction under different COD/sulfate ratio, with K1app between 2.94x10-5 s-1 and 1.17x10-5 s-1 with correlation coefficients for data over 91%. The maximum rate to sulfate reduction was 18.0 mg SO42-/L.h-1 and small variation in COD/sulfate ratio promotes a significant change both in sulfate and sulfide concentrations.

  12. BIOREMEDIATION FOR ACID MINE DRAINAGE: ORGANIC SOLID WASTE AS CARBON SOURCES FOR SULFATE-REDUCING BACTERIA: A REVIEW

    Directory of Open Access Journals (Sweden)

    I. N. Jamil

    2013-12-01

    Full Text Available Biological sulfate reduction has been slowly replacing chemical unit processes to treat acid mine drainage (AMD. Bioremediations for AMD treatment are favored due to their low capital and maintenance cost. This paper describes the available AMD treatment, current SRB commercialization such as THIOPAQ® and BioSulphide® technologies, and also the factors and limitations faced. THIOPAQ® and BioSulphide® technologies use expensive carbon sources such as hydrogen as the electron donor. This paper discusses the possibility of organic solid waste as an alternative substrate as it is cheaper and abundant. A possible AMD treatment system setup was also proposed to test the efficiency of sulfate-reducing bacteria utilizing organic solid substrate.

  13. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  14. Dose Addition Models Based on Biologically Relevant Reductions in Fetal Testosterone Accurately Predict Postnatal Reproductive Tract Alterations by a Phthalate Mixture in Rats.

    Science.gov (United States)

    Howdeshell, Kembra L; Rider, Cynthia V; Wilson, Vickie S; Furr, Johnathan R; Lambright, Christy R; Gray, L Earl

    2015-12-01

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the current study were 2-fold: (1) to test whether a mixture model of dose addition based on the fetal T production data of individual phthalates would predict the effects of a 5 phthalate mixture on androgen-sensitive postnatal male reproductive tract development, and (2) to determine the biological relevance of the reductions in fetal T to induce abnormal postnatal reproductive tract development using data from the mixture study. We administered a dose range of the mixture (60, 40, 20, 10, and 5% of the top dose used in the previous fetal T production study consisting of 300 mg/kg per chemical of benzyl butyl (BBP), di(n)butyl (DBP), diethyl hexyl phthalate (DEHP), di-isobutyl phthalate (DiBP), and 100 mg dipentyl (DPP) phthalate/kg; the individual phthalates were present in equipotent doses based on their ability to reduce fetal T production) via gavage to Sprague Dawley rat dams on GD8-postnatal day 3. We compared observed mixture responses to predictions of dose addition based on the previously published potencies of the individual phthalates to reduce fetal T production relative to a reference chemical and published postnatal data for the reference chemical (called DAref). In addition, we predicted DA (called DAall) and response addition (RA) based on logistic regression analysis of all 5 individual phthalates when complete data were available. DA ref and DA all accurately predicted the observed mixture effect for 11 of 14 endpoints. Furthermore, reproductive tract malformations were seen in 17-100% of F1 males when fetal T production was reduced by about 25-72%, respectively. PMID:26350170

  15. 34S/32S and 18O/16O ratios of dissolved sulfate from interstitial water samples above gas hydrate bearing sediments of IODP Expedition 311, Cascadia

    Science.gov (United States)

    Wortmann, U. G.; Chernyavsky, B. M.; Torres, M. E.; Kastner, M.

    2008-12-01

    Microbially mediated sulfate reduction affects the isotopic composition of dissolved and solid sulfur species in marine sediments. Although several details of the fractionation process remain controversial, the overall process is well understood and can be described as the sum of several mass dependent fractionations during the stepwise reduction of sulfate to sulfide. Experiments and field data show that the 18O/16O of sulfate is also modified in the presence of sulfate-reducing microorganisms. Here we use a reaction transport model to analyze these processes and to constrain the rates of organotrophic versus methanotrophic sulfate reduction. Our results show that even in cases where sulfate concentrations decline in a linear fashion, up to 50% of all sulfate is consumed by organotrophic sulfate reduction.

  16. Toward a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, S.R.; Joachimiak, M.P.; Petzold, C.J.; Zane, G.M.; Price, M.N.; Gaucher, S.; Reveco, S.A.; Fok, V.; Johanson, A.R.; Batth, T.S.; Singer, M.; Chandonia, J.M.; Joyner, D.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Singh, A.K.; Keasling, J.D.

    2011-05-01

    Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study E. coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio 5 vulgaris Hildenborough, a model anaerobe and sulfate reducer. In this paper we present the first attempt to identify protein-protein interactions in an obligate anaerobic bacterium. We used suicide vector-assisted chromosomal modification of 12 open reading frames encoded by this sulfate reducer to append an eight amino acid affinity tag to the carboxy-terminus of the chosen proteins. Three biological replicates of the 10 ‘pulled-down’ proteins were separated and analyzed using liquid chromatography-mass spectrometry. Replicate agreement ranged between 35% and 69%. An interaction network among 12 bait and 90 prey proteins was reconstructed based on 134 bait-prey interactions computationally identified to be of high confidence. We discuss the biological significance of several unique metabolic features of D. vulgaris revealed by this protein-protein interaction data 15 and protein modifications that were observed. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

  17. Efflux transport of chrysin and apigenin sulfates in HEK293 cells overexpressing SULT1A3: The role of multidrug resistance-associated protein 4 (MRP4/ABCC4).

    Science.gov (United States)

    Li, Wan; Sun, Hua; Zhang, Xingwang; Wang, Huan; Wu, Baojian

    2015-11-01

    Efflux transport is a critical determinant to the pharmacokinetics of sulfate conjugates. Here we aimed to establish SULT1A3 stably transfected HEK293 cells, and to determine the contributions of BCRP and MRP transporters to excretion of chrysin and apigenin sulfates. The cDNA of SULT1A3 was stably introduced into HEK293 cells using a lentiviral vector, generating a sulfonation active cell line (i.e., SULT293 cells). Identification of sulfate transporters was achieved through chemical inhibition (using chemical inhibitors) and biological inhibition (using short-hairpin RNAs (shRNAs)) methods. Sulfated metabolites were rapidly generated and excreted upon incubation of SULT293 cells with chrysin and apigenin. Ko143 (a selective BCRP inhibitor) did not show inhibitory effects on sulfate disposition, whereas the pan-MRP inhibitor MK-571 caused significant reductions (38.5-64.3%, pHEK293 cells were an appropriate tool to study SULT1A3-mediated sulfonation and to characterize BCRP/MRP4-mediated sulfate transport.

  18. Brief Report: A Preference for Biological Motion Predicts a Reduction in Symptom Severity One Year Later in Preschoolers with an Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Martina Franchini

    2016-08-01

    Full Text Available Recent research has consistently demonstrated reduced orienting to social stimuli in samples of young children with Autism Spectrum Disorders (ASD. However, social orienting greatly varies between individual children on the spectrum. Better understanding this heterogeneity in social orienting may contribute to our comprehension of the mechanisms underlying autistic symptoms thereby improving our ability to intervene. Indeed, children on the autism spectrum who show higher levels of interest in social stimuli demonstrate reduced clinical symptoms and increased adaptive functioning. However, longitudinal studies examining the influence of social orienting on subsequent outcome are critically lacking. Here, we aim to explore the relationship between social interest at the age of 3 and changes in severity of autistic symptoms over the subsequent year, in 20 children with ASD and 20 age-matched typically developing (TD children. A visual preference for social stmuli was measured using an eye-tracking task at baseline, consisting of a previously studied visual preference paradigm presenting biological and geometric motion side-by-side. The task was altered for the current study by alternating presentation side for each type of stimuli to keep visual perseveration from influencing participants’ first fixation location. Clinical data were collected both at baseline and one year later at follow-up. As a group, we observed reduced interest for biological motion in children with ASD compared to TD children, corroborating previous findings. We also confirmed that a preference for biological motion is associated with better adaptive functioning in preschoolers with ASD. Most importantly, our longitudinal results showed that a preference for biological motion strongly predicted decreased severity of diagnostic symptoms. Participants who preferred social stimuli at the age of 3 showed drastic reductions in their severity level of autistic symptoms one year

  19. Application of Gray Relational Analysis to the Experimental Design on Reduction of U(VI) by Sulfate-reducing Bacteria%灰色关联分析在硫酸盐还原菌还原U(Ⅵ)试验设计中的应用

    Institute of Scientific and Technical Information of China (English)

    荣丽杉; 谢水波; 凌辉; 王水云

    2011-01-01

    This paper determines the main factors in the experiment of U (VI) Reduction by sulfate-reducing bacteria (SRB) through gray correlation analysis, based on the experi- mental design. Results show that the method is simple, objective, reliable, and provides a scientific basis for experimental design to treat the wastewater containin~ ll( VIh%基于硫酸盐还原茵(SRB)还原U(Ⅵ)试验设计方案,通过灰色关联分析方法,确定在硫酸盐还原茵(SRB)还原u(Ⅵ)试验中主要的影响因素。结果表明,该方法计算简便,结果客观可靠,为含u(VI)废水处理试验设计提供了科学依据。

  20. Sulfate in the Palaeoarchean Ocean: Localized Enrichment or Variable Preservation?

    Science.gov (United States)

    Mason, P. R. D.; Roerdink, D. L.; Galic, A.; Martin, W.

    2015-12-01

    The Archean oceans are thought to have been depleted in sulfate, reflecting widespread anoxic conditions and limited input of oxidized sulfur species from atmospheric photolysis. This is supported by the paucity of sulfate-bearing minerals and the relatively limited mass-dependent sulfur isotope fractionation in the majority of the Archean geological record. An exception to this is the occurrence of barite deposits in the Palaeoarchean (3.5-3.2 Ga) which indicate spatial or temporal increases in sulfate concentration. The origin and extent of these enrichments remains controversial and has been difficult to assess due to limited and highly variable data. Here we compile an extensive new database of SIMS multiple sulfur isotope data for pyrite and barite from across the Barberton Greenstone Belt in South Africa in order to further investigate the extent and origin of any sulfate enrichment. Individual pyrites were measured with good stratigraphic and petrographic control. Pyrite δ56Fe was used to further delineate pyrite populations and pathways of pyrite formation. Our new sulfur isotope data support conventional models where a positive Δ33S was derived from heterogeneous photolytic elemental S, with negative Δ33S capturing a homogenized marine sulfate reservoir. Pyrite multiple S isotope data closely track the abundance of barite, suggesting that marine sulfate levels were generally low and that sulfate increases were sporadic and localized. We speculate that the subsequent Neoarchean scarcity was controlled by biological evolution.

  1. Crystal structure of tris­(piperidinium) hydrogen sulfate sulfate

    OpenAIRE

    Tamara J. Lukianova; Vasyl Kinzhybalo; Adam Pietraszko

    2015-01-01

    In the title molecular salt, 3C5H12N+·HSO4−·SO42−, each cation adopts a chair conformation. In the crystal, the hydrogen sulfate ion is connected to the sulfate ion by a strong O—H...O hydrogen bond. The packing also features a number of N—H...O hydrogen bonds, which lead to a three-dimensional network structure. The hydrogen sulfate anion accepts four hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to five separate piperidinium cations, forming seven hydrogen ...

  2. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions

    DEFF Research Database (Denmark)

    Tumova, S; Woods, A; Couchman, J R

    2000-01-01

    Heparan sulfate proteoglycans are complex molecules composed of a core protein with covalently attached glycosaminoglycan chains. While the protein part determines localization of the proteoglycan on the cell surfaces or in the extracellular matrix, the glycosaminoglycan component, heparan sulfate...... and wound repair. This review concentrates on biological roles of cell surface heparan sulfate proteoglycans, namely syndecans and glypicans, and outlines the progress achieved during the last decade in unraveling the molecular interactions behind proteoglycan functions....

  3. Tyrosine Sulfation as a Protein Post-Translational Modification

    Directory of Open Access Journals (Sweden)

    Yuh-Shyong Yang

    2015-01-01

    Full Text Available Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.

  4. The Potential for Biologically Catalyzed Anaerobic Methane Oxidation on Ancient Mars

    OpenAIRE

    Marlow, Jeffrey J.; LaRowe, Douglas E.; Ehlmann, Bethany L.; Amend, Jan P.; Orphan, Victoria J

    2014-01-01

    This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO_2 partial pressures. In all scenarios, AOM is exergonic, ranging from −31 to −135 kJ/mol CH_4. A reaction transport model was constructed to examine how environmentally ...

  5. Bidirectional sulfate diffusion in saline-lake sediments: Evidence from Devils Lake, northeast North Dakota

    Science.gov (United States)

    Komor, S.C.

    1992-01-01

    Chemical and isotopic gradients in pore water in Devils Lake indicate that maximum rates of sulfate reduction occur between 1 and 3 cm depth in the bottom sediments. Dissolved sulfate diffuses into the sulfate-reduction zone upward from deeply buried saline pore water at an average rate of 1.4 x 10-5 μmol ⋅ cm-2 ⋅ s-1, and downward from the overlying water column at an average rate of 2.4 x 10-5 μmol ⋅ cm-2 ⋅ s-1. The result is a bidirectional flux of sulfate into the sulfate-reduction zone. Upward-diffusing sulfate provides a ready supply of electron acceptors for sulfate-reducing bacteria even at fairly great depths in the sediments. The abundance of electron acceptors enables sulfate-reducing bacteria to outcompete methanogenic bacteria for organic material and thereby suppress methane production. Suppression of methanogenesis may be widespread in sulfate-rich lakes and wetlands and may limit methane fluxes from these water bodies to the atmosphere.

  6. 混合硫酸盐还原菌群还原Cr(Ⅵ)的初步研究%Primary Study on Reduction of Cr( Ⅵ )by Mixed Sulfate-Reducing Bacteria

    Institute of Scientific and Technical Information of China (English)

    李光; 方晓兰; 蔡志辉

    2011-01-01

    In this paper, the mixed sulfate-reducing bacteria(SRB) were used to treat the wastewater containing Cr(Ⅵ). The effects of pH value and cultural temperature on removal rate of Cr(Ⅵ) were investigated. The results showed that the removal rate of Cr(Ⅵ) reached 97. 6% with Cr(Ⅵ) concentration of 50 mg · L-1, pH value of 7. 0, cultural temperature of 36 °C , cultural time of 36 h. The mixed SRB expected to play an important role in treating high concentrations of wastewater containing Cr(Ⅵ) because of its wider range of pH value and temperature, high efficiency, stable performance.%利用驯化后的耐受Cr(Ⅵ)的混合硫酸盐还原菌群处理含Cr(Ⅵ)废水,探讨了pH值、培养温度等对Cr(Ⅵ)去除率的影响。结果表明,当Cr(Ⅵ)浓度为50 mg·L-1、pH值为7.0、培养温度为36℃、培养时间为36 h时,该混合菌群对Cr(Ⅵ)的去除率达到最高,为97.6%。该混合菌群能适应较宽的pH值和温度范围且处理效率高、性能稳定,有望成为处理高浓度含Cr(Ⅵ)废水的理想方法。

  7. Electron ionization mass spectral fragmentation study of sulfation derivatives of polychlorinated biphenyls

    Directory of Open Access Journals (Sweden)

    Robertson Larry W

    2009-03-01

    Full Text Available Abstract Background Polychlorinated biphenyls are persistent organic pollutants that can be metabolized via hydroxylated PCBs to PCB sulfate metabolites. The sensitive and selective analysis of PCB sulfate monoesters by gas chromatography-mass spectrometry (GC-MS requires their derivatization, for example, as PCB 2,2,2-trichloroethyl (TCE sulfate monoesters. To aid in the identification of unknown PCB sulfate metabolites isolated from biological samples, the electron impact MS fragmentation pathways of selected PCB TCE sulfate diesters were analyzed and compared to the fragmentation pathways of the corresponding methoxylated PCBs. Results The most abundant and characteristic fragment ions of PCB TCE sulfate diesters were formed by releasing CHCCl3, SO3, HCl2 and/or CCl3 from the TCE sulfate moiety and Cl2, HCl, ethyne and chloroethyne from an intermediate phenylcyclopentadienyl cation. The fragmentation pattern depended on the degree of chlorination and the position of the TCE sulfate moiety (i.e., ortho vs. meta/para to the second phenyl ring, but were independent of the chlorine substitution pattern. These fragmentation pathways are similar to the fragmentation pathways of structurally related methoxylated PCBs. Conclusion Knowledge of the fragmentation patterns of PCB TCE sulfate diesters will greatly aid in determining the position of sulfate moiety (ortho vs. meta/para of unknown PCB sulfate metabolites isolated from environmental or laboratory samples.

  8. Preparation of Barley Storage Protein, Hordein, for Analytical Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

    DEFF Research Database (Denmark)

    Doll, Hans; Andersen, Bente

    1981-01-01

    The extraction, reduction, and alkylation of barley hordein for routine electrophoresis in sodium dodecyl sulfate-polyacrylamide gels were studied to set up a simple preparation procedure giving well-resolved bands in the electrophoresis gel. Hordein was extracted from single crushed seeds or flour...... in a buffer without propan-2-ol but containing sodium dodecyl sulfate....

  9. Exploring the ecophysiology of anaerobic communities of methanotrophic archaea and sulfate-reducing bacteria

    NARCIS (Netherlands)

    Timmers, P.H.A.

    2015-01-01

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is a widespread occurring process in anoxic marine sediments. The process is performed by ANaerobic MEthane oxidizing archaea (ANME) and associated sulfate reducing bacteria (SRB). The ANME presumably oxidize methane through reve

  10. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    Science.gov (United States)

    Badin, Alice; Broholm, Mette M.; Jacobsen, Carsten S.; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC 13C depletion in comparison to cDCE 13C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.

  11. Interaction of PACls with sulfate

    Institute of Scientific and Technical Information of China (English)

    XU Yi; WANG Dong-Sheng; TANG Hong-Xiao

    2004-01-01

    This article discusses the influential factors on Al13 separation considering the interaction of sulfate with various polyaluminum chloride(PACl). The experimental results showed that the basicity(B=[OH]/[Al]), the concentration of PACl and Al/SO4 ratio exhibited significant roles in the PACl-sulfate reaction. It indicated that different species in various PACl underwent different reaction pathway with sulfate. The Alc, colloidal species, formed precipitation quickly with sulfate, while Alb, oligomers and polymers, undergoes slow crystallization. And Ala, monomers, reacts with sulfate to form soluble complexes. The kinetic difference of reaction made it possible to realize the separation of Alb and further purification. The decrease of Ala resulted in the limit of ferron method was also mentioned.

  12. Fermentative hydrogen production at high sulfate concentration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chin-Chao [Environmental Resources Laboratory, Department of Landscape Architecture, Chungchou Institute of Technology, Changhwa 51022 (China); Chen, Hong-Pin; Wu, Jou-Hsien; Lin, Chiu-Yue [BioHydrogen Laboratory, Department of Water Resource Engineering, Feng Chia University, P.O. Box 25-123, Taichung 40724 (China)

    2008-03-15

    The hydraulic retention time (HRT) effects on fermentative hydrogen production from sucrose at high sulfate concentration of 3 g-SO{sub 4}{sup 2-}/l were studied using enriched mixed-microflora in a continuously fed reactor. The tested HRTs and organic loading rate ranged from 10 to 2 h and 48 to 240 g-COD/l-day, respectively, and the operating pH was 5.5. The experimental results indicate that hydrogen production could not be inhibited under high sulfate concentration and the efficiency was HRT-dependent with a short HRT of 4 h efficiently enhanced hydrogen production. At this HRT the biogas production rate and hydrogen gas content peaked with the hydrogen yield, hydrogen production rate and specific hydrogen production rate of 4.70 mol-H{sub 2}/mol-sucrose, 874 mmol-H{sub 2}/l-day and 432 mmol-H{sub 2}/g-VSS-day, respectively. These values were 50%, 80% and 300%, respectively, higher than those reported for 12 h HRT at the same sulfate concentration. The metabolite concentration fractions were butyrate 77.3%, acetate 15.6%, ethanol 4.4% and propionate 2.0% and changed to 55%, 27.3%, 11.2% and 6.5%, respectively, at HRT 2 h. Therefore, intimate HRT control is important to obtain efficient hydrogen production. Based on a biological growth comparison, pH 5.5 was considered to be the optimal value for operating a hydrogen-producing fermenter fed on sulfate-rich substrate. (author)

  13. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process.

    Science.gov (United States)

    Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency.

  14. Reduction of COD and Turbidity of Effluent in the Swine Productions Unit Employing Anaerobic Baffled Reactor (ABR Followed by Biological Filters and Sand Filter

    Directory of Open Access Journals (Sweden)

    Euzebio Beli

    2010-04-01

    Full Text Available The growing swine production is constantly in conflict with the environment due to the lack of environmental management directed to the cycle of animal production and the industrial sector, mainly due to the mishandling of slurry produced. In association with large concentrations of confined animals appear huge dumps of organic matter, inorganic nutrients and gaseous emissions, which require special care for its disposal to the environment. The aim of this study was to evaluate the use of an anaerobic baffled reactor (ABR in series with two downflow biological filters, followed by a sand filter as a polishing treatment. It were analyzed the reduction of COD and turbidity, and the behavior of pH in all phases of treatment. The removal of COD in the conjugated system, which occurred during treatment ranged from 74.55% to 94.41% with an average removal of 84.24%. In turn, the removal of turbidity from the period ranged from 53.07% to 96.11% with an average removal of 85.49%. In the studied period the pH changed from 5,6 to 8,4. This system was efficient in the removal of COD and turbidity of swine wastewater.

