WorldWideScience

Sample records for biological station treatment

  1. Hammond Bay Biological Station

    Data.gov (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  2. The viability of biological treatment at Ibi wastewater treatment station; Viabilidad del tratamiento biologico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Flor Garcia, M.V.; Morenilla Martinez, J.J.; Ruiz Zapata, R.

    1996-06-01

    In this study, we have proved the viability of biological treatment of leaving waters from Ibi Wastewater Treatment Station, where water is subject to the action of coagulant agents, following a physical and chemical process. the experience was based on wastewater treatment by using activated sludge, at experimental scale in a pilot plant. During the experiments, we controlled the main parameters which indicate treatment success; namely, Suspended Solids (SS), pH, Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD), in addition to other substances such as nutrients and toxicants, and inhibitors of bio metabolism. (Author) 6 refs.

  3. Bioremediation of oil contaminated soil from service stations. Evaluation of biological treatment

    International Nuclear Information System (INIS)

    Puustinen, J.; Jorgensen, K.S.; Strandberg, T.; Suortti, A.M.

    1995-01-01

    Biological treatment of contaminated soil has received much attention during the last decade. Microbes are known to be able to degrade many oil hydrocarbons. However, research is needed to ensure that new technologies are implemented in a safe and reliable way under Finnish climatic conditions. The main points of interest are the rate of the degradation as well as the survival and efficiency of microbial inoculants possibly introduced during the treatment. During 1993 the biotreatability of oil-contaminated soil from service stations was investigated in cooperation with the Finnish Petroleum Federation. The goal of this field-scale study was to test how fast lubrication oil can be composted during one Finnish summer season and to find out whether microbial inoculants would enhance the degradation rate. The soil was excavated from three different service stations in the Helsinki metropolitan area and was transported to a controlled composting area. The soil was sieved and compost piles, also called biopiles, were constructed on the site. Bark chips were used as the bulking agent and nutrients and lime were added to enhance the biological activity. Two different commercial bacterial inoculants were added to two of the piles. The piles were turned by a tractor-drawn screw-type mixer at two to four weeks interval. Between the mixings, the piles were covered with tarpaulins to prevent evaporation and potential excessive wetting. Several microbiological parameters were determined during the test period as well as the temperature and mineral oil content

  4. Gravitational biology on the space station

    Science.gov (United States)

    Keefe, J. R.; Krikorian, A. D.

    1983-01-01

    The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.

  5. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...

  6. Biological field stations: research legacies and sites for serendipity

    Science.gov (United States)

    William K. Michener; Keith L. Bildstein; Arthur McKee; Robert R. Parmenter; William W. Hargrove; Deedra McClearn; Mark Stromberg

    2009-01-01

    Biological field stations are distributed throughout North America, capturing much of the ecological variability present at the continental scale and encompassing many unique habitats. In addition to their role in supporting research and education, field stations offer legacies of data, specimens, and accumulated knowledge. Such legacies often provide the only...

  7. Biological treatment of Crohn's disease

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Bjerrum, Jacob Tveiten; Seidelin, Jakob Benedict

    2012-01-01

    Introduction of biological agents for the treatment of Crohn's disease (CD) has led to a transformation of the treatment paradigm. Several biological compounds have been approved for patients with CD refractory to conventional treatment: infliximab, adalimumab and certolizumab pegol (and...... natalizumab in several countries outside the European Union). However, despite the use of biologics for more than a decade, questions still remain about the true efficacy and the best treatment regimens - especially about when to discontinue treatment. Furthermore, a need for optimizing treatment...... with biologics still exists, as 20-40% of patients with CD (depending on selection criteria) do not have any relevant response to the current biological agents (i.e. primary failures). A better patient selection might maximize the clinical outcome while minimizing the complications associated with this type...

