WorldWideScience

Sample records for biological stress response

  1. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    Science.gov (United States)

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  2. Orientational Polarizability and Stress Response of Biological Cells

    Science.gov (United States)

    Safran, S. A.; de, R.; Zemel, A.

    We present a theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes random forces as well as forces that arise from the deformation of the matrix and those due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate both the static and high frequency limits of the orientational response in terms of the cellular polarizability. For systems in which the forces due to regulation and activity dominate the mechanical forces, we show that there is a non-linear dynamical response which, in the high frequency limit, causes the cell to orient nearly perpendicular to the direction of the applied stress.

  3. Fungal stress biology: a preface to the Fungal Stress Responses special edition.

    Science.gov (United States)

    Rangel, Drauzio E N; Alder-Rangel, Alene; Dadachova, Ekaterina; Finlay, Roger D; Kupiec, Martin; Dijksterhuis, Jan; Braga, Gilberto U L; Corrochano, Luis M; Hallsworth, John E

    2015-08-01

    There is currently an urgent need to increase global food security, reverse the trends of increasing cancer rates, protect environmental health, and mitigate climate change. Toward these ends, it is imperative to improve soil health and crop productivity, reduce food spoilage, reduce pesticide usage by increasing the use of biological control, optimize bioremediation of polluted sites, and generate energy from sustainable sources such as biofuels. This review focuses on fungi that can help provide solutions to such problems. We discuss key aspects of fungal stress biology in the context of the papers published in this Special Issue of Current Genetics. This area of biology has relevance to pure and applied research on fungal (and indeed other) systems, including biological control of insect pests, roles of saprotrophic fungi in agriculture and forestry, mycotoxin contamination of the food-supply chain, optimization of microbial fermentations including those used for bioethanol production, plant pathology, the limits of life on Earth, and astrobiology.

  4. Victimization and Biological Stress Responses in Urban Adolescents: Emotion Regulation as a Moderator.

    Science.gov (United States)

    Kliewer, Wendy

    2016-09-01

    Associations between urban adolescents' victimization experiences and biological stress responses were examined, as well as emotion regulation as a moderator of these associations. Data from a 4-wave longitudinal study with a low-income, community-based sample (n = 242; 91 % African American; 57 % female; M = 11.98, SD = 1.56 years at baseline) revealed that victimization, assessed over 3 study waves, was associated with an attenuated cortisol response to a stress interview at the final study wave, indicating that responses of the Hypothalamus-Pituitary-Adrenal (HPA) axis were dysregulated. Cortisol responses were moderated by caregiver-reported adolescent emotion regulation, suggesting that this modifiable protective factor that is taught in many school-based prevention programs could help reduce harm associated with HPA axis dysregulation linked to victimization.

  5. Perception of Life as Stressful, Not Biological Response to Stress, Is Associated with Greater Social Disability in Adults with Autism Spectrum Disorder

    Science.gov (United States)

    Bishop-Fitzpatrick, Lauren; Minshew, Nancy J.; Mazefsky, Carla A.; Eack, Shaun M.

    2017-01-01

    This study examined differences between adults with autism spectrum disorder (ASD; N = 40) and typical community volunteers (N = 25) on measures of stressful life events, perceived stress, and biological stress response (cardiovascular and cortisol reactivity) during a novel social stress task. Additional analyses examined the relationship between…

  6. Beller Lectureship Talk: Active response of biological cells to mechanical stress

    Science.gov (United States)

    Safran, Samuel

    2009-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. We present a simple and generic theoretical model for the active response of biological cells to mechanical stress. The theory includes cell activity and mechanical forces as well as random forces as factors that determine the polarizability that relates cell orientation to stress. This allows us to explain the puzzling observation of parallel (or sometimes random) alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency and compare the theory with recent experiments. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material distinguishes cells whose activity is controlled by stress from those controlled by strain. We have extended the theory to generalize the treatment of elastic inclusions in solids to ''living'' inclusions (cells) whose active polarizability, analogous to the polarizability of non-living matter, results in the feedback of cellular forces that develop in response to matrix stresses. We use this to explain recent observations of the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. These findings provide a mechanical correlate for the existence of an optimal substrate elasticity for cell differentiation and function. [3pt] *In collaboration with R. De (Brown University), Y. Biton (Weizmann Institute), and A. Zemel (Hebrew University) and the experimental groups: Max Planck Institute, Stuttgart: S. Jungbauer, R. Kemkemer, J. Spatz; University of Pennsylvania: A. Brown, D. Discher, F. Rehfeldt.

  7. Effects of a supportive or an unsupportive audience on biological and psychological responses to stress.

    Science.gov (United States)

    Taylor, Shelley E; Seeman, Teresa E; Eisenberger, Naomi I; Kozanian, Tamar A; Moore, Amy N; Moons, Wesley G

    2010-01-01

    Although social support is related to substantial benefits for health and well-being, research has uncovered qualifications to its benefits. In a test of the psychological and biological impact of an audience on responses to laboratory stress challenges, 183 participants going through the Trier Social Stress Test experienced either (a) an unsupportive audience, (b) a supportive audience, or (c) no audience. Both audience conditions produced significantly stronger cortisol, heart rate, and blood pressure responses to the stress tasks, relative to the no-audience control, even though the supportive audience was rated as supportive. Contrary to hypotheses offered by several theories, these effects were not moderated by self-esteem, individual differences in psychological resources, or baseline social support. Psychological resources and baseline social support were, however, tied to more beneficial biological and psychological profiles at baseline and at recovery in some cases. It was concluded that when one must perform stressful tasks in front of an audience, evaluative concerns may outweigh the potential benefits of a supportive audience.

  8. BIological Psychology, Exercise, and Stress.

    Science.gov (United States)

    Dishman, Rod K.

    1994-01-01

    Reviews theory and methods used by the field of biological psychology to study stress that have potential for understanding how behavioral and biological adaptations to the stress of exercise are integrated. The overview focuses on anxiety, depression, and physiological responsiveness to nonexercise stressors from the perspective of biological…

  9. Biological stress responses to radio frequency electromagnetic radiation: are mobile phones really so (heat) shocking?

    Science.gov (United States)

    Cotgreave, Ian A

    2005-03-01

    Cells phenotypically adapt to alterations in their intra- and extracellular environment via organised alterations to gene and protein expression. Many chemical and physical stimuli are known to drive such responses, including the induction of oxidative stress and heat shock. Increasing use of mobile telephones in our society, has brought focus on the potential for radio frequency (microwave) electromagnetic radiation to elicit biological stress responses, in association with potentially detrimental effects of this to human health. Here we review evidence suggesting altered gene and protein expression in response to such emissions, with particular focus on heat shock proteins. Non-thermal induction of heat shock proteins has been claimed by a number of investigations in in vitro cellular systems, and appears pleiotropic for many other regulatory events. However, many of these studies are flawed by inconsistencies in exposure models, cell types used and the independent reproducibility of the findings. Further, the paucity of evidence from in vivo experimentation is largely contradictory. Therefore, the validity of these effects in human health risk assessment remain unsubstantiated. Where possible, suggestions for further experimental clarification have been provided.

  10. Biological stress responses induced by alpha radiation exposure in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoeck, A.; Horemans, N.; Van Hees, M.; Nauts, R. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Knapen, D.; Blust, R. [University of Antwerp (Belgium)

    2014-07-01

    To enhance the robustness of radiation protection criteria for biota, additional information on the biological impact of radionuclides on non-human biota is needed. In particular the effects of alpha emitting isotopes have been poorly studied within a radioecological contextual though they exhibit a high linear energy transfer which can cause significant biological damage when taken up by organisms. Therefore, it is not only essential to measure alpha radiation toxicity, but also try to understand the underlying mechanisms of this stressor. The current study aimed to contribute to a better knowledge of the fundamental processes regulating alpha radiation stress response mechanisms in higher plants. {sup 241}Am was primarily selected as it is an almost pure alpha emitter and, as a daughter nuclide of {sup 241}Pu, it will become one of the dominant pollutants in plutonium affected areas. The aquatic macrophyte Lemna minor has proven its value in eco-toxicological research as representative of higher aquatic plants (OECD guideline nr. 221) and will be used to analyze alpha radiation stress in plant systems. An individual growth inhibition test was set up by means of single dose-response curve in order to identify the Effective Dose Rates (EDR-values) for frond size and biomass. As the mean path length is small for alpha particles, the accumulation of the radionuclide inside species represents almost exclusively the dosimetry. Therefore, quantification of {sup 241}Am uptake and {sup 241}Am distribution were evaluated separately for roots and fronds taking the activity concentrations of growth medium into account. Taken together with the respective dose conversion coefficients from the ERICA tool, this allowed to construct an accurate dosimetric model to determine internal and external dose rates. Different standard media were tested on growth rate and biomass to analyse the amount of {sup 241}Am taken up by the plants exposed from 2.5 to 100 kBq/L. From these

  11. Molecular biology of the stress response in the early embryo and its stem cells.

    Science.gov (United States)

    Puscheck, Elizabeth E; Awonuga, Awoniyi O; Yang, Yu; Jiang, Zhongliang; Rappolee, Daniel A

    2015-01-01

    Stress is normal during early embryogenesis and transient, elevated stress is commonplace. Stress in the milieu of the peri-implantation embryo is a summation of maternal hormones, and other elements of the maternal milieu, that signal preparedness for development and implantation. Examples discussed here are leptin, adrenaline, cortisol, and progesterone. These hormones signal maternal nutritional status and provide energy, but also signal stress that diverts maternal and embryonic energy from an optimal embryonic developmental trajectory. These hormones communicate endocrine maternal effects and local embryonic effects although signaling mechanisms are not well understood. Other in vivo stresses affect the embryo such as local infection and inflammation, hypoxia, environmental toxins such as benzopyrene, dioxin, or metals, heat shock, and hyperosmotic stress due to dehydration or diabetes. In vitro, stresses include shear during handling, improper culture media and oxygen levels, cryopreservation, and manipulations of the embryo to introduce sperm or mitochondria. We define stress as any stimulus that slows stem cell accumulation or diminishes the ability of cells to produce normal and sufficient parenchymal products upon differentiation. Thus stress deflects downwards the normal trajectories of development, growth and differentiation. Typically stress is inversely proportional to embryonic developmental and proliferative rates, but can be proportional to induction of differentiation of stem cells in the peri-implantation embryo. When modeling stress it is most interesting to produce a 'runting model' where stress exposures slow accumulation but do not create excessive apoptosis or morbidity. Windows of stress sensitivity may occur when major new embryonic developmental programs require large amounts of energy and are exacerbated if nutritional flow decreases and removes energy from the normal developmental programs and stress responses. These windows correspond

  12. Principal response curves: analysis of time-dependent multivariate responses of biological community to stress

    NARCIS (Netherlands)

    Brink, van den P.J.; Braak, ter C.J.F.

    1999-01-01

    In this paper a novel multivariate method is proposed for the analysis of community response data from designed experiments repeatedly sampled in time. The long-term effects of the insecticide chlorpyrifos on the invertebrate community and the dissolved oxygen (DO)–pH–alkalinity–conductivity syndrom

  13. Chemistry and biology of reactive oxygen species in signaling or stress responses.

    Science.gov (United States)

    Dickinson, Bryan C; Chang, Christopher J

    2011-07-18

    Reactive oxygen species (ROS) are a family of molecules that are continuously generated, transformed and consumed in all living organisms as a consequence of aerobic life. The traditional view of these reactive oxygen metabolites is one of oxidative stress and damage that leads to decline of tissue and organ systems in aging and disease. However, emerging data show that ROS produced in certain situations can also contribute to physiology and increased fitness. This Perspective provides a focused discussion on what factors lead ROS molecules to become signal and/or stress agents, highlighting how increasing knowledge of the underlying chemistry of ROS can lead to advances in understanding their disparate contributions to biology. An important facet of this emerging area at the chemistry-biology interface is the development of new tools to study these small molecules and their reactivity in complex biological systems.

  14. Hypothalamic-pituitary-adrenal axis response to acute psychosocial stress: Effects of biological sex and circulating sex hormones.

    Science.gov (United States)

    Stephens, Mary Ann C; Mahon, Pamela B; McCaul, Mary E; Wand, Gary S

    2016-04-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis influences the risk for developing stress-related disorders. Sex-dependent differences in the HPA axis stress response are believed to contribute to the different prevalence rates of stress-related disorders found in men and women. However, studies examining the HPA axis stress response have shown mixed support for sex differences, and the role of endogenous sex hormones on HPA axis response has not been adequately examined in humans. This study utilized the largest sample size to date to analyze the effects of biological sex and sex hormones on HPA axis social stress responses. Healthy, 18- to 30- year-old community volunteers (N=282) completed the Trier Social Stress Test (TSST), a widely used and well-validated stress-induction laboratory procedure. All women (n=135) were tested during the follicular phase of their menstrual cycle (when progesterone levels are most similar to men). Adrenocorticotropic hormone (ACTH) and cortisol measures were collected at multiple points throughout pre- and post-TSST. Testosterone and progesterone (in men) and progesterone and estradiol (in women) were determined pre-TSST. Following the TSST, men had greater ACTH and cortisol levels than women. Men had steeper baseline-to-peak and peak-to-end ACTH and cortisol response slopes than women; there was a trend for more cortisol responders among men than women. Testosterone negatively correlated with salivary cortisol response in men, while progesterone negatively correlated with ACTH and cortisol responses in women. These data confirm that men show more robust activation of the HPA axis response to the TSST than do women in the follicular phase of the menstrual cycle. Testosterone results suggest an inhibitory effect on HPA axis reactivity in men. Progesterone results suggest an inhibitory effect on HPA axis reactivity in women. Future work is needed to explain why men mount a greater ACTH and cortisol response to the

  15. Biological effects and oxidative stress responses in Arabidopsis thaliana following exposure to uranium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Saenen, E.; Vandenhove, H.; Vanhoudt, N.; Wannijn, J.; Nauts, R. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Vangronsveld, J.; Cuypers, A. [Hasselt University (Belgium)

    2014-07-01

    leaves, no inductions of the NADPH oxidases or LOX were observed. This possibly indicates that the oxidative stress in the leaves is generated via root-to-shoot signalling since U and Cu are almost completely retained in the roots. Under both U and Cu stress and both in roots and shoots, microRNA398b/c is involved in the post-transcriptional regulation of the superoxide dismutase (SOD) response. As expected from previous research, the expression levels of MIR398b/c increased under U stress while they decreased under Cu stress. This led to a decreased expression of the Cu-requiring Cu/Zn SODs when Cu is below a critical threshold, while their expression will increase under Cu excess. In the multi-pollution setup, the response is comparable to the response observed under Cu stress. In conclusion, it seems that there is an enhanced production of ROS after exposure to U+Cu as compared to the single stressor conditions. However, additional experiments, e.g. with different U and Cu concentrations, are needed to further elucidate the interactions between U and Cu. Document available in abstract form only. (authors)

  16. Gene Selection Integrated with Biological Knowledge for Plant Stress Response Using Neighborhood System and Rough Set Theory.

    Science.gov (United States)

    Meng, Jun; Zhang, Jing; Luan, Yushi

    2015-01-01

    Mining knowledge from gene expression data is a hot research topic and direction of bioinformatics. Gene selection and sample classification are significant research trends, due to the large amount of genes and small size of samples in gene expression data. Rough set theory has been successfully applied to gene selection, as it can select attributes without redundancy. To improve the interpretability of the selected genes, some researchers introduced biological knowledge. In this paper, we first employ neighborhood system to deal directly with the new information table formed by integrating gene expression data with biological knowledge, which can simultaneously present the information in multiple perspectives and do not weaken the information of individual gene for selection and classification. Then, we give a novel framework for gene selection and propose a significant gene selection method based on this framework by employing reduction algorithm in rough set theory. The proposed method is applied to the analysis of plant stress response. Experimental results on three data sets show that the proposed method is effective, as it can select significant gene subsets without redundancy and achieve high classification accuracy. Biological analysis for the results shows that the interpretability is well.

  17. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  18. Understanding water-stress responses in Soybean using Hydroponics system - A Systems Biology Perspective

    Directory of Open Access Journals (Sweden)

    Prateek eTripathi

    2015-12-01

    Full Text Available The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us towards the right candidates, if not completely help us to resolve the issue.

  19. Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions

    Science.gov (United States)

    Habibian, Mahmood; Ghazi, Shahab; Moeini, Mohammad Mehdi; Abdolmohammadi, Alireza

    2014-07-01

    A study was conducted using 360 broiler chickens to evaluate the effects of dietary vitamin E (0, 125 and 250 mg/kg), selenium (Se, 0, 0.5 and 1 mg/kg), or their different combinations on immune response and blood biological parameters of broilers raised under either thermoneutral (TN, 23.9 °C constant) or heat stress (HS, 23.9 to 37 °C cycling) conditions. Humoral immunity was assessed by intravenous injection of 7 % sheep red blood cell (SRBC) followed by evaluation of serum for antibody titers in primary and secondary responses. Heterophil to lymphocyte (H/L) ratio also determined as an indicator of stress. Furthermore, at the end of the experiment, birds were bled for determination of some biological parameters. There was a significant reduction in body weight and feed intake, but the feed conversion ratio increased when the birds were exposed to HS ( P 0.05), whereas feed conversion was improved significantly by 125 mg/kg vitamin E ( P high concentration of Se ( P triglycerides, total cholesterol, and LDL-cholesterol were increased but serum HDL-cholesterol decreased in HS broilers ( P < 0.05).

  20. Biological therapy of strontium-substituted bioglass for soft tissue wound-healing: responses to oxidative stress in ovariectomised rats.

    Science.gov (United States)

    Jebahi, S; Oudadesse, H; Jardak, N; Khayat, I; Keskes, H; Khabir, A; Rebai, T; El Feki, H; El Feki, A

    2013-07-01

    New synthetic biomaterials are constantly being developed for wound repair and regeneration. Bioactive glasses (BG) containing strontium have shown successful applications in tissue engineering account of their biocompatibility and the positive biological effects after implantation. This study aimed to assess whether BG-Sr was accepted by the host tissue and to characterize oxidative stress biomarker and antioxidant enzyme profiles during muscle and skin healing. Wistar rats were divided into five groups (six animals per group): the group (I) was used as negative control (T), after ovariectomy, groups II, III, IV and V were used respectively as positive control (OVX), implanted tissue with BG (OVX-BG), BG-Sr (OVX-BG-Sr) and presented empty defects (OVX-NI). Soft tissues surrounding biomaterials were used to estimate superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA) concentration. Our results show that 60 days after operation, treatment of rats with BG-Sr significantly increased MDA concentration and caused an increase of SOD, CAT and GPx activities in both skin and muscular tissues. BG-Sr revealed maturation of myotubes followed a normal appearance of muscle regenerated with high density and mature capillary vessels. High wound recovery with complete re-epithelialization and regeneration of skin was observed. The results demonstrate that the protective action against reactive oxygen species (ROS) was clearly observed in soft tissue surrounding BG-Sr. Moreover, the potential use of BG-Sr rapidly restores the wound skin and muscle structural and functional properties. The BG advantages such as ion release might make BG-Sr an effective biomaterial choice for antioxidative activity.

  1. Stress responses and pre-eclampsia.

    Science.gov (United States)

    Redman, C W G

    2013-04-01

    Biological stress may affect individual cells, tissues or whole organisms, arising from disturbed homoeostasis of any cause. Stress is rarely localised. Because biological systems are closely integrated, it spreads to involve other systems. Stress responses are highly integrated and work to restore homoeostasis. Different response pathways overlap and interlink. If the responses fail or decompensate, distress ensues, of which the end-stage is death. Pre-eclampsia results from a series of biological stresses, possibly from conception, which become established by abnormal placentation and affect the mother, her foetus and her placenta. The stresses involve dialogue between mother and placenta. Even a normal placenta imposes substantial stress on maternal systems. When placental growth and perfusion is abnormal (poor placentation) then the placenta, particularly its outer trophoblast layer, becomes stressed - loosely denoted hypoxic damage or oxidative stress. Signals from the placenta spread the stress to the mother, who develops signs of pre-eclampsia. Cellular stress sensors initiate stress responses. Different stresses may trigger similar responses in specific cell types. The first cell response is reduced protein synthesis. However some synthetic pathways are spared or activated to produce stress signals. In relation to pre-eclampsia and the placenta, an excessive release of sFlt-1 a soluble decoy receptor for vascular endothelial growth factor (VEGF) is a trophoblast related stress signal. SFlt1 perturbs the angiogenic balance in the maternal circulation and is considered to cause many of the specific features of the maternal syndrome in pre-eclampsia. Three key points will be emphasised. First, multiple stressors, not simply hypoxia, stimulate the release of sFlt-1 from trophoblast. Second, sFlt-1 is only one of the group of stress signals delivered by trophoblast to the mother. Third, sFlt-1 is not the only trophoblast derived factor to perturb the maternal

  2. Stress response and apoptosis in pro- and antiinflammatory macrophages.

    Science.gov (United States)

    Malyshev, I Yu; Kruglov, S V; Bakhtina, L Yu; Malysheva, E V; Zubin, M; Norkin, M

    2004-08-01

    We showed that stress response and apoptosis in macrophages depend on the phenotype of their secretory activity and specific biological and physical characteristics of the factor inducing stress-response or apoptosis.

  3. Biologic Stress, Oxidative Stress, and Resistance to Drugs: What Is Hidden Behind

    Directory of Open Access Journals (Sweden)

    Maria Pantelidou

    2017-02-01

    Full Text Available Stress can be defined as the homeostatic, nonspecific defensive response of the organism to challenges. It is expressed by morphological, biochemical, and functional changes. In this review, we present biological and oxidative stress, as well as their interrelation. In addition to the mediation in biologic stress (central nervous, immune, and hormonal systems and oxidative stress, the effect of these phenomena on xenobiotic metabolism and drug response is also examined. It is concluded that stress decreases drug response, a result which seems to be mainly attributed to the induction of hepatic drug metabolizing enzymes. A number of mechanisms are presented. Structure-activity studies are also discussed. Vitamin E, as well as two synthetic novel compounds, seem to reduce both oxidative and biological stress and, consequently, influence drug response and metabolism.

  4. Biological Studies of Posttraumatic Stress Disorder

    Science.gov (United States)

    Pitman, Roger K.; Rasmusson, Ann M.; Koenen, Karestan C.; Shin, Lisa M.; Orr, Scott P.; Gilbertson, Mark W.; Milad, Mohammed R.; Liberzon, Israel

    2016-01-01

    Preface Posttraumatic stress disorder (PTSD) is the only major mental disorder for which a cause is considered to be known, viz., an event that involves threat to the physical integrity of oneself or others and induces a response of intense fear, helplessness, or horror. Although PTSD is still largely regarded as a psychological phenomenon, over the past three decades the growth of the biological PTSD literature has been explosive, and thousands of references now exist. Ultimately, the impact of an environmental event, such as a psychological trauma, must be understood at organic, cellular, and molecular levels. The present review attempts to present the current state of this understanding, based upon psychophysiological, structural and functional neuroimaging, endocrinological, genetic, and molecular biological studies in humans and in animal models. PMID:23047775

  5. Stress Responses in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Frees, Dorte; Ingmer, Hanne

    2016-01-01

    stress responses allowing it to sense and adapt to its very different niches. The stress responses often involve dramatic cellular reprogramming, and the technological advances provided by the access to whole genome sequences have let to an unprecedented insight into the global reorganization of gene...... and protein expression following stress-exposure. Characterization of global gene responses has been very helpful both in identifying regulators sensing specific environmental stress signals and overlaps between different stress responses. In this chapter we review the recent progress in our understanding...... of the specific and general S. aureusstress responses, with a special emphasis on how stress responses contribute to virulence and antibiotic resistance in this important human pathogen....

  6. 严重创伤后应激反应的调控机理%Molecular biological responses to severe posttraumatic stress

    Institute of Scientific and Technical Information of China (English)

    刘都户; 粟永萍; 程天民

    2001-01-01

    Traumatic stress in the normal individual results in activationof the sympatho-adrenal system causing a rise in noradrenaline and adrenaline, acute phase response in liver ,and activation of the hypothalamic-pituitary-adrenocortical(HPA)system resulting in elevated levels of cortisol. Studies in animals and in humans with posttraumatic stress disorder indicate that successful adaptation to stress is a prerequisite for the survival of all organisms living in an enviroment in which noxious stimuli are constantly present.

  7. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  8. 植物DNA甲基化变异对生物和非生物胁迫的响应机制%DNA Methylation Variation of Biological and Abiotic Stress Response Mechanism in Plant

    Institute of Scientific and Technical Information of China (English)

    王晓凤; 曾凡锁; 詹亚光

    2011-01-01

    高等植物具有复杂的机制使其对环境的变化做出响应,这种机制是通过长期进化建立起来的.它们能够对出现的生物和非生物胁迫产生响应.在分子水平上,植物对各种胁迫的响应是受多基因表达变化调控的,包括植物激素水杨酸、脱落酸等信号途径在整合、协调植物胁迫过程中起关键作用.近年来的研究表明,在植物响应胁迫这一过程中还进行着表观遗传调控这一进程.我们简要综述了生物胁迫和非生物胁迫对表观遗传的影响以及胁迫印记的产生,并讨论了植物响应胁迫的表观遗传调控机制.%Plants have complex mechanisms to respond to environmental changes, such a mechanism is established through long-term evolution. They can response to biological and abiotic stress. At the molecular level, plants of various stress response are regulated by multiple gene expression, including the plant hormone salicylic acid, ABA signaling pathways in the integration, coordination of plant stress play a key role in the process. Recent studies showed that plant responses to stress are also engaged in the process of epigenetic regulation in this process. In this paper we reviewed the biological stress and abiotic stress on the impact of epigenetic imprint stress generation,and discussed the plant response to stress epigenetic mechanisms.

  9. Stress and telomere biology: a lifespan perspective.

    Science.gov (United States)

    Shalev, Idan; Entringer, Sonja; Wadhwa, Pathik D; Wolkowitz, Owen M; Puterman, Eli; Lin, Jue; Epel, Elissa S

    2013-09-01

    In the past decade, the growing field of telomere science has opened exciting new avenues for understanding the cellular and molecular substrates of stress and stress-related aging processes over the lifespan. Shorter telomere length is associated with advancing chronological age and also increased disease morbidity and mortality. Emerging studies suggest that stress accelerates the erosion of telomeres from very early in life and possibly even influences the initial (newborn) setting of telomere length. In this review, we highlight recent empirical evidence linking stress and mental illnesses at various times across the lifespan with telomere erosion. We first present findings in the developmental programming of telomere biology linking prenatal stress to newborn and adult telomere length. We then present findings linking exposure to childhood trauma and to certain mental disorders with telomere shortening. Last, we review studies that characterize the relationship between related health-risk behaviors with telomere shortening over the lifespan, and how this process may further buffer the negative effects of stress on telomeres. A better understanding of the mechanisms that govern and regulate telomere biology throughout the lifespan may inform our understanding of etiology and the long-term consequences of stress and mental illnesses on aging processes in diverse populations and settings.

  10. Neuronal responses to physiological stress

    Directory of Open Access Journals (Sweden)

    Konstantinos eKagias

    2012-10-01

    Full Text Available Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. Physiological stress can be divided into three different aspects: environmental stress, intrinsic developmental stress and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature and redox state for example, trigger molecular events that enable an organism to adapt, survive and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, which result from an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level.

  11. Yeast Biological Networks Unfold the Interplay of Antioxidants, Genome and Phenotype, and Reveal a Novel Regulator of the Oxidative Stress Response

    DEFF Research Database (Denmark)

    Otero, José Manuel; Papadakis, M.A.; Udatha, D.B.R.K.G.

    2010-01-01

    Background: Identifying causative biological networks associated with relevant phenotypes is essential in the field of systems biology. We used ferulic acid (FA) as a model antioxidant to characterize the global expression programs triggered by this small molecule and decipher the transcriptional...... network controlling the phenotypic adaptation of the yeast Saccharomyces cerevisiae. Methodology/Principal Findings: By employing a strict cut off value during gene expression data analysis, 106 genes were found to be involved in the cell response to FA, independent of aerobic or anaerobic conditions...

  12. Individual heat stress response

    NARCIS (Netherlands)

    Havenith, G.

    1997-01-01

    In 5 experiments, heterogeneous subject groups (large variations in _VO2 max, regular daily activity level, mass, body surface area (AD), % body fat, and AD/mass ratio) were tested for their physiological response while exercising on a cycle ergometer at a relative (45% _VO2 max; REL) or an absolute

  13. Auxin response under osmotic stress.

    Science.gov (United States)

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment.

  14. Stress disrupts response memory retrieval.

    Science.gov (United States)

    Guenzel, Friederike M; Wolf, Oliver T; Schwabe, Lars

    2013-08-01

    Stress effects on memory are well-known. Most studies, however, focused on the impact of stress on hippocampus-dependent 'declarative' memory processes. Less is known about whether stress influences also striatum-based memory processes, such as stimulus-response (S-R) memory. First evidence from rodent experiments shows that glucocorticoid stress hormones may enhance the consolidation of S-R memories. Whether stress affects also S-R memory retrieval remains largely elusive. Therefore, we tested in the present experiment in humans the effect of stress on the retrieval of S-R memories. Healthy men and women were trained to locate three objects in an S-R version of a virtual eight-arm radial maze. One week later, participants underwent a stressor or a control condition before their memory of the S-R task was tested. Our results showed that participants (n=43) who were exposed to the stressor before retention testing made significantly more errors in this test trial, suggesting that stress impaired S-R memory retrieval. Moreover, high cortisol concentrations were associated with reduced S-R memory. These findings indicate that stress may affect memory retrieval processes in humans beyond hippocampal 'declarative' memory.

  15. Plant Responses to Nanoparticle Stress

    Directory of Open Access Journals (Sweden)

    Zahed Hossain

    2015-11-01

    Full Text Available With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress.

  16. The role of biological activity of hydrohumate, produced from peat, in formation of adaptive response of rats under influence of chronic stress

    Science.gov (United States)

    Lyanna, O. L.; Chorna, V. I.; Stepchenko, L. M.

    2009-04-01

    It is well known that humic compounds are the most distributed in nature among the organic matter. It is believed that humic polyphenol preparations, produced from the peat, represent adaptogenes and immunomodulators. But the total mechanism of their adaptogenic action is still completely unclear. In response to extraordinary irritant action, one of the most sensitive to stress and highly reactive systems of organism, endosomal-lysosomal cellular apparatus takes part. It is believed that humic compounds are able to penetrate through plasmatic membrane and by this way to affect on lysosomal proteases function. Among the wide range of lysosomal proteases, cysteine cathepsin L (EC 3.4.22.15) was in interest due to its powerful endopeptidase activity and widespread localization. Purpose. The aim of the work was to investigate the influence of humic acids on intracellular proteolysis in blood plasma and heart muscle of rats in adaptive-restorative processes developing in rat organisms as a result of chronic stress action. The experiment was held on Wistar's rats (160-200 g weight) which were divided into 4 groups: 1 - the control group; 2 - the animals which were received the hydrohumate with water (10 mg hydrohumate (0,1% solution) per 1 kg of weight) during 3 weeks; 3 - the group of stressed rats (test "forced swimming" for 2 hours); 4 - the stressed rats which received the hydrohumate. The activity of lysosomal cysteine cathepsin L was determined spectrophotometrically by usage 1% azocasein, denaturated by 3 M urea, as substrate. It was obtained that under hydrohumate influence the activity of lysosomal cysteine cathepsin L in rat blood plasma changed on 20% in comparison with control group that is suggested to be caused by leakage of tissue cathepsins from organs and tissues and kidneys' filtration of these cysteine enzymes in urine. In rat heart tissues it was obtained that cathepsin L activity level was on 26,8% higher in rats which were under stress influence in

  17. Understanding freeze stress in biological tissues: Thermodynamics of interfacial water

    Energy Technology Data Exchange (ETDEWEB)

    Olien, C. Robert [USDA-ARS (retired), Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325 (United States); Livingston, David P. [USDA and North Carolina State University, Crop Science, 840 Method Road, Unit 3, Raleigh, NC 27502 (United States)]. E-mail: dpl@unity.ncsu.edu

    2006-12-01

    A thermodynamic approach to distinguish forms of freeze energy that injure plants as the temperature decreases is developed. The pattern resulting from this analysis dictated the sequence of thermal requirements for water to exist as an independent state. Improvement of freezing tolerance in biological systems depends on identification of a specific form of stress, just as control of a disease depends on identification of the pathogen causing the disease. The forms of energy that stress hydrated systems as temperature decreases begin with disruption of biological function from chill injury that occurs above freezing. Initiation of non-equilibrium freezing with sufficient free energy to drive disruptive effects can occur in a supercooled system. As the temperature continues to decrease and freezing occurs in an equilibrium manner, adhesion at hydrated interfaces contributes to disruptive effects as protoplasts contract by freeze-dehydration. If protective systems are able to prevent injury from direct interactions with ice, passive effects of freeze-dehydration may cause injury at lower temperatures. The temperature range in which an injury occurs is an indicator of the form of energy causing stress. The form of energy is thus a primary guide for selection of a protective mechanism. An interatomic force model whose response to temperature change corresponds with the enthalpy pattern might help define freeze stress from a unique perspective.

  18. Yeast biological networks unfold the interplay of antioxidants, genome and phenotype, and reveal a novel regulator of the oxidative stress response.

    Directory of Open Access Journals (Sweden)

    Jose M Otero

    Full Text Available BACKGROUND: Identifying causative biological networks associated with relevant phenotypes is essential in the field of systems biology. We used ferulic acid (FA as a model antioxidant to characterize the global expression programs triggered by this small molecule and decipher the transcriptional network controlling the phenotypic adaptation of the yeast Saccharomyces cerevisiae. METHODOLOGY/PRINCIPAL FINDINGS: By employing a strict cut off value during gene expression data analysis, 106 genes were found to be involved in the cell response to FA, independent of aerobic or anaerobic conditions. Network analysis of the system guided us to a key target node, the FMP43 protein, that when deleted resulted in marked acceleration of cellular growth (∼15% in both minimal and rich media. To extend our findings to human cells and identify proteins that could serve as drug targets, we replaced the yeast FMP43 protein with its human ortholog BRP44 in the genetic background of the yeast strain Δfmp43. The conservation of the two proteins was phenotypically evident, with BRP44 restoring the normal specific growth rate of the wild type. We also applied homology modeling to predict the 3D structure of the FMP43 and BRP44 proteins. The binding sites in the homology models of FMP43 and BRP44 were computationally predicted, and further docking studies were performed using FA as the ligand. The docking studies demonstrated the affinity of FA towards both FMP43 and BRP44. CONCLUSIONS: This study proposes a hypothesis on the mechanisms yeast employs to respond to antioxidant molecules, while demonstrating how phenome and metabolome yeast data can serve as biomarkers for nutraceutical discovery and development. Additionally, we provide evidence for a putative therapeutic target, revealed by replacing the FMP43 protein with its human ortholog BRP44, a brain protein, and functionally characterizing the relevant mutant strain.

  19. Novelty, Stress, and Biological Roots in Human Market Behavior

    Directory of Open Access Journals (Sweden)

    Alexey Sarapultsev

    2014-02-01

    Full Text Available Although studies examining the biological roots of human behavior have been conducted since the seminal work Kahneman and Tversky, crises and panics have not disappeared. The frequent occurrence of various types of crises has led some economists to the conviction that financial markets occasionally praise irrational judgments and that market crashes cannot be avoided a priori (Sornette 2009; Smith 2004. From a biological point of view, human behaviors are essentially the same during crises accompanied by stock market crashes and during bubble growth when share prices exceed historic highs. During those periods, most market participants see something new for themselves, and this inevitably induces a stress response in them with accompanying changes in their endocrine profiles and motivations. The result is quantitative and qualitative changes in behavior (Zhukov 2007. An underestimation of the role of novelty as a stressor is the primary shortcoming of current approaches for market research. When developing a mathematical market model, it is necessary to account for the biologically determined diphasisms of human behavior in everyday low-stress conditions and in response to stressors. This is the only type of approach that will enable forecasts of market dynamics and investor behaviors under normal conditions as well as during bubbles and panics.

  20. Novelty, stress, and biological roots in human market behavior.

    Science.gov (United States)

    Sarapultsev, Alexey; Sarapultsev, Petr

    2014-03-01

    Although studies examining the biological roots of human behavior have been conducted since the seminal work Kahneman and Tversky, crises and panics have not disappeared. The frequent occurrence of various types of crises has led some economists to the conviction that financial markets occasionally praise irrational judgments and that market crashes cannot be avoided a priori (Sornette 2009; Smith 2004). From a biological point of view, human behaviors are essentially the same during crises accompanied by stock market crashes and during bubble growth when share prices exceed historic highs. During those periods, most market participants see something new for themselves, and this inevitably induces a stress response in them with accompanying changes in their endocrine profiles and motivations. The result is quantitative and qualitative changes in behavior (Zhukov 2007). An underestimation of the role of novelty as a stressor is the primary shortcoming of current approaches for market research. When developing a mathematical market model, it is necessary to account for the biologically determined diphasisms of human behavior in everyday low-stress conditions and in response to stressors. This is the only type of approach that will enable forecasts of market dynamics and investor behaviors under normal conditions as well as during bubbles and panics.

  1. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  2. Biological studies of post-traumatic stress disorder.

    Science.gov (United States)

    Pitman, Roger K; Rasmusson, Ann M; Koenen, Karestan C; Shin, Lisa M; Orr, Scott P; Gilbertson, Mark W; Milad, Mohammed R; Liberzon, Israel

    2012-11-01

    Post-traumatic stress disorder (PTSD) is the only major mental disorder for which a cause is considered to be known: that is, an event that involves threat to the physical integrity of oneself or others and induces a response of intense fear, helplessness or horror. Although PTSD is still largely regarded as a psychological phenomenon, over the past three decades the growth of the biological PTSD literature has been explosive, and thousands of references now exist. Ultimately, the impact of an environmental event, such as a psychological trauma, must be understood at organic, cellular and molecular levels. This Review attempts to present the current state of this understanding on the basis of psychophysiological, structural and functional neuroimaging, and endocrinological, genetic and molecular biological studies in humans and in animal models.

  3. Subjective Stress, Salivary Cortisol, and Electrophysiological Responses to Psychological Stress

    OpenAIRE

    Qi, Mingming; Gao, Heming; Guan, Lili; Liu, Guangyuan; Yang, Juan

    2016-01-01

    The present study aimed to investigate the subjective stress, salivary cortisol, and electrophysiological responses to psychological stress induced by a modified version of a mental arithmetic task. Fifteen participants were asked to estimate whether the multiplication product of two-decimal numbers was above 10 or not either with a time limit (the stress condition) or without a time limit (the control condition). The results showed that participants reported higher levels of stress, anxiety,...

  4. The early stress responses in fish larvae.

    Science.gov (United States)

    Pederzoli, Aurora; Mola, Lucrezia

    2016-05-01

    During the life cycle of fish the larval stages are the most interesting and variable. Teleost larvae undergo a daily increase in adaptability and many organs differentiate and become active. These processes are concerted and require an early neuro-immune-endocrine integration. In larvae communication among the nervous, endocrine and immune systems utilizes several known signal molecule families which could be different from those of the adult fish. The immune-neuroendocrine system was studied in several fish species, among which in particular the sea bass (Dicentrarchus labrax), that is a species of great commercial interest, very important in aquaculture and thus highly studied. Indeed the immune system of this species is the best known among marine teleosts. In this review the data on main signal molecules of stress carried out on larvae of fish are considered and discussed. For sea bass active roles in the early immunological responses of some well-known molecules involved in the stress, such as ACTH, nitric oxide, CRF, HSP-70 and cortisol have been proposed. These molecules and/or their receptors are biologically active mainly in the gut before complete differentiation of gut-associated lymphoid tissue (GALT), probably acting in an autocrine/paracrine way. An intriguing idea emerges from all results of these researches; the molecules involved in stress responses, expressed in the adult cells of the hypothalamic-pituitary axis, during the larval life of fish are present in several other localizations, where they perform probably the same role. It may be hypothesized that the functions performed by hypothalamic-pituitary system are particularly important for the survival of the larva and therefore they comprises several other localizations of body. Indeed the larval stages of fish are very crucial phases that include many physiological changes and several possible stress both internal and environmental.

  5. Agreeableness, Extraversion, Stressor and Physiological Stress Response

    OpenAIRE

    Xiaoyuan Chu; Zhentao Ma; Yuan Li; Jing Han

    2015-01-01

    Based on the theoretical analysis, with first-hand data collection and using multiple regression models, this study explored the relationship between agreeableness, extraversion, stressor and stress response and figured out interactive effect of agreeableness, extraversion, and stressor on stress response. We draw on the following conclusions: (1) the interaction term of stressor (work) and agreeableness can negatively predict physiological stress response; (2) the interaction term of stresso...

  6. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged ...

  7. Radical-free biology of oxidative stress

    OpenAIRE

    2008-01-01

    Free radical-induced macromolecular damage has been studied extensively as a mechanism of oxidative stress, but large-scale intervention trials with free radical scavenging antioxidant supplements show little benefit in humans. The present review summarizes data supporting a complementary hypothesis for oxidative stress in disease that can occur without free radicals. This hypothesis, which is termed the “redox hypothesis,” is that oxidative stress occurs as a consequence of disruption of thi...

  8. Oxidative stress response pathways: Fission yeast as archetype

    DEFF Research Database (Denmark)

    Papadakis, Manos A.; Workman, Christopher

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transc...

  9. The STATs in cell stress-type responses

    Directory of Open Access Journals (Sweden)

    Best James

    2004-08-01

    Full Text Available Abstract In the early 1990's, a new cell signaling pathway was described. This new paradigm, now known as the JAK/STAT pathway, has been extensively investigated in immune-type cells in response to interferons and interleukins. However, recent evidence suggests that the JAK/STAT pathway also mediates diverse cellular responses to various forms of biological stress including hypoxia/reperfusion, endotoxin, ultraviolet light, and hyperosmolarity. The current literature describing the JAK/STAT pathway's role in cellular stress responses has been reviewed herein, but it is clear that our knowledge in this area is far from complete.

  10. Oxidative stress response in sugarcane

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Soares Netto

    2001-12-01

    Full Text Available Oxidative stress response in plants is still poorly understood in comparison with the correspondent phenomenon in bacteria, yeast and mammals. For instance, nitric oxide is assumed to play various roles in plants although no nitric oxide synthase gene has yet been isolated. This research reports the results of a search of the sugarcane expressed sequence tag (SUCEST database for homologous sequences involved in the oxidative stress response. I have not found any gene similar to nitric oxide synthase in the SUCEST database although an alternative pathway for nitric oxide synthesis was proposed. I have also found several genes involved in antioxidant defense, e.g. metal chelators, low molecular weight compounds, antioxidant enzymes and repair systems. Ascorbate (vitamin C is a key antioxidant in plants because it reaches high concentrations in cells and is a substrate for ascorbate peroxidase, an enzyme that I found in different isoforms in the SUCEST database. I also found many enzymes involved in the biosynthesis of low molecular weight antioxidants, which may be potential targets for genetic manipulation. The engineering of plants for increased vitamin C and E production may lead to improvements in the nutritional value and stress tolerance of sugarcane. The components of the antioxidant defense system interact and their synthesis is probably closely regulated. Transcription factors involved in regulation of the oxidative stress response in bacteria, yeast and mammals differ considerably among themselves and when I used them to search the SUCEST database only genes with weak similarities were found, suggesting that these transcription regulators are not very conserved. The involvement of reactive oxygen species and antioxidants in plant defense against pathogens is also discussed.A resposta ao estresse oxidativo não é bem conhecida em plantas como em bactérias, leveduras e humanos. Por exemplo, assume-se que óxido nítrico tem várias fun

  11. Genes Acting on Transcriptional Control during Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Glacy Jaqueline da Silva

    2014-01-01

    Full Text Available Abiotic stresses are the major cause of yield loss in crops around the world. Greater genetic gains are possible by combining the classical genetic improvement with advanced molecular biology techniques. The understanding of mechanisms triggered by plants to meet conditions of stress is of fundamental importance for the elucidation of these processes. Current genetically modified crops help to mitigate the effects of these stresses, increasing genetic gains in order to supply the agricultural market and the demand for better quality food throughout the world. To obtain safe genetic modified organisms for planting and consumption, a thorough grasp of the routes and genes that act in response to these stresses is necessary. This work was developed in order to collect important information about essential TF gene families for transcriptional control under abiotic stress responses.

  12. Cell identity regulators link development and stress responses in the Arabidopsis root.

    Science.gov (United States)

    Iyer-Pascuzzi, Anjali S; Jackson, Terry; Cui, Hongchang; Petricka, Jalean J; Busch, Wolfgang; Tsukagoshi, Hironaka; Benfey, Philip N

    2011-10-18

    Stress responses in plants are tightly coordinated with developmental processes, but interaction of these pathways is poorly understood. We used genome-wide assays at high spatiotemporal resolution to understand the processes that link development and stress in the Arabidopsis root. Our meta-analysis finds little evidence for a universal stress response. However, common stress responses appear to exist with many showing cell type specificity. Common stress responses may be mediated by cell identity regulators because mutations in these genes resulted in altered responses to stress. Evidence for a direct role for cell identity regulators came from genome-wide binding profiling of the key regulator SCARECROW, which showed binding to regulatory regions of stress-responsive genes. Coexpression in response to stress was used to identify genes involved in specific developmental processes. These results reveal surprising linkages between stress and development at cellular resolution, and show the power of multiple genome-wide data sets to elucidate biological processes.

  13. Understanding Plant Development and Stress Responses through Integrative Approaches

    Institute of Scientific and Technical Information of China (English)

    Katie Dehesh; Chun-Ming Liu

    2010-01-01

    @@ As the name reflects, integrative plant biology is the core topic of JIPB. In the past few years JIPB has been pursuing the development of this area, to assist the scientific community to bring together all possible research tools to understand plant growth, development and stress responses in micro- and macro-scales. As part of these efforts, JIPB and Yantai University organized the 1st International Symposium on Integrative Plant Biology in the seaside town of Yantai during August 10-12,2009 (Figure 1). The symposium was co-sponsored by Botanical Society of China, Chinese Society for Cell Biology, Genetics Society of China, and Chinese Society for Plant Physiology.

  14. Abiotic stressors and stress responses

    DEFF Research Database (Denmark)

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco

    2015-01-01

    Abstract Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), ...

  15. Oxidative stress response pathways: Fission yeast as archetype.

    Science.gov (United States)

    Papadakis, Manos A; Workman, Christopher T

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.

  16. Process Control Minitoring by Stress Response

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Stahl, David A.

    2006-04-17

    Environmental contamination with a variety of pollutants hasprompted the development of effective bioremediation strategies. But howcan these processes be best monitored and controlled? One avenue underinvestigation is the development of stress response systems as tools foreffective and general process control. Although the microbial stressresponse has been the subject of intensive laboratory investigation, theenvironmental reflection of the laboratory response to specific stresseshas been little explored. However, it is only within an environmentalcontext, in which microorganisms are constantly exposed to multiplechanging environmental stresses, that there will be full understanding ofmicrobial adaptive resiliency. Knowledge of the stress response in theenvironment will facilitate the control of bioremediation and otherprocesses mediated by complex microbial communities.

  17. Stress, stress-induced cortisol responses, and eyewitness identification performance.

    Science.gov (United States)

    Sauerland, Melanie; Raymaekers, Linsey H C; Otgaar, Henry; Memon, Amina; Waltjen, Thijs T; Nivo, Maud; Slegers, Chiel; Broers, Nick J; Smeets, Tom

    2016-07-01

    In the eyewitness identification literature, stress and arousal at the time of encoding are considered to adversely influence identification performance. This assumption is in contrast with findings from the neurobiology field of learning and memory, showing that stress and stress hormones are critically involved in forming enduring memories. This discrepancy may be related to methodological differences between the two fields of research, such as the tendency for immediate testing or the use of very short (1-2 hours) retention intervals in eyewitness research, while neurobiology studies insert at least 24 hours. Other differences refer to the extent to which stress-responsive systems (i.e., the hypothalamic-pituitary-adrenal axis) are stimulated effectively under laboratory conditions. The aim of the current study was to conduct an experiment that accounts for the contemporary state of knowledge in both fields. In all, 123 participants witnessed a live staged theft while being exposed to a laboratory stressor that reliably elicits autonomic and glucocorticoid stress responses or while performing a control task. Salivary cortisol levels were measured to control for the effectiveness of the stress induction. One week later, participants attempted to identify the thief from target-present and target-absent line-ups. According to regression and receiver operating characteristic analyses, stress did not have robust detrimental effects on identification performance. Copyright © 2016 John Wiley & Sons, Ltd. © 2016 The Authors Behavioral Sciences & the Law Published by John Wiley & Sons Ltd.

  18. Dose response biology: the case of resveratrol.

    Science.gov (United States)

    Calabrese, Edward J; Mattson, Mark P; Calabrese, Vittorio

    2010-12-01

    Resveratrol often displays hormesis-like biphasic dose responses. This occurs in a broad range of biological models and for numerous endpoints of biomedical interest and public health concern. Recognition of the widespread occurrence of the hormetic nature of many of the responses of resveratrol is important on multiple levels. It can help optimize study design protocols by investigators, create a dose-response framework for better addressing dose-related biological complexities and assist in the development of public health and medical guidance with respect to considerations for what is an optimal dose not just for an agent such as resveratrol, but also for the plethora of agents that also act via hormetic mechanisms.

  19. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  20. Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation.

    Science.gov (United States)

    Wu, Wei-Sheng; Li, Wen-Hsiung; Chen, Bor-Sen

    2008-02-10

    Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs) that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene's expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA) to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  1. Differential stress responses among newly received calves: variations in reductant capacity and Hsp gene expression

    OpenAIRE

    Eitam, Harel; Vaya, Jacob; Brosh, Arieh; Orlov, Ala; Khatib, Soliman; Izhaki, Ido; Shabtay, Ariel

    2010-01-01

    Bovine respiratory disease complex (BRD), a major economic concern to the beef cattle industry all over the world, is triggered by physical, biological and psychological stresses. It is becoming noticeable that the key to reducing BRD appears to be centered at reducing the response to stress. The aims of the present study were to detect individual variations in the stress response of newly received young calves through their leukocyte heat shock protein (Hsp) response, selected neutrophil-rel...

  2. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  3. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Science.gov (United States)

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  4. Transcriptional responses of Arabidopsis thaliana plants to As (V stress

    Directory of Open Access Journals (Sweden)

    Yuan Joshua S

    2008-08-01

    Full Text Available Abstract Background Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V] and phosphate (Pi. Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V stress. Results Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD (at2g28190, Cu/Zn SOD (at1g08830, as well as an SOD copper chaperone (at1g12520. On the other hand, Fe SODs were strongly repressed in response to As (V stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. Conclusion Microarray data suggest that As (V induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research.

  5. A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis

    DEFF Research Database (Denmark)

    Villumsen, Bine H; Danielsen, Jannie R; Povlsen, Lou;

    2013-01-01

    Centriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock...

  6. Engineering Titanium for Improved Biological Response

    Energy Technology Data Exchange (ETDEWEB)

    Orme, C; Bearinger, J; Dimasi, E; Gilbert, J

    2002-01-23

    titanium dioxide surface atomic structure and the biological response at an implantation site. To date, most researchers in this area have surgically implanted materials into living organisms and then retrieved the implant after varying amounts of time have elapsed. The virtue of this style of experiment is that the full, correct chemistry of the body acts on the implant. The difficulty with these experiments is that it is then impossible to link cause with effect because too many variables are changing simultaneously. Another difficulty is that changes in the very early times are missed. The purpose of these experiments is to visualize the early time response of oxide films to electric fields and to solution variations found in the body near bone. Specifically these studies are meant to understand how chemical and electric stress affect the corrosion resistance and the formation of a biolayer. Instead of performing in vivo experiments as described above, our strategy uses titanium manufactured for implants and places these samples in controlled, simplified, solutions that mimic the electrolytic environment near the bone. We use an electrochemical atomic force microscope to image the real-time dynamics of the substrate in One of the most remarkable systems in the body is bone remodeling. Even in a purely natural solution as the oxide film is growing. While imaging we apply a potential between a reference electrode and the titanium substrate which creates a driving force for oxide growth and dissolution. We simultaneously collect the transient current that flows across the oxide layer and use step impedance polarization spectroscopy to determine electrical properties of the oxide layer. We will look for films that successfully nucleate the calcium phosphate crystals that comprise the inorganic phase of bone, but do not corrode under these challenging conditions. The goal is to correlate corrosion resistance and biolayer adhesion with oxide film morphology and material

  7. Biological Response Modifier in Cancer Immunotherapy.

    Science.gov (United States)

    Liu, Ronghua; Luo, Feifei; Liu, Xiaoming; Wang, Luman; Yang, Jiao; Deng, Yuting; Huang, Enyu; Qian, Jiawen; Lu, Zhou; Jiang, Xuechao; Zhang, Dan; Chu, Yiwei

    2016-01-01

    Biological response modifiers (BRMs) emerge as a lay of new compounds or approaches used in improving cancer immunotherapy. Evidences highlight that cytokines, Toll-like receptor (TLR) signaling, and noncoding RNAs are of crucial roles in modulating antitumor immune response and cancer-related chronic inflammation, and BRMs based on them have been explored. In particular, besides some cytokines like IFN-α and IL-2, several Toll-like receptor (TLR) agonists like BCG, MPL, and imiquimod are also licensed to be used in patients with several malignancies nowadays, and the first artificial small noncoding RNA (microRNA) mimic, MXR34, has entered phase I clinical study against liver cancer, implying their potential application in cancer therapy. According to amounts of original data, this chapter will review the regulatory roles of TLR signaling, some noncoding RNAs, and several key cytokines in cancer and cancer-related immune response, as well as the clinical cases in cancer therapy based on them.