  15. H2O2-Promoted Size Growth of Sulfated TiO2 Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    YAN You-Jun; QIU Xiao-Qing; WANG Hui; LI Li-Ping; LI Guang-She

    2008-01-01

    Anatase nanoparticles modified by sulfate groups were synthesized using hydrother- mal method. The particles were controlled to large sizes by simply adjusting the amount of H2O2, in which HOO- ions replaced the surface sulfate groups and reduced the steric effect to promote the grain growth. The size-induced microstructural changes of the as-prepared nanoparticles were characterized using powder XRD, FT-IR, TG, and UV-vis analyses. The sulfate groups existed on anatase surface in unidentate and bidentate coordination forms. With the particle size reduction, bandgap energies of the as-prepared anatase nanoparticles decreased, and the desorption temperature of sulfate groups shifted towards lower temperatures.

  16. The membrane QmoABC complex interacts directly with the dissimilatory adenosine 5´-phosphosulfate reductase in sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Ana Raquel Ramos

    2012-04-01

    Full Text Available The adenosine 5’-phosphosulfate reductase (AprAB is the enzyme responsible for the reduction of adenosine 5’-phosphosulfate (APS to sulfite in the biological process of dissimilatory sulfate reduction, which is carried out by a ubiquitous group of sulfate reducing prokaryotes. The electron donor for AprAB has not been clearly identified, but was proposed to be the QmoABC membrane complex, since an aprBA-qmoABC gene cluster is found in many sulfate-reducing and sulfur-oxidising bacteria. The QmoABC complex is essential for sulfate reduction, but electron transfer between QmoABC and AprAB has not been reported. In this work we provide the first direct evidence that QmoABC and AprAB interact in Desulfovibrio spp., using co-immunoprecipitation, cross-linking Far-Western blot, tag-affinity purification and surface plasmon resonance studies. This showed that the QmoABC-AprAB complex has a strong steady-state affinity (KD = 90 ± 3 nM, but has a transient character due to a fast dissociation rate. Far-Western blot identified QmoA as the Qmo subunit most involved in the interaction. Nevertheless, electron transfer from menaquinol analogues to APS through anaerobically purified QmoABC and AprAB could not be detected. We propose that this reaction requires the involvement of a third partner to allow electron flow driven by a reverse electron bifurcation process i.e. electron confurcation. This process is deemed essential to allow coupling of APS reduction to chemiosmotic energy conservation.

  17. Recovery of ammonia and sulfate from waste streams and bioenergy production via bipolar bioelectrodialysis

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia and sulfate, which are prevalent pollutants in agricultural and industrial wastewaters, can cause serious inhibition in several biological treatment processes, such as anaerobic digestion. In this study, a novel bioelectrochemical approach termed bipolar bioelectrodialysis was developed t...

  18. The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater

    Science.gov (United States)

    Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.

    2014-08-01

    The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides within the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction.

  19. MOLECULAR PHYLOGENETIC AND BIOGEOCHEMICAL STUDIES OF SULFATE-REDUCING BACTERIA IN THE RHIZOSPHERE OF SPARTINA ALTERNIFLORA

    Science.gov (United States)

    The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons using molecular probing, enumerations of culturable SRB, and measurements of SO42- reduction rat...

  20. Reconstruction of secular variation in seawater sulfate concentrations

    Science.gov (United States)

    Algeo, T. J.; Luo, G. M.; Song, H. Y.; Lyons, T. W.; Canfield, D. E.

    2015-04-01

    Long-term secular variation in seawater sulfate concentrations ([SO42-]SW) is of interest owing to its relationship to the oxygenation history of Earth's surface environment. In this study, we develop two complementary approaches for quantification of sulfate concentrations in ancient seawater and test their application to late Neoproterozoic (635 Ma) to Recent marine units. The "rate method" is based on two measurable parameters of paleomarine systems: (1) the S-isotope fractionation associated with microbial sulfate reduction (MSR), as proxied by Δ34SCAS-PY, and (2) the maximum rate of change in seawater sulfate, as proxied by &partial; δ 34SCAS/∂ t(max). The "MSR-trend method" is based on the empirical relationship of Δ34SCAS-PY to aqueous sulfate concentrations in 81 modern depositional systems. For a given paleomarine system, the rate method yields an estimate of maximum possible [SO42-]SW (although results are dependent on assumptions regarding the pyrite burial flux, FPY), and the MSR-trend method yields an estimate of mean [SO42-]SW. An analysis of seawater sulfate concentrations since 635 Ma suggests that [SO42-]SW was low during the late Neoproterozoic (levels that have varied only slightly since 250 Ma. However, Phanerozoic seawater sulfate concentrations may have been drawn down to much lower levels (~1-4 mM) during short (<~2 Myr) intervals of the Cambrian, Early Triassic, Early Jurassic, and Cretaceous as a consequence of widespread ocean anoxia, intense MSR, and pyrite burial. The procedures developed in this study offer potential for future high-resolution quantitative analyses of paleo-seawater sulfate concentrations.

  1. Sulfation effect on levan polysaccharide chains structure with molecular dynamics simulations

    Science.gov (United States)

    Coskunkan, Binnaz; Turgut, Deniz; Rende, Deniz; Malta, Seyda; Baysal, Nihat; Ozisik, Rahmi; Toksoy-Oner, Ebru

    Diversity in conformations and structural heterogeneity make polysaccharides the most challenging biopolymer type for experimental and theoretical characterization studies. Levan is a biopolymer chain that consists of fructose rings with β(2-6) linkages. It is a glycan that has great potential as a functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Sulfated polysaccharides are group of macromolecules with sulfated groups in their hydroxyl parts with a range of important biological properties. Sulfate groups and their positions have a major effect on anticoagulant activity. It is reported that sulfate modified levan has anticoagulant activity such as heparin. In the current study, the effect of sulfation on the structure and dynamics of unmodified and sulfate modified levan are investigated via fully atomistic Molecular Dynamics simulations in aqueous media and varying salt concentrations at 310 K. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  2. 6-O-Sulfated Modification of Natural Glycoalkaloids Chaconine and Solanine

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Glycoalkaloids(GAS) have important biological and pharmaceutical activities. In order to study the relationship between the structures and the activities of carbohydrate chains, two natural glycoalkaloids, chaconine( compound 1 )and solanine( compound 2) , were isolated from potato stems and leaves( Solanum tuberosum L. ). The selective sulfation to the 6-hydroxy groups of chaconine and solanine was carried out in a strategy by the use of protective groups.The 6-hydroxyl groups of the sugar chains in chaconine and solanine were protected with 4,4'-dimethoxytrityl(DMT)while the other hydroxyl groups were acetylated. The protective group DMT was removed by using 0. 5% TFA in dichloromethane. The free 6-hydroxyl groups were sulfated by chlorosulfonic acid pyridine to give 6-O-sulfated products. After the acetyl groups were removed, the final products obtained were sulfated chaconine and sulfated solanine. 13C NMR spectra confirmed that chaconine and solanine were sulfated at O6 of the carbohydrate moiety.

  3. Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Sulfate-dependent anaerobic ammonium oxidation is a novel biological reaction,in which ammonium is oxidized with sulfate as the electron acceptor under anoxic conditions.Ammonium and sulfate are cosmopolitan chemical species which are an integral part of the global nitrogen and sulfur cycles.A detailed exploration of sulfate-dependent anaerobic ammonium oxidation is quite practical.In this work,a bacterial strain named ASR has been isolated from an anaerobic ammonia and sulfate removing reactor working under steady-state.On the basis of electron microscopy,physiological tests and 16S rDNA phylogenetic sequence analysis,the strain ASR is found to be related to Bacillus benzoevorans.According to the biological carbon source utilization test,the strain ASR could use many carbon sources.Its optimum pH value and temperature were 8.5 and 30 °C,respectively.The test proves that the strain ASR is able to use sulfate to oxidize ammonia anaerobically.The maximum ammonia and sulfate removal rates were 44.4% and 40.0%,respectively.The present study provided biological evidence for the confirmation and development of sulfate-dependent anaerobic ammonium oxidation and brought new insights into the global nitrogen and sulfur cycles.

  4. Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio.

    Science.gov (United States)

    Barbosa, L P; Costa, P F; Bertolino, S M; Silva, J C C; Guerra-Sá, R; Leão, V A; Teixeira, M C

    2014-08-01

    The use of sulfate-reducing bacteria (SRB) in passive treatments of acidic effluents containing heavy metals has become an attractive alternative biotechnology. Treatment efficiency may be linked with the effluent conditions (pH and metal concentration) and also to the amount and nature of the organic substrate. Variations on organic substrate and sulfate ratios clearly interfere with the biological removal of this ion by mixed cultures of SRB. This study aimed to cultivate a mixed culture of SRB using different lactate concentrations at pH 7.0 in the presence of Ni, Mn and Cu. The highest sulfate removal efficiency obtained was 98 %, at a COD/sulfate ratio of 2.0. The organic acid analyses indicated an acetate accumulation as a consequence of lactate degradation. Different concentrations of metals were added to the system at neutral pH conditions. Cell proliferation and sulfate consumption in the presence of nickel (4, 20 and 50 mg l(-1)), manganese (1.5, 10 and 25 mg l(-1)) and copper (1.5, 10 and 25 mg l(-1)) were measured. The presence of metals interfered in the sulfate biological removal however the concentration of sulfide produced was high enough to remove over 90 % of the metals in the environment. The molecular characterization of the bacterial consortium based on dsrB gene sequencing indicated the presence of Desulfovibrio desulfuricans, Desulfomonas pigra and Desulfobulbus sp. The results here presented indicate that this SRB culture may be employed for mine effluent bioremediation due to its potential for removing sulfate and metals, simultaneously.

  5. A zinc complex of heparan sulfate destabilises lysozyme and alters its conformation

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Ashley J. [Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom); Diamond Light Source Ltd., Diamond House, Didcot, Oxfordshire OX11 0DE (United Kingdom); Hussain, Rohanah [Diamond Light Source Ltd., Diamond House, Didcot, Oxfordshire OX11 0DE (United Kingdom); Cosentino, Cesare; Guerrini, Marco [Istituto di Chimica e Biochimica ' G. Ronzoni' , Via G. Colombo 81, Milano 20133 (Italy); Siligardi, Giuliano [Diamond Light Source Ltd., Diamond House, Didcot, Oxfordshire OX11 0DE (United Kingdom); Yates, Edwin A., E-mail: eayates@liv.ac.uk [Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom); Rudd, Timothy R., E-mail: trudd@liv.ac.uk [Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom); Istituto di Chimica e Biochimica ' G. Ronzoni' , Via G. Colombo 81, Milano 20133 (Italy)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Zinc-heparan sulfate complex destabilises lysozyme, a model amyloid protein. Black-Right-Pointing-Pointer Addition of zinc, without heparan sulfate, stabilises lysozyme. Black-Right-Pointing-Pointer Heparan sulfate cation complexes provide alternative protein folding routes. -- Abstract: The naturally occurring anionic cell surface polysaccharide heparan sulfate is involved in key biological activities and is implicated in amyloid formation. Following addition of Zn-heparan sulfate, hen lysozyme, a model amyloid forming protein, resembled {beta}-rich amyloid by far UV circular dichroism (increased {beta}-sheet: +25%), with a significantly reduced melting temperature (from 68 to 58 Degree-Sign C) by fluorescence shift assay. Secondary structure stability of the Zn-heparan sulfate complex with lysozyme was also distinct from that with heparan sulfate, under stronger denaturation conditions using synchrotron radiation circular dichroism. Changing the cation associated with heparan sulfate is sufficient to alter the conformation and stability of complexes formed between heparan sulfate and lysozyme, substantially reducing the stability of the protein. Complexes of heparan sulfate and cations, such as Zn, which are abundant in the brain, may provide alternative folding routes for proteins.

  6. Equilibrium oxygen isotope behavior of sulfate in marine sediments: A new paradigm

    Science.gov (United States)

    Blake, R.; Boettcher, M.; Surkov, A.; Ferdelman, T.; Jorgensen, B.

    2006-05-01

    We have determined the oxygen (18O/16O) and sulfur (34S/32S) isotope ratios of porewater sulfate to depths of over 400 mbsf in sediments from open-ocean and upwelling sites in the Eastern Equatorial Pacific ocean. Sulfate δ18O ranges from near-normal seawater values (9.5 permil) at organic-poor open-ocean sites, to approximately 30 permil at sites with higher organic matter content and higher associated microbial activity. Depth-correlative trends of δ18O, δ34S, alkalinity, methane, ammonium and the presence of sulfide, indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations as well as anaerobic oxidation of methane. δ18O ?SO4 values at low-activity sites reveal the presence of significant microbial sulfur-cycling activity despite relatively flat sulfate concentration and δ34S profiles. This activity may include contributions from several processes including: enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon microbial sulfate reduction, sulfide oxidation, and bacterial disproportionation of sulfur intermediates. Positive correlation between water and sulfate δ18O values supports sulfate-water O isotope exchange as the dominant process controlling porewater sulfate δ18O values. Results of this study indicate that coupled measurements of S and O isotope ratios of porewater sulfate are essential for interpreting microbial sulfur cycling in marine sediments.

  7. 硫酸盐还原菌及其代谢途径%Sulfate-reducing Bacteria and Their Metabolic Pathway

    Institute of Scientific and Technical Information of China (English)

    蔡靖; 郑平; 张蕾

    2009-01-01

    The biological sulfate reduction process is mediated by a group of microorganism known as sulfate-reducing bacteria (SRB) ,which includes 18 genus and over 40 species. This paper discussed the metabolic pathway of SRB ,in order to know how it works in the wastewater treatment particularly and promote it to be used in the wastewater treatment further.%硫酸盐还原菌(sulfate-reducing bacteria,简称SRB)是一类能够以硫酸盐等氧化态硫化物作为电子受体的厌氧微生物.已分离研究的SRB有18个属近40多个种.由于硫酸盐还原在环境污染与防治中的独特作用,对硫酸盐还原菌及其代谢途径的研究渐趋广泛而深入.发掘新的硫酸盐还原菌,揭示硫酸盐还原过程,将推动生物脱硫技术的研发.

  8. Brief Report: A Preference for Biological Motion Predicts a Reduction in Symptom Severity 1 Year Later in Preschoolers with Autism Spectrum Disorders

    Science.gov (United States)

    Franchini, Martina; Wood de Wilde, Hilary; Glaser, Bronwyn; Gentaz, Edouard; Eliez, Stephan; Schaer, Marie

    2016-01-01

    Recent research has consistently demonstrated reduced orienting to social stimuli in samples of young children with autism spectrum disorders (ASD). However, social orienting greatly varies between individual children on the spectrum. Better understanding this heterogeneity in social orienting may contribute to our comprehension of the mechanisms underlying autistic symptoms thereby improving our ability to intervene. Indeed, children on the autism spectrum who show higher levels of interest in social stimuli demonstrate reduced clinical symptoms and increased adaptive functioning. However, longitudinal studies examining the influence of social orienting on subsequent outcome are critically lacking. Here, we aim to explore the relationship between social interest at the age of 3 and changes in severity of autistic symptoms over the subsequent year, in 20 children with ASD and 20 age-matched typically developing (TD) children. A visual preference for social stimuli was measured using an eye-tracking task at baseline, consisting of a previously studied visual preference paradigm presenting biological and geometric motion side-by-side. The task was altered for the current study by alternating presentation side for each type of stimuli to keep visual perseveration from influencing participants’ first fixation location. Clinical data were collected both at baseline and 1 year later at follow-up. As a group, we observed reduced interest for biological motion (BIO-M) in children with ASD compared to TD children, corroborating previous findings. We also confirmed that a preference for BIO-M is associated with better adaptive functioning in preschoolers with ASD. Most importantly, our longitudinal results showed that a preference for BIO-M strongly predicted decreased severity of diagnostic symptoms. Participants who preferred social stimuli at the age of 3 showed drastic reductions in their severity level of autistic symptoms 1 year later, whereas participants who

  9. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.

    Science.gov (United States)

    Baldwin, Darren S; Mitchell, Alison

    2012-03-15

    The impact of sulfate pollution is increasingly being seen as an issue in the management of inland aquatic ecosystems. In this study we use sediment slurry experiments to explore the addition of sulfate, with or without added carbon, on the anaerobic biogeochemical cycles in a wetland sediment that previously had not been exposed to high levels of sulfate. Specifically we looked at the cycling of S (sulfate, dissolved and particulate sulfide--the latter measured as acid volatile sulfide; AVS), C (carbon dioxide, bicarbonate, methane and the short chain volatile fatty acids formate, acetate, butyrate and propionate), N (dinitrogen, ammonium, nitrate and nitrite) and redox active metals (Fe(II) and Mn(II)). Sulfate had the largest effects on the cycling of S and C. All the added S at lower loadings were converted to AVS over the course of the experiment (30 days). At the highest loading (8 mmol) less than 50% of consumed S was converted to AVS, however this is believed to be a kinetic effect. Although sulfate reduction was occurring in sediments with added sulfate, dissolved sulfide concentrations remained low throughout the study. Sulfate addition affected methanogenesis. In the absence of added carbon, addition of sulfate, even at a loading of 1 mmol, resulted in a halving of methane formation. The initial rate of formation of methane was not affected by sulfate if additional carbon was added to the sediment. However, there was evidence for anaerobic methane oxidation in those sediments with added sulfate and carbon, but not in those sediments treated only with carbon. Surprisingly, sulfate addition had little apparent impact on N dynamics; previous studies have shown that sulfide can inhibit denitrification and stimulate dissimilatory nitrate reduction to ammonia. We propose that because most of the reduced sulfur was in particulate form, levels of dissolved sulfide were too low to interfere with the N cycle.

  10. Combined elimination of organic C, sulfate and heavy metals. Final report; Kombinierte organische C-, Sulfat- und Schwermetalleliminierung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Raebiger, N.

    2002-01-11

    A new biological process for purification of highly burdened industrial effluents was developed in which aerobic, oxygen-limiting reaction conditions ensure simultaneous elimination of organic C, sulfate and heavy metals in a single process step in a compact system. The design data are presented here for the purpose of practical implementation of the process. [German] Das Ziel des Forschungsvorhabens ist die Entwicklung eines neuen biologischen Verfahrens zur Reinigung hochbelasteter Industrieabwaesser, bei dem durch die Einstellung aerober, sauerstofflimitierender Reaktionsbedingungen eine kombinierte organisch C-, Sulfat- und Schwermetalleliminierung gleichzeitig in einem Verfahrensschritt und kompakter Anlagentechnik realisiert wird. Hierbei werden die Auslegungsunterlagen fuer die praxisrelevante Umsetzung dieses Verfahrens zur Verfuegung gestellt. (orig.)

  11. 21 CFR 558.364 - Neomycin sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  12. 21 CFR 184.1307 - Ferric sulfate.

    Science.gov (United States)

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide or ferric hydroxide with sulfuric acid. (b) The ingredient must be of a...

  13. Preparation, characterization and pharmacokinetics of fluorescence labeled propylene glycol alginate sodium sulfate

    Science.gov (United States)

    Li, Pengli; Li, Chunxia; Xue, Yiting; Zhang, Yang; Liu, Hongbing; Zhao, Xia; Yu, Guangli; Guan, Huashi

    2014-08-01

    A rapid and sensitive fluorescence labeling method was developed and validated for the microanalysis of a sulfated polysaccharide drug,namely propylene glycol alginate sodium sulfate (PSS), in rat plasma. Fluorescein isothiocyanate (FITC) was selected to label PSS, and 1, 6-diaminohexane was used to link PSS and FITC in order to prepare FITC-labeled PSS (F-PSS) through a reductive amination reaction. F-PSS was identified by UV-Vis, FT-IR and 1H-NMR spectrum. The cell stability and cytotoxicity of F-PSS were tested in Madin-Darby canine kidney (MDCK) cells. The results indicated that the labeling efficiency of F-PSS was 0.522% ± 0.0248% and the absolute bioavailability was 8.39%. F-PSS was stable in MDCK cells without obvious cytotoxicity. The method was sensitive and reliable; it showed a good linearity, precision, recovery and stability. The FITC labeling method can be applied to investigating the absorption and metabolism of PSS and other polysaccharides in biological samples.

  14. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Robert D Prinz

    Full Text Available The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  15. Mobility of alkali cations in polypyrrole-dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Kupila, E.L. [Department of Chemistry, University of Turku, 20500 Turku (Finland); Kankare, J. [Department of Chemistry, University of Turku, 20500 Turku (Finland)

    1995-03-01

    Due to the immobility of the large dodecyl sulfate anion, the mobile ions in polypyrrole-dodecyl sulfate are small ions from the solution. Virgin PP-dodecyl sulfate does not contain other ionic species, but already the first reduction causes the incorporation of cations into the membrane. Using in situ AC conductimetry on a double-band platinum electrode, we show that the insertion of cations from the solution into the PP membrane proceeds as a non-conducting zone advancing from the solution interface toward the substrate. The model allows to estimate ion mobilities in the membrane giving 8.6x10{sup -7}cm{sup 2}s{sup -1}V{sup -1} for K{sup +}. (orig.)

  16. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate...

  17. Sulfate reducing bacterial community and in situ activity in mature fine tailings analyzed by real time qPCR and microsensor.