  8. Solid waste treatment processes for space station

    Science.gov (United States)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  9. Biological reduction of dust nuisance on power station waste dumps

    Energy Technology Data Exchange (ETDEWEB)

    Kozel, J

    1978-01-01

    The results of pot trials and succeeding field trials carried out in 1966-72 to find out the best method of reclamationand stabilishing the fly ash and cinder waste dump at the Melnik power station are summarised. The material consists mainly of fine particles with a size range of less than 1 micron to 0.16 mm in diam., and creates a source of blown dust in dry weather. Treatment of the waste material before sowing grass and legume species, the species tested, sowing rates, applied fertilizers, irrigation and treatment of the resulting swards are discussed. The most suitable species were Festuca rubra, F. ovina, perennial ryegrass and Italian ryegrass; the cost of stabilising the dump was lowest with Italian ryegrass. (In English)

  10. Boracéia Biological Station: an ornithological review

    Directory of Open Access Journals (Sweden)

    Vagner Cavarzere

    2010-01-01

    Full Text Available Boracéia Biological Station, near the city of Salesópolis, SP, is located in one of the most well-defined centers of endemism in eastern Brazil - the Serra do Mar Center. While the station was established only in 1954 under the auspices of the Museu de Zoologia da Universidade de São Paulo, the avifauna of this locality had already attracted the attention of ornithologists by the 1940s, when the first specimens were collected. Here we describe the ornithological history of the Boracéia Biological Station with a review of all the bird species recorded during more than 68 years, including recent transect and mist-netting records. Boracéia's records were found in museums, literature and unpublished reports that totaled 323 bird species when recent data is also considered. Of these, 117 are endemic to the Atlantic forest and 28 are threatened in the state. Although there are a few doubtful records that need to be checked, some species are the only sightings in the state. Boracéia includes a recently discovered species near the station site and is extremely important for the conservation of Atlantic forest birds.A Estação Biológica de Boracéia, localizada em Salesópolis, SP, situa-se na Serra do Mar, importante região biogeográfica e um dos centros de endemismo mais bem definidos do Brasil. Apesar de instituída em 1954, quando passou a pertencer ao Museu de Zoologia da Universidade de São Paulo, a avifauna desta localidade já era objeto de pesquisas desde a década de 1940, época em que foram realizadas as primeiras coletas de aves. Aqui é apresentada pela primeira vez uma revisão de todos os registros avifaunísticos realizados nessa localidade ao longo de mais de 68 anos assim como a adição de novos registros com base em dados coletados recentemente com transectos lineares e redes de neblina. Os registros para Boracéia estiveram representados em museus, na literatura e em dados não publicados que, somados aos registros

  11. BIOLOGICAL AND ENVIRONMENTAL RADIATION EXPERIENCE AT INDIAN POINT STATION

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, H. F.

    1963-09-15

    The environs monitoring program at Indian Point Station is presented. Thirty sampling stations within a circle of approximately 10 miles of the station are used for the collection of samples of air, water, vegetation, and soil that are then analyzed for gross beta-gamma activity. Data are tabulated. (P.C.H.)

  12. Skin Cancer: Biology, Risk Factors & Treatment

    Science.gov (United States)

    ... turn Javascript on. Feature: Skin Cancer Skin Cancer: Biology, Risk Factors & Treatment Past Issues / Summer 2013 Table ... Articles Skin Cancer Can Strike Anyone / Skin Cancer: Biology, Risk Factors & Treatment / Timely Healthcare Checkup Catches Melanoma ...

  13. BATCH ANAEROBIC TREATMENT OF FRESH LEACHATE FROM TRANSFER STATION

    Directory of Open Access Journals (Sweden)

    SEYED MOHAMMAD DARA GHASIMI

    2008-12-01

    Full Text Available Leachate from transfer station requires treatment before being discharged into the environment to avoid surface and underground water contamination. Various factors such as waste composition, availability of oxygen and moisture, designing and controlling of transfer station operations have been shown to affect the composition of the leachate. The high COD, BOD, ammonia nitrogen (NH3-N and heavy metals contents of fresh leachate are the main problems faced by leachate treatment operators. The result of the present study indicated that this process reduced the COD content by 43%.The average removal efficiencies of BOD5, TS, TSS, and VSS were 80, 49, 37 and 39 %, respectively.