  8. Understanding Abiotic Stress Tolerance Mechanisms: Recent Studies on Stress Response in Rice

    Institute of Scientific and Technical Information of China (English)

    Ji-Ping Gao; Dai-Yin Chao; Hong-Xuan Lin

    2007-01-01

    Abiotic stress is the main factor negatively affecting crop growth and productivity worldwide. The advances in physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to stresses. Rice plants are sensitive to various abiotic stresses. In this short review, we present recent progresses in adaptation of rice to salinity, water deficit and submergence. Many studies show that salt tolerance is tightly associated with the ability to maintain ion homeostasis under salinity. Na+ transporter SKC1 unloads NaMrom xylem, plasma membrane NaVHTantiporter SOS1 excludes sodium out of cytosol and tonoplast Na+/H+antiporter NHX1 sequesters Na+ into the vacuole. Silicon deposition in exodermis and endodermis of rice root reduces sodium transport through the apoplastic pathway. A number of transcription factors regulate stress-inducible gene expression that leads to initiating stress responses and establishing plant stress tolerance. Overexpression of some transcription factors, including DREB/CBF and MAC, enhances salt, drought, and cold tolerance in rice. A variant of one of ERF family genes, Sub1A-1, confers immersion tolerance to lowland rice. These findings and their exploitation will hold promise for engineering breeding to protect crop plants from certain abiotic stresses.

  9. Endocannabinoids and the cardiovascular response to stress.

    Science.gov (United States)

    O'Sullivan, Saoirse E; Kendall, Patrick J; Kendall, David A

    2012-01-01

    Stress activates the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS), resulting in cardiovascular responses. The endocannabinoid system (ECS), a ubiquitously expressed lipid signalling system, modulates both HPA and SNS activity. The purpose of this review is to explore the possible involvement/role of the ECS in the cardiovascular response to stress. The ECS has numerous cardiovascular effects including modulation of blood pressure, heart rate, the baroreflex, and direct vascular actions. It is also involved in a protective manner in response to stressors in cardiac preconditioning, and various stressors (for example, pain, orthostasis and social stress) increase plasma levels of endocannabinoids. Given the multitude of vascular effects of endocannabinoids, this is bound to have consequences. Beneficial effects of ECS upregulation could include cardioprotection, vasodilatation, CB(2)-mediated anti-inflammatory effects and activation of peroxisome proliferator-activated receptors. Negative effects of endocannabinoids could include mediation of the effects of glucocorticoids, CB(1)-mediated metabolic changes, and metabolism to vasoconstrictor products. It is also likely that there is a central role for the ECS in modulating cardiovascular activity via the HPA and SNS. However, much more work is required to fully integrate the role of the ECS in mediating many of the physiological responses to stress, including cardiovascular responses.

  10. Dynamics of active cellular response under stress

    Science.gov (United States)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  11. 2010 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 18-23, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Ades

    2011-07-23

    The 2010 Gordon Research Conference on Microbial Stress Responses provides an open and exciting forum for the exchange of scientific discoveries on the remarkable mechanisms used by microbes to survive in nearly every niche on the planet. Understanding these stress responses is critical for our ability to control microbial survival, whether in the context of biotechnology, ecology, or pathogenesis. From its inception in 1994, this conference has traditionally employed a very broad definition of stress in microbial systems. Sessions will cover the major steps of stress responses from signal sensing to transcriptional regulation to the effectors that mediate responses. A wide range of stresses will be represented. Some examples include (but are not limited to) oxidative stress, protein quality control, antibiotic-induced stress and survival, envelope stress, DNA damage, and nutritional stress. The 2010 meeting will also focus on the role of stress responses in microbial communities, applied and environmental microbiology, and microbial development. This conference brings together researchers from both the biological and physical sciences investigating stress responses in medically- and environmentally relevant microbes, as well as model organisms, using cutting-edge techniques. Computational, systems-level, and biophysical approaches to exploring stress responsive circuits will be integrated throughout the sessions alongside the more traditional molecular, physiological, and genetic approaches. The broad range of excellent speakers and topics, together with the intimate and pleasant setting at Mount Holyoke College, provide a fertile ground for the exchange of new ideas and approaches.

  12. Oxidative stress response in Paracoccidioides brasiliensis.

    Science.gov (United States)

    Campos, Elida G; Jesuino, Rosália Santos Amorim; Dantas, Alessandra da Silva; Brígido, Marcelo de Macedo; Felipe, Maria Sueli S

    2005-06-30

    Survival of pathogenic fungi inside human hosts depends on evasion from the host immune system and adaptation to the host environment. Among different insults that Paracoccidioides brasiliensis has to handle are reactive oxygen and nitrogen species produced by the human host cells, and by its own metabolism. Knowing how the parasite deals with reactive species is important to understand how it establishes infection and survives within humans. The initiative to describe the P. brasiliensis transcriptome fostered new approaches to study oxidative stress response in this organism. By examining genes related to oxidative stress response, one can evaluate the parasite's ability to face this condition and infer about possible ways to overcome this ability. We report the results of a search of the P. brasiliensis assembled expressed sequence tag database for homologous sequences involved in oxidative stress response. We described several genes coding proteins involved in antioxidant defense, for example, catalase and superoxide dismutase isoenzymes, peroxiredoxin, cytochrome c peroxidase, glutathione synthesis enzymes, thioredoxin, and the transcription factors Yap1 and Skn7. The transcriptome analysis of P. brasiliensis reveals a pathogen that has many resources to combat reactive species. Besides characterizing the antioxidant defense system in P. brasiliensis, we also compared the ways in which different fungi respond to oxidative damage, and we identified the basic features of this response.

  13. Physiological Responses to Thermal Stress and Exercise

    Science.gov (United States)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  14. Progress of the Biological Roles of Toxin-Antitoxin System in the Stress Response%毒素-抗毒素系统在应激环境下的生物学作用的研究进展

    Institute of Scientific and Technical Information of China (English)

    熊鸣; 李明; 郑丹阳; 黄伟

    2013-01-01

    毒素-抗毒素系统(toxin-antitoxin system,TAS)广泛存在于细菌染色体及质粒上,是细菌中含量丰富的小型遗传元件.TAS通常由两个紧密相连的基因组成,分别编码毒素(toxin)和抗毒素(antitoxin),稳定的毒素能够损伤宿主细胞,不稳定的抗毒素能够保护宿主细胞免于毒素的损伤作用.依据其性质和作用方式,目前已经发现三种型别的TAS.TAS具有多种生物学作用,如诱导程序性细胞死亡(programmed cell death,PCD),应激条件下介导持留菌形成(persistence),稳定基因大片段等.本文就近几年TAS在应激条件下的生物学作用的研究进展做一综述.%Toxin-antitoxin (TA) systems are small genetic modules that are widespread and abundant in bacterial chromosomes and plasmids. TA systems are usually composed of two closely linked genes that encode a stable toxin and a labile antitoxin, respectively. The toxin can harm the host cell, while the cognate antitoxin protects the host cell from the toxin's damage. So far, three types of TA system have been described based on their nature and mode of action. Several biological functions of the TA systems have been proposed, such as inducing programmed cell death (PCD), mediating arrest under stress conditions (persistence), promoting stability of large genomic fragments, etc. This review summarizes recent findings on the biological roles of TA systems under stress conditions.

  15. Studying stress responses in the post-genomic era: its ecological and evolutionary role

    Indian Academy of Sciences (India)

    Jesper G Sørensen; Volker Loeschcke

    2007-04-01

    Most investigations on the effects of and responses to stress exposures have been performed on a limited number of model organisms in the laboratory. Here much progress has been made in terms of identifying and describing beneficial and detrimental effects of stress, responses to stress and the mechanisms behind stress tolerance. However, to gain further understanding of which genes are involved in stress resistance and how the responses are regulated from an ecological and evolutionary perspective there is a need to combine studies on multiple levels of biological organization from DNA to phenotypes. Furthermore, we emphasize the importance of studying ecologically relevant traits and natural or semi-natural conditions to verify whether the results obtained are representative of the ecological and evolutionary processes in the field. Here, we will review what we currently know about thermal adaptation and the role of different stress responses to thermal challenges in insects, particularly Drosophila. Furthermore, we address some key questions that require future attention.

  16. An Integrated Review of Psychological Stress in Parkinson’s Disease: Biological Mechanisms and Symptom and Health Outcomes

    Directory of Open Access Journals (Sweden)

    Kim Wieczorek Austin

    2016-01-01

    Full Text Available Parkinson’s disease (PD is characterized by complex symptoms and medication-induced motor complications that fluctuate in onset, severity, responsiveness to treatment, and disability. The unpredictable and debilitating nature of PD and the inability to halt or slow disease progression may result in psychological stress. Psychological stress may exacerbate biological mechanisms believed to contribute to neuronal loss in PD and lead to poorer symptom and health outcomes. The purpose of this integrated review is to summarize and appraise animal and human research studies focused on biological mechanisms, symptom, and health outcomes of psychological stress in PD. A search of the electronic databases PubMed/Medline and CINAHL from 1980 to the present using the key words Parkinson’s disease and stress, psychological stress, mental stress, and chronic stress resulted in 11 articles that met inclusion criteria. The results revealed significant associations between psychological stress and increased motor symptom severity and loss of dopamine-producing neurons in animal models of PD and between psychological stress and increased symptom severity and poorer health outcomes in human subjects with PD. Further research is needed to fully elucidate the underlying biological mechanisms responsible for these relationships, for the ultimate purpose of designing targeted interventions that may modify the disease trajectory.

  17. Response to temperature stress in rhizobia.

    Science.gov (United States)

    Alexandre, Ana; Oliveira, Solange

    2013-08-01

    It is well established that soil is a challenging environment for bacteria, where conditions may change rapidly and bacteria have to acclimate and adapt in order to survive. Rhizobia are an important group of soil bacteria due to their ability to establish atmospheric nitrogen-fixing symbioses with many legume species. Some of these legumes are used to feed either humans or cattle and therefore the use of rhizobia can reduce the need for synthetic N-fertilizers. Several environmental factors shape the composition and the activity of rhizobia populations in the rhizosphere. Soil pH and temperature are often considered to be the major abiotic factors in determining the bacterial community diversity. The present review focuses on the current knowledge on the molecular bases of temperature stress response in rhizobia. The effects of temperature stress in the legume-rhizobia symbioses are also addressed.

  18. Coordination of cortisol response to social evaluative threat with autonomic and inflammatory responses is moderated by stress appraisals and affect.

    Science.gov (United States)

    Laurent, Heidemarie K; Lucas, Todd; Pierce, Jennifer; Goetz, Stefan; Granger, Douglas A

    2016-07-01

    Recent approaches to stress regulation have emphasized coordination among multiple biological systems. This study builds on evidence that hypothalamic-pituitary-adrenal (HPA) axis activity should be considered in coordination with other stress-sensitive biological systems to characterize healthy responses. Healthy African-Americans (n=115) completed the Trier Social Stress Test, and biological responses were assessed through salivary cortisol, dehydroepiandrosterone-sulfate (DHEA-S), alpha amylase (sAA), and C-reactive protein (sCRP). Multilevel modeling demonstrated that cortisol responses typically aligned with changes in DHEA-S, sAA, and sCRP across the session. At the same time, the degree of cortisol coordination with sAA and sCRP varied by participants' subjective stress following the task; participants with higher secondary stress appraisals showed greater cortisol-sAA alignment, whereas those experiencing more negative affect showed greater cortisol-sCRP alignment. Results highlight the importance of a multisystem approach to stress and suggest that positive HPA axis coordination with the autonomic response, but not with the immune/inflammatory response, may be adaptive.

  19. Lifestyle, stress and cortisol response: Review I: Mental stress

    OpenAIRE

    Fukuda, Sanae; Morimoto, Kanehisa

    2001-01-01

    The incidences of diseases related to mental stress are increasing in Japan. Mental stress, unacknowledged for long periods, has been shown to lead to the development of a number of diseases. Thus, an index for mental stress is important to induce awareness of its presence. We focused on the relationship between cortisol and mental stress in this review. We will discuss both the usefulness and problems of cortisol as a mental stress index by summarizing the relationship between cortisol and m...

  20. Combinatorial stress responses: direct coupling of two major stress responses in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Daniel R. Brown

    2014-09-01

    Full Text Available Nitrogen is an essential element for all life, and this is no different for the bacterial cell. Numerous cellular macromolecules contain nitrogen, including proteins, nucleic acids and cell wall components. In Escherichia coli and related bacteria, the nitrogen stress (Ntr response allows cells to rapidly sense and adapt to nitrogen limitation by scavenging for alternative nitrogen sources through the transcriptional activation of transport systems and catabolic and biosynthetic operons by the global transcriptional regulator NtrC. Nitrogen-starved bacterial cells also synthesize the (pppGpp effector molecules of a second global bacterial stress response - the stringent response. Recently, we showed that the transcription of relA, the gene which encodes the major (pppGpp synthetase in E. coli, is activated by NtrC during nitrogen starvation. Our results revealed that in E. coli and related bacteria, NtrC functions in combinatorial stress and serves to couple two major stress responses, the Ntr response and stringent response.

  1. "Stress entropic load" as a transgenerational epigenetic response trigger.

    Science.gov (United States)

    Bienertová-Vašků, Julie; Nečesánek, Ivo; Novák, Jan; Vinklárek, Jan; Zlámal, Filip

    2014-03-01

    Epigenetic changes are generally based on the switching of alternative functional or structural states and result in the adaptation of cellular expression patterns during proliferation, differentiation or plastic changes in the adult organism, whereas some epigenetic information can be passed on other generations while other is not. Hence, the principal question is: why is some information reset or resolved during the meiosis process and other is passed from one generation to another, or, in other words: what "adaptation trigger" level initiates transgenerationally transmitted epigenome change? Hereto, we propose a theory which states that stress, or, more specifically, the energy cost of an individual's adaptation to stress, represents a viable candidate for the transgenerational transmission trigger of a given acquired trait. It has been reported recently that the higher lifetime entropy generation of a unit's body mass, the higher the entropy stress level (which is a measure of energy released by a unit's organ mass) and the irreversibility within the organ, resulting in faster organ degradation and consequent health problems for the entire biological system. We therefore suggest a new term: "stress entropic load" will reflect the actual energetic cost of an individual's adaptation and may be used to estimate the probability of inducing transgenerational response once characterized or measured.

  2. A whole genome RNAi screen identifies replication stress response genes.

    Science.gov (United States)

    Kavanaugh, Gina; Ye, Fei; Mohni, Kareem N; Luzwick, Jessica W; Glick, Gloria; Cortez, David

    2015-11-01

    Proper DNA replication is critical to maintain genome stability. When the DNA replication machinery encounters obstacles to replication, replication forks stall and the replication stress response is activated. This response includes activation of cell cycle checkpoints, stabilization of the replication fork, and DNA damage repair and tolerance mechanisms. Defects in the replication stress response can result in alterations to the DNA sequence causing changes in protein function and expression, ultimately leading to disease states such as cancer. To identify additional genes that control the replication stress response, we performed a three-parameter, high content, whole genome siRNA screen measuring DNA replication before and after a challenge with replication stress as well as a marker of checkpoint kinase signalling. We identified over 200 replication stress response genes and subsequently analyzed how they influence cellular viability in response to replication stress. These data will serve as a useful resource for understanding the replication stress response.

  3. Personality traits modulate emotional and physiological responses to stress.

    Science.gov (United States)

    Childs, Emma; White, Tara L; de Wit, Harriet

    2014-09-01

    An individual's susceptibility to psychological and physical disorders associated with chronic stress exposure, for example, cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease. This study examined the relationships between personality and acute responses to stress in 125 healthy adults, using hierarchical linear regression. We assessed personality traits using the Multidimensional Personality Questionnaire (MPQ-BF), and responses to acute stress (cortisol, heart rate, blood pressure, mood) using a standardized laboratory psychosocial stress task, the Trier Social Stress Test. Individuals with high Negative Emotionality exhibited greater emotional distress and lower blood pressure responses to the Trier Social Stress Test. Individuals with high agentic Positive Emotionality exhibited prolonged heart rate responses to stress, whereas those with high communal Positive Emotionality exhibited smaller cortisol and blood pressure responses. Separate personality traits differentially predicted emotional, cardiovascular, and cortisol responses to a psychosocial stressor in healthy volunteers. Future research investigating the association of personality with chronic stress-related disease may provide further clues to the relationship between acute stress reactivity and susceptibility to disease.

  4. Stress responses and replication of plasmids in bacterial cells

    Directory of Open Access Journals (Sweden)

    Wegrzyn Alicja

    2002-05-01

    Full Text Available Abstract Plasmids, DNA (or rarely RNA molecules which replicate in cells autonomously (independently of chromosomes as non-essential genetic elements, play important roles for microbes grown under specific environmental conditions as well as in scientific laboratories and in biotechnology. For example, bacterial plasmids are excellent models in studies on regulation of DNA replication, and their derivatives are the most commonly used vectors in genetic engineering. Detailed mechanisms of replication initiation, which is the crucial process for efficient maintenance of plasmids in cells, have been elucidated for several plasmids. However, to understand plasmid biology, it is necessary to understand regulation of plasmid DNA replication in response to different environmental conditions in which host cells exist. Knowledge of such regulatory processes is also very important for those who use plasmids as expression vectors to produce large amounts of recombinant proteins. Variable conditions in large-scale fermentations must influence replication of plasmid DNA in cells, thus affecting the efficiency of recombinant gene expression significantly. Contrary to extensively investigated biochemistry of plasmid replication, molecular mechanisms of regulation of plasmid DNA replication in response to various environmental stress conditions are relatively poorly understood. There are, however, recently published studies that add significant data to our knowledge on relations between cellular stress responses and control of plasmid DNA replication. In this review we focus on plasmids derived from bacteriophage λ that are among the best investigated replicons. Nevertheless, recent results of studies on other plasmids are also discussed shortly.

  5. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua

    2011-04-07

    Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  6. Microarray Analysis of Transcriptional Responses to Abscisic Acid and Salt Stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yucheng Wang

    2013-05-01

    Full Text Available Abscisic acid (ABA plays a crucial role in plant responses to abiotic stress. To investigate differences in plant responses to salt and ABA stimulus, differences in gene expression in Arabidopsis in response to salt and ABA were compared using an Agilent oligo microarray. A total of 144 and 139 genes were significantly up- and downregulated, respectively, under NaCl stress, while 406 and 381 genes were significantly up- and downregulated, respectively, under ABA stress conditions. In addition, 31 genes were upregulated by both NaCl and ABA stresses, and 23 genes were downregulated by these stressors, suggesting that these genes may play similar roles in plant responses to salt and ABA stress. Gene ontology (GO analysis revealed four subgroups of genes, including genes in the GO categories “Molecular transducer activity”, “Growth”, “Biological adhesion” and “Pigmentation”, which were expressed in response to ABA stress but not NaCl stress. In addition, genes that play specific roles during salt or ABA stress were identified. Our results may help elucidate differences in the response of plants to salt and ABA stress.

  7. Stress responses in probiotic Lactobacillus casei.

    Science.gov (United States)

    Hosseini Nezhad, Marzieh; Hussain, Malik Altaf; Britz, Margaret Lorraine

    2015-01-01

    Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics.

  8. The Role of the Transcriptional Response to DNA Replication Stress.

    Science.gov (United States)

    Herlihy, Anna E; de Bruin, Robertus A M

    2017-03-02

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

  9. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    Science.gov (United States)

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  10. The plant heat stress transcription factors (HSFs: structure, regulation and function in response to abiotic stresses

    Directory of Open Access Journals (Sweden)

    Meng eGuo

    2016-02-01

    Full Text Available Abiotic stresses such as high temperature, salinity and drought adversely affect the survival, growth and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs, including heat stress transcription factors (HSFs. HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps. In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  11. Formaldehyde stress responses in bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Nathan Houqian Chen

    2016-03-01

    Full Text Available Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.

  12. Personality traits modulate emotional and physiological responses to stress

    OpenAIRE

    2014-01-01

    An individual’s susceptibility to psychological and physical disorders associated with chronic stress exposure e.g., cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease.

  13. Role of shame and body esteem in cortisol stress responses.

    Science.gov (United States)

    Lupis, Sarah B; Sabik, Natalie J; Wolf, Jutta M

    2016-04-01

    Studies assessing the role of shame in HPA axis reactivity report mixed findings. Discrepancies may be due to methodological difficulties and inter-individual differences in the propensity to experience shame in a stressful situation. Hence, the current study combined self-report of shame and facial coding of shame expressions and assessed the role of body esteem as a moderator of the shame-stress link. For this, 44 healthy students (24F, age 20.5 ± 2.1 years) were exposed to an acute psychosocial stress paradigm (Trier Social Stress Test: TSST). Salivary cortisol levels were measured throughout the protocol. Trait shame was measured before the stress test, and state shame immediately afterwards. Video recordings of the TSST were coded to determine emotion expressions. State shame was neither associated with cortisol stress responses nor with body esteem (self-report: all ps ≥ .24; expression: all ps ≥ .31). In contrast, higher trait shame was associated with both negative body esteem (p = .049) and stronger cortisol stress responses (p = .013). Lastly, having lower body esteem predicted stronger cortisol stress responses (p = .022); however, it did not significantly moderate the association between shame indices and cortisol stress responses (all ps ≥ .94). These findings suggest that body esteem and trait shame independently contribute to strength of cortisol stress responses. Thus, in addition to trait shame, body esteem emerged as an important predictor of cortisol stress responses and as such, a potential contributor to stress-related negative health outcomes.

  14. Stressors, Resources, and Stress Responses in Pregnant African American Women

    Science.gov (United States)

    Giurgescu, Carmen; Kavanaugh, Karen; Norr, Kathleen F.; Dancy, Barbara L.; Twigg, Naomi; McFarlin, Barbara L.; Engeland, Christopher G.; Hennessy, Mary Dawn; White-Traut, Rosemary C.

    2013-01-01

    This research aimed to develop an initial understanding of the stressors, stress responses, and personal resources that impact African American women during pregnancy, potentially leading to preterm birth. Guided by the ecological model, a prospective, mixed-methods, complementarity design was used with 11 pregnant women and 8 of their significant others. Our integrated analysis of quantitative and qualitative data revealed 2 types of stress responses: high stress responses (7 women) and low stress responses (4 women). Patterns of stress responses were seen in psychological stress and cervical remodeling (attenuation or cervical length). All women in the high stress responses group had high depression and/or low psychological well-being and abnormal cervical remodeling at one or both data collection times. All but 1 woman had at least 3 sources of stress (racial, neighborhood, financial, or network). In contrast, 3 of the 4 women in the low stress responses group had only 2 sources of stress (racial, neighborhood, financial, or network) and 1 had none; these women also reported higher perceived support. The findings demonstrate the importance of periodically assessing stress in African American women during pregnancy, particularly related to their support network as well as the positive supports they receive. PMID:23360946

  15. Exploring the Response of Plants Grown under Uranium Stress

    Energy Technology Data Exchange (ETDEWEB)

    Doustaly, Fany; Berthet, Serge; Bourguignon, Jacques [CEA, iRTSV, Laboratoire de Physiologie Cellulaire Vegetale, UMR 5168 CEA-CNRS-INRA-Univ. Grenoble Alpes (France); Combes, Florence; Vandenbrouck, Yves [CEA, iRTSV, Laboratoire de Biologie a Grande Echelle, EDyP, CEA-Grenoble (France); Carriere, Marie [CEA, INAC, LAN, UMR E3 CEA-Universite Joseph Fourier, Grenoble (France); Vavasseur, Alain [CEA, IBEB, LBDP, Saint Paul lez Durance, CEA Cadarache (France)

    2014-07-01

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between uranium speciation and plant response. We analyzed the impact of different uranium (U) treatments on three plant species namely sunflower, oilseed rape and wheat. Using inductively coupled plasma mass spectrometry elemental analysis, together with a panel of imaging techniques including scanning electron microscopy coupled with energy dispersive spectroscopy, transmission electron microscopy and particle-induced X-ray emission spectroscopy, we have recently shown how chemical speciation greatly influences the accumulation and distribution of U in plants. Uranyl (UO{sub 2}{sup 2+} free ion) is the predominant mobile form in soil surface at low pH in absence of ligands. With the aim to characterize the early plant response to U exposure, complete Arabidopsis transcriptome microarray experiments were conducted on plants exposed to 50 μM uranyl nitrate for 2, 6 and 30 h and highlighted a set of 111 genes with modified expression at these three time points. Quantitative real-time RT-PCR experiments confirmed and completed CATMA micro-arrays results allowing the characterization of biological processes perturbed by U. Functional categorization of deregulated genes emphasizes oxidative stress, cell wall biosynthesis and hormone biosynthesis and signaling. We showed that U stress is perceived by plant cells like a phosphate starvation stress since several phosphate deprivation marker genes were deregulated by U and also highlighted perturbation of iron homeostasis by U. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with

  16. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.

    Directory of Open Access Journals (Sweden)

    Arjun Sham

    Full Text Available Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20, encoding for a member of the caleosin (lipid surface protein family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research

  17. An increase in salivary interleukin-6 level following acute psychosocial stress and its biological correlates in healthy young adults.

    Science.gov (United States)

    Izawa, Shuhei; Sugaya, Nagisa; Kimura, Kenta; Ogawa, Namiko; Yamada, Kosuke C; Shirotsuki, Kentaro; Mikami, Ikuyo; Hirata, Kanako; Nagano, Yuichiro; Nomura, Shinobu

    2013-10-01

    Although interleukin-6 (IL-6) has been investigated frequently in stress research, knowledge regarding the biological processes of IL-6 in association with psychosocial stress remains incomplete. This study focused on salivary IL-6 and reports its temporal variation and biological correlates following acute psychosocial stress. Fifty healthy young adults (39 male and 11 female students) were subjected to the psychosocial stress test 'Trier Social Stress Test' (TSST), wherein the participants were asked to deliver a speech and perform a mental arithmetic task in front of 2 audiences. Collection of saliva samples, measurement of heart rate, and assessment of negative moods by visual analogue scales were conducted before, during, and after TSST. Salivary IL-6 levels increased by approximately 50% in response to the TSST and remained elevated for 20 min after the stress tasks were completed. Cluster analyses revealed that individuals with sustained elevation of IL-6 levels following the TSST exhibited a lower cortisol response compared to individuals with lower IL-6 levels. In the correlation analyses, a greater IL-6 response was associated with a higher heart rate during the mental arithmetic task (r=.351, ppsychosocial stress, and suggests that sympathetic activity and cortisol secretion are involved in elevation of salivary IL-6 levels.

  18. A physical/psychological and biological stress combine to enhance endoplasmic reticulum stress

    Science.gov (United States)

    Mondal, Tapan Kumar; Emeny, Rebecca T.; Gao, Donghong; Ault, Jeffrey G.; Kasten-Jolly, Jane; Lawrence, David A.

    2015-01-01

    The generation of an immune response against infectious and other foreign agents is substantially modified by allostatic load, which is increased with chemical, physical and/or psychological stressors. The physical/psychological stress from cold-restraint (CR) inhibits host defense against Listeria monocytogenes (LM), due to early effects of the catecholamine norepinephrine (NE) from sympathetic nerves on β1-adrenoceptors (β1AR) of immune cells. Although CR activates innate immunity within 2 h, host defenses against bacterial growth is suppressed 2–3 days after infection (Cao and Lawrence 2002). CR enhances inducible nitric oxide synthase (iNOS) expression and NO production. The early innate activation leads to cellular reduction-oxidation (redox) changes of immune cells. Lymphocytes from CR-treated mice express fewer surface thiols. Splenic and hepatic immune cells also have fewer proteins with free thiols after CR and/or LM, and macrophages have less glutathione after the in vivo CR exposure or exposure to NE in vitro. The early induction of CR-induced oxidative stress elevates endoplasmic reticulum (ER) stress, which could interfere with keeping phagocytized LM within the phagosome or re-encapsuling LM by autophagy once they escape from the phagosome. ER stress-related proteins, such as glucose-regulated protein 78 (GRP78), have elevated expression with CR and LM. The results indicate that CR enhances the unfolded protein response (UPR), which interferes with host defenses against LM. Thus, it is postulated that increased stress, as exists with living conditions at low socioeconomic conditions, can lower host defenses against pathogens because of oxidative and ER stress processes. PMID:26391182

  19. Waterborne aripiprazole blunts the stress response in zebrafish

    Science.gov (United States)

    Barcellos, Heloísa Helena De Alcantara; Kalichak, Fabiana; da Rosa, João Gabriel Santos; Oliveira, Thiago Acosta; Koakoski, Gessi; Idalencio, Renan; de Abreu, Murilo Sander; Giacomini, Ana Cristina Varrone; Fagundes, Michele; Variani, Cristiane; Rossini, Mainara; Piato, Angelo L.; Barcellos, Leonardo José Gil

    2016-11-01

    Here we provide, at least to our knowledge, the first evidence that aripiprazole (APPZ) in the water blunts the stress response of exposed fish in a concentration ten times lower than the concentration detected in the environment. Although the mechanism of APPZ in the neuroendocrine axis is not yet determined, our results highlight that the presence of APPZ residues in the environment may interfere with the stress responses in fish. Since an adequate stress response is crucial to restore fish homeostasis after stressors, fish with impaired stress response may have trouble to cope with natural and/or imposed stressors with consequences to their welfare and survival.

  20. Antioxidant responses and cellular adjustments to oxidative stress.

    Science.gov (United States)

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-12-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases.

  1. Antioxidant responses and cellular adjustments to oxidative stress

    Science.gov (United States)

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-01-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. PMID:26233704

  2. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies...

  3. Origins of asymmetric stress-strain response in phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sehitoglu, H.; Gall, K. [Univ. of Illinois, Urbana, IL (United States)

    1997-12-31

    It has been determined that the transformation stress-strain behavior of CuZnAl and NiTi shape memory alloys is dependent on the applied stress state. The uniaxial compressive stress necessary to macroscopically trigger the transformation is approximately 34% (CuZnAl) and 26% (NiTi) larger than the required uniaxial tensile stress. For three dimensional stress states, the response of either alloy system is dependent on the directions of the dominant principal stresses along with the hydrostatic stress component of the stress state. The stress state effects are dominated by the favored growth and nucleation of more martensite plates in tension versus compression. The effect of different hydrostatic pressure levels between stress states on martensite plates volume change is considered small.

  4. Comprehensive Analysis Suggests Overlapping Expression of Rice ONAC Transcription Factors in Abiotic and Biotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Lijun Sun

    2015-02-01

    Full Text Available NAC (NAM/ATAF/CUC transcription factors comprise a large plant-specific gene family that contains more than 149 members in rice. Extensive studies have revealed that NAC transcription factors not only play important roles in plant growth and development, but also have functions in regulation of responses to biotic and abiotic stresses. However, biological functions for most of the members in the NAC family remain unknown. In this study, microarray data analyses revealed that a total of 63 ONAC genes exhibited overlapping expression patterns in rice under various abiotic (salt, drought, and cold and biotic (infection by fungal, bacterial, viral pathogens, and parasitic plants stresses. Thirty-eight ONAC genes exhibited overlapping expression in response to any two abiotic stresses, among which 16 of 30 selected ONAC genes were upregulated in response to exogenous ABA. Sixty-five ONAC genes showed overlapping expression patterns in response to any two biotic stresses. Results from the present study suggested that members of the ONAC genes with overlapping expression pattern may have pleiotropic biological functions in regulation of defense response against different abiotic and biotic stresses, which provide clues for further functional analysis of the ONAC genes in stress tolerance and pathogen resistance.

  5. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    Science.gov (United States)

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  6. Psoriatic arthritis treatment: biological response modifiers.

    Science.gov (United States)

    Mease, P J; Antoni, C E

    2005-03-01

    In recent years there has been a surge of interest in the treatment of chronic inflammatory disorders as a result of the development and application of targeted biological therapies. The elucidation of the overlapping cellular and cytokine immunopathology of such diverse conditions as rheumatoid arthritis (RA), Crohn's disease, and psoriasis points to specific targets for bioengineered proteins or small molecules. Similar to clinical trials in RA, trials in psoriatic arthritis (PsA) have shown excellent clinical results with the tumour necrosis factor (TNF) blockers, etanercept, infliximab, and adalimumab in a variety of domains including the joints, quality of life, function, and slowing of disease progress as evidenced radiologically. In addition, these agents have shown benefit in domains more unique to PsA, such as the skin lesions of psoriasis, enthesitis, and dactylitis, pointing out the similar pathogenesis of the disease in the skin, the tendons, and the synovial membrane. This therapy has been generally safe and well tolerated in clinical trials of PsA. Other logical candidates for targeted therapy in development include other anti-TNF agents, costimulatory blockade agents that affect T cell function, blockers of other cytokines such as interleukin (IL)-1, 6, 12, 15, or 18, and B cell modulatory medicines. Also, it will be useful to learn more about the effects of combining traditional disease modifying drugs and the newer biologicals.

  7. Immune responses to stress in rheumatoid arthritis and psoriasis

    NARCIS (Netherlands)

    Brouwer, S.J. dr; Middendorp, H. van; Stormink, C.; Kraaimaat, F.W.; Joosten, I.; Radstake, T.R.; Jong, E.M. de; Schalkwijk, J.; Donders, A.R.; Eijsbouts, A.M.M.; Kerkhof, P.C.M. van de; Riel, P.L.C.M. van; Evers, A.W.

    2014-01-01

    OBJECTIVE: Stress is one of the factors that may exacerbate the progression of chronic inflammatory diseases such as RA and psoriasis. We exploratively compared the effects of acute stress on levels of circulating cytokines involved in disease progression and/or the stress response in patients with

  8. How sulphate-reducing microorganisms cope with stress: Lessons from systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; He, Q.; Hemme, C.L.; Mukhopadhyay, A.; Hillesland, K.; Zhou, A.; He, Z.; Nostrand, J.D. Van; Hazen, T.C.; Stahl, D.A.; Wall, J.D.; Arkin, A.P.

    2011-04-01

    Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.

  9. Quantitative Phosphoproteomic Analysis of Arabidopsis in Response to Salt and Hydrogen Peroxide Stresses

    Institute of Scientific and Technical Information of China (English)

    Yanmei Chen

    2012-01-01

    Salinity and oxidative stresses are major factors in affecting and limiting the productivity of agricultural crops.The study of biochemical and molecular responses of plants in response to those stresses is important for crop genetics and breeding.Extensive evidence shows that reversible protein phosphorylation plays a central role in mediating stress-regulated physiological responses,but little is known about its extent and function.Mass spectrometry provides a powerful tool for the in-depth analysis of systems biology.In this study,we performed a global quantitative analysis of the Arabidopsis phosphoproteomics in response to a time course of stress treatments using 15N-metabolic labeling and subcellular fractionation approaches.In total,we found 176 phosphoproteins showed to be regulated under stresses.Nine SnRK2 kinases identified to be differentially phosphorylated at multiple serine/threonine residues in their kinase domains following stress treatments,demonstrating different temporal phosphorylation induction of the various isoforms.K+ and Na+ transporters showed coordinated phosphorylation regulation under salt stress.In particular,nuclear proteins and protein kinases have high phosphorylation site occupancy in response to stress treatment.This suggests that the wide range of signaling and cellular processes that are modulated in this study.

  10. Metabolomic analysis of the selection response of Drosophila melanogaster to environmental stress

    DEFF Research Database (Denmark)

    Malmendal, Anders; Sørensen, Jesper Givskov; Overgaard, Johannes

    2013-01-01

    We investigated the global metabolite response to artificial selection for tolerance to stressful conditions such as cold, heat, starvation, and desiccation, and for longevity in Drosophila melanogaster. Our findings were compared to data from other levels of biological organization, including gene...

  11. Regulation of Stress Responses and Translational Control by Coronavirus

    Science.gov (United States)

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  12. Regulation of Stress Responses and Translational Control by Coronavirus

    Directory of Open Access Journals (Sweden)

    To Sing Fung

    2016-07-01

    Full Text Available Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed.

  13. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    to affect lifespan. The progress in modern genetic techniques has allowed researchers to test this idea. The general stress response involves the expression of stress proteins, such as chaperones and antioxidative proteins, downregulation of genes involved in energy metabolism and the release of protective......The concept that lifespan is a function of the capacity to withstand extrinsic stress is very old. In concordance with this, long-lived individuals often have increased resistance against a variety of stresses throughout life. Genes underlying the stress response may therefore have the ability...

  14. Disruption of multisystem responses to stress in type 2 diabetes: Investigating the dynamics of allostatic load

    Science.gov (United States)

    Steptoe, Andrew; Hackett, Ruth A.; Lazzarino, Antonio I.; Bostock, Sophie; La Marca, Roberto; Carvalho, Livia A.; Hamer, Mark

    2014-01-01

    Psychological stress-related processes are thought to contribute to the development and progression of type 2 diabetes, but the biological mechanisms involved are poorly understood. Here, we tested the notion that people with type 2 diabetes experience chronic allostatic load, manifest as dynamic disturbances in reactivity to and recovery from stress across multiple (cardiovascular, neuroendocrine, inflammatory, metabolic) biological systems, coupled with heightened experience of chronic life stress. We carried out an experimental comparison of 140 men and women aged 50–75 y with type 2 diabetes and 280 nondiabetic individuals matched on age, sex, and income. We monitored blood pressure (BP) and heart rate, salivary cortisol, plasma interleukin (IL)-6, and total cholesterol in response to standardized mental stress, and assessed salivary cortisol over the day. People with type 2 diabetes showed impaired poststress recovery in systolic and diastolic BP, heart rate and cholesterol, and blunted stress reactivity in systolic BP, cortisol, cholesterol, and IL-6. Cortisol and IL-6 concentrations were elevated, and cortisol measured over the day was higher in the type 2 diabetes group. Diabetic persons reported greater depressive and hostile symptoms and greater stress experience than did healthy controls. Type 2 diabetes is characterized by disruption of stress-related processes across multiple biological systems and increased exposure to life stress. Chronic allostatic load provides a unifying perspective with implications for etiology and patient management. PMID:25331894

  15. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  16. The stress response system of proteins: Implications for bioreactor scaleup

    Science.gov (United States)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  17. Association Between Neighborhood Violence and Biological Stress in Children

    Science.gov (United States)

    Theall, Katherine P.; Shirtcliff, Elizabeth A.; Dismukes, Andrew R.; Wallace, Maeve; Drury, Stacy S.

    2017-01-01

    IMPORTANCE Exposure to violence continues to be a growing epidemic, particularly among children. An enhanced understanding of the biological effect of exposure to violence is critical. OBJECTIVE To examine the association between neighborhood violence and cellular and biological stress in children. DESIGN, SETTING, AND PARTICIPANTS A matched, cross-sectional study of 85 black children aged 5 to 16 years from 52 neighborhoods took place in the greater New Orleans, Louisiana, area between January 1, 2012, and July 31, 2013. EXPOSURES Density of businesses where individuals can purchase alcohol as measured by rates per capita of liquor or convenience stores, and violence as measured by reports of violent crime and reports of domestic violence, operationalized as reports per capita of crime and domestic violence. Rates of exposure within a 500-, 1000-, and 2000-m radius from the child’s home were calculated. MAIN OUTCOMES AND MEASURES Primary biological outcomes were telomere length and cortisol functioning. RESULTS Among the 85 children in the study, (mean [SD] age, 9.8 [3.1] years; 50 girls and 35 boys) significant variation in telomere length and cortisol functioning was observed at the neighborhood level, with intraclass correlation coefficients of 6% for telomere length, 3.4% for waking cortisol levels, and 5.5% for peak cortisol levels following a stressor. Density of liquor or convenience stores within a 500-m radius of a child’s home was associated with a decrease in mean telomere length by 0.004 for each additional liquor store or convenience store (β [SE], −0.004 [0.002]; P = .02). The rate of domestic violence was significantly and inversely associated with a decrease in mean telomere length by 0.007 for each additional report of domestic violence in a 500-m radius of a child’s home (β [SE], −0.007 [0.001]; P < .001). The rate of violent crime was significantly associated with a decrease in mean telomere length by 0.006 for each additional report

  18. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  19. Stress in university students and cardiovascular response to academic stressors

    OpenAIRE

    Guimarães,Teresa; Silva, Ana Patrícia; Monteiro, Iolanda; Gomes, Rui

    2014-01-01

    Introduction: University students are frequently exposed to events that can cause stress and anxiety, producing elevated cardiovascular responses. Repeated exposure to academic stress has implications to students’ success and well-being and may contribute to the development of long-term health problems. Objective: To identify stress levels and coping strategies in university students and assess the impact of stress experience in heart rate variability (HRV). Methods: 17 university students, 1...

  20. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.;

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout......Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  1. Delineating the DNA damage response using systems biology approaches

    NARCIS (Netherlands)

    Stechow, Louise von

    2013-01-01

    Cellular responses to DNA damage are highly variable and strongly depend on the cellular and organismic context. Studying the DNA damage response is crucial for a better understanding of cancer formation and ageing as well as genotoxic stress-induced cancer therapy. To do justice to the multifaceted

  2. Biological response of hydrogels embedding gold nanoparticles.

    Science.gov (United States)

    Marsich, Eleonora; Travan, Andrea; Donati, Ivan; Di Luca, Andrea; Benincasa, Monica; Crosera, Matteo; Paoletti, Sergio

    2011-04-01

    A nanocomposite hydrogel based on natural polysaccharides and gold nanoparticles (ACnAu) has been prepared and its biological effects were tested in vitro with both bacteria and eukaryotic cells. Antimicrobial tests showed that AC-nAu gels are effective in killing both gram+ (Staphylococcus aureus) and gram- (Pseudomonas aeruginosa) bacteria. LDH assays pointed at a toxic effect towards eukaryotic cell-lines (HepG2 and MG63), in contrast with the case of silver-based hydrogels; cytofluorimetry studies demonstrated an apoptosis-related mechanism induced by increase of ROS intracellular level which leads to cell death after 24 h of direct contact with AC-nAu gels. In vivo biocompatibility has been evaluated in a rat model, investigating the peri-implant soft tissue reaction after 1 month of implantation. The results show that silver-containing samples induced a fibrotic capsule of the same average thickness of the control sample (devoid of nanoparticles) (∼50 μm), while in the case of gold containing materials the fibrotic capsule was thicker (∼100 μm), confirming a higher biocompatibility for silver-based samples than for gold-based ones.

  3. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2007-10-01

    Full Text Available Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE. We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation.

  4. Response Inhibition and Cognitive Appraisal in Clients with Acute Stress Disorder and Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Abass Abolghasemi

    2013-09-01

    Full Text Available Objective: The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals .Method:This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results:Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms .Conclusion:The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder

  5. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  6. Effects of orthostasis on endocrine responses to psychosocial stress.

    Science.gov (United States)

    Nater, Urs M; Ditzen, Beate; Strahler, Jana; Ehlert, Ulrike

    2013-12-01

    Standardized psychological procedures have been designed to induce physiological stress responses. However, the impact of standing (orthostasis) on the physiological reaction after psychological stress remains unclear. The purpose of the current analysis was to examine and quantify the relative contribution of orthostasis to the physiological stress response by comparing a "standing with stress" to a "standing without stress" condition. We investigated the effect of standing with and without stress on responses of the sympathetic-adrenomedullary (SAM) system and the hypothalamic-pituitary-adrenal (HPA) axis using a standardized psychosocial stress protocol (Trier Social Stress Test) and a non-stress condition in a repeated measures design. Subjects (N=30) were exposed to both conditions in randomized order and had to maintain a standing, upright position for 10minutes. In the "standing with stress" condition, significant increases in repeatedly assessed plasma norepinephrine (NE) and epinephrine (EP), as well as in saliva cortisol were found, while in the "standing without stress" condition, no significant changes in plasma epinephrine and saliva cortisol were observed. Calculations of the relative contribution of orthostasis to physiological stress responses revealed that 25.61% of the NE increase, 82.94% of the EP increase, and 68.91% of the cortisol increase, could be attributed to psychosocial stress adjusted for the effects of orthostasis and basal endocrine output. Although these results are indicative for a marked endocrine reaction that is caused by psychosocial stress alone, our findings show that the contribution of orthostasis must be taken into account when interpreting endocrine data collected in a psychosocial stress test.

  7. Disrupted glucocorticoid--Immune interactions during stress response in schizophrenia.

    Science.gov (United States)

    Chiappelli, Joshua; Shi, Qiaoyun; Kodi, Priyadurga; Savransky, Anya; Kochunov, Peter; Rowland, Laura M; Nugent, Katie L; Hong, L Elliot

    2016-01-01

    Glucocorticoid and immune pathways typically interact dynamically to optimize adaptation to stressful environmental challenges. We tested the hypothesis that a dysfunctional glucocorticoid-immune relationship contributes to abnormal stress response in schizophrenia. Saliva samples from 34 individuals with schizophrenia (20 male, 14 female) and 40 healthy controls (20 male, 20 female) were collected prior to and at 3 time points following completion of a computerized psychological challenge meant to be frustrating. Salivary concentrations of cortisol and interleukin-6 (IL-6) and their response to the challenge were examined. Both cortisol and IL-6 significantly increased in response to stress in the combined sample (both pschizophrenia patients (r=.379, p=.027). The trends were significantly different (Z=3.7, p=.0002). This stress paradigm induces a rise in both cortisol and IL-6. In healthy controls, a more robust acute cortisol response was associated with a steeper decline of IL-6 levels following stress, corresponding to the expected anti-inflammatory effects of cortisol. Patients exhibited the opposite relationship, suggesting an inability to down-regulate inflammatory responses to psychological stress in schizophrenia; or even a paradoxical increase of IL-6 response. This finding may partially underlie abnormalities in inflammatory and stress pathways previously found in the illness, implicating dysregulated stress response in the chronic inflammatory state in schizophrenia.

  8. Stretching the Stress Boundary: Linking Air Pollution Health Effects to a Neurohormonal Stress Response

    Science.gov (United States)

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer’s and diabetes. A neurohormonal stress response (referred here as a systemic response produced by activ...

  9. Supramolecular Assemblies Responsive to Biomolecules toward Biological Applications.

    Science.gov (United States)

    Shigemitsu, Hajime; Hamachi, Itaru

    2015-10-01

    Stimuli-responsive supramolecular assemblies consisting of small molecules are attractive functional materials for biological applications such as drug delivery, medical diagnosis, enzyme immobilization, and tissue engineering. By use of their dynamic and reversible properties, many supramolecular assemblies responsive to a variety of biomolecules have been designed and synthesized. This review focuses on promising strategies for the construction of such dynamic supramolecular assemblies and their functions. While studies of biomolecule-responsive supramolecular assemblies have mainly been performed in vitro, it has recently been demonstrated that some of them can work in live cells. Supramolecular assemblies now open up new avenues in chemical biology and biofunctional materials.

  10. Infection biology and defence responses in sorghum against Colletotrichum sublineolum

    DEFF Research Database (Denmark)

    Puttalingaiah, Basavaraju; Shetty, Nandini Prasad; Shetty, H. S.

    2009-01-01

    Aims: To investigate the infection biology of Colletotrichum sublineolum (isolate CP2126) and defence responses in leaves of resistant (SC146), intermediately resistant (SC326) and susceptible (BTx623) sorghum genotypes. Methods and Results: Infection biology and defence responses were studied...... decreases in formation of appressoria as well as accumulation of H2O2, HRGPs and phytoalexins. Concomitant with these inducible responses, fungal growth was stopped during or just after penetration in genotypes SC146 and SC326. High levels of H2O2 accumulating at late infection stages (5 days after...

  11. Differential stress responses among newly received calves: variations in reductant capacity and Hsp gene expression.

    Science.gov (United States)

    Eitam, Harel; Vaya, Jacob; Brosh, Arieh; Orlov, Ala; Khatib, Soliman; Izhaki, Ido; Shabtay, Ariel

    2010-11-01

    Bovine respiratory disease complex (BRD), a major economic concern to the beef cattle industry all over the world, is triggered by physical, biological and psychological stresses. It is becoming noticeable that the key to reducing BRD appears to be centered at reducing the response to stress. The aims of the present study were to detect individual variations in the stress response of newly received young calves through their leukocyte heat shock protein (Hsp) response, selected neutrophil-related gene expression and oxidative stress, and relate them to pulmonary adhesions at slaughter, an indicative sign of clinical and subclinical episodes of BRD at an early age. Differential expression patterns of Hsp60 and Hsp70A1A were revealed in newly received calves 1 h, 5 h and 1 day after arrival, distinguishing between stress-responsive and non-stress-responsive individuals. Plasma cortisol was also indicative of stress-responsive and non-stress-responsive individuals, 1 h and 5 h after arrival. At the longer term, β-glycan levels were highest 7 days after arrival and significantly correlated with an adhesion-free phenotype at slaughter. Oxidative stress responses, measured through the oxidation products of the exogenous linoleoyl tyrosine (LT) marker, revealed that hydroperoxidation and epoxidation of membranes may readily occur. Based on the LT oxidation products and levels of β-glycan, we present a discriminant analysis model, according to which vulnerable individuals may be predicted at near 100% probability 7 days after arrival. Since clinical signs of BRD may often go undetected in feedlot calves, such a model, after its examination in large-scale experiments, may be a reliable tool for an early prediction of subclinical signs of BRD.

  12. Morphologic effects of the stress response in fish.

    Science.gov (United States)

    Harper, Claudia; Wolf, Jeffrey C

    2009-01-01

    Fish and other aquatic animals are subject to a broad variety of stressors because their homeostatic mechanisms are highly dependent on prevailing conditions in their immediate surroundings. Yet few studies have addressed stress as a potential confounding factor for bioassays that use fish as test subjects. Common stressors encountered by captive fish include physical and mental trauma associated with capture, transport, handling, and crowding; malnutrition; variations in water temperature, oxygen, and salinity; and peripheral effects of contaminant exposure or infectious disease. Some stress responses are detectable through gross or microscopic examination of various organs or tissues; as reported in the literature, stress responses are most consistently observed in the gills, liver, skin, and components of the urogenital tract. In addition to presenting examples of various stressors and corresponding morphologic effects, this review highlights certain challenges of evaluating stress in fish: (1) stress is an amorphous term that does not have a consistently applied definition; (2) procedures used to determine or measure stress can be inherently stressful; (3) interactions between stressors and stress responses are highly complex; and (4) morphologically, stress responses are often difficult to distinguish from tissue damage or compensatory adaptations induced specifically by the stressor. Further investigations are necessary to more precisely define the role of stress in the interpretation of fish research results.

  13. Stress Response and Perinatal Reprogramming: Unraveling (Maladaptive Strategies

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2016-01-01

    Full Text Available Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life, trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral (maladaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli.

  14. Neuronal modelling of baroreflex response to orthostatic stress

    Science.gov (United States)

    Samin, Azfar

    The accelerations experienced in aerial combat can cause pilot loss of consciousness (GLOC) due to a critical reduction in cerebral blood circulation. The development of smart protective equipment requires understanding of how the brain processes blood pressure (BP) information in response to acceleration. We present a biologically plausible model of the Baroreflex to investigate the neural correlates of short-term BP control under acceleration or orthostatic stress. The neuronal network model, which employs an integrate-and-fire representation of a biological neuron, comprises the sensory, motor, and the central neural processing areas that form the Baroreflex. Our modelling strategy is to test hypotheses relating to the encoding mechanisms of multiple sensory inputs to the nucleus tractus solitarius (NTS), the site of central neural processing. The goal is to run simulations and reproduce model responses that are consistent with the variety of available experimental data. Model construction and connectivity are inspired by the available anatomical and neurophysiological evidence that points to a barotopic organization in the NTS, and the presence of frequency-dependent synaptic depression, which provides a mechanism for generating non-linear local responses in NTS neurons that result in quantifiable dynamic global baroreflex responses. The entire physiological range of BP and rate of change of BP variables is encoded in a palisade of NTS neurons in that the spike responses approximate Gaussian 'tuning' curves. An adapting weighted-average decoding scheme computes the motor responses and a compensatory signal regulates the heart rate (HR). Model simulations suggest that: (1) the NTS neurons can encode the hydrostatic pressure difference between two vertically separated sensory receptor regions at +Gz, and use changes in that difference for the regulation of HR; (2) even though NTS neurons do not fire with a cardiac rhythm seen in the afferents, pulse

  15. Involvement of Histone Modifications in Plant Abiotic Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Lianyu Yuan; Xuncheng Liu; Ming Luo; Songguang Yang; Keqiang Wu

    2013-01-01

    As sessile organisms, plants encounter various environmental stimuli including abiotic stresses during their lifecycle. To survive under adverse conditions, plants have evolved intricate mechanisms to perceive external signals and respond accordingly. Responses to various stresses largely depend on the plant capacity to modulate the transcriptome rapidly and specifically. A number of studies have shown that the molecular mechanisms driving the responses of plants to environmental stresses often depend on nucleosome histone post-translational modifications including histone acetylation, methylation, ubiquitination, and phosphorylation. The combined effects of these modifications play an essential role in the regulation of stress responsive gene expression. In this review, we highlight our current understanding of the epigenetic mechanisms of histone modifications and their roles in plant abiotic stress response.