    Science.gov (United States)

    Liu, Hong; Tan, Shuying; Yu, Tong; Liu, Yang

    2016-06-01

    Sulfate reducing bacteria (SRB) play significant roles in anaerobic environments in oil sands mature fine tailings (MFTs). Hydrogen sulfide (H2S) is produced during the biological sulfate reduction process. The production of toxic H2S is one of the concerns because it may hinder the landscape remediation efficiency of oil sands tailing ponds. In present study, the in situ activity and the community structure of SRB in MFT and gypsum amended MFT in two settling columns were investigated. Combined techniques of H2S microsensor and dissimilatory sulfite reductase β-subunit (dsrB) genes-based real time quantitative polymerase chain reaction (qPCR) were applied to detect the in situ H2S and the abundance of SRB. A higher diversity of SRB and more H2S were observed in gypsum amended MFT than that in MFT, indicating a higher sulfate reduction activity in gypsum amended MFT; in addition, the activity of SRB varied as depth in both MFT and gypsum amended MFT: the deeper the more H2S produced. Long-term plans for tailings management can be assessed more wisely with the information provided in this study. PMID:27266310

  18. Characteristics of Phosphorus in Some Eastern Australian Acid Sulfate Soils

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores were collected from 11 locations along the New South Wales coast, Australia. There was an overall trend for the concentration of the HC1extractable P to increase along with increasing amounts of organic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acid sulfate soils (pH <4.5). This suggests that inorganic P in these soils probably accumulated via biological cycling and was retained by complexation with trivalent metals or their oxides and hydroxides. While there was no clear correlation between pH and the water-extractable P, the concentration of the water-extractable P tended to increase with increasing amounts of the HCl-extractable P. This disagrees with some established models which suggest that the concentration of solution P in acid soils is independent of total P and decreases with increasing acidity. The high concentration of sulfate present in acid sulfate soils appeared to affect the chemical behavior of P in these soil systems. Comparison was made between a less disturbed wetland acid sulfate soil and a more intensively disturbed sugarcane acid sulfate soil.The results show that reclamation of wetland acid sulfate soils for sugarcane production caused a significant decrease in the HCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorus following sugarcane farming. Simulation experiment shows that addition of hydrated lime had no effects on the immobilization of retained P in an acid sulfate soil sample within a pH range 3.5~4.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency to increase with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poor pH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that soluble P was not clearly pH-dependent in acid sulfate soils with pH < 4.5.

  19. Sulfate removal and sulfur transformation in constructed wetlands: The roles of filling material and plant biomass.

    Science.gov (United States)

    Chen, Yi; Wen, Yue; Zhou, Qi; Huang, Jingang; Vymazal, Jan; Kuschk, Peter

    2016-10-01

    Sulfate in effluent is a challenging issue for wastewater reuse around the world. In this study, sulfur (S) removal and transformation in five batch constructed wetlands (CWs) treating secondary effluent were investigated. The results showed that the presence of the plant cattail (Typha latifolia) had little effect on sulfate removal, while the carbon-rich litter it generated greatly improved sulfate removal, but with limited sulfide accumulation in the pore-water. After sulfate removal, most of the S was deposited with the valence states S (-II) and S (0) on the iron-rich gravel surface, and acid volatile sulfide was the main S sink in the litter-added CWs. High-throughput pyrosequencing revealed that sulfate-reducing bacteria (i.e. Desulfobacter) and sulfide-oxidizing bacteria (i.e. Thiobacillus) were dominant in the litter-added CWs, which led to a sustainable S cycle between sulfate and sulfide. Overall, this study suggests that recycling plant litter and iron-rich filling material in CWs gives an opportunity to utilize the S in the wastewater as both an electron acceptor for sulfate reduction and as an electron donor for nitrate reduction coupled with sulfide oxidation. This leads to the simultaneous removal of sulfate, nitrate, and organics without discharging toxic sulfide into the receiving water body. PMID:27423407

  20. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    Directory of Open Access Journals (Sweden)

    Hiroyasu Ogawa

    Full Text Available Chondroitin sulfate (CS is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/- mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/- chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  1. Microbial fuel cell based on electroactive sulfate-reducing biofilm

    International Nuclear Information System (INIS)

    Highlights: ► Regulation and management of electricity generation by variation of residence time. ► Design of microbial fuel cell based on electroactive biofilm on zeolite. ► Engineering solution for removing of the obtained elemental sulfur. - abstract: A two chambered laboratory scale microbial fuel cell (MFC) has been developed, based on natural sulfate-reducing bacterium consortium in electroactive biofilm on zeolite. The MFC utilizes potassium ferricyanide in the cathode chamber as an electron acceptor that derives electrons from the obtained in anode chamber H2S. The molecular oxygen is finally used as a terminal electron acceptor at cathode compartment. The generated power density was 0.68 W m−2 with current density of 3.2 A m−2 at 150 Ω electrode resistivity. The hydrogen sulfide itself is produced by microbial dissimilative sulfate reduction process by utilizing various organic substrates. Finally, elemental sulfur was identified as the predominant final oxidation product in the anode chamber. It was removed from MFC through medium circulation and gathering in an external tank. This report reveals dependence relationship between the progress of general electrochemical parameters and bacterial sulfate-reduction rate. The presented MFC design can be used for simultaneous sulfate purification of mining drainage wastewater and generation of renewable electricity

  2. Sulfur Isotopic Inferences of the Controls on Porewater Sulfate Profiles in the Northern Cascadia Margin Gas Hydrate System

    Science.gov (United States)

    Bui, T.; Pohlman, J.; Lapham, L.; Riedel, M.; Wing, B. A.

    2010-12-01

    The flux of methane from gas hydrate bearing seeps in the marine environment is partially mitigated by the anaerobic oxidation of methane coupled with sulfate reduction. Sedimentary porewater sulfate profiles above gas hydrate deposits are frequently used to estimate the efficacy of this important microbial biofilter. However, to differentiate how other processes (e.g., sulfate reduction coupled to organic matter oxidation, sulfide re-oxidation and sulfur disproportionation) affect sulfate profiles, a complete accounting of the sulfur cycle is necessary. To this end, we have obtained the first ever measurements of minor sulfur isotopic ratios (33S/32S, 36S/32S), in conjunction with the more commonly measured 34S -32S ratio, from porewater sulfate above a gas hydrate-bearing seep. Characteristic minor isotopic fractionations, even when major isotopic fractionations are similar in magnitude, help to quantify the contributions of different microbial processes to the overall sulfur cycling in the system. Down to sediment depths of 1.5 to 4 meters, the δ34S values of porewater sulfate generally increased in association with a decrease in sulfate concentrations as would be expected for active sulfate reduction. Of greater interest, covariance between the δ34S values and measured minor isotopic fractionation suggests sulfide reoxidation and sulfur disproportionation are important components of the local sulfur cycle. We hypothesize that sulfide reoxidation is coupled to redox processes involving Fe(III) and Mn(IV) reduction and that the reoxidized forms of sulfur are available for additional methane oxidation. Recognizing that sulfate reduction is only one of several microbial processes controlling sulfate profiles challenges current paradigms for interpreting sulfate profiles and may alter our understanding of methane oxidation at gas hydrate-bearing seeps.

  3. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  4. Chromium reduction in Pseudomonas putida.

    OpenAIRE

    Ishibashi, Y.; Cervantes, C; Silver, S

    1990-01-01

    Reduction of hexavalent chromium (chromate) to less-toxic trivalent chromium was studied by using cell suspensions and cell-free supernatant fluids from Pseudomonas putida PRS2000. Chromate reductase activity was associated with soluble protein and not with the membrane fraction. The crude enzyme activity was heat labile and showed a Km of 40 microM CrO4(2-). Neither sulfate nor nitrate affected chromate reduction either in vitro or with intact cells.

  5. Structum (chondroitin sulfate in treatment of osteoarthritis

    Directory of Open Access Journals (Sweden)

    O J Varga

    2003-01-01

    Full Text Available Objective. To assess Structum (chondroitin sulfate efficacy in treatment of osteoarthritis in Republic of Karelia. Methods. 34 pts with osteoarthritis (mean disease duration 6,44±0,67 years were included. Functional Leken score (FLS, pain at rest and at walk on visual analog scale (VAS, pts nonsteroidal anti-inflammatory drugs (NSAID requirement (diclofenac daily requirement in mg, percent of pts refused NSAID treatment, achievement of clinically significant improvement (40% decrease of FLS and/or 50% decrease of NSAID requirement were regarded as variables for the evaluation of therapy efficacy. Results. Structum administration in pts with osteoarthritis provided reduction of FLS, pain at rest and at walk, NSAID requirement and in some cases allowed to withdraw of NSAID completely. Structum has good safety and is effective in doctor and pts opinion. Conclusion. Structum is an effective drug for treatment of osteoarthritis.

  6. Studies on Sulfation of Lycium barbarum Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    YI,Jian-Ping; YAN,Hong; ZHONG,Ru-Gang

    2004-01-01

    @@ Polysaccharides can anti-virus, such as human immunodeficiency virus (HIV-1),[1] herpes simplex virus (HSV-1,HSV-2) and cytomegalovirus. Some of them are sulfates, e.g. dextran sulfate, heparin, sulfonation of chitosan and sulfated derivatives of Lentinan. Our results showed that sulfated derivatives of Lycium barbarum polysaccharides (LBP)have anti-HIV activity. Because the anti-HIV activity of LBP was deeply dependent on the molecular weight, the sulfation pattern and glycosidic branches besides degree of sulfation (DS), so we emphasized our work on the factors of DS.

  7. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  8. Biological sulfuric acid transformation: Reactor design and process optimization.

    Science.gov (United States)

    Stucki, G; Hanselmann, K W; Hürzeler, R A

    1993-02-01

    As an alternative to the current disposal technologies for waste sulfuric acid, a new combination of recycling processes was developed. The strong acid (H(2)SO(4)) is biologically converted with the weak acid (CH(3)COOH) into two volatile weak acids (H(2)S, H(2)CO(3)) by sulfate-reducing bacteria. The transformation is possible without prior neutralization of the sulfuric acid. The microbially mediated transformation can be followed by physiochemical processes for the further conversion of the H(2)S.The reduction of sulfate to H(2)S is carried out under carbon-limited conditions at pH 7.5 to 8.5. A fixed-bed biofilm column reactor is used in conjunction with a separate gas-stripping column which was installed in the recycle stream. Sulfate, total sulfide, and the carbon substrate (in most cases acetate) were determined quantitatively. H(2)S and CO(2) are continually removed by stripping with N(2). Optimal removal is achieved under pH conditions which are adjusted to values below the pK(a)-values of the acids. The H(2)S concentration in the stripped gas was 2% to 8% (v/v) if H(2)SO(4) and CH(3)COOH are fed to the recycle stream just before the stripping column.Microbiol conversion rates of 65 g of sulfate reduced per liter of bioreactor volume per day are achieved and bacterial conversion efficiencies for sulfate of more than 95% can be maintained if the concentration of undissociated H(2)S is kept below 40 to 50 mg/L. Porous glass spheres, lava beads, and polyurethane pellets are useful matrices for the attachment of the bacterial biomass. Theoretical aspects and the dependence of the overall conversion performance on selected process parameters are illustrated in the Appendix to this article. PMID:18609554

  9. Catalogue of methods of calculation, interpolation, smoothing, and reduction for the physical, chemical, and biological parameters of deep hydrology (CATMETH) (NODC Accession 7700442)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The document presents the methods, formulas and citations used by the BNDO to process physical, chemical, and biological data for deep hydrology including...

  10. A sulfate conundrum: Dissolved sulfates of deep-saline brines and carbonate-associated sulfates

    Science.gov (United States)

    Labotka, Dana M.; Panno, Samuel V.; Locke, Randall A.

    2016-10-01

    Sulfates in deeply circulating brines and carbonate-associated sulfates (CAS) within sedimentary units of the Cambrian strata in the Illinois Basin record a complex history. Dissolved sulfate within the Mt. Simon Sandstone brines exhibits average δ34SSO4 values of 35.4‰ and δ18OSO4 values of 14.6‰ and appears to be related to Cambrian seawater sulfate, either original seawater or sourced from evaporite deposits such as those in the Michigan Basin. Theoretical and empirical relationships based on stable oxygen isotope fractionation suggest that sulfate within the lower depths of the Mt. Simon brines has experienced a long period of isolation, possibly several tens of millions of years. Comparison with brines from other stratigraphic units shows the Mt. Simon brines are geochemically unique. Dissolved sulfate from brines within the Ironton-Galesville Sandstone averages 22.7‰ for δ34SSO4 values and 13.0‰ for δ18OSO4 values. The Ironton-Galesville brine has mixed with younger groundwater, possibly of Ordovician to Devonian age and younger. The Eau Claire Formation lies between the Mt. Simon and Ironton-Galesville Sandstones. The carbonate units of the Eau Claire and stratigraphically equivalent Bonneterre Formation contain CAS that appears isotopically related to the Late Pennsylvanian-Early Permian Mississippi Valley-type ore pulses that deposited large sulfide minerals in the Viburnum Trend/Old Lead Belt ore districts. The δ34SCAS values range from 21.3‰ to 9.3‰, and δ18OCAS values range from +1.4‰ to -2.6‰ and show a strong covariance (R2 = 0.94). The largely wholesale replacement of Cambrian seawater sulfate signatures in these dolomites does not appear to have affected the sulfate signatures in the Mt. Simon brines even though these sulfide deposits are found in the stratigraphically equivalent Lamotte Sandstone to the southwest. On the basis of this and previous studies, greater fluid densities of the Mt. Simon brines may have prevented the

  11. Sulfation of thyroid hormone by estrogen sulfotransferase

    NARCIS (Netherlands)

    M.H.A. Kester (Monique); T.J. Visser (Ton); C.H. van Dijk (Caren); D. Tibboel (Dick); A.M. Hood (Margaret); N.J. Rose; W. Meinl; U. Pabel; H. Glatt; C.N. Falany; M.W. Coughtrie

    1999-01-01

    textabstractSulfation is one of the pathways by which thyroid hormone is inactivated. Iodothyronine sulfate concentrations are very high in human fetal blood and amniotic fluid, suggesting important production of these conjugates in utero. Human estrogen sulfotransferas

  12. Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles.

    Science.gov (United States)

    Kumar, Naresh; Omoregie, Enoma O; Rose, Jerome; Masion, Armand; Lloyd, Jonathan R; Diels, Ludo; Bastiaens, Leen

    2014-03-15

    Batch microcosms were setup to determine the impact of different sized zero valent iron (Fe(0)) particles on microbial sulfate reduction during the in situ bio-precipitation of metals. The microcosms were constructed with aquifer sediment and groundwater from a low pH (3.1), heavy-metal contaminated aquifer. Nano (nFe(0)), micro (mFe(0)) and granular (gFe(0)) sized Fe(0) particles were added to separate microcosms. Additionally, selected microcosms were also amended with glycerol as a C-source for sulfate-reducing bacteria. In addition to metal removal, Fe(0) in microcosms also raised the pH from 3.1 to 6.5, and decreased the oxidation redox potential from initial values of 249 to -226 mV, providing more favorable conditions for microbial sulfate reduction. mFe(0) and gFe(0) in combination with glycerol were found to enhance microbial sulfate reduction. However, no sulfate reduction occurred in the controls without Fe(0) or in the microcosm amended with nFe(0). A separate dose test confirmed the inhibition for sulfate reduction in presence of nFe(0). Hydrogen produced by Fe(0) was not capable of supporting microbial sulfate reduction as a lone electron donor in this study. Microbial analysis revealed that the addition of Fe(0) and glycerol shifted the microbial community towards Desulfosporosinus sp. from a population initially dominated by low pH and metal-resisting Acidithiobacillus ferrooxidans.

  13. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron.

    Science.gov (United States)

    Bai, He; Kang, Yong; Quan, Hongen; Han, Yang; Sun, Jiao; Feng, Ying

    2013-11-15

    In order to treat copper-containing wastewater effectively using sulfate reducing bacteria (SRB), iron (Fe(0)) was added to enhance the activity of SRB. The SRB system and the SRB + Fe(0) system were operated under continuous operation. The sulfate reduction efficiency of the SRB + Fe(0) system was twice as much as that of the SRB system with the sulfate loading rate at 125  mg L(-1) h(-1). The effect of COD/SO4(2-) on sulfate reduction indicates an enhanced activity of SRB by adding Fe(0). 99% of total sulfate was deducted in both systems at pH 4.0-7.0, and temperature slightly influenced the removal of sulfate in the SRB + Fe(0) system. In the copper-containing wastewater treatment, the SRB + Fe(0) system shows a better performance since sulfate removal in this system was higher than the SRB system, and the removal ratio of Cu(2+) was held above 95% in SRB + Fe(0) system at all influent Cu(2+) concentrations.

  14. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments

    DEFF Research Database (Denmark)

    Robador, Alberto; Brüchert, Volker; Jørgensen, Bo Barker

    2009-01-01

    composition of sulfate-reducing bacteria were studied in the permanently cold sediment of north-western Svalbard (Arctic Ocean) and compared with a temperate habitat with seasonally varying temperature (German Bight, North Sea). Short-term 35S-sulfate tracer incubations in a temperature-gradient block...... (between -3.5°C and +40°C) were used to assess variations in sulfate reduction rates during the course of the experiment. Warming of arctic sediment resulted in a gradual increase of the temperature optima (Topt) for sulfate reduction suggesting a positive selection of psychrotolerant/mesophilic sulfate-reducing...... bacteria (SRB). However, high rates at in situ temperatures compared with maximum rates showed the predominance of psychrophilic SRB even at high incubation temperatures. Changing apparent activation energies (Ea) showed that increasing temperatures had an initial negative impact on sulfate reduction...

  15. Sulfate-reducing prokaryotes in river floodplains

    NARCIS (Netherlands)

    Miletto, M.

    2007-01-01

    This thesis constitutes a pioneer attempt at elucidating the ecology of sulfate-reducing prokaryotes in river floodplains. These are non-typical sulfate-reducing environmental settings, given the generally low sulfate concentration that characterize freshwater habitats, and river flow regulation tha

  16. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  17. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  18. 21 CFR 582.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  19. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  20. 21 CFR 186.1797 - Sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  1. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to...

  2. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  3. 21 CFR 524.960 - Flumethasone, neomycin sulfate, and polymyxin B sulfate ophthalmic solutions.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flumethasone, neomycin sulfate, and polymyxin B... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.960 Flumethasone, neomycin sulfate, and polymyxin B sulfate... flumethasone, 5.0 milligrams neomycin sulfate (3.5 milligrams neomycin base), and 10,000 units of polymyxin...

  4. Sulfated levan from Halomonas smyrnensis as a bioactive, heparin-mimetic glycan for cardiac tissue engineering applications.

    Science.gov (United States)

    Erginer, Merve; Akcay, Ayca; Coskunkan, Binnaz; Morova, Tunc; Rende, Deniz; Bucak, Seyda; Baysal, Nihat; Ozisik, Rahmi; Eroglu, Mehmet S; Agirbasli, Mehmet; Toksoy Oner, Ebru

    2016-09-20

    Chemical derivatives of levan from Halomonas smyrnensis AAD6(T) with low, medium and high levels of sulfation were synthesized and characterized by FTIR and 2D-NMR. Sulfated levan samples were found to exhibit anticoagulation activity via the intrinsic pathway like heparin in a dose-dependent manner. Exceptionally high heparin equivalent activity of levan sulfate was shown to proceed via thrombin inhibition where decreased Factor Xa activity with increasing concentration was observed in antithrombin tests and above a certain concentration, levan sulfate showed a better inhibitor activity than heparin. In vitro experimental results were then verified in silico by docking studies using equilibrium structures obtained by molecular dynamic simulations and results suggested a sulfation dependent binding mechanism. With its high biocompatibility and heparin mimetic activity, levan sulfate can be considered as a suitable functional biomaterial to design biologically active, functionalized, thin films and engineered smart scaffolds for cardiac tissue engineering applications. PMID:27261753

  5. High-Throughput LC-MS/MS Method for Direct Quantification of Glucuronidated, Sulfated and Free Enterolactone in Human Plasma

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Kyrø, Cecilie; Olsen, Anja;

    2016-01-01

    Sulfation and glucuronidation constitute a major pathway in humans and may play an important role in biological activity of metabolites including the enterolignan, enterolactone. Because the aromatic structure of enterolactone has similarities to steroid metabolites, it was hypothesized that ente......Sulfation and glucuronidation constitute a major pathway in humans and may play an important role in biological activity of metabolites including the enterolignan, enterolactone. Because the aromatic structure of enterolactone has similarities to steroid metabolites, it was hypothesized...

  6. Elastic chitosan/chondroitin sulfate multilayer membranes.

    Science.gov (United States)

    Sousa, M P; Cleymand, F; Mano, J F

    2016-01-01

    Freestanding multilayered films were obtained using layer-by-layer (LbL) technology from the assembly of natural polyelectrolytes, namely chitosan (CHT) and chondroitin sulfate (CS). The morphology and the transparency of the membranes were evaluated. The influence of genipin (1 and 2 mg ml(-1)), a naturally-derived crosslinker agent, was also investigated in the control of the mechanical properties of the CHT/CS membranes. The water uptake ability can be tailored by changing the crosslinker concentration that also controls the Young's modulus and ultimate tensile strength. The maximum extension tends to decrease upon crosslinking with the highest genipin concentration, compromising the elastic properties of CHT/CS membranes: nevertheless, when using a lower genipin concentration, the ultimate tensile stress is similar to the non-crosslinked one, but exhibits a significantly higher modulus. Moreover, the crosslinked multilayer membranes exhibited shape memory properties, through a simple hydration action. The in vitro biological assays showed better L929 cell adhesion and proliferation when using the crosslinked membranes and confirmed the non-cytotoxicity of the developed CHT/CS membranes. Within this research work, we were able to construct freestanding biomimetic multilayer structures with tailored swelling, mechanical and biological properties that could find applicability in a variety of biomedical applications. PMID:27200488

  7. Bis(triethanolaminenickel(II sulfate

    Directory of Open Access Journals (Sweden)

    Hong-Xu Guo

    2009-07-01

    Full Text Available The title compound, [Ni(C6H15NO32]SO4, contains two triethanolamine (TEA ligands bound to an Ni2+ metal centre, which lies on a crystallographic inversion centre, and one sulfate anion located on a twofold rotation axis such that the asymmetric unit contains one-half molecule of the cation and of the anion. The triethanolamine ligands coordinate via each axial N atom and two of the three O atoms, while the third arm of the ligand has the hydroxyl group pointing away from the metal centre. The sulfate anions are hydrogen bonded to the coordinated hydroxyl groups and also to the free arm, forming a two-dimensional supramolecular hydrogen-bonded network expanding parallel to (010.