  14. Mussel beds are biological power stations on intertidal flats

    Science.gov (United States)

    Engel, Friederike G.; Alegria, Javier; Andriana, Rosyta; Donadi, Serena; Gusmao, Joao B.; van Leeuwe, Maria A.; Matthiessen, Birte; Eriksson, Britas Klemens

    2017-05-01

    Intertidal flats are highly productive areas that support large numbers of invertebrates, fish, and birds. Benthic diatoms are essential for the function of tidal flats. They fuel the benthic food web by forming a thin photosynthesizing compartment in the top-layer of the sediment that stretches over the vast sediment flats during low tide. However, the abundance and function of the diatom film is not homogenously distributed. Recently, we have realized the importance of bivalve reefs for structuring intertidal ecosystems; by creating structures on the intertidal flats they provide habitat, reduce hydrodynamic stress and modify the surrounding sediment conditions, which promote the abundance of associated organisms. Accordingly, field studies show that high chlorophyll a concentration in the sediment co-vary with the presence of mussel beds. Here we present conclusive evidence by a manipulative experiment that mussels increase the local biomass of benthic microalgae; and relate this to increasing biomass of microalgae as well as productivity of the biofilm across a nearby mussel bed. Our results show that the ecosystem engineering properties of mussel beds transform them into hot spots for primary production on tidal flats, highlighting the importance of biological control of sedimentary systems.

  15. [Biological treatment of multiple sclerosis

    DEFF Research Database (Denmark)

    Sorensen, P.S.; Sellebjerg, F.

    2008-01-01

    In 1996 interferon (IFN)beta was the first biopharmaceutical product to be approved for the treatment of relapsing-remitting multiple sclerosis (MS). In 2006 the more potent monoclonal antibody natalizumab was approved. Presently, a number of monoclonal antibodies are being studied, including ale...

  16. [Biological treatment of rare inflammatory rheumatic diseases

    DEFF Research Database (Denmark)

    Baslund, B.

    2008-01-01

    The current status of the use of biological medicine in the treatment of adult onset morbus still, Wegeners granulomatosis and systemic lupus erythematosus (SLE) is reviewed. The need for controlled trials is emphasized. Anti-CD20 treatment for SLE patients with kidney involvement and patients wi...

  17. Process for sewage biological treatment from uranium

    International Nuclear Information System (INIS)

    Popa, Karin; Cecal, Alexandru; Craciun, Iftimie Ionel; Rudic, Valeriu; Gulea, Aurelian; Cepoi, Liliana

    2004-01-01

    The invention relates to the sewage treatment, in particular to the sewage biological treatment from radioactive waste, namely from uranium. The process for sewage biological treatment from uranium includes cultivation in the sewage of the aquatic plants Lemna minor and Spirulina platensis. The plant cultivation is carried out in two stages. In the first stage for cultivation is used Lemna minor and in the second stage - Spirulina platensis. After finishing the plant cultivation it is carried out separation of their biomass. The result of the invention consists in increasing the uranyl ions accumulation by the biomass of plants cultivated in the sewage.

  18. Process for sewage biological treatment from uranium

    International Nuclear Information System (INIS)

    Popa, K.; Cecal, A.; Craciun, I.

    2004-01-01

    The invention relates to the sewage treatment, in particular to the sewage biological treatmen from radioactive waste, namely from uranium. The process dor sewage biological treatment from uranium includes cultivation in the sewage of the aquatic plants Lemna minor and Spirulina platensis. The plants cultivation is carried out in two stages. In the first stage for cultivation is used Lemna minor in the second stage - Spirulina platensis . After finishing the plant cultivation it is carried out separation of their biomass. The result of the invention consists in increasing the uranyl ions by the biomass of plants cultivated in the sewage

  19. Biological treatment: Soil impacted with crude oil

    International Nuclear Information System (INIS)

    Gilbertson, N.; Severns, J.J.

    1992-01-01

    Biological land treatment proved to be a successful way to manage contamination at a California oil and gas production property. During the project, approximately 120,000 yards of contaminated soil was treated in the treatment plots to below the cleanup goals of 1,000 milligrams per kilograms (mg/kg) total petroleum hydrocarbons. In general, remaining hydrocarbon levels in treated soil were the 200 mg/kg total petroleum hydrocarbons range or lower. Cleanup goals were achieved in less than 2 months for each lift of soil treated. The treated soil was used as fill material in the excavation. No significant odor problems occurred during the project. Groundwater monitoring confirmed that no impact to groundwater occurred due to the biological land treatment process. Design of the treatment plan and regulatory requirements are also discussed

  20. [Biological treatment of rare inflammatory rheumatic diseases

    DEFF Research Database (Denmark)

    Baslund, B.