  16. Post-stress rumination predicts HPA axis responses to repeated acute stress.

    Science.gov (United States)

    Gianferante, Danielle; Thoma, Myriam V; Hanlin, Luke; Chen, Xuejie; Breines, Juliana G; Zoccola, Peggy M; Rohleder, Nicolas

    2014-11-01

    Failure of the hypothalamus-pituitary-adrenal (HPA) axis to habituate to repeated stress exposure is related with adverse health outcomes, but our knowledge of predictors of non-habituation is limited. Rumination, defined as repetitive and unwanted past-centered negative thinking, is related with exaggerated HPA axis stress responses and poor health outcomes. The aim of this study was to test whether post-stress rumination was related with non-habituation of cortisol to repeated stress exposure. Twenty-seven participants (n=13 females) were exposed to the Trier Social Stress Test (TSST) twice on consecutive afternoons. Post-stress rumination was measured after the first TSST, and HPA axis responses were assessed by measuring salivary cortisol 1 min before, and 1, 10, 20, 60, and 120 min after both TSSTs. Stress exposure induced HPA axis activation on both days, and this activation showed habituation indicated by lower responses to the second TSST (F=3.7, p=0.015). Post-stress rumination after the first TSST was associated with greater cortisol reactivity after the initial stress test (r=0.45, pHPA axis responses. This finding implicates rumination as one possible mechanism mediating maladaptive stress response patterns, and it might also offer a pathway through which rumination might lead to negative health outcomes.

  17. Nitric Oxide Signaling in Plant Responses to Abiotic Stresses

    Institute of Scientific and Technical Information of China (English)

    Weihua Qiao; LiuMin Fan

    2008-01-01

    Nitric oxide (NO) plays important roles in diverse physiological processes In plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.

  18. Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again

    LENUS (Irish Health Repository)

    2011-08-30

    Abstract Before a probiotic bacterium can even begin to fulfill its biological role, it must survive a battery of environmental stresses imposed during food processing and passage through the gastrointestinal tract (GIT). Food processing stresses include extremes in temperature, as well as osmotic, oxidative and food matrix stresses. Passage through the GIT is a hazardous journey for any bacteria with deleterious lows in pH encountered in the stomach to the detergent-like properties of bile in the duodenum. However, bacteria are equipped with an array of defense mechanisms to counteract intracellular damage or to enhance the robustness of the cell to withstand lethal external environments. Understanding these mechanisms in probiotic bacteria and indeed other bacterial groups has resulted in the development of a molecular toolbox to augment the technological and gastrointestinal performance of probiotics. This has been greatly aided by studies which examine the global cellular responses to stress highlighting distinct regulatory networks and which also identify novel mechanisms used by cells to cope with hazardous environments. This review highlights the latest studies which have exploited the bacterial stress response with a view to producing next-generation probiotic cultures and highlights the significance of studies which view the global bacterial stress response from an integrative systems biology perspective.

  19. Dynamical theory of active cellular response to external stress.

    Science.gov (United States)

    De, Rumi; Safran, Samuel A

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  20. Dynamical theory of active cellular response to external stress

    Science.gov (United States)

    de, Rumi; Safran, Samuel A.

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  1. Differences in copper bioaccumulation and biological responses in three Mytilus species.

    Science.gov (United States)

    Brooks, Steven J; Farmen, Eivind; Heier, Lene Sørlie; Blanco-Rayón, Esther; Izagirre, Urtzi

    2015-03-01

    Mytilus species are important organisms in marine systems being highly abundant and widely distributed along the coast of Europe and worldwide. They are typically used in biological effects studies and have a suite of biological effects endpoints that are frequently measured and evaluated for stress effects in laboratory experiments and field monitoring programmes. Differences in bioaccumulation and biological responses of the three Mytilus species following exposure to copper (Cu) were investigated. A laboratory controlled exposure study was performed with three genetically confirmed Mytilus species; M. galloprovincialis, M. edulis and M. trossulus. Chemical bioaccumulation and biomarkers were assessed in all three Mytilus species following a 4 day and a 21 day exposure to waterborne copper concentrations (0, 10, 100 and 500μg/L). Differences in copper bioaccumulation were measured after both 4 and 21 days, which suggests some physiological differences between the species. Furthermore, differences in response for some of the biological effects endpoints were also found to occur following exposure. These differences were discussed in relation to either real physiological differences between the species or merely confounding factors relating to the species natural habitat and seasonal cycles. Overall the study demonstrated that differences in chemical bioaccumulation and biomarker responses between the Mytilus spp. occur with potential consequences for mussel exposure studies and biological effects monitoring programmes. Consequently, the study highlights the importance of identifying the correct species when using Mytilus in biological effects studies.

  2. Transcriptomic responses to low temperature stress in the Manila clam, Ruditapes philippinarum.

    Science.gov (United States)

    Nie, Hongtao; Jiang, Liwen; Huo, Zhongming; Liu, Lianhui; Yang, Feng; Yan, Xiwu

    2016-08-01

    The Manila clam, Ruditapes philippinarum, is an economically important shellfish in marine aquaculture, with a broad thermal tolerance. The ability to cope with cold stress is quite important for the survival of aquatic species under natural conditions. A cold-tolerant clam that can survive the winter at temperatures below 0 °C might extend our understanding of the mechanisms underlying the response to cold stress. In this study, the transcriptional response of the Manila clam to cold stress (-1 °C) was characterized using RNA sequencing. The transcriptomes of a cold-treatment (O) group of clams, which survived under cold stress, and the control group (OC2), which was not subjected to cold stress, were sequenced with the Illumina HiSeq platform. In all, 148,593 unigenes were generated. Compared with the unigene expression profile of the control group, 1760 unigenes were up regulated and 2147 unigenes were down regulated in the O group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that signal transduction, mitochondrial metabolism, cellular component organization or biogenesis, and energy production processes were the most highly enriched pathways among the genes that were differentially expressed under cold stress. All these pathways could be assigned to the following biological functions in the cold-tolerant Manila clam: signal response to cold stress, antioxidant response, cell proliferation, and energy production.

  3. Association between neuroticism and amygdala responsivity emerges under stressful conditions.

    Science.gov (United States)

    Everaerd, Daphne; Klumpers, Floris; van Wingen, Guido; Tendolkar, Indira; Fernández, Guillén

    2015-05-15

    Increased amygdala reactivity in response to salient stimuli is seen in patients with affective disorders, in healthy subjects at risk for these disorders, and in stressed individuals, making it a prime target for mechanistic studies into the pathophysiology of affective disorders. However, whereas individual differences in neuroticism are thought to modulate the effect of stress on mental health, the mechanistic link between stress, neuroticism and amygdala responsivity is unknown. Thus, we studied the relationship between experimentally induced stress, individual differences in neuroticism, and amygdala responsivity. To this end, fearful and happy faces were presented to a large cohort of young, healthy males (n=120) in two separate functional MRI sessions (stress versus control) in a randomized, controlled cross-over design. We revealed that amygdala reactivity was modulated by an interaction between the factors of stress, neuroticism, and the emotional valence of the facial stimuli. Follow-up analysis showed that neuroticism selectively enhanced amygdala responses to fearful faces in the stress condition. Thus, we show that stress unmasks an association between neuroticism and amygdala responsivity to potentially threatening stimuli. This effect constitutes a possible mechanistic link within the complex pathophysiology of affective disorders, and our novel approach appears suitable for further studies targeting the underlying mechanisms.

  4. Influence of surface stresses on indentation response

    Science.gov (United States)

    Buchwald, J.; Mayr, S. G.

    2015-03-01

    Surface stresses lead to an effective change in the elastic constants of thin films and at surfaces. The development of modern scanning probe techniques like contact resonance atomic force microscopy empowers the experimenter to measure at scales where these effects become increasingly relevant. In this paper we employ a computational multiscale approach where we compare density functional theory (DFT) and molecular dynamics simulations as tools to calculate the thin-film/surface elastic behavior for silicon and strontiumtitanate. From the surface elastic constants gained by DFT calculations we develop a continuum finite-element multilayer model to study the impact of surface stresses on indentation experiments. In general the stress field of an indenter and thus the impact of surface stresses on the indentation modulus depends on its contact radius and on its particular shape. We propose an analytical model that describes the behavior of the indentation modulus as a function of the contact radius. We show that this model fits well to simulation results gained for a spherical and a flat punch indenter. Our results demonstrate a surface-stress-induced reduction of the indentation modulus of about 5% for strontiumtitanate and 6% for silicon for a contact radius of {{r}c}=5 \\text{nm}, irrespective of the indenter shape.

  5. Genomic analysis of stress response against arsenic in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Surasri N Sahu

    Full Text Available Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03% exposure caused stronger global gene expression changes in comparison with low dose (0.003% exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA.

  6. Stress Response and Translation Control in Rotavirus Infection

    Directory of Open Access Journals (Sweden)

    Susana López

    2016-06-01

    Full Text Available The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle.

  7. Stress Response and Translation Control in Rotavirus Infection

    Science.gov (United States)

    López, Susana; Oceguera, Alfonso; Sandoval-Jaime, Carlos

    2016-01-01

    The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle. PMID:27338442

  8. Response Priming with More or Less Biological Movements as Primes.

    Science.gov (United States)

    Eckert, David; Bermeitinger, Christina

    2016-07-01

    Response priming in general is a suitable tool in cognitive psychology to investigate motor preactivations. Typically, compatibility effects reflect faster reactions in cases in which prime and target suggest the same response (i.e., compatible trials) compared with cases in which prime and target suggest opposite responses (i.e., incompatible trials). With moving dots that were horizontally aligned, Bermeitinger (2013) found a stable pattern of results: with short SOAs, faster responses in compatible trials were found; with longer SOAs up to 250 ms, faster responses in incompatible trials were found. It is unclear whether these results are specific to the special motion used therein or whether it generalizes to other motions. We therefore used other motions realized by arrangements of dots. In four experiments, we tested point-light displays (biological coherent walkers vs. less biological scrambled/split displays) as primes. In two experiments, eye gaze motions realized by moving dots representing irises and pupils (i.e., biological) versus the same motion either without surrounding face information or integrated in an abstract line drawing (i.e., less biological) were used. We found overall large positive compatibility effects with biological motion primes and also positive-but smaller-compatibility effects with less biological motion primes. Most important, also with very long SOAs (up to 1320 ms), we did not find evidence for negative compatibility effects. Thus, the pattern of positive-followed-by-negative-compatibility effects found in Bermeitinger (2013) seems to be specific to the materials used therein, whereas response priming in general seems an applicable tool to study motion perception.

  9. Stress Generation and Adolescent Depression: Contribution of Interpersonal Stress Responses

    Science.gov (United States)

    Flynn, Megan; Rudolph, Karen D.

    2011-01-01

    This research examined the proposal that ineffective responses to common interpersonal problems disrupt youths' relationships, which, in turn, contributes to depression during adolescence. Youth (86 girls, 81 boys; M age = 12.41, SD = 1.19) and their primary female caregivers participated in a three-wave longitudinal study. Youth completed a…

  10. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens;

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  11. CSSI workshop in Brazil highlights “Stress Responses in the Nervous System” in relation to neurodegenerative diseases and neuroprotection

    OpenAIRE

    2012-01-01

    A review is provided of the two neuroscience sessions entitled “Stress Responses in the Nervous System” that were presented at the ninth Cell Stress Society International Workshop on the “Molecular Biology of the Stress Response” held in Port Alegre, Brazil, May 27–30, 2012. The sessions were organized and chaired by Ian R. Brown (Toronto, Canada) and Maria Estela Andrés (Santiago, Chile).

  12. Biological markers of oxidative stress: Applications to cardiovascular research and practice

    Directory of Open Access Journals (Sweden)

    Edwin Ho

    2013-01-01

    Full Text Available Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors. Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative stress has been the focus of many researchers as they have the potential to act as an “integrator” of a multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative stress that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue level. Many of these modifications are “functionally silent”. Functional significance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We review selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, further studies are required to examine the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment.

  13. Acute Stress Response in Critically Ill Children

    NARCIS (Netherlands)

    M. den Brinker (Marieke)

    2006-01-01

    textabstractThe understanding of the endocrine changes in critically ill children is important, as it provides insights in the pathophysiology of the acute stress in children and its differences compared with adults. Furthermore, it delineates prognostic factors for survival and supports the rati

  14. Quantification of Bacillus cereus stress responses

    NARCIS (Netherlands)

    Besten, den H.M.W.

    2010-01-01

    The microbial stability and safety of minimally processed foods is controlled by a deliberate combination of preservation hurdles. However, this preservation strategy is challenged by the ability of spoilage bacteria and food-borne pathogens to adapt to stressing environments providing cell robustne

  15. Cell Wall Metabolism in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Hyacinthe Le Gall

    2015-02-01

    Full Text Available This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic, transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i an increased level in xyloglucan endotransglucosylase/hydrolase (XTH and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  16. Cortisol stress responses and children's behavioral functioning at school

    NARCIS (Netherlands)

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    The present study investigated whether cortisol stress responses of 6-year-olds were associated with their behavioral functioning at school. Additionally, the moderating role of stress in the family environment was examined. To this end, 149 healthy children (Magen=n6.09 years; 70 girls) participate

  17. Differentiating anticipatory from reactive cortisol responses to psychosocial stress

    NARCIS (Netherlands)

    Engert, V.; Efanov, S.I.; Duchesne, A.; Vogel, S.; Corbo, V.; Pruessner, J.C.

    2013-01-01

    Most psychosocial stress studies assess the overall cortisol response without further identifying the temporal dynamics within hormone levels. It has been shown, however, that the amplitude of anticipatory cortisol stress levels has a unique predictive value for psychological health. So far, no "bes

  18. Traumatic Experience in Infancy: How Responses to Stress Affect Development

    Science.gov (United States)

    Witten, Molly Romer

    2010-01-01

    Responses to traumatic stress during the earliest years of life can change quickly and can be difficult to identify because of the young child's rapid rate of development. The symptoms of traumatic stress will depend on the child's developmental level and individual coping styles, as well as the quality and nature of the child's most important…

  19. Quorum Sensing Enhances the Stress Response in Vibrio cholerae▿

    OpenAIRE

    Joelsson, Adam; Kan, Biao; Zhu, Jun

    2007-01-01

    Vibrio cholerae lives in aquatic environments and causes cholera. Here, we show that quorum sensing enhances V. cholerae viability under certain stress conditions by upregulating the expression of RpoS, and this regulation acts through HapR, suggesting that a quorum-sensing-enhanced stress response plays a role in V. cholerae environmental survival.

  20. Personality, Stressful Life Events, and Treatment Response in Major Depression

    Science.gov (United States)

    Bulmash, Eric; Harkness, Kate L.; Stewart, Jeremy G.; Bagby, R. Michael

    2009-01-01

    The current study examined whether the personality traits of self-criticism or dependency moderated the effect of stressful life events on treatment response. Depressed outpatients (N = 113) were randomized to 16 weeks of cognitive-behavioral therapy, interpersonal psychotherapy, or antidepressant medication (ADM). Stressful life events were…

  1. The psychophysiological stress response in psoriasis and rheumatoid arthritis

    NARCIS (Netherlands)

    Brouwer, S.J.M. de; Middendorp, H. van; Stormink, C.; Kraaimaat, F.W.; Sweep, F.C.; Jong, E.M.G.J. de; Schalkwijk, J.; Eijsbouts, A.M.M.; Donders, A.R.T.; Kerkhof, P.C.M. van de; Riel, P.L.C.M. van; Evers, A.W.M.

    2014-01-01

    BACKGROUND: Psychosocial stress can be a risk factor for the maintenance and exacerbation of chronic inflammatory diseases, such as psoriasis and rheumatoid arthritis (RA). OBJECTIVES: To gain insight into the specificity of the psychophysiological stress response during chronic inflammation, we ass

  2. Stability analysis of Reynolds stress response functional candidates

    Energy Technology Data Exchange (ETDEWEB)

    Dafinger, M.; Hallatschek, K. [Max-Planck-Institute for Plasma Physics, EURATOM-IPP Association, Garching (Germany); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2013-04-15

    Complete information on the behavior of zonal flows in turbulence systems is coded in the turbulent stress response to the respective flow pattern. We show that turbulence stress response functionals containing only the linear first order wavenumber dependence on the flow pattern result in unstable structures up to the system size. A minimal augmentation to reproduce the flow patterns observed in turbulence simulations is discussed.

  3. Endocrine response patterns after uncontrollable experimental stress: an application of CFA

    Directory of Open Access Journals (Sweden)

    Matthias J. Müller

    2012-06-01

    Full Text Available According to biological stress theories cortisol increases (C+ and testosterone decreases (T- characterize uncontrollable (UC stress and the opposite pattern is observed in controllable (CON stress. The influence of CON/UC on hormone responses to a mental (d2 and a physical (E short-term stressor was tested by two-sample configural frequency analysis in a cross-over design on 74 healthy males assigned to either CON or UC conditions. Areas under the response curves of saliva C and T were computed and dichotomized (+/-. The evaluation of bivariate response patterns (C/T revealed that the combination C+T- was significantly more prevalent after UC than after CON with both stressors. The pattern C-T+ constituted a significant discrimination type between CON and UC across both stressors.

  4. Anger responses to psychosocial stress predict heart rate and cortisol stress responses in men but not women.

    Science.gov (United States)

    Lupis, Sarah B; Lerman, Michelle; Wolf, Jutta M

    2014-11-01

    While previous research has suggested that anger and fear responses to stress are linked to distinct sympathetic nervous system (SNS) stress responses, little is known about how these emotions predict hypothalamus-pituitary-adrenal (HPA) axis reactivity. Further, earlier research primarily relied on retrospective self-report of emotion. The current study aimed at addressing both issues in male and female individuals by assessing the role of anger and fear in predicting heart rate and cortisol stress responses using both self-report and facial coding analysis to assess emotion responses. We exposed 32 healthy students (18 female; 19.6±1.7 yr) to an acute psychosocial stress paradigm (TSST) and measured heart rate and salivary cortisol levels throughout the protocol. Anger and fear before and after stress exposure was assessed by self-report, and video recordings of the TSST were assessed by a certified facial coder to determine emotion expression (FACS). Self-reported emotions and emotion expressions did not correlate (all p>.23). Increases in self-reported fear predicted blunted cortisol responses in men (β=0.41, p=.04). Also for men, longer durations of anger expression predicted exaggerated cortisol responses (β=0.67 p=.004), and more anger incidences predicted exaggerated cortisol and heart rate responses (β=0.51, p=.033; β=0.46, p=.066, resp.). Anger and fear did not predict SNS or HPA activity for females (all p>.23). The current differential self-report and facial coding findings support the use of multiple modes of emotion assessment. Particularly, FACS but not self-report revealed a robust anger-stress association that could have important downstream health effects for men. For women, future research may clarify the role of other emotions, such as self-conscious expressions of shame, for physiological stress responses. A better understanding of the emotion-stress link may contribute to behavioral interventions targeting health-promoting ways of

  5. Context and strain-dependent behavioral response to stress

    Directory of Open Access Journals (Sweden)

    Baum Amber E

    2008-06-01

    Full Text Available Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344 and Wistar Kyoto (WKY rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelty and prior stress, we also investigated behavior after repeated exposure to the test chamber. Two behavioral tests were explored; the elevated plus maze (EPM and the open field (OFT, both of which are thought to measure activity, exploration and anxiety-like behaviors. Additionally, rearing, a voluntary behavior, and grooming, a relatively automatic, stress-responsive stereotyped behavior were measured in both tests. Results Prior exposure to the test environment increased anxiety-related measures regardless of prior stress, reflecting context-dependent learning process in both tests and strains. Activity decreased in response to repeated testing in both tests and both strains, but prior stress decreased activity only in the OFT which was reversed by repeated testing. Prior stress decreased anxiety-related measures in the EPM, only in F344s, while in the OFT, stress led to increased freezing mainly in WKYs. Conclusion Data suggest that differences in stressfulness of these tests predict the behavior of the two strains of animals according to their stress-reactivity and coping style, but that repeated testing can overcome some of these differences.

  6. Plant Responses to Salt Stress: Adaptive Mechanisms

    Directory of Open Access Journals (Sweden)

    Jose Ramón Acosta-Motos

    2017-02-01

    Full Text Available This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.

  7. Low-stress and high-stress singing have contrasting effects on glucocorticoid response

    Directory of Open Access Journals (Sweden)

    Daisy eFancourt

    2015-09-01

    Full Text Available Performing music in public is widely recognised as a potentially stress-inducing activity. However, despite the interest in music performance as an acute psychosocial stressor, there has been relatively little research on the effects of public performance on the endocrine system. This study examined the impact of singing in a low-stress performance situation and a high-stress live concert on levels of glucocorticoids (cortisol and cortisone in 15 professional singers. The results showed a significant decrease in both cortisol and cortisone across the low-stress condition, suggesting that singing in itself is a stress-reducing (and possibly health-promoting activity, but significant increases across the high-stress condition. This is the first study to demonstrate that singing affects glucocorticoid responses and that these responses are modulated by the conditions of performance.

  8. Research Progress in Tomato Responses to Abiotic Stress

    Institute of Scientific and Technical Information of China (English)

    Jianing XU; Gang LIU; Liyun ZHANG

    2016-01-01

    Tomato is a kind of vegetable with high economic benefits in protected farmland.Accounting for 30% of vegetable planting area in the entire protected farmland,tomato plays an essential role in cultivation of protected vegetable.Different abiotic stresses have different degrees of influence on growth and development,yield,and fruit quality of tomatoes.Therefore,finding out life activity rules of tomatoes under different abiotic stresses will be of great significance to breeding for stress tolerance and increasing tomato yield and income.This paper made an overview of research progress in tomato responses to abiotic stress in growth and development,physiology and biochemistry,and gene regulation.

  9. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  10. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    Directory of Open Access Journals (Sweden)

    Roselinde Kaiser Henderson

    2012-06-01

    Full Text Available The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low responses can lead to impaired performance. The present studies tested the hypothesis that 1 learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that 2 this improvement emerges specifically for people who report moderate (subjective responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n=109. People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n=90, we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress

  11. Heart rate variability response to mental arithmetic stress in patients with schizophrenia Autonomic response to stress in schizophrenia

    NARCIS (Netherlands)

    Castro, Mariana N.; Vigo, Daniel E.; Weidema, Hylke; Fahrer, Rodolfo D.; Chu, Elvina M.; De Achaval, Delfina; Nogues, Martin; Leiguarda, Ramon C.; Cardinali, Daniel P.; Guinjoan, Salvador N.

    2008-01-01

    Background: The vulnerability-stress hypothesis is an established model of schizophrenia symptom formation. We sought to characterise the pattern of the cardiac autonomic response to mental arithmetic stress in patients with stable schizophrenia. Methods: We performed heart rate variability (HRV) an

  12. The Role of Canonical and Noncanonical Pre-mRNA Splicing in Plant Stress Responses

    Directory of Open Access Journals (Sweden)

    A. S. Dubrovina

    2013-01-01

    Full Text Available Plants are sessile organisms capable of adapting to various environmental constraints, such as high or low temperatures, drought, soil salinity, or pathogen attack. To survive the unfavorable conditions, plants actively employ pre-mRNA splicing as a mechanism to regulate expression of stress-responsive genes and reprogram intracellular regulatory networks. There is a growing evidence that various stresses strongly affect the frequency and diversity of alternative splicing events in the stress-responsive genes and lead to an increased accumulation of mRNAs containing premature stop codons, which in turn have an impact on plant stress response. A number of studies revealed that some mRNAs involved in plant stress response are spliced counter to the traditional conception of alternative splicing. Such noncanonical mRNA splicing events include trans-splicing, intraexonic deletions, or variations affecting multiple exons and often require short direct repeats to occur. The noncanonical alternative splicing, along with common splicing events, targets the spliced transcripts to degradation through nonsense-mediated mRNA decay or leads to translation of truncated proteins. Investigation of the diversity, biological consequences, and mechanisms of the canonical and noncanonical alternative splicing events will help one to identify those transcripts which are promising for using in genetic engineering and selection of stress-tolerant plants.

  13. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights into ...... through ubiquitination. The wide range of biotic and abiotic stresses that affect crop plants limits agricultural production.......Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...

  14. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  15. Adolescents' Increasing Stress Response to Social Evaluation: Pubertal Effects on Cortisol and Alpha-Amylase during Public Speaking

    Science.gov (United States)

    van den Bos, Esther; de Rooij, Mark; Miers, Anne C.; Bokhorst, Caroline L.; Westenberg, P. Michiel

    2014-01-01

    Stress responses to social evaluation are thought to increase during adolescence, which may be due to pubertal maturation. However, empirical evidence is scarce. This study is the first to investigate the relation between pubertal development and biological responses to a social-evaluative stressor longitudinally. Participants performed the Leiden…

  16. Sleep quality but not sleep quantity effects on cortisol responses to acute psychosocial stress.

    Science.gov (United States)

    Bassett, Sarah M; Lupis, Sarah B; Gianferante, Danielle; Rohleder, Nicolas; Wolf, Jutta M

    2015-01-01

    Given the well-documented deleterious health effects, poor sleep has become a serious public health concern and increasing efforts are directed toward understanding underlying pathways. One potential mechanism may be stress and its biological correlates; however, studies investigating the effects of poor sleep on a body's capacity to deal with challenges are lacking. The current study thus aimed at testing the effects of sleep quality and quantity on cortisol responses to acute psychosocial stress. A total of 73 college-aged adults (44 females) were investigated. Self-reported sleep behavior was assessed via the Pittsburgh Sleep Quality Index and salivary cortisol responses to the Trier Social Stress Test were measured. In terms of sleep quality, we found a significant three-way interaction, such that relative to bad sleep quality, men who reported fairly good or very good sleep quality showed blunted or exaggerated cortisol responses, respectively, while women's stress responses were less dependent on their self-reported sleep quality. Contrarily, average sleep duration did not appear to impact cortisol stress responses. Lastly, participants who reported daytime dysfunctions (i.e. having trouble staying awake or keeping up enthusiasm) also showed a trend to blunted cortisol stress responses compared to participants who did not experience these types of daytime dysfunctions. Overall, the current study suggests gender-specific stress reactivity dysfunctions as one mechanism linking poor sleep with detrimental physical health outcomes. Furthermore, the observed differential sleep effects may indicate that while the body may be unable to maintain normal hypothalamic-pituitary-adrenal functioning in an acute psychosocial stress situation after falling prey to low sleep quality, it may retain capacities to deal with challenges during extended times of sleep deprivation.

  17. Dynamics of telomerase activity in response to acute psychological stress

    Science.gov (United States)

    Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Wolkowitz, Owen M.; Puterman, E; Karan, Lori; Blackburn, Elizabeth H.

    2010-01-01

    Telomerase activity plays an essential role in cel0l survival, by lengthening telomeres and promoting cell growth and longevity. It is now possible to quantify the low levels of telomerase activity in human leukocytes. Low basal telomerase activity has been related to chronic stress in people and to chronic glucocorticoid exposure in vitro. Here we test whether leukocyte telomerase activity changes under acute psychological stress. We exposed 44 elderly women, including 22 high stress dementia caregivers and 22 matched low stress controls, to a brief laboratory psychological stressor, while examining changes in telomerase activity of peripheral blood mononuclear cells (PBMC). At baseline, caregivers had lower telomerase activity levels than controls, but during stress telomerase activity increased similarly in both groups. Across the entire sample, subsequent telomerase activity increased by 18% one hour after the end of the stressor (p<0.01). The increase in telomerase activity was independent of changes in numbers or percentages of monocytes, lymphocytes, and specific T cell types, although we cannot fully rule out some potential contribution from immune cell redistribution in the change in telomerase activity. Telomerase activity increases were associated with greater cortisol increases in response to the stressor. Lastly, psychological response to the tasks (greater threat perception) was also related to greater telomerase activity increases in controls. These findings uncover novel relationships of dynamic telomerase activity with exposure to an acute stressor, and with two classic aspects of the stress response -- perceived psychological stress and neuroendocrine (cortisol) responses to the stressor. PMID:20018236

  18. Engineering of synthetic, stress-responsive yeast promoters

    Science.gov (United States)

    Rajkumar, Arun S.; Liu, Guodong; Bergenholm, David; Arsovska, Dushica; Kristensen, Mette; Nielsen, Jens; Jensen, Michael K.; Keasling, Jay D.

    2016-01-01

    Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducible by specific endogenous or environmental conditions is still rarely undertaken. In this study, we engineered and characterized a set of strong, synthetic promoters for budding yeast Saccharomyces cerevisiae that are inducible under acidic conditions (pH ≤ 3). Using available expression and transcription factor binding data, literature on transcriptional regulation, and known rules of promoter architecture we improved the low-pH performance of the YGP1 promoter by modifying transcription factor binding sites in its upstream activation sequence. The engineering strategy outlined for the YGP1 promoter was subsequently applied to create a response to low pH in the unrelated CCW14 promoter. We applied our best promoter variants to low-pH fermentations, enabling ten-fold increased production of lactic acid compared to titres obtained with the commonly used, native TEF1 promoter. Our findings outline and validate a general strategy to iteratively design and engineer synthetic yeast promoters inducible to environmental conditions or stresses of interest. PMID:27325743

  19. Engineering of synthetic, stress-responsive yeast promoters.

    Science.gov (United States)

    Rajkumar, Arun S; Liu, Guodong; Bergenholm, David; Arsovska, Dushica; Kristensen, Mette; Nielsen, Jens; Jensen, Michael K; Keasling, Jay D

    2016-09-30

    Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducible by specific endogenous or environmental conditions is still rarely undertaken. In this study, we engineered and characterized a set of strong, synthetic promoters for budding yeast Saccharomyces cerevisiae that are inducible under acidic conditions (pH ≤ 3). Using available expression and transcription factor binding data, literature on transcriptional regulation, and known rules of promoter architecture we improved the low-pH performance of the YGP1 promoter by modifying transcription factor binding sites in its upstream activation sequence. The engineering strategy outlined for the YGP1 promoter was subsequently applied to create a response to low pH in the unrelated CCW14 promoter. We applied our best promoter variants to low-pH fermentations, enabling ten-fold increased production of lactic acid compared to titres obtained with the commonly used, native TEF1 promoter. Our findings outline and validate a general strategy to iteratively design and engineer synthetic yeast promoters inducible to environmental conditions or stresses of interest.

  20. Crop and medicinal plants proteomics in response to salt stress

    Directory of Open Access Journals (Sweden)

    Keyvan eAghaei

    2013-01-01

    Full Text Available Increasing of world population marks a serious need to create new crop cultivars and medicinal plants with high growth and production at any environmental situations. Among the environmental unfavorable conditions, salinity is the most widespread in the world. Crop production and growth severely decreases under salt stress; however, some crop cultivars show significant tolerance against the negative effects of salinity. Among salt stress responses of crops, proteomic responses play a pivotal role in their ability to cope with it and have become the main center of notification. Many physiological responses are detectable in terms of protein increase and decrease even before physiological responses take place. Thus proteomic approach makes a short cut in the way of inferring how crops response to salt stress. Nowadays many salt-responsive proteins such as heat shock proteins, pathogen related proteins, protein kinases, ascorbate peroxidase, osmotin, ornithine decarboxylase and some transcription factors, have been detected in some major crops which are thought to give them the ability of withstanding against salt stress. Proteomic analysis of medicinal plants also revealed that alkaloid biosynthesis related proteins such as tryptophan synthase, codeinone reductase, strictosidine synthase and 12-oxophytodienoate reductase might have major role in production of secondary metabolites. In this review we are comparing some different or similar proteomic responses of several crops and medicinal plants to salt stress and discuss about the future prospects.

  1. Stressed out? Associations between perceived and physiological stress responses in adolescents : The TRAILS study

    NARCIS (Netherlands)

    Oldehinkel, Albertine J.; Ormel, Johan; Bosch, Nienke M.; Bouma, Esther M. C.; Van Roon, Arie M.; Rosmalen, Judith G. M.; Riese, Harriette

    2011-01-01

    Studies regarding the interrelation of perceived and physiological stress indices have shown diverging results. Using a population sample of adolescents (N=715, 50.9% girls, mean age 16.11 years, SD=0.59), we tested three hypotheses: (1) perceived responses during social stress covary with concurren

  2. Hemodynamic responses to mental stress during salt loading

    DEFF Research Database (Denmark)

    Gefke, Maria; Christensen, Niels Juel; Bech, Per

    2017-01-01

    PURPOSE: The purpose was to examine whether prolonged moderate stress associated with a student exam would increase the blood pressure response to a salt load in young healthy normotensive individuals. METHODS: Ten healthy young subjects were examined at two different occasions in random order (i......) during preparation for a medical exam (prolonged stress) and (ii) outside the exam period (low stress). All subjects consumed a controlled diet for 3 days with low- or high-salt content in randomized order. The subjective stress was measured by Spielberger's State-Trait Anxiety Inventory-Scale, SCL......, CO as well as plasma levels of NE, E and PRA remained unchanged by changes in stress level. Day-night reduction in SAP was significantly larger during moderate stress and high-salt intake; however, no significant difference was observed during daytime and night-time. Individual increase in mental...

  3. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.

    Science.gov (United States)

    Harfouche, Antoine; Meilan, Richard; Altman, Arie

    2014-11-01

    Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed.

  4. Transcript changes in Vibrio cholerae in response to salt stress.

    Science.gov (United States)

    Fu, Xiuping; Liang, Weili; Du, Pengcheng; Yan, Meiying; Kan, Biao

    2014-01-01

    Vibrio cholerae, which is a serious human intestinal pathogen, often resides and thrives in estuaries but requires major self-regulation to overcome intestinal hyperosmotic stress or high salt stress in water and food. In the present study, we selected multiple O1 and O139 group V. cholerae strains that were isolated from different regions and during different years to study their salt tolerance. Based on the mechanisms that other bacteria use to respond to high salt stress, we selected salt stress-response related genes to study the mechanisms which V. cholerae responds to high salt stress. V. cholerae strains showed salt-resistance characteristics that varied in salt concentrations from 4% to 6%. However, group O1 and group O139 showed no significant difference in the degree of salt tolerance. The primary responses of bacteria to salt stress, including Na(+) exclusion, K(+) uptake and glutamate biosynthesis, were observed in V. cholerae strains. In addition, some sigma factors were up-regulated in V. cholerae strains, suggesting that V. cholerae may recruit common sigma factors to achieve an active salt stress response. However, some changes in gene transcript levels in response to salt stress in V. cholerae were strain-specific. In particular, hierarchical clustering of differentially expressed genes indicated that transcript levels of these genes were correlated with the degree of salt tolerance. Therefore, elevated transcript levels of some genes, including sigma factors and genes involved in peptidoglycan biosynthesis, may be due to the salt tolerance of strains. In addition, high salt-tolerant strains may recruit common as well as additional sigma factors to activate the salt stress response.

  5. Plant transcriptomics and responses to environmental stress: an overview

    Indian Academy of Sciences (India)

    Sameen Ruqia Imadi; Alvina Gul Kazi; Mohammad Abass Ahanger; Salih Gucel; Parvaiz Ahmad

    2015-09-01

    Different stresses include nutrient deficiency, pathogen attack, exposure to toxic chemicals etc. Transcriptomic studies have been mainly applied to only a few plant species including the model plant, Arabidopsis thaliana. These studies have provided valuable insights into the genetic networks of plant stress responses. Transcriptomics applied to cash crops including barley, rice, sugarcane, wheat and maize have further helped in understanding physiological and molecular responses in terms of genome sequence, gene regulation, gene differentiation, posttranscriptional modifications and gene splicing. On the other hand, comparative transcriptomics has provided more information about plant’s response to diverse stresses. Thus, transcriptomics, together with other biotechnological approaches helps in development of stress tolerance in crops against the climate change.

  6. the response of plants to drought stress

    Directory of Open Access Journals (Sweden)

    Rys Magdalena

    2015-08-01

    a wider spectrum of compounds scattering the radiation in the leaves tested, and their subsequent comparative analysis. The impact of drought on metabolism of soybean was clearly visible on spectra and confirmed using cluster analysis. The technical problem of the influence of leaf water content on measurements, which appeared in studies, will be discussed. To conclude, FT-Raman spectroscopy may be a good complement to other non-invasive methods, e.g., fluorescent methods, in assessing the stress-induced damage of crops.

  7. DNA sequence and structure properties analysis reveals similarities and differences to promoters of stress responsive genes in Arabidopsis thaliana.

    Science.gov (United States)

    Zhu, Pan; Zhou, Yanhong; Zhang, Libin; Ma, Chuang

    2015-01-01

    Understanding regulatory mechanisms of stress response in plants has important biological and agricultural significances. In this study, we firstly compiled a set of genes responsive to different stresses in Arabidopsis thaliana and then comparatively analysed their promoters at both the DNA sequence and three-dimensional structure levels. Amazingly, the comparison revealed that the profiles of several sequence and structure properties vary distinctly in different regions of promoters. Moreover, the content of nucleotide T and the profile of B-DNA twist are distinct in promoters from different stress groups, suggesting Arabidopsis genes might exploit different regulatory mechanisms in response to various stresses. Finally, we evaluated the performance of two representative promoter predictors including EP3 and PromPred. The evaluation results revealed their strengths and weakness for identifying stress-related promoters, providing valuable guidelines to accelerate the discovery of novel stress-related promoters and genes in plants.

  8. Contrasting urban and rural heat stress responses to climate change

    Science.gov (United States)

    Fischer, E. M.; Oleson, K. W.; Lawrence, D. M.

    2012-02-01

    Hot temperatures in combination with high humidity cause human discomfort and may increase morbidity and mortality. A global climate model with an embedded urban model is used to explore the urban-rural contrast in the wet-bulb globe temperature, a heat stress index accounting for temperature and humidity. Wet-bulb globe temperatures are calculated at each model time step to resolve the heat stress diurnal cycle. The model simulates substantially higher heat stress in urban areas compared to neighbouring rural areas. Urban humidity deficit only weakly offsets the enhanced heat stress due to the large night-time urban heat island. The urban-rural contrast in heat stress is most pronounced at night and over mid-latitudes and subtropics. During heatwaves, the urban heat stress amplification is particularly pronounced. Heat stress strongly increases with doubled CO2 concentrations over both urban and rural surfaces. The tropics experience the greatest increase in number of high-heat-stress nights, despite a relatively weak ˜2°C warming. Given the lack of a distinct annual cycle and high relative humidity, the modest tropical warming leads to exceedance of the present-day record levels during more than half of the year in tropical regions, where adaptive capacity is often low. While the absolute urban and rural heat stress response to 2 × CO2 is similar, the occurrence of nights with extremely high heat stress increases more in cities than surrounding rural areas.

  9. Effect of Ceramic Scaffold Architectural Parameters on Biological Response

    Directory of Open Access Journals (Sweden)

    Maria Isabella eGariboldi

    2015-10-01

    Full Text Available Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1 surface topography, (2 pore size and geometry, (3 porous networks and (4 macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way, as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.

  10. Effect of Ceramic Scaffold Architectural Parameters on Biological Response.

    Science.gov (United States)

    Gariboldi, Maria Isabella; Best, Serena M

    2015-01-01

    Numerous studies have focused on the optimization of ceramic architectures to fulfill a variety of scaffold functional requirements and improve biological response. Conventional fabrication techniques, however, do not allow for the production of geometrically controlled, reproducible structures and often fail to allow the independent variation of individual geometric parameters. Current developments in additive manufacturing technologies suggest that 3D printing will allow a more controlled and systematic exploration of scaffold architectures. This more direct translation of design into structure requires a pipeline for design-driven optimization. A theoretical framework for systematic design and evaluation of architectural parameters on biological response is presented. Four levels of architecture are considered, namely (1) surface topography, (2) pore size and geometry, (3) porous networks, and (4) macroscopic pore arrangement, including the potential for spatially varied architectures. Studies exploring the effect of various parameters within these levels are reviewed. This framework will hopefully allow uncovering of new relationships between architecture and biological response in a more systematic way as well as inform future refinement of fabrication techniques to fulfill architectural necessities with a consideration of biological implications.

  11. Mechano-biological Coupling of Cellular Responses to Microgravity

    Science.gov (United States)

    Long, Mian; Wang, Yuren; Zheng, Huiqiong; Shang, Peng; Duan, Enkui; Lü, Dongyuan

    2015-11-01

    Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions.

  12. From Hans Selye's discovery of biological stress to the identification of corticotropin-releasing factor signaling pathways: implication in stress-related functional bowel diseases.

    Science.gov (United States)

    Taché, Yvette; Brunnhuber, Stefan

    2008-12-01

    Selye pioneered the concept of biological stress in 1936, culminating in the identification of the corticotropin-releasing factor (CRF) signaling pathways by Vale's group in the last two decades. The characterization of the 41 amino-acid CRF and other peptide members of the mammalian CRF family, urocortin 1, urocortin 2, and urocortin 3, and the cloning of CRF(1) and CRF(2) receptors, which display distinct affinity for CRF ligands, combined with the development of selective CRF receptor antagonists enable us to unravel the importance of CRF(1) receptor in the stress-related endocrine (activation of pituitary-adrenal axis), behavioral (anxiety/depression, altered feeding), autonomic (activation of sympathetic nervous system), and immune responses. The activation of CRF(1) receptors is also one of the key mechanisms through which various stressors impact the gut to stimulate colonic propulsive motor function and to induce hypersensitivity to colorectal distension as shown by the efficacy of the CRF(1) receptor antagonists in blunting these stress-related components. The importance of CRF(1) signaling pathway in the visceral response to stress in experimental animals provided new therapeutic approaches for treatment of functional bowel disorder such as irritable bowel syndrome, a multifactor functional disorder characterized by altered bowel habits and visceral pain, for which stress has been implicated in the pathophysiology and is associated with anxiety-depression in a subset of patients.

  13. The auditory startle response in post-traumatic stress disorder

    NARCIS (Netherlands)

    Siegelaar, S. E.; Olff, M.; Bour, L. J.; Veelo, D.; Zwinderman, A. H.; van Bruggen, G.; de Vries, G. J.; Raabe, S.; Cupido, C.; Koelman, J. H. T. M.; Tijssen, M. A. J.

    2006-01-01

    Post-traumatic stress disorder (PTSD) patients are considered to have excessive EMG responses in the orbicularis oculi (OO) muscle and excessive autonomic responses to startling stimuli. The aim of the present study was to gain more insight into the pattern of the generalized auditory startle reflex

  14. Mechanistic insights into aging, cell cycle progression, and stress response

    Directory of Open Access Journals (Sweden)

    Troy Anthony Alan Harkness

    2012-06-01

    Full Text Available The longevity of an organism depends on the health of its cells. Throughout life cells are exposed to numerous intrinsic and extrinsic stresses, such as free radicals, generated through mitochondrial electron transport, and ultraviolet irradiation. The cell has evolved numerous mechanisms to scavenge free radicals and repair damage induced by these insults. One mechanism employed by the yeast Saccharomyces cerevisiae to combat stress utilizes the Anaphase Promoting Complex (APC, an essential multi-subunit ubiquitin-protein ligase structurally and functionally conserved from yeast to humans that controls progression through mitosis and G1. We have observed that yeast cells expressing compromised APC subunits are sensitive to multiple stresses and have shorter replicative and chronological lifespans. In a pathway that runs parallel to that regulated by the APC, members of the Forkhead box (Fox transcription factor family also regulate stress responses. The yeast Fox orthologues Fkh1 and Fkh2 appear to drive the transcription of stress response factors and slow early G1 progression, while the APC seems to regulate chromatin structure, chromosome segregation, and resetting of the transcriptome in early G1. In contrast, under non-stress conditions, the Fkhs play a complex role in cell cycle progression, partially through activation of the APC. Direct and indirect interactions between the APC and the yeast Fkhs appear to be pivotal for lifespan determination. Here we explore the potential for these interactions to be evolutionarily conserved as a mechanism to balance cell cycle regulation with stress responses.

  15. Ontogeny of the stress response in chinook salmon, Oncorhynchus tshawytscha

    Science.gov (United States)

    Feist, G.; Schreck, C.B.

    2001-01-01

    Whole body concentrations of cortisol were determined via radioimmunoassay in chinook salmon, Onchorynchus tshawytscha, during early development in both stressed and non-stressed fish to determine when the corticosteroidogenic stress response first appeared. Progeny from both pooled and individual females were examined to determine if differences existed in offspring from different females. Levels of cortisol were low in eyed eggs, increased at hatch, decreased 2 weeks later and then remained constant thereafter. Differences in cortisol between stressed and control fish were found 1 week after hatch and persisted for the remainder of the study. The magnitude of the stress response, or relative amount of cortisol produced, generally increased from the time when it was first detected, but a decrease in the ability to elicit cortisol was seen 4 weeks after hatching. Cortisol content of separate progeny from two individual females showed a similar pattern to that seen in pooled eggs. Our results indicate that chinook salmon are capable of producing cortisol following a stressful event approximately 1 week after the time of hatching. The decrease in endogenous cortisol content seen 2 weeks after hatching, and the decrease in the magnitude of the stress response seen 4 weeks after hatching may be comparable to developmental events documented in mammals where corticosteroid synthesis is inhibited to neutralize possible detrimental effects of these hormones during critical periods of development.

  16. Gene Response to Salt Stress in Populus euphratica

    Institute of Scientific and Technical Information of China (English)

    Shen Xin; Thomas Teichmenn; Wang Yiqin; Bai Genben; Yu Guangjun; Wang Shasheng

    2003-01-01

    Through construction of a subtracted cDNA library and library screening, a number of salt-induced cDNA fragmentshave been cloned from Populus euphratica. Based on the results of DNA sequencing and Northern analysis, the gene response ofPopulus euphratica to salt stress is discussed. It is indicated that in response to salt treatment the transcription level for some genes ofPopulus euphratica increases by about 1.5 times and significant difference between the responses to osmotic stress and to ion stresshas been observed in gene activity.

  17. The effect of music on the human stress response.

    Directory of Open Access Journals (Sweden)

    Myriam V Thoma

    Full Text Available BACKGROUND: Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor. It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response. METHODS: Sixty healthy female volunteers (mean age = 25 years were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1 relaxing music ('Miserere', Allegri (RM, 2 sound of rippling water (SW, and 3 rest without acoustic stimulation (R. Salivary cortisol and salivary alpha-amylase (sAA, heart rate (HR, respiratory sinus arrhythmia (RSA, subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters. RESULTS: The three conditions significantly differed regarding cortisol response (p = 0.025 to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026 baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups. CONCLUSION: Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery, and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the

  18. Towards establishment of a rice stress response interactome.

    Directory of Open Access Journals (Sweden)

    Young-Su Seo

    2011-04-01

    Full Text Available Rice (Oryza sativa is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%-60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein-protein interaction (PPI assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance.

  19. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    Full Text Available BACKGROUND: Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability. PRINCIPAL FINDINGS: Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity. CONCLUSIONS: H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  20. Transcriptome analysis of molecular mechanisms responsible for light-stress response in Mythimna separata (Walker)

    Science.gov (United States)

    Duan, Yun; Gong, ZhongJun; Wu, RenHai; Miao, Jin; Jiang, YueLi; Li, Tong; Wu, XiaoBo; Wu, YuQing

    2017-01-01

    Light is an important environmental signal for most insects. The Oriental Armyworm, Mythimna separata, is a serious pest of cereal crops worldwide, and is highly sensitive to light signals during its developmental and reproductive stages. However, molecular biological studies of its response to light stress are scarce, and related genomic information is not available. In this study, we sequenced and de novo assembled the transcriptomes of M. separata exposed to four different light conditions: dark, white light (WL), UV light (UVL) and yellow light (YL). A total of 46,327 unigenes with an average size of 571 base pairs (bp) were obtained, among which 24,344 (52.55%) matched to public databases. The numbers of genes differentially expressed between dark vs WL, dark vs UVL, dark vs YL, and UVL vs YL were 12,012, 12,950, 14,855, and 13,504, respectively. These results suggest that light exposure altered gene expression patterns in M. separata. Putative genes involved in phototransduction-fly, phototransduction, circadian rhythm-fly, olfactory transduction, and taste transduction were identified. This study thus identified a series of candidate genes and pathways potentially related to light stress in M. separata. PMID:28345615

  1. Transcriptional profiling of Petunia seedlings reveals candidate regulators of the cold stress response

    Directory of Open Access Journals (Sweden)

    Bei eLi

    2015-03-01

    Full Text Available Petunias are important ornamentals with the capacity for cold acclimation. So far, there is limited information concerning gene regulation and signaling pathways related to the cold stress response in petunias. A custom-designed petunia microarray representing 24816 genes was used to perform transcriptome profiling in petunia seedlings subjected to cold at 2°C for 0.5 h, 2 h, 24 h and 5 d. A total of 2071 transcripts displayed differential expression patterns under cold stress, of which 1149 were up-regulated and 922 were down-regulated. Gene ontology enrichment analysis demarcated related biological processes, suggesting a possible link between flavonoid metabolism and plant adaptation to low temperatures. Many novel stress-responsive regulators were revealed, suggesting that diverse regulatory pathways may exist in petunias in addition to the well-characterized CBF pathway. The expression changes of selected genes under cold and other abiotic stress conditions were confirmed by real-time RT-PCR. Furthermore, weighted gene co-expression network analysis divided the petunia genes on the array into 65 modules that showed high co-expression and identified stress-specific hub genes with high connectivity. Our identification of these transcriptional responses and groups of differentially expressed regulators will facilitate the functional dissection of the molecular mechanism in petunias responding to environment stresses and extend our ability to improve cold tolerance in plants.

  2. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    Directory of Open Access Journals (Sweden)

    Andrea W.U. Busch

    2015-04-01

    Full Text Available Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms.

  3. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  4. 等渗透势干旱、盐、碱胁迫下5个枣品种及酸枣的生物学响应与抗逆性%Biological responses and resistances of five cultivars of Chinese jujube and sour date under iso-osmotic drought, salt and alkaline stresses

    Institute of Scientific and Technical Information of China (English)

    徐呈祥

    2012-01-01

    试验研究等渗透势干旱、盐、碱胁迫下枣和酸枣的生物学响应,鉴评它们对这3种主要的非生物胁迫的抗性差异.以2年生金丝小枣等5个枣品种及砧木—酸枣苗为试材,在-0.30 MPa、-1.15 MPa 2种渗透势下,设计干旱胁迫(用PEG-6 000模拟)、盐(NaCl)胁迫、碱(NaHCO3)胁迫3种逆境,以浇灌1/2Hoagland溶液、不加PEG-6000或NaCl或NaHCO3的处理为对照.生物量较生长量更能准确反映枣和酸枣对干旱、盐、碱胁迫的响应,但其中各个指标的响应存在显著差异:在植株生长量诸指标中,株高特别是冠幅的差异性很小,对胁迫种类及强度敏感度低,而枣头枝长度和基部直径对胁迫种类及强度的敏感度明显为高,是以生长量反映对胁迫响应的合适指标;在生物量诸指标中,植株叶生物量、脱落性枝生物量的响应最敏感,其次是全株生物量,茎生物量、根生物量的响应最不敏感, (叶+脱落性枝)生物量/全株生物量的响应与全株生物量的响应相似.以(叶+脱落性枝)生物量、全株生物量及(叶+脱落性枝)生物量/全株生物量3项关键指标综合评价,参试的5个枣品种及酸枣对前述逆境的抗性差异显著.其中:耐旱性最强的是大瓜枣和梨枣,耐盐性最强的是大瓜枣,耐碱性最强的是酸枣和大瓜枣.同时,5个枣品种及酸枣各自对3种逆境的响应也有明显差异:大瓜枣是一个对3种非生物逆境抗性都很优良的枣品种;冬枣既不耐干旱,也不耐盐碱,但相对而言,其耐盐性>抗旱性>耐碱性.枣属植物对干旱、盐、碱胁迫的抗性实际上存在很大差异.枣树引种栽培应重视品种的生理生态特性.枣优良新品种培育应关注亲本品种本身对主要逆境的抗性.%The biological responses of five Chineses jujube cultivars and sour date mainly grown in East China to iso-osmotic drought, salt and alkaline stresses were investigated and the resistant

  5. Fetal Programming of Body Composition, Obesity, and Metabolic Function: The Role of Intrauterine Stress and Stress Biology

    Directory of Open Access Journals (Sweden)

    Sonja Entringer

    2012-01-01

    Full Text Available Epidemiological, clinical, physiological, cellular, and molecular evidence suggests that the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. In this perspectives paper we propose that in addition to maternal nutrition-related processes it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition, on brain and peripheral targets of programming of body composition, energy balance homeostasis, and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate mechanisms that may underlie the long-term effects of intrauterine stress. We conclude with a commentary of the implications for future research and clinical practice.

  6. Dynamic modeling of cellular response to DNA damage based on p53 stress response networks

    Institute of Scientific and Technical Information of China (English)

    Jinpeng Qi; Yongsheng Ding; Shihuang Shao

    2009-01-01

    Under acute perturbations from the outside, cells can trigger self-defensive mechanisms to fight against genome stress. To investigate the cellular response to continuous ion radiation (IR), a dynamic model for p53 stress response networks at the cellular level is proposed. The model can successfully be used to simulate the dynamic processes of double-strand breaks (DSBs) generation and their repair, switch-like ataxia telangiectasia mutated (ATM) activation, oscillations occurring in the p53-MDM2 feedback loop, as well as toxins elimination triggered by p53 stress response networks. Especially, the model can predict the plausible outcomes of cellular response under different IR dose regimes.

  7. Proteomics analysis of alfalfa response to heat stress.

    Directory of Open Access Journals (Sweden)

    Weimin Li

    Full Text Available The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin seedlings were exposed to 25 °C (control and 40 °C (heat stress in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE, and differentially expressed protein spots were identified by mass spectrometry (MS. Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.