  8. Tris(ethylenediaminecobalt(II sulfate

    Directory of Open Access Journals (Sweden)

    Bunlawee Yotnoi

    2010-06-01

    Full Text Available The structure of the title compound, [CoII(C2H8N23]SO4, the cobalt example of [M(C2H8N23]SO4, is reported. The Co and S atoms are located at the 2d and 2c Wyckoff sites (point symmetry 32, respectively. The Co atom is coordinated by six N atoms of three chelating ethylenediamine molecules generated from half of the ethylenediamine molecule in the asymmetric unit. The O atoms of the sulfate anion are disordered mostly over two crystallographic sites. The third disorder site of O (site symmetry 3 has a site occupancy approaching zero. The H atoms of the ethylenediamine molecules interact with the sulfate anions via intermolecular N—H...O hydrogen-bonding interactions.

  9. Sulfates on Mars: Indicators of Aqueous Processes

    Science.gov (United States)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  10. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    -circuited preparations resulted in a significant stimulation of the passive Cl- and SO2(-4) permeabilities. 6. It is suggested that SO2(-4) and Cl- ions are transported along the same pathway of the m.r. cells. Depending on the transport mode of the apical Cl- transport system, electro-diffusion, active transport......1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...

  11. Biological macroscopic idea and the technique criterion of the fracture reduction in Chinese Mongolian traditional osteopathy%中国蒙医整骨术骨折复位宏观理念及其手法准则

    Institute of Scientific and Technical Information of China (English)

    照那木拉; 王梅; 肖吉日木图; 李学恩

    2012-01-01

    This article study the principles and methods of evidence-based medicine, modern physiological psychology, and biomechanics were used in this study to explore the biological macrofeature and the technique criterion of the fracture immobilization, based on the view of nature and life that man is an integral part of nature (including a unity of body and mind) in Chinese Mongolian traditional osteopathy. Chinese Mongolian traditional osteopathy implies the biological macroscopic idea of the reduction of fracture, such as a man is an integral part of nature (including a unity of body and mind), and the technique criterion of 'strength to strength' and 'the harmonization between isotonic and isometric exercise'. The biological macroscopic idea and the technique criterion thereof that is implied in the reduction of fracture in Chinese Mongolian traditional osteopathy is not only the cause of its inheritance up to now, but also one of the development directions of the reduction of fracture in the world today.%文章基于“天人合一”(含“身心合一”)生命自然观,以循证医学和现代生理心理、生物力学原理及方法探究中国蒙医整骨术骨折复位宏观理念及其手法准则.中国蒙医整骨术蕴含的骨折复位“天人合一”(含“身心合一”)宏观理念及其“以力对力”与“动静合一”手法准则,是它传继与沿用至今的根本立足点,更是当今骨折复位理念、方法的一个发展方向.

  12. Pedicle screw reduction and fixation combined with calcium sulfate cement vertebroplasty in the treatment of thoracolumbar fractures%椎弓根钉复位固定结合注射型硫酸钙椎体成形术治疗胸腰椎骨折

    Institute of Scientific and Technical Information of China (English)

    魏力今; 周业金; 刘艺明; 潘良春; 李春; 何高

    2011-01-01

    目的 总结椎弓根钉复位固定结合注射型硫酸钙(CSC) 椎体成形术治疗胸腰椎骨折的方法与疗效.方法 对23 例(25椎)胸腰椎骨折采用切开复位椎弓根钉固定,用特定注射器经伤椎椎弓根穿刺注入CSC进行椎体成形术治疗,影像学评估术前、术后及取钉12个月后矢状位指数(SI)及椎体前、后缘高度压缩率变化.结果 平均每个椎体注入CSC 5.34 ml,6例术中发生椎旁渗漏,无椎管内渗漏,术后患者神经功能Frankel分级较术前提高1~2级(P<0.05).术后8~12周影像学结果 提示,硫酸钙在椎体内完全消失,被正常骨组织吸收.术后及取钉12个月后SI角及椎体前、后缘高度压缩率均较术前有明显改善(P<0.01),术后至取钉12个月后椎体前缘无明显丢失,但椎体后缘有少量丢失(P<0.05).本组无椎弓根钉失败病例.结论 椎弓根钉复位固定结合CSC椎体成形术治疗胸腰椎骨折,能使复位后的伤椎恢复其完整形态及椎体强度,提高胸腰椎骨折的临床疗效,其方法简便、安全,近期疗效满意.%Objective To investigate the method and effect of pedicle screw reduction and fixation combined with calcium sulfate cement ( CSC ) vertebroplasty in the treatment of thoracolumbar fractures. Methods 23 cases ( 25 vertebrae ) with thoracolumbar fractures were treated with pedicle screw sagittal index( SI ) angle reduction and fixation combined with CSC vertebroplasty. According to imaging, we evaluated the change SI angle and compression ratio of vertebral body at the time of preoperation, postoperation and 12 months later. Results Each vertebra was injected with 5. 34 ml CSC on average. 6 cases got paravertebral leakage. No vertebral canal leakage was found.Frankel grading of neural function was improved. CSC disappeared in 8 ~12 weeks and substituted by bone. In the postoperative and 12 months films, the SI angle, vertebral height were improved ( P <0. 01 ). The anterior height did not

  13. Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. (II.) Seven compounds containing 2 or 3 sulfate residues.

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Waard, P. de; Harada, T.; Sugahara, K.

    1992-01-01

    Shark cartilage proteoglycans bear predominantly chondroitin 6-sulfate. After exhaustive protease digestion, reductive beta-elimination and subsequent chondroitinase ABC digestion, 13 hexasaccharide alditols were obtained from the carbohydrate-protein linkage region and six of them contain 0 or 1 su

  14. Distribution variation of a metabolic uncoupler, 2,6-dichlorophenol (2,6-DCP) in long-term sludge culture and their effects on sludge reduction and biological inhibition.

    Science.gov (United States)

    Tian, Yu; Zhang, Jun; Wu, Di; Li, Zhipeng; Cui, Yanni

    2013-01-01

    Distribution variation of a metabolic uncoupler, 2,6-dichlorophenol (2,6-DCP), in long-term sludge culture was studied, and the effects on sludge reduction and biological inhibition of this chemical during the 90-day operation were established. The extracellular polymeric substance (EPS) matrix functioned as a protective barrier for the bacteria inside sludge flocs to 2,6-DCP, resulting in the transfer of 2,6-DCP from the liquid phase to the activated sludge fraction. Significant sludge reduction (about 40%) was observed after the addition of 2,6-DCP in the first 40 days, while the ineffective function of 2,6-DCP in sludge reduction (days 70-90) might be correlated to the EPS protection mechanism. The inhibitory effect of 2,6-DCP on the COD removal was extremely lower than on the nitrification performance due to the fact that 2,6-DCP was much more toxic to autotrophic microorganisms than heterotrophic microorganisms. Moreover, both of them recovered to a higher level again with the transfer potential of 2,6-DCP to sludge. Thus, the application of metabolic uncoupler for excess sludge reduction should be cautious. PMID:23123050

  15. Distribution variation of a metabolic uncoupler, 2,6-dichlorophenol (2,6-DCP) in long-term sludge culture and their effects on sludge reduction and biological inhibition.

    Science.gov (United States)

    Tian, Yu; Zhang, Jun; Wu, Di; Li, Zhipeng; Cui, Yanni

    2013-01-01

    Distribution variation of a metabolic uncoupler, 2,6-dichlorophenol (2,6-DCP), in long-term sludge culture was studied, and the effects on sludge reduction and biological inhibition of this chemical during the 90-day operation were established. The extracellular polymeric substance (EPS) matrix functioned as a protective barrier for the bacteria inside sludge flocs to 2,6-DCP, resulting in the transfer of 2,6-DCP from the liquid phase to the activated sludge fraction. Significant sludge reduction (about 40%) was observed after the addition of 2,6-DCP in the first 40 days, while the ineffective function of 2,6-DCP in sludge reduction (days 70-90) might be correlated to the EPS protection mechanism. The inhibitory effect of 2,6-DCP on the COD removal was extremely lower than on the nitrification performance due to the fact that 2,6-DCP was much more toxic to autotrophic microorganisms than heterotrophic microorganisms. Moreover, both of them recovered to a higher level again with the transfer potential of 2,6-DCP to sludge. Thus, the application of metabolic uncoupler for excess sludge reduction should be cautious.

  16. Evaluation of toxicity reduction, mineralization, and treatability of phenolic wastewater treated with combined system of catalytic ozonation process / biological reactor (SBR)

    OpenAIRE

    Y Dadban Shahamat; M. Farzadkia; S Nasseri; A.H Mahvi; Gholami, M.; A Esrafily

    2016-01-01

    Background and Objectives: Phenol is one of the industrial pollutants in wastewaters, which due to its toxicity for biological systems various pretreatment processes have been used for its detoxification. In this study, the combination of catalytic ozonation process (COP) and sequencing batch reactor (SBR) were used for detoxification of these types of wastewaters. Materials and Methodology: In this study, the effect of COP on phenol degradation, COD removal, and detoxification of wastewa...

  17. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    DEFF Research Database (Denmark)

    Badin, Alice; Broholm, Mette Martina; Jacobsen, Carsten S.;

    2016-01-01

    reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined...... documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE...... was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C...

  18. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  19. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers

    Directory of Open Access Journals (Sweden)

    Durnford Dion G

    2008-02-01

    Full Text Available Abstract Background The sulfate assimilation pathway is present in photosynthetic organisms, fungi, and many bacteria, providing reduced sulfur for the synthesis of cysteine and methionine and a range of other metabolites. In photosynthetic eukaryotes sulfate is reduced in the plastids whereas in aplastidic eukaryotes the pathway is cytosolic. The only known exception is Euglena gracilis, where the pathway is localized in mitochondria. To obtain an insight into the evolution of the sulfate assimilation pathway in eukaryotes and relationships of the differently compartmentalized isoforms we determined the locations of the pathway in lineages for which this was unknown and performed detailed phylogenetic analyses of three enzymes involved in sulfate reduction: ATP sulfurylase (ATPS, adenosine 5'-phosphosulfate reductase (APR and sulfite reductase (SiR. Results The inheritance of ATPS, APR and the related 3'-phosphoadenosine 5'-phosphosulfate reductase (PAPR are remarkable, with multiple origins in the lineages that comprise the opisthokonts, different isoforms in chlorophytes and streptophytes, gene fusions with other enzymes of the pathway, evidence a eukaryote to prokaryote lateral gene transfer, changes in substrate specificity and two reversals of cellular location of host- and endosymbiont-originating enzymes. We also found that the ATPS and APR active in the mitochondria of Euglena were inherited from its secondary, green algal plastid. Conclusion Our results reveal a complex history for the enzymes of the sulfate assimilation pathway. Whilst they shed light on the origin of some characterised novelties, such as a recently described novel isoform of APR from Bryophytes and the origin of the pathway active in the mitochondria of Euglenids, the many distinct and novel isoforms identified here represent an excellent resource for detailed biochemical studies of the enzyme structure/function relationships.

  20. Sulfur Isotope Systematics and the Link Between Fluctuating Sulfate Levels and P Recycling in a Low Sulfate, Permanently Anoxic Lake (Lake McCarrons, MN): Implications for the Precambrian Rise of Oxygen

    Science.gov (United States)

    Gomes, M. L.; Hurtgen, M. T.

    2009-12-01

    Seawater sulfate concentrations have been used to track the rise of oxygen in the Precambrian ocean-atmosphere system because the primary mode of sulfate delivery to the ocean is the oxidative weathering of sulfides on land. Ancient seawater sulfate concentrations have been inferred from the extent of sulfur (S) isotope fractionation incurred during bacterial sulfate reduction (BSR) where organisms preferentially utilize 32S (over 34S) in the process of reducing of sulfate to sulfide. Within this context, increased variability in δ34Spyrite values in Proterozoic (~2.3 Ga) sediments—along with a corresponding increase in the isotopic difference between sulfate and pyrite (Δ34S)—has been attributed to an increase in seawater sulfate concentrations (from 1 mM) and inferentially Earth-surface oxygen levels. However, most S isotope studies have been calibrated using modern marine sediments that contain sulfate-reducing bacteria that are adapted to the high concentration of sulfate in the modern ocean (~28mM). In order to better understand S isotope systematics within a low sulfate system and to improve our interpretive construct for S isotope results generated from ancient strata, we explore the magnitude of S isotope fractionations associated with microbial activity in the water column and sediments of a low sulfate (isotope difference between surface water sulfate and bottom water sulfide is ~5‰ (Δ34S) while in situ S isotope fractionations associated with BSR at the sediment-water interface approach 35‰; (3) sulfate reduction rates in the upper 3 cm of organic carbon rich sediment are ~0.1 µM cm-3 d-1, an order of magnitude lower than those recorded under higher (modern marine) sulfate concentrations; and (4) sulfate concentrations influence the efficiency of P recycling (as determined via bag incubation experiments). Here, we suggest that an increase in sulfate levels at ~2.3 Ga, as indicated by larger Δ34S values recorded in strata of this age

  1. 世界动物卫生组织降低动物疫病生物威胁行动概略%A Brief on OIE Actions on Animal Disease Biological Threat Reduction

    Institute of Scientific and Technical Information of China (English)

    庞素芬; 丁家波; 颜起斌

    2015-01-01

    由于动物疫病会对公共卫生、经济和社会稳定及贸易产生严重影响,病原也容易被获取,因此动物疫病被认为是生物威胁。OIE通过降低生物威胁策略和相应行动,不断强化全球的生物安全,使全球免受自然发生的、蓄意行为或事故等非自然因素造成的传染病威胁。OIE在该方面的行动主要是加强合作和强化卫生体系统一行动,包括制定和实施动物卫生国际标准,进行动物疫病监测、应对及能力建设和教育,进行所有生物威胁的预防、监测和应对。%As animal diseases have impact on public health,animal health,and economics,and animal pathogens are easy to acquire,so animal diseases are considered as biological threats. By Biological Threat Reduction Strategy and some related actions,OIE strengthens biological security worldwide and makes the world free from all biological threats whether they are animal pathogens from natural or deliberate,accidental events. OIE will focus on building a consensus for actions and enhancing cooperation. The actions include international standard setting and implementation,surveil-lance and response,capacity building and education,to strengthen the ability of health systems to prevent,detect and respond to all biological threats.

  2. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to Heparan Sulfate

    Science.gov (United States)

    Pradines, Joël R.; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan

    2016-04-01

    Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements.

  3. Comparison of normal and asthmatic subjects' responses to sulfate pollutant aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Utell, M.J.; Morrow, P.E.; Hyde, R.W.

    1980-01-01

    Epidemiological studies support an association between elevated levels of sulfates and acute respiratory disease. To determine if these pollutants produce airway hyperreactivity, 16 normal and 17 asthmatic subjects inhaled a control NaCl aerosol and the following sulfates: ammonium sulfate, sodium bisulfate, ammonium bisulfate, and sulfuric acid. A Lovelace generator produced particles with an average MMAD of approx. 1.0 ..mu..m (sigma/sub g/ approx. = 2.0) and concentrations of 0.1 and 1.0 mg/m/sup 3/. By double-blind randomization, all subjects breathed these aerosols for a 16-minute period. To determine if sulfate inhalation caused increased reactivity to a known bronchoconstrictor, all subjects inhaled carbachol following each 16-minute exposure. Before, during, and after exposure, pulmonary function studies were performed. When compared to NaCl, sulfate (1 mg/m/sup 3/) produced significant reductions in airway conductance and flow rates in asthmatics. The two most sensitive asthmatics demonstrated changes even at 0.1 mg/m/sup 3/ sulfate. To a far more significant degree, the bronchoconstrictor action of carbachol was potentiated by sulfates more or less in relation to their acidity in normals and asthmatics.

  4. Quantification and control of restrictive ecological factors in acidogenic de-sulfate bioreactor

    Institute of Scientific and Technical Information of China (English)

    王爱杰; 任南琪

    2002-01-01

    As an artificial microbial ecosystem, acidogenic de-sulfate bioreactor has high efficiency of sulfate removal. The restrictive ecological factors, including causing ecological factors, such as COD/SO42- ratio and sulfate loading rate (Ns), and following ecological factors, such as pH value, oxidation reduction potential (ORP) and alkalinity (ALK) have significant effect on the ability and stability of acidogenic de-sulfate bio-reactor. Continuous flow and batch test were carried out to investigate the quantification and control of COD/SO42- ratio, Ns, pH value, ORP and ALK in acidogenic de-sulfate bioreactor supplied with molasses wastewater as sole organic carbon source and sodium sulfate as electron donor. It was demonstrated that In order to maintain high sulfate removal rate (SRR) of 80% to 90%, the restrictive factors should meet all the requirement as follows: kCOD/ SO42- ratio≥2.0, Ns≤7.5 kg (m3·d)-1,pH=5.7~6.2,ORP=-320~-420 mV and ALK=1 500~2 000 mg/L.

  5. Evaluating Deterioration of Concrete by Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfate attack was used to evaluate the deterioration degree of concrete damaged by sulfate. The relationship between the resistance of concrete to sulfate attack and its permeability/porosity were analyzed as well as its responding mechanism. Results show that the depth of sulfate crystal attack from surface to inner of concrete can be reduced by decreasing w/c and addition of combining fly ash with silica fume. The variation of relative elastic modulus ratio and relative flexural strength ratio of various specimens before and after being subjected to sulfate attack was compared.

  6. A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid.

    Science.gov (United States)

    Chopin, Nathalie; Sinquin, Corinne; Ratiskol, Jacqueline; Zykwinska, Agata; Weiss, Pierre; Cérantola, Stéphane; Le Bideau, Jean; Colliec-Jouault, Sylvia

    2015-01-01

    GY785 is an exopolysaccharide produced by a mesophilic bacterial strain Alteromonas infernus discovered in the deep-sea hydrothermal vents. GY785 highly sulfated derivative (GY785 DRS) was previously demonstrated to be a promising molecule driving the efficient mesenchymal stem cell chondrogenesis for cartilage repair. This glycosaminoglycan- (GAG-) like compound was modified in a classical solvent (N,N'-dimethylformamide). However, the use of classical solvents limits the polysaccharide solubility and causes the backbone degradation. In the present study, a one-step efficient sulfation process devoid of side effects (e.g., polysaccharide depolymerization and/or degradation) was developed to produce GAG-like derivatives. The sulfation of GY785 derivative (GY785 DR) was carried out using ionic liquid as a reaction medium. The successful sulfation of this anionic and highly branched heteropolysaccharide performed in ionic liquid would facilitate the production of new molecules of high specificity for biological targets such as tissue engineering or regenerative medicine.

  7. Stabilization of human prostatic acid phosphatase by coupling with chondroitin sulfate.

    Science.gov (United States)

    Luchter-Wasylewska, E; Dulińska, J; Ostrowski, W S; Torchilin, V P; Trubetskoy, V S

    1991-02-01

    Human prostatic acid phosphatase (PAP) (EC 3.1.3.2) was covalently linked to chondroitin sulfate A from whale cartilage. In order to bind the protein amino groups with the preactivated carboxyl groups of chondroitin sulfate, 1-ethyl-3-(3'-dimethylaminepropyl)carbodiimide and N-hydroxysulfosuccinimide were used as coupling agents. The product was soluble and enzymatically active. The activity was on average 25% higher than that of the free enzyme. The product was heterogeneous in respect to charge and Mr (50-1500) kDa, as determined by chromatography on Sephacryl S 300 and polyacrylamide gel electrophoresis. The resulting polymers contained covalently bound chondroitin sulfate, as shown by the biotin-avidin test. The modified enzyme is more resistant against various denaturing agents, e.g., urea, ethanol, and heat. Thus covalent modification of PAP by cross-linking to chondroitin sulfate could be the preferred method for stabilization of its biological activity.

  8. Reduction in pathogen populations at grapevine wound sites is associated with the mechanism underlying the biological control of crown gall by rhizobium vitis strain ARK-1.

    Science.gov (United States)

    Kawaguchi, Akira

    2014-09-17

    A nonpathogenic strain of Rhizobium (=Agrobacterium) vitis, ARK-1, limited the development of grapevine crown gall. A co-inoculation with ARK-1 and the tumorigenic strain VAT07-1 at a 1:1 cell ratio resulted in a higher population of ARK-1 than VAT07-1 in shoots without tumors, but a significantly lower population of ARK-1 than VAT07-1 in grapevine shoots with tumors. ARK-1 began to significantly suppress the VAT07-1 population 2 d after the inoculation. This result indicated that ARK-1 reduced the pathogen population at the wound site through biological control. Although ARK-1 produced a zone of inhibition against other tumorigenic Rhizobium spp. in in vitro assays, antibiosis depended on the culture medium. ARK-1 did not inhibit the growth of tumorigenic R. radiobacter strain AtC1 in the antibiosis assay, but suppressed the AtC1-induced formation of tumors on grapevine shoots, suggesting that antibiosis by ARK-1 may not be the main mechanism responsible for biological control.

  9. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.