    2008-01-01

    The current status of the use of biological medicine in the treatment of adult onset morbus still, Wegeners granulomatosis and systemic lupus erythematosus (SLE) is reviewed. The need for controlled trials is emphasized. Anti-CD20 treatment for SLE patients with kidney involvement and patients wi...... with Wegeners granulomatosis seems promising. Anti-TNF and IL1 receptor antagonist can control disease activity in most patients with adult morbus still Udgivelsesdato: 2008/6/9...

  1. Operational and biological effects zones from base stations of cellular telephony

    Energy Technology Data Exchange (ETDEWEB)

    Geronikolou, St. A., E-mail: sgeronik@bioacademy.gr [Biomedical Research Foundation Academy of Athens, Athens (Greece); Zimeras, S., E-mail: zimste@aegean.gr [University of the Aegean, Karlovassi, Samos (Greece); Tsitomeneas, S. Th., E-mail: stsit@teipir.gr [Piraeus University of Applied Sciences, Aigaleo (Greece)

    2016-03-25

    The possible environmental impacts of cellular base stations are operational and biological. The operational effects comprise Εlectro-Μagnetic Interference (EMI), lightning alterations and aesthetic degradation. Both thermal and non-thermal biological effects depend on the absorption of UHF radiofrequencies used. We measured, calculated and estimated the impact zones. The results are: (a) The lightning lethal zone equal to the antenna height, (b) the EMI impact in a zone up to 40m and (c) the ICNIRP’s limits exceed to a zone of 8∼20m into the antenna’s radiation pattern (for 2G GSM and 3G UMTS station). Finally we conclude the adverse effects must not expected in a zone of more than 150m from the radiated antenna, whereas, there is possibility of stochastic effects in intermediate distances (20/40-150m).

  2. [Investigation of microbial contamination of the air and equipment of a biological waste water purification station].

    Science.gov (United States)

    Alikbaeva, L A; Figurovskiĭ, A P; Vasil'ev, O D; Ermolaev-Makovskiĭ, M A; Merkur'eva, M A

    2010-01-01

    The paper describes the results of a study of ambient air microbiological pollution in the working premises and equipment surfaces in the main shops of the biological waste water purification station of a cardboard-polygraphic plant. The findings suggest that there is high microbial contamination of the working environment, which should be born in mind on developing measures to optimize working conditions and on studying morbidity rates among the workers.

  3. Biological treatment of sludge digester liquids.

    Science.gov (United States)

    van Loosdrecht, M C M; Salem, S

    2006-01-01

    Nitrogen removal in side stream processes offers a good potential for upgrading wastewater treatment plants (WWTPs) that need to meet stricter effluent standards. Removing nutrients from these internal process flows significantly reduces the N-load to the main treatment plant. These internal flows mainly result from the sludge processing and have a high temperature and a high concentration of ammonia. Therefore, the required reactor volumes as well as the required aerobic SRT are small. Generally, biological treatment processes are more economical and preferred over physical-chemical processes. Recently, several biological treatment processes have been introduced for sludge water treatment. These processes are available now on the activated sludge market (e.g. SHARON, ANAMMOX and BABE processes). The technologies differ in concept and in the limitations guiding the application of these processes for upgrading WWTPs. This paper reviews and compares different biological alternatives for nitrogen removal in side streams. The limitations for selecting a technology from the available ones in the activated sludge market are noted and analysed. It is stressed that the choice for a certain process is based on more aspects than pure process engineering arguments.

  4. Biological treatment of winery wastewater: an overview.

    Science.gov (United States)

    Andreottola, G; Foladori, P; Ziglio, G

    2009-01-01

    The treatment of winery wastewater can realised using several biological processes based both on aerobic or anaerobic systems using suspended biomass or biofilms. Several systems are currently offered by technology providers and current research envisages the availability of new promising technologies for winery wastewater treatment. The present paper intends to present a brief state of the art of the existing status and advances in biological treatment of winery wastewater in the last decade, considering both lab, pilot and full-scale studies. Advantages, drawbacks, applied organic loads, removal efficiency and emerging aspects of the main biological treatments were considered and compared. Nevertheless in most treatments the COD removal efficiency was around 90-95% (remaining COD is due to the un-biodegradable soluble fraction), the applied organic loads are very different depending on the applied technology, varying for an order of magnitude. Applied organic loads are higher in biofilm systems than in suspended biomass while anaerobic biofilm processes have the smaller footprint but in general a higher level of complexity.