  8. Physiological roles of plastid terminal oxidase in plant stress responses

    Indian Academy of Sciences (India)

    Xin Sun; Tao Wen

    2011-12-01

    The plastid terminal oxidase (PTOX) is a plastoquinol oxidase localized in the plastids of plants. It is able to transfer electrons from plastoquinone (PQ) to molecular oxygen with the formation of water. Recent studies have suggested that PTOX is beneficial for plants under environmental stresses, since it is involved in the synthesis of photoprotective carotenoids and chlororespiration, which could potentially protect the chloroplast electron transport chain (ETC) from over-reduction. The absence of PTOX in plants usually results in photo-bleached variegated leaves and impaired adaptation to environment alteration. Although PTOX level and activity has been found to increase under a wide range of stress conditions, the functions of plant PTOX in stress responses are still disputed now. In this paper, the possible physiological roles of PTOX in plant stress responses are discussed based on the recent progress.

  9. Biological stress regulation in female adolescents: a key role for confiding.

    Science.gov (United States)

    Oskis, Andrea; Clow, Angela; Loveday, Catherine; Hucklebridge, Frank; Sbarra, David A

    2015-05-01

    Attachment behaviors play a critical role in regulating emotion within the context of close relationships, and attachment theory is currently used to inform evidence-based practice in the areas of adolescent health and social care. This study investigated the association between female adolescents' interview-based attachment behaviors and two markers of hypothalamic-pituitary-adrenal axis activity: cortisol and dehydroepiandrosterone (DHEA). Unlike the classic stress hormone cortisol, there is very limited investigation of DHEA-a quintessential developmental hormone-in relation to attachment, especially in adolescents. Fifty-five healthy females mean age 14.36 (±2.41) years participated in the attachment style interview. A smaller cortisol awakening response was related to anxious attachment attitudes, including more fear of rejection, whereas greater morning basal DHEA secretion was only predicted by lower levels of reported confiding in one's mother. These attachment-hormone relationships may be developmental markers in females, as they were independent of menarche status. These findings highlight that the normative shifts occurring in attachment to caregivers around adolescence are reflected in adolescents' biological stress regulation. We discuss how studying these shifts can be informed by evolutionary-developmental theory.

  10. Biological Bases for Radiation Adaptive Responses in the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby R. [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Lin, Yong [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Wilder, Julie [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Belinsky, Steven [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States)

    2015-03-01

    Our main research objective was to determine the biological bases for low-dose, radiation-induced adaptive responses in the lung and use the knowledge gained to produce an improved risk model for radiation-induced lung cancer that accounts for activated natural protection, genetic influences, and the role of epigenetic regulation (epiregulation). Currently, low-dose radiation risk assessment is based on the linear-no-threshold hypothesis which now is known to be unsupported by a large volume of data.

  11. Hormonal contraception use alters stress responses and emotional memory.

    Science.gov (United States)

    Nielsen, Shawn E; Segal, Sabrina K; Worden, Ian V; Yim, Ilona S; Cahill, Larry

    2013-02-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women - one naturally cycling (NC women, n=42) and one using hormonal contraceptives (HC women, n=36) - viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CPS) or a control procedure. One week later, participants received a surprise free recall test. Saliva samples were collected and later assayed for salivary alpha-amylase (biomarker for norepinephrine) and cortisol. Compared to NC women, HC women exhibited significantly blunted stress hormone responses to the images and CPS. Recall of emotional images differed between HC and NC women depending on noradrenergic and cortisol responses. These findings may have important implications for understanding the neurobiology of emotional memory disorders, especially those that disproportionately affect women.

  12. A temporal analysis of the relationships between social stress, humoral immune response and glutathione-related antioxidant defenses.

    Science.gov (United States)

    Gonçalves, Luciane; Dafre, Alcir Luiz; Carobrez, Sonia Gonçalves; Gasparotto, Odival Cezar

    2008-10-10

    The exposure to different kinds of stress impacts on the reactive oxygen species production with potential risk to the integrity of the tissues. Psychological or biological stress is responsible for a significant increase in the oxidative stress markers and also for activation of the antioxidant defense system. In this study, we analyzed the relationships between social stress, humoral immune response and glutathione-related antioxidant defenses. Groups of male Swiss mice were subjected to different lengths of social stress exposure (social confrontation) which varied from 1 up to 13 days. As a biological stressor, 10(9) sheep red blood cells (SRBC)/mL were injected by intraperitoneal route. As controls, animals not subjected to social stress and/or injected with vehicle solution were used. The serum samples and the cerebral cortex were collected at 4 h, 3, 5, 7, 9, 11, and 13 days after the end of social confrontation. The results indicated that the antioxidant enzymes activities were affected by psychological as well as by biological stressor. These alterations were dependent on the timing of stress exposure which resulted in a positive or in a negative correlation between the antibody titres to SRBC and antioxidant enzymes. We also discuss the possible role of SRBC injection in the modulation of the effects of psychosocial stress on antioxidant metabolism.

  13. The influence of perceived control and locus of control on the cortisol and subjective responses to stress.

    Science.gov (United States)

    Bollini, Annie M; Walker, Elaine F; Hamann, Stephan; Kestler, Lisa

    2004-11-01

    Stress has been implicated in the etiology of numerous mental and physical illnesses. Thus, it is important to identify factors that buffer individuals against stress. The purpose of this study was to examine the influence of perceived control (PC) on the biological and subjective stress responses, and to investigate the potential moderating effect of locus of control (LOC) on this relationship. Stress was induced with a noise-cognitive paradigm, and PC was manipulated by offering the option of manual control over noise intensity. Saliva cortisol and subjective stress were measured. There was no main effect of control on cortisol. However, LOC moderated the relation between control and cortisol; participants with more internal LOC, who also perceived themselves to have control over the stressor, showed a reduced cortisol response in the PC condition. The results are discussed in light of their implications for elucidating the determinants of the effects of perceived control on stress.

  14. Eccentric-exercise induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Aldred, S.; Bosch, J.A.; Wadley, A.J.; Veldhuijzen van Zanten, J.J.C.S.

    2013-01-01

    Mental stress has been identified as a trigger of myocardial infarction (MI), with inflammation and vascular responses to mental stress independently implicated as contributing factors. This study examined whether inflammation moderates the vascular responses to mental stress. Eighteen healthy male

  15. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage

    Directory of Open Access Journals (Sweden)

    Cheng Ji

    2015-06-01

    Full Text Available Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries.

  16. Transcriptional Regulation of Arabidopsis in Response to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Zhulong Chan

    2012-01-01

    Salt stress is a major factor limiting agricultural productivity worldwide.Adaptations to salt stress include avoidance by reduced sodium uptake,sequestration of toxic sodium ions away from the cytoplasm,or production of compatible solutes or osmoprotectants to reduce molecular disruption.Approaches to engineer salt stress resistance have included regulation of ion transport through introduction of Na+/H+ antiporter; synthesis of compatible solutes; or the introduction of transcription factors regulating expression of stress-responsive genes.On the other hand,naturally occurring variation among wild-type populations of plants also can be used to understand plant adaptive responses to their environments.In this study,we compared phenotypic and transcriptomic effects of constitutive expression of genes intended to confer salt stress tolerance by three different mechanisms:a transcription factor,CBF3/DREB1a; a metabolic gene,M6PR,for mannitol biosynthesis; and the Na+/H+ antiporter,SOS1.In the absence of salt,M6PR and SOS1 lines performed comparably with wild type; CBF3 lines exhibited dwarfing as reported previously.All three transgenes conferred fitness advantage when subjected to 100 mmol/L NaCI in the growth chamber.CBF3 and M6PR affected transcription of numerous abiotic stress-related genes as measured by Affymetrix microarray analysis.M6PR additionally modified expression of biotic stress and oxidative stress genes.Transcriptional effects of SOS1 were smaller and primarily limited to redox-related genes.In addition,we compared natural variations in salt tolerance between Ler and Sha ecotypes based on their responses to salt treatments and the results indicated that Ler was salt-sensitive,but Sha,which obtained a truncated RAS1 protein,was salt-tolerant.Transcriptome analysis revealed that many genes involved in secondary metabolism,photosynthesis,and protein synthesis were mainly down-regulated by salinity effects,while transposable element genes,microRNA and

  17. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    Science.gov (United States)

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.

  18. Response to stress in Drosophila is mediated by gender, age and stress paradigm.

    Science.gov (United States)

    Neckameyer, Wendi S; Nieto-Romero, Andres R

    2015-01-01

    All living organisms must maintain equilibrium in response to internal and external challenges within their environment. Changes in neural plasticity (alterations in neuronal populations, dendritic remodeling, and synaptic turnover) are critical components of the homeostatic response to stress, which has been strongly implicated in the onset of affective disorders. However, stress is differentially perceived depending on the type of stress and its context, as well as genetic background, age and sex; therefore, an individual's maintenance of neuronal homeostasis must differ depending upon these variables. We established Drosophila as a model to analyze homeostatic responses to stress. Sexually immature and mature females and males from an isogenic wild-type strain raised under controlled environmental conditions were exposed to four reproducible and high-throughput translatable stressors to facilitate the analysis of a large number of animals for direct comparisons. These animals were assessed in an open-field arena, in a light-dark box, and in a forced swim test, as well as for sensitivity to the sedative effects of ethanol. These studies establish that immature and mature females and males represent behaviorally distinct populations under control conditions as well as after exposure to different stressors. Therefore, the neural substrates mediating the stress response must be differentially expressed depending upon the hormonal status of the brain. In addition, an adaptive response to a given stressor in one paradigm was not predictive for outcomes in other paradigms.

  19. Experimental verification of regression to the mean in redox biology: differential responses to exercise.

    Science.gov (United States)

    Margaritelis, Nikos V; Theodorou, Anastasios A; Paschalis, Vassilis; Veskoukis, Aristidis S; Dipla, Konstantina; Zafeiridis, Andreas; Panayiotou, George; Vrabas, Ioannis S; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-01-01

    An important methodological threat when selecting individuals based on initial values for a given trait is the "regression to the mean" artifact. This artifact appears when a group with an extreme mean value during a first measurement tends to obtain a less extreme value (i.e. tends toward the mean) on a subsequent measurement. The main aim was to experimentally confirm the presence of this artifact in the responses of the reference oxidative stress biomarker (F2-isoprostanes) after exercise. Urine samples were collected before and immediately following acute exercise in order to determine the level of exercise-induced oxidative stress. Afterwards, participants were arranged into three groups based on their levels of exercise-induced oxidative stress (low, moderate and high oxidative stress groups; n = 12 per group). In order to verify the existence of the regression to the mean artifact, the three groups were subjected to a second exercise trial one week after the first trial. This study confirmed the regression to the mean artifact in a redox biology context and showed that this artifact can be minimized by performing a duplicate pretreatment measurement after completing a nonrandom sorting based on the first assessment. This study also indicated that different individuals experience high oxidative stress or reductive stress (or no stress) to the same exercise stimulus even after adjusting for regression to the mean. This finding substantiates the methodological choice to divide individuals based on their degree of exercise-induced oxidative stress in future experiments to investigate the role of reactive species in exercise adaptations.

  20. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress.

    Science.gov (United States)

    Jorge, Tiago F; Rodrigues, João A; Caldana, Camila; Schmidt, Romy; van Dongen, Joost T; Thomas-Oates, Jane; António, Carla

    2016-09-01

    Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.

  1. Stress effects on mood, HPA axis, and autonomic response: comparison of three psychosocial stress paradigms.

    Science.gov (United States)

    Giles, Grace E; Mahoney, Caroline R; Brunyé, Tad T; Taylor, Holly A; Kanarek, Robin B

    2014-01-01

    Extensive experimental psychology research has attempted to parse the complex relationship between psychosocial stress, mood, cognitive performance, and physiological changes. To do so, it is necessary to have effective, validated methods to experimentally induce psychosocial stress. The Trier Social Stress Test (TSST) is the most commonly used method of experimentally inducing psychosocial stress, but it is resource intensive. Less resource intense psychosocial stress tasks include the Socially Evaluative Cold Pressor Task (SECPT) and a computerized mental arithmetic task (MAT). These tasks effectively produce a physiological and psychological stress response and have the benefits of requiring fewer experimenters and affording data collection from multiple participants simultaneously. The objective of this study was to compare the magnitude and duration of these three experimental psychosocial stress induction paradigms. On each of four separate days, participants completed either a control non-stressful task or one of the three experimental stressors: the TSST, SECPT, or MAT. We measured mood, working memory performance, salivary cortisol and alpha-amylase (AA), and heart rate. The TSST and SECPT exerted the most robust effects on mood and physiological measures. TSST effects were generally evident immediately post-stress as well as 10- and 20-minutes after stress cessation, whereas SECPT effects were generally limited to the duration of the stressor. The stress duration is a key determinant when planning a study that utilizes an experimental stressor, as researchers may be interested in collecting dependent measures prior to stress cessation. In this way, the TSST would allow the investigator a longer window to administer tasks of interest.

  2. Stress effects on mood, HPA axis, and autonomic response: comparison of three psychosocial stress paradigms.

    Directory of Open Access Journals (Sweden)

    Grace E Giles

    Full Text Available Extensive experimental psychology research has attempted to parse the complex relationship between psychosocial stress, mood, cognitive performance, and physiological changes. To do so, it is necessary to have effective, validated methods to experimentally induce psychosocial stress. The Trier Social Stress Test (TSST is the most commonly used method of experimentally inducing psychosocial stress, but it is resource intensive. Less resource intense psychosocial stress tasks include the Socially Evaluative Cold Pressor Task (SECPT and a computerized mental arithmetic task (MAT. These tasks effectively produce a physiological and psychological stress response and have the benefits of requiring fewer experimenters and affording data collection from multiple participants simultaneously. The objective of this study was to compare the magnitude and duration of these three experimental psychosocial stress induction paradigms. On each of four separate days, participants completed either a control non-stressful task or one of the three experimental stressors: the TSST, SECPT, or MAT. We measured mood, working memory performance, salivary cortisol and alpha-amylase (AA, and heart rate. The TSST and SECPT exerted the most robust effects on mood and physiological measures. TSST effects were generally evident immediately post-stress as well as 10- and 20-minutes after stress cessation, whereas SECPT effects were generally limited to the duration of the stressor. The stress duration is a key determinant when planning a study that utilizes an experimental stressor, as researchers may be interested in collecting dependent measures prior to stress cessation. In this way, the TSST would allow the investigator a longer window to administer tasks of interest.

  3. Renal Function and Cardiovascular Response to Mental Stress

    Science.gov (United States)

    Seliger, Stephen L.; Katzel, Leslie I.; Fink, Jeffrey C.; Weir, Matthew R.; Waldstein, Shari R.

    2008-01-01

    Background/Aims Cardiovascular reactivity (CVR), defined as an exaggerated hemodynamic response to mental stress, is a putative vascular risk factor and may reflect sympathetic hyperactivity. Chronic kidney disease (CKD) is also associated with sympathetic hyperactivity and vascular risk, but its relationship with CVR is unknown. Methods CVR was assessed in 107 individuals without overt cardiovascular disease or diabetes. Blood pressure and heart rate responses were elicited by three experimental tasks designed to evoke mental stress. Glomerular filtration rate (eGFR) was estimated using the MDRD formula. General linear models estimated the association between renal function and CVR, adjusting for potential confounders. Results Mean age was 66 years and 11% had eGFR of <60 ml/min/1.73 m2. After multivariate adjustment, a low eGFR was associated with a greater stress response of systolic blood pressure, heart rate, and pulse pressure. Associations were only partially attenuated after adjustment for lipids and glucose tolerance. When considered as a continuous variable, lower eGFR was associated with a greater blood pressure response after adjustment for glycemia. Conclusion Although there were relatively few participants with CKD, these results suggest a relationship between CKD and greater CVR. Further investigation is warranted into factors that mediate this relationship and potential clinical consequences of this exaggerated response to stress in CKD. PMID:18025779

  4. Dysregulation of the stress response in asthmatic children.

    Science.gov (United States)

    Priftis, K N; Papadimitriou, A; Nicolaidou, P; Chrousos, G P

    2009-01-01

    The stress system co-ordinates the adaptive responses of the organism to stressors of any kind. Inappropriate responsiveness may account for increased susceptibility to a variety of disorders, including asthma. Accumulated evidence from animal models suggests that exogenously applied stress enhances airway reactivity and increases allergen-induced airway inflammation. This is in agreement with the clinical observation that stressful life events increase the risk of a new asthma attack. Activation of the hypothalamic-pituitary-adrenal (HPA) axis by specific cytokines increases the release of cortisol, which in turn feeds back and suppresses the immune reaction. Data from animal models suggest that inability to increase glucocorticoid production in response to stress is associated with increased airway inflammation with mechanical dysfunction of the lungs. Recently, a growing body of evidence shows that asthmatic subjects who are not treated with inhaled corticosteroids (ICS) are likely to have an attenuated activity and/or responsiveness of their HPA axis. In line with this concept, most asthmatic children demonstrate improved HPA axis responsiveness on conventional doses of ICS, as their airway inflammation subsides. Few patients may experience further deterioration of adrenal function, a phenomenon which may be genetically determined.

  5. Computation of the effective mechanical response of biological networks accounting for large configuration changes.

    Science.gov (United States)

    El Nady, K; Ganghoffer, J F

    2016-05-01

    The asymptotic homogenization technique is involved to derive the effective elastic response of biological membranes viewed as repetitive beam networks. Thereby, a systematic methodology is established, allowing the prediction of the overall mechanical properties of biological membranes in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the equivalent continuum. Biomembranes networks are classified based on nodal connectivity, so that we analyze in this work 3, 4 and 6-connectivity networks, which are representative of most biological networks. The individual filaments of the network are described as undulated beams prone to entropic elasticity, with tensile moduli determined from their persistence length. The effective micropolar continuum evaluated as a continuum substitute of the biological network has a kinematics reflecting the discrete network deformation modes, involving a nodal displacement and a microrotation. The statics involves the classical Cauchy stress and internal moments encapsulated into couple stresses, which develop internal work in duality to microcurvatures reflecting local network undulations. The relative ratio of the characteristic bending length of the effective micropolar continuum to the unit cell size determines the relevant choice of the equivalent medium. In most cases, the Cauchy continuum is sufficient to model biomembranes. The peptidoglycan network may exhibit a re-entrant hexagonal configuration due to thermal or pressure fluctuations, for which micropolar effects become important. The homogenized responses are in good agreement with FE simulations performed over the whole network. The predictive nature of the employed homogenization technique allows the identification of a strain energy density of a hyperelastic model, for the purpose of performing structural calculations of the shape evolutions of biomembranes.

  6. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour.

    Science.gov (United States)

    Snyder, Jason S; Soumier, Amélie; Brewer, Michelle; Pickel, James; Cameron, Heather A

    2011-08-03

    Glucocorticoids are released in response to stressful experiences and serve many beneficial homeostatic functions. However, dysregulation of glucocorticoids is associated with cognitive impairments and depressive illness. In the hippocampus, a brain region densely populated with receptors for stress hormones, stress and glucocorticoids strongly inhibit adult neurogenesis. Decreased neurogenesis has been implicated in the pathogenesis of anxiety and depression, but direct evidence for this role is lacking. Here we show that adult-born hippocampal neurons are required for normal expression of the endocrine and behavioural components of the stress response. Using either transgenic or radiation methods to inhibit adult neurogenesis specifically, we find that glucocorticoid levels are slower to recover after moderate stress and are less suppressed by dexamethasone in neurogenesis-deficient mice than intact mice, consistent with a role for the hippocampus in regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Relative to controls, neurogenesis-deficient mice also showed increased food avoidance in a novel environment after acute stress, increased behavioural despair in the forced swim test, and decreased sucrose preference, a measure of anhedonia. These findings identify a small subset of neurons within the dentate gyrus that are critical for hippocampal negative control of the HPA axis and support a direct role for adult neurogenesis in depressive illness.

  7. Reactive oxygen species in response of plants to gravity stress

    Science.gov (United States)

    Jadko, Sergiy

    2016-07-01

    Reactive oxygen species (ROS) as second messengers can induce stress response of plants. Thioredoxins (Trx) and peroxiredoxins (Prx) can function as sensors and transmitters of the ROS in stress signaling and antioxidant response. 12-14 days old tissue culture of Arabidopsis thaliana have been investigated. Hypergravity stress was induced by centrifugation at 10 and 20 g during 30 and 90 min and than intensity of spontaneous chemiluminescence (SChL/ROS content), Trx and Prx activities were determined. All experiments were repeated from 3 to 5 times and the obtained data were statistically treated. In the tissue culture under development of the stress there were an increase in intensity of SChL and Trx and Prx activities. Thus, under hypergravity stress in the plant occurred early increase in the ROS level and the ROS induced the increase in the Trx and Prx activities. Prx and Trx can also participate in the formation of stress respons as acceptors and transducers of the redox signals. Increase in the activity of these enzymes primarily aimed at increasing of the total antioxidant activity in the cells to prevent of the plant to development of oxidative degradation by ROS.

  8. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast.

    Science.gov (United States)

    Henry, Susan A; Gaspar, Maria L; Jesch, Stephen A

    2014-05-01

    This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed.

  9. Family business: multiple members of major phytohormone classes orchestrate plant stress responses.

    Science.gov (United States)

    Erb, Matthias; Glauser, Gaetan

    2010-09-10

    Low-molecular-weight compounds such as jasmonic, abscisic and salicylic acids are commonly thought to be regulators of plant stress responses. However, it is becoming clear that these molecules, often referred to as phytohormones, are only a part of bigger groups of compounds with biological activity. We propose that the concept of "hormone families" may help to better understand plant physiological responses by taking into account not only the alleged main regulators, but also their precursors, conjugates and catabolites. Novel approaches to profile potentially active compounds in plants are discussed.

  10. Proteomic Analysis of Tomato Seedlings Response to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Xue Zhao; Feng Han; Shihua Shen

    2012-01-01

    The two species (Solanum pimpinellifolium-PI and S.lycopersicum-MM) of tomato showed marked differences in their responses to NaCI stress.PI appeared to be more tolerant to salt than MM.Comparative two-dimensional electrophoresis revealed that 187 and 110 protein spots were differentially expressed in the roots of PI and MM,respectively,in response to salt stress.Out of these spots,a total of 96 and 61 proteins were identified by MALDI-TOF MS analysis.The proteins identified included many previously characterized stress-responsive proteins and others related to processes including scavenging for reactive species; metabolism of energy,signal transduction; protein synthesis,cell growth and differentiation et al.The role of some of the proteins involved in the antioxidant defense mechanism,ion transport and compartmentalization of ions,and cell signaling pathways were discussed.Collectively,this work suggest that PI has more efficient antioxidant and defense machinery than MM,and that this is important for adapting to salt stress and for withstanding the oxidative stress imposed by high salt levels.

  11. Neural regulation of the stress response: glucocorticoid feedback mechanisms

    Directory of Open Access Journals (Sweden)

    J.P. Herman

    2012-04-01

    Full Text Available The mammalian stress response is an integrated physiological and psychological reaction to real or perceived adversity. Glucocorticoids are an important component of this response, acting to redistribute energy resources to both optimize survival in the face of challenge and to restore homeostasis after the immediate challenge has subsided. Release of glucocorticoids is mediated by the hypothalamo-pituitary-adrenal (HPA axis, driven by a neural signal originating in the paraventricular nucleus (PVN. Stress levels of glucocorticoids bind to glucocorticoid receptors in multiple body compartments, including the brain, and consequently have wide-reaching actions. For this reason, glucocorticoids serve a vital function in negative feedback inhibition of their own secretion. Negative feedback inhibition is mediated by a diverse collection of mechanisms, including fast, non-genomic feedback at the level of the PVN, stress-shut-off at the level of the limbic system, and attenuation of ascending excitatory input through destabilization of mRNAs encoding neuropeptide drivers of the HPA axis. In addition, there is evidence that glucocorticoids participate in stress activation via feed-forward mechanisms at the level of the amygdala. Feedback deficits are associated with numerous disease states, underscoring the necessity for adequate control of glucocorticoid homeostasis. Thus, rather than having a single, defined feedback ‘switch’, control of the stress response requires a wide-reaching feedback ‘network’ that coordinates HPA activity to suit the overall needs of multiple body systems.

  12. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  13. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2014-06-01

    Full Text Available Erythropoietin (EPO regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR, suggest the potential for EPO response in metabolism and disease.

  14. REM SLEEP REBOUND AS AN ADAPTIVE RESPONSE TO STRESSFUL SITUATIONS

    Directory of Open Access Journals (Sweden)

    Deborah eSuchecki

    2012-04-01

    Full Text Available Stress and sleep are related to each other in a bidirectional way. If on one hand poor or inadequate sleep exacerbates emotional, behavioral and stress-related responses, on the other hand acute stress induces sleep rebound, most likely as a form to cope with the adverse stimuli. Chronic stress, conversely, has been claimed to be one of the triggering factors of emotional-related sleep disorders, such as insomnia, depressive- and anxiety-disorders. These outcomes are dependent on individual psychobiological characteristics, which confer more complexity to the stress-sleep relationship. Its neurobiology has only recently begun to be explored, through animal models, which are also valuable for the development of potential therapeutic agents and preventive actions. This review seeks to present data on the effects of stress on sleep and the different approaches used to study this relationship as well as possible neurobiological underpinnings and mechanisms involved. The results of numerous studies in humans and animals indicate that increased sleep, especially the REM phase, following a stressful situation is an important adaptive behavior for recovery. However, this endogenous advantage appears to be impaired in human beings and rodent strains that exhibit high levels of anxiety and anxiety-like behavior.

  15. Response and energy dissipation of rock under stochastic stress waves

    Institute of Scientific and Technical Information of China (English)

    DENG Jian; BIAN Li

    2007-01-01

    The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis When the stochastic stress waves transnut through rocks,the frequency and energy ratio of harmonic components were calculated by analytical and discrete analysis methods.The stress waves in shale, malmstone and liparite were taken as examples to illustrate the proposed analysis methods.The results show the harder the rock, the less absorption of energy,the more the useless elastic waves transmitting through rock, and the narrower the cutoff frequency to fracture rock.When the whole stress energy doubles either by doubling the duration time or byincreasing the amplitude of stress wave, ratio of the energy of elastic waves transmitting through rock to me whole stress energy (i.e.energy dissipation ratio)is decreased to 10%-15%. When doubling the duration time.the cutoff frequency to fracture rock remains constant.However, with the increase of the amplitude of stress wave. the cutoff frequency increases accordingly.

  16. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    OpenAIRE

    Krzysztof Klamkowski; Waldemar Treder

    2006-01-01

    The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’) under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Wat...

  17. Stress and fear responses in the teleost pallium

    DEFF Research Database (Denmark)

    Silva, Patricia Isabel da Mota E.; Martins, C.I.M.; Khan, Uniza Wahid;

    2015-01-01

    combining skin extract with other challenges are needed to reveal neuroendocrine effects associated with this predator cue. Confinement stress resulted in an elevation of cortisol and serotonin (5-hydroxytryptamine, 5-HT) metabolism in both Dl and Dm. A similar tendency was observed in fish exposed...... been found in the teleost telencephalon. The dorsolateral (Dl) and dorsomedial (Dm) regions of the pallium are thought to perform hippocampus and amygdala-like functions respectively. To what degree these regions are involved in the neuroendocrine responses to stress and predator cues however remains...... largely unknown. In the present study the involvement of Dl and Dm in such responses was investigated by exposing Nile tilapia (Oreochromis niloticus) to a standardized confinement stress and to skin extract from conspecifics. Nile tilapia develops a characteristic anticipatory behaviour to hand feeding...

  18. Husbandry of zebrafish, Danio rerio, and the cortisol stress response.

    Science.gov (United States)

    Pavlidis, Michail; Digka, Nikoletta; Theodoridi, Antonia; Campo, Aurora; Barsakis, Konstantinos; Skouradakis, Gregoris; Samaras, Athanasios; Tsalafouta, Alexandra

    2013-12-01

    The effect of common husbandry conditions (crowding, social environment, water quality, handling, and background color) on the cortisol stress response in adult zebrafish, Danio rerio, was investigated to check the usefulness of zebrafish as a model organism in aquaculture research. In addition, a noninvasive methodology for assessing stress was evaluated. Zebrafish showed a fast cortisol response with high values at 30 min that returned to basal levels within 2 h of poststress. There was a significant positive correlation between trunk cortisol concentrations and the free water cortisol rate (r(2)=0.829-0.850, pzebrafish. It is concluded that adult laboratory zebrafish had a preference for a transparent or black background aquarium, at a number of 10 individuals per 2 L of available water volume, to express their normal behavior and avoid increased cortisol stress reaction.

  19. Enterovirus Control of Translation and RNA Granule Stress Responses

    Directory of Open Access Journals (Sweden)

    Richard E. Lloyd

    2016-03-01

    Full Text Available Enteroviruses such as poliovirus (PV and coxsackievirus B3 (CVB3 have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs and processing bodies (P-bodies, PBs, which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  20. Enterovirus Control of Translation and RNA Granule Stress Responses

    Science.gov (United States)

    Lloyd, Richard E.

    2016-01-01

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation. PMID:27043612

  1. Phosphate-dependent root system architecture responses to salt stress

    NARCIS (Netherlands)

    Kawa, D.; Julkowska, M.M.; Montero Sommerfeld, H.; ter Horst, A.; Haring, M.A.; Testerink, C.

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced ma

  2. Adaptive Patterns of Stress Responsivity: A Preliminary Investigation

    Science.gov (United States)

    Del Giudice, Marco; Hinnant, J. Benjamin; Ellis, Bruce J.; El-Sheikh, Mona

    2012-01-01

    The adaptive calibration model (ACM) is an evolutionary-developmental theory of individual differences in stress responsivity. In this article, we tested some key predictions of the ACM in a middle childhood sample (N = 256). Measures of autonomic nervous system activity across the sympathetic and parasympathetic branches validated the 4-pattern…

  3. Stress response signaling and virulence: insights from entomopathogenic fungi.

    Science.gov (United States)

    Ortiz-Urquiza, Almudena; Keyhani, Nemat O

    2015-08-01

    The Ascomycete fungal insect pathogens, Beauveria and Metarhizium spp. have emerged as model systems with which to probe diverse aspects of fungal growth, stress response, and pathogenesis. Due to the availability of genomic resources and the development of robust methods for genetic manipulation, the last 5 years have witnessed a rapid increase in the molecular characterization of genes and their pathways involved in stress response and signal transduction in these fungi. These studies have been performed mainly via characterization of gene deletion/knockout mutants and have included the targeting of general proteins involved in stress response and/or virulence, e.g. catalases, superoxide dismutases, and osmolyte balance maintenance enzymes, membrane proteins and signaling pathways including GPI anchored proteins and G-protein coupled membrane receptors, MAPK pathways, e.g. (i) the pheromone/nutrient sensing, Fus3/Kss1, (ii) the cell wall integrity, Mpk1, and (iii) the high osmolarity, Hog1, the PKA/adenyl cyclase pathway, and various downstream transcription factors, e.g. Msn2, CreA and Pac1. Here, we will discuss current research that strongly suggests extensive underlying contributions of these biochemical and signaling pathways to both abiotic stress response and virulence.

  4. Phospholipid signaling responses in salt-stressed rice leaves

    NARCIS (Netherlands)

    Darwish, E.; Testerink, C.; Khalil, M.; El-Shihy, O.; Munnik, T.

    2009-01-01

    Salinity is one of the major environmental factors limiting growth and productivity of rice plants. In this study, the effect of salt stress on phospholipid signaling responses in rice leaves was investigated. Leaf cuts were radiolabeled with 32 P-orthophosphate and the lipids extracted and analyzed

  5. The insect capa neuropeptides impact desiccation and cold stress responses

    Science.gov (United States)

    Background: Insects are so successful because of great resistance to environmental stress, yet little is known about how such responses may be mediated by the neuroendocrine system. Results: We provide evidence that the capability (capa) neuropeptide gene and peptide are critical mediators of desic...

  6. Genetic mapping of abiotic stress responses in sorghum

    Science.gov (United States)

    Due to rich genetic diversity for tolerance to various abiotic stress conditions, sorghum is an ideal system for genetic mapping and elucidation of genome regions that confer such response among cereal crops. Coupled with the development of DNA marker technologies and most recently the sequencing o...

  7. Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Kelly Lynn Hagberg

    2016-11-01

    Full Text Available Bacteria have developed various stress response pathways to improve their assimilation and allocation of limited nutrients, such as nitrogen and phosphate. While both the Nitrogen Stress Response (NSR and Phosphate Stress Response (PSR have been studied individually, there are few experiments reported that characterize effects of multiple stresses on one or more pathways in Sinorhizobium meliloti, a facultatively symbiotic, nitrogen-fixing bacteria. The PII proteins, GlnB and GlnK, regulate the NSR activity, but analysis of global transcription changes in a PII deficient mutant suggest that the S. meliloti PII proteins may also regulate the PSR. PII double deletion mutants grow very slowly and pseudoreversion of the slow growth phenotype is common. To understand this phenomenon better, transposon mutants were isolated that had a faster growing phenotype. One mutation was in phoB, the response regulator for a two component regulatory system that is important in the PSR. phoB::Tn5 mutants had different phenotypes in the wild type compared to a PII deficient background. This led to the hypothesis that phosphate stress affects the NSR and conversely, that nitrogen stress affects the PSR. Our results show that phosphate availability affects glutamine synthetase activity and expression, which are often used as indicators of NSR activity, but that nitrogen availability did not affect alkaline phosphatase activity and expression, which are indicators of PSR activity. We conclude that the NSR is co-regulated by nitrogen and phosphate, whereas the PSR does not appear to be co-regulated by nitrogen in addition to its known phosphate regulation.

  8. Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti

    Science.gov (United States)

    Hagberg, Kelly L.; Yurgel, Svetlana N.; Mulder, Monika; Kahn, Michael L.

    2016-01-01

    Bacteria have developed various stress response pathways to improve their assimilation and allocation of limited nutrients, such as nitrogen and phosphate. While both the nitrogen stress response (NSR) and phosphate stress response (PSR) have been studied individually, there are few experiments reported that characterize effects of multiple stresses on one or more pathways in Sinorhizobium meliloti, a facultatively symbiotic, nitrogen-fixing bacteria. The PII proteins, GlnB and GlnK, regulate the NSR activity, but analysis of global transcription changes in a PII deficient mutant suggest that the S. meliloti PII proteins may also regulate the PSR. PII double deletion mutants grow very slowly and pseudoreversion of the slow growth phenotype is common. To understand this phenomenon better, transposon mutants were isolated that had a faster growing phenotype. One mutation was in phoB, the response regulator for a two component regulatory system that is important in the PSR. phoB::Tn5 mutants had different phenotypes in the wild type compared to a PII deficient background. This led to the hypothesis that phosphate stress affects the NSR and conversely, that nitrogen stress affects the PSR. Our results show that phosphate availability affects glutamine synthetase activity and expression, which are often used as indicators of NSR activity, but that nitrogen availability did not affect alkaline phosphatase activity and expression, which are indicators of PSR activity. We conclude that the NSR is co-regulated by nitrogen and phosphate, whereas the PSR does not appear to be co-regulated by nitrogen in addition to its known phosphate regulation. PMID:27965651

  9. Transactional Associations between Youths' Responses to Peer Stress and Depression: The Moderating Roles of Sex and Stress Exposure

    Science.gov (United States)

    Agoston, Anna M.; Rudolph, Karen D.

    2011-01-01

    This study examined transactional associations between responses to peer stress and depression in youth. Specifically, it tested the hypotheses that (a) depression would predict fewer effortful responses and more involuntary, dysregulated responses to peer stress over time; and (b) fewer adaptive and more maladaptive responses would predict…

  10. Response of restraint stress-selected lines of Japanese quail to heat stress and Escherichia coli challenge

    Science.gov (United States)

    Japanese quail selected for divergent corticosterone (Cort) response to restraint stress were evaluated for their susceptibility to heat stress and challenge with Escherichia coli. These quail lines are designated as the high stress (HS), low stress (LS), and the random-bred control (CS) lines. Hea...

  11. Understanding psychological stress, its biological processes, and impact on primary headache.

    Science.gov (United States)

    Nash, Justin M; Thebarge, Ronald W

    2006-10-01

    Psychological stress is generally acknowledged to be a central contributor to primary headache. Stress results from any challenge or threat, either real or perceived, to normal functioning. The stress response is the body's activation of physiological systems, namely the hypothalamic-pituitary-adrenal axis, to protect and restore functioning. Chronic activation of the stress response can lead to wear and tear that eventually can predispose an individual to disease. There are multiple ways that stress and headache are closely related. Stress can (a) be a predisposing factor that contributes to headache disorder onset, (b) accelerate the progression of the headache disorder into a chronic condition, and (c) precipitate and exacerbate individual headache episodes. How stress impacts headache is not often understood. However, stress is assumed to affect primary headache by directly impacting pain production and modulation processes at both the peripheral and central levels. Stress can also independently worsen headache-related disability and quality of life. Finally, the headache experience itself can serve as a stressor that compromises an individual's health and well-being. With the prominent role that stress plays in headache, there are implications for the evaluation of stress and the use of stress reduction strategies at the various stages of headache disorder onset and progression. Future directions can help to develop a better empirical understanding of the pattern of the stress and headache connections and the mechanisms that explain the connections. Further research can also examine the interactive effects of stress and other factors that impact headache disorder onset, course, and adjustment.

  12. Alternative Strategy for Alzheimer’s Disease: Stress Response Triggers

    Directory of Open Access Journals (Sweden)

    Joan Smith Sonneborn

    2012-01-01

    Full Text Available Stress resistance capacity is a hallmark of longevity protection and survival throughout the plant and animal kingdoms. Latent pathway activation of protective cascades, triggered by environmental challenges to tolerate heat, oxygen deprivation, reactive oxygen species (ROS, diet restriction, and exercise provides tolerance to these stresses. Age-related changes and disease vulnerability mark an increase in damage, like damage induced by environmental challenges. An alternative approach to immunotherapy intervention in Alzheimer’s Disease is the use of mimetics of stress to upregulate endogenous protective cascades to repair age damage, shift the balance of apoptosis to regeneration to promote delay of onset, and even progression of Alzheimer’s disease memory dysfunction. Mimetics of environmental stress, hormetic agents, and triggers, endogenous or engineered, can “trick” activation of expression patterns of repair and rejuvenation. Examples of known candidate triggers of heat response, endogenous antioxidants, DNA repair, exercise, hibernation, and telomeres are available for AD intervention trials. Telomeres and telomerase emerge as major regulators in crossroads of senescence, cancer, and rejuvenation responsive to mimetics of telomeres. Lessons emerge from transgenic rodent models, the long-lived mole rat, clinical studies, and conserved innate pathways of stress resistance. Cross-reaction of benefits of different triggers promises intervention into seemingly otherwise unrelated diseases.

  13. Transcriptional regulation of the stress response by mTOR.

    Science.gov (United States)

    Aramburu, Jose; Ortells, M Carmen; Tejedor, Sonia; Buxadé, Maria; López-Rodríguez, Cristina

    2014-07-01

    The kinase mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation that integrates inputs from growth factor receptors, nutrient availability, intracellular ATP (adenosine 5'-triphosphate), and a variety of stressors. Since early works in the mid-1990s uncovered the role of mTOR in stimulating protein translation, this kinase has emerged as a rather multifaceted regulator of numerous processes. Whereas mTOR is generally activated by growth- and proliferation-stimulating signals, its activity can be reduced and even suppressed when cells are exposed to a variety of stress conditions. However, cells can also adapt to stress while maintaining their growth capacity and mTOR function. Despite knowledge accumulated on how stress represses mTOR, less is known about mTOR influencing stress responses. In this review, we discuss the capability of mTOR, in particular mTOR complex 1 (mTORC1), to activate stress-responsive transcription factors, and we outline open questions for future investigation.

  14. Gene Networks in Plant Ozone Stress Response and Tolerance

    Institute of Scientific and Technical Information of China (English)

    Agnieszka Ludwikow; Jan Sadowski

    2008-01-01

    For many plant species ozone stress has become much more severe in the last decade. The accumulating evidence for the significant effects of ozone pollutant on crop and forest yield situate ozone as one of the most important environmental stress factors that limits plant productivity woddwide. Today, transcdptomic approaches seem to give the best coverage of genome level responses. Therefore, microarray serves as an invaluable tool for global gene expression analyses, unravelling new information about gene pathways, in-species and crose-species gene expression comparison, and for the characterization of unknown relationships between genes. In this review we summadze the recent progress in the transcdptomics of ozone to demonstrate the benefits that can be harvested from the application of integrative and systematic analytical approaches to study ozone stress response. We focused our consideration on microarray analyses identifying gene networks responsible for response and tolerance to elevated ozone concentration. From these analyses it is now possible to notice how plant ozone defense responses depend on the interplay between many complex signaling pathways and metabolite signals.

  15. Assessing the Neuroendocrine Stress Response in the Functional Neuroimaging Context

    Science.gov (United States)

    King, Anthony P.; Liberzon, Israel

    2009-01-01

    Neural regulation of stress responses, and the feedback of stress hormones to the brain, reflect complex brain-body interactions that may underlie the effects of psychological stress on health. Elucidating the brain circuitry involved in the cortical control of limbic-hypothalamic-pituitary-adrenal axis, and the cortical “targets” of cortisol that in turn modulates brain function, requires careful assessment of glucocorticoid hormones, in the context of the neuroimaging paradigms. Here we discuss approaches for assessment of endocrine function in the context of neuroimaging, including methods of blood and saliva specimen collection, and methods for drug/hormone administration. We also briefly discuss important temporal considerations, including appropriate timing of sample collections for hormones with different time-courses of activation (e.g. ACTH vs. cortisol), the pharmacokinetics of both endogenous hormones and administered agents, and circadian considerations. These are crucial to experimental designs of rhythmic hormonal systems and multiple feedback loops. We briefly address psychological/behavioral ‘activation’ paradigms used for inducing endogenous LHPA axis responses within or in proximity to scanner, as well as strategies for administration of exogenous hormones or secretagogues. Finally, we discuss some of the analyses issues in terms of hormone responses (e.g. response and area under curve, diurnal variability) and strategies for linking measured levels of peripheral humoral factor to brain activity (e.g. hormone responses as between subject regressors of BOLD activations, hormone levels as within subject regressors in analyses of covariance of brain activity over time, etc.). PMID:19481160

  16. Reverse engineering: a key component of systems biology to unravel global abiotic stress cross-talk.

    Science.gov (United States)

    Friedel, Swetlana; Usadel, Björn; von Wirén, Nicolaus; Sreenivasulu, Nese

    2012-01-01

    Understanding the global abiotic stress response is an important stepping stone for the development of universal stress tolerance in plants in the era of climate change. Although co-occurrence of several stress factors (abiotic and biotic) in nature is found to be frequent, current attempts are poor to understand the complex physiological processes impacting plant growth under combinatory factors. In this review article, we discuss the recent advances of reverse engineering approaches that led to seminal discoveries of key candidate regulatory genes involved in cross-talk of abiotic stress responses and summarized the available tools of reverse engineering and its relevant application. Among the universally induced regulators involved in various abiotic stress responses, we highlight the importance of (i) abscisic acid (ABA) and jasmonic acid (JA) hormonal cross-talks and (ii) the central role of WRKY transcription factors (TF), potentially mediating both abiotic and biotic stress responses. Such interactome networks help not only to derive hypotheses but also play a vital role in identifying key regulatory targets and interconnected hormonal responses. To explore the full potential of gene network inference in the area of abiotic stress tolerance, we need to validate hypotheses by implementing time-dependent gene expression data from genetically engineered plants with modulated expression of target genes. We further propose to combine information on gene-by-gene interactions with data from physical interaction platforms such as protein-protein or TF-gene networks.

  17. Transgenerational stress memory is not a general response in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ales Pecinka

    Full Text Available Adverse conditions can trigger DNA damage as well as DNA repair responses in plants. A variety of stress factors are known to stimulate homologous recombination, the most accurate repair pathway, by increasing the concentration of necessary enzymatic components and the frequency of events. This effect has been reported to last into subsequent generations not exposed to the stress. To establish a basis for a genetic analysis of this transgenerational stress memory, a broad range of treatments was tested for quantitative effects on homologous recombination in the progeny. Several Arabidopsis lines, transgenic for well-established recombination traps, were exposed to 10 different physical and chemical stress treatments, and scored for the number of somatic homologous recombination (SHR events in the treated generation as well as in the two subsequent generations that were not treated. These numbers were related to the expression level of genes involved in homologous recombination and repair. SHR was enhanced after the majority of treatments, confirming previous data and adding new effective stress types, especially interference with chromatin. Compounds that directly modify DNA stimulated SHR to values exceeding previously described induction rates, concomitant with an induction of genes involved in SHR. In spite of the significant stimulation in the stressed generations, the two subsequent non-treated generations only showed a low and stochastic increase in SHR that did not correlate with the degree of stimulation in the parental plants. Transcripts coding for SHR enzymes generally returned to pre-treatment levels in the progeny. Thus, transgenerational effects on SHR frequency are not a general response to abiotic stress in Arabidopsis and may require special conditions.

  18. Oxidative stress response of Deinococcus geothermalis via a cystine importer.

    Science.gov (United States)

    Kim, Minwook; Jeong, Sunwook; Lim, Sangyong; Sim, Jeonggu; Rhie, Ho-Gun; Lee, Sung-Jae

    2017-02-01

    A cystine-dependent anti-oxidative stress response is characterized in Deinococcus geothermalis for the first time. Nevertheless, the same transcriptional directed Δdgeo_1985F mutant strain was revealed to have an identical phenotype to the wild-type strain, while the reverse transcriptional directed Δdgeo_1985R mutant strain was more resistant to oxidative stress at a certain concentration of H2O2 than the wild-type strain. The wild-type and mutant strains expressed equal levels of superoxide dismutase and catalase under H2O2-induced stress. Although the expression levels of the general DNA-damage response-related genes recA, pprA, ddrA, and ddrB were up-regulated by more than five-fold in the wild-type strain relative to the Δdgeo_1985R mutant strain, the mutant strain had a higher survival rate than the wild-type under H2O2 stress. The Δdgeo_1985R mutant strain highly expressed a cystine-transporter gene (dgeo_1986), at levels 150-fold higher than the wild-type strain, leading to the conclusion that this cystine transporter might be involved in the defensive response to H2O2 stress. In this study, the cystine transporter was identified and characterized through membrane protein expression analysis, a cystine-binding assay, and assays of intracellular H2O2, cysteine, and thiol levels. The genedisrupted mutant strain of the cystine importer revealed high sensitivity to H2O2 and less absorbed cystine, resulting in low concentrations of total thiol. Thus, the absorbed cystine via this cystine-specific importer may be converted into cysteine, which acts as a primitive defense substrate that non-enzymatically scavenges oxidative stress agents in D. geothermalis.

  19. Cell biological mechanism for triggering of ABA accumulation under water stress in Vicia faba leaves.

    Science.gov (United States)

    Zhang, D; He, F; Jia, W

    2001-08-01

    Water stress-induced ABA accumulation is a cellular signaling process from water stress perception to activation of genes encoding key enzymes of ABA biosynthesis, of which the water stress-signal perception by cells or triggering mechanism of the ABA accumulation is the center in the whole process of ABA related-stress signaling in plants. The cell biological mechanism for triggering of ABA accumulation under water stress was studied in leaves of Vicia faba. Mannitol at 890 mmol * kg(-1) osmotic concentration induced an increase of more than 5 times in ABA concentration in detached leaf tissues, but the same concentration of mannitol only induced an increase of less than 40 % in ABA concentration in protoplasts. Like in detached leaf tissues, ABA concentration in isolated cells increased more than 10 times under the treatment of mannitol at 890 mmol * kg(-1) concentration, suggesting that the interaction between plasmalemma and cell wall was essential to triggering of the water stress-induced ABA accumulation. Neither Ca(2+)-chelating agent EGTA nor Ca(2+)channel activator A23187 nor the two cytoskeleton inhibitors, colchicine and cytochalasin B, had any effect on water stress-induced ABA accumulation. Interestingly water stress-induced ABA accumulation was effectively inhibited by a non-plasmalemma-permeable sulfhydryl-modifier PCMBS (p-chloromercuriphenyl-sulfonic acid), suggesting that plasmalemma protein(s) may be involved in the triggering of water stress-induced ABA accumulation, and the protein may contain sulfhydryl group at its function domain.

  20. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    Science.gov (United States)

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  1. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies.

    Science.gov (United States)

    Ngara, Rudo; Ndimba, Bongani K

    2014-03-01

    Worldwide, crop productivity is drastically reduced by drought and salinity stresses. In order to develop food crops with increased productivity in marginal areas, it is important to first understand the nature of plant stress response mechanisms. In the past decade, proteomics tools have been extensively used in the study of plants' proteome responses under experimental conditions mimicking drought and salinity stresses. A lot of proteomic data have been generated using different experimental designs. However, the precise roles of these proteins in stress tolerance are yet to be elucidated. This review summarises the applications of proteomics in understanding the complex nature of drought and salinity stress effects on plants, particularly cereals and also highlights the usefulness of sorghum as the next logical model crop for use in understanding drought and salinity tolerance in cereals. With the vast amount of proteomic data that have been generated to date, a call for integrated efforts across the agricultural, biotechnology, and molecular biology sectors is also highlighted in an effort to translate proteomics data into increased food productivity for the world's growing population.

  2. [The Israeli medical response plan for an unusual biological event].

    Science.gov (United States)

    Poles, Lion

    2002-05-01

    Lack of national preparedness for biological warfare or a bioterrorism event as well as for a natural outbreak of a dangerous agent may lead to grave consequences (large-scale morbidity and mortality) in the short and long term. Threat assessment and its consequences are the basis for the contingency for such an event, with the medical community playing the leading role. In this article we present the principles of the Israeli medical response plan for an unusual biological event--whether of natural origin or a deliberate attack. The primary goals of the preparedness program are reducing mortality and morbidity, preventing a disaster, decreasing the irrational public response and inducing the resumption of the normal course of life. The program presented and its phases are universal, with the proper modifications needed to be implemented according to the specific etiology and the circumstances of the event. In order to successfully deal with the incident, national-level coordination of many non-medical organizations is required. An integration body in the Ministry of Health is a prerequisite for the early detection of the outbreak and for the rapid and proper identification of the etiologic agent. An effective triage system which screens the truly-exposed, the sick and their contacts among the many worried-well engorging the medical organizations, should be the spearhead for an integrated health system dealing with disease prevention and treatment. Public relations and recruitment of the media for transferring relevant information are a vital part of the response. In this rare and unfamiliar emergency situation the basic principle is to use existing response systems, implementing most of the routine procedures and functions, modified according to guidelines from central governmental bodies.

  3. How are neuroticism and depression related to the psychophysiological stress response to acute stress in healthy older people?

    Science.gov (United States)

    Puig-Perez, Sara; Villada, Carolina; Pulopulos, Matias M; Hidalgo, Vanesa; Salvador, Alicia

    2016-03-15

    Neuroticism and depressive symptomatology have been related to a heightened and diminished physiological stress response, which may partly explain their negative relationship with health and wellbeing. Identifying factors that may increase disease vulnerability is especially relevant in older people, whose physiological systems decline. With this in mind, we investigated the influence of neuroticism and depression on the psychophysiological stress response in healthy older people (from 55 to 76years old). A total of 36 volunteers were exposed to a stressful task (Trier Social Stress Test, TSST), while 35 volunteers performed a control non-stressful task. The physiological stress response was assessed through measures of cortisol, alpha-amylase, heart rate (HR). Our results showed that, neuroticism was not related to physiological stress response. However, depression was related to higher cortisol response and lower HR reactivity in the stress condition. In summary, emotional states such as depressive mood seem to amplify the cortisol stress response and reduce the cardiovascular response, whereas more stable dispositions such as neuroticism did not affect stress response in older people. These findings confirm, in healthy older people, the adverse effects of depression, acting on different subsystems of the stress response.

  4. Molecular Responses of Groundnut (Arachis hypogea L. to Zinc Stress

    Directory of Open Access Journals (Sweden)

    A. John De Britto

    2013-08-01

    Full Text Available Heavy metals are important environmental pollutants and their toxicity is a problem of increasing significance for ecological, evolutionary and environmental reasons. The interference of germination related proteins by heavy metals has not been well documented at the proteomic and genomic level. In the current study, molecular responses of germinating groundnut seeds were investigated under Zinc stress. The SDS-PAGE showed the preliminary changes in the polypeptides patterns under Zinc stress. Restriction digestion banding pattern of EcoRI and Hind III enzymes showed distinct banding pattern in the treated plants.

  5. Semantic annotation of biological concepts interplaying microbial cellular responses

    Directory of Open Access Journals (Sweden)

    Carreira Rafael

    2011-11-01

    Full Text Available Abstract Background Automated extraction systems have become a time saving necessity in Systems Biology. Considerable human effort is needed to model, analyse and simulate biological networks. Thus, one of the challenges posed to Biomedical Text Mining tools is that of learning to recognise a wide variety of biological concepts with different functional roles to assist in these processes. Results Here, we present a novel corpus concerning the integrated cellular responses to nutrient starvation in the model-organism Escherichia coli. Our corpus is a unique resource in that it annotates biomedical concepts that play a functional role in expression, regulation and metabolism. Namely, it includes annotations for genetic information carriers (genes and DNA, RNA molecules, proteins (transcription factors, enzymes and transporters, small metabolites, physiological states and laboratory techniques. The corpus consists of 130 full-text papers with a total of 59043 annotations for 3649 different biomedical concepts; the two dominant classes are genes (highest number of unique concepts and compounds (most frequently annotated concepts, whereas other important cellular concepts such as proteins account for no more than 10% of the annotated concepts. Conclusions To the best of our knowledge, a corpus that details such a wide range of biological concepts has never been presented to the text mining community. The inter-annotator agreement statistics provide evidence of the importance of a consolidated background when dealing with such complex descriptions, the ambiguities naturally arising from the terminology and their impact for modelling purposes. Availability is granted for the full-text corpora of 130 freely accessible documents, the annotation scheme and the annotation guidelines. Also, we include a corpus of 340 abstracts.