    1994-12-01

    Field and laboratory studies of anoxic sediments from Cape Lookout Bight, North Carolina, suggest that anaerobic methane oxidation is mediated by a consortium of methanogenic and sulfate-reducing bacteria. A seasonal survey of methane oxidation and CO2 reduction rates indicates that methane production was confined to sulfate-depleted sediments at all times of year, while methane oxidation occurred in two modes. In the summer, methane oxidation was confined to sulfate-depleted sediments and occurred at rates lower than those of CO2 reduction. In the winter, net methane oxidation occurred in an interval at the base of the sulfate-containing zone. Sediment incubation experiments suggest both methanogens and sulfate reducers were responsible for the observed methane oxidation. In one incubation experiment both modes of oxidation were partially inhibited by 2-bromoethanesulfonic acid (a specific inhibitor of methanogens). This evidence, along with the apparent confinement of methane oxidation to sulfate-depleted sediments in the summer, indicates that methanogenic bacteria are involved in methane oxidation. In a second incubation experiment, net methane oxidation was induced by adding sulfate to homogenized methanogenic sediments, suggesting that sulfate reducers also play a role in the process. We hypothesize that methanogens oxidize methane and produce hydrogen via a reversal of CO2 reduction. The hydrogen is efficiently removed and maintained at low concentrations by sulfate reducers. Pore water H2 concentrations in the sediment incubation experiments (while net methane oxidation was occurring) were low enough that methanogenic bacteria could derive sufficient energy for growth from the oxidation of methane. The methanogen-sulfate reducer consortium is consistent not only with the results of this study, but may also be a feasible mechanism for previously documented anaerobic methane oxidation in both freshwater and marine environments.

  10. Microbial reduction of iodate

    Science.gov (United States)

    Councell, T.B.; Landa, E.R.; Lovley, D.R.

    1997-01-01

    The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 ??M iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of 129I in natural systems.

  11. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatan, Mexico

    Science.gov (United States)

    Chuang, P. C.; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina

    2016-01-01

    Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m−2 d−1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42− m−2 d−1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.

  12. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming;

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe th...

  13. Designed optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Mikkelsen, Jørn Dalgaard; Meyer, Anne S.

    2012-01-01

    Fucose-containing sulfated polysaccharides can be extracted from the brown seaweed, Sargassum sp. It has been reported that fucose-rich sulfated polysaccharides from brown seaweeds exert different beneficial biological activities including anti-inflammatory, anticoagulant, and anti-viral effects....... Classical extraction of fucose-containing sulfated polysaccharides from brown seaweed species typically involves extended, multiple-step, hot acid, or CaCl2 treatments, each step lasting several hours. In this work, we systematically examined the influence of acid concentration (HCl), time, and temperature...... on the yield of fucosecontaining sulfated polysaccharides (FCSPs) in statistically designed two-step and single-step multifactorial extraction experiments. All extraction factors had significant effects on the fucose-containing sulfated polysaccharides yield, with the temperature and time exerting positive...

  14. Evaluation of toxicity reduction, mineralization, and treatability of phenolic wastewater treated with combined system of catalytic ozonation process / biological reactor (SBR

    Directory of Open Access Journals (Sweden)

    Y Dadban Shahamat

    2016-01-01

    Full Text Available Background and Objectives: Phenol is one of the industrial pollutants in wastewaters, which due to its toxicity for biological systems various pretreatment processes have been used for its detoxification. In this study, the combination of catalytic ozonation process (COP and sequencing batch reactor (SBR were used for detoxification of these types of wastewaters. Materials and Methodology: In this study, the effect of COP on phenol degradation, COD removal, and detoxification of wastewater was investigated. To determine the acute toxicity of effluents and identification of intermediate compounds produced in COP, bioassay using Daphnia Magna and GC / MS were used, respectively. Then, phenol and COD removal of pretreated wastewater was investigated in SBR. Results: It was found that under optimal conditions in COP (time = 60 min, the concentrations of phenol and COD reduced from 500 and 1162 to 7.5 and 351 mg/L respectively and pretreated effluent toxicity (TU = 36, after rising in the initial stage of reaction, effectively reduced at the end of process (TU=2.3. the integration of this process with SBR could decreased the COD and phenol concentration less than the detectable range by HPLC.  Conclusion: Results showed that COP has a high effect on biodegradability, detoxification, and mineralization of phenol and combination of COP with SBR process can effectively treat wastewaters containing phenol.

  15. Factors affecting biological reduction of CO{sub 2} into CH{sub 4} using a hydrogenotrophic methanogen in a fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyung; Pak, Daewon [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Chang, Won Seok [Korea District Heating Corp, Seongnam (Korea, Republic of)

    2015-10-15

    Biological conversion of CO{sub 2} was examined in a fixed bed reactor inoculated with anaerobic mixed culture to investigate influencing factors, the type of packing material and the composition of the feeding gas mixture. During the operation of the fixed bed reactor by feeding the gas mixture (80% H{sub 2} and 20% CO{sub 2} based on volume basis), the volumetric CO{sub 2} conversion rate was higher in the fixed bed reactor packed with sponge due to its large surface area and high mass transfer from gas to liquid phase compared with PS ball. Carbon dioxide loaded into the fixed bed reactor was not completely converted because some of H{sub 2} was used for biomass growth. When a mole ratio of H{sub 2} to CO{sub 2} in the feeding gas mixture increased from 4 to 5, CO{sub 2} was completely converted into CH{sub 4}. The packing material with large surface area is effective in treating gaseous substrate such as CO{sub 2} and H{sub 2}. H{sub 2}, electron donor, should be providing more than required according to stoichiometry because some of it is used for biomass growth.

  16. INFLUENCE OF THE SEAGRASS THALASSIA TESTUDINUM ON THE COMMUNITY COMPOSITION AND ACTIVITY OF SULFATE-REDUCING BACTERIA IN AN ESSENTIAL COAST MARINE HABITAT

    Science.gov (United States)

    Biogeochemical cycling of nutrients and sulfate reduction rates (SRR) were studied in relation to the community composition of sulfate-reducing bacteria SRB) in a Thalassia testudinum bed and in adjacent unvegetated areas. Sampling took place in Santa Rosa Sound, Pensacola, Flori...

  17. Scintillation properties of lead sulfate

    International Nuclear Information System (INIS)

    We report on the scintillation properties of lead sulfate (PbSO4), a scintillator that show promise as a high energy photon detector. It physical properties are well suited for gamma detection, as its has a density of 6.4 gm/cm3, a 1/e attenuation length for 511 keV photons of 1.2 cm, is not affected by air or moisture, and is cut and polished easily. In 99.998% pure PbSO4 crystals at room temperature excited by 511 keV annihilation photons, the fluorescence decay lifetime contains significant fast components having 1.8 ns (5%) and 19 ns (36%) decay times, but with longer components having 95 ns (36%) and 425 ns (23%) decays times. The peak emission wavelength is 335 nm, which is transmitted by borosilicate glass windowed photomultiplier tubes. The total scintillation light output increases with decreasing temperature fro 3,200 photons/MeV at +45 degrees C to 4, 900 photons/MeV at room temperature (+25 degrees C) and 68,500 photons/MeV at -145 degrees C. In an imperfect, 3 mm cube of a naturally occurring mineral form of PbSO4 (anglesite) at room temperature, a 511 keV photopeak is seen with a total light output of 60% that BGO. There are significant sample to sample variations of the light output among anglesite samples, so the light output of lead sulfate may improve when large synthetic crystals become available. 10 refs

  18. Pollutant balances and emission reduction in mechanical-biological treatment of waste; Schadstoffbilanzierung und Emissionsminderung bei der mechanisch-biologischen Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Cuhls, C.

    2001-07-01

    To balance the emissions of mechanical biological pretreatment (MBP) of municipal solid waste (MSW) and evaluate emission control systems four different plants were investigated. The applied technologies comprised aerobe processes with a rotting duration of 4 days to 16 weeks and one process with integrated (partial current) fermentation. The emissions of main organic substances (81 single compounds and NMVOC) were evaluated depending on either mass or environmental relevance or both. Additionally, total organic carbon (TOC), total nitrogen (TN), methane (CH{sub 4}) and ammonia (NH{sub 3}) were measured. At present the combination of a simple scrubber and biofilter is the state-of-the-art technology used for waste air purification. By using this combination the concentrations of pure gas (just odour) comply with the common regulations. However, the achieved efficiencies for non methane volatile organic compounds (NMVOC) are behind the expectations. In this combination of a simple scrubber and biofilter a NMVOC removal of only 50% is realistic. The main organic emission source is biogenic. That means they are formed by metabolic processes and emitted as intermediate compounds. (orig.) [German] Zur Emissionsbilanzierung wurden vier unterschiedliche mechanisch-biologische Abfallbehandlungsanlagen (MBA) untersucht. Die realisierten Verfahrenstechniken beinhalteten Aerobverfahren mit Rottezeiten zwischen 6 Tagen und 16 Wochen sowie eine zweistufige Anlage mit integrierter Teilstromvergaerung. Die Emissionsmessungen umfassten die wichtigsten 81 organischen Stoffe nach den Kriterien Mengen- und/oder Umweltrelevanz. Ergaenzt wurden die Messungen um die Summenparameter Ges.-C, Ges.-N, CH{sub 4} und NH{sub 3}. Die erforderlichen Emissionskonzentrationen nach TA Luft werden eingehalten. Ausschlaggebend hierfuer ist die Kombination aus Luftbefeuchter und Biofilter, die derzeit den Stand der Technik darstellt. Die erzielten Wirkungsgrade fuer NMVOC (Non Methane Volatile Organic

  19. Gaseous Sulfate Solubility in Glass: Experimental Method

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature to guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.

  20. Mammalian tissue distribution of a large heparan sulfate proteoglycan detected by monoclonal antibodies

    DEFF Research Database (Denmark)

    Couchman, J R; Ljubimov, A V

    1989-01-01

    , however, cross-react with avian tissues. These results show the ubiquitous distribution of a heparan sulfate proteoglycan in mammalian tissues, which will be useful in vitro and in vivo for studies on the biology of basement membrane proteoglycans and investigations of possible roles of these molecules...

  1. Combinatorial roles of heparan sulfate proteoglycans and heparan sulfates in Caenorhabditis elegans neural development.

    Directory of Open Access Journals (Sweden)

    Tarja K Kinnunen

    Full Text Available Heparan sulfate proteoglycans (HSPGs play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS glycans. However, whether a specific HSPG (such as syndecan contains HS modifications that differ from another HSPG (such as glypican has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease.

  2. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti;

    2013-01-01

    -scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory...... in order to simulate the sulfation of KCl by ferric sulfate addition during grate-firing of biomass. The simulation results show good agreements with the experimental data obtained in a pilot-scale biomass grate-firing reactor, where different amounts of ferric sulfate was injected on the grate...

  3. Impacts on Global Agriculture of Stratospheric Sulfate Injection

    Science.gov (United States)

    Robock, A.; Xia, L.

    2014-12-01

    Impacts on global food supply are one of the most important concerns in the discussion of stratospheric sulfate geoengineering. Stratospheric sulfate injection could reduce surface temperature, precipitation, and insolation, which could affect agricultural production. We use output from climate model simulations using the two most "realistic" scenarios from the Geoengineering Model Intercomparison Project, G3 and G4. G3 posits balancing the increasing radiative forcing from the RCP4.5 business-as-usual scenario with stratospheric sulfate aerosols from 2020 through 2070. The G4 scenario also uses RCP4.5, but models simulate the stratospheric injection of 5 Tg SO2 per year from 2020 to 2070. In total, there are three modeling groups which have completed G3 and four for G4. We use two crop models, the global gridded Decision Support System for Agrotechnology Transfer (gDSSAT) crop model and the crop model in the NCAR Community Land Model (CLM-crop), to predict global maize yield changes. Without changing agricultural technology, we find that compared to the reference run forced by the RCP4.5 scenario, maize yields could increase in both G3 and G4 due to both the cooling effect of stratospheric sulfate injection and the CO2 fertilization effect, with the cooling effect contributing more to the increased productivity. However, the maize yield changes are not much larger than natural variability under G3, since the temperature reduction is smaller in G3 than in G4. Both crop models show similar results.

  4. Genome Sequence of the Moderately Acidophilic Sulfate-Reducing Firmicute Desulfosporosinus acididurans (Strain M1T)

    Science.gov (United States)

    Petzsch, Patrick; Poehlein, Anja; Johnson, D. Barrie; Daniel, Rolf; Schlömann, Michael

    2015-01-01

    Microbial dissimilatory sulfate reduction is commonplace in many anaerobic environments, though few acidophilic bacteria are known to mediate this process. We report the 4.64-Mb draft genome of the type strain of the moderate acidophile Desulfosporosinus acididurans, which was isolated from acidic sediment in a river draining the Soufrière volcano, Montserrat. PMID:26251501

  5. Biological Reduction of Perchlorate and Optimization%生物法降解高氯酸盐及其优化研究

    Institute of Scientific and Technical Information of China (English)

    钱慧静; 奚胜兰; 何平; 徐新华

    2009-01-01

    The potential of bioremediation to treat perchlorate-contaminated water by acclimating anaerobic activated sludge was investigated in this study. Factors such as carbon source,initial pH,temperature,domesticated sludge concentration and dissolved oxygen affecting the removal of perchlorate were studied in detail by shaking-bottle point tests using acetate as carbon source. Results showed that 50 mg/L perchlorate was completely reduced by 1.0 g of domesticated sludge added with 1.2 g/L of acetate under the conditions of 35℃ and initial pH 8.0. Dissolved oxygen in the system would restrain the reduction of perchlorate. In addition,column bioreactor was used to treat perchlorate continuously,with the minimum residence time of 6 h.%利用经过驯化处理的厌氧活性污泥来处理高氯酸盐废水,以醋酸根为碳源,通过摇床实验考察了碳源浓度、pH值、生长温度、泥量和溶解氧等因素对高氯酸盐降解率的影响,初步确定最佳反应条件.结果表明,在35℃、初始pH值为 8.0的条件下,添加1.2 g/L的醋酸根,1.0 g厌氧培养的活性污泥能将50 mg/L的高氯酸盐完全降解.体系中的溶解氧会抑制高氯酸盐的降解.此外,还考察了生物膜柱反应器连续处理高氯酸盐模拟废水的效果,结果表明完全降解高氯酸盐的最小停留时间为6 h.

  6. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions.

    Science.gov (United States)

    Kwon, Man Jae; O'Loughlin, Edward J; Boyanov, Maxim I; Brulc, Jennifer M; Johnston, Eric R; Kemner, Kenneth M; Antonopoulos, Dionysios A

    2016-01-01

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments

  7. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions.

    Directory of Open Access Journals (Sweden)

    Man Jae Kwon

    Full Text Available Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown. The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface

  8. Sulfated Polysaccharides Purified from Two Species of Padina Improve Collagen and Epidermis Formation in the Rat

    Science.gov (United States)

    Kordjazi, Moazameh; Shabanpour, Bahareh; Zabihi, Ebrahim; Faramarzi, Mohammad Ali; Feizi, Farideh; Ahmadi Gavlighi, Hassan; Feghhi, Mohammad Amin; Hosseini, Seyed Abbas

    2013-01-01

    Sulfated polysaccharides have shown promising effects on wound healing processes along with many other biological activities. The sulfated polysaccharides extracted from two algae species habitats in Persian Gulf were studied in vivo for their effects on collagen formation and epidermal regeneration. The polysaccharides were purified from aqueous extracts of P. tetrastromatica and P. boergesenii using CaCl2 and ethanol precipitation. The sulfate content of each polysaccharide was determined. Two identical wounds (either burn or excision) were made on the back of 4 groups of male Wistar rats (10 rats per group) under anesthesia. The algal polysaccharide ointments (2%) were applied twice daily on one side and the other wound was treated with Eucerin (as control). The rats were sacrificed on day 7 or 14, and then the wound samples were examined for epidermal thickness by light microscope. Furthermore, hydroxyproline content (as a marker of collagen formation) was spectro-photometrically measured. The polysaccharides purified from P. boergesenii had higher sulfate content (32.6±1%) compared to P. tetrastromatica (19±1%). Both algal polysaccharides showed some improvements in collagen formation (hydroxyproline content) and epidermal thickness in both wound models compared to the vehicle. The sulfated polysaccharides purified from P. tetrastromatica and P. boergesenii seaweeds are able to induce collagen formation and epidermal regeneration in the two wound models. The superior healing properties of P. boergesenii polysaccharides might be correlated to its higher sulfate content. Both algal polysaccharides are good candidates for wound healing clinical trials. PMID:24551807

  9. Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis.

    Science.gov (United States)

    Mi-ichi, Fumika; Miyamoto, Tomofumi; Takao, Shouko; Jeelani, Ghulam; Hashimoto, Tetsuo; Hara, Hiromitsu; Nozaki, Tomoyoshi; Yoshida, Hiroki

    2015-06-01

    Hydrogenosomes and mitosomes are mitochondrion-related organelles (MROs) that have highly reduced and divergent functions in anaerobic/microaerophilic eukaryotes. Entamoeba histolytica, a microaerophilic, parasitic amoebozoan species, which causes intestinal and extraintestinal amoebiasis in humans, possesses mitosomes, the existence and biological functions of which have been a longstanding enigma in the evolution of mitochondria. We previously demonstrated that sulfate activation, which is not generally compartmentalized to mitochondria, is a major function of E. histolytica mitosomes. However, because the final metabolites of sulfate activation remain unknown, the overall scheme of this metabolism and the role of mitosomes in Entamoeba have not been elucidated. In this study we purified and identified cholesteryl sulfate (CS) as a final metabolite of sulfate activation. We then identified the gene encoding the cholesteryl sulfotransferase responsible for synthesizing CS. Addition of CS to culture media increased the number of cysts, the dormant form that differentiates from proliferative trophozoites. Conversely, chlorate, a selective inhibitor of the first enzyme in the sulfate-activation pathway, inhibited cyst formation in a dose-dependent manner. These results indicate that CS plays an important role in differentiation, an essential process for the transmission of Entamoeba between hosts. Furthermore, we show that Mastigamoeba balamuthi, an anaerobic, free-living amoebozoan species, which is a close relative of E. histolytica, also has the sulfate-activation pathway in MROs but does not possess the capacity for CS production. Hence, we propose that a unique function of MROs in Entamoeba contributes to its adaptation to its parasitic life cycle.

  10. High sulfur isotope fractionation associated with anaerobic oxidation of methane in a low sulfate, iron rich environment

    Science.gov (United States)

    Weber, Hannah; Thamdrup, Bo; Habicht, Kirsten

    2016-06-01

    Sulfur isotope signatures provide key information for the study of microbial activity in modern systems and the evolution of the Earth surface redox system. Microbial sulfate reducers shift sulfur isotope distributions by discriminating against heavier isotopes. This discrimination is strain-specific and often suppressed at sulfate concentrations in the lower micromolar range that are typical to freshwater systems and inferred for ancient oceans. Anaerobic oxidation of methane (AOM) is a sulfate-reducing microbial process with a strong impact on global sulfur cycling in modern habitats and potentially in the geological past, but its impact on sulfur isotope signatures is poorly understood, especially in low sulfate environments. We investigated sulfur cycling and 34S fractionation in a low-sulfate freshwater sediment with biogeochemical conditions analogous to Early Earth environments. The zone of highest AOM activity was associated in situ with a zone of strong 34S depletions in the pool of reduced sulfur species, indicating a coupling of sulfate reduction and AOM at sulfate concentrations sulfur isotope effect of ~29 ‰. Our results imply that sulfur isotope signatures may be strongly impacted by AOM even at sulfate concentrations two orders of magnitude lower than at present oceanic levels. Therefore, we suggest that sulfur isotope fractionation during AOM must be considered when interpreting 34S signatures in modern and ancient environment.

  11. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    Science.gov (United States)

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  12. The Precipitation Process of Liquid Wastes Containing Contaminant Am withBarium Sulfate

    International Nuclear Information System (INIS)

    The investigated of the reduction volume liquid wastes containing ofAmericium nuclide contaminant has been done. The reduction volume was done byadding barium sulfate coagulant. The experimental procedure that has beendone by adding regent of barium nitrate and natrium sulfate to the wasteswith its preadjusted pH, then by utilizing the jar test equipment was carriedout the fast stirring speed for 5 minutes and the gentle agitation for 30minutes, therefor its floc and supernatant will be formed. The resultedbarium sulfate floc will trap radionuclide in the wastes. The Variableinvestigated were: the concentration of barium sulfate, pH of the wastes, theflash mixing rate, the gentle agitation rate. The investigated barium sulfateconcentration variable was started from 100 ppm up to 800 ppm. Theinvestigated pH variable was started from pH 7 up to pH 13. The investigatedflash mixing rate were 75, 100, 125, 150, 175, 200, 225, 250 rpm. Theinvestigated gentle agitation variable were 20, 30, 40, 50 rpm. The bestresult which was represented by decontaminating factor (DF) was found frombarium sulfate concentration of 300 ppm and pH 11, and the flash mixing rateof 200 rpm and the gentle agitation rate of 20 rpm, with the separationefficiency = 97.2 %. (author)

  13. Inhibitory concentrations of 2,4D and its possible intermediates in sulfate reducing biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cruz, Ulises [Department of Biotechnology, Environmental Science and Technology, Universidad Autonoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Vicentina, 09340 D.F. (Mexico); Celis, Lourdes B. [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a. Seccion, 78216 San Luis Potosi, S.L.P. (Mexico); Poggi, Hector [Department of Biotechnology and Bioengineering, CINVESTAV, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 D.F. (Mexico); Meraz, Monica, E-mail: meraz@xanum.uam.mx [Department of Biotechnology, Environmental Science and Technology, Universidad Autonoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Vicentina, 09340 D.F. (Mexico)

    2010-07-15

    Different concentrations of the herbicide 2,4-dichlorophenoxyacetic acid (2,4D) and its possible intermediates such as 2,4-dichlorophenol (2,4DCP), 4-chlorophenol (4CP), 2-chlorophenol (2CP) and phenol, were assayed to evaluate the inhibitory effect on sulfate and ethanol utilization in a sulfate reducing biofilm. Increasing concentrations of the chlorophenolic compounds showed an adverse effect on sulfate reduction rate and ethanol conversion to acetate, being the intermediate 2,4DCP most toxic than the herbicide. The monochlorophenol 4CP (600 ppm) caused the complete cessation of sulfate reduction and ethanol conversion. The ratio of the electron acceptor to the electron donor utilized as well as the sulfate utilization volumetric rates, diminished when chlorophenols and phenol concentrations were increased, pointing out to the inhibition of the respiratory process and electrons transfer. The difference found in the IC{sub 50} values obtained was due to the chemical structure complexity of the phenolic compounds, the number of chlorine atoms as much as the chlorine atom position in the phenol ring. The IC{sub 50} values (ppm) indicated that the acute inhibition on the biofilm was caused by 2,4DCP (17.4) followed by 2,4D (29.0), 2CP (99.8), 4CP (108.0) and phenol (143.8).