  5. Oily wastewater treatment at Khartoum North Power Station

    International Nuclear Information System (INIS)

    Eltahir, M. M.; Taha, T. S.

    2009-01-01

    To a chief these goals a series of experimental procedure have been executed for the wastewater in sump tank at river side where all wastewater collected. This paper attempts to investigate the chemical and physical characteristics of Khartoum North Power Station waste water and to suggest methods for removing oil before being discharged to River Bule Nile. To achieve this goal numerous numbers of samples have been collected and examined to detect oil content, turbidity, suspended solids, total dissolved solids, pH, BOD, COD and conductivity, and average values of these parameters were 924.3 ppm, 554.2 NTU, 80 ppm, 559.5 ppm, 7.3 pH unit, 130 Pm, 443.14 ppm, 736.7 μs/cm respectively. The average values of these results were compared with [1] guide lines which are 15 ppm, 5 ppm, 60 ppm, <1000 ppm, 7.5 pH unit, 60 ppm, 100 ppm 500 μs/cm respectively. The outcome of the paper confirmed that waste water at Khartoum North Power Station (KNPS) is heavily polluted with oil and other pollutants. For this reason a second phase of experiments is carried out mainly to remove or reduce oil content to 6.7 ppm and other pollutants to levels which may comply with International Regulations and Local Authority acts. The treatment phase of experiment comprising different processing units arranged in a logical sequence starting with units for oil removal through a coagulation process, NaoH ending with air floatation and skimping to reduce oil content. Results obtained from second phase of experiments after waste water being treated are encouraging and a total reduction in contamination of not less than 80% has been achieved. (Author)

  6. Shoreline clean-up methods : biological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Massoura, S.T. [Oil Spill Response Limited, Southampton (United Kingdom)

    2009-07-01

    The cleanup of oil spills in shoreline environments is a challenging issue worldwide. Oil spills receive public and media attention, particularly in the event of a coastal impact. It is important to evaluate the efficiency and effectiveness of cleanup methods when defining the level of effort and consequences that are appropriate to remove or treat different types of oil on different shoreline substrates. Of the many studies that have compared different mechanical, chemical and biological treatments for their effectiveness on various types of oil, biological techniques have received the most attention. For that reason, this paper evaluated the effectiveness and effects of shoreline cleanup methods using biological techniques. It summarized data from field experiments and oil spill incidents, including the Exxon Valdez, Sea Empress, Prestige, Grand Eagle, Nakhodka, Guanabara Bay and various Gulf war oil spills. Five major shoreline types were examined, notably rocky intertidal, cobble/pebble/gravel, sand/mud, saltmarsh, and mangrove/sea-grass. The biological techniques that were addressed were nutrient enrichment, hydrocarbon-utilizing bacteria, vegetable oil biosolvents, plants, surf washing, oil-particle interactions and natural attenuation. The study considered the oil type, volume and fate of stranded oil, location of coastal materials, extent of pollution and the impact of biological techniques. The main factors that affect biodegradation of hydrocarbons are the volume, chemical composition and weathering state of the petroleum product as well as the temperature, oxygen availability of nutrients, water salinity, pH level, water content, and microorganisms in the shoreline environment. The interaction of these factors also affect the biodegradation of oil. It was concluded that understanding the fate of stranded oil can help in the development of techniques that improve the weathering and degradation of oil on complex shoreline substrates. 39 refs.

  7. Radioactive waste treatment system for Tsuruga Nuclear Power Station

    International Nuclear Information System (INIS)

    Taniguchi, Takashi; Takeshima, Masaki; Saito, Toru; Kikkawa, Ryozo

    1978-01-01

    The augmentation of the radioactive waste treatment system in the Tsuruga Nuclear Power Station was planned in 1973, and this enlarged facility was completed in June, 1977. The object of this augmentation is to increase the storage capacity for wastes and to enlarge the treating capacity utilizing the newly installed facility. The operating experience in the facility having been already constructed was fed back for the engineering of this new facility. This new facility contains the newly developed vacuum forced circulation type concentrator, the exclusive storage pool for solid wastes, etc. At the design stage of this new system, the pilot plant test of slurry transportation and the corrosion test of long hours were carried out as the research and developmental works for the confirmation of correct design condition. The measures for augmenting this radioactive waste treatment system are the installation of a long time storage tank with the capacity of 350 m 3 , the sit bunker facility and the drum storage as the storage facility, and the vacuum forced circulation type concentrator with the circulating flow rate more than 200 times as much as the treating flow rate and vacuum level of 0.255 ata. The augmented system is shown with the flow sheet of whole waste disposal system. The flow sheet of the concentrator is separately shown, and the relating research and developmental works, for example, the test of the cause of corrosion, the surface finishing test, the material test, the blockage test for heat transfer tubes and the inhibiter test, are explained with the test results. The ion exchange resin is transported by air and water as the slurry state, and the long distance transport of about 250 m is required in this new system. As clogging has to be avoided in this transportation, the experimental work was conducted to obtain the flow characteristics of slurry, and the test result is outlined. (Nakai, Y.)