  6. Ascending mechanisms of stress integration: Implications for brainstem regulation of neuroendocrine and behavioral stress responses.

    Science.gov (United States)

    Myers, Brent; Scheimann, Jessie R; Franco-Villanueva, Ana; Herman, James P

    2017-03-01

    In response to stress, defined as a real or perceived threat to homeostasis or well-being, brain systems initiate divergent physiological and behavioral processes that mobilize energy and promote adaptation. The brainstem contains multiple nuclei that engage in autonomic control and reflexive responses to systemic stressors. However, brainstem nuclei also play an important role in neuroendocrine responses to psychogenic stressors mediated by the hypothalamic-pituitary-adrenocortical axis. Further, these nuclei integrate neuroendocrine responses with stress-related behaviors, significantly impacting mood and anxiety. The current review focuses on the prominent brainstem monosynaptic inputs to the endocrine paraventricular hypothalamic nucleus (PVN), including the periaqueductal gray, raphe nuclei, parabrachial nuclei, locus coeruleus, and nucleus of the solitary tract (NTS). The NTS is a particularly intriguing area, as the region contains multiple cell groups that provide neurochemically-distinct inputs to the PVN. Furthermore, the NTS, under regulatory control by glucocorticoid-mediated feedback, integrates affective processes with physiological status to regulate stress responding. Collectively, these brainstem circuits represent an important avenue for delineating interactions between stress and health.

  7. Gene Expression Profile in the Long-Living Lotus: Insights into the Heat Stress Response Mechanism.

    Science.gov (United States)

    Liu, Xiaojing; Du, Fengfeng; Li, Naiwei; Chang, Yajun; Yao, Dongrui

    2016-01-01

    Lotus (Nelumbo Adans) is an aquatic perennial plant that flourished during the middle Albian stage. In this study, we characterized the digital gene expression signatures for China Antique lotus under conditions of heat shock stress. Using RNA-seq technology, we sequenced four libraries, specifically, two biological replicates for control plant samples and two for heat stress samples. As a result, 6,528,866 to 8,771,183 clean reads were mapped to the reference genome, accounting for 92-96% total clean reads. A total of 396 significantly altered genes were detected across the genome, among which 315 were upregulated and 81 were downregulated by heat shock stress. Gene ontology (GO) enrichment of differentially expressed genes revealed protein folding, cell morphogenesis and cellular component morphogenesis as the top three functional terms under heat shock stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis led to the identification of protein processing in endoplasmic reticulum, plant-pathogen interactions, spliceosome, endocytosis, and protein export as significantly enriched pathways. Among the upregulated genes, small heat shock proteins (sHsps) and genes related to cell morphogenesis were particularly abundant under heat stress. Data from the current study provide valuable clues that may help elucidate the molecular events underlying heat stress response in China Antique lotus.

  8. Gene Expression Profile in the Long-Living Lotus: Insights into the Heat Stress Response Mechanism.

    Directory of Open Access Journals (Sweden)

    Xiaojing Liu

    Full Text Available Lotus (Nelumbo Adans is an aquatic perennial plant that flourished during the middle Albian stage. In this study, we characterized the digital gene expression signatures for China Antique lotus under conditions of heat shock stress. Using RNA-seq technology, we sequenced four libraries, specifically, two biological replicates for control plant samples and two for heat stress samples. As a result, 6,528,866 to 8,771,183 clean reads were mapped to the reference genome, accounting for 92-96% total clean reads. A total of 396 significantly altered genes were detected across the genome, among which 315 were upregulated and 81 were downregulated by heat shock stress. Gene ontology (GO enrichment of differentially expressed genes revealed protein folding, cell morphogenesis and cellular component morphogenesis as the top three functional terms under heat shock stress. Kyoto Encyclopedia of Genes and Genomes (KEGG analysis led to the identification of protein processing in endoplasmic reticulum, plant-pathogen interactions, spliceosome, endocytosis, and protein export as significantly enriched pathways. Among the upregulated genes, small heat shock proteins (sHsps and genes related to cell morphogenesis were particularly abundant under heat stress. Data from the current study provide valuable clues that may help elucidate the molecular events underlying heat stress response in China Antique lotus.

  9. NAC Transcription Factors in Stress Responses and Senescence

    DEFF Research Database (Denmark)

    O'Shea, Charlotte

    in Arabidopsis as a prerequisite for a system-wide understanding of NAC transcription factors. This PhD thesis contributes to the work through the production and purification of NAC domain recombinant proteins. More importantly, the work presented here has created a platform for future verification of predicted......Plant-specific NAM/ATAF/CUC (NAC) transcription factors have recently received considerable attention due to their significant roles in plant development and stress signalling. This interest has resulted in a number of physiological, genetic and cell biological studies of their functions. Some...... not involve significant folding-upon-binding but fuzziness or an extended ANAC046 region. The ANAC046 regulatory domain functions as an entropic chain with a bait for interactions with for example RCD1. RCD1 interacts with transcription factors from several different families, and the large stress...

  10. Macro-level modeling of the response of C. elegans reproduction to chronic heat stress.

    Directory of Open Access Journals (Sweden)

    Patrick D McMullen

    2012-01-01

    Full Text Available A major goal of systems biology is to understand how organism-level behavior arises from a myriad of molecular interactions. Often this involves complex sets of rules describing interactions among a large number of components. As an alternative, we have developed a simple, macro-level model to describe how chronic temperature stress affects reproduction in C. elegans. Our approach uses fundamental engineering principles, together with a limited set of experimentally derived facts, and provides quantitatively accurate predictions of performance under a range of physiologically relevant conditions. We generated detailed time-resolved experimental data to evaluate the ability of our model to describe the dynamics of C. elegans reproduction. We find considerable heterogeneity in responses of individual animals to heat stress, which can be understood as modulation of a few processes and may represent a strategy for coping with the ever-changing environment. Our experimental results and model provide quantitative insight into the breakdown of a robust biological system under stress and suggest, surprisingly, that the behavior of complex biological systems may be determined by a small number of key components.

  11. Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology

    Directory of Open Access Journals (Sweden)

    Haiyang eJia

    2014-10-01

    Full Text Available Chemical conversions mediated by microorganisms, otherwise known as microbial biotransformations, are playing an increasingly important role within the biotechnology industry. Unfortunately, the growth and production of microorganisms are often hampered by a number of stressful conditions emanating from environment fluctuations and/or metabolic imbalances such as high temperature, high salt condition, strongly acidic solution and presence of toxic metabolites. Therefore, exploring methods to improve the stress tolerance of host organisms could significantly improve the biotransformation process. With the help of synthetic biology, it is now becoming feasible to implement strategies to improve the stress-resistance of the existing hosts. This review summarizes synthetic biology efforts to enhance the efficiency of biotransformations by improving the robustness of microbes. Particular attention will be given to strategies at the cellular and the microbial community levels.

  12. Stress responses from the endoplasmic reticulum in cancer

    Directory of Open Access Journals (Sweden)

    Hironori eKato

    2015-04-01

    Full Text Available The endoplasmic reticulum (ER is a dynamic organelle that is essential for multiple cellular functions. During cellular stress conditions, including nutrient deprivation and dysregulation of protein synthesis, unfolded/misfolded proteins accumulate in the ER lumen, resulting in activation of the unfolded protein response (UPR. The UPR also contributes to the regulation of various intracellular signalling pathways such as calcium signalling and lipid signalling. More recently, the mitochondria-associated ER membrane (MAM, which is a site of close contact between the ER and mitochondria, has been shown to function as a platform for various intracellular stress responses including apoptotic signalling, inflammatory signalling, the autophagic response, and the UPR. Interestingly, in cancer, these signalling pathways from the ER are often dysregulated, contributing to cancer cell metabolism. Thus, the signalling pathway from the ER may be a novel therapeutic target for various cancers. In this review, we discuss recent research on the roles of stress responses from the ER, including the MAM.

  13. Managing heavy metal toxicity stress in plants: biological and biotechnological tools.

    Science.gov (United States)

    Ovečka, M; Takáč, T

    2014-01-01

    The maintenance of ion homeostasis in plant cells is a fundamental physiological requirement for sustainable plant growth, development and production. Plants exposed to high concentrations of heavy metals must respond in order to avoid the deleterious effects of heavy metal toxicity at the structural, physiological and molecular levels. Plant strategies for coping with heavy metal toxicity are genotype-specific and, at least to some extent, modulated by environmental conditions. There is considerable interest in the mechanisms underpinning plant metal tolerance, a complex process that enables plants to survive metal ion stress and adapt to maintain growth and development without exhibiting symptoms of toxicity. This review briefly summarizes some recent cell biological, molecular and proteomic findings concerning the responses of plant roots to heavy metal ions in the rhizosphere, metal ion-induced reactions at the cell wall-plasma membrane interface, and various aspects of heavy metal ion uptake and transport in plants via membrane transporters. The molecular and genetic approaches that are discussed are analyzed in the context of their potential practical applications in biotechnological approaches for engineering increased heavy metal tolerance in crops and other useful plants.

  14. Characterization of the physiological stress response in lingcod

    Science.gov (United States)

    Milston, R.H.; Davis, M.W.; Parker, S.J.; Olla, B.L.; Clements, S.; Schreck, C.B.

    2006-01-01

    The goal of this study was to describe the duration and magnitude of the physiological stress response in lingcod Ophiodon elongatus after exposure to brief handling and sublethal air stressors. The response to these stressors was determined during a 24-h recovery period by measuring concentrations of plasma cortisol, lactate, glucose, sodium, and potassium. Lingcod were subjected to brief handling followed by either a 15-min or a 45-min air stressor in the laboratory. After the 15-min stressor, an increase in cortisol or glucose could not be detected until after 5 min of recovery. Peak concentrations were measured after 30 min for cortisol and after 60 min for glucose and lactate. Glucose and lactate had returned to basal levels after 12 h, whereas cortisol did not return to basal levels until after 24 h of recovery. Immediately following a 45-min air stressor, all measured parameters were significantly elevated over levels in prestressor control fish. Cortisol concentrations tended to increase and reached a measured peak after 8 h of recovery, whereas glucose and lactate reached a measured peak after 1 h of recovery. Cortisol and lactate returned to basal levels within 24 h. Glucose, however, remained elevated even after 24 h of recovery. Plasma ions initially increased during the first hour of recovery, and the concentrations then declined to a level below that measured in control fish for the remainder of the 24-h recovery period. In addition, we evaluated the effect of fish size on the stress response. There was no significant difference between the stress response of smaller (41-49-cm [total length] and larger (50-67-cm) lingcod after 45 min air exposure. In general, both the magnitude and duration of the primary and secondary stress responses in lingcod are comparable to those of salmonids. ?? Copyright by the American Fisheries Society 2006.

  15. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  16. The cellular response to curvature-induced stress

    Science.gov (United States)

    Biton, Y. Y.; Safran, S. A.

    2009-12-01

    We present a theoretical model to explain recent observations of the orientational response of cells to unidirectional curvature. Experiments show that some cell types when plated on a rigid cylindrical surface tend to reorient their shape and stress fibers along the axis of the cylinder, while others align their stress fibers perpendicular to that axis. Our model focuses on the competition of the shear stress—that results from cell adhesion and active contractility—and the anisotropic bending stiffness of the stress fibers. We predict the cell orientation angle that results from the balance of these two forces in a mechanical equilibrium. The conditions under which the different experimental observations can be obtained are discussed in terms of the theory.

  17. The plant response:stress in the daily environment

    Institute of Scientific and Technical Information of China (English)

    FERGUSON Ian B.

    2004-01-01

    @@STRESS IS NORMAL Like animals, plants have evolved to survive in almost every climatic and environmental niche available. They have, however, evolved more sophisticated and varied methods to enable them to survive environmental changes in light, temperature, atmosphere composition, water and nutrients and salinity. This, in part, is necessary because of the sessile nature of plants; they do not have the ability to move to more favourable environments. Stress conditions that plants encounter are not always as rare or unusual as we might at first think. The most common environmental variables, necessary for growth, can impose significant stresses on the plant. But should we think of these as unusual and extreme or just part of the normal diurnal responses experienced by the plant?

  18. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    Science.gov (United States)

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress.

  19. Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress.

    Science.gov (United States)

    Sachs, Benjamin D; Ni, Jason R; Caron, Marc G

    2015-02-24

    Brain serotonin (5-HT) deficiency and exposure to psychosocial stress have both been implicated in the etiology of depression and anxiety disorders, but whether 5-HT deficiency influences susceptibility to depression- and anxiety-like phenotypes induced by psychosocial stress has not been formally established. Most clinically effective antidepressants increase the extracellular levels of 5-HT, and thus it has been hypothesized that antidepressant responses result from the reversal of endogenous 5-HT deficiency, but this hypothesis remains highly controversial. Here we evaluated the impact of brain 5-HT deficiency on stress susceptibility and antidepressant-like responses using tryptophan hydroxylase 2 knockin (Tph2KI) mice, which display 60-80% reductions in brain 5-HT. Our results demonstrate that 5-HT deficiency leads to increased susceptibility to social defeat stress (SDS), a model of psychosocial stress, and prevents the fluoxetine (FLX)-induced reversal of SDS-induced social avoidance, suggesting that 5-HT deficiency may impair antidepressant responses. In light of recent clinical and preclinical studies highlighting the potential of inhibiting the lateral habenula (LHb) to achieve antidepressant and antidepressant-like responses, we also examined whether LHb inhibition could achieve antidepressant-like responses in FLX-insensitive Tph2KI mice subjected to SDS. Our data reveal that using designer receptors exclusively activated by designer drugs (DREADDs) to inhibit LHb activity leads to reduced SDS-induced social avoidance behavior in both WT and Tph2KI mice. This observation provides additional preclinical evidence that inhibiting the LHb might represent a promising alternative therapeutic approach under conditions in which selective 5-HT reuptake inhibitors are ineffective.

  20. Cis-element of the rice PDIL2-3 promoter is responsible for inducing the endoplasmic reticulum stress response.

    Science.gov (United States)

    Takahashi, Hideyuki; Wang, Shuyi; Hayashi, Shimpei; Wakasa, Yuhya; Takaiwa, Fumio

    2014-05-01

    A protein disulfide isomerase (PDI) family oxidoreductase, PDIL2-3, is involved in endoplasmic reticulum (ER) stress responses in rice. We identified a critical cis-element required for induction of the ER stress response. The activation of PDIL2-3 in response to ER stress strongly depends on the IRE1-OsbZIP50 signaling pathway.

  1. Biological responses to environmental heterogeneity under future ocean conditions.

    Science.gov (United States)

    Boyd, Philip W; Cornwall, Christopher E; Davison, Andrew; Doney, Scott C; Fourquez, Marion; Hurd, Catriona L; Lima, Ivan D; McMinn, Andrew

    2016-08-01

    Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats - from short-lived phytoplankton to long-lived corals - in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate-change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate-change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate-change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate-change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to

  2. Establishing cellular stress response profiles as biomarkers of homeodynamics, health and hormesis.

    Science.gov (United States)

    Demirovic, Dino; Rattan, Suresh I S

    2013-01-01

    Aging is the progressive shrinkage of the homeodynamic space. A crucial component of the homeodynamic space is the stress response (SR), by virtue of which a living system senses disturbance and initiates a series of events for maintenance, repair, adaptation, remodeling and survival. Here we discuss the main intracellular SR pathways in human cells, and argue for the need to define and establish the immediate and delayed stress response profiles (SRP) during aging. Such SRP are required to be established at several age-points, which can be the molecular biomarkers of homeodynamic space and the health status of cells and organisms. SRP can also be useful for testing potential protectors and stimulators of homeodynamics, and can be a standard for monitoring the efficacy of potential pro-survival, health-promoting and aging-modulating conditions, food components and other compounds. An effective strategy, which makes use of SRP for achieving healthy aging and extending the healthspan, is that of strengthening the homeodynamics through repeated mild stress-induced hormesis by physical, biological and nutritional hormetins. Furthermore, SRP can also be the basis for defining health as a state of having adequate physical and mental independence of activities of daily living, by identifying a set of measurable parameters at the most fundamental level of biological organization.

  3. Particle shape effects on the stress response of granular packings.

    Science.gov (United States)

    Athanassiadis, Athanasios G; Miskin, Marc Z; Kaplan, Paul; Rodenberg, Nicholas; Lee, Seung Hwan; Merritt, Jason; Brown, Eric; Amend, John; Lipson, Hod; Jaeger, Heinrich M

    2014-01-01

    We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, non-convex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames. All particles were 3D-printed in hard resin. Well-defined initial packing states were established through preconditioning by cyclic loading under given confinement pressure. Starting from such initial states, stress-strain relationships for axial compression were obtained at four different confining pressures for each particle type. While confining pressure has the largest overall effect on the mechanical response, we find that particle shape controls the details of the stress-strain curves and can be used to tune packing stiffness and yielding. By correlating the experimentally measured values for the effective Young's modulus under compression, yield stress and energy loss during cyclic loading, we identify trends among the various shapes that allow for designing a packing's aggregate behavior.

  4. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    Science.gov (United States)

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362.

  5. Stress induced hypertensive response: should it be evaluated more carefully?

    Directory of Open Access Journals (Sweden)

    Kucukler Nagehan

    2011-08-01

    Full Text Available Abstract Various diagnostic methods have been used to evaluate hypertensive patients under physical and pharmacological stress. Several studies have shown that exercise hypertension has an independent, adverse impact on outcome; however, other prognostic studies have shown that exercise hypertension is a favorable prognostic indicator and associated with good outcome. Exercise hypertension may be encountered as a warning signal of hypertension at rest and future hypertensive left ventricular hypertrophy. The results of diagnostic stress tests support that hypertensive response to exercise is frequently associated with high rate-pressure product in hypertensives. In addition to the observations on high rate-pressure product and enhanced ventricular contractility in patients with hypertension, evaluation of myocardial contractility by Doppler tissue imaging has shown hyperdynamic myocardial function under pharmacological stress. These recent quantitative data in hypertensives suggest that hyperdynamic myocardial function and high rate-pressure product response to stress may be related to exaggerated hypertension, which may have more importance than that it has been already given in clinical practice.

  6. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar

    2017-03-27

    Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  7. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    Directory of Open Access Journals (Sweden)

    Krzysztof Klamkowski

    2006-12-01

    Full Text Available The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’ under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Water stress was imposed by reducing the irrigation according to substratum moisture readings. Water stressed plants had the lowest values of water potential and showed strong decrease in gas exchange rate. Also, biomass and leaf area were the lowest in this group of plants. No differences in the length of root system were observed between control and water stressed plants. The lack of water in growing medium resulted also in a decrease of density and reduction of dimensions of stomata on plant leaves. These changes contribute to optimizing the use of assimilates and water use efficiency in periods when water availability is decreased.

  8. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    Directory of Open Access Journals (Sweden)

    Krzysztof Klamkowski

    2006-01-01

    Full Text Available The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’ under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Water stress was imposed by reducing the irrigation according to substratum moisture readings. Water stressed plants had the lowest values of water potential and showed strong decrease in gas exchange rate. Also, biomass and leaf area were the lowest in this group of plants. No differences in the length of root system were observed between control and water stressed plants. The lack of water in growing medium resulted also in a decrease of density and reduction of dimensions of stomata on plant leaves.These changes contribute to optimizing the use of assimilates and water use efficiency in periods when water availability is decreased.

  9. Peripheral vascular responses to heat stress after hindlimb suspension

    Science.gov (United States)

    Looft-Wilson, Robin C.; Gisolfi, Carl V.

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether hindlimb suspension (which simulates the effects of microgravity) results in impaired hemodynamic responses to heat stress or alterations in mesenteric small artery sympathetic nerve innervation. METHODS: Over 28 d, 16 male Sprague-Dawley rats were hindlimb-suspended, and 13 control rats were housed in the same type of cage. After the treatment, mean arterial pressure (MAP), colonic temperature (Tcol), and superior mesenteric and iliac artery resistances (using Doppler flowmetry) were measured during heat stress [exposure to 42 degrees C until the endpoint of 80 mm Hg blood pressure was reached (75 +/- 9 min); endpoint Tcore = 43.6 +/- 0.2] while rats were anesthetized (sodium pentobarbital, 50 mg x kg(-1) BW). RESULTS: Hindlimb-suspended and control rats exhibited similar increases in Tcol, MAP, and superior mesenteric artery resistance, and similar decreases in iliac resistance during heat stress (endpoint was a fall in MAP below 80 mm Hg). Tyrosine hydroxylase immunostaining indicated similar sympathetic nerve innervation in small mesenteric arteries from both groups. CONCLUSION: Hindlimb suspension does not alter the hemodynamic or thermoregulatory responses to heat stress in the anesthetized rat or mesenteric sympathetic nerve innervation, suggesting that this sympathetic pathway is intact.

  10. Roles of horseradish peroxidase in response to terbium stress.

    Science.gov (United States)

    Zhang, Xuanbo; Wang, Lihong; Zhou, Qing

    2014-10-01

    The pollution of the environment by rare earth elements (REEs) causes deleterious effects on plants. Peroxidase plays important roles in plant response to various environmental stresses. Here, to further understand the overall roles of peroxidase in response to REE stress, the effects of the REE terbium ion (Tb(3+)) on the peroxidase activity and H2O2 and lignin contents in the leaves and roots of horseradish during different growth stages were simultaneously investigated. The results showed that after 24 and 48 h of Tb(3+) treatment, the peroxidase activity in horseradish leaves decreased, while the H2O2 and lignin contents increased. After a long-term (8 and 16 days) treatment with Tb(3+), these effects were also observed in the roots. The analysis of the changes in peroxidase activity and H2O2 and lignin contents revealed that peroxidase plays important roles in not only reactive oxygen species scavenging but also cell wall lignification in horseradish under Tb(3+) stress. These roles were closely related to the dose of Tb(3+), duration of stress, and growth stages of horseradish.

  11. Magnitude-dependent response of osteoblasts regulated by compressive stress

    Science.gov (United States)

    Shen, Xiao-qing; Geng, Yuan-ming; Liu, Ping; Huang, Xiang-yu; Li, Shu-yi; Liu, Chun-dong; Zhou, Zheng; Xu, Ping-ping

    2017-01-01

    The present study aimed to investigate the role of magnitude in adaptive response of osteoblasts exposed to compressive stress. Murine primary osteoblasts and MC3T3-E1 cells were exposed to compressive stress (0, 1, 2, 3, 4, and 5 g/cm2) in 3D culture. Cell viability was evaluated, and expression levels of Runx2, Alp, Ocn, Rankl, and Opg were examined. ALP activity in osteoblasts and TRAP activity in RAW264.7 cells co-cultured with MC3T3-E1 cells were assayed. Results showed that compressive stress within 5.0 g/cm2 did not influence cell viability. Both osteoblastic and osteoblast-regulated osteoclastic differentiation were enhanced at 2 g/cm2. An increase in stress above 2 g/cm2 did not enhance osteoblastic differentiation further but significantly inhibited osteoblast-regualted osteoclastic differentiation. This study suggested that compressive stress regulates osteoblastic and osteoclastic differentiation through osteoblasts in a magnitude-dependent manner. PMID:28317941

  12. Transcriptome Analysis of Enterococcus faecalis in Response to Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Ran eshujun

    2015-08-01

    Full Text Available E. faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing.We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections.

  13. Proteomic Study for Responses to Cadmium Stress in Rice Seedlings

    Institute of Scientific and Technical Information of China (English)

    GE Cai-lin; WANG Ze-gang; WAN Ding-zhen; DING Yan; WANG Yu-long; SHANG Qi; LUO Shi-shi

    2009-01-01

    A proteomic approach including two-dimensional electrophoresis and mass spectrometric (MALDI-TOF MS) analyses was used to investigate the responses to cadmium (Cd) stress in seedlings of rice (Oryza sativa L.) varieties Shanyou 63 and Aizaizhan. Cd stress significantly inhibited root and shoot growth, and affected the global proteome in rice roots and leaves, which induced or upregulated the expression of corresponding proteins in rice roots and leaves when rice seedlings were exposed to 0.1 or 1.0 mmol/L Cd. The Cd-induced proteins are involved in chelation and compartmentation of Cd, elimination of active oxygen free radicals, detoxification of toxic substances, degradation of denatured proteins or inactivated enzymes, regulation of physiologic metabolism and induction of pathogenesis-related proteins. Comparing the Cd-induced proteins between the two varieties, the β-glucosidase and pathogenesis-related protein family 10 proteins were more drastically induced by Cd stress in roots and leaves of Aizaizhan, and the UDP-glucose protein transglucosylase and translational elongation factor Tu were induced by 0.1 mmol/L Cd stress in roots of Shanyou 63. This may be one of the important mechanisms for higher tolerance to Cd stress in Shanyou 63 than in Aizaizhan.

  14. p53 Superfamily proteins in marine bivalve cancer and stress biology.

    Science.gov (United States)

    Walker, Charles W; Van Beneden, Rebecca J; Muttray, Annette F; Böttger, S Anne; Kelley, Melissa L; Tucker, Abraham E; Thomas, W Kelley

    2011-01-01

    The human p53 tumour suppressor protein is inactivated in many cancers and is also a major player in apoptotic responses to cellular stress. The p53 protein and the two other members of this protein family (p63, p73) are encoded by distinct genes and their functions have been extensively documented for humans and some other vertebrates. The structure and relative expression levels for members of the p53 superfamily have also been reported for most major invertebrate taxa. The functions of homologous proteins have been investigated for only a few invertebrates (specifically, p53 in flies, nematodes and recently a sea anemone). These studies of classical model organisms all suggest that the gene family originally evolved to mediate apoptosis of damaged germ cells or to protect germ cells from genotoxic stress. Here, we have correlated data from a number of molluscan and other invertebrate sequencing projects to provide a framework for understanding p53 signalling pathways in marine bivalve cancer and stress biology. These data suggest that (a) the two identified p53 and p63/73-like proteins in soft shell clam (Mya arenaria), blue mussel (Mytilus edulis) and Northern European squid (Loligo forbesi) have identical core sequences and may be splice variants of a single gene, while some molluscs and most other invertebrates have two or more distinct genes expressing different p53 family members; (b) transcriptional activation domains (TADs) in bivalve p53 and p63/73-like protein sequences are 67-69% conserved with human p53, while those in ecdysozoan, cnidarian, placozoan and choanozoan eukaryotes are ≤33% conserved; (c) the Mdm2 binding site in the transcriptional activation domain is 100% conserved in all sequenced bivalve p53 proteins (e.g. Mya, Mytilus, Crassostrea and Spisula) but is not present in other non-deuterostome invertebrates; (d) an Mdm2 homologue has been cloned for Mytilus trossulus; (e) homologues for both human p53 upstream regulatory and

  15. Cardiolipin at the heart of stress response across kingdoms.

    Science.gov (United States)

    de Paepe, Rosine; Lemaire, Stéphane D; Danon, Antoine

    2014-05-20

    Cardiolipin is a key phospholipid most specifically found in the membrane of mitochondria in yeasts, plants, and animals. Cardiolipins are essential for the maintenance, the integrity, and the dynamics of mitochondria. In most eukaryotes mitochondria play a central role in the response and adaptation to stress conditions especially through their importance in the control of programmed cell death. To assess the impact of the absence of cardiolipin, knock-down of the expression of cardiolipin synthase, the last enzyme of cardiolipin synthesis pathway in eukaryotes has been performed in yeasts, animals, and plants. These studies showed that cardiolipin is not only important for mitochondrial ultrastructure and for the stability of respiratory complexes, but it is also a key player in the response to stress, the formation of reactive oxygen species, and the execution of programmed cell death.

  16. Behaviour and stress responses in horses with gastric ulceration

    DEFF Research Database (Denmark)

    Malmkvist, Jens; Poulsen, Janne Møller; Luthersson, Nanna

    2012-01-01

    Only little is known about behaviour and stress responses in horses with gastric ulceration, despite the high prevalence of this condition. Our objectives in the present study was to (i) describe the severity of gastric ulceration in horses, housed under relatively standardised conditions, and (ii......) to investigate whether horses with severe glandular gastric ulceration have increased baseline and response concentration of stress hormones and behave differently than control horses. We investigated stomachs of 96 horses at one stud, and compared an ulcer group (n = 30; with severe lesions in the glandular.......2% and non-glandular lesions in 40.6% of the horses. The amount of starch in the feed (P = 0.006) and paternal stallion (P = 0.031) influenced ulceration in the non-glandular region only; it should be noted that our study does not allow for separating hereditary from environmental influences, as offspring...

  17. Elucidating GPR Response to Biological Activity: Field and Laboratory Experiments

    Science.gov (United States)

    Tsoflias, G. P.; Schillig, P. C.; McGlashan, M. A.; Roberts, J. A.; Devlin, J. F.

    2010-12-01

    Recent studies of the geophysical signatures of biological processes in earth environments have resulted in the emergent field of “biogeophysics”. The ability to monitor remotely and to quantify active biological processes in the subsurface can have transformative implications to a wide range of investigations, including the bioremediation of contaminated sites. Previous studies have demonstrated that ground-penetrating radar (GPR) can be used to detect the products of microbial activity in the subsurface, such as changes in bulk electrical conductivity, mineral dissolution and precipitation, and the formation of biogenic gas. We present field and laboratory experiments that offer insights to the response of GPR signals to microbial activity. In the field, time-lapse borehole radar tomography was used to monitor biodegradation of a hydrocarbon plume over a period of two years. A dense grid of fourteen borehole pairs monitoring the bioactive region showed radar wave velocity changes of +/-4% and signal attenuation changes of +/-25%. These GPR observations correlated spatially and temporally to independent measurements of groundwater velocity and geochemical variations that occurred in response to microbial activity. The greatest relative changes in radar wave velocity of propagation and attenuation were observed in the region of enhanced bacterial stimulation where biomass growth was the greatest. Radar wave velocity and attenuation decreased during periods of enhanced biostimulation. Two laboratory experiments were conducted to further assess radar response to biomass growth. The first experiment monitored GPR wave transmission through a water-saturated quartz-sand reactor during the course of enhanced biostimulation. Radar wave velocity initially decreased as a result of bacterial activity and subsequently increased rapidly as biogenic gas formed in the pore space. Radar signal attenuation increased during the course of the experiment as a result of an

  18. Behavioural and physiological stress responses to environmental and human factors in different small mammal species: implications for their conservation

    OpenAIRE

    Navarro Castilla, Álvaro

    2016-01-01

    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Wild animal populations are continuously subjected to periodic disturbances by environmental and anthropogenic causes. Thereby, in this doctoral thesis, we carried out different investigations to study the behavioural and physiological stress responses of several small mammal species to different environmental and human factors. Behavioral responses to predation ris...

  19. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses.

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    Full Text Available Plant autophagy plays an important role in delaying senescence, nutrient recycling, and stress responses. Functional analysis of plant autophagy has almost exclusively focused on the proteins required for the core process of autophagosome assembly, but little is known about the proteins involved in other important processes of autophagy, including autophagy cargo recognition and sequestration. In this study, we report functional genetic analysis of Arabidopsis NBR1, a homolog of mammalian autophagy cargo adaptors P62 and NBR1. We isolated two nbr1 knockout mutants and discovered that they displayed some but not all of the phenotypes of autophagy-deficient atg5 and atg7 mutants. Like ATG5 and ATG7, NBR1 is important for plant tolerance to heat, oxidative, salt, and drought stresses. The role of NBR1 in plant tolerance to these abiotic stresses is dependent on its interaction with ATG8. Unlike ATG5 and ATG7, however, NBR1 is dispensable in age- and darkness-induced senescence and in resistance to a necrotrophic pathogen. A selective role of NBR1 in plant responses to specific abiotic stresses suggest that plant autophagy in diverse biological processes operates through multiple cargo recognition and delivery systems. The compromised heat tolerance of atg5, atg7, and nbr1 mutants was associated with increased accumulation of insoluble, detergent-resistant proteins that were highly ubiquitinated under heat stress. NBR1, which contains an ubiquitin-binding domain, also accumulated to high levels with an increasing enrichment in the insoluble protein fraction in the autophagy-deficient mutants under heat stress. These results suggest that NBR1-mediated autophagy targets ubiquitinated protein aggregates most likely derived from denatured or otherwise damaged nonnative proteins generated under stress conditions.

  20. Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus

    OpenAIRE

    2014-01-01

    The diversity of phenylpropanoids offers a rich inventory of bioactive chemicals that can be exploited for plant improvement and human health. Recent evidence suggests that glycosylation may play a role in the partitioning of phenylpropanoid precursors for a variety of downstream uses. This work reports the functional characterization of a stress-responsive glycosyltransferase, GT1-316 in Populus. GT1-316 belongs to the UGT84A subfamily of plant glycosyltransferase family 1 and is designated ...

  1. Canonical Modeling of the Multi-Scale Regulation of the Heat Stress Response in Yeast

    Directory of Open Access Journals (Sweden)

    Luis L. Fonseca

    2012-02-01

    Full Text Available Heat is one of the most fundamental and ancient environmental stresses, and response mechanisms are found in prokaryotes and shared among most eukaryotes. In the budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated changes at all biological levels, from gene expression to protein and metabolite abundances, and to temporary adjustments in physiology. Due to its integrative multi-level-multi-scale nature, heat adaptation constitutes a complex dynamic process, which has forced most experimental and modeling analyses in the past to focus on just one or a few of its aspects. Here we review the basic components of the heat stress response in yeast and outline what has been done, and what needs to be done, to merge the available information into computational structures that permit comprehensive diagnostics, interrogation, and interpretation. We illustrate the process in particular with the coordination of two metabolic responses, namely the dramatic accumulation of the protective disaccharide trehalose and the substantial change in the profile of sphingolipids, which in turn affect gene expression. The proposed methods primarily use differential equations in the canonical modeling framework of Biochemical Systems Theory (BST, which permits the relatively easy construction of coarse, initial models even in systems that are incompletely characterized.

  2. MOF maintains transcriptional programs regulating cellular stress response.

    Science.gov (United States)

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-05-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.

  3. Stress Response of Offshore Structures by Equivalent Polynomial Expansion Techniques

    DEFF Research Database (Denmark)

    Sigurdsson, Gudfinnur; Nielsen, Søren R.K.

    This paper concerns an investigation of the effects of nonlinearity of drag loading on offshore structures excited by 2D wave fields, where the nonlinear term in the Morison equation is replaced by an equivalent cubic expansion. The equivalent cubic expansion coefficients for the equivalent drag...... model are obtained using the least mean square procedure. Numerical results are given. The displacement response and stress response processes obtained using the above loading model are compared with simulation results and those obtained from equivalent linearization of the drag term....

  4. Childhood exposure to violence and lifelong health: Clinical intervention science and stress biology research join forces

    Science.gov (United States)

    Moffitt, Terrie E.

    2013-01-01

    Many young people who are mistreated by an adult, victimized by bullies, criminally assaulted, or who witness domestic violence react to this violence exposure by developing behavioral, emotional, or learning problems. What is less well known is that adverse experiences like violence exposure can lead to hidden physical alterations inside a child’s body, alterations which may have adverse effects on life-long health. We discuss why this is important for the field of developmental psychopathology and for society, and we recommend that stress-biology research and intervention science join forces to tackle the problem. We examine the evidence base in relation to stress-sensitive measures for the body (inflammatory reactions, telomere erosion, epigenetic methylation, and gene expression) and brain (mental disorders, neuroimaging, and neuropsychological testing). We also review promising interventions for families, couples, and children that have been designed to reduce the effects of childhood violence exposure. We invite intervention scientists and stress-biology researchers to collaborate in adding stress-biology measures to randomized clinical trials of interventions intended to reduce effects of violence exposure and other traumas on young people. PMID:24342859

  5. Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains.

    Science.gov (United States)

    Jennings, Elaine M; Okine, Bright N; Olango, Weredeselam M; Roche, Michelle; Finn, David P

    2016-01-01

    Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.

  6. Understanding the biological responses of nanostructured metals and surfaces

    Science.gov (United States)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  7. Prenatal stress diminishes the cytokine response of leukocytes to endotoxin stimulation in juvenile rhesus monkeys.

    Science.gov (United States)

    Coe, Christopher L; Kramer, Marian; Kirschbaum, Clemens; Netter, Petra; Fuchs, Eberhard

    2002-02-01

    This study investigated whether exposing the fetal primate to repeated episodes of maternal stress would have long-lasting effects on the endotoxin-induced cytokine response and corticosteroid sensitivity of peripheral blood cells in juvenile animals. Pregnant rhesus monkeys were acutely aroused on a daily basis for 6 wk using an acoustical startle protocol, either early or late in the 24-wk pregnancy. To quantify cytokine responses and corticosteroid sensitivity in their offspring at 2 yr of age, whole blood cultures were stimulated with lipopolysaccharide and incubated with dexamethasone (DEX). TNFalpha and IL-6 levels were determined in the culture supernatants. The blood samples were collected from undisturbed monkeys under baseline conditions, as well as in an aroused state induced by a 2 h social separation. Juvenile monkeys from stressed pregnancies had significantly lower cellular cytokine responses compared with the undisturbed controls. When DEX was added to the cell cultures, it systematically inhibited TNFalpha and IL-6 production, bringing the values for control animals down into the range of the prenatally stressed animals. Lipopolysaccharide-induced cytokine production was also markedly suppressed by the experience of acute stress, reducing cytokine responses of controls to the levels found for prenatally disturbed monkeys under baseline conditions. Therefore, this study has demonstrated that prenatal disturbance can induce a lasting change in cytokine biology, which persists well beyond the fetal and infant stage. Further, these effects may be due to elevated hypothalamic-pituitary-adrenal activity in the prenatally stressed animals, because both DEX and acute arousal made the cells from control monkeys appear more similar to those from disturbed pregnancies.

  8. Epigenetic Mechanisms Shape the Biological Response to Trauma and Risk for PTSD: A Critical Review

    Directory of Open Access Journals (Sweden)

    Morgan Heinzelmann

    2013-01-01

    Full Text Available Posttraumatic stress disorder (PTSD develops in approximately one-quarter of trauma-exposed individuals, leading us and others to question the mechanisms underlying this heterogeneous response to trauma. We suggest that the reasons for the heterogeneity relate to a complex interaction between genes and the environment, shaping each individual’s recovery trajectory based on both historical and trauma-specific variables. Epigenetic modifications provide a unique opportunity to elucidate how preexisting risk factors may contribute to PTSD risk through changes in the methylation of DNA. Preexisting risks for PTSD, including depression, stress, and trauma, result in differential DNA methylation of endocrine genes, which may then result in a different biological responses to trauma and subsequently a greater risk for PTSD onset. Although these relationships are complex and currently inadequately described, we provide a critical review of recent studies to examine how differences in genetic and proteomic biomarkers shape an individual’s vulnerability to PTSD development, thereby contributing to a heterogeneous response to trauma.

  9. Differential oxidative stress responses in castor semilooper, Achaea janata.

    Science.gov (United States)

    Pavani, Ayinampudi; Chaitanya, R K; Chauhan, Vinod K; Dasgupta, Anwesha; Dutta-Gupta, Aparna

    2015-11-01

    Balance between reactive oxygen species (ROS) and the antioxidant (AO) defense mechanisms is vital for organism survival. Insects serve as an ideal model to elucidate oxidative stress responses as they are prone to different kinds of stress during their life cycle. The present study demonstrates the modulation of AO enzyme gene expression in the insect pest, Achaea janata (castor semilooper), when subjected to different oxidative stress stimuli. Antioxidant enzymes' (catalase (Cat), superoxide dismutase (Sod), glutathione-S-transferase (GST) and glutathione peroxidase (Gpx)) partial coding sequences were cloned and characterized from larval whole body. Tissue expression studies reveal a unique pattern of AO genes in the larval tissues with maximum expression in the gut and fat body. Ontogeny profile depicts differential expression pattern through the larval developmental stages for each AO gene studied. Using quantitative RT-PCR, the expression pattern of these genes was monitored during sugar-induced (d-galactose feeding), infection-induced (Gram positive, Gram negative and non-pathogenic bacteria) and pesticide-induced oxidative stress (Bt Cry toxin). d-Galactose feeding differentially modulates the expression of AO genes in the larval gut and fat body. Immune challenge with Escherichia coli induces robust upregulation of AO genes when compared to Bacillus coagulans and Bacillus cereus in the larval fat body and gut. Cry toxin feeding predominantly induced GST upregulation in the gut. The current study suggests that though there are multiple ways of generation of oxidative stress in the insect, the organism tailors its response by insult- and tissue-specific recruitment of the antioxidant players and their differential regulation for each inducer.

  10. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems.

    Science.gov (United States)

    Gądek-Michalska, Anna; Tadeusz, Joanna; Rachwalska, Paulina; Bugajski, Jan

    2013-01-01

    Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is accepted as one of the fundamental biological mechanisms that underlie major depression. This hyperactivity is caused by diminished feedback inhibition of glucocorticoid (GC)-induced reduction of HPA axis signaling and increased corticotrophin-releasing hormone (CRH) secretion from the hypothalamic paraventricular nucleus (PVN) and extra-hypothalamic neurons. During chronic stress-induced inhibition of systemic feedback, cytosolic glucocorticoid receptor (GR) levels were significantly changed in the prefrontal cortex (PFC) and hippocampus, both structures known to be deeply involved in the pathogenesis of depression. Cytokines secreted by both immune and non-immune cells can markedly affect neurotransmission within regulatory brain circuits related to the expression of emotions; cytokines may also induce hormonal changes similar to those observed following exposure to stress. Proinflammatory cytokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) are implicated in the etiologies of clinical depression and anxiety disorders. Prolonged stress responses and cytokines impair neuronal plasticity and stimulation of neurotransmission. Exposure to acute stress and IL-1β markedly increased IL-1β levels in the PFC, hippocampus and hypothalamus, as well as overall HPA axis activity. Repeated stress sensitized the HPA axis response to IL-1β. Inflammatory responses in the brain contribute to cellular damage associated with neuropsychiatric diseases related to stress. Physical, psychological or combined-stress conditions evoke a proinflammatory response in the brain and other systems, characterized by a complex release of several inflammatory mediators including cytokines, prostanoids, nitric oxide (NO) and transcription factors. Induced CRH release involves IL-1, IL-6 and TNF-α, for stimulation adrenocorticotropic hormone (ACTH) release from the anterior

  11. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms.

    Science.gov (United States)

    De Storme, Nico; Geelen, Danny

    2014-01-01

    In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved.

  12. Metabolomic analysis of the selection response of Drosophila melanogaster to environmental stress: are there links to gene expression and phenotypic traits?

    Science.gov (United States)

    Malmendal, Anders; Sørensen, Jesper Givskov; Overgaard, Johannes; Holmstrup, Martin; Nielsen, Niels Chr.; Loeschcke, Volker

    2013-05-01

    We investigated the global metabolite response to artificial selection for tolerance to stressful conditions such as cold, heat, starvation, and desiccation, and for longevity in Drosophila melanogaster. Our findings were compared to data from other levels of biological organization, including gene expression, physiological traits, and organismal stress tolerance phenotype. Overall, we found that selection for environmental stress tolerance changes the metabolomic 1H NMR fingerprint largely in a similar manner independent of the trait selected for, indicating that experimental evolution led to a general stress selection response at the metabolomic level. Integrative analyses across data sets showed little similarity when general correlations between selection effects at the level of the metabolome and gene expression were compared. This is likely due to the fact that the changes caused by these selection regimes were rather mild and/or that the dominating determinants for gene expression and metabolite levels were different. However, expression of a number of genes was correlated with the metabolite data. Many of the identified genes were general stress response genes that are down-regulated in response to selection for some of the stresses in this study. Overall, the results illustrate that selection markedly alters the metabolite profile and that the coupling between different levels of biological organization indeed is present though not very strong for stress selection at this level. The results highlight the extreme complexity of environmental stress adaptation and the difficulty of extrapolating and interpreting responses across levels of biological organization.

  13. Nature's rheologists: Lymphatic endothelial cells control migration in response to shear stress

    Science.gov (United States)

    Fuller, Gerald; Dunn, Alex; Surya, Vinay

    2015-03-01

    Endothelial cells (ECs) line the inner surface of blood and lymphatic vessels and are sensitive to fluid flow as part of their physiological function. EC organization, migration and vessel development are profoundly influenced by shear stresses, with important implications in cardiovascular disease and tumor metastasis. How ECs sense fluid flow is a central and unanswered question in cardiovascular biology. We developed a high-throughput live-cell flow chamber that models the gradients in wall shear stress experienced by ECs in vivo. Live-cell imaging allows us to probe cellular responses to flow, most notably EC migration, which has a key role in vessel remodeling. We find that most EC subtypes, including ECs from the venous, arterial, and microvascular systems, migrate in the flow direction. In contrast, human lymphatic microvascular ECs (hLMVECs) migrate against flow and up spatial gradients in wall shear stress. Further experiments reveal that hLMVECs are sensitive to the magnitude, direction, and the local spatial gradients in wall shear stress. Lastly, recent efforts have aimed to link this directional migration to spatial gradients in cell-mediated small molecule emission that may be linked to the gradient in wall shear stress.

  14. Cross talk between H2O2 and interacting signal molecules under plant stress response

    Directory of Open Access Journals (Sweden)

    Ina eSaxena

    2016-04-01

    Full Text Available It is well established that oxidative stress is an important cause of cellular damage. During stress condition plants have evolved regulatory mechanism to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of ROS, which is subsequently converted to H2O2. H2O2 is continuously produced as the by-product of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 acts as a key regulator of many biological processes because H2O2 has been identified as an important second messenger in signal transduction networks. In this review we discuss potential roles of H2O2 and other signaling molecule during various stress responses.

  15. Long Term Salinity Stress Reveals Variety Specific Differences in Root Oxidative Stress Response

    Institute of Scientific and Technical Information of China (English)

    Prasad SENADHEERA; Shamala TIRIMANNE; Frans J M MAATHUIS

    2012-01-01

    Salinity stress induces oxidative stress caused by reactive oxygen species (ROS):superoxide radicals,hydrogen peroxide (H2O2) and hydroxyl radicals.Activities of both enzymatic and non-enzymatic components of the antioxidant system and related growth parameters were studied in the roots of the salt tolerant rice variety FL478 and the sensitive variety IR29 in response to long term stress (12 d) induced by 50 mmol/L NaCl.The comparative study showed that FL478maintained higher relative growth rate and lower Na+/K+ in the roots than IR29 due to a higher membrane stability index that effectively exclude Na+.Lower TBARS (thiobarbituric acid reactive substance) content in FL478 roots indicated that its membrane was relatively unaffected by ROS despite high H2O2 content recorded under the salinity stress.Relatively higher superoxide dismutase activity along with a parallel increase in transcript level of superoxide dismutase (Os07946990) in FL478 indicated that this protein might make a vital contribution to salt stress tolerance.Although the content of ascorbic acid remained unchanged in FL478,the activity of ascorbic peroxidases (APOXs) was reduced comparably in the both varieties.Transcriptomic data showed that a larger number of peroxidase genes were upregulated in FL478 compared to IR29 and several of which might provide engineering targets to improve rice salt tolerance.

  16. Naturalistic Stress and Cortisol Response to Awakening: Adaptation to Seafaring

    Science.gov (United States)

    Liberzon, Jonathan; Abelson, James L.; King, Anthony; Liberzon, Israel

    2008-01-01

    Study of the hypothalmic-pituitary adrenal (HPA) axis has been critical to advancing our understanding of human adaptation to stress. The cortisol response to awakening (CRA) is a potentially useful measure for understanding group and individual differences in HPA axis regulation. In this study, the CRA was examined in the context of a naturalistic stressor – a six-week voyage of work and study aboard an oceangoing ship, including both experienced and novice sailors. Thirty-one subjects provided weekday and weekend baseline CRA data onshore prior to boarding, followed by three CRAs at sea and one shore leave CRA. Subjective measures of sleep, stress and control were also collected. Results suggest that novice sailors' cortisol response to awakening was elevated at sea relative to both a shoreside weekend and a shore leave during the voyage, but the most striking elevation was found during a workday onshore. Inexperienced students' profiles changed differently over the course of the voyage from those of professional crew. CRAs were not affected by sleep variables and were not predicted by subjective ratings. These data support the value of the cortisol response to awakening as a neuroendocrine marker of HPA regulatory responses to a naturalistic stressor, influenced by changes in work and living environment, and perhaps prior experience with the stressor. PMID:18657911

  17. In Vitro Cytotoxicity and Adaptive Stress Responses to Selected Haloacetic Acid and Halobenzoquinone Water Disinfection Byproducts.

    Science.gov (United States)

    Procházka, Erik; Escher, Beate I; Plewa, Michael J; Leusch, Frederic D L

    2015-10-19

    The process of disinfecting drinking water inadvertently leads to the formation of numerous disinfection byproducts (DBPs). Some of these are mutagenic, genotoxic, teratogenic, and cytotoxic, as well as potentially carcinogenic both in vivo and in vitro. We investigated the in vitro biological activity of five DBPs: three monohaloacetic acids (monoHAAs) [chloroacetic acid (CAA), bromoacetic acid (BAA), and iodoacetic acid (IAA)] and two novel halobenzoquinones (HBQs) [2,6-dichloro-p-benzoquinone (DCBQ) and 2,6-dibromo-p-benzoquinone]. We focused particularly on cytotoxicity and induction of two adaptive stress response pathways: the oxidative stress responsive Nrf2/ARE and DNA-damage responsive p53 pathways. All five DBPs were cytotoxic to the Caco-2 cell line after a 4 h exposure, and all DBPs induced both of the adaptive stress response pathways, Nrf2/ARE and p53, in the micromolar range, as measured by two β-lactamase-based reporter gene assays. The decreasing order of potency for all three endpoints for the five DBPs was IAA ∼ BAA > DCBQ ∼ DBBQ > CAA. Induction of oxidative stress was previously proposed to be the molecular initiating event (MIE) for both classes of DBPs. However, comparing the levels of activation of the two pathways uncovered that the Nrf2/ARE pathway was the more sensitive endpoint for HAAs, whereas the p53 pathway was more sensitive in the case of HBQs. Therefore, the DNA damage-responsive p53 pathway may be an important piece of information to fill in a gap in the adverse outcome pathway framework for the assessment of HBQs. Finally, we cautiously compared the potential risk of the two novel HBQs using a benchmarking approach to that of the well-studied CAA, which suggested that their relative risk may be lower than that of BAA and IAA.

  18. Epigenetic memory for stress response and adaptation in plants.

    Science.gov (United States)

    Kinoshita, Tetsu; Seki, Motoaki

    2014-11-01

    In contrast to the majority of animal species, plants are sessile organisms and are, therefore, constantly challenged by environmental perturbations. Over the past few decades, our knowledge of how plants perceive environmental stimuli has increased considerably, e.g. the mechanisms for transducing environmental stress stimuli into cellular signaling cascades and gene transcription networks. In addition, it has recently been shown that plants can remember past environmental events and can use these memories to aid responses when these events recur. In this mini review, we focus on recent progress in determination of the epigenetic mechanisms used by plants under various environmental stresses. Epigenetic mechanisms are now known to play a vital role in the control of gene expression through small RNAs, histone modifications and DNA methylation. These are inherited through mitotic cell divisions and, in some cases, can be transmitted to the next generation. They therefore offer a possible mechanism for stress memories in plants. Recent studies have yielded evidence indicating that epigenetic mechanisms are indeed essential for stress memories and adaptation in plants.

  19. Mitochondrial Composition,Function and Stress Response in Plants

    Institute of Scientific and Technical Information of China (English)

    Richard P.Jacoby; Lei Li; Shaobai Huang; Chun Pong Lee; A.Harvey Millar; Nicolas L.Taylor

    2012-01-01

    The primary function of mitochondria is respiration,where catabolism of substrates is coupled to ATP synthesis via oxidative phosphorylation.In plants,mitochondrial composition is relatively complex and flexible and has specific pathways to support photosynthetic processes in illuminated leaves.This review begins with outlining current models of mitochondrial composition in plant cells,with an emphasis upon the assembly of the complexes of the classical electron transport chain (ETC).Next,we focus upon the comparative analysis of mitochondrial function from different tissue types.A prominent theme in the plant mitochondrial literature involves linking mitochondrial composition to environmental stress responses,and this review then gives a detailed outline of how oxidative stress impacts upon the plant mitochondrial proteome with particular attention to the role of transition metals.This is followed by an analysis of the signaling capacity of mitochondrial reactive oxygen species,which studies the transcriptional changes of stress responsive genes as a framework to define specific signals emanating from the mitochondrion.Finally,specific mitochondrial roles during exposure to harsh environments are outlined,with attention paid to mitochondrial delivery of energy and intermediates,mitochondrial support for photosynthesis,and mitochondrial processes operating within root cells that mediate tolerance to anoxia and unfavorable soil chemistries.