  14. The ecophysiology of sulfur isotope fractionation by sulfate reducing bacteria in response to variable environmental conditions

    Science.gov (United States)

    Leavitt, W.; Bradley, A. S.; Johnston, D. T.; Pereira, I. A. C.; Venceslau, S.; Wallace, C.

    2014-12-01

    Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The sulfide produced is depleted in the heavier isotopes of sulfur relative to sulfate. The magnitude of discrimination (fractionation) depends on: i) the cell-specific sulfate reduction rate (csSRR, Kaplan & Rittenberg (1964) Can. J. Microbio.; Chambers et al. (1975) Can. J. Microbio; Sim et al. (2011) GCA; Leavitt et al. (2013) PNAS), ii) the ambient sulfate concentration (Harrison & Thode (1958) Research; Habicht et al. (2002) Science; Bradley et al. in review), iii) both sulfate and electron donor availability, or iv) an intrinsic physiological limitation (e.g. cellular division rate). When neither sulfate nor electron donor limits csSRR a more complex function relates the magnitude of isotope fractionation to cell physiology and environmental conditions. In recent and on-going work we have examined the importance of enzyme-specific fractionation factors, as well as the influence of electron donor or electron acceptor availability under carefully controlled culture conditions (e.g. Leavitt et al. (2013) PNAS). In light of recent advances in MSR genetics and biochemistry we utilize well-characterized mutant strains, along with a continuous-culture methodology (Leavitt et al. (2013) PNAS) to further probe the fractionation capacity of this metabolism under controlled physiological conditions. We present our latest findings on the magnitude of S and D/H isotope fractionation in both wild type and mutant strains. We will discuss these in light of recent theoretical advances (Wing & Halevy (2014) PNAS), examining the mode and relevance of MSR isotope fractionation in the laboratory to modern and ancient environmental settings, particularly anoxic marine sediments.

  15. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.

    Science.gov (United States)

    Barton, Larry L; Fauque, Guy D

    2009-01-01

    Chemolithotrophic bacteria that use sulfate as terminal electron acceptor (sulfate-reducing bacteria) constitute a unique physiological group of microorganisms that couple anaerobic electron transport to ATP synthesis. These bacteria (220 species of 60 genera) can use a large variety of compounds as electron donors and to mediate electron flow they have a vast array of proteins with redox active metal groups. This chapter deals with the distribution in the environment and the major physiological and metabolic characteristics of sulfate-reducing bacteria (SRB). This chapter presents our current knowledge of soluble electron transfer proteins and transmembrane redox complexes that are playing an essential role in the dissimilatory sulfate reduction pathway of SRB of the genus Desulfovibrio. Environmentally important activities displayed by SRB are a consequence of the unique electron transport components or the production of high levels of H(2)S. The capability of SRB to utilize hydrocarbons in pure cultures and consortia has resulted in using these bacteria for bioremediation of BTEX (benzene, toluene, ethylbenzene and xylene) compounds in contaminated soils. Specific strains of SRB are capable of reducing 3-chlorobenzoate, chloroethenes, or nitroaromatic compounds and this has resulted in proposals to use SRB for bioremediation of environments containing trinitrotoluene and polychloroethenes. Since SRB have displayed dissimilatory reduction of U(VI) and Cr(VI), several biotechnology procedures have been proposed for using SRB in bioremediation of toxic metals. Additional non-specific metal reductase activity has resulted in using SRB for recovery of precious metals (e.g. platinum, palladium and gold) from waste streams. Since bacterially produced sulfide contributes to the souring of oil fields, corrosion of concrete, and discoloration of stonework is a serious problem, there is considerable interest in controlling the sulfidogenic activity of the SRB. The

  16. Biogeochemistry of a Field-Scale Sulfate Reducing Bioreactor Treating Mining Influenced Water

    Science.gov (United States)

    Drennan, D.; Lee, I.; Landkamer, L.; Figueroa, L. A.; Webb, S.; Sharp, J. O.

    2012-12-01

    Acidity, metal release, and toxicity may be environmental health concerns in areas influenced by mining. Mining influenced waters (MIW) can be remediated through the establishment of Sulfate Reducing Bioreactors (SRBRs) as part of engineered passive treatment systems. The objective of our research is an enhanced understanding of the biogeochemistry in SRBRs by combining molecular biological and geochemical techniques. Bioreactor reactive substrate, settling pond water, and effluent (from the SRBR) were collected from a field scale SRBR in Arizona, which has been in operation for approximately 3 years. Schematically, the water passes through the SRBR; combines with flow that bypasses the SRBR into the and goes into the mixing pond, and finally is released as effluent to aerobic polishing cells. High throughput sequencing of extracted DNA revealed that Proteobacteria dominated the reactive substrate (61%), settling pond (93%), and effluent (50%), with the next most abundant phylum in all samples (excluding uncultured organisms) being Bacteriodes (1-17%). However, at the superclass level, the three samples were more variable. Gammaproteobacteria dominated the reactive substrate (35%), Betaproteobacteria in the settling pond (63%) and finally the effluent was dominated by Epsilonproteobacteria (Helicobacteraceae) (43%). Diversity was most pronounced in association with the reactor matrix, and least diverse in the settling pond. Putative functional analysis revealed a modest presence of sulfate/sulfur reducing bacteria (SRB) (>5%) in both the matrix and settling pond but a much higher abundance (43%) of sulfur reducing bacteria in the effluent. Interestingly this effluent population was composed entirely of the family Helicobacteraceae (sulfur reduction II via polysulfide pathway). Other putative functions of interest include metal reduction in the matrix (3%) and effluent (3%), as well as polysaccharide degradation, which was largely abundant in all samples (21

  17. Using Terrestrial Sulfate Efflorescences as an Analogue of Hydrated Sulfate Formation in Valles Marineris on Mars

    Science.gov (United States)

    Smith, P. C.; Szynkiewicz, A.

    2015-12-01

    Hydrated sulfate minerals provide conclusive evidence that a hydrologic cycle was once active on the surface of Mars. Two classes of hydrated sulfate minerals have been detected by robotic instruments on Mars: monohydrated sulfate minerals comprised of kieserite and gypsum, and various polyhydrated sulfates with Fe-Ca-Na-Mg-rich compositions. These minerals are found in various locations on Mars, including large surface exposures in valley settings of Valles Marineris. However, the sulfate sources and formation mechanisms of these minerals are not yet well understood.Recently, it has been suggested that the sulfate minerals in Valles Marineris might have formed in a manner similar to sulfate efflorescences found in dry environments on Earth. In this study, we use sulfate effloresences from the Rio Puerco Watershed, New Mexico as a terrestrial analogue to assess major factors that might have led to deposition of sulfate minerals in Valles Marineris. In different seasons indicative of dry and wet conditions, we collected field photographs and sediment samples for chemical and stable isotopic analyses (sulfur content, δ34S) to determine major sources of sulfate ions for efflorescences and to assess how the seasonal changes in surface/groundwater activity affect their formation. Preliminary sulfur isotope results suggest that oxidation of bedrock sulfides (0.01-0.05 wt. S %) is a major source of sulfate ion for efflorescences formation because their δ34S varied in negative range (-28 to -20‰) similar to sulfides (average -32‰). Using field photographs collected in Oct 2006, Feb and Nov 2012, May 2013, Mar and Oct 2014, we infer that the highest surface accumulation of sulfate efflorescences in the studied analog site was observed after summer monsoon seasons when more water was available for surface and subsurface transport of solutes from chemical weathering. Conversely, spring snow melt led to enhanced dissolution of sulfate efflorescences.

  18. Di-sulfated Keratan Sulfate as a Novel Biomarker for Mucopolysaccharidosis II, IVA, and IVB.

    Science.gov (United States)

    Shimada, Tsutomu; Tomatsu, Shunji; Mason, Robert W; Yasuda, Eriko; Mackenzie, William G; Hossain, Jobayer; Shibata, Yuniko; Montaño, Adriana M; Kubaski, Francyne; Giugliani, Roberto; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji E; Fukao, Toshiyuki; Orii, Tadao

    2015-01-01

    Keratan sulfate (KS) is a storage material in mucopolysaccharidosis IV (MPS IV). However, no detailed analysis has been reported on subclasses of KS: mono-sulfated KS and di-sulfated KS. We established a novel method to distinguish and quantify mono- and di-sulfated KS using liquid chromatography-tandem mass spectrometry and measured both KS levels in various specimens.Di-sulfated KS was dominant in shark cartilage and rat serum, while mono-sulfated KS was dominant in bovine cornea and human serum. Levels of both mono- and di-sulfated KS varied with age in the blood and urine from control subjects and patients with MPS II and IVA. The mean levels of both forms of KS in the plasma/serum from patients with MPS II, IVA, and IVB were elevated compared with that in age-matched controls. Di-sulfated KS provided more significant difference between MPS IVA and the age-matched controls than mono-sulfated KS. The ratio of di-sulfated KS to total KS in plasma/serum increased with age in control subjects and patients with MPS II but was age independent in MPS IVA patients. Consequently, this ratio can discriminate younger MPS IVA patients from controls. Levels of mono- and di-sulfated KS in urine of MPS IVA and IVB patients were all higher than age-matched controls for all ages studied.In conclusion, the level of di-sulfated KS and its ratio to total KS can distinguish control subjects from patients with MPS II, IVA, and IVB, indicating that di-sulfated KS may be a novel biomarker for these disorders.

  19. Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    de Oliveira, Letúzia M; Gress, Julia; De, Jaysankar; Rathinasabapathi, Bala; Marchi, Giuliano; Chen, Yanshan; Ma, Lena Q

    2016-03-01

    We investigated the effects of chromate (CrVI) and sulfate on their uptake and translocation in As-hyperaccumulator Pteris vittata. Plants were exposed to 1) 0.1 mM CrVI and 0, 0.25, 1.25 or 2.5 mM sulfate or 2) 0.25 mM sulfate and 0, 0.5, 2.5 or 5.0 mM CrVI for 1 d in hydroponics. P. vittata accumulated 26 and 1261 mg kg(-1) Cr in the fronds and roots at CrVI0.1, and 2197 and 1589 mg kg(-1) S in the fronds and roots at S0.25. Increasing sulfate concentrations increased Cr root concentrations by 16-66% and helped CrVI reduction to CrIII whereas increasing CrVI concentrations increased frond sulfate concentrations by 3-27%. Increasing sulfate concentrations enhanced TBARS concentrations in the biomass, indicating oxidative stress caused lipid peroxidation in plant cell membranes. However, addition of 0.25-2.5 mM sulfate alleviated CrVI's toxic effects and decreased TBARS from 23.5 to 9.46-12.3 μmol g(-1) FW. Though CrVI was supplied, 78-96% of CrIII was in the biomass, indicating efficient CrVI reduction to CrIII by P. vittata. The data indicated the amazing ability of P. vittata in Cr uptake at 289 mg kg(-1) h(-1) with little translocation to the fronds. These results indicated that P. vittata had potential in Cr phytoremediation in contaminated sites but further studies are needed to evaluate this potential. The facts that CrVI and sulfate helped each other in uptake by P. vittata suggest that CrVI was not competing with sulfate uptake in P. vittata. However, the mechanisms of how sulfate and CrVI enhance each other's accumulation in P. vittata need further investigation. PMID:26761595

  20. Study of cadmium electrochemical deposition in sulfate medium

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, T.; Solorza, O.; Sanchez, H.

    2000-03-01

    The cadmium electrochemical deposition process from sulfate medium was studied by means of different electrochemical techniques in both stationary and nonstationary diffusion regimes. The kinetics of the electrochemical reduction of cadmium on solid cadmium electrodes was examined and the kinetic parameters are presented, as well as the diffusion coefficient derived from the different techniques. Temperature has an important effect on the cadmium reduction kinetics, and the activation energy of the process was evaluated. The electrochemical deposition of cadmium is a complex process due to the coexistence of adsorption and nucleation processes; the adsorbed electroactive species appears to be Cd{sup +2}, and a mechanism for cadmium electrodeposition on solid cadmium electrodes is proposed.

  1. Sulfated binary and trinary oxide solid superacids

    Institute of Scientific and Technical Information of China (English)

    缪长喜; 华伟明; 陈建民; 高滋

    1996-01-01

    A series of sulfated binary and trinary oxide solid superacids were prepared, and their catalytic activities for n-butane isomerization at low temperature were measured. The incorporation of different metal oxides into ZrO2 may produce a positive or negative effect on the acid strength and catalytic activity of the solid superacids. Sulfated oxides of Cr-Zr, Fe-Cr-Zr and Fe-V-Zr are 2 - 3 times more active than the reported sulfated Fe-Mn-Zr oxide. The enhancement in the superacidity and catalytic activity of these new solid superacids has been discussed on account of the results of various characteriation techniques.

  2. Poverty Reduction

    OpenAIRE

    Ortiz, Isabel

    2007-01-01

    The paper reviews poverty trends and measurements, poverty reduction in historical perspective, the poverty-inequality-growth debate, national poverty reduction strategies, criticisms of the agenda and the need for redistribution, international policies for poverty reduction, and ultimately understanding poverty at a global scale. It belongs to a series of backgrounders developed at Joseph Stiglitz's Initiative for Policy Dialogue.

  3. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. PMID:24342048

  4. Stratospheric sulfate geoengineering impacts on global agriculture

    Science.gov (United States)

    Xia, L.; Robock, A.; Lawrence, P.; Lombardozzi, D.

    2015-12-01

    Stratospheric sulfate geoengineering has been proposed to reduce the impacts of anthropogenic climate change. If it is ever used, it would change agricultural production, and so is one of the future climate scenarios for the third phase of the Global Gridded Crop Model Intercomparison. As an example of those impacts, we use the Community Land Model (CLM-crop 4.5) to simulate how climate changes from the G4 geoengineering scenario from the Geoengineering Modeling Intercomparison Project. The G4 geoengineering scenario specifies, in combination with RCP4.5 forcing, starting in 2020 daily injections of a constant amount of SO2 at a rate of 5 Tg SO2 per year at one point on the Equator into the lower stratosphere. Eight climate modeling groups have completed G4 simulations. We use the crop model to simulate the impacts of climate change (temperature, precipitation, and solar radiation) on the global agriculture system for five crops - rice, maize, soybeans, cotton, and sugarcane. In general, without irrigation, compared with the reference run (RCP4.5), global production of cotton, rice and sugarcane would increase significantly due to the cooling effect. Maize and soybeans show different regional responses. In tropical regions, maize and soybean have a higher yield in G4 compared with RCP4.5, while in the temperate regions they have a lower yield under a geoengineered climate. Impacts on specific countries in terms of different crop production depend on their locations. For example, the United States and Argentina show soybean production reduction of about 15% under G4 compared to RCP4.5, while Brazil increases soybean production by about 10%.

  5. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Highlights: ► Corrosive SRB strain accelerates cathodic reaction of iron by direct electron uptake. ► Hydrogenotrophic control strain does not influence the cathodic reaction. ► Deposited ferrous sulfides do not stimulate the cathodic reaction. ► Deposited ferrous sulfides mediate electrical contact between metal and cells. - Abstract: Microbially influenced iron corrosion by sulfate-reducing bacteria (SRB) is conventionally attributed to the chemical corrosiveness of H2S, facilitated abiotic H+-reduction at deposited FeS, and biological consumption of chemically formed (‘cathodic’) H2. However, recent studies with corrosive SRB indicated direct consumption of iron-derived electrons rather than of H2 as a crucial mechanism. Here, we conducted potentiodynamic measurements with iron electrodes colonized by corrosive SRB. They significantly stimulated the cathodic reaction, while non-corrosive yet H2-consuming control SRB had no effect. Inactivation of the colonizing bacteria significantly reduced current stimulation, thus confirming biological catalysis rather than an abiotic cathodic effect of FeS.

  6. Cadmium Accumulation and DNA Homology with Metal Resistance Genes in Sulfate-Reducing Bacteria

    OpenAIRE

    Naz, Naghma; Young, Hilary K.; Ahmed, Nuzhat; Gadd, Geoffrey M.

    2005-01-01

    Cadmium resistance (0.1 to 1.0 mM) was studied in four pure and one mixed culture of sulfate-reducing bacteria (SRB). The growth of the bacteria was monitored with respect to carbon source (lactate) oxidation and sulfate reduction in the presence of various concentrations of cadmium chloride. Two strains Desulfovibrio desulfuricans DSM 1926 and Desulfococcus multivorans DSM 2059 showed the highest resistance to cadmium (0.5 mM). Transmission electron microscopy of the two strains showed intra...

  7. Synthesis of highly anti-HIV active sulfated poly- and oligo-saccharides and analysis of their action mechanisms by NMR [nuclear magnetic resonance] spectroscopy

    International Nuclear Information System (INIS)

    We have been synthesizing sulfated polysaccharides and oligosaccharides with highly anti-HIV (human immunodeficiency virus) activities. It has been known that sulfated polysaccharides such as dextran sulfate and pentosan polysulfate have biological activities such as anticoagulant activity and recently anti-HIV activity. Curdlan sulfate having 1,3-β-linked glucan backbone had high anti-HIV activity but low anticoagulant activity. Phase I/II test for the curdlan sulfate as an AIDS (acquired immunodeficiency syndrome) drug was carried out in the United States. In this study, regioselectivity sulfatec curdlan sulfates were prepared in order to study effects of sulfate groups and conformation of curdlan sulfates. In addition, action mechanisms of curdlan sulfate as anti-AIDS drug and of heparin as an anticoagulant were examined by means of NMR spectroscopy. 1. Structure dependence of anti-HIV and anticoagulant activities of sulfated polysaccharides. Curdlan with M n 9000 was regioselectively sulfated on its hydroxyl groups at 6, 4, and 2 positions. Those were a curdlan sulfate 62S in which 100% of 6-OH, and about 50% of 2-OH was sulfated, a curdlan sulfate 42S in which 4- and 2-OH's were sulfated, and a curdlan sulfate in which 6, 4, and 2-OH's were partially sulfated. All curdlan sulfates had very high anti-HIV activities exhibited by the drug concentration of 50% inhibition of infection, i.e., EC50 of 0.04 - 0.25 μg/mL. However, there was almost no difference in the activity among the samples. Therefore, it was revealed that the degree of sulfation and putative conformation of the curdlan sulfates but not the position of sulfate groups have large effects on the anti-HIV activity. On the other hand, the anticoagulant activity increased with increasing molecular weight of the curdlan sulfates. As a result, it is assumed that the size of reaction sites of the virus protein reacting with curdlan sulfate is different from that of the proteins related to anticoagulant. 2

  8. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  9. ROE Wet Sulfate Deposition 2009-2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2009 to 2011. Summary data in this indicator were provided by EPA’s...

  10. Carbonate-associated sulfate in lucinid (Bivalvia) shells

    Science.gov (United States)

    Peng, Y.; Bao, H.; Anderson, L.; Engel, A. S.

    2007-12-01

    . These data suggest that 1) pore-water sulfate in shallow sediments is highly heterogeneous in its concentration and isotope composition, probably due to active microbial sulfate reduction, bioturbation, and water-pumping by bivalves and other infaunal filter feeders; 2) CAS is derived from ambient porewater or pumped-in seawater for infauna or epifauna, as well as for lucinids; and 3) CAS concentration and isotope compositions are vulnerable to later diagenetic processes.

  11. Heparan Sulfate Dependent Mechanisms of Amyloidosis

    OpenAIRE

    Noborn, Fredrik

    2012-01-01

    A common theme in amyloid disorders is the deposition of disease-specific protein aggregates in tissues. Amyloid proteins bind to heparan sulfate (HS), a sulfated glycosaminoglycan, and HS has been found to promote the aggregation process. The present work relates to HS mediated mechanisms of amyloidosis, particularly transthyretin (TTR) amyloidosis, AA-amyloidosis and Alzheimer’s disease (AD). TTR is a transport protein present in the blood and cerebrospinal fluid, which under unclear circum...