  8. Pathological and Biological Aspects of Colorectal Cancer Treatment.

    NARCIS (Netherlands)

    Gosens, M.J.E.M.

    2008-01-01

    Pathological and biological aspects of colorectal cancer treatment. This thesis describes several pathological and biological aspects of colorectal cancer treatment. Different patient populations were investigated including patients with mobile rectal cancer enrolled in the Dutch TME trial, patients

  9. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    John R. Gallagher

    2001-01-01

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  10. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  11. Studies on urine treatment by biological purification using Azolla and UV photocatalytic oxidation

    Science.gov (United States)

    Liu, Xiaofeng; Chen, Min; Bian, Zuliang; Liu, Chung-Chu

    The amount of water consumed in space station operations is very large. In order to reduce the amount of water which must be resupplied from Earth, the space station needs to resolve the problems of water supply. For this reason, the recovery, regeneration and utilization of urine of astronauts are of key importance. Many investigations on this subject have been reported. Our research is based on biological absorption and, purification using UV photocatalytic oxidation techniques to achieve comprehensive treatment for urine. In the treatment apparatus we created, the urine solution is used as part of the nutrient solution for the biological components in our bioregenerative life support system. After being absorbed, the nutrients from the urine were then decomposed, metabolized and purified which creates a favorable condition for the follow-up oxidation treatment by UV photocatalytic oxidation. After these two processes, the treated urine solution reached Chinese national standards for drinking water quality (GB5749-1985).

  12. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia, Part 2

    DEFF Research Database (Denmark)

    Hasan, Alkomiet; Falkai, Peter; Wobrock, Thomas

    2013-01-01

    These updated guidelines are based on a first edition of the World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia published in 2006. For this 2012 revision, all available publications pertaining to the biological treatment of schizoph...

  13. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia, part 1

    DEFF Research Database (Denmark)

    Hasan, Alkomiet; Falkai, Peter; Wobrock, Thomas

    2012-01-01

    These updated guidelines are based on a first edition of the World Federation of Societies of Biological Psychiatry Guidelines for Biological Treatment of Schizophrenia published in 2005. For this 2012 revision, all available publications pertaining to the biological treatment of schizophrenia we...

  14. Report on terrestrial biology research and logistics at Baia Terra Nova Station

    Directory of Open Access Journals (Sweden)

    Satoshi Imura

    1999-11-01

    Full Text Available From December 4,1998 to January 15,1999,the author stayed at Baia Terra Nova Station (Italy in Antarctica, as an exchange scientist. To compare the biodiversity between Syowa Station and the Baia Terra Nova Station area, many samples of mosses, lichens, algae and micro animals in the soil were collected, and the structure of moss vegetation was studied in various fields around the station. Some characteristic features of logistics at the station were also researched.

  15. Biological wastewater treatment; Tratamiento biologico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isac, L.; Lebrato, J. [Universidad de Sevilla (Spain)

    2000-07-01

    Over the last years, many physical, chemical and biological processes for wastewater treatment have been developed. Biological wastewater treatment is the most widely used because of the less economic cost of investment and management. According to the type of wastewater contaminant, biological treatment can be classified in carbon, nitrogen and phosphorus removal. In this work, biodiversity and microbial interactions of carbonaceous compounds biodegradation are described. (Author) 13 refs.