  20. Motivation, stress, anxiety, and cortisol responses in elite paragliders.

    Science.gov (United States)

    Filaire, Edith; Alix, Deborah; Rouveix, Matthieu; Le Scanff, Christine

    2007-06-01

    In this study metamotivational dominance (measured with the Telic Dominance Scale), precompetition anxiety (evaluated with the CSAI-2), perceived stress (measured with the Perceived Stress Scale), and cortisol responses by 10 paragliding competitors prior to and following a paragliding competition were examined. Saliva was collected for each subject for cortisol analysis on eight occasions: during a resting day (baseline values) and prior to and after competition. Analysis indicated subjects were all paratelic-dominant (characterized by a desire for high arousal, a focus on the present). Scores were high on the Perceived Stress Scale and cognitive nxiety (a telic emotion). Cortisol values showed a significant increase early on the day of the competition and remained elevated all the day, with highest concentrations at the start. Participants' cognitive anxiety and cortisol responses were significantly correlated .79 just before the jump and the direction of the cognitive anxiety was rated as facilitative of performance. These results may suggest that the more frequently the subject is playful in life, the more cortisol they produce when aroused in a less frequent telic state.

  1. Yeast responses to stresses associated with industrial brewery handling.

    Science.gov (United States)

    Gibson, Brian R; Lawrence, Stephen J; Leclaire, Jessica P R; Powell, Chris D; Smart, Katherine A

    2007-09-01

    During brewery handling, production strains of yeast must respond to fluctuations in dissolved oxygen concentration, pH, osmolarity, ethanol concentration, nutrient supply and temperature. Fermentation performance of brewing yeast strains is dependent on their ability to adapt to these changes, particularly during batch brewery fermentation which involves the recycling (repitching) of a single yeast culture (slurry) over a number of fermentations (generations). Modern practices, such as the use of high-gravity worts and preparation of dried yeast for use as an inoculum, have increased the magnitude of the stresses to which the cell is subjected. The ability of yeast to respond effectively to these conditions is essential not only for beer production but also for maintaining the fermentation fitness of yeast for use in subsequent fermentations. During brewery handling, cells inhabit a complex environment and our understanding of stress responses under such conditions is limited. The advent of techniques capable of determining genomic and proteomic changes within the cell is likely vastly to improve our knowledge of yeast stress responses during industrial brewery handling.

  2. Supplementary data: Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and mechanism of resistance

    NARCIS (Netherlands)

    Kissoudis, C.; Sri Sunarti, Sri; Wiel, van de C.C.M.; Visser, R.G.F.; Linden, van der C.G.; Bai, Y.

    2016-01-01

    Stress conditions in agricultural ecosystems can occur in variable intensities. Different resistance mechanisms to abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of

  3. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism

    NARCIS (Netherlands)

    Kissoudis, Christos; Sri Sunarti, Sri; De Wiel, Van Clemens; Visser, Richard G.F.; Linden, van der Gerard; Bai, Yuling

    2016-01-01

    Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effec

  4. Mcm2 phosphorylation and the response to replicative stress

    Directory of Open Access Journals (Sweden)

    Stead Brent E

    2012-05-01

    Full Text Available Abstract Background The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm proteins 2 through 7 (Mcm2-7 and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK. In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. Results We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU and to the base analogue 5-fluorouracil (5-FU but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. Conclusions Together these observations point to a role for DDK-mediated phosphorylation

  5. Coordinating metabolite changes with our perception of plant abiotic stress responses: emerging views revealed by integrative-omic analyses.

    Science.gov (United States)

    Radomiljac, Jordan D; Whelan, James; van der Merwe, Margaretha

    2013-09-06

    Metabolic configuration and adaptation under a range of abiotic stresses, including drought, heat, salinity, cold, and nutrient deprivation, are subjected to an intricate span of molecular pathways that work in parallel in order to enhance plant fitness and increase stress tolerance. In recent years, unprecedented advances have been made in identifying and linking different abiotic stresses, and the current challenge in plant molecular biology is deciphering how the signaling responses are integrated and transduced throughout metabolism. Metabolomics have often played a fundamental role in elucidating the distinct and overlapping biochemical changes that occur in plants. However, a far greater understanding and appreciation of the complexity in plant metabolism under specific stress conditions have become apparent when combining metabolomics with other-omic platforms. This review focuses on recent advances made in understanding the global changes occurring in plant metabolism under abiotic stress conditions using metabolite profiling as an integrated discovery platform.

  6. Short-term cadmium exposure induces stress responses in frog (Pelophylax bergeri) skin organ culture.

    Science.gov (United States)

    Simoncelli, Francesca; Belia, Silvia; Di Rosa, Ines; Paracucchi, Romina; Rossi, Roberta; La Porta, Gianandrea; Lucentini, Livia; Fagotti, Anna

    2015-12-01

    There have been a few studies on the negative effects of pollutants on amphibian skin, the first structural barrier that interacts with the environment and its potential contaminants. In this study an ex vivo skin organ culture from the amphibian Pelophylax bergeri was used to evaluate cell stress responses induced by short-term exposure to cadmium (Cd), a toxic heavy metal known to be an environmental hazard to both humans and wildlife. Histopathological studies were carried out on skin explants using light microscopy and changes in the expression of stress proteins, such as Metallothionein (MT) and Heat shock proteins (HSPs), were investigated by Real-time RT-PCR. Results revealed that amphibian skin reacts to Cd-induced stress by activating biological responses such as morphological alterations and dose- and time-dependent induction of Mt and Hsp70 mRNA expression, suggesting their potential role as biomarkers of exposure to Cd. This work provides a basis for a better understanding of the tissue-specific responses of amphibian skin as a target organ to Cd exposure and its in vitro use for testing potentially harmful substances present in the environment.

  7. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions.

    Science.gov (United States)

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario

    2014-02-28

    Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100-1100mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15mg/gh were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum YX/S of 0.5g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16g/m(2).

  8. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress

    Directory of Open Access Journals (Sweden)

    Chunqing Liu

    2015-08-01

    Full Text Available Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74% of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO enrichment test indicated that up-regulated genes in root were mostly involved in “stimulus” “stress” biological process, and activated genes in leaf mainly functioned in “cell” “cell part” components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.

  9. Calcium-Dependent Protein Kinase CPK21 Functions in Abiotic Stress Response in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Sandra Franz; Britta Ehlert; Anja Liese; Joachim Kurth; Anne-Claire Cazalé; Tina Romeis

    2011-01-01

    Calcium-dependent protein kinases(CDPKs)comprise a family of plant serine/threonine protein kinases in which the calcium sensing domain and the kinase effector domain are combined within one molecule.So far,a biological function in abiotic stress signaling has only been reported for few CDPK isoforms,whereas the underlying biochemical mechanism for these CDPKs is still mainly unknown.Here,we show that CPK21 from Arabidopsis thaliana is biochemically activated in vivo in response to hyperosmotic stress.Loss-of-function seedlings of cpk21 are more tolerant to hyperosmotic stress and mutant plants show increased stress responses with respect to marker gene expression and metabolite accumulation.In transgenic Arabidopsis complementation lines in the cpk21 mutant background,in which either CPK21 wildtype,or a full-length enzyme variant carrying an amino-acid substitution were stably expressed,stress responsitivity was restored by CPK21 but not with the kinase inactive variant.The biochemical characterization of in planta synthesized and purified CPK21 protein revealed that within the calcium-binding domain,N-terminal EF1- and EF2-motifs compared to C-terminal EF3- and EF4-motifs differ in their contribution to calcium-regulated kinase activity,suggesting a crucial role for the N-terminal EF-hand pair.Our data provide evidence for CPK21 contributing in abiotic stress signaling and suggest that the N-terminal EF-hand pair is a calcium-sensing determinant controlling specificity of CPK21 function.

  10. Establishing cellular stress response profiles as biomarkers of homeodynamics, health, and hormesis

    DEFF Research Database (Denmark)

    Demirovic, Dino; Rattan, Suresh

    2013-01-01

    Aging is the progressive shrinkage of the homeodynamic space. A crucial component of the homeodynamic space is the stress response (SR), by virtue of which a living system senses disturbance and initiates a series of events for maintenance, repair, adaptation, remodeling and survival. Here we...... and the health status of cells and organisms. SRP can also be useful for testing potential protectors and stimulators of homeodynamics, and can be a standard for monitoring the efficacy of potential pro-survival, health-promoting and aging-modulating conditions, food components and other compounds. An effective...... strategy, which makes use of SRP for achieving healthy aging and extending the healthspan, is that of strengthening the homeodynamics through repeated mild stress-induced hormesis by physical, biological and nutritional hormetins. Furthermore, SRP can also be the basis for defining health as a state...

  11. Genome-wide fungal stress responsive miRNA expression in wheat.

    Science.gov (United States)

    Inal, Behçet; Türktaş, Mine; Eren, Hakan; Ilhan, Emre; Okay, Sezer; Atak, Mehmet; Erayman, Mustafa; Unver, Turgay

    2014-12-01

    MicroRNAs (miRNAs) are small non-coding class of RNAs. They were identified in many plants with their diverse regulatory roles in several cellular and metabolic processes. A number of miRNAs were involved in biotic and abiotic stress responses. Here, fungal stress responsive wheat miRNAs were analyzed by using miRNA-microarray strategy. Two different fungi (Fusarium culmorum and Bipolaris sorokiniana) were inoculated on resistant and sensitive wheat cultivars. A total of 87 differentially regulated miRNAs were detected in the 8 × 15 K array including all of the available plant miRNAs. Using bioinformatics tools, the target transcripts of responsive miRNAs were predicted, and related biological processes and mechanisms were assessed. A number of the miRNAs such as miR2592s, miR869.1, miR169b were highly differentially regulated showing more than 200-fold change upon fungal-inoculation. Some of the miRNAs were identified as fungal-inoculation responsive for the first time. The analyses showed that some of the differentially regulated miRNAs targeted resistance-related genes such as LRR, glucuronosyl transferase, peroxidase and Pto kinase. The comparison of the two miRNA-microarray analyses indicated that fungal-responsive wheat miRNAs were differentially regulated in pathogen- and cultivar-specific manners.

  12. The auditory startle response in post-traumatic stress disorder.

    Science.gov (United States)

    Siegelaar, S E; Olff, M; Bour, L J; Veelo, D; Zwinderman, A H; van Bruggen, G; de Vries, G J; Raabe, S; Cupido, C; Koelman, J H T M; Tijssen, M A J

    2006-09-01

    Post-traumatic stress disorder (PTSD) patients are considered to have excessive EMG responses in the orbicularis oculi (OO) muscle and excessive autonomic responses to startling stimuli. The aim of the present study was to gain more insight into the pattern of the generalized auditory startle reflex (ASR). Reflex EMG responses to auditory startling stimuli in seven muscles rather than the EMG response of the OO alone as well as the psychogalvanic reflex (PGR) were studied in PTSD patients and healthy controls. Ten subjects with chronic PTSD (>3 months) and a history of excessive startling and 11 healthy controls were included. Latency, amplitude and duration of the EMG responses and the amplitude of the PGR to 10 auditory stimuli of 110 dB SPL were investigated in seven left-sided muscles. The size of the startle reflex, defined by the number of muscles activated by the acoustic stimulus and by the amplitude of the EMG response of the OO muscle as well, did not differ significantly between patients and controls. Median latencies of activity in the sternocleidomastoid (SC) (patients 80 ms; controls 54 ms) and the deltoid (DE) muscles (patients 113 ms; controls 69 ms) were prolonged significantly in PTSD compared to controls (P < 0.05). In the OO muscle, a late response (median latency in patients 308 ms; in controls 522 ms), probably the orienting reflex, was more frequently present in patients (56%) than in controls (12%). In patients, the mean PGR was enlarged compared to controls (P < 0.05). The size of the ASR response is not enlarged in PTSD patients. EMG latencies in the PTSD patients are prolonged in SC and DE muscles. The presence of a late response in the OO muscle discriminates between groups of PTSD patients with a history of startling and healthy controls. In addition, the autonomic response, i.e. the enlarged amplitude of the PGR can discriminate between these groups.

  13. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Gonzalo H Villarino

    Full Text Available Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  14. Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress.

    Directory of Open Access Journals (Sweden)

    Christos Bazakos

    Full Text Available BACKGROUND: Olive (Olea europaea L. cultivation is rapidly expanding and low quality saline water is often used for irrigation. The molecular basis of salt tolerance in olive, though, has not yet been investigated at a system level. In this study a comparative transcriptomics approach was used as a tool to unravel gene regulatory networks underlying salinity response in olive trees by simulating as much as possible olive growing conditions in the field. Specifically, we investigated the genotype-dependent differences in the transcriptome response of two olive cultivars, a salt-tolerant and a salt-sensitive one. METHODOLOGY/PRINCIPAL FINDINGS: A 135-day long salinity experiment was conducted using one-year old trees exposed to NaCl stress for 90 days followed by 45 days of post-stress period during the summer. A cDNA library made of olive seedling mRNAs was sequenced and an olive microarray was constructed. Total RNA was extracted from root samples after 15, 45 and 90 days of NaCl-treatment as well as after 15 and 45 days of post-treatment period and used for microarray hybridizations. SAM analysis between the NaCl-stress and the post-stress time course resulted in the identification of 209 and 36 differentially expressed transcripts in the salt-tolerant and salt-sensitive cultivar, respectively. Hierarchical clustering revealed two major, distinct clusters for each cultivar. Despite the limited number of probe sets, transcriptional regulatory networks were constructed for both cultivars while several hierarchically-clustered interacting transcription factor regulators such as JERF and bZIP homologues were identified. CONCLUSIONS/SIGNIFICANCE: A systems biology approach was used and differentially expressed transcripts as well as regulatory interactions were identified. The comparison of the interactions among transcription factors in olive with those reported for Arabidopsis might indicate similarities in the response of a tree species with

  15. Transcriptomic Analysis of Petunia hybrida in Response to Salt Stress Using High Throughput RNA Sequencing

    Science.gov (United States)

    Villarino, Gonzalo H.; Bombarely, Aureliano; Giovannoni, James J.; Scanlon, Michael J.; Mattson, Neil S.

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments. PMID:24722556

  16. RNA-seq analysis of early hepatic response to handling and confinement stress in rainbow trout.

    Directory of Open Access Journals (Sweden)

    Sixin Liu

    Full Text Available Fish under intensive rearing conditions experience various stressors which have negative impacts on survival, growth, reproduction and fillet quality. Identifying and characterizing the molecular mechanisms underlying stress responses will facilitate the development of strategies that aim to improve animal welfare and aquaculture production efficiency. In this study, we used RNA-seq to identify transcripts which are differentially expressed in the rainbow trout liver in response to handling and confinement stress. These stressors were selected due to their relevance in aquaculture production. Total RNA was extracted from the livers of individual fish in five tanks having eight fish each, including three tanks of fish subjected to a 3 hour handling and confinement stress and two control tanks. Equal amount of total RNA of six individual fish was pooled by tank to create five RNA-seq libraries which were sequenced in one lane of Illumina HiSeq 2000. Three sequencing runs were conducted to obtain a total of 491,570,566 reads which were mapped onto the previously generated stress reference transcriptome to identify 316 differentially expressed transcripts (DETs. Twenty one DETs were selected for qPCR to validate the RNA-seq approach. The fold changes in gene expression identified by RNA-seq and qPCR were highly correlated (R(2 = 0.88. Several gene ontology terms including transcription factor activity and biological process such as glucose metabolic process were enriched among these DETs. Pathways involved in response to handling and confinement stress were implicated by mapping the DETs to reference pathways in the KEGG database.Raw RNA-seq reads have been submitted to the NCBI Short Read Archive under accession number SRP022881.All customized scripts described in this paper are available from Dr. Guangtu Gao or the corresponding author.

  17. Genomic counter-stress changes induced by the relaxation response.

    Directory of Open Access Journals (Sweden)

    Jeffery A Dusek

    Full Text Available Mind-body practices that elicit the relaxation response (RR have been used worldwide for millennia to prevent and treat disease. The RR is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. It is believed to be the counterpart of the stress response that exhibits a distinct pattern of physiology and transcriptional profile. We hypothesized that RR elicitation results in characteristic gene expression changes that can be used to measure physiological responses elicited by the RR in an unbiased fashion.We assessed whole blood transcriptional profiles in 19 healthy, long-term practitioners of daily RR practice (group M, 19 healthy controls (group N(1, and 20 N(1 individuals who completed 8 weeks of RR training (group N(2. 2209 genes were differentially expressed in group M relative to group N(1 (p<0.05 and 1561 genes in group N(2 compared to group N(1 (p<0.05. Importantly, 433 (p<10(-10 of 2209 and 1561 differentially expressed genes were shared among long-term (M and short-term practitioners (N(2. Gene ontology and gene set enrichment analyses revealed significant alterations in cellular metabolism, oxidative phosphorylation, generation of reactive oxygen species and response to oxidative stress in long-term and short-term practitioners of daily RR practice that may counteract cellular damage related to chronic psychological stress. A significant number of genes and pathways were confirmed in an independent validation set containing 5 N(1 controls, 5 N(2 short-term and 6 M long-term practitioners.This study provides the first compelling evidence that the RR elicits specific gene expression changes in short-term and long-term practitioners. Our results suggest consistent and constitutive changes in gene expression resulting from RR may relate to long term physiological effects. Our study may stimulate new investigations into applying transcriptional profiling for accurately measuring

  18. Induction of tissue- and stressor-specific kinomic responses in chickens exposed to hot and cold stresses.

    Science.gov (United States)

    Napper, Scott; Dadgar, Samira; Arsenault, Ryan J; Trost, Brett; Scruten, Erin; Kusalik, Anthony; Shand, Phyllis

    2015-06-01

    Defining cellular responses at the level of global cellular kinase (kinome) activity is a powerful approach to deciphering complex biology and identifying biomarkers. Here we report on the development of a chicken-specific peptide array and its application to characterizing kinome responses within the breast (pectoralis major) and thigh (iliotibialis) muscles of poultry subject to temperature stress to mimic conditions experienced by birds during commercial transport. Breast and thigh muscles exhibited unique kinome profiles, highlighting the distinct nature of these tissues. Against these distinct backgrounds, tissue- and temperature-specific kinome responses were observed. In breast, both cold and hot stresses activated calcium-dependent metabolic adaptations. Also within breast, but specific to cold stress, was the activation of ErbB signaling as well as dynamic patterns of phosphorylation of AMPK, a key regulatory enzyme of metabolism. In thigh, cold stress induced responses suggestive of the occurrence of tissue damage, including activation of innate immune signaling pathways and tissue repair pathways (TGF-β). In contrast, heat stress in thigh activated pathways associated with protein and fat metabolism through adipocytokine and mammalian target of rapamycin (mTOR) signaling. Defining the responses of these tissues to these stresses through conventional markers of pH, glycolytic potential, and meat quality offered a similar conclusion of the tissue- and stressor-specific responses, validating the kinome results. Collectively, the results of this study highlight the unique cellular responses of breast and thigh tissues to heat and cold stresses and may offer insight into the unique susceptibilities, as well as functional consequences, of these tissues to thermal stress.

  19. Jasmonates and octadecanoids: signals in plant stress responses and development.

    Science.gov (United States)

    Wasternack, Claus; Hause, Bettrina

    2002-01-01

    Plants are sessile organisms. Consequently they have to adapt constantly to fluctuations in the environment. Some of these changes involve essential factors such as nutrients, light, and water. Plants have evolved independent systems to sense nutrients such as phosphate and nitrogen. However, many of the environmental factors may reach levels which represent stress for the plant. The fluctuations can range between moderate and unfavorable, and the factors can be of biotic or abiotic origin. Among the biotic factors influencing plant life are pathogens and herbivores. In case of bacteria and fungi, symbiotic interactions such as nitrogen-fixating nodules and mycorrhiza, respectively, may be established. In case of insects, a tritrophic interaction of herbivores, carnivores, and plants may occur mutualistically or parasitically. Among the numerous abiotic factors are low temperature, frost, heat, high light conditions, ultraviolet light, darkness, oxidation stress, hypoxia, wind, touch, nutrient imbalance, salt stress, osmotic adjustment, water deficit, and desiccation. In the last decade jasmonates were recognized as being signals in plant responses to most of these biotic and abiotic factors. Signaling via jasmonates was found to occur intracellularly, intercellularly, and systemically as well as interorganismically. Jasmonates are a group of ubiquitously occurring plant growth regulators originally found as the major constituents in the etheric oil of jasmine, and were first suggested to play a role in senescence due to a strong senescence-promoting effect. Subsequently, numerous developmental processes were described in which jasmonates exhibited hormone-like properties. Recent knowledge is reviewed here on jasmonates and their precursors, the octadecanoids. After discussing occurrence and biosynthesis, emphasis is placed upon the signal transduction pathways in plant stress responses in which jasmonates act as a signal. Finally, examples are described on the

  20. Neonatal stress tempers vulnerability of acute stress response in adult socially isolated rats

    Directory of Open Access Journals (Sweden)

    Mariangela Serra

    2014-06-01

    Full Text Available Adverse experiences occurred in early life and especially during childhood and adolescence can have negative impact on behavior later in life and the quality of maternal care is considered a critical moment that can considerably influence the development and the stress responsiveness in offspring. This review will assess how the association between neonatal and adolescence stressful experiences such as maternal separation and social isolation, at weaning, may influence the stress responsiveness and brain plasticity in adult rats. Three hours of separation from the pups (3-14 postnatal days significantly increased frequencies of maternal arched-back nursing and licking-grooming by dams across the first 14 days postpartum and induced a long-lasting increase in their blood levels of corticosterone. Maternal separation, which per sedid not modified brain and plasma allopregnanolone and corticosterone levels in adult rats, significantly reduced social isolation-induced decrease of the levels of these hormones. Moreover, the enhancement of corticosterone and allopregnanolone levels induced by foot shock stress in socially isolated animals that were exposed to maternal separation was markedly reduced respect to that observed in socially isolated animals. Our results suggest that in rats a daily brief separation from the mother during the first weeks of life, which per se did not substantially alter adult function and reactivity of hypothalamic-pituitary-adrenal (HPA axis, elicited a significant protection versus the subsequent long-term stressful experience such that induced by social isolation from weaning. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in NeonatologyGuest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  1. Stress responses sculpt the insect immune system, optimizing defense in an ever-changing world.

    Science.gov (United States)

    Adamo, Shelley Anne

    2017-01-01

    A whole organism, network approach can help explain the adaptive purpose of stress-induced changes in immune function. In insects, mediators of the stress response (e.g. stress hormones) divert molecular resources away from immune function and towards tissues necessary for fight-or-flight behaviours. For example, molecules such as lipid transport proteins are involved in both the stress and immune responses, leading to a reduction in disease resistance when these proteins are shifted towards being part of the stress response system. Stress responses also alter immune system strategies (i.e. reconfiguration) to compensate for resource losses that occur during fight-or flight events. In addition, stress responses optimize immune function for different physiological conditions. In insects, the stress response induces a pro-inflammatory state that probably enhances early immune responses.

  2. Sense of responsibility in health workers source of job stress

    Directory of Open Access Journals (Sweden)

    Nedić Olesja

    2002-01-01

    Full Text Available Job stress is a great problem in developed countries of the world, but in Yugoslavia, it is increased due to additional reasons associated with economic crisis in the society. Health services and health workers are in particulary difficult conditions. The aim of this paper was to examine sources and causes of job stress in health workers. Material and methods The research was undertaken among health workers treated at Health Centre "Hospital" in Novi Sad. The study group included health workers - doctors nurses and laboratory workers, and the control group included the rest of non-medical staff. Adapted Siegrist questionnaire was used. Three factors were examined: extrinsic efforts (disturbances at work, sense of great job responsibility and the need for overtime work; intrinsic efforts (major criticism, thinking about the job from the early morning, getting nervous because of minor problems, discontentment because of unsolved problems at work, relaxation at home and so on, and low reward (respect from the superiors and colleagues, support and security at workplace. Answers were scored indicating intensity (high, moderate, low, not at alt. Statistic analysis included testing the level of significance in health workers in relation to non-medical staff (t test and Fisher's exact test. Results Applying the scoring system it has been established that health workers are exposed to greater job stress, great sense of very high job responsibility and frequent overtime work (p<0,001 than the control group. In regard to answers from the second group - intrinsic effort and low reward, there was no statistical significance between the study and control group. Generally high level of risk factors was established, especially presence of one or more risk factors. Discussion Job stress increases absenteeism, reduces work productivity, causes higher expenses of medical treatment, rehabilitation and staff retraining. It is of great importance to identify factors

  3. Perceived appearance judgments moderate the biological stress effects of social exchanges.

    Science.gov (United States)

    Geiger, Ashley M; Sabik, Natalie J; Lupis, Sarah B; Rene, Kirsten M; Wolf, Jutta M

    2014-12-01

    Social relationships are generally thought of as beneficial. However, the present study set out to test the hypothesis that for individuals who perceive others to judge their appearance negatively, daily social interactions can also be a source of stress. Indeed when assessing 38 young adults, we found that both more incidences of negative exchanges reported during the past month as well as perceived negative appearance judgments by others were associated with more self-reported stress. Interestingly, however, for individuals with low attribution body esteem, higher numbers of positive social exchanges during the past month were related to health-relevant changes in biological markers of chronic stress as well. The same was true for individuals with high attribution body esteem who reported to experience only very few positive exchanges. As such, these findings go beyond the initial focus on low body esteem and negative social exchanges and introduce high body esteem as well as daily positive exchanges as potential health risk factors.

  4. Conditioned stress prevents cue-primed cocaine reinstatement only in stress-responsive rats.

    Science.gov (United States)

    Hadad, Natalie A; Wu, Lizhen; Hiller, Helmut; Krause, Eric G; Schwendt, Marek; Knackstedt, Lori A

    2016-07-01

    Neurobiological mechanisms underlying comorbid posttraumatic stress disorder (PTSD) and cocaine use disorder (CUD) are unknown. We aimed to develop an animal model of PTSD + CUD to examine the neurobiology underlying cocaine-seeking in the presence of PTSD comorbidity. Rats were exposed to cat urine once for 10-minutes and tested for anxiety-like behaviors one week later. Subsequently, rats underwent long-access (LgA) cocaine self-administration and extinction training. Rats were re-exposed to the trauma context and then immediately tested for cue-primed reinstatement of cocaine-seeking. Plasma and brains were collected afterwards for corticosterone assays and real-time qPCR analysis. Urine-exposed (UE; n = 23) and controls not exposed to urine (Ctrl; n = 11) did not differ in elevated plus maze behavior, but UE rats displayed significantly reduced habituation of the acoustic startle response (ASR) relative to Ctrl rats. A median split of ASR habituation scores was used to classify stress-responsive rats. UE rats (n = 10) self-administered more cocaine on Day 1 of LgA than control rats (Ctrl + Coc; n = 8). Re-exposure to the trauma context prevented cocaine reinstatement only in stress-responsive rats. Ctrl + Coc rats had lower plasma corticosterone concentrations than Ctrls, and decreased gene expression of corticotropin releasing hormone (CRH) and Glcci1 in the hippocampus. Rats that self-administered cocaine displayed greater CRH expression in the amygdala that was independent of urine exposure. While we did not find that cat urine exposure induced a PTSD-like phenotype in our rats, the present study underscores the need to separate stressed rats into cohorts based on anxiety-like behavior in order to study individual vulnerability to PTSD + CUD.

  5. Morphogenetic responses ofPopulus alba L. under salt stress

    Institute of Scientific and Technical Information of China (English)

    Mejda Abassi; Khaled Mguis; Zoubeir Béjaoui; Ali Albouchi

    2014-01-01

    The morphogenetic responses to salt stress of TunisianPopu-lus alba clones were studied in order to promote their plantation in dam-aged saline areas. One year-old plants of threeP. alba clones (MA-104, MA-195 and OG) were subjected to progressive salt stress by irrigation during two consecutive years. The plants were grown in a nursery, inside plastic receptacles containing sandy soil and were irrigated with tap water (control) or 3-6 g/l NaCl solution. During this study, leaf epinasty, elongation rate, vigor, internode length, plant architecture, and number of buds were evaluated. Test clone response was highly dependent on the applied treatment and degree of accommodation.The most pronounced alterations were induced under 6g/l of NaCl treatment including leaf epinasty, leaf elongation rate delay, vigor decrease, internode length shortening, and morphogenetic modifications. These responses were less noticeable in the MA-104 clone with respect to the two other clones. The salt effect induced a delay in the leaf elongation rate on the MA-195 and OG clones leading to an early leaf maturity. The vigour and internode length of the MA-104 clone was less affected than the other clones. The OG clone was the most salt-sensitive thus, it developed shorter branches and more buds number than MA-195 and MA-104. The effect of long-term salt stress was to induce early flowering of theP. alba clones which suggests that mechanism of salt accommodation could be devel-oped.

  6. Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus.

    Science.gov (United States)

    Babst, Benjamin A; Chen, Han-Yi; Wang, Hong-Qiang; Payyavula, Raja S; Thomas, Tina P; Harding, Scott A; Tsai, Chung-Jui

    2014-08-01

    The diversity of phenylpropanoids offers a rich inventory of bioactive chemicals that can be exploited for plant improvement and human health. Recent evidence suggests that glycosylation may play a role in the partitioning of phenylpropanoid precursors for a variety of downstream uses. This work reports the functional characterization of a stress-responsive glycosyltransferase, GT1-316 in Populus. GT1-316 belongs to the UGT84A subfamily of plant glycosyltransferase family 1 and is designated UGT84A17. Recombinant protein analysis showed that UGT84A17 is a hydroxycinnamate glycosyltransferase and able to accept a range of unsubstituted and substituted cinnamic and benzoic acids as substrates in vitro. Overexpression of GT1-316 in transgenic Populus led to plant-wide increases of hydroxycinnamoyl-glucose esters, which were further elevated under N-limiting conditions. Levels of the two most abundant flavonoid glycosides, rutin and kaempferol-3-O-rutinoside, decreased, while levels of other less abundant flavonoid and phenylpropanoid conjugates increased in leaves of the GT1-316-overexpressing plants. Transcript levels of representative phenylpropanoid pathway genes were unchanged in transgenic plants, supporting a glycosylation-mediated redirection of phenylpropanoid carbon flow as opposed to enhanced phenylpropanoid pathway flux. The metabolic response of N-replete transgenic plants overlapped with that of N-stressed wild types, as the majority of phenylpropanoid derivatives significantly affected by GT1-316 overexpression were also significantly changed by N stress in the wild types. These results suggest that UGT84A17 plays an important role in phenylpropanoid metabolism by modulating biosynthesis of hydroxycinnamoyl-glucose esters and their derivatives in response to developmental and environmental cues.

  7. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress

    KAUST Repository

    Turek, Ilona

    2014-11-26

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms “oxidation-reduction process,” “translation” and “response to salt stress” and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions.

  8. Responses to low doses of ionizing radiation in biological systems.

    Science.gov (United States)

    Feinendegen, Ludwig E; Pollycove, Myron; Sondhaus, Charles A

    2004-07-01

    Biological tissues operate through cells that act together within signaling networks. These assure coordinated cell function in the face of constant exposure to an array of potentially toxic agents, externally from the environment and endogenously from metabolism. Living tissues are indeed complex adaptive systems.To examine tissue effects specific for low-dose radiation, (1) absorbed dose in tissue is replaced by the sum of the energies deposited by each track event, or hit, in a cell-equivalent tissue micromass (1 ng) in all micromasses exposed, that is, by the mean energy delivered by all microdose hits in the exposed micromasses, with cell dose expressing the total energy per micromass from multiple microdoses; and (2) tissue effects are related to cell damage and protective cellular responses per average microdose hit from a given radiation quality for all such hits in the exposed micromasses.The probability of immediate DNA damage per low-linear-energy-transfer (LET) average micro-dose hit is extremely small, increasing over a certain dose range in proportion to the number of hits. Delayed temporary adaptive protection (AP) involves (a) induced detoxification of reactive oxygen species, (b) enhanced rate of DNA repair, (c) induced removal of damaged cells by apoptosis followed by normal cell replacement and by cell differentiation, and (d) stimulated immune response, all with corresponding changes in gene expression. These AP categories may last from less than a day to weeks and be tested by cell responses against renewed irradiation. They operate physiologically against nonradiogenic, largely endogenous DNA damage, which occurs abundantly and continually. Background radiation damage caused by rare microdose hits per micromass is many orders of magnitude less frequent. Except for apoptosis, AP increasingly fails above about 200 mGy of low-LET radiation, corresponding to about 200 microdose hits per exposed micromass. This ratio appears to exceed approximately

  9. Individual differences in cortisol responses to a laboratory speech task and their relationship to responses to stressful daily events

    NARCIS (Netherlands)

    van Eck, M; Nicolson, N.A; Berkhof, J.; Sulon, J

    1996-01-01

    A Stress Inducing Speech Task was used to investigate the contribution of perceived stress, individual traits, and current mood states to individual differences in salivary cortisol responses. Additionally, we examined the correspondence between laboratory baseline cortisol levels and overall levels

  10. [Response of bacillus sp. F26 to different reactive oxygen species stress characterized by antioxidative enzymes synthesis].

    Science.gov (United States)

    Yan, Guoliang; Hua, Zhaozhe; Du, Guocheng; Chen, Jian

    2008-04-01

    The oxidative response of Bacillus sp F26 to different forms of reactive oxygen species (ROS) stress including H2O2, O2- * and OH * were investigated by using diverse generating source of ROS, which were characterized by synthesis of antioxidative enzymes. It was shown that the responses of cells to oxidative stress are largely dependent on species, mode (instantaneous and continual) and intensity of stress. Higher synthesis rate of catalase (CAT) is crucial for Bacillus sp F26 to resist H2O2 stress. The damage of H2O2 to cell was minor if CAT can efficiently decompose H2O2 entering into cell, furthermore, the response can stimulate cell growths and sugar consumption. Conversely, cell growth and synthesis of antioxidative enzymes are greatly inhibited when the intensity of H2O2 stress overwhelms the cell capability of clearing H2O2. Due to the difference in mode and effect on cells between O2- * and H2O2, higher synthesis rates of CAT and superoxide dismutase (SOD) couldn't guarantee cells to eliminate H2O2 and O2- * efficiently. Therefore, the toxicity to cells induced by intracellular O2- * is more severe than H2O2 stress. Unlike response to H2O2 and O2- *, OH stress significantly inhibited cell growth and synthesis of antioxidative enzymes due to the fact OH * is most active ROS. Our results indicated that Bacillus sp F26 will show diverse biological behaviour in response to H2O2, O2- * and OH * of stress due to the discrepancy in chemical property. In order to survive in oxidative stress, cells will timely adjust their metabolism to adapt to new environment including regulating synthesis level of antioxidative enzymes, changing rates of cells growth and substrate consumption.

  11. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics.

    Science.gov (United States)

    Levonen, Anna-Liisa; Hill, Bradford G; Kansanen, Emilia; Zhang, Jianhua; Darley-Usmar, Victor M

    2014-06-01

    Redox networks in the cell integrate signaling pathways that control metabolism, energetics, cell survival, and death. The physiological second messengers that modulate these pathways include nitric oxide, hydrogen peroxide, and electrophiles. Electrophiles are produced in the cell via both enzymatic and nonenzymatic lipid peroxidation and are also relatively abundant constituents of the diet. These compounds bind covalently to families of cysteine-containing, redox-sensing proteins that constitute the electrophile-responsive proteome, the subproteomes of which are found in localized intracellular domains. These include those proteins controlling responses to oxidative stress in the cytosol-notably the Keap1-Nrf2 pathway, the autophagy-lysosomal pathway, and proteins in other compartments including mitochondria and endoplasmic reticulum. The signaling pathways through which electrophiles function have unique characteristics that could be exploited for novel therapeutic interventions; however, development of such therapeutic strategies has been challenging due to a lack of basic understanding of the mechanisms controlling this form of redox signaling. In this review, we discuss current knowledge of the basic mechanisms of thiol-electrophile signaling and its potential impact on the translation of this important field of redox biology to the clinic. Emerging understanding of thiol-electrophile interactions and redox signaling suggests replacement of the oxidative stress hypothesis with a new redox biology paradigm, which provides an exciting and influential framework for guiding translational research.

  12. Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer's disease.

    Science.gov (United States)

    Calabrese, Vittorio; Sultana, Rukhsana; Scapagnini, Giovanni; Guagliano, Eleonora; Sapienza, Maria; Bella, Rita; Kanski, Jaroslaw; Pennisi, Giovanni; Mancuso, Cesare; Stella, Anna Maria Giuffrida; Butterfield, D A

    2006-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with cognitive and memory decline, personality changes, and synapse loss. Increasing evidence indicates that factors such as oxidative and nitrosative stress, glutathione depletion, and impaired protein metabolism can interact in a vicious cycle, which is central to AD pathogenesis. In the present study, we demonstrate that brains of AD patients undergo oxidative changes classically associated with a strong induction of the so-called vitagenes, including the heat shock proteins (HSPs) heme oxygenase-1 (HO-1), HSP60, and HSP72, as well as thioredoxin reductase (TRXr). In inferior parietal brain of AD patients, a significant increase in the expression of HO-1 and TRXr was observed, whereas HO-2 expression was decreased, compared with controls. TRHr was not increased in AD cerebellum. Plasma GSH was decreased in AD patients, compared with the control group, and was associated with a significant increase in oxidative stress markers (i.e., GSSG, hydroxynonenal, protein carbonyl content, and nitrotyrosine). In AD lymphocytes, we observed an increased expression of inducible nitric oxide synthase, HO-1, Hsp72, HSP60, and TRXr. Our data support a role for nitrative stress in the pathogenesis of AD and indicate that the stress-responsive genes, such as HO-1 and TRXr, may represent important targets for novel cytoprotective strategies.

  13. The association between affective psychopathic traits, time incarcerated, and cortisol response to psychosocial stress.

    Science.gov (United States)

    Johnson, Megan M; Mikolajewski, Amy; Shirtcliff, Elizabeth A; Eckel, Lisa A; Taylor, Jeanette

    2015-06-01

    Previous research has demonstrated that psychopathic personality traits are significantly predictive of blunted cortisol reactivity to a performance-based stressor task (Trier Social Stress Test; TSST) in college students. However, the relationship between cortisol reactivity and psychopathy has not been explored in high risk samples such as incarcerated populations. Further, the role of imprisonment in relation to cortisol stress reactivity has not been previously explored, but could have practical and conceptual consequences in regard to rehabilitation and biological sensitivity to context, respectively. The current study tested the hypotheses that both psychopathic personality traits and amount of time incarcerated are related to cortisol blunting in response to stress among incarcerated young adults. A sample of 49 young adult male offenders was recruited to complete the TSST. Salivary hormone samples were taken just prior to and 20 min post-stressor, and participants were interviewed with the Psychopathy Checklist-Youth Version. Variables quantifying the amount of time at the present facility prior to the date of testing and number of commitments in juvenile facilities were also collected. Correlational analyses indicated that only number of incarcerations was related to blunted cortisol. Hierarchical Linear Modeling revealed that time incarcerated and number of commitments were related to a blunted cortisol response among responders and declining cortisol reactivity among nonresponders, respectively. Controlling for time incarcerated, psychopathic traits were significantly related to cortisol decline in response to the stressor among nonresponders, but were not related to blunted cortisol among responders. Results of this project highlight the potential biological effects of prolonged and repeated incarcerations, and extend our understanding about the relationship between psychopathic traits and cortisol reactivity in an incarcerated sample.

  14. Transcriptome Analysis of High-Temperature Stress in Developing Barley Caryopses :Early Stress Responses and Effects on Storage Compound Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Elke Mangelsen; Joachim Kilian; Klaus Harter; Christer Jansson; Dierk Wanke; Eva Sundberg

    2011-01-01

    High-temperature stress,like any abiotic stress,impairs the physiology and development of plants,including the stages of seed setting and ripening.We used the Aflymetrix 22K Barley1 GeneChip microarray to investigate the response of developing barley(Hordeum vulgare)seeds,termed caryopses,after 0.5,3,and 6 h of heat stress exposure;958 induced and 1122 repressed genes exhibited spatial and temporal expression patterns that provide a detailed insight into the caryopses'early heat stress responses.Down-regulation of genes related to storage compound biosynthesis and cell growth provides evidence for a rapid impairment of the caryopsis' development.Increased levels of sugars and amino acids were indicative for both production of compatible solutes and feedback-induced accumulation of substrates for storage compound biosynthesis.Metadata analysis identified embryo and endosperm as primary locations of heat stress responses,indicating a strong impact of short-term heat stress on central developmental functions of the caryopsis.A comparison with heat stress responses in Arabidopsis shoots and drought stress responses in barley caryopses identified both conserved and presumably heat-and caryopsis-specific stress-responsive genes.Summarized,our data provide an important basis for further investigation of gene functions in order to aid an improved heat tolerance and reduced losses of yield in barley as a model for cereal crops.

  15. Effect of transport stress on physiological responses of male bovines.

    Science.gov (United States)

    Chacon, G; Garcia-Belenguer, S; Villarroel, M; Maria, G A

    2005-12-01

    Forty-eight slaughter bulls were transported by road in groups of eight for approximately 30 min, 3 h and 6 h in two replicates. Animal welfare during the transport process was assessed. Loadings and unloadings were evaluated with a scoring method. Heart rates were monitored at the farm before loading and during all stages of transport. Blood samples were taken from all animals a week before transport and at sticking and analysed in terms of haematological values: hematocrit, haemoglobin, red and white blood cells (RBC and WBC), differential WBC counts and neutrophil:lymphocyte ratio. Glucose, creatine kinase, lactate and cortisol were also determined. To evaluate differences in meat quality, pH and water-holding capacity (WHC) were measured 24 h after slaughter. The loading and unloading scores were very low (low stress) but were associated with changes in heart rate, especially loading. Animals recovered their resting heart rate during the journey in medium and long transports. On the other hand, animals transported around 30 min maintained an elevated heart rate during the whole journey. All animals showed a stress response with significantly higher (p Animals transported for 3 and 6 hours had significantly (Pmeat quality. Under good conditions, the transport had a slight effect on welfare, meat quality or physiological parameters related with stress.

  16. Physiological Responses of Cotton at Seedling Stage to Waterlogged Stress

    Directory of Open Access Journals (Sweden)

    Kai-wen Liu

    2012-12-01

    Full Text Available In Jianghan plain as well as south China, cotton at seedling stage often encounter waterlogged stress, by which normal growth of cotton plants is affected, the purpose of the study is to analyze the responses to Waterlogging stress. Therefore flooding experiments of cotton in the seedling stage was made and a series of physiological indices were observed such as Chlorophyll Relative value (RC, chlorophyll fluorescence (F0, Fm, Malondialdehyde (MDA, nomadic Proline (Pro, Dissoluble Sugar (DS, Peroxidase (POD and Superoxide Dismutase (SOD, Analytic results indicated that, after Waterlogging, chlorophyll hydrolysis rate was higher in the first 3 days, the peak value of chlorophyll fluorescence decrease occurred between the 6th to 9th day. It figured that stagnant water on the field should be drained off in 3 days after Waterlogging stress, to avoid the photosynthetic efficiency being strongly inhibited. The balance of normal physiological metabolic process in cotton leaf was broken after Waterlogging, some new negative changes occurred, as MDA content increasing and the activity of SOD decline. Some other positive changes were accompanied, as the increasing of DS and Pro content and the activity of POD, for protecting active tissues. These physiological indices appeared regularly changing characterized by fastslow- fast, which can be simulated in unary cubic regression curve model.

  17. Historical temperature variability affects coral response to heat stress.

    Directory of Open Access Journals (Sweden)

    Jessica Carilli

    Full Text Available Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions.

  18. Molecular and physiological responses of trees to waterlogging stress.

    Science.gov (United States)

    Kreuzwieser, Jürgen; Rennenberg, Heinz

    2014-10-01

    One major effect of global climate change will be altered precipitation patterns in many regions of the world. This will cause a higher probability of long-term waterlogging in winter/spring and flash floods in summer because of extreme rainfall events. Particularly, trees not adapted at their natural site to such waterlogging stress can be impaired. Despite the enormous economic, ecological and social importance of forest ecosystems, the effect of waterlogging on trees is far less understood than the effect on many crops or the model plant Arabidopsis. There is only a handful of studies available investigating the transcriptome and metabolome of waterlogged trees. Main physiological responses of trees to waterlogging include the stimulation of fermentative pathways and an accelerated glycolytic flux. Many energy-consuming, anabolic processes are slowed down to overcome the energy crisis mediated by waterlogging. A crucial feature of waterlogging tolerance is the steady supply of glycolysis with carbohydrates, particularly in the roots; stress-sensitive trees fail to maintain sufficient carbohydrate availability resulting in the dieback of the stressed tissues. The present review summarizes physiological and molecular features of waterlogging tolerance of trees; the focus is on carbon metabolism in both, leaves and roots of trees.

  19. Plasticity of the MAPK signaling network in response to mechanical stress.

    Directory of Open Access Journals (Sweden)

    Andrea M Pereira

    Full Text Available Cells display versatile responses to mechanical inputs and recent studies have identified the mitogen-activated protein kinase (MAPK cascades mediating the biological effects observed upon mechanical stimulation. Although, MAPK pathways can act insulated from each other, several mechanisms facilitate the crosstalk between the components of these cascades. Yet, the combinatorial complexity of potential molecular interactions between these elements have prevented the understanding of their concerted functions. To analyze the plasticity of the MAPK signaling network in response to mechanical stress we performed a non-saturating epistatic screen in resting and stretched conditions employing as readout a JNK responsive dJun-FRET biosensor. By knocking down MAPKs, and JNK pathway regulators, singly or in pairs in Drosophila S2R+ cells, we have uncovered unexpected regulatory links between JNK cascade kinases, Rho GTPases, MAPKs and the JNK phosphatase Puc. These relationships have been integrated in a system network model at equilibrium accounting for all experimentally validated interactions. This model allows predicting the global reaction of the network to its modulation in response to mechanical stress. It also highlights its context-dependent sensitivity.

  20. Psychobiology of the acute stress response and its relationship to the psychobiology of post-traumatic stress disorder.

    Science.gov (United States)

    Marshall, Randall D; Garakani, Amir

    2002-06-01

    The literature to date that examines the biology of the acute stress reactions suggests that relatively lower baseline cortisol is associated with the development of PTSD. This is particularly informative because of the ongoing controversy surrounding baseline cortisol in PTSD. Studies have found low baseline cortisol, normal range, and elevated baseline cortisol in chronic PTSD, and it has been unclear whether this reflects methodologic differences across studies or true heterogeneity within the disorder. Thus, the few studies to date support the finding of low-normal baseline cortisol in chronic PTSD and suggest that it is a pre-existing functional trait. Whether it plays an etiologic role or is an epiphenomenon of some other process is unclear. What does seem clear, however, is that this characteristic is relatively nonspecific to PTSD, given the fact that low cortisol has been observed in multiple subject populations, including normal individuals under chronic stress as well as chronic medical conditions (for review see [23]). For example, it is possible that reduced baseline cortisol reflects the net result of input to the hypothalamus from cortical and subcortical regions of the brain linked to increased vigilance, sensitization to trauma because of prior traumatic experiences, or genetic factors. For example, primate studies have demonstrated persistent alterations in HPA axis functioning in animals reared by mothers living in moderately stressful conditions [24]. The development of PTSD is associated with sensitization of the startle response. Because the neurobiology of startle is well characterized, this finding implicates a role for specific neurocircuitry in PTSD [25]. Non-habituation of the startle response in PTSD appears related to sensitization specifically to contextual cues (i.e., the environment) that signal the presence of potential threat of danger-related fears [26]. This may be the neurobiological correlate to the over-generalization seen in

  1. Stress responses in the opportunistic pathogen Acinetobacter baumannii.

    Science.gov (United States)

    Fiester, Steven E; Actis, Luis A

    2013-03-01

    Acinetobacter baumannii causes a wide range of severe infections among compromised and injured patients worldwide. The relevance of these infections are, in part, due to the ability of this pathogen to sense and react to environmental and host stress signals, allowing it to persist and disseminate in medical settings and the human host. This review summarizes current knowledge on the roles that environmental and cellular stressors play in the ability of A. baumannii to resist nutrient deprivation, oxidative and nitrosative injury, and even the presence of the commonly used antiseptic ethanol, which could serve as a nutrient- and virulence-enhancing signal rather than just being a convenient disinfectant. Emerging experimental evidence supports the role of some of these responses in the pathogenesis of the infections A. baumannii causes in humans and its capacity to resist antibiotics and host response effectors.

  2. Infant's physiological response to short heat stress during sauna bath.

    Science.gov (United States)

    Rissmann, A; Al-Karawi, J; Jorch, G

    2002-01-01

    Thermoregulatory response to Finnish sauna bath was investigated in 47 infants (age 3 - 14 month). Before taking a short sauna bath lasting 3 min, the infants stayed in a swimming pool for 15 min. Under these conditions sauna bathing did not increase the rectal temperature. Unexpectedly rectal temperature even decreased by 0.2 degrees C (p sauna bathing. The blood pressure amplitude decreased significantly after the swimming period from 47 mm Hg to 38 mm Hg (p sauna bathing to 42 mm Hg. All infants tolerated short heat exposure in the sauna without side effects. The circulatory adjustment was efficient. Even young infants were able to cope with the acute circulatory changes imposed by heat stress. Adequate thermoregulatory and cardiovascular adaptive responses to sauna bathing could be shown for the first time in infants between 3 and 14 months of age.

  3. Stat5 signaling specifies basal versus stress erythropoietic responses through distinct binary and graded dynamic modalities.

    Directory of Open Access Journals (Sweden)

    Ermelinda Porpiglia

    2012-08-01

    Full Text Available Erythropoietin (Epo-induced Stat5 phosphorylation (p-Stat5 is essential for both basal erythropoiesis and for its acceleration during hypoxic stress. A key challenge lies in understanding how Stat5 signaling elicits distinct functions during basal and stress erythropoiesis. Here we asked whether these distinct functions might be specified by the dynamic behavior of the Stat5 signal. We used flow cytometry to analyze Stat5 phosphorylation dynamics in primary erythropoietic tissue in vivo and in vitro, identifying two signaling modalities. In later (basophilic erythroblasts, Epo stimulation triggers a low intensity but decisive, binary (digital p-Stat5 signal. In early erythroblasts the binary signal is superseded by a high-intensity graded (analog p-Stat5 response. We elucidated the biological functions of binary and graded Stat5 signaling using the EpoR-HM mice, which express a "knocked-in" EpoR mutant lacking cytoplasmic phosphotyrosines. Strikingly, EpoR-HM mice are restricted to the binary signaling mode, which rescues these mice from fatal perinatal anemia by promoting binary survival decisions in erythroblasts. However, the absence of the graded p-Stat5 response in the EpoR-HM mice prevents them from accelerating red cell production in response to stress, including a failure to upregulate the transferrin receptor, which we show is a novel stress target. We found that Stat5 protein levels decline with erythroblast differentiation, governing the transition from high-intensity graded signaling in early erythroblasts to low-intensity binary signaling in later erythroblasts. Thus, using exogenous Stat5, we converted later erythroblasts into high-intensity graded signal transducers capable of eliciting a downstream stress response. Unlike the Stat5 protein, EpoR expression in erythroblasts does not limit the Stat5 signaling response, a non-Michaelian paradigm with therapeutic implications in myeloproliferative disease. Our findings show how the

  4. Comparative transcriptomic analysis of the heat stress response in the filamentous fungus Metarhizium anisopliae using RNA-Seq.

    Science.gov (United States)

    Wang, Zhang-Xun; Zhou, Xia-Zhi; Meng, Hui-Min; Liu, Yu-Jun; Zhou, Quan; Huang, Bo

    2014-06-01

    The entomopathogenic fungus Metarhizium anisopliae is widely used for biological control of a variety of insect pests. The effectiveness of the microbial pest control agent, however, is limited by poor thermotolerance. The molecular mechanism underlying the response to heat stress in the conidia of entomopathogenic fungi remains unclear. Here, we conducted high-throughput RNA-Seq to analyze the differential gene expression between control and heat treated conidia of M. anisopliae at the transcriptome level. RNA-Seq analysis generated 6,284,262 and 5,826,934 clean reads in the control and heat treated groups, respectively. A total of 2,722 up-regulated and 788 down-regulated genes, with a cutoff of twofold change, were identified by expression analysis. Among these differentially expressed genes, many were related to metabolic processes, biological regulation, cellular processes and response to stimuli. The majority of genes involved in endocytic pathways, proteosome pathways and regulation of autophagy were up-regulated, while most genes involved in the ribosome pathway were down-regulated. These results suggest that these differentially expressed genes may be involved in the heat stress response in conidia. As expected, significant changes in expression levels of genes encoding heat shock proteins and proteins involved in trehalose accumulation were observed in conditions of heat stress. These results expand our understanding of the molecular mechanisms of the heat stress response of conidia and provide a foundation for future investigations.

  5. Differential response of hippocampal subregions to stress and learning.

    Directory of Open Access Journals (Sweden)

    Darby F Hawley

    Full Text Available The hippocampus has two functionally distinct subregions-the dorsal portion, primarily associated with spatial navigation, and the ventral portion, primarily associated with anxiety. In a prior study of chronic unpredictable stress (CUS in rodents, we found that it selectively enhanced cellular plasticity in the dorsal hippocampal subregion while negatively impacting it in the ventral. In the present study, we determined whether this adaptive plasticity in the dorsal subregion would confer CUS rats an advantage in a spatial task-the radial arm water maze (RAWM. RAWM exposure is both stressful and requires spatial navigation, and therefore places demands simultaneously upon both hippocampal subregions. Therefore, we used Western blotting to investigate differential expression of plasticity-associated proteins (brain derived neurotrophic factor [BDNF], proBDNF and postsynaptic density-95 [PSD-95] in the dorsal and ventral subregions following RAWM exposure. Lastly, we used unbiased stereology to compare the effects of CUS on proliferation, survival and neuronal differentiation of cells in the dorsal and ventral hippocampal subregions. We found that CUS and exposure to the RAWM both increased corticosterone, indicating that both are stressful; nevertheless, CUS animals had significantly better long-term spatial memory. We also observed a subregion-specific pattern of protein expression following RAWM, with proBDNF increased in the dorsal and decreased in the ventral subregion, while PSD-95 was selectively upregulated in the ventral. Finally, consistent with our previous study, we found that CUS most negatively affected neurogenesis in the ventral (compared to the dorsal subregion. Taken together, our data support a dual role for the hippocampus in stressful experiences, with the more resilient dorsal portion undergoing adaptive plasticity (perhaps to facilitate escape from or neutralization of the stressor, and the ventral portion involved in

  6. Maternal stress and plural breeding with communal care affect development of the endocrine stress response in a wild rodent.