  12. Hormonal control of sulfate uptake and assimilation.

    Science.gov (United States)

    Koprivova, Anna; Kopriva, Stanislav

    2016-08-01

    Plant hormones have a plethora of functions in control of plant development, stress response, and primary metabolism, including nutrient homeostasis. In the plant nutrition, the interplay of hormones with responses to nitrate and phosphate deficiency is well described, but relatively little is known about the interaction between phytohormones and regulation of sulfur metabolism. As for other nutrients, sulfate deficiency results in modulation of root architecture, where hormones are expected to play an important role. Accordingly, sulfate deficiency induces genes involved in metabolism of tryptophane and auxin. Also jasmonate biosynthesis is induced, pointing to the need of increase the defense capabilities of the plants when sulfur is limiting. However, hormones affect also sulfate uptake and assimilation. The pathway is coordinately induced by jasmonate and the key enzyme, adenosine 5'-phosphosulfate reductase, is additionally regulated by ethylene, abscisic acid, nitric oxid, and other phytohormones. Perhaps the most intriguing link between hormones and sulfate assimilation is the fact that the main regulator of the response to sulfate starvation, SULFATE LIMITATION1 (SLIM1) belongs to the family of ethylene related transcription factors. We will review the current knowledge of interplay between phytohormones and control of sulfur metabolism and discuss the main open questions. PMID:26810064

  13. Fractone-associated N-sulfated heparan sulfate shows reduced quantity in BTBR T+tf/J mice, a strong model of autism

    OpenAIRE

    Meyza, Ksenia Z.; Blanchard, D. Caroline; Pearson, Brandon L.; Pobbe, Roger L. H.; Blanchard, Robert J.

    2011-01-01

    BTBR T+tf/J (BTBR) mice show abnormal social, communicatory, and repetitive/stereotyped behaviors paralleling many of the symptoms of autism spectrum disorders. BTBR also show agenesis of the corpus callosum (CC) suggesting major perturbations of growth or guidance factors in the dorsal forebrain [1]. Heparan sulfate (HS) is a polysaccaride found in the brain and other animal tissues. It binds to a wide variety of ligands and through these ligands modulates a number of biological processes, i...

  14. A sulfated disaccharide derived from chondroitin sulfate proteoglycan protects against inflammation-associated neurodegeneration.

    Science.gov (United States)

    Rolls, Asya; Cahalon, Liora; Bakalash, Sharon; Avidan, Hila; Lider, Ofer; Schwartz, Michal

    2006-03-01

    Chondroitin sulfate proteoglycan (CSPG), a matrix protein that occurs naturally in the central nervous system (CNS), is considered to be a major inhibitor of axonal regeneration and is known to participate in activation of the inflammatory response. The degradation of CSPG by a specific enzyme, chondroitinase ABC, promotes repair. We postulated that a disaccharidic degradation product of this glycoprotein (CSPG-DS), generated following such degradation, participates in the modulation of the inflammatory responses and can, therefore, promote recovery in immune-induced neuropathologies of the CNS, such as experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune uveitis (EAU). In these pathologies, the dramatic increase in T cells infiltrating the CNS is far in excess of the numbers needed for regular maintenance. Here, we show that CSPG-DS markedly alleviated the clinical symptoms of EAE and protected against the neuronal loss in EAU. The last effect was associated with a reduction in the numbers of infiltrating T cells and marked microglia activation. This is further supported by our in vitro results indicating that CSPG-DS attenuated T cell motility and decreased secretion of the cytokines interferon-gamma and tumor necrosis factor-alpha. Mechanistically, these effects are associated with an increase in SOCS-3 levels and a decrease in NF-kappaB. Our results point to a potential therapeutic modality, in which a compound derived from an endogenous CNS-resident molecule, known for its destructive role in CNS recovery, might be helpful in overcoming inflammation-induced neurodegenerative conditions. PMID:16396993

  15. Recovery of ammonia and sulfate from waste streams and bioenergy production via bipolar bioelectrodialysis

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    to recover ammonia and sulfate from waste streams and thereby counteracting their toxicity during anaerobic digestion. Furthermore, hydrogen production and wastewater treatment were also accomplished. At an applied voltage of 1.2 V, nitrogen and sulfate fluxes of 5.1 g View the MathML sourceNH4+-N/m2/d......Ammonia and sulfate, which are prevalent pollutants in agricultural and industrial wastewaters, can cause serious inhibition in several biological treatment processes, such as anaerobic digestion. In this study, a novel bioelectrochemical approach termed bipolar bioelectrodialysis was developed...... bioelectrodialysis was successfully demonstrated with cattle manure. The results provide new possibilities for development of cost-effective technologies, capable of waste resources recovery and renewable energy production....

  16. Seasonal variations of oxygen-18 in atmospheric sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Holt, B.D.; Cunningham, P.T.; Kumar, R.

    1979-01-01

    Oxygen-isotope analyses were made on samples of aerosol sulfates, SO/sub 2/, water vapor, precipitation water, and precipitation sulfates collected over a two-year period near Chicago, Illinois, USA. The purpose of this isotopic study was to help to elucidate the mechanisms of sulfate formation in the atmosphere. Oxygen-18 enrichments in precipitation sulfates varied seasonally and in phase with the corresponding enrichments in precipitation water. The ratio of the amplitudes of the enrichment-vs-time curves indicated isotopic equilibration between SO/sub 2/ and atmospheric water prior to oxidation. Oxygen-18 enrichments in aerosol sulfates appeared to vary randomly with season, but averaged about the same as precipitation sulfates. If aerosol sulfates and precipitation sulfates were formed by the same hydrolysis-oxidation mechanism in clouds, relatively long residence times and transport distances of sulfate aerosols may have provided sufficient mixing to obscure seasonal effects such as were observed in the short-residence precipitation sulfates.

  17. Anaerobic biodegradation of soybean biodiesel and diesel blends under sulfate-reducing conditions.

    Science.gov (United States)

    Wu, Shuyun; Yassine, Mohamad H; Suidan, Makram T; Venosa, Albert D

    2016-10-01

    Biotransformation of soybean biodiesel and its biodiesel/petrodiesel blends were investigated under sulfate-reducing conditions. Three blends of biodiesel, B100, B50, and B0, were treated using microbial cultures pre-acclimated to B100 (biodiesel only) and B80 (80% biodiesel and 20% petrodiesel). Results indicate that the biodiesel could be effectively biodegraded in the presence or absence of petrodiesel, whereas petrodiesel could not be biodegraded at all under sulfate-reducing conditions. The kinetics of biodegradation of individual Fatty Acid Methyl Ester (FAME) compounds and their accompanying sulfate-reduction rates were studied using a serum bottle test. As for the biodegradation of individual FAME compounds, the biodegradation rates for the saturated FAMEs decreased with increasing carbon chain length. For unsaturated FAMEs, biodegradation rates increased with increasing number of double bonds. The presence of petrodiesel had a greater effect on the rate of biodegradation of biodiesel than on the extent of removal. PMID:27448319

  18. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.L. (Sandia Labs., Albuquerque, NM); Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  19. Optimization of Electrical Methods for Sub -surface Monitoring of Biological Contamination: From Micro-scale to Macroscopic one through Sub-micrometric Topographic and Electrochemical Studies of Oxydation/Reduction Processes Provoked by Bacteria

    Science.gov (United States)

    Dhahri, S.; Marliere, C.

    2012-12-01

    The presence of biological matter (bacteria) in deep geological sites for storage of, for instance, radioactive elements or groundwater in aquifers was clearly proved. That biomass triggers physical and chemical processes which greatly modify the durability and the sustainability of the storage sites. These processes, mainly from oxidative/reductive reactions, are poorly understood. This is mainly due to the fact that former studies were done at the macroscopic level far away from the micrometric scale where relevant processes induced by bacteria take place. Investigations at microscopic level are needed. Thus, we developed an experimental set -up based on the combined use of optical microscopy (epifluorescence and transmission), atomic force microscopy (AFM) and scanning electro -chemical microscopy (SECM) in order to get simultaneous information on topographic and electro -chemical processes at different length scales. The first highly sensitive step was to use AFM and optical microscopy with biological samples in liquid environment: We will present a new, non -perturbative method for imaging bacteria in their natural liquid environment using AFM. No immobilization protocol, neither chemical nor mechanical, is needed, contrary to what has been regarded till now as essential. Furthermore we were able to follow the natural gliding movements of bacteria, directly proving their living state during the AFM investigation: we thus directly prove the low impact of these breakthrough AFM observations on the native behavior of the bacteria. The second delicate step was to combine AFM and optical measurements with electrical ones. We mounted a new experimental set-up coupling real -time (i) monitoring of optical properties as the optical density (OD) evolution related to bulk bacterial growth in liquid or as the counting of number of bacteria adhering on the surface of the sample as well and (ii) electrical and electrochemical measurements. We thus will present results on

  20. The potential for biologically catalyzed anaerobic methane oxidation on ancient Mars.

    Science.gov (United States)

    Marlow, Jeffrey J; Larowe, Douglas E; Ehlmann, Bethany L; Amend, Jan P; Orphan, Victoria J

    2014-04-01

    This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO2 partial pressures. In all scenarios, AOM is exergonic, ranging from -31 to -135 kJ/mol CH4. A reaction transport model was constructed to examine how environmentally relevant parameters such as advection velocity, reactant concentrations, and biomass production rate affect the spatial and temporal dependences of AOM reaction rates. Two geologically supported models for ancient martian AOM are presented: a sulfate-rich groundwater with methane produced from serpentinization by-products, and acid-sulfate fluids with methane from basalt alteration. The simulations presented in this study indicate that AOM could have been a feasible metabolism on ancient Mars, and fossil or isotopic evidence of this metabolic pathway may persist beneath the surface and in surface exposures of eroded ancient terrains.

  1. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin zinc-polymyxin B sulfate-neomycin... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... of neomycin sulfate (equivalent to 3.5 milligrams of neomycin base), and 10 milligrams...

  2. Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry.

    Science.gov (United States)

    Gana, Mohamed Lamine; Kebbouche-Gana, Salima; Touzi, Abdelkader; Zorgani, Mohamed Amine; Pauss, André; Lounici, Hakim; Mameri, Nabil

    2011-03-01

    The present study enlightens the role of the antagonistic potential of nonpathogenic strain B21 against sulfate-reducing bacteria (SRB) consortium. The inhibitor effects of strain B21 were compared with those of the chemical biocide tetrakishydroxymethylphosphonium sulfate (THPS), generally used in the petroleum industry. The biological inhibitor exhibited much better and effective performance. Growth of SRB in coculture with bacteria strain B21 antagonist exhibited decline in SRB growth, reduction in production of sulfides, with consumption of sulfate. The observed effect seems more important in comparison with the effect caused by the tested biocide (THPS). Strain B21, a dominant facultative aerobic species, has salt growth requirement always above 5% (w/v) salts with optimal concentration of 10-15%. Phylogenetic analysis based on partial 16S rRNA gene sequences showed that strain B21 is a member of the genus Bacillus, being most closely related to Bacillus qingdaonensis DQ115802 (94.0% sequence similarity), Bacillus aidingensis DQ504377 (94.0%), and Bacillus salarius AY667494 (92.2%). Comparative analysis of partial 16S rRNA gene sequence data plus physiological, biochemical, and phenotypic features of the novel isolate and related species of Bacillus indicated that strain B21 may represent a novel species within the genus Bacillus, named Bacillus sp. (EMBL, FR671419). The results of this study indicate the application potential of Bacillus strain B21 as a biocontrol agent to fight corrosion in the oil industry.

  3. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  4. Bioinformatics comparison of sulfate-reducing metabolism nucleotide sequences

    Science.gov (United States)

    Tremberger, G.; Dehipawala, Sunil; Nguyen, A.; Cheung, E.; Sullivan, R.; Holden, T.; Lieberman, D.; Cheung, T.

    2015-09-01

    The sulfate-reducing bacteria can be traced back to 3.5 billion years ago. The thermodynamics details of the sulfur cycle have been well documented. A recent sulfate-reducing bacteria report (Robator, Jungbluth, et al , 2015 Jan, Front. Microbiol) with Genbank nucleotide data has been analyzed in terms of the sulfite reductase (dsrAB) via fractal dimension and entropy values. Comparison to oil field sulfate-reducing sequences was included. The AUCG translational mass fractal dimension versus ATCG transcriptional mass fractal dimension for the low temperature dsrB and dsrA sequences reported in Reference Thirteen shows correlation R-sq ~ 0.79 , with a probably of about 3% in simulation. A recent report of using Cystathionine gamma-lyase sequence to produce CdS quantum dot in a biological method, where the sulfur is reduced just like in the H2S production process, was included for comparison. The AUCG mass fractal dimension versus ATCG mass fractal dimension for the Cystathionine gamma-lyase sequences was found to have R-sq of 0.72, similar to the low temperature dissimilatory sulfite reductase dsr group with 3% probability, in contrary to the oil field group having R-sq ~ 0.94, a high probable outcome in the simulation. The other two simulation histograms, namely, fractal dimension versus entropy R-sq outcome values, and di-nucleotide entropy versus mono-nucleotide entropy R-sq outcome values are also discussed in the data analysis focusing on low probability outcomes.

  5. Repeated production of hydrogen by sulfate re-addition in sulfur deprived culture of Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Pyo; Kim, Kyoung-Rok; Choi, Seung Phill; Sim, Sang Jun [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Han, Se Jong [Polar BioCenter, Korea Polar Research Institute, KORDI, Incheon 406-840 (Korea, Republic of); Kim, Mi Sun [Biomass Research Team, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of)

    2010-12-15

    Biological hydrogen production by the green alga, Chlamydomonas reinhardtii can be induced in conditions of sulfur deprivation. In this study, we investigated the repeated and enhanced hydrogen production afforded by the re-addition of sulfate with monitoring of pH and concentration of chlorophyll and sulfate. Without adjustment of the pH, the optimal concentration of re-added sulfate was 30 {mu}M for the hydrogen production. By the re-addition of 30 {mu}M of sulfate and the adjustment of the pH during 4 cycles of repeated production, we obtained the maximum amount of 789 ml H{sub 2} l{sup -1} culture, which is 3.4 times higher than that of one batch production without adjustment of pH, 236 ml H{sub 2} l{sup -1} culture. This means that the enhancement of the hydrogen production can be achieved by the careful control of the sulfate re-addition and pH adjustment in the sulfur deprived culture. (author)

  6. Temperature dependence of crystals conductivity both potassium sulfates and ammonium sulfates

    International Nuclear Information System (INIS)

    In the work the results of temperature dependence of conductivity of crystals both potassium sulfate and ammonium sulfate are given. The superficial specific conductivity and its dependence on width of a backlash between the central and ring electrodes are determined. (author)

  7. Solubility in aqueous system of potassium sulfate, cadmium sulfate at 50 deg C

    International Nuclear Information System (INIS)

    Solubility in system potassium sulfate-cadmium sulfate-water at 50 deg C is studied using isothermal method. Crystallization limits of K2SO4, CdSO4x8/3H2O double salt 2K2SO4x2CdSO4x3H2O at 50 deg C are determined

  8. Getting the most sulfate from soil: Regulation of sulfate uptake transporters in Arabidopsis.

    Science.gov (United States)

    Rouached, Hatem; Secco, David; Arpat, A Bulak

    2009-06-01

    Sulfur (S) is an essential macronutrient for all living organisms. Plants require large amounts of sulfate for growth and development, and this serves as a major entry point of sulfate into the food web. Plants acquire S in its ionic form from the soil; they have evolved tightly controlled mechanisms for the regulation of sulfate uptake in response to its external and internal availability. In the model plant Arabidopsis thaliana, the first key step in sulfate uptake is presumed to be carried out exclusively by only two high-affinity sulfate transporters: SULTR1;1 and SULTR1;2. A better understanding of the mode of regulation for these two transporters is crucial because they constitute the first determinative step in balancing sulfate in respect to its supply and demand. Here, we review the recent progress achieved in our comprehension of (i) mechanisms that regulate these two high-affinity sulfate transporters at the transcriptional and post-transcriptional levels, and (ii) their structure-function relationship. Such progress is important to enable biotechnological and agronomic strategies aimed at enhancing sulfate uptake and improving crop yield in S-deficient soils. PMID:19375816

  9. The dermatan sulfate proteoglycan decorin modulates α2β1 integrin and the vimentin intermediate filament system during collagen synthesis.

    Directory of Open Access Journals (Sweden)

    Oliver Jungmann

    Full Text Available Decorin, a small leucine-rich proteoglycan harboring a dermatan sulfate chain at its N-terminus, is involved in regulating matrix organization and cell signaling. Loss of the dermatan sulfate of decorin leads to an Ehlers-Danlos syndrome characterized by delayed wound healing. Decorin-null (Dcn(-/- mice display a phenotype similar to that of EDS patients. The fibrillar collagen phenotype of Dcn(-/- mice could be rescued in vitro by decorin but not with decorin lacking the glycosaminoglycan chain. We utilized a 3D cell culture model to investigate the impact of the altered extracellular matrix on Dcn(-/- fibroblasts. Using 2D gel electrophoresis followed by mass spectrometry, we identified vimentin as one of the proteins that was differentially upregulated by the presence of decorin. We discovered that a decorin-deficient matrix leads to abnormal nuclear morphology in the Dcn(-/- fibroblasts. This phenotype could be rescued by the decorin proteoglycan but less efficiently by the decorin protein core. Decorin treatment led to a significant reduction of the α2β1 integrin at day 6 in Dcn(-/- fibroblasts, whereas the protein core had no effect on β1. Interestingly, only the decorin core induced mRNA synthesis, phosphorylation and de novo synthesis of vimentin indicating that the proteoglycan decorin in the extracellular matrix stabilizes the vimentin intermediate filament system. We could support these results in vivo, because the dermis of wild-type mice have more vimentin and less β1 integrin compared to Dcn(-/-. Furthermore, the α2β1 null fibroblasts also showed a reduced amount of vimentin compared to wild-type. These data show for the first time that decorin has an impact on the biology of α2β1 integrin and the vimentin intermediate filament system. Moreover, our findings provide a mechanistic explanation for the reported defects in wound healing associated with the Dcn(-/- phenotype.

  10. Extension of anaerobic digestion model no. 1 with the processes of sulphate reduction

    NARCIS (Netherlands)

    Fedorovich, V.; Lens, P.N.L.; Kalyuzhnyi, S.

    2003-01-01

    In the present work, the Anaerobic Digestion Model No. 1 (ADM1) for computer simulation of anaerobic processes was extended to the processes of sulfate reduction. The upgrade maintained the structure of ADM1 and included additional blocks describing sulfate-reducing processes (multiple reaction stoi

  11. Characterization of the sulfate uptake and assimilation pathway from Xanthomonas citri - targets for bacterial growth inhibitors

    International Nuclear Information System (INIS)

    Full text: Microorganisms require sulfur for growth and obtain it either for inorganic sulfate or organosulfur compounds. ATP-Binding Cassete (SulT family) or major facilitator superfamily-type (SulP) transporters are responsible for the sulfate transport into the cell. In Xanthomonas citri, the phytopathogenic bacterium that causes the canker citrus disease, there are no reports related to the importance of these transporters during in vitro or in vivo infection. We identified in X. citri genome all the genes that belong to the well-characterized cys regulon from Escherichia coli and Salmonella typhimurium, which includes three ABC transporters and all the enzymes necessary for sulfate oxide reduction to sulfide and cysteine. Once these genes have been shown to be extremely important for bacteria growth and development in different environments, we chose the sbpcysWUA and cysDNCHIJG operons, which encodes the ABC inorganic sulfate ABC transporter and all the enzymes necessary for conversion of sulfate in cysteine, respectively. As a step for crystallization trials and resolution of their tridimensional structures, the referred genes were amplified and cloned into the cloning vector pGEM T-easy. In addition, using bioinformatics tools and molecular modeling we characterized all the protein functions as well as built tridimensional models of their structure for determination of the active sites. The importance of each protein is discussed aiming the discovery of a good target for development of inhibitors that could block the bacterium growth. (author)

  12. Characterization of the sulfate uptake and assimilation pathway from Xanthomonas citri - targets for bacterial growth inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Tambascia, C.; Balan, A. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil)

    2012-07-01

    Full text: Microorganisms require sulfur for growth and obtain it either for inorganic sulfate or organosulfur compounds. ATP-Binding Cassete (SulT family) or major facilitator superfamily-type (SulP) transporters are responsible for the sulfate transport into the cell. In Xanthomonas citri, the phytopathogenic bacterium that causes the canker citrus disease, there are no reports related to the importance of these transporters during in vitro or in vivo infection. We identified in X. citri genome all the genes that belong to the well-characterized cys regulon from Escherichia coli and Salmonella typhimurium, which includes three ABC transporters and all the enzymes necessary for sulfate oxide reduction to sulfide and cysteine. Once these genes have been shown to be extremely important for bacteria growth and development in different environments, we chose the sbpcysWUA and cysDNCHIJG operons, which encodes the ABC inorganic sulfate ABC transporter and all the enzymes necessary for conversion of sulfate in cysteine, respectively. As a step for crystallization trials and resolution of their tridimensional structures, the referred genes were amplified and cloned into the cloning vector pGEM T-easy. In addition, using bioinformatics tools and molecular modeling we characterized all the protein functions as well as built tridimensional models of their structure for determination of the active sites. The importance of each protein is discussed aiming the discovery of a good target for development of inhibitors that could block the bacterium growth. (author)

  13. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  14. Seasonal and event variations in δ34S values of stream sulfate in a Vermont forested catchment: Implications for sulfur sources and cycling

    Science.gov (United States)

    Shanley, James B.; Mayer, Bernhard; Mitchell, Myron J.; Bailey, Scott W.