  16. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    Science.gov (United States)

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  17. Discussion about the application of treatment process for dehydrated wet waste at nuclear power station

    International Nuclear Information System (INIS)

    Li Guanghua; Wu Qiang

    2009-01-01

    In nuclear power station, the most popular treatment about low level radioactive wet waste generated during the unit operating and maintenance is embedded by cement. For radioactive waste minimization, this article introduces a new treatment process to dehydrate and compress wet waste. According to the development and application of the treatment process for the wet waste, and comparing with the formerly treatment-the cement embedding, prove that the new treatment can meet the purpose for volume reduction of wet waste. (authors)

  18. Assessment of workers' exposure to microorganisms when using biological degreasing stations.

    Science.gov (United States)

    Villeneuve, Carol-Anne; Marchand, Geneviève; Gardette, Marie; Lavoie, Jacques; Neesham-Grenon, Eve; Bégin, Denis; Debia, Maximilien

    2018-06-01

    Biological degreasing stations (BDSs) are used by mechanics. These BDSs use a water-based solution with a microbial degradation process. Occupational exposure during the use of BDSs has not been reported and few studies have identified the bacteria present. The objectives were to measure the concentration of microorganisms during BDSs' use and monitor the bacterial community in the liquid over time. Five mechanical workshops were studied. Six 30-min samples were taken at each workshop over one year. Bioaerosols in the ambient air samples were collected with Andersen impactors near the BDS Bioaerosols in the workers' breathing zone (WBZ) were collected on filters. Fresh bio-degreasing fluids were collected from unopened containers, and used bio-degreasing fluids were collected in the BDS. The results show that the use of BDSs does not seem to increase bioaerosols concentrations in the WBZ (concentrations lower than 480 CFU/m 3 ) and that the bacterial communities (mainly yeasts, Bacillus subtilis and Pseudomonas aeruginosa) in the bio-degreasing fluids change through time and differ from the original community (B. subtilis). This study established that workers using BDSs were exposed to low levels of bioaerosols. No respiratory protection is recommended based on bioaerosols concentrations, but gloves and strict personal hygiene practices are essential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A synchrotron-based X-ray exposure station for radiation biology experiments

    International Nuclear Information System (INIS)

    Thompson, A.C.; Blakely, E.A.; Bjornstad, K.A.; Chang, P.Y.; Rosen, C.J.; Schwarz, R.I.

    2007-01-01

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 μm). A series of experiments have been done with a four-well slide where a stripe (100 μm widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments

  20. A synchrotron-based X-ray exposure station for radiation biology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.C. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)], E-mail: acthompson@lbl.gov; Blakely, E.A.; Bjornstad, K.A. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); Chang, P.Y. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); SRI International, Menlo Park, CA (United States); Rosen, C.J.; Schwarz, R.I. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)

    2007-11-11

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 {mu}m). A series of experiments have been done with a four-well slide where a stripe (100 {mu}m widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments.

  1. Biological impact assessment of thermal discharges in the vicinity of Madras Atomic Power Station, Kalpakkam, India

    International Nuclear Information System (INIS)

    Shahul Hameed, P.; Syed Mohamed, H.E.; Krishnamoorthy, R.

    2007-01-01

    Madras Atomic Power Station (MAPS), Kalpakkam uses seawater as tertiary coolant at the rate of 35m 3 /sec employing a once through type of circuit. The discharged water travels as a canal and mixes with seawater at the mixing zone. The present study investigated the impact of the discharged thermal effluent on the physical chemical and biological quality of the receiving seawater body. The thermal plume is shore attached and extended up to 300 m from the shore and registered a ΔT of 3-4 degC. The shore attached thermal plume adversely affected the density and distribution of macro benthic animals. The benthos are absent in the mixing zone and their density decreased about 500 m on either side of the mixing zone. The natural shift in the mixing zone provides opportunities for the recolonization of macro benthos. The thermal tolerance study revealed that the experimental fish species Mugil cephalus and Alepeus djidapa did not show any mortality or loss of equilibrium at ΔT 5 degC (33 degC) and ΔT 7 degC (35 degC) and the maximum ΔT recorded at the impact area is 6 degC. The gradual increase in temperature as found in the plume favors the fishes to escape the acute thermal exposures. (author)

  2. Biological black water treatment combined with membrane separation

    NARCIS (Netherlands)

    van Voorthuizen, E.M.; Zwijnenburg, A.; van der Meer, Walterus Gijsbertus Joseph; Temmink, Hardy

    2008-01-01

    Separate treatment of black (toilet) water offers the possibility to recover energy and nutrients. In this study three combinations of biological treatment and membrane filtration were compared for their biological and membrane performance and nutrient conservation: a UASB followed by effluent