    Science.gov (United States)

    Bauer, Carolyn M; Hayes, Loren D; Ebensperger, Luis A; Ramírez-Estrada, Juan; León, Cecilia; Davis, Garrett T; Romero, L Michael

    2015-09-01

    Maternal stress can significantly affect offspring fitness. In laboratory rodents, chronically stressed mothers provide poor maternal care, resulting in pups with hyperactive stress responses. These hyperactive stress responses are characterized by high glucocorticoid levels in response to stressors plus poor negative feedback, which can ultimately lead to decreased fitness. In degus (Octodon degus) and other plural breeding rodents that exhibit communal care, however, maternal care from multiple females may buffer the negative impact on pups born to less parental mothers. We used wild, free-living degus to test this hypothesis. After parturition, we manipulated maternal stress by implanting cortisol pellets in 0%, 50-75%, or 100% of adult females within each social group. We then sampled pups for baseline and stress-induced cortisol, negative feedback efficacy, and adrenal sensitivity. From groups where all mothers were implanted with cortisol, pups had lower baseline cortisol levels and male pups additionally had weaker negative feedback compared to 0% or 50-75% implanted groups. Contrary to expectations, stress-induced cortisol did not differ between treatment groups. These data suggest that maternal stress impacts some aspects of the pup stress response, potentially through decreased maternal care, but that presence of unstressed mothers may mitigate some of these effects. Therefore, one benefit of plural breeding with communal care may be to buffer post-natal stress.

  7. Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Cheevadhanarak Supapon

    2009-09-01

    Full Text Available Abstract The present study examined the changes in protein expression in Spirulina platensis upon exposure to high temperature, with the changes in expression analyzed at the subcellular level. In addition, the transcriptional expression level of some differentially expressed proteins, the expression pattern clustering, and the protein-protein interaction network were analyzed. The results obtained from differential expression analysis revealed up-regulation of proteins involved in two-component response systems, DNA damage and repair systems, molecular chaperones, known stress-related proteins, and proteins involved in other biological processes, such as capsule formation and unsaturated fatty acid biosynthesis. The clustering of all differentially expressed proteins in the three cellular compartments showed: (i the majority of the proteins in all fractions were sustained tolerance proteins, suggesting the roles of these proteins in the tolerance to high temperature stress, (ii the level of resistance proteins in the photosynthetic membrane was 2-fold higher than the level in two other fractions, correlating with the rapid inactivation of the photosynthetic system in response to high temperature. Subcellular communication among the three cellular compartments via protein-protein interactions was clearly shown by the PPI network analysis. Furthermore, this analysis also showed a connection between temperature stress and nitrogen and ammonia assimilation.

  8. Stress testing at the cellular and molecular level to unravel cellular dysfunction and growth factor signal transduction defects: what Molecular Cell Biology can learn from Cardiology.

    Science.gov (United States)

    Waltenberger, Johannes

    2007-11-01

    Clinical medicine has been revolutionized by the impact of cellular and molecular biology in the past 30 years. This article focuses on a novel approach, whereby the clinically proven and important concept of patient or organ stress testing is being applied to cellular models, thereby developing and validating novel quantitative molecular and cellular stress tests. One example is monocyte chemotaxis analysis, whereby circulating monocytes freshly isolated from peripheral blood are being tested for their migratory responsiveness towards relevant biological stimuli such as growth factors or chemokines. These stimuli are relevant for recruiting monocytes to sites of local inflammation such as during wound healing or arteriogenesis, i.e. growth of collateral arteries. Initial clinical studies to validate "ligand-induced monocyte chemotaxis" indicate that this parameter is impaired in the presence of various cardiovascular risk factors including diabetes mellitus, hypercholesterolemia or smoking. In addition, there is proof of concept that impaired monocyte chemotaxis is reversible as shown for anti-oxidants in smokers. Moreover, the parameter "ligand-induced monocyte chemotaxis" is of great relevance for basic science (including Molecular Cell Biology) as unravelling the underlying molecular mechanisms of cellular dysfunction will certainly stimulate our understanding of the molecular basis of cellular function. This article highlights the concept of stress testing in modern medicine. Cellular stress testing is introduced as a novel and intriguing approach, which was developed as bedside-to-bench. Future prospective clinical trials will have to validate the predictive value of cellular stress testing.

  9. The function of small RNAs in plant biotic stress response

    Institute of Scientific and Technical Information of China (English)

    Juan Huang; Meiling Yang; Xiaoming Zhang

    2016-01-01

    Small RNAs (sRNAs) play essential roles in plants upon biotic stress. Plants utilize RNA silencing machinery to facilitate pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to defend against pathogen attack or to facilitate defense against insect herbivores. Pathogens, on the other hand, are also able to generate effectors and sRNAs to counter the host immune response. The arms race between plants and pathogens/insect herbivores has triggered the evolution of sRNAs, RNA silencing machinery and pathogen effectors. A great number of studies have been performed to investigate the roles of sRNAs in plant defense, bringing in the opportunity to utilize sRNAs in plant protection. Transgenic plants with pathogen-derived resistance ability or trans-generational defense have been generated, which show promising potential as solutions for pathogen/insect herbi-vore problems in the field. Here we summarize the recent progress on the function of sRNAs in response to biotic stress, mainly in plant-pathogen/insect herbivore interaction, and the application of sRNAs in disease and insect herbivore control.

  10. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrão, S.

    2016-10-06

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.

  11. A Blm-Recql5 partnership in replication stress response

    Institute of Scientific and Technical Information of China (English)

    Xincheng Lu; Hua Lou; Guangbin Luo

    2011-01-01

    Deficiencies in DNA damage response and repair not only can result in genome instability and cancer predisposition, but also can render the cancer cells intrinsically more vulnerable to certain types of DNA damage insults. Particularly, replication stress is both a hallmark of human cancers and a common instigator for genome instability and cell death. Here, we review our work based on the genetic knockout studies on Blm and Recql5, two members of the mammalian RecQ helicase family. These studies have uncovered a unique partnership between these two helicases in the implementation of proper mitigation strategies under different circumstances to promote DNA replication and cell survival and suppress genome instability and cancer. In particular, current studies have revealed the presence of a novel Recql5/RECQL5-dependent mechanism for suppressing replication fork collapse in response to global replication fork stalling following exposure to camptothecin (CPT), a topoisomerase I inhibitor, and a potent inhibitor of DNA replication. The unique partnership between Blm and Recql5 in coping with the challenge imposed by replication stress is discussed. In addition, given that irinotecan and topotecan, two CPT derivatives, are currently used in clinic for treating human cancer patients with very promising results, the potential implication of the new findings from these studies in anticancer treatments is also discussed.

  12. Enhanced oxidative stress is responsible for TRPV4-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Zhiwen Hong

    2016-10-01

    Full Text Available Transient receptor potential vanilloid 4 (TRPV4 has been reported to be responsible for neuronal injury in pathological conditions. Excessive oxidative stress can lead to neuronal damage, and activation of TRPV4 increases the production of reactive oxygen species and nitric oxide (NO in many types of cells. The present study explored whether TRPV4-induced neuronal injury is mediated through enhancing oxidative stress. We found that intracerebroventricular injection of the TRPV4 agonist GSK1016790A increased the content of methane dicarboxylic aldehyde (MDA and NO in the hippocampus, which was blocked by administration of the TRPV4 specific antagonist HC-067047. The activities of catalase (CAT and glutathione peroxidase (GSH-Px were decreased by GSK1016790A, whereas the activity of superoxide dismutase remained unchanged. Moreover, the protein level and activity of neuronal nitric oxide synthase (nNOS were increased by GSK1016790A, and the GSK1016790A-induced increase in NO content was blocked by an nNOS specific antagonist ARL-17477. The GSK1016790A-induced modulations of CAT, GSH-Px and nNOS activities and the protein level of nNOS were significantly inhibited by HC-067047. Finally, GSK1016790A-induced neuronal death and apoptosis in the hippocampal CA1 area were markedly attenuated by administration of a reactive oxygen species scavenger Trolox or ARL-17477. We conclude that activation of TRPV4 enhances oxidative stress by inhibiting CAT and GSH-Px and increasing nNOS, which is responsible, at least in part, for TRPV4-induced neurotoxicity.

  13. Maternal Sensitivity and Infant Autonomic and Endocrine Stress Responses

    Science.gov (United States)

    Enlow, Michelle Bosquet; King, Lucy; Schreier, Hannah; Howard, Jamie M.; Rosenfield, David; Ritz, Thomas; Wright, Rosalind J.

    2014-01-01

    Background Early environmental exposures may help shape the development of the autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis, influencing vulnerability for health problems across the lifespan. Little is known about the role of maternal sensitivity in influencing the development of the ANS in early life. Aims To examine associations among maternal sensitivity and infant behavioral distress and ANS and HPA axis reactivity to the Repeated Still-Face Paradigm (SFP-R), a dyadic stress task. Study Design Observational repeated measures study. Subjects Thirty-five urban, sociodemographically diverse mothers and their 6-month-old infants. Outcome Measures Changes in infant affective distress, heart rate, respiratory sinus arrhythmia (RSA), and T-wave amplitude (TWA) across episodes of the SFP-R were assessed. A measure of cortisol output (area under the curve) in the hour following cessation of the SFP-R was also obtained. Results Greater maternal insensitivity was associated with greater infant sympathetic activation (TWA) during periods of stress and tended to be associated with greater cortisol output following the SFP-R. There was also evidence for greater affective distress and less parasympathetic activation (RSA) during the SFP-R among infants of predominantly insensitive mothers. Conclusions Caregiving quality in early life may influence the responsiveness of the sympathetic and parasympathetic branches of the ANS as well as the HPA axis. Consideration of the ANS and HPA axis systems together provides a fuller representation of adaptive versus maladaptive stress responses. The findings highlight the importance of supporting high quality caregiving in the early years of life, which is likely to promote later health. PMID:24794304

  14. Educating for social responsibility: changing the syllabus of developmental biology.

    Science.gov (United States)

    Gilbert, Scott F; Fausto-Sterling, Anne

    2003-01-01

    Developmental biology is deeply embedded in the social issues of our times. Such topics as cloning, stems cells, reproductive technologies, sex selection, environmental hormone mimics and gene therapy all converge on developmental biology. It is therefore critical that developmental biologists learn about the possible social consequences of their work and of the possible molding of their discipline by social forces. We present two models for integrating social issues into the developmental biology curriculum. One model seeks to place discussions of social issues into the laboratory portion of the curriculum; the other model seeks to restructure the course, such that developmental biology and its social contexts are synthesized directly.

  15. A structural view of the conserved domain of rice stress-responsive NAC1.

    Science.gov (United States)

    Chen, Qingfeng; Wang, Quan; Xiong, Lizhong; Lou, Zhiyong

    2011-01-01

    The importance of NAC (named as NAM, ATAF1, 2, and CUC2) proteins in plant development, transcription regulation and regulatory pathways involving protein-protein interactions has been increasingly recognized. We report here the high resolution crystal structure of SNAC1 (stress-responsive NAC) NAC domain at 2.5 Å. Although the structure of the SNAC1 NAC domain shares a structural similarity with the reported structure of the ANAC NAC1 domain, some key features, especially relating to two loop regions which potentially take the responsibility for DNA-binding, distinguish the SNAC1 NAC domain from other reported NAC structures. Moreover, the dimerization of the SNAC1 NAC domain is demonstrated by both soluble and crystalline conditions, suggesting this dimeric state should be conserved in this type of NAC family. Additionally, we discuss the possible NAC-DNA binding model according to the structure and reported biological evidences.

  16. Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Sunyoung Hwang

    Full Text Available CosR (Campylobacter oxidative stress regulator; Cj0355c is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.

  17. Allopregnanolone and social stress: regulation of the stress response in early pregnancy in pigs.

    Science.gov (United States)

    Rault, Jean-Loup; Plush, Kate; Yawno, Tamara; Langendijk, Pieter

    2015-01-01

    This experiment investigated whether allopregnanolone, a neurosteroid metabolite from progesterone, modulates the stress response during early pregnancy. Twenty-five nulliparous sows (Sus scrofa) were allocated to one of three treatments: pregnant, ovariectomized or ovariectomized administered daily intravenously with alfaxalone as a synthetic allopregnanolone analog. On days 5, 12 and 19 of pregnancy, all sows were subjected to social stress by submitting them individually to a resident-intruder test, acting as the intruder. Blood samples were collected to analyze plasma progesterone, allopregnanolone, cortisol and adrenocorticotropic hormone (ACTH) concentrations. On day 26, 10 sows across the three treatments were subjected to a dexamethasone suppression test followed by a corticotrophin-releasing hormone administration to test the functionality of their hypothalamo-pituitary-adrenal (HPA) axis through cortisol release. Pregnant sows returned more rapidly to baseline cortisol concentrations following the resident-intruder test (p = 0.006). However, there were no other differences in cortisol or ACTH concentrations according to treatment or day, or to the HPA responsivity test on day 26. Allopregnanolone concentration in pregnant sows was higher than in ovariectomized sows (p pregnancy. Allopregnanolone concentration was correlated with longer resident-intruder test duration (pregnant: r = 0.66, p = 0.0003; ovariectomized: r = 0.47, p = 0.03), reflecting lower aggressiveness, and with progesterone concentration (r = 0.25, p = 0.03). Alfaxalone administration raised plasma allopregnanolone concentration in alfaxalone-administered sows but resulted in little behavioral and physiological effects. These findings did not support the hypothesis that the stress response of the female pig changes in the first third of pregnancy. Allopregnanolone was associated with lower aggression in social encounters.

  18. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario, E-mail: mariodiaz@uniovi.es

    2014-02-01

    Highlights: • MBR under feed-induced stress conditions: starvation and changing feeding conditions. • High capacity of MBR to withstand high variations in feed loads. • Slow biofilm formation under starvation conditions during the first days. • Observed growth of P. putida for substrate to microorganism ratio higher than 0.6 g/g. • Maximum specific growth rate and growth yield values of around 37.5 h{sup −1} and 0.5 g/g. - Abstract: Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100–1100 mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15 mg/g h were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum Y{sub X/S} of 0.5 g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16 g/m{sup 2}.

  19. Metabolomics to Detect Response of Lettuce (Lactuca sativa) to Cu(OH)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms.

    Science.gov (United States)

    Zhao, Lijuan; Ortiz, Cruz; Adeleye, Adeyemi S; Hu, Qirui; Zhou, Hongjun; Huang, Yuxiong; Keller, Arturo A

    2016-09-06

    There has been an increasing influx of nanopesticides into agriculture in recent years. Understanding the interaction between nanopesticides and edible plants is crucial in evaluating the potential impact of nanotechnology on the environment and agriculture. Here we exposed lettuce plants to Cu(OH)2 nanopesticides (1050-2100 mg/L) through foliar spray for one month. Inductively coupled plasma-mass spectrometry (ICP-MS) results indicate that 97-99% (1353-2501 mg/kg) of copper was sequestered in the leaves and only a small percentage (1-3%) (17.5-56.9 mg/kg) was translocated to root tissues through phloem loading. Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) based metabolomics combined with partial least squares-discriminant analysis (PLS-DA) multivariate analysis revealed that Cu(OH)2 nanopesticides altered metabolite levels of lettuce leaves. Tricarboxylic (TCA) cycle and a number of amino acid-related biological pathways were disturbed. Some antioxidant levels (cis-caffeic acid, chlorogenic acid, 3,4-dihydroxycinnamic acid, dehydroascorbic acid) were significantly decreased compared to the control, indicating that oxidative stress and a defense response occurred. Nicotianamine, a copper chelator, increased by 12-27 fold compared to the control, which may represent a detoxification mechanism. The up-regulation of polyamines (spermidine and putrescine) and potassium may mitigate oxidative stress and enhance tolerance. The data presented here provide a molecular-scale perspective on the response of plants to copper nanopesticides.

  20. Investigating biological traces of traumatic stress in changing societies: challenges and directions from the ESTSS Task Force on Neurobiology

    Directory of Open Access Journals (Sweden)

    Kathleen Thomaes

    2016-03-01

    Full Text Available Traumatic stress can have severe consequences for both mental and physical health. Furthermore, both psychological and biological traces of trauma increase as a function of accumulating traumatic experiences. Neurobiological research may aid in limiting the impact of traumatic stress, by leading to advances in preventive and treatment interventions. To promote the possibility for clinical implementation of novel research findings, this brief review describes timely conceptual and methodological challenges and directions in neurobiological trauma research on behalf of the Task Force “Neurobiology of Traumatic Stress” of the European Society for Traumatic Stress Studies (ESTSS. The most important conceptual challenges are the heterogeneity of disorders and existence of subtypes across diagnostic categories: differential latent profiles and trajectories regarding symptom expression and neural correlates are being unraveled; however, similar latent classes’ approaches for treatment response and neurobiological data remain scarce thus far. The key to improving the efficacy of currently available preventive interventions and treatments for trauma-related disorders lies in a better understanding and characterization of individual differences in response to trauma and interventions. This could lead to personalized treatment strategies for trauma-related disorders, based on objective information indicating whether individuals are expected to benefit from them. The most important methodological challenge identified here is the need for large consortia and meta-analyses or, rather, mega-analyses on existent data as a first step. In addition, large multicenter studies, combining novel methods for repeated sampling with more advanced statistical modeling techniques, such as machine learning, should aim to translate identified disease mechanisms into molecular blood-based biomarker combinations to predict disorder vulnerability and treatment responses.

  1. Investigating biological traces of traumatic stress in changing societies: challenges and directions from the ESTSS Task Force on Neurobiology

    Science.gov (United States)

    Thomaes, Kathleen; de Kloet, Carien; Wilker, Sarah; El-Hage, Wissam; Schäfer, Ingo; Kleim, Birgit; Schmahl, Christian; van Zuiden, Mirjam

    2016-01-01

    Traumatic stress can have severe consequences for both mental and physical health. Furthermore, both psychological and biological traces of trauma increase as a function of accumulating traumatic experiences. Neurobiological research may aid in limiting the impact of traumatic stress, by leading to advances in preventive and treatment interventions. To promote the possibility for clinical implementation of novel research findings, this brief review describes timely conceptual and methodological challenges and directions in neurobiological trauma research on behalf of the Task Force “Neurobiology of Traumatic Stress” of the European Society for Traumatic Stress Studies (ESTSS). The most important conceptual challenges are the heterogeneity of disorders and existence of subtypes across diagnostic categories: differential latent profiles and trajectories regarding symptom expression and neural correlates are being unraveled; however, similar latent classes’ approaches for treatment response and neurobiological data remain scarce thus far. The key to improving the efficacy of currently available preventive interventions and treatments for trauma-related disorders lies in a better understanding and characterization of individual differences in response to trauma and interventions. This could lead to personalized treatment strategies for trauma-related disorders, based on objective information indicating whether individuals are expected to benefit from them. The most important methodological challenge identified here is the need for large consortia and meta-analyses or, rather, mega-analyses on existent data as a first step. In addition, large multicenter studies, combining novel methods for repeated sampling with more advanced statistical modeling techniques, such as machine learning, should aim to translate identified disease mechanisms into molecular blood-based biomarker combinations to predict disorder vulnerability and treatment responses. PMID:26996535

  2. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    Science.gov (United States)

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress.

  3. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress

    Directory of Open Access Journals (Sweden)

    An Dong

    2012-02-01

    Full Text Available Abstract Background Cassava is an important tropical root crop adapted to a wide range of environmental stimuli such as drought and acid soils. Nevertheless, it is an extremely cold-sensitive tropical species. Thus far, there is limited information about gene regulation and signalling pathways related to the cold stress response in cassava. The development of microarray technology has accelerated the study of global transcription profiling under certain conditions. Results A 60-mer oligonucleotide microarray representing 20,840 genes was used to perform transcriptome profiling in apical shoots of cassava subjected to cold at 7°C for 0, 4 and 9 h. A total of 508 transcripts were identified as early cold-responsive genes in which 319 sequences had functional descriptions when aligned with Arabidopsis proteins. Gene ontology annotation analysis identified many cold-relevant categories, including 'Response to abiotic and biotic stimulus', 'Response to stress', 'Transcription factor activity', and 'Chloroplast'. Various stress-associated genes with a wide range of biological functions were found, such as signal transduction components (e.g., MAP kinase 4, transcription factors (TFs, e.g., RAP2.11, and reactive oxygen species (ROS scavenging enzymes (e.g., catalase 2, as well as photosynthesis-related genes (e.g., PsaL. Seventeen major TF families including many well-studied members (e.g., AP2-EREBP were also involved in the early response to cold stress. Meanwhile, KEGG pathway analysis uncovered many important pathways, such as 'Plant hormone signal transduction' and 'Starch and sucrose metabolism'. Furthermore, the expression changes of 32 genes under cold and other abiotic stress conditions were validated by real-time RT-PCR. Importantly, most of the tested stress-responsive genes were primarily expressed in mature leaves, stem cambia, and fibrous roots rather than apical buds and young leaves. As a response to cold stress in cassava, an increase

  4. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Science.gov (United States)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  5. Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Moreira Leonilde M

    2010-06-01

    Full Text Available Abstract Background The TolC protein from Sinorhizobium meliloti has previously been demonstrated to be required for establishing successful biological nitrogen fixation symbiosis with Medicago sativa. It is also needed in protein and exopolysaccharide secretion and for protection against osmotic and oxidative stresses. Here, the transcriptional profile of free-living S. meliloti 1021 tolC mutant is described as a step toward understanding its role in the physiology of the cell. Results Comparison of tolC mutant and wild-type strains transcriptomes showed 1177 genes with significantly increased expression while 325 had significantly decreased expression levels. The genes with an increased expression suggest the activation of a cytoplasmic and extracytoplasmic stress responses possibly mediated by the sigma factor RpoH1 and protein homologues of the CpxRA two-component regulatory system of Enterobacteria, respectively. Stress conditions are probably caused by perturbation of the cell envelope. Consistent with gene expression data, biochemical analysis indicates that the tolC mutant suffers from oxidative stress. This is illustrated by the elevated enzyme activity levels detected for catalase, superoxide dismutase and glutathione reductase. The observed increase in the expression of genes encoding products involved in central metabolism and transporters for nutrient uptake suggests a higher metabolic rate of the tolC mutant. We also demonstrated increased swarming motility in the tolC mutant strain. Absence of functional TolC caused decreased expression mainly of genes encoding products involved in nitrogen metabolism and transport. Conclusion This work shows how a mutation in the outer membrane protein TolC, common to many bacterial transport systems, affects expression of a large number of genes that act in concert to restore cell homeostasis. This finding further underlines the fundamental role of this protein in Sinorhizobium meliloti biology.

  6. Phloem small RNAs, nutrient stress responses, and systemic mobility

    Directory of Open Access Journals (Sweden)

    Kehr Julia

    2010-04-01

    Full Text Available Abstract Background Nutrient availabilities and needs have to be tightly coordinated between organs to ensure a balance between uptake and consumption for metabolism, growth, and defense reactions. Since plants often have to grow in environments with sub-optimal nutrient availability, a fine tuning is vital. To achieve this, information has to flow cell-to-cell and over long-distance via xylem and phloem. Recently, specific miRNAs emerged as a new type of regulating molecules during stress and nutrient deficiency responses, and miR399 was suggested to be a phloem-mobile long-distance signal involved in the phosphate starvation response. Results We used miRNA microarrays containing all known plant miRNAs and a set of unknown small (s RNAs earlier cloned from Brassica phloem sap 1, to comprehensively analyze the phloem response to nutrient deficiency by removing sulfate, copper or iron, respectively, from the growth medium. We show that phloem sap contains a specific set of sRNAs that is distinct from leaves and roots, and that the phloem also responds specifically to stress. Upon S and Cu deficiencies phloem sap reacts with an increase of the same miRNAs that were earlier characterized in other tissues, while no clear positive response to -Fe was observed. However, -Fe led to a reduction of Cu- and P-responsive miRNAs. We further demonstrate that under nutrient starvation miR399 and miR395 can be translocated through graft unions from wild type scions to rootstocks of the miRNA processing hen1-1 mutant. In contrast, miR171 was not transported. Translocation of miR395 led to a down-regulation of one of its targets in rootstocks, suggesting that this transport is of functional relevance, and that miR395, in addition to the well characterized miR399, could potentially act as a long-distance information transmitter. Conclusions Phloem sap contains a specific set of sRNAs, of which some specifically accumulate in response to nutrient deprivation. From

  7. The Early Endocrine Stress Response in Experimental Subarachnoid Hemorrhage.

    Directory of Open Access Journals (Sweden)

    Christoffer Nyberg

    Full Text Available In patients with severe illness, such as aneurysmal subarachnoid hemorrhage (SAH, a physiologic stress response is triggered. This includes activation of the hypothalamic-pituitary-adrenal (HPA axis and the sympathetic nervous system. The aim of this study was to investigate the very early responses of these systems.A porcine animal model of aneurysmal SAH was used. In this model, blood is injected slowly to the basal cisterns above the anterior skull base until the cerebral perfusion pressure is 0 mm Hg. Sampling was done from blood and urine at -10, +15, +75 and +135 minutes from time of induction of SAH. Analyses of adrenocorticotropic hormone (ACTH, cortisol, aldosterone, catecholamines and chromogranin-A were performed.Plasma ACTH, serum cortisol and plasma aldosterone increased in the samples following induction of SAH, and started to decline after 75 minutes. Urine cortisol also increased after SAH. Urine catecholamines and their metabolites were found to increase after SAH. Many samples were however below detection level, not allowing for statistical analysis. Plasma chromogranin-A peaked at 15 minutes after SAH, and thereafter decreased.The endocrine stress response after aneurysmal SAH was found to start within 15 minutes in the HPA axis with early peak values of ACTH, cortisol and aldosterone. The fact that the concentrations of the HPA axis hormones decreased 135 minutes after SAH may suggest that a similar pattern exists in SAH patients, thus making it difficult to catch these early peak values. There were also indications of early activation of the sympathetic nervous system, but the small number of valid samples made interpretation difficult.

  8. Infants, Mothers, and Dyadic Contributions to Stability and Prediction of Social Stress Response at 6 Months

    Science.gov (United States)

    Provenzi, Livio; Olson, Karen L.; Montirosso, Rosario; Tronick, Ed

    2016-01-01

    The study of infants' interactive style and social stress response to repeated stress exposures is of great interest for developmental and clinical psychologists. Stable maternal and dyadic behavior is critical to sustain infants' development of an adaptive social stress response, but the association between infants' interactive style and social…

  9. Frontiers in the bioarchaeology of stress and disease: cross-disciplinary perspectives from pathophysiology, human biology, and epidemiology.

    Science.gov (United States)

    Klaus, Haagen D

    2014-10-01

    Over the last four decades, bioarchaeology has experienced significant technical growth and theoretical maturation. Early 21st century bioarchaeology may also be enhanced from a renewed engagement with the concept of biological stress. New insights on biological stress and disease can be gained from cross-disciplinary perspectives regarding human skeletal variation and disease. First, pathophysiologic and molecular signaling mechanisms can provide more precise understandings regarding formation of pathological phenotypes in bone. Using periosteal new bone formation as an example, various mechanisms and pathways are explored in which new bone can be formed under conditions of biological stress, particularly in bone microenvironments that involve inflammatory changes. Second, insights from human biology are examined regarding some epigenetic factors and disease etiology. While epigenetic effects on stress and disease outcomes appear profoundly influential, they are mostly invisible in skeletal tissue. However, some indirect and downstream effects, such as the developmental origins of adult health outcomes, may be partially observable in bioarchaeological data. Emerging perspectives from the human microbiome are also considered. Microbiomics involves a remarkable potential to understand ancient biology, disease, and stress. Third, tools from epidemiology are examined that may aid bioarchaeologists to better cope with some of the inherent limitations of skeletal samples to better measure and quantify the expressions of skeletal stress markers. Such cross-disciplinary synergisms hopefully will promote more complete understandings of health and stress in bioarchaeological science.

  10. Waterborne cadmium and nickel impact oxidative stress responses and retinoid metabolism in yellow perch

    Energy Technology Data Exchange (ETDEWEB)

    Defo, Michel A. [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada); Bernatchez, Louis [Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec G1V 0A6 (Canada); Campbell, Peter G.C. [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada); Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada)

    2014-09-15

    Highlights: • Cd and Ni affected indicators of retinoid metabolism and oxidative stress in fish. • Liver rdh-2 transcription levels increase in fish exposed to waterborne Cd. • Liver REH and LdRAT activities increase with increasing kidney Cd concentration. • Changes at molecular levels do not always mean changes at the functional levels. • Multi-level biological approaches are needed when assessing fish metal toxicology. - Abstract: In this experiment, we studied the transcriptional and functional (enzymatic) responses of yellow perch (Perca flavescens) to metal stress, with a focus on oxidative stress and vitamin A metabolism. Juvenile yellow perch were exposed to two environmentally relevant concentrations of waterborne cadmium (Cd) and nickel (Ni) for a period of 6 weeks. Kidney Cd and Ni bioaccumulation significantly increased with increasing metal exposure. The major retinoid metabolites analyzed in liver and muscle decreased with metal exposure except at high Cd exposure where no variation was reported in liver. A decrease in free plasma dehydroretinol was also observed with metal exposure. In the liver of Cd-exposed fish, both epidermal retinol dehydrogenase 2 transcription level and corresponding enzyme activities retinyl ester hydrolase and lecithin dehydroretinyl acyl transferase increased. In contrast, muscle epidermal retinol dehydrogenase 2 transcription level decreased with Cd exposure. Among antioxidant defences, liver transcription levels of catalase, microsomal glutathione-S-transferase-3 and glucose-6-phosphate dehydrogenase were generally enhanced in Cd-exposed fish and this up-regulation was accompanied by an increase in the activities of corresponding enzymes, except for microsomal glutathione-S-transferase. No consistent pattern in antioxidant defence responses was observed between molecular and biochemical response when fish were exposed to Ni, suggesting a non-synchronous response of antioxidant defence in fish exposed to

  11. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields

    Directory of Open Access Journals (Sweden)

    Kaplan David L

    2011-01-01

    Full Text Available Abstract Background Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood. Methods The purpose of this study was to track the differentiation profile and stress response of human bone marrow derived mesenchymal stem cells (hMSCs undergoing osteogenic differentiation during exposure to a 20 mV/cm, 60 kHz electric field. Morphological and biochemical changes were imaged using endogenous two-photon excited fluorescence (TPEF and quantitatively assessed through eccentricity calculations and extraction of the redox ratio from NADH, FAD and lipofuscin contributions. Real time reverse transcriptase-polymerase chain reactions (RT-PCR were used to track osteogenic differentiation markers, namely alkaline phosphatase (ALP and collagen type 1 (col1, and stress response markers, such as heat shock protein 27 (hsp27 and heat shock protein 70 (hsp70. Comparisons of collagen deposition between the stimulated hMSCs and controls were examined through second harmonic generation (SHG imaging. Results Quantitative differences in cell morphology, as described through an eccentricity ratio, were found on days 2 and days 5 (p Conclusions Electrical stimulation is a useful tool to improve hMSC osteogenic differentiation, while heat shock proteins may reveal underlying mechanisms, and optical non-invasive imaging may be used to monitor the induced morphological and biochemical changes.

  12. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  13. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses.

    Science.gov (United States)

    Atkinson, Nicky J; Lilley, Catherine J; Urwin, Peter E

    2013-08-01

    In field conditions, plants may experience numerous environmental stresses at any one time. Research suggests that the plant response to multiple stresses is different from that for individual stresses, producing nonadditive effects. In particular, the molecular signaling pathways controlling biotic and abiotic stress responses may interact and antagonize one another. The transcriptome response of Arabidopsis (Arabidopsis thaliana) to concurrent water deficit (abiotic stress) and infection with the plant-parasitic nematode Heterodera schachtii (biotic stress) was analyzed by microarray. A unique program of gene expression was activated in response to a combination of water deficit and nematode stress, with 50 specifically multiple-stress-regulated genes. Candidate genes with potential roles in controlling the response to multiple stresses were selected and functionally characterized. RAPID ALKALINIZATION FACTOR-LIKE8 (AtRALFL8) was induced in roots by joint stresses but conferred susceptibility to drought stress and nematode infection when overexpressed. Constitutively expressing plants had stunted root systems and extended root hairs. Plants may produce signal peptides such as AtRALFL8 to induce cell wall remodeling in response to multiple stresses. The methionine homeostasis gene METHIONINE GAMMA LYASE (AtMGL) was up-regulated by dual stress in leaves, conferring resistance to nematodes when overexpressed. It may regulate methionine metabolism under conditions of multiple stresses. AZELAIC ACID INDUCED1 (AZI1), involved in defense priming in systemic plant immunity, was down-regulated in leaves by joint stress and conferred drought susceptibility when overexpressed, potentially as part of abscisic acid-induced repression of pathogen response genes. The results highlight the complex nature of multiple stress responses and confirm the importance of studying plant stress factors in combination.

  14. Overloaded and stressed: whole-cell considerations for bacterial synthetic biology.

    Science.gov (United States)

    Borkowski, Olivier; Ceroni, Francesca; Stan, Guy-Bart; Ellis, Tom

    2016-10-01

    The predictability and robustness of engineered bacteria depend on the many interactions between synthetic constructs and their host cells. Expression from synthetic constructs is an unnatural load for the host that typically reduces growth, triggers stresses and leads to decrease in performance or failure of engineered cells. Work in systems and synthetic biology has now begun to address this through new tools, methods and strategies that characterise and exploit host-construct interactions in bacteria. Focusing on work in E. coli, we review here a selection of the recent developments in this area, highlighting the emerging issues and describing the new solutions that are now making the synthetic biology community consider the cell just as much as they consider the construct.

  15. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    KAUST Repository

    Khraiwesh, Basel

    2012-02-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. © 2011 Elsevier B.V.

  16. Integrative proteome analysis of Brachypodium distachyon roots and leaves reveals a synergetic responsive network under H2O2 stress.

    Science.gov (United States)

    Bian, Yan-Wei; Lv, Dong-Wen; Cheng, Zhi-Wei; Gu, Ai-Qin; Cao, Hui; Yan, Yue-Ming

    2015-10-14

    The plant oxidative stress response is vital for defense against various abiotic and biotic stresses. In this study, ultrastructural changes and the proteomic response to H2O2 stress in roots and leaves of the model plant Brachypodium distachyon were studied. Transmission electron microscopy (TEM) showed that the ultrastructural damage in roots was more serious than in leaves. Particularly, the ultrastructures of organelles and the nucleus in root tip cells were damaged, leading to the inhibition of normal biological activities of roots, which then spread throughout the plant. Based on two-dimensional electrophoresis (2-DE) and MALDI-TOF/TOF-MS, 84 and 53 differentially accumulated protein (DAP) spots representing 75 and 45 unique proteins responsive to H2O2 stress in roots and leaves, respectively, were identified. These protein species were mainly involved in signal transduction, energy metabolism, redox homeostasis/stress defense, protein folding/degradation, and cell wall/cell structure. Interestingly, two 14-3-3 proteins (GF14-B and GF14-D) were identified as DAPs in both roots and leaves. Protein-protein interaction (PPI) analysis revealed a synergetic H2O2-responsive network.

  17. A systems biology approach to heat stress, heat injury, and heat stroke

    Science.gov (United States)

    Stallings, Jonathan D.; Ippolito, Danielle L.

    2015-05-01

    Heat illness is a major source of injury for military populations in both deployed and training settings. Developing tools to help leaders enhance unit performance while reducing the risk of injury is of paramount importance to the military. Here, we review our recent systems biology approaches to heat stress in order to develop a 3-dimensional (3D) realistic thermoregulation model, identify the molecular basis and mediators of injury, and characterize associated biomarkers. We discuss the implications of our work, future directions, and the type of tools necessary to enhance force health protection in the future.

  18. Biological and metabolic response in STS-135 space-flown mouse skin.

    Science.gov (United States)

    Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S

    2014-08-01

    There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p 1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.

  19. Biological and ecological responses to carbon-based nanomaterials

    Science.gov (United States)

    Ratnikova, Tatsiana A.

    This dissertation examines the biological and ecological responses to carbon nanoparticles, a major class of nanomaterials which have been mass produced and extensively studied for their rich physical properties and commercial values. Chapter I of this dissertation offers a comprehensive review on the structures, properties, applications, and implications of carbon nanomaterials, especially related to the perspectives of biological and ecosystems. Given that there are many types of carbon nanomaterials available, this chapter is focused on three major types of carbon-based nanomaterials only, namely, fullerenes, single walled and multi-walled carbon nanotubes. On the whole organism level, specifically, Chapter II presents a first study on the fate of fullerenes and multiwalled carbon nanotubes in rice plants, which was facilitated by the self assembly of these nanomaterials with NOM. The aspects of fullerene uptake, translocation, biodistribution, and generational transfer in the plants were examined and quantified using bright field and electron microscopy, FT-Raman, and FTIR spectroscopy. The uptake and transport of fullerene in the plant vascular system were attributed to water transpiration, convection, capillary force, and the fullerene concentration gradient from the roots to the leaves of the plants. On the cellular level, Chapter III documents the differential uptake of hydrophilic C60(OH)20 vs. amphiphilic C70-NOM complex in Allium cepa plant cells and HT-29 colon carcinoma cells. This study was conducted using a plant cell viability assay, and complemented by bright field, fluorescence and electron microscopy imaging. In particular, C60(OH)20 and C70-NOM showed contrasting uptake in both the plant and mammalian cells, due to their significant differences in physicochemistry and the presence of an extra hydrophobic plant cell wall in the plant cells. Consequently, C60(OH)20 was found to induce toxicity in Allium cepa cells but not in HT-29 cells, while C70

  20. Climate change and biological invasions: evidence, expectations, and response options.

    Science.gov (United States)

    Hulme, Philip E

    2016-05-31

    integrates bioclimatic suitability and population-level demographic rates but also simulation of landscape-level processes (e.g. dispersal, land-use change, host/habitat distribution, non-climatic edaphic constraints). In terms of invasive alien species that have known economic or biodiversity impacts, the taxa that are likely to be the most responsive are plant pathogens and insect pests of agricultural crops. However, the extent to which climate adaptation strategies lead to new crops, altered rotations, and different farming practices (e.g. irrigation, fertilization) will all shape the potential agricultural impacts of alien species. The greatest uncertainty in the effects of climate change on biological invasions exists with identifying the future character of new species introductions and predicting ecosystem impacts. Two complementary strategies may work under these conditions of high uncertainty: (i) prioritise ecosystems in terms of their perceived vulnerability to climate change and prevent ingress or expansion of alien species therein that may exacerbate problems; (ii) target those ecosystem already threatened by alien species and implement management to prevent the situation deteriorating under climate change.

  1. [Physiological responses of Gracilaria lemaneiformis to copper stress].

    Science.gov (United States)

    Zhu, Xi-Feng; Zou, Ding-Hui; Jian, Jian-Bo; Chen, Wei-Zhou; Liu, Hui-Hui; Du, Hong

    2009-06-01

    Gracilaria lemaneiformis was exposed to 0, 25, 50, 100, 250 and 500 microg x L(-1) of Cu2+ to study its physiological responses to Cu2+ stress. When the Cu2+ concentration was > or = 50 microg x L(-1), the relative growth rate (RGR) of G. lemaneiformis decreased significantly, and the optimal quantum yield (Fv/Fm), the maximum relative electron transfer rate (rETRmax), and the relative electron transfer efficiency (alpha) exhibited the same variation trend, compared with the control. With the increase of Cu2+ concentration, the maximum net photosynthetic rate (Pmax) and light saturation point (LSP) decreased significantly, light compensation point (LCP) had a significant increase, while chlorophyll a, carotenoid, and phycobiliprotein contents decreased after an initial increase. When the Cu2+ concentration reached 500 microg x L(-1), the chlorophyll a, carotenoid, and phycobiliprotein contents decreased significantly. It was suggested that G. lemaneiformis could tolerate low concentration Cu2+ stress, but its physiological activities were inhibited markedly when exposed to > or =50 microg x L(-1) of Cu2+.

  2. Sexual Dimorphism in the Response of Mercurialis annua to Stress

    Directory of Open Access Journals (Sweden)

    Ezra M. Orlofsky

    2016-04-01

    Full Text Available The research presented stemmed from the observations that female plants of the annual dioecious Mercurialis annua outlive male plants. This led to the hypothesis that female plants of M. annua would be more tolerant to stress than male plants. This hypothesis was addressed in a comprehensive way, by comparing morphological, biochemical and metabolomics changes in female and male plants during their development and under salinity. There were practically no differences between the genders in vegetative development and physiological parameters. However, under salinity conditions, female plants produced significantly more new reproductive nodes. Gender-linked differences in peroxidase (POD and glutathione transferases (GSTs were involved in anti-oxidation, detoxification and developmental processes in M. annua. 1H NMR metabolite profiling of female and male M. annua plants showed that under salinity the activity of the TCA cycle increased. There was also an increase in betaine in both genders, which may be explainable by its osmo-compatible function under salinity. The concentration of ten metabolites changed in both genders, while ‘Female-only-response’ to salinity was detected for five metabolites. In conclusion, dimorphic responses of M. annua plant genders to stress may be attributed to female plants’ capacity to survive and complete the reproductive life cycle.

  3. Autophagy as a Stress Response Pathway in the Immune System.

    Science.gov (United States)

    Bhattacharya, Abhisek; Eissa, N Tony

    2015-01-01

    Macroautophagy, hereafter, referred to as autophagy, has long been regarded as a housekeeping pathway involved in intracellular degradation and energy recycling. These housekeeping and homeostatic functions are especially important during cellular stress, such as periods of nutrient deprivation. However, importance of autophagy extends far beyond its degradative functions. Recent evidence shows that autophagy plays an essential role in development, organization and functions of the immune system, and defects in autophagy lead to several diseases, including cancer and autoimmunity. In the immune system, autophagy is important in regulation of the innate and adaptive immune responses. This review focuses on the roles of autophagy in the adaptive immune system. We first introduce the autophagy pathway and provide a brief description of the major molecular players involved in autophagy. We then discuss the importance of autophagy as a stress integrator mechanism and provide relevant examples of this role of autophagy in adaptive immune cells. Then we proceed to describe how autophagy regulates development, activation and functions of different adaptive immune cells. In these contexts, we mention both degradative and non-degradative roles of autophagy, and illustrate their importance. We also discuss role of autophagy in antigen presenting cells, which play critical roles in the activation of adaptive immune cells. Further, we describe how autophagy regulates functions of different adaptive immune cells during infection, inflammation and autoimmunity.

  4. Using Co-Expression Analysis and Stress-Based Screens to Uncover Arabidopsis Peroxisomal Proteins Involved in Drought Response.

    Directory of Open Access Journals (Sweden)

    Jiying Li

    Full Text Available Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Using microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their co-expression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1 showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to

  5. Engineering of synthetic, stress-responsive yeast promoters

    DEFF Research Database (Denmark)

    Rajkumar, Arun Stephen; Liu, Guodong; Bergenholm, David;

    2016-01-01

    regulation,and known rules of promoter architecture we improved the low-pH performance of the YGP1 promoter by modifying transcription factor binding sites in its upstream activation sequence. The engineering strategy outlined for the YGP1 promoter was subsequently applied to create a response to low p......H in the unrelated CCW14 promoter. We applied our best promoter variants to low-pH fermentations, enabling tenfold increased production of lactic acid compared totitres obtained with the commonly used, native TEF1promoter. Our findings outline and validate a general strategy to iteratively design and engineer......Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducibleby specific endogenous or environmental conditions...

  6. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants

    Directory of Open Access Journals (Sweden)

    Jong-Myong eKim

    2015-03-01

    Full Text Available Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

  7. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells.

    Science.gov (United States)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M; Minocherhomji, Sheroy; Wagner, Sebastian A; Bekker-Jensen, Simon; Mailand, Niels; Choudhary, Chunaram; Hickson, Ian D; Liu, Ying

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology.

  8. The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses.

    Science.gov (United States)

    Vlachonasios, Konstantinos E; Kaldis, Athanasios; Nikoloudi, Adriana; Tsementzi, Despoina

    2011-10-01

    Plant growth and crop production can be greatly affected by common environmental stresses such as drought, high salinity and low temperatures. Gene expression is affected by several abiotic stresses. Stress-inducible genes are regulated by transcription factors and epigenetic mechanisms such as histone modifications. In this Mini-Review, we have explored the role of transcriptional adaptor ADA2b in Arabidopsis responses to abiotic stress. ADA2b is required for the expression of genes involved in abiotic stress either by controlling H3 and H4 acetylation in the case of salt stress or affecting nucleosome occupancy in low temperatures response.

  9. Characterization and Expression Analysis of Common Bean Histone Deacetylase 6 during Development and Cold Stress Response

    Science.gov (United States)

    Ligaba-Osena, Ayalew; Subramani, Mayavan; Brown, Adrianne; Melmaiee, Kalpalatha; Hossain, Khwaja

    2017-01-01

    Histone deacetylases (HDACs) are important regulators of gene transcription thus controlling multiple cellular processes. Despite its essential role in plants, HDA6 is yet to be validated in common bean. In this study, we show that HDA6 is involved in plant development and stress response. Differential expression of HDA6 was determined in various tissues and the expression was seen to be upregulated with plant age (seedling < flowering < maturity). Higher expression was observed in flowers and pods than in stem, leaf, and root. Upregulation of HDA6 gene during cold stress implies its prominent role in abiotic stress. Furthermore, the HDA6 gene was isolated from three common bean genotypes and sequence analyses revealed homology with functionally characterized homologs in model species. The 53 kDa translated product was detected using an HDA6 specific antibody and recombinant protein overexpressed in Escherichia coli showed HDAC activity in vitro. To our knowledge, this is the first report in the agriculturally important crop common bean describing the functional characterization and biological role of HDA6. PMID:28127547

  10. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies

    Science.gov (United States)

    Meena, Kamlesh K.; Sorty, Ajay M.; Bitla, Utkarsh M.; Choudhary, Khushboo; Gupta, Priyanka; Pareek, Ashwani; Singh, Dhananjaya P.; Prabha, Ratna; Sahu, Pramod K.; Gupta, Vijai K.; Singh, Harikesh B.; Krishanani, Kishor K.; Minhas, Paramjit S.

    2017-01-01

    Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding

  11. Youth offspring of mothers with posttraumatic stress disorder have altered stress reactivity in response to a laboratory stressor.

    Science.gov (United States)

    Danielson, Carla Kmett; Hankin, Benjamin L; Badanes, Lisa S

    2015-03-01

    Parental Posttraumatic Stress Disorder (PTSD), particularly maternal PTSD, confers risk for stress-related psychopathology among offspring. Altered hypothalamic-pituitary-adrenal (HPA) axis functioning is one mechanism proposed to explain transmission of this intergenerational risk. Investigation of this mechanism has been largely limited to general stress response (e.g., diurnal cortisol), rather than reactivity in response to an acute stressor. We examined cortisol reactivity in response to a laboratory stressor among offspring of mothers with a lifetime diagnosis of PTSD (n=36) and age- and gender- matched control offspring of mothers without PTSD (n=36). Youth (67% girls; mean age=11.4, SD=2.6) participated in a developmentally sensitive laboratory stressor and had salivary cortisol assessed five times (one pre-stress, one immediate post-stress, and three recovery measures, spaced 15min apart). Results were consistent with the hypothesis that offspring of mothers with PTSD would exhibit a dysregulated, blunted cortisol reactivity profile, and control offspring would display the expected adaptive peak in cortisol response to challenge profile. Findings were maintained after controlling for youth traumatic event history, physical anxiety symptoms, and depression, as well as maternal depression. This finding contributes to the existing literature indicating that attenuated HPA axis functioning, inclusive of hyposecretion of cortisol in response to acute stress, is robust among youth of mothers with PTSD. Future research is warranted in elucidating cortisol reactivity as a link between maternal PTSD and stress-related psychopathology vulnerability among offspring.

  12. ATHB17 enhances stress tolerance by coordinating photosynthesis associated nuclear gene and ATSIG5 expression in response to abiotic stress

    Science.gov (United States)

    Zhao, Ping; Cui, Rong; Xu, Ping; Wu, Jie; Mao, Jie-Li; Chen, Yu; Zhou, Cong-Zhao; Yu, Lin-Hui; Xiang, Cheng-Bin

    2017-01-01

    Photosynthesis is sensitive to environmental stress and must be efficiently modulated in response to abiotic stress. However, the underlying mechanisms are not well understood. Here we report that ARABIDOPSIS THALIANA HOMEOBOX 17 (ATHB17), an Arabidopsis HD-Zip transcription factor, regulated the expression of a number of photosynthesis associated nuclear genes (PhANGs) involved in the light reaction and ATSIG5 in response to abiotic stress. ATHB17 was responsive to ABA and multiple stress treatments. ATHB17-overexpressing plants displayed enhanced stress tolerance, whereas its knockout mutant was more sensitive compared to the wild type. Through RNA-seq and quantitative real-time reverse transcription PCR (qRT-PCR) analysis, we found that ATHB17 did not affect the expression of many known stress-responsive marker genes. Interestingly, we found that ATHB17 down-regulated many PhANGs and could directly modulate the expression of several PhANGs by binding to their promoters. Moreover, we identified ATSIG5, encoding a plastid sigma factor, as one of the target genes of ATHB17. Loss of ATSIG5 reduced salt tolerance while overexpression of ATSIG5 enhanced salt tolerance, similar to that of ATHB17. ATHB17 can positively modulate the expression of many plastid encoded genes (PEGs) through regulation of ATSIG5. Taken together, our results suggest that ATHB17 may play an important role in protecting plants by adjusting expression of PhANGs and PEGs in response to abiotic stresses. PMID:28358040

  13. Climate-related environmental stress in intertidal grazers: scaling-up biochemical responses to assemblage-level processes

    Directory of Open Access Journals (Sweden)

    Elena Maggi

    2016-10-01

    Full Text Available Background Organisms are facing increasing levels of environmental stress under climate change that may severely affect the functioning of biological systems at different levels of organization. Growing evidence suggests that reduction in body size is a universal response of organisms to global warming. However, a clear understanding of whether extreme climate events will impose selection directly on phenotypic plastic responses and how these responses affect ecological interactions has remained elusive. Methods We experimentally investigated the effects of extreme desiccation events on antioxidant defense mechanisms of a rocky intertidal gastropod (Patella ulyssiponensis, and evaluated how these effects scaled-up at the population and assemblage levels. Results With increasing levels of desiccation stress, limpets showed significant lower levels of total glutathione, tended to grow less and had reduced per capita interaction strength on their resources. Discussion Results suggested that phenotypic plasticity (i.e., reduction in adults’ body size allowed buffering biochemical responses to stress to scale-up at the assemblage level. Unveiling the linkages among different levels of biological organization is key to develop indicators that can anticipate large-scale ecological impacts of climate change.

  14. Climate-related environmental stress in intertidal grazers: scaling-up biochemical responses to assemblage-level processes

    Science.gov (United States)

    Cappiello, Mario; Del Corso, Antonella; Lenzarini, Francesca; Peroni, Eleonora; Benedetti-Cecchi, Lisandro

    2016-01-01

    Background Organisms are facing increasing levels of environmental stress under climate change that may severely affect the functioning of biological systems at different levels of organization. Growing evidence suggests that reduction in body size is a universal response of organisms to global warming. However, a clear understanding of whether extreme climate events will impose selection directly on phenotypic plastic responses and how these responses affect ecological interactions has remained elusive. Methods We experimentally investigated the effects of extreme desiccation events on antioxidant defense mechanisms of a rocky intertidal gastropod (Patella ulyssiponensis), and evaluated how these effects scaled-up at the population and assemblage levels. Results With increasing levels of desiccation stress, limpets showed significant lower levels of total glutathione, tended to grow less and had reduced per capita interaction strength on their resources. Discussion Results suggested that phenotypic plasticity (i.e., reduction in adults’ body size) allowed buffering biochemical responses to stress to scale-up at the assemblage level. Unveiling the linkages among different levels of biological organization is key to develop indicators that can anticipate large-scale ecological impacts of climate change. PMID:27781156

  15. Ontogeny of the cortisol stress response in channel catfish (Ictalurus punctatus)

    Science.gov (United States)

    Cortisol is a glucocorticoid hormone which is an endocrine signaling molecule in all vertebrates and acts through intracellular glucocorticoid receptors (GR). Cortisol affects many biological functions including immunity, stress, growth, ion homeostasis, and reproduction. The objective of this stu...

  16. Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress.