    2008-01-01

    Stable sulfur (S) isotope ratios can be used to identify the sources of sulfate contributing to streamwater. We collected weekly and high-flow stream samples for S isotopic analysis of sulfate through the entire water year 2003 plus the snowmelt period of 2004. The study area was the 41-ha forested W-9 catchment at Sleepers River Research Watershed, Vermont, a site known to produce sulfate from weathering of sulfide minerals in the bedrock. The δ34S values of streamwater sulfate followed an annual sinusoidal pattern ranging from about 6.5‰ in early spring to about 10‰ in early fall. During high-flow events, δ34S values typically decreased by 1 to 3‰ from the prevailing seasonal value. The isotopic evidence suggests that stream sulfate concentrations are controlled by: (1) an overall dominance of bedrock-derived sulfate (δ34S ~ 6–14‰); (2) contributions of pedogenic sulfate (δ34S ~ 5–6‰) during snowmelt and storms with progressively diminishing contributions during base flow recession; and (3) minor effects of dissimilatory bacterial sulfate reduction and subsequent reoxidation of sulfides. Bedrock should not be overlooked as a source of S in catchment sulfate budgets.

  15. Grafting of dermatan sulfate on polyethylene terephtalate to enhance biointegration.

    Science.gov (United States)

    Dhahri, Manel; Abed, Aicha; Lajimi, Ramzi Hadj; Mansour, Mohamed Ben; Gueguen, Virginie; Abdesselem, Saber Ben; Chaubet, Frederic; Letourneur, Didier; Meddahi-Pellé, Anne; Maaroufi, Raoui M

    2011-07-01

    The aim of the present study was to achieve the immobilization of dermatan sulfate (DS) on polyethylene terephthalate (PET) surfaces and to evaluate its biocompatibility. DS obtained from the skin of Scyliorhinus canicula shark was immobilized via carbodiimide on knitted PET fabrics, modified with carboxyl groups. PET-DS characterization was performed by SEM, ATR-FTIR and contact angle measurements. Biocompatibility was evaluated by investigating plasma protein adsorption and endothelial cell proliferation, as well as by subcutaneous implantations in rats. The results indicated that DS immobilization on PET was achieved at ~8 μg/cm². ATR-FTIR evidenced the presence of sulfate groups on the PET surface. In turn, contact angle measurements indicated an increase in the surface wettability. DS immobilization increased albumin adsorption on the PET surface, whereas it decreased that of fibrinogen. In vitro cell culture revealed that endothelial cell proliferation was also enhanced on PET-DS. Histological results after 15 days of subcutaneous implantation showed a better integration of PET-DS samples in comparison to those of nonmodified PET. In summary, DS was successfully grafted onto the surface of PET, providing it new physicochemical characteristics and biological properties for PET, thus enhancing its biointegration. PMID:21548062

  16. Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change

    Directory of Open Access Journals (Sweden)

    Michael ePester

    2012-02-01

    Full Text Available Freshwater wetlands are a major source of the greenhouse gas methane but at the same time can function as carbon sink. Their response to global warming and environmental pollution is one of the largest unknowns in the upcoming decades to centuries. In this review, we highlight the role of sulfate-reducing microorganisms (SRM in the intertwined element cycles of wetlands. Although regarded primarily as methanogenic environments, biogeochemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction, which frequently occurs at rates comparable to marine surface sediments, can contribute up to 36–50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduction is thermodynamically favored relative to fermentative processes and methanogenesis, it effectively decreases gross methane production thereby mitigating the flux of methane to the atmosphere. However, very little is known about wetland SRM. Molecular analyses using dsrAB [encoding subunit A and B of the dissimilatory (bisulfite reductase] as marker genes demonstrated that members of novel phylogenetic lineages, which are unrelated to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the dsrAB-containing wetland microbiota. These discoveries point towards the existence of so far unknown SRM that are an important part of the autochthonous wetland microbiota. In addition to these numerically dominant microorganisms, a recent stable isotope probing study of SRM in a German peatland indicated that rare biosphere members might be highly active in situ and have a considerable stake in wetland sulfate reduction. The hidden sulfur cycle in wetlands and the fact that wetland SRM are not well represented by described SRM species explains their so far neglected role as important actors in carbon cycling and climate change.

  17. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, KG Kristoffer

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dyes, followed by aerobic transfo...

  18. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  19. New insights into the transport processes controlling the sulfate-methane-transition-zone near methane vents

    Science.gov (United States)

    Sultan, Nabil; Garziglia, Sébastien; Ruffine, Livio

    2016-05-01

    Over the past years, several studies have raised concerns about the possible interactions between methane hydrate decomposition and external change. To carry out such an investigation, it is essential to characterize the baseline dynamics of gas hydrate systems related to natural geological and sedimentary processes. This is usually treated through the analysis of sulfate-reduction coupled to anaerobic oxidation of methane (AOM). Here, we model sulfate reduction coupled with AOM as a two-dimensional (2D) problem including, advective and diffusive transport. This is applied to a case study from a deep-water site off Nigeria’s coast where lateral methane advection through turbidite layers was suspected. We show by analyzing the acquired data in combination with computational modeling that a two-dimensional approach is able to accurately describe the recent past dynamics of such a complex natural system. Our results show that the sulfate-methane-transition-zone (SMTZ) is not a vertical barrier for dissolved sulfate and methane. We also show that such a modeling is able to assess short timescale variations in the order of decades to centuries.

  20. Impacts of Alkalinity Drops on Shifting of Functional Sulfate-Reducers in a Sulfate-Reducing Bioreactor Characterized by FISH%FISH技术监测硫酸盐还原反应器中碱度降低对功能微生物群落的影响

    Institute of Scientific and Technical Information of China (English)

    赵阳国; 王爱杰; 任南琪; 赵秋实; ZADSAR Maryam

    2007-01-01

    Alkalinity is one of the most important parameters that influence microbial metabolism and activity during sulfate-laden wastewater biological treatment.To comprehensively understand the structure and dynamics of functional microbial community under alkalinity changes in sulfate-reducing continuous stirred tank reactor (CSTR),fluorescent in situ hybridization (FISH) technique was selected for qualitative and semi-quantitative analysis of functional microbial compositions in activated sludge.During 93d of bioreactor operation,the influent alkalinity was adjusted by adding sodium bicarbonate from 4000mg·L-1 down to 3000mg·L-1,then to 1500mg·L-1,whereas other parameters,such as the loading rates of chemical oxygen demand (COD) and sulfate (SO2-4),hydraulic retention time (HRT),and pH value,were continuously maintained at 24g·L-1·d-1 and 4.8g·L-1·d-1,10h,and about 6.7,respectively.Sludge samples were collected during different alkalinity levels,and total Bacteria,the sulfate-reducing bacteria (SRB),and four SRB genera were demonstrated with 16S ribosomal RNA-targeted oligonucleotide probes.The results indicated that bioreactor started-up successfully in 30d.The two instances of drop in alkalinity resulted in the fluctuation of sulfate removal rate.The diversity of SRB community showed significant shift,and the alteration of microbial community directly resulted in the corresponding statuses of bioreactor.The dominant genera during the bioreactor start-up and alkalinity drops were Desulfovibrio,Desulfobacter,Desulfovibrio,Desulfobacler,and Desulfovibrio,respectively.In addition,the acetotrophic SRB suffered more from the reduction of alkalinity than the non-acetotrophic SRB.This strategy can present the functional microbial community structure during start-up and alkalinity drop stages,and provides a powerful theoretical guideline for optimization and adjustment of bioreactor,as well.

  1. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatán, Mexico

    Science.gov (United States)

    Chuang, Pei-Chuan; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina

    2016-05-01

    Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m-2 d-1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42- m-2 d-1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.

  2. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  3. Source apportionment of sulfate and nitrate particulate matter in the Eastern United States and effectiveness of emission control programs.

    Science.gov (United States)

    Zhang, Hongliang; Hu, Jianlin; Kleeman, Michael; Ying, Qi

    2014-08-15

    Reducing population exposure to PM2.5 in the eastern US will require control of secondary sulfate and nitrate. A source-oriented Community Multi-scale Air Quality (CMAQ) model is used to determine contributions of major emission sources to nitrate and sulfate concentrations in the seven eastern US cities (New York City, Pittsburgh, Baltimore, Chicago, Detroit, St. Paul, and Winston-Salem) in January and August of 2000 and 2006. Identified major nitrate sources include on-road gasoline-powered vehicles, diesel engines, natural gas and coal combustion. From 2000 to 2006, January nitrate concentrations decreased by 25-68% for all the seven cities. On average, ~53% of this change was caused by emissions controls while 47% was caused by meteorology variations. August nitrate concentrations decreased by a maximum of 68% in New York City but Detroit experienced increasing August nitrate concentrations by up to 33%. On average, ~33% of the reduction in nitrate is offset by increases associated with meteorological conditions that favor nitrate formation. Coal combustion and natural gas are the dominant sources for sulfate in both seasons. January sulfate decrease from 2000 to 2006 in all cities by 4-58% except New York City, which increases by 13%. On average, ~93% of the reduction in sulfate was attributed to emission controls with 7% associated with changes in meteorology. August sulfate concentrations decrease by 11-44% in all cities. On average, emission controls alone between 2000 and 2006 would have caused 6% more reduction but the effectiveness of the controls was mitigated by meteorology conditions more favorable to sulfate production in 2006 vs. 2000. The results of this study suggest that regional emissions controls between 2000 and 2006 have been effective at reducing population exposure to PM2.5 in the eastern US, but yearly variations in meteorology must be carefully considered when assessing the exact magnitude of the control benefits.

  4. 高维生物学数据两阶段组合降维策略研究%Two-stage Combinational Dimension Reduction Strategy for Analyzing High-dimensional Data in Biology Field

    Institute of Scientific and Technical Information of China (English)

    荀鹏程; 钱国华; 赵杨; 于浩; 陈峰

    2012-01-01

    目的 探讨高维生物学数据的多阶段组合降维策略.方法 以微阵列数据的判别分析为例,采用实际数据和模拟数据相结合的方法,提出“初步选维→进一步降维”的两阶段组合降维策略,并与后续的“判别→验证”相结合,形成了“选维→降维→判别→验证”的判别分析思路.以后续判别分析的预测效果、预测结果的稳定性与敏感性等为指标,对2种单一降维( PCA,PLS)方法和4种组合降维方法(PCA+ SIR、PCA+SAVE、PLS+ SIR和PLS+ SAVE)进行了考察.结果 从判别模型的预测效果、预测结果的稳定性及敏感性来看,PLS优于PCA,PLS+ SIR/SAVE的组合降维效果更佳.结论 用t计分法选维,以“PLS+SIR/SAVE”法进行降维的两阶段组合降维策略,对于微阵列数据判别分析,是实用的、可行的.%Objective To explore multi-stage combinational dimension reduction strategy for analyzing high-dimensional data in biology field. Methods Two-stage combinational strategy incorporated in a four-step procedure,i.e. "variable pre-selection→ further dimensionality reduction→discrimination→validation" ,was put forward and applied to publicly available microarray data as well as simulated ones. In this process,the relative performances of six dimension reduction methods, including PCA, PLS、 PCA + SIR、PCA + SAVE 、PLS + SIR and PLS + SAVE, were evaluated. Results Considering the prediction quality,the stability of the prediction results as well as the sensitivity to the number of genes: (1) PLS performed was superior to PCA; (2) PLS + SIR or PLS + SAVE performed much better than other methods. Conclusion The results indicate that two stage combinational strategy proposed,i. e. variable pre-selection based on t-scores followed by PLS + SIR or PLS + SAVE, is feasible and practical in the discriminate analysis for microarray data.

  5. Anti HSV-1 Activity of Halistanol Sulfate and Halistanol Sulfate C Isolated from Brazilian Marine Sponge Petromica citrina (Demospongiae

    Directory of Open Access Journals (Sweden)

    Cláudia Maria Oliveira Simões

    2013-10-01

    Full Text Available The n-butanol fraction (BF obtained from the crude extract of the marine sponge Petromica citrina, the halistanol-enriched fraction (TSH fraction, and the isolated compounds halistanol sulfate (1 and halistanol sulfate C (2, were evaluated for their inhibitory effects on the replication of the Herpes Simplex Virus type 1 (HSV-1, KOS strain by the viral plaque number reduction assay. The TSH fraction was the most effective against HSV-1 replication (SI = 15.33, whereas compounds 1 (SI = 2.46 and 2 (SI = 1.95 were less active. The most active fraction and these compounds were also assayed to determine the viral multiplication step(s upon which they act as well as their potential synergistic effects. The anti-HSV-1 activity detected was mediated by the inhibition of virus attachment and by the penetration into Vero cells, the virucidal effect on virus particles, and by the impairment in levels of ICP27 and gD proteins of HSV-1. In summary, these results suggest that the anti-HSV-1 activity of TSH fraction detected is possibly related to the synergic effects of compounds 1 and 2.

  6. On the evaporation of ammonium sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  7. On the evaporation of ammonium sulfate solution.

    Science.gov (United States)

    Drisdell, Walter S; Saykally, Richard J; Cohen, Ronald C

    2009-11-10

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 +/- 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly. PMID:19861551

  8. The Effect of Temperature and Hydrogen Limited Growth on the Fractionation of Sulfur Isotopes by Thermodesulfatator indicus, a Deep-sea Hydrothermal Vent Sulfate-Reducing Bacterium

    Science.gov (United States)

    Hoek, J.; Reysenbach, A.; Habicht, K.; Canfield, D. E.

    2004-12-01

    Sulfate-reducing bacteria fractionate sulfur isotopes during dissimilatory sulfate reduction, producing sulfide depleted in 34S. Although isotope fractionation during sulfate reduction of pure cultures has been extensively studied, most of the research to date has focused on mesophilic sulfate reducers, particularly for the species Desulfovibrio desulfuricans. Results from these studies show that: 1) fractionations range from 3-46‰ with an average around 18‰ , 2) when organic electron donors are utilized, the extent of fractionation is dependent on the rate of sulfate reduction, with decreasing fractionations observed with higher specific rates, 3) fractionations are suppressed with low sulfate concentrations, and when hydrogen is used as the electron donor. High specific sulfate-reduction rates are encountered when sulfate-reducing bacteria metabolize at their optimal temperature and under non-limiting substrate conditions. Changes in both temperature and substrate availability could shift fractionations from those expressed under optimal growth conditions. Sulfate reducers may frequently experience substrate limitation and sub-optimal growth temperatures in the environment. Therefore it is important to understand how sulfate-reducing bacteria fractionate sulfur isotopes under conditions that more closely resemble the restrictions imposed by the environment. In this study the fractionation of sulfur isotopes by Thermodesulfatator indicus was explored during sulfate reduction under a wide range of temperatures and with both hydrogen-saturating and hydrogen-limited conditions. T. indicus is a thermophilic (temperature optimum = 70° C) chemolithotrophic sulfate-reducing bacterium, which was recently isolated from a deep-sea hydrothermal vent on the Central Indian Ridge. This bacterium represents the type species of a new genus and to date is the most deeply branching sulfate-reducing bacterium known. T. indicus was grown in carbonate-buffered salt-water medium

  9. Regeneration of sulfated limestone from FBCs. Quarterly report, January-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, I.; Chopra, O.K.; Lenc, J.F.; Moulton, D.S.; Nunes, F.F.; Smith, G.W.; Smyk, E.B.; Jonke, A.A.

    1979-01-01

    These studies support the national development program in fluidized-bed combustion. The objective of this program is to develop an economically acceptable process for the regeneration of the partly sulfated limestone product of a fluidized-bed coal combustor, and to obtain the design data needed for the construction of larger regenerators. This report presents information on: a thermodynamic analysis of the one-step reductive decomposition regeneration process, an evaluation of a regeneration process using a rotary kiln, and the use of fly ash for the reduction of gaseous SO/sub 2/ elemental sulfur. In the previous year, studies of the effect of limestone sulfation-enhancement agents (e.g., NaCl and CaCl/sub 2/) on corrosion of FBC structural materials were described. Results of these tests are reported here.

  10. Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov.

    NARCIS (Netherlands)

    D.Y. Sorokin; T.P. Tourova; T.V. Kolganova; E.N. Detkova; E.A. Galinski; G. Muyzer

    2011-01-01

    Soda lake sediments usually contain high concentrations of sulfide indicating active sulfate reduction. Monitoring of sulfate-reducing bacteria (SRB) in soda lakes demonstrated a dominance of two groups of culturable SRB belonging to the order Desulfovibrionales specialized in utilization of inorgan

  11. Flavoproteins, iron proteins, and hemoproteins as electron-transfer components of the sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    LeGall, J. (Centre National de la Recherche Scientifique, Marseille, France); DerVartanian, D.V.; Peck, H.D. Jr.

    1979-01-01

    This review article with 105 references discusses the most recent publications that deal with the discovery of new redox proteins of the sulfate-reducing bacteria belonging to the genera Desulfotomaculum and Desulfovibrio and proposes explanations for their physical and biological functions. The redox proteins studied as part of the electron-transfer system of these bacteria include flavodoxins, ferredoxins, rubredoxins, cytochromes and several reductose-type enzymes. (KRM)

  12. Potential antioxidant and chemical characterization of sulfated polysaccharide from the red seaweed (Gracilaria birdiae)

    OpenAIRE

    B.W.S. Souza; Cerqueira, M. A.; Bourbon, A. I.; Pinheiro, A. C.; Martins, Joana; J.A. Teixeira; Vicente, A.A.

    2010-01-01

    There has been an increasing interest in biological activity of sulfated polysaccharides from marine algae due to alleged anticoagulant, antioxidant and antithrombotic activities. Marine red algae of the genus Gracilaria are a major agarophyte resource in the world and are cultivated for the phycocolloid industry or for integrated marineculture. In this work, a polysaccharide was isolated by an aqueous extraction from the red seaweed Gracilaria birdiae (Gb), with a yield of 27.2%. The sulf...

  13. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    OpenAIRE

    Zhou, Aifen

    2010-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gen...

  14. Development of Microarrays-Based Metagenomics Technology for Monitoring Sulfate-Reducing Bacteria in Subsurface Environments

    Energy Technology Data Exchange (ETDEWEB)

    Cindy, Shi

    2015-07-17

    At the contaminated DOE sites, sulfate-reducing bacteria (SRB) are a significant population and play an important role in the microbial community during biostimulation for metal reduction. However, the diversity, structure and dynamics of SRB communities are poorly understood. Therefore, this project aims to use high throughput sequencing-based metagenomics technologies for characterizing the diversity, structure, functions, and activities of SRB communities by developing genomic and bioinformatics tools to link the SRB biodiversity with ecosystem functioning.

  15. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  16. Radioprotective properties of the polysaccharide dextran sulfate

    International Nuclear Information System (INIS)

    Experiments have been conducted on mice-hydrides (SFUxS57BI)F1. Dextran sulfate (mol. w. 500000) has been injected once intraperitoneally at the dose of 60 mg/ml before exposure. The following conclusions are made: 1) highly molecular dextran sulfate injected during 1-3 days before exposure of mice at lethal doses of 9.57, 9 and 15.86 Gr at the corresponding dose rates of 8x10-3, 3x10-3 and 8x10-4 Gr/s increases radioresistance of animals increasing their 30 day survival up to 45-70%; 2) when injecting dextran sulfate a day before exposure increase of the organism radioresistance is followed by acceleration of postradiation restoration of the number of blood leukocytes, nucleus hearing cells of bone marrow and mass of spleen; 3) dextrain sulfate injected 3 days before irradiation does not produce any effect on expressiveness of postradiation leukopenia and bone marrow cytopenia

  17. Sulfate transport in Penicillium chrysogenum plasma membranes

    NARCIS (Netherlands)

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J.M.; Konings, Wil N.

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded th

  18. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF-4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF-4-MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF4. To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed

  19. Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the Peruvian margin

    Science.gov (United States)

    Maltby, J.; Sommer, S.; Dale, A. W.; Treude, T.

    2016-01-01

    We studied the concurrence of methanogenesis and sulfate reduction in surface sediments (0-25 cm below sea floor) at six stations (70, 145, 253, 407, 990 and 1024 m) along the Peruvian margin (12° S). This oceanographic region is characterized by high carbon export to the seafloor creating an extensive oxygen minimum zone (OMZ) on the shelf, both factors that could favor surface methanogenesis. Sediments sampled along the depth transect traversed areas of anoxic and oxic conditions in the bottom-near water. Net methane production (batch incubations) and sulfate reduction (35S-sulfate radiotracer incubation) were determined in the upper 0-25 cm b.s.f. of multiple cores from all stations, while deep hydrogenotrophic methanogenesis (> 30 cm b.s.f., 14C-bicarbonate radiotracer incubation) was determined in two gravity cores at selected sites (78 and 407 m). Furthermore, stimulation (methanol addition) and inhibition (molybdate addition) experiments were carried out to investigate the relationship between sulfate reduction and methanogenesis.Highest rates of methanogenesis and sulfate reduction in the surface sediments, integrated over 0-25 cm b.s.f., were observed on the shelf (70-253 m, 0.06-0.1 and 0.5-4.7 mmol m-2 d-1, respectively), while lowest rates were discovered at the deepest site (1024 m, 0.03 and 0.2 mmol m-2 d-1, respectively). The addition of methanol resulted in significantly higher surface methanogenesis activity, suggesting that the process was mostly based on non-competitive substrates - i.e., substrates not used by sulfate reducers. In the deeper sediment horizons, where competition was probably relieved due to the decrease of sulfate, the usage of competitive substrates was confirmed by the detection of hydrogenotrophic activity in the sulfate-depleted zone at the shallow shelf station (70 m).Surface methanogenesis appeared to be correlated to the availability of labile organic matter (C / N ratio) and organic carbon degradation (DIC production

  20. Field Tests of “In-Situ” Remediation of Groundwater From Dissolved Mercury Utilizing Sulfate Reducing Bacteria

    Science.gov (United States)

    Field tests of biologically active filters have been conducted at groundwater mercury pollution site in Pavlodar, Kazakhstan. The biofilters represented cultures of sulfate-reducing bacteria (SRB) immobilized on claydite imbedded in wells drilled down to basalt clay layer (14-17 ...