    Science.gov (United States)

    Yin, Yongqi; Yang, Runqiang; Han, Yongbin; Gu, Zhenxin

    2015-01-15

    Calcium enhances salt stress tolerance of soybeans. Nevertheless, the molecular mechanism of calcium's involvement in resistance to salt stress is unclear. A comparative proteomic approach was used to investigate protein profiles in germinating soybeans under NaCl-CaCl2 and NaCl-LaCl3 treatments. A total of 80 proteins affected by calcium in 4-day-old germinating soybean cotyledons and 71 in embryos were confidently identified. The clustering analysis showed proteins were subdivided into 5 and 6 clusters in cotyledon and embryo, respectively. Among them, proteins involved in signal transduction and energy pathways, in transportation, and in protein biosynthesis were largely enriched while those involved in proteolysis were decreased. Abundance of nucleoside diphosphate kinase and three antioxidant enzymes were visibly increased by calcium. Accumulation of gamma-aminobutyric acid and polyamines was also detected after application of exogenous calcium. This was consistent with proteomic results, which showed that proteins involved in the glutamate and methionine metabolism were mediated by calcium. Calcium could increase the salt stress tolerance of germinating soybeans via enriching signal transduction, energy pathway and transportation, promoting protein biosynthesis, inhibiting proteolysis, redistributing storage proteins, regulating protein processing in endoplasmic reticulum, enriching antioxidant enzymes and activating their activities, accumulating secondary metabolites and osmolytes, and other adaptive responses. Biological significance Soybean (Glycine max L.), as a traditional edible legume, is being targeted for designing functional foods. During soybean germination under stressful conditions especially salt stress, newly discovered functional components such as gamma-aminobutyric acid (GABA) are rapidly accumulated. However, soybean plants are relatively salt-sensitive and the growth, development and biomass of germinating soybeans are significantly

  17. Exposed to events that never happen: Generalized unsafety, the default stress response, and prolonged autonomic activity.

    Science.gov (United States)

    Brosschot, Jos F; Verkuil, Bart; Thayer, Julian F

    2017-03-01

    Based on neurobiological and evolutionary arguments, the generalized unsafety theory of stress (GUTS) hypothesizes that the stress response is a default response, and that chronic stress responses are caused by generalized unsafety (GU), independent of stressors or their cognitive representation. Three highly prevalent conditions are particularly vulnerable to becoming 'compromised' in terms of GU, and carry considerable health risks: Thus, GUTS critically revises and expands stress theory, by focusing on safety instead of threat, and by including risk factors that have hitherto not been attributed to stress.

  18. Psychological and physiological responses to stress: a review based on results from PET and MRI studies

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Celia Martins; Cruz, Frederico Alan de Oliveira; Silva, Dilson [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Ciencias Fisiologicas]. E-mail: ccortez@uerj.br

    2008-12-15

    A new application for the nuclear imaging techniques is the study of organic responses to stress. Neuroimaging techniques allow the assessment of brain activation changes in association with the metabolic responses to stress. In this paper, a review of general effects of the stress on organic activity is made, emphasizing important advances introduced by studies using PET and fMRI. The importance of the hypothalamus-pituitary-adrenal axis to onset the adequate psychical and organic responses to sustain the homeostasis during the stress is discussed, as well as the possibility of traumatic stressing experiences have negative effects on the brain. (author)

  19. Role of c-Abl in the DNA damage stress response

    Institute of Scientific and Technical Information of China (English)

    Yosef SHAUL; Merav BEN-YEHOYADA

    2005-01-01

    c-Abl has been implicated in many cellular processes including differentiation, division, adhesion, death, and stress response. c-Abl is a latent tyrosine kinase that becomes activated in response to numerous extra- and intra-cellular stimuli. Here we briefly review the current knowledge about c-Abl involvement in the DNA-damage stress response and its implication on cell physiology.

  20. Proteomic and Physiological Analyses Reveal Putrescine Responses in Roots of Cucumber Stressed by NaCl

    Directory of Open Access Journals (Sweden)

    Yinghui Yuan

    2016-07-01

    Full Text Available Soil salinity is a major environmental constraint that threatens agricultural productivity. Different strategies have been developed to improve crop salt tolerance, among which the effects of polyamines have been well reported. To gain a better understanding of the cucumber (Cucumis sativus L. responses to NaCl and unravel the underlying mechanism of exogenous putrescine (Put alleviating salt-induced damage, comparative proteomic analysis was conducted on cucumber roots treated with NaCl and/or Put for 7 days. The results showed that exogenous Put restored the root growth inhibited by NaCl. 62 differentially expressed proteins implicated in various biological processes were successfully identified by MALDI-TOF/TOF MS. The four largest categories included proteins involved in defense response (24.2%, protein metabolism (24.2%, carbohydrate metabolism (19.4% and amino acid metabolism (14.5%. Exogenous Put up-regulated most identified proteins involved in carbohydrate metabolism, implying an enhancement in energy generation. Proteins involved in defense response and protein metabolism were differently regulated by Put, which indicated the roles of Put in stress resistance and proteome rearrangement. Put also increased the abundance of proteins involved in amino acid metabolism. Meanwhile, physiological analysis showed that Put could further up-regulated the levels of free amino acids in salt stressed-roots. In addition, Put also improved endogenous polyamines contents by regulating the transcription levels of key enzymes in polyamine metabolism. Taken together, these results suggest that Put may alleviate NaCl-induced growth inhibition through degradation of misfolded/damaged proteins, activation of stress defense, and the promotion of carbohydrate metabolism to generate more energy.

  1. Stress response of wild bottlenose dolphins (Tursiops truncatus) during capture-release health assessment studies.

    Science.gov (United States)

    Fair, Patricia A; Schaefer, Adam M; Romano, Tracy A; Bossart, Gregory D; Lamb, Stephen V; Reif, John S

    2014-09-15

    There is a growing concern about the impacts of stress in marine mammals as they face a greater array of threats. The stress response of free-ranging dolphins (Tursiops truncatus) was examined by measuring their physiologic response to capture and handling. Samples were collected from 168 dolphins during capture-release health assessments 2003-2007 at two study sites: Charleston, SC (CHS) and the Indian River Lagoon, FL (IRL). Adrenocorticotropic hormone (ACTH), cortisol, aldosterone (ALD) and catecholamines (epinephrine (EPI), norepinephrine (NOR), dopamine (DA)), were measured in blood and cortisol in urine. Mean time to collect pre-examination samples after netting the animals was 22min; post-examination samples were taken prior to release (mean 1h 37min). EPI and DA concentrations decreased significantly with increased time to blood sampling. ACTH and cortisol levels increased from the initial capture event to the post-examination sample. EPI concentrations increased significantly with increasing time to the pre-examination sample and decreased significantly with time between the pre- and post-examination sample. Cortisol concentrations increased between the pre- and post-examination in CHS dolphins. Age- and sex-adjusted mean pre-examination values of catecholamines were significantly higher in CHS dolphins; ALD was higher in IRL dolphins. Significant differences related to age or sex included higher NOR concentrations in males; higher ALD and urine cortisol levels in juveniles than adults. Wild dolphins exhibited a typical mammalian response to acute stress of capture and restraint. Further studies that relate hormone levels to biological and health endpoints are warranted.

  2. Specificity in stress response: epidermal keratinocytes exhibit specialized UV-responsive signal transduction pathways.

    Science.gov (United States)

    Adachi, Makoto; Gazel, Alix; Pintucci, Giuseppe; Shuck, Alyssa; Shifteh, Shiva; Ginsburg, Dov; Rao, Laxmi S; Kaneko, Takehiko; Freedberg, Irwin M; Tamaki, Kunihiko; Blumenberg, Miroslav

    2003-10-01

    UV light, a paradigmatic initiator of cell stress, invokes responses that include signal transduction, activation of transcription factors, and changes in gene expression. Consequently, in epidermal keratinocytes, its principal and frequent natural target, UV regulates transcription of a distinctive set of genes. Hypothesizing that UV activates distinctive epidermal signal transduction pathways, we compared the UV-responsive activation of the JNK and NFkappaB pathways in keratinocytes, with the activation of the same pathways by other agents and in other cell types. Using of inhibitors and antisense oligonucleotides, we found that in keratinocytes only UVB/UVC activate JNK, while in other cell types UVA, heat shock, and oxidative stress do as well. Keratinocytes express JNK-1 and JNK-3, which is unexpected because JNK-3 expression is considered brain-specific. In keratinocytes, ERK1, ERK2, and p38 are activated by growth factors, but not by UV. UVB/UVC in keratinocytes activates Elk1 and AP1 exclusively through the JNK pathway. JNKK1 is essential for UVB/UVC activation of JNK in keratinocytes in vitro and in human skin in vivo. In contrast, in HeLa cells, used as a control, crosstalk among signal transduction pathways allows considerable laxity. In parallel, UVB/UVC and TNFalpha activate the NFkappaB pathway via distinct mechanisms, as shown using antisense oligonucleotides targeted against IKKbeta, the active subunit of IKK. This implies a specific UVB/UVC responsive signal transduction pathway independent from other pathways. Our results suggest that in epidermal keratinocytes specific signal transduction pathways respond to UV light. Based on these findings, we propose that the UV light is not a genetic stress response inducer in these cells, but a specific agent to which epidermis developed highly specialized responses.

  3. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses

    KAUST Repository

    Zhang, Xiujuan

    2013-06-01

    The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses to developmental and environmental stimuli. Here, we characterized the biological function of an ABA and stress-inducible cysteine-rich receptor-like protein kinase, CRK45, in ABA signaling in Arabidopsis thaliana. The crk45 mutant was less sensitive to ABA than the wild type during seed germination and early seedling development, whereas CRK45 overexpression plants were more sensitive to ABA compared to the wild type. Furthermore, overexpression of CRK45 led to hypersensitivity to salt and glucose inhibition of seed germination, whereas the crk45 mutant showed the opposite phenotypes. In addition, CRK45 overexpression plants had enhanced tolerance to drought. Gene expression analyses revealed that the expression of representative stress-responsive genes was significantly enhanced in CRK45 overexpression plants in response to salt stress. ABA biosynthetic genes such as NCED3,. 22NCED3, 9-Cis-Epoxycarotenoid Dioxygenase 3.NCED5,. 33NCED5, 9-Cis-Epoxycarotenoid Dioxygenase 5.ABA2,. 44ABA2, Abscisic Acid Deficient 2. and AAO355AAO3, Abscisic Aldehyde Oxidase 3. were also constitutively elevated in the CRK45 overexpression plants. We concluded that CRK45 plays an important role in ABA signaling that regulates Arabidopsis seeds germination, early seedling development and abiotic stresses response, by positively regulating ABA responses in these processes. © 2013 Elsevier Masson SAS.

  4. Transcriptome profiling of the UV-B stress response in the desert shrub Lycium ruthenicum.

    Science.gov (United States)

    Chen, Haikui; Feng, Yang; Wang, Lina; Yonezawa, Takahiro; Crabbe, M James C; Zhang, Xiu; Zhong, Yang

    2015-03-01

    Ultraviolet-B (UV-B) is a natural component of the solar radiation. Due to its high energy, low dosages of UV-B can bring huge potential damage effect to organisms. Despite much research that has analyzed the gene expression changes of plants that under UV-B radiation, the transcriptome response of Lycium ruthenicum under the UV-B induction is still un-available. The aim of our study was to identify UV-B responsive genes and gain an insight into the underlying genetic basis of the pathobiology of UV-B related damage. We collected leaf samples from L. ruthenicum with and without UV-B exposure, and then performed a transcriptome profiling to comprehensively investigate their expression signatures. By employing the high throughput RNA-sequencing analysis of samples with and without UV-B exposure, we identified 1,913 up-regulated and 536 down-regulated genes at least by twofold changes. The activity of antioxidant enzyme related genes, including the superoxide dismutase, was decreased, genes related to the synthesis of secondary metabolites and defense responses, such as cinnamyl alcohol dehydrogenase, chalcone-flavanone isomerase and dihydroflavonol reductase were also downregulated. The expression patterns of 14 randomly selected genes resulted from quantitative real-time PCR were basically consistent with their transcript abundance changes identified by RNA-sequencing. We found that several biological pathways related to biotic and abiotic stresses, including cell defense, photosynthesis processes, energy metabolism, were involved in the process of UV-B stress response. A genome-wide screening of gene deregulation under UV-B induction would provide an insight into the understanding of the molecular bases and pathogenesis of UV-B responses.

  5. Salmonella Enteritidis strains from poultry exhibit differential responses to acid stress, oxidative stress, and survival in the egg albumen.

    Science.gov (United States)

    Shah, Devendra H; Casavant, Carol; Hawley, Quincy; Addwebi, Tarek; Call, Douglas R; Guard, Jean

    2012-03-01

    Salmonella Enteritidis is the major foodborne pathogen that is primarily transmitted by contaminated chicken meat and eggs. We recently demonstrated that Salmonella Enteritidis strains from poultry differ in their ability to invade human intestinal cells and cause disease in orally challenged mice. Here we hypothesized that the differential virulence of Salmonella Enteritidis strains is due to the differential fitness in the adverse environments that may be encountered during infection in the host. The responses of a panel of six Salmonella Enteritidis strains to acid stress, oxidative stress, survival in egg albumen, and the ability to cause infection in chickens were analyzed. This analysis allowed classification of strains into two categories, stress-sensitive and stress-resistant, with the former showing significantly (p<0.05) reduced survival in acidic (gastric phase of infection) and oxidative (intestinal and systemic phase of infection) stress. Stress-sensitive strains also showed impaired intestinal colonization and systemic dissemination in orally inoculated chickens and failed to survive/grow in egg albumen. Comparative genomic hybridization microarray analysis revealed no differences at the discriminatory level of the whole gene content between stress-sensitive and stress-resistant strains. However, sequencing of rpoS, a stress-regulatory gene, revealed that one of the three stress-sensitive strains carried an insertion mutation in the rpoS resulting in truncation of σ(S). Finding that one of the stress-sensitive strains carried an easily identifiable small polymorphism within a stress-response gene suggests that the other strains may also have small polymorphisms elsewhere in the genome, which likely impact regulation of stress or virulence associated genes in some manner.

  6. Plant response strategies to stress and disturbance: the case of aquatic plants

    Indian Academy of Sciences (India)

    Michèle Trémolières

    2004-12-01

    The environmental factors controlling the establishment and development of plants in different ecosystems are of two types, stress and disturbance. The effects of stress or disturbance on aquatic systems are discussed in relation to the following questions: Can we predict the state and rate of recolonization after a disturbance? What are the strategies of recolonization developed by plants? How high is the resilience of a disturbed system? Two theories, the intermediate disturbance hypothesis, and the patch dynamics concept proposed to predict the composition, structure and dynamics of plants due to physical-chemical factors, were tested on two scales, that of communities and that of species, within two alluvial floodplains (the Rhine and the Rhône systems in France). With regard to the change of community on a larger scale (i.e. the whole network of the cut-off channels in the floodplain), large gradients of connection and disturbance induce high diversities within communities. Moreover, the highest flood disturbance induces a higher species richness and the occurrence of a particular species. The change in species is analysed using biological traits (morphological, reproductive or physiological). In the floodplain of the river Rhône, the response of plants corresponds well to theory, i.e. that habitats with an intermediate disturbance are richer than more or less disturbed habitats. So we can predict, through the biological traits, the functioning of a habitat. The last remaining question is that of the resilience of the system, which can be discussed in terms of species competition and the risk of biological invasion after an opening of habitat.

  7. The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses

    Directory of Open Access Journals (Sweden)

    Ü. Niinemets

    2010-07-01

    Full Text Available The rate of constitutive isoprenoid emissions from plants is driven by plant emission capacity under specified environmental conditions (ES, the emission factor and by responsiveness of the emissions to instantaneous variations in environment. In models of isoprenoid emission, ES has been often considered as intrinsic species-specific constant invariable in time and space. Here we analyze the variations in species-specific values of ES under field conditions focusing on abiotic stresses, past environmental conditions and developmental processes. The reviewed studies highlight strong stress-driven, adaptive (previous temperature and light environment and growth CO2 concentration and developmental (leaf age variations in ES values operating at medium to long time scales. These biological factors can alter species-specific ES values by more than an order of magnitude. While the majority of models based on early concepts still ignore these important sources of variation, recent models are including some of the medium- to long-term controls. However, conceptually different strategies are being used for incorporation of these longer-term controls with important practical implications for parameterization and application of these models. This analysis emphasizes the need to include more biological realism in the isoprenoid emission models and also highlights the gaps in knowledge that require further experimental work to reduce the model uncertainties associated with biological sources of variation.

  8. Breakthrough disease during interferon-[beta] therapy in MS: No signs of impaired biologic response

    DEFF Research Database (Denmark)

    Hesse, D; Krakauer, M; Lund, H;

    2010-01-01

    Disease activity is highly variable in patients with multiple sclerosis (MS), both untreated and during interferon (IFN)-beta therapy. Breakthrough disease is often regarded as treatment failure; however, apart from neutralizing antibodies (NAbs), no blood biomarkers have been established...... as reliable indicators of treatment response, despite substantial, biologically measurable effects. We studied the biologic response to treatment in a cohort of NAb-negative patients to test whether difference in responsiveness could segregate patients with and without breakthrough disease during therapy....

  9. Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress.

    Science.gov (United States)

    Han, Yanping; Zhou, Dongsheng; Pang, Xin; Zhang, Ling; Song, Yajun; Tong, Zongzhong; Bao, Jingyue; Dai, Erhei; Wang, Jin; Guo, Zhaobiao; Zhai, Junhui; Du, Zongmin; Wang, Xiaoyi; Wang, Jian; Huang, Peitang; Yang, Ruifu

    2005-04-01

    DNA microarray was used as a tool to investigate genome-wide transcriptional responses of Yersinia pestis to hyperosmotic and high-salinity stress. Hyperosmotic stress specifically upregulated genes responsible for ABC-type transport and the cytoplasmic accumulation of certain polysaccharides, while high-salinity stress induced the transcription of genes encoding partition proteins and several global transcriptional regulators. Genes whose transcription was enhanced by both kinds of stress comprised those encoding osmoprotectant transport systems and a set of virulence determinants. The number of genes downregulated by the two kinds of stress was much lower than that of upregulated genes, suggesting that neither kind of stress severely depresses cellular processes in general. Many differentially regulated genes still exist whose functions remain unknown. Y. pestis recognized high-salinity and hyperosmotic stress as different kinds of environmental stimuli, and different mechanisms enabled acclimation to these two kinds of stress, although Y. pestis still executed common mechanisms to accommodate both types of stress.

  10. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    Science.gov (United States)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  11. Gender differences in acculturation, stress, and salivary cortisol response among former Soviet immigrants.

    Science.gov (United States)

    Nicholson, Lisa M; Miller, Arlene Michaels; Schwertz, Dorie; Sorokin, Olga

    2013-06-01

    Post-immigration adaptation is characterized by chronic and acute acculturative stressors. Salivary cortisol is a commonly used hormonal marker of stress, but few studies have investigated its use as an indicator of acculturative stress and adjustment in immigrants. The purpose of this study was to examine relationships among predictors of adjustment (environmental and language mastery), self-reported stress outcomes (depressive symptoms, perceived stress, alienation), and salivary cortisol response in immigrants from the former Soviet Union. The sample included 137 married men and women aged 42-80 who lived in the U.S. for 1-13 years. Results indicated that while men and women had similar values for cortisol response, relationships among adjustment measures, stress outcomes, and cortisol differed by gender. Among men, environmental mastery significantly reduced depressive symptoms, perceived stress, and cortisol response. Among women, environmental mastery also reduced depressive symptoms, perceived stress, and alienation, but language mastery increased cortisol response and decreased alienation.

  12. Earthworms and Humans in Vitro: Characterizing Evolutionarily Conserved Stress and Immune Responses to Silver Nanoparticles

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Engelmann, Péter; Foldbjerg, Rasmus

    2012-01-01

    Little is known about the potential threats of silver nanoparticles (AgNPs) to ecosystem health, with no detailed report existing on the stress and immune responses of soil invertebrates. Here we use earthworm primary cells, cross-referencing to human cell cultures with a particular emphasis...... on the conserved biological processes, and provide the first in vitro analysis of molecular and cellular toxicity mechanisms in the earthworm Eisenia fetida exposed to AgNPs (83 ± 22 nm). While we observed a clear difference in cytotoxicity of dissolved silver salt on earthworm coelomocytes and human cells (THP-1...... in the coelomocytes and THP-1 cells. Our findings provide mechanistic clues on cellular innate immunity toward AgNPs that is likely to be evolutionarily conserved across the animal kingdom....

  13. Responses to Low Doses of Ionizing Radiation in Biological Systems

    OpenAIRE

    Feinendegen, Ludwig E.; Pollycove, Myron; Sondhaus, Charles A.

    2004-01-01

    Biological tissues operate through cells that act together within signaling networks. These assure coordinated cell function in the face of constant exposure to an array of potentially toxic agents, externally from the environment and endogenously from metabolism. Living tissues are indeed complex adaptive systems.

  14. Acid and base stress and transcriptomic responses in Bacillus subtilis.

    Science.gov (United States)

    Wilks, Jessica C; Kitko, Ryan D; Cleeton, Sarah H; Lee, Grace E; Ugwu, Chinagozi S; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2009-02-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.

  15. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP mitigates salt and osmotic stress in transgenic tobacco plants

    Directory of Open Access Journals (Sweden)

    Pushpika eUdawat

    2016-04-01

    Full Text Available The Universal Stress Protein (USP is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologues of intron less SbUSP gene which encodes for salt and osmotic responsive universal stress protein. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control (wild type and vector control plants under different abiotic stress condition. Transgenic lines (T1 exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability and lower electrolyte leakage and lipid peroxidation (malondialdehyde content under stress treatments than control (WT and VC plants. Lower accumulation of H2O2 and O2- radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis (PCA exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant.

  16. Eccentric-exercise induced inflammation attenuates the vascular responses to mental stress.

    Science.gov (United States)

    Paine, Nicola J; Ring, Christopher; Aldred, Sarah; Bosch, Jos A; Wadley, Alex J; Veldhuijzen van Zanten, Jet J C S

    2013-05-01

    Mental stress has been identified as a trigger of myocardial infarction (MI), with inflammation and vascular responses to mental stress independently implicated as contributing factors. This study examined whether inflammation moderates the vascular responses to mental stress. Eighteen healthy male participants completed a stress task under two counter balanced conditions. In the exercise condition, a morning bout of eccentric exercise (12×5 repetitions of unilateral eccentric knee extension at 120% intensity of concentric one repetition maximum) was used to increase levels of inflammatory-responsive cytokines during an afternoon stress session scheduled 6h later. In the control condition, participants sat and relaxed for 45min, 6h prior to the afternoon stress session. Forearm blood flow, calf blood flow (measured in the leg which completed the exercise task), blood pressure, heart rate and cardiac output were assessed at rest and in response to mental stress. As expected, interleukin-6 was higher (p=.02) 6h post exercise, i.e., at the start of the stress session, as compared to the no-exercise control condition. Mental stress increased forearm blood flow, calf blood flow, blood pressure, heart rate, and cardiac output in both conditions (p'sexercise condition compared to the control condition (peccentric exercise attenuated the vascular responses to mental stress locally at the site of eccentric exercise-induced inflammation. The observed impairment in vascular responses to stress associated with increased levels of inflammation suggests a mechanism through which inflammation might increase the risk for MI.

  17. Galvanic Skin Response as a Measure of Soldier Stress

    Science.gov (United States)

    2007-05-01

    in the body have been used as an effective measure of stress, including social stress such as performance in front of an audience (Nater, La Marca ...Lake, CA, 1992. Nater, U. M.; La Marca , R.; Florin, L.; Moses, A.; Langhans, W.; Koller, M. M.; Ehlert, U. Stress-Induced Changes in Human

  18. Divergent Stress-Induced Neuroendocrine and Behavioral Responses Prior to Puberty

    Science.gov (United States)

    Lui, Patina; Padow, Victoria A.; Franco, Daly; Hall, Baila S.; Park, Brian; Klein, Zoe A.; Romeo, Russell D.

    2012-01-01

    Following an acute stressor, pre-adolescent rats exhibit a protracted hormonal response compared to adults, while after repeated exposure to the same stressor (i.e., homotypic stress) prepubertal males fail to habituate like adults. Though the neurobehavioral implications of these changes are unknown, studying pubertal shifts in stress reactivity may help elucidate the mechanisms that underlie the increase in stress-related psychological and physiological disorders often observed during adolescence. Here, we investigated hormonal, behavioral, and neural responses of prepubertal (30d) and adult (77d) male rats before, during, or after acute stress (restraint), homotypic stress (repeated restraint) or heterotypic stress (repeated cold exposure followed by restraint). We found that prepubertal males exhibit prolonged corticosterone responses following acute and heterotypic stress, and higher adrenocorticotropic hormone and corticosterone responses after homotypic stress, compared to adults. Despite these significant age-dependent changes in hormonal responsiveness, we found struggling behavior during restraint was similar at both ages, such that both prepubertal and adult animals exposed to homotypic stress struggled less than animals exposed to either acute or heterotypic stress. Across these different stress paradigms, we found greater neural activation, as indexed by FOS immunostaining, in the prepubertal compared to adult paraventricular nucleus of the hypothalamus, a nucleus integral for initiating the hormonal stress response. Interestingly, however, we did not find any influence of pubertal development on stress-induced activation of the posterior paraventricular thalamic nucleus, a brain region involved in experience-dependent changes in stress reactivity. Collectively, our data indicate prepubertal and adult males display divergent hormonal, behavioral, and neural responses following a variety of stressful experiences, as well as a distinct dissociation

  19. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans.

    Science.gov (United States)

    Morton, James P; Kayani, Anna C; McArdle, Anne; Drust, Barry

    2009-01-01

    oxidation of muscle proteins) as opposed to increases in contracting muscle temperature per se. Following 'damaging' forms of exercise (exercise that induces overt structural and functional damage to the muscle), the stress response is likely initiated by mechanical damage to protein structure and further augmented by the secondary damage associated with inflammatory processes occurring several days following the initial insult. Exercise training induces an increase in baseline HSP levels, which is dependent on a sustained and currently unknown dose of training and also on the individual's initial training status. Furthermore, trained subjects display an attenuated or abolished stress response to customary exercise challenges, likely due to adaptations of baseline HSP levels and the antioxidant system. Whilst further fundamental work is needed to accurately characterize the exercise-induced stress response in specific populations following varying exercise protocols, exercise scientists should also focus their efforts on elucidating the precise biological significance of the exercise-induced induction of HSPs. In addition to their potential cytoprotective properties, the role of HSPs in modulating cell signalling pathways related to both exercise adaptation and health and disease also needs further investigation. As a non-pharmacological intervention, exercise and the associated up-regulation of HSPs and the possible correction of maladapted pathways may therefore prove effective in providing protection against protein misfolding diseases and in preserving muscle function during aging.

  20. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism.

    Science.gov (United States)

    Kissoudis, Christos; Sunarti, Sri; van de Wiel, Clemens; Visser, Richard G F; van der Linden, C Gerard; Bai, Yuling

    2016-09-01

    Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of different levels of salt stress ranging from mild to severe (50, 100, and 150mM NaCl) on powdery mildew resistance and overall performance of tomato introgression lines with contrasting levels of partial resistance, as well as near-isogenic lines (NILs) carrying the resistance gene Ol-1 (associated with a slow hypersensitivity response; HR), ol-2 (an mlo mutant associated with papilla formation), and Ol-4 (an R gene associated with a fast HR). Powdery mildew resistance was affected by salt stress in a genotype- and stress intensity-dependent manner. In susceptible and partial resistant lines, increased susceptibility was observed under mild salt stress (50mM) which was accompanied by accelerated cell death-like senescence. In contrast, severe salt stress (150mM) reduced disease symptoms. Na(+) and Cl(-) accumulation in the leaves was linearly related to the decreased pathogen symptoms under severe stress. In contrast, complete resistance mediated by ol-2 and Ol-4 was unaffected under all treatment combinations, and was associated with a decreased growth penalty. Increased susceptibility and senescence under combined stress in NIL-Ol-1 was associated with the induction of ethylene and jasmonic acid pathway genes and the cell wall invertase gene LIN6. These results highlight the significance of stress severity and resistance type on the plant's performance under the combination of abiotic and biotic stress.

  1. Biological response modifiers and their potential use in the treatment of inflammatory skin diseases

    DEFF Research Database (Denmark)

    Villadsen, Louise S; Skov, Lone; Baadsgaard, Ole

    2003-01-01

    and fewer side-effects than the current systemic therapies now used for severe psoriasis, contact dermatitis and atopic dermatitis. In the pathogenesis of inflammatory skin diseases, the immune system plays a pivotal role, and this is where biological response modifiers such as monoclonal antibodies......In recent years, a more detailed understanding of the pathogenesis of several inflammatory skin diseases, combined with the developments within biotechnology, has made it possible to design more selective response modifiers. Biological response modifiers hold the potential for greater effectiveness......, recombinant cytokines, or fusion proteins may be effective. Several biological response modifiers have already shown positive results in phase II/III clinical trials in skin diseases, and many new biological response modifiers are in progress....

  2. A translational approach to clinical practice via stress-responsive glucocorticoid receptor signaling

    Science.gov (United States)

    Agustini, Bruno; Cleare, Anthony J.; Young, Allan H.

    2017-01-01

    A recent article by Kwan and colleagues could elegantly demonstrate the necessary interaction between neuronal serotonin (5-HT) systems and the hypothalamic-pituitary-adrenal (HPA) axis through glucocorticoid receptors (GR), producing an adequate stress response, in this case, responding to hypoxia with an increase in hematopoietic stem and progenitor cells (HSPC). There is an intricate system connecting brain, body and mind and this exchange is only possible when all these systems—nervous, endocrine, and immune—have receptors on critical cells to receive information (via messenger molecules) from each of the other systems. There is evidence that the expression and function of GR in the hippocampus, mainly MR, is regulated by the stimulation of 5-HT receptors. Stressful stimuli increase 5-HT release and turnover in the hippocampus, and it seems reasonable to suggest that some of the changes in mineralocorticoid and GR expression may be mediated, in part at least, by the increase in 5-HT. Also serotonin and HPA axis dysfunctions have already been implicated in a variety of psychiatric disorders, especially depression. Early life stress (ELS) can have profound impact on these systems and can predispose subjects to a variety of adult metabolic and psychiatric conditions. It is important to analyze the mechanisms of this complex interaction and its subsequent programming effects on the stress systems, so that we can find new ways and targets for treatment of psychiatric disorders. Different areas of research on basic biological sciences are now being integrated and this approach will hopefully provide several new insights, new pharmacological targets and improve our global understanding of these highly debilitating chronic conditions, that we now call mental disorders. PMID:28275643

  3. Salivary alpha-amylase and cortisol responsiveness following electrically stimulated physical stress in bipolar disorder patients

    Directory of Open Access Journals (Sweden)

    Tanaka Y

    2013-12-01

    Full Text Available Yoshihiro Tanaka, Yoshihiro Maruyama, Yoshinobu Ishitobi, Aimi Kawano, Tomoko Ando, Rie Ikeda, Ayako Inoue, Junko Imanaga, Shizuko Okamoto, Masayuki Kanehisa, Taiga Ninomiya, Jusen Tsuru, Jotaro Akiyoshi Department of Neuropsychiatry, Faculty of Medicine, Oita University, Hasama-Machi, Oita, Japan Background: Bipolar disorder (BP is often associated with a change in hypothalamus–pituitary–adrenal axis function change due to chronic stress. Salivary α-amylase (sAA levels increase in response to psychosocial stress and thus function as a marker of sympathoadrenal medullary system activity. However, sAA has been studied less often than salivary cortisol in BP patients. Method: We measured Profile of Mood States and State-Trait Anxiety Inventory scores, heart rate variability, and salivary cortisol levels during electrical stimulation stress in 25 BP patients and 22 healthy volunteers. Results: Tension–anxiety, depression–dejection, anger–hostility, fatigue, and confusion scores in BP patients significantly increased compared with those of the healthy controls. In contrast, the vigor scores of BP patients significantly decreased compared with those of the healthy controls. Significant difference in the sAA levels was observed between BP patients and healthy controls. sAA of female patients was significantly higher than that of female healthy controls, and sAA in male patients tended to be higher than that of male healthy controls. No difference in salivary cortisol was observed between BP patients and the healthy controls. Only three time points were measured before and after the electrical stimulation stress. Furthermore, sAA secretion by BP patients increased before and after electrical stimulation. Conclusion: These preliminary results suggest that sAA may be a useful biological marker for BP patients. Keywords: HPA axis, bipolar disorder, α-amylase, cortisol, SAM activity

  4. The role of stress in absenteeism: cortisol responsiveness among patients on long-term sick leave.

    Directory of Open Access Journals (Sweden)

    Henrik B Jacobsen

    Full Text Available OBJECTIVE: This study aimed to (1 See whether increased or decreased variation relate to subjective reports of common somatic and psychological symptoms for a population on long-term sick leave; and (2 See if this pattern in variation is correlated with autonomic activation and psychological appraisal. METHODS: Our participants (n = 87 were referred to a 3.5-week return-to-work rehabilitation program, and had been on paid sick leave >8 weeks due to musculoskeletal pain, fatigue and/or common mental disorders. An extensive survey was completed, addressing socio-demographics, somatic and psychological complaints. In addition, a physician and a psychologist examined the participants, determining baseline heart rate, medication use and SCID-I diagnoses. During the 3.5-week program, the participants completed the Trier Social Stress Test for Groups. Participants wore heart rate monitors and filled out Visual Analogue Scales during the TSST-G. RESULTS: Our participants presented a low cortisol variation, with mixed model analyses showing a maximal increase in free saliva cortisol of 26% (95% CI, 0.21-0.32. Simultaneously, the increase in heart rate and Visual Analogue Scales was substantial, indicating autonomic and psychological activation consistent with intense stress from the Trier Social Stress Test for Groups. CONCLUSIONS: The current findings are the first description of a blunted cortisol response in a heterogeneous group of patients on long-term sick leave. The results suggest lack of cortisol reactivity as a possible biological link involved in the pathway between stress, sustained activation and long-term sick leave.

  5. Fungal stress biology: a preface to the Fungal Stress Responses special edition

    NARCIS (Netherlands)

    Rangel, Drauzio E. N.; Alder-Rangel, Alene; Dadachova, Ekaterina; Finlay, Roger D.; Kupiec, Martin; Dijksterhuis, Jan; Braga, Gilberto U. L.; Corrochano, Luis M.; Hallsworth, John E.

    2015-01-01

    There is currently an urgent need to increase global food security, reverse the trends of increasing cancer rates, protect environmental health, and mitigate climate change. Toward these ends, it is imperative to improve soil health and crop productivity, reduce food spoilage, reduce pesticide usage

  6. Effects of Stress and Social Enrichment on Alcohol Intake, Biological and Psychological Stress Responses in Rats

    Science.gov (United States)

    2010-06-28

    TAG) program, where the students were taken out of the normal classroom several times a week for an hour or two and allowed to work on special...Decreased blood pressure in borderline hypertensive subjects who practiced meditation . J Chronic Dis 27:163-169. Berger SS (2009) Behavioral and

  7. Beta-endorphin neuron regulates stress response and innate immunity to prevent breast cancer growth and progression.

    Science.gov (United States)

    Sarkar, Dipak K; Zhang, Changqing

    2013-01-01

    Body and mind interact extensively with each other to control health. Emerging evidence suggests that chronic neurobehavioral stress can promote various tumor growth and progression. The biological reaction to stress involves a chemical cascade initiated within the central nervous system and extends to the periphery, encompassing the immune, endocrine, and autonomic systems. Activation of sympathetic nervous system, such as what happens in the "fight or flight" response, downregulates tumor-suppressive genes, inhibits immune function, and promotes tumor growth. On the other hand, an optimistic attitude or psychological intervention helps cancer patients to survive longer via increase in β-endorphin neuronal suppression of stress hormone levels and sympathetic outflows and activation of parasympathetic control of tumor suppressor gene and innate immune cells to destroy and clear tumor cells.

  8. The impact of respiration and oxidative stress response on recombinant α-amylase production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Martínez, José L.; Meza, Eugenio; Petranovic, Dina

    2016-01-01

    to purify a secreted product. However, recombinant production at high rates represents a significant metabolic burden for the yeast cells, which results in oxidative stress and ultimately affects the protein production capacity. Here we describe a method to reduce the overall oxidative stress......Studying protein production is important for fundamental research on cell biology and applied research for biotechnology. Yeast Saccharomyces cerevisiae is an attractive workhorse for production of recombinant proteins as it does not secrete many endogenous proteins and it is therefore easy...... by overexpressing the endogenous HAP1 gene in a S. cerevisiae strain overproducing recombinant α-amylase. We demonstrate how Hap1p can activate a set of oxidative stress response genes and meanwhile contribute to increase the metabolic rate of the yeast strains, therefore mitigating the negative effect of the ROS...

  9. Maternal separation modifies behavioural and neuroendocrine responses to stress in CCR7 deficient mice.

    Science.gov (United States)

    Harrison, Emma L; Jaehne, Emily J; Jawahar, M Catharine; Corrigan, Frances; Baune, Bernhard T

    2014-04-15

    Alterations in immune function of various humoral and cellular factors, including chemokines, secondary to early stress may play a role in the enhanced vulnerability to psychiatric conditions in those with a history of childhood adversity. C57BL/6 (WT) mice and mice deficient for the chemokine receptor type 7 (CCR7(-/-)) were used to determine the effects of maternal separation on a range of behaviours and the biological stress response. Unpredictable maternal separation (MS) was conducted for 3h daily from postnatal day 1 to 14, with subsequent behavioural testing at 10 weeks of age. Corticosterone was quantified in 11-week-old mice. Maternally separated (MS) CCR7(-/-), but not WT mice, displayed reduced interest in social novelty compared to CCR7(-/-) naïve mice. Separated CCR7(-/-) mice also exhibited significantly lower serum corticosterone concentrations compared to non-separated mice. CCR7(-/-) mice spent less time in the centre during an open field test and more time in the closed arm of the elevated zero maze compared to their wild-type (WT) controls suggesting they were more anxious, however, no difference was observed between MS and control mice in either strain or test. Together these findings suggest that CCR7 is involved in mediating social behaviour and stress response following maternal separation, whereas other behaviours such as anxiety appear to be modified by CCR7 independent of maternal separation. The observed altered cell-mediated immune function possibly underlying the behavioural and neuroendocrine differences in CCR7(-/-) mice following maternal separation requires further investigation.

  10. Assessing Sources of Stress to Aquatic Ecosystems: Using Biomarkers and Bioindicators to Characterize Exodure-Response Profiles of Anthropogenic Activities

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.

    1999-03-29

    Establishing causal relationships between sources of environmental stressors and aquatic ecosystem health if difficult because of the many biotic and abiotic factors which can influence or modify responses of biological systems to stress, the orders of magnitude involved in extrapolation over both spatial and temporal scales, and compensatory mechanisms such as density-dependent responses that operate in populations. To address the problem of establishing causality between stressors and effects on aquatic systems, a diagnostic approach, based on exposure-response profiles for various anthropogenic activities, was developed to help identify sources of stress responsible for effects on aquatic systems at ecological significant levels of biological organization (individual, population, community). To generate these exposure-effects profiles, biomarkers of exposure were plotted against bioindicators of corresponding effects for several major anthropogenic activities including petrochemical , pulp and paper, domestic sewage, mining operations, land-development activities, and agricultural activities. Biomarkers of exposure to environmental stressors varied depending on the type of anthropogenic activity involved. Bioindicator effects, however, including histopathological lesions, bioenergetic status, individual growth, reproductive impairment, and community-level responses were similar among many of the major anthropogenic activities. This approach is valuable to help identify and diagnose sources of stressors in environments impacted by multiple stressors. By identifying the types and sources of environmental stressors, aquatic ecosystems can be more effectively protected and managed to maintain acceptable levels of environmental quality and ecosystem fitness.

  11. The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide.

    Science.gov (United States)

    Sha, Wei; Martins, Ana M; Laubenbacher, Reinhard; Mendes, Pedro; Shulaev, Vladimir

    2013-01-01

    Oxidative stress is a well-known biological process that occurs in all respiring cells and is involved in pathophysiological processes such as aging and apoptosis. Oxidative stress agents include peroxides such as hydrogen peroxide, cumene hydroperoxide, and linoleic acid hydroperoxide, the thiol oxidant diamide, and menadione, a generator of superoxide, amongst others. The present study analyzed the early temporal genome-wide transcriptional response of Saccharomyces cerevisiae to oxidative stress induced by the aromatic peroxide cumene hydroperoxide. The accurate dataset obtained, supported by the use of temporal controls, biological replicates and well controlled growth conditions, provided a detailed picture of the early dynamics of the process. We identified a set of genes previously not implicated in the oxidative stress response, including several transcriptional regulators showing a fast transient response, suggesting a coordinated process in the transcriptional reprogramming. We discuss the role of the glutathione, thioredoxin and reactive oxygen species-removing systems, the proteasome and the pentose phosphate pathway. A data-driven clustering of the expression patterns identified one specific cluster that mostly consisted of genes known to be regulated by the Yap1p and Skn7p transcription factors, emphasizing their mediator role in the transcriptional response to oxidants. Comparison of our results with data reported for hydrogen peroxide identified 664 genes that specifically respond to cumene hydroperoxide, suggesting distinct transcriptional responses to these two peroxides. Genes up-regulated only by cumene hydroperoxide are mainly related to the cell membrane and cell wall, and proteolysis process, while those down-regulated only by this aromatic peroxide are involved in mitochondrial function.

  12. The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide.

    Directory of Open Access Journals (Sweden)

    Wei Sha

    Full Text Available Oxidative stress is a well-known biological process that occurs in all respiring cells and is involved in pathophysiological processes such as aging and apoptosis. Oxidative stress agents include peroxides such as hydrogen peroxide, cumene hydroperoxide, and linoleic acid hydroperoxide, the thiol oxidant diamide, and menadione, a generator of superoxide, amongst others. The present study analyzed the early temporal genome-wide transcriptional response of Saccharomyces cerevisiae to oxidative stress induced by the aromatic peroxide cumene hydroperoxide. The accurate dataset obtained, supported by the use of temporal controls, biological replicates and well controlled growth conditions, provided a detailed picture of the early dynamics of the process. We identified a set of genes previously not implicated in the oxidative stress response, including several transcriptional regulators showing a fast transient response, suggesting a coordinated process in the transcriptional reprogramming. We discuss the role of the glutathione, thioredoxin and reactive oxygen species-removing systems, the proteasome and the pentose phosphate pathway. A data-driven clustering of the expression patterns identified one specific cluster that mostly consisted of genes known to be regulated by the Yap1p and Skn7p transcription factors, emphasizing their mediator role in the transcriptional response to oxidants. Comparison of our results with data reported for hydrogen peroxide identified 664 genes that specifically respond to cumene hydroperoxide, suggesting distinct transcriptional responses to these two peroxides. Genes up-regulated only by cumene hydroperoxide are mainly related to the cell membrane and cell wall, and proteolysis process, while those down-regulated only by this aromatic peroxide are involved in mitochondrial function.

  13. Assessing coral stress responses using molecular biomarkers of gene transcription.

    Science.gov (United States)

    Morgan, M B; Vogelien, D L; Snell, T W

    2001-03-01

    We present a method for detecting rapid changes in coral gene expression at the messenger ribonucleic acid (mRNA) level. The staghorn coral Acropora cervicornis was exposed to 1 and 10 microg/L permethrin and 25 and 50 microg/L copper for 4 h. Using differential display polymerase chain reaction (PCR), mRNA associated with each toxicant exposure were reverse transcribed into complementary DNA (cDNA) fragments that were subsequently amplified and isolated. Six differentially expressed cDNA fragments were further developed into molecular probes that were used in Northern dot blots to determine the change in transcription levels of target transcripts. Changes in mRNA abundance were quantified by densitometry of chemiluminescence of digoxigenin-labeled probes hybridizing to target mRNA transcripts. The six gene probes showed varying degrees of sensitivity to the toxicants as well as specificity between toxicants. These probes were hybridized in Southern blots to genomic DNA from A. formosa sperm, which lacks zooxanthellae, to demonstrate that the genes coding for the mRNA transcripts produced are found within the coral genome. The gene probes developed in this study provide coral biologists with a new tool for coral assessment. Gene probes are sensitive, toxicant-specific biomarkers of coral stress responses with which gene sequence information can be obtained, providing a mechanism for identifying the stressor altering the gene expression.

  14. Stress tolerances of nullmutants of function-unknown genes encoding menadione stress-responsive proteins in Aspergillus nidulans.

    Science.gov (United States)

    Leiter, Éva; Bálint, Mihály; Miskei, Márton; Orosz, Erzsébet; Szabó, Zsuzsa; Pócsi, István

    2016-07-01

    A group of menadione stress-responsive function-unkown genes of Aspergillus nidulans (Locus IDs ANID_03987.1, ANID_06058.1, ANID_10219.1, and ANID_10260.1) was deleted and phenotypically characterized. Importantly, comparative and phylogenetic analyses of the tested A. nidulans genes and their orthologs shed light only on the presence of a TANGO2 domain with NRDE protein motif in the translated ANID_06058.1 gene but did not reveal any recognizable protein-encoding domains in other protein sequences. The gene deletion strains were subjected to oxidative, osmotic, and metal ion stress and, surprisingly, only the ΔANID_10219.1 mutant showed an increased sensitivity to 0.12 mmol l(-1) menadione sodium bisulfite. The gene deletions affected the stress sensitivities (tolerances) irregularly, for example, some strains grew more slowly when exposed to various oxidants and/or osmotic stress generating agents, meanwhile the ΔANID_10260.1 mutant possessed a wild-type tolerance to all stressors tested. Our results are in line with earlier studies demonstrating that the deletions of stress-responsive genes do not confer necessarily any stress-sensitivity phenotypes, which can be attributed to compensatory mechanisms based on other elements of the stress response system with overlapping functions.

  15. Effect of single or combined climatic and hygienic stress in four layer lines: 2. Endocrine and oxidative stress responses.

    Science.gov (United States)

    Star, L; Decuypere, E; Parmentier, H K; Kemp, B

    2008-06-01

    Effects of long-term climatic stress (heat exposure), short-term hygienic stress [lipopolysaccharide (LPS)], or combined exposure to these stressors on endocrine and oxidative stress parameters of 4 layer lines (B1, WA, WB, and WF) were investigated. The lines were earlier characterized for natural humoral immune competence and survival rate. Eighty hens per line were randomly divided over 2 identical climate chambers and exposed to constant high temperature (32 degrees C) or a control temperature (21 degrees C) for 23 d. Half of the hens housed in each chamber were i.v. injected with LPS at d 1 after the start of the heat stress period. The effect of heat, LPS, or combined exposure on plasma levels of corticosterone, 3,5,3'-triiodothyronine (T(3)), glucose, uric acid (UA), and TBA reacting substances (TBARS) were investigated. Except for UA, there were no interactions between heat stress and LPS administration. Heat stress enhanced levels of corticosterone, glucose, and TBARS, whereas levels of T(3) and UA were decreased. The T(3) levels, however, were enhanced by LPS administration, whereas levels of UA were decreased. Administration of LPS had no effect on levels of corticosterone and TBARS. Because both stressors caused a reduction in feed intake, it is assumed that changes in most of the plasma levels of the endocrine and oxidative stress parameters are related with the reduction in feed intake. Neither natural humoral immune competence nor survival rate, for which the lines have been characterized, was indicative for the endocrine and oxidative stress responses to different stressors. The present data suggest that hens were able to cope with single or combined heat stress and LPS administration and that heat stress and LPS administration acted like 2 independent stressors. Furthermore, the 4 layer lines differed in response patterns and response levels; line WB was physiologically most sensitive to environmental changes.

  16. Stress response: anything that doesn't kill you makes you stronger.

    Science.gov (United States)

    Gartner, Anton; Akay, Alper

    2013-11-18

    A new study shows that DNA damage not only elicits response pathways directly related to DNA repair but also induces a response that extensively overlaps with the pathogen infection pathway and confers resistance to both oxidative stress and heat shock.

  17. Managing austerity: rhetorical and real responses to fiscal stress in local government

    NARCIS (Netherlands)

    Overmans, Tom; Noordegraaf, Mirko

    2014-01-01

    Coping with fiscal stress is a major challenge. Four responses can be identified for managing austerity: decline, cutbacks, retrenchment, and downsizing. Responses are primarily fiscally oriented, or organizational; they focus predominantly on stability, or change. Explorative research indicates the

  18. Factors affecting the dynamic response of pre-stressed anchors after transient excitation

    Institute of Scientific and Technical Information of China (English)

    Xu Huijun; Li Qingfeng

    2011-01-01

    The wide application of pre-stressed bolting technology in coal mine tunnels has made the nondestructive stress wave reflection method of determining bolting quality an important one.The effect of the support plate on the dynamic response of the pre-stressed anchor is of particular interest.A theoreticalanalysis and numerical simulations are used to identify the factors affecting the contact stress between the support plate and the rock wall.A formula allowing the calculation of contact stress is presented.Stress wave propagation through the nut,support plate,and rock wall are predicted.The dynamic response signals were measured in the field using prestressed anchors pre-tightened to different torques.The effects from the support plate on the dynamic response were recorded and the results compared to the predictions of pre-stressed anchor.This work provides a theoretical reference for the signal processing of dynamic reflected wave signals in anchor bolts.

  19. Influence of a Suggestive Placebo Intervention on Psychobiological Responses to Social Stress: A Randomized Controlled Trial.

    Science.gov (United States)

    Zimmermann-Viehoff, Frank; Steckhan, Nico; Meissner, Karin; Deter, Hans-Christian; Kirschbaum, Clemens

    2016-01-01

    We tested the hypothesis that a suggestive placebo intervention can reduce the subjective and neurobiological stress response to psychosocial stress. Fifty-four healthy male subjects with elevated levels of trait anxiety were randomly assigned in a 4:4:1 fashion to receive either no treatment (n = 24), a placebo pill (n = 24), or a herbal drug (n = 6) before undergoing a stress test. We repeatedly measured psychological variables as well as salivary cortisol, alpha-amylase, and heart rate variability prior to and following the stress test. The stressor increased subjective stress and anxiety, salivary cortisol, and alpha-amylase, and decreased heart rate variability (all P placebo or no treatment were found. Subjects receiving placebo showed increased wakefulness during the stress test compared with no-treatment controls (P placebo intervention increased alertness, but modulated neither subjective stress and anxiety nor the physiological response to psychosocial stress.

  20. Urticarial dermographism: clinical features and response to psychosocial stress.

    Science.gov (United States)

    Wallengren, Joanna; Isaksson, Anders

    2007-01-01

    Studies report that urticarial dermographism is exacerbated by "life events" and emotions. The aim of this study was to determine what aspects of life quality are affected by symptomatic dermographism and whether acute stress is a potential triggering factor. A total of 21 adult patients with urticarial dermographism completed a questionnaire on symptoms and quality of life. Twelve patients agreed to enrol in the study, which involved provocation by prick test and dermographism before and after a standardized psychosocial stress test (Trier Social Stress Test). Seventeen age-matched controls underwent corresponding tests. Of the patients answering the questionnaire, 43% reported that their disease had an impact on their quality of life and 33% that psychosocial stress precipitated the symptoms. However, the dermographic reaction in patients with urticaria factitia was not significantly intensified after the stress test. We conclude that the acute psychosocial stress test does not alter the magnitude of the dermographic reactions.

  1. Effects of Stress, Corticosterone, and Epinephrine Administration on Learning in Place and Response Tasks

    OpenAIRE

    Sadowski, Renee N.; Jackson, Gloria R.; Wieczorek, Lindsay A.; Gold, Paul E.

    2009-01-01

    These experiments examined the effects of prior stress, corticosterone, or epinephrine on learning in mazes that can be solved efficiently using either place or response strategies. In a repeated stress condition, rats received restraint stress for 6 h/day for 21 days, ending 24 h before food-motivated maze training. In two single-stress conditions, rats received a 1-h episode of restraint stress ending 30 min or 24 h prior to training. Single stress ending 30 min prior to training resulted i...

  2. Characterization and novel analyses of acute stress response patterns in a population-based cohort of young adults: influence of gender, smoking, and BMI.

    Science.gov (United States)

    Herbison, Carly E; Henley, David; Marsh, Julie; Atkinson, Helen; Newnham, John P; Matthews, Stephen G; Lye, Stephen J; Pennell, Craig E

    2016-01-01

    Dysregulation of the biological stress response system has been implicated in the development of psychological, metabolic, and cardiovascular disease. Whilst changes in stress response are often quantified as an increase or decrease in cortisol levels, three different patterns of stress response have been reported in the literature for the Trier Social Stress Test (TSST) (reactive-responders (RR), anticipatory-responders (AR) and non-responders (NR)). However, these have never been systematically analyzed in a large population-based cohort. The aims of this study were to examine factors that contribute to TSST variation (gender, oral contraceptive use, menstrual cycle phase, smoking, and BMI) using traditional methods and novel analyses of stress response patterns. We analyzed the acute stress response of 798, 18-year-old participants from a community-based cohort using the TSST. Plasma adrenocorticotrophic hormone, plasma cortisol, and salivary cortisol levels were quantified. RR, AR, and NR patterns comprised 56.6%, 26.2%, and 17.2% of the cohort, respectively. Smokers were more likely to be NR than (RR or AR; adjusted, p stress-response patterns, in addition to other parameters vary with gender, smoking, and BMI. The distribution of these patterns has the potential to vary with adult health and disease and may represent a biomarker for future investigation.

  3. Biological and Theoretical Studies of Adaptive Networks: The Conditioned Response

    Science.gov (United States)

    1991-06-28

    stimulation of the red nucleus produces EPSPs in contralateral AAN neurons at mono- synaptic latencies 26 Holstege and Tan "’ report that with...Consistent with these anatomical data. intermediate facial nucleus neurons respond with EPSPs at mo