  3. Biological Treatment of Solvent-Based Paint

    Science.gov (United States)

    2011-01-01

    ESTCP Environmental Security Technology Certification Program FK-WTP Fort Kamehameha Wastewater Treatment Plant FTIR Fourier Transform Infrared...established by the Fort Kamehameha Wastewater Treatment Plant (FK-WTP) for the water; toxicity characteristic leaching procedure (TCLP) requirements for

  4. Psoriatic arthritis: treatment strategies using biologic agents

    Directory of Open Access Journals (Sweden)

    C. Palazzi

    2012-06-01

    Full Text Available The traditional management of psoriatic arthritis (PsA includes NSAIDs, corticosteroids and DMARDs. Advancement in the knowledge of the immunopathogenesis of PsA has been associated with the development of biologic agents which have revolutionized the management of the disease. Among biologics drugs, there are the 4 currently availablee anti-TNFα blocking agents (etanercept, infliximab, adalimumab and golimumab which are more effective than traditional DMARDs on symptoms/signs of inflammation, quality of life, function, and in inhibiting the progression of the structural joint damage. Despite of the high cost, TNF inhibitors are costeffective on both the musculoskeletal and skin manifestations of psoriatic disease.

  5. Availability of uranium present in the sludge generated at two stations of potable water treatment

    International Nuclear Information System (INIS)

    Munoz-Serrano, A.; Baeza, A.; Salas, A.; Guillen, J.

    2013-01-01

    During the treatment is carried out in a Station Potable Water Treatment Plant sludge enriched are produced in components that have been removed from the water. The concentration and availability of radionuclides accumulated in a sludge during coagulation-flocculation will condition possible later use, so it is essential to carry out the characterization of sludge and its chemical speciation. (Author)

  6. IMOS National Reference Stations: A Continental-Wide Physical, Chemical and Biological Coastal Observing System

    Science.gov (United States)

    Lynch, Tim P.; Morello, Elisabetta B.; Evans, Karen; Richardson, Anthony J.; Rochester, Wayne; Steinberg, Craig R.; Roughan, Moninya; Thompson, Peter; Middleton, John F.; Feng, Ming; Sherrington, Robert; Brando, Vittorio; Tilbrook, Bronte; Ridgway, Ken; Allen, Simon; Doherty, Peter; Hill, Katherine; Moltmann, Tim C.

    2014-01-01

    Sustained observations allow for the tracking of change in oceanography and ecosystems, however, these are rare, particularly for the Southern Hemisphere. To address this in part, the Australian Integrated Marine Observing System (IMOS) implemented a network of nine National Reference Stations (NRS). The network builds on one long-term location, where monthly water sampling has been sustained since the 1940s and two others that commenced in the 1950s. In-situ continuously moored sensors and an enhanced monthly water sampling regime now collect more than 50 data streams. Building on sampling for temperature, salinity and nutrients, the network now observes dissolved oxygen, carbon, turbidity, currents, chlorophyll a and both phytoplankton and zooplankton. Additional parameters for studies of ocean acidification and bio-optics are collected at a sub-set of sites and all data is made freely and publically available. Our preliminary results demonstrate increased utility to observe extreme events, such as marine heat waves and coastal flooding; rare events, such as plankton blooms; and have, for the first time, allowed for consistent continental scale sampling and analysis of coastal zooplankton and phytoplankton communities. Independent water sampling allows for cross validation of the deployed sensors for quality control of data that now continuously tracks daily, seasonal and annual variation. The NRS will provide multi-decadal time series, against which more spatially replicated short-term studies can be referenced, models and remote sensing products validated, and improvements made to our understanding of how large-scale, long-term change and variability in the global ocean are affecting Australia's coastal seas and ecosystems. The NRS network provides an example of how a continental scaled observing systems can be developed to collect observations that integrate across physics, chemistry and biology. PMID:25517905

  7. IMOS National Reference Stations: a continental-wide physical, chemical and biological coastal observing system.

    Directory of Open Access Journals (Sweden)

    Tim P Lynch

    Full Text Available Sustained observations allow for the tracking of change in oceanography and ecosystems, however, these are rare, particularly for the Southern Hemisphere. To address this in part, the Australian Integrated Marine Observing System (IMOS implemented a network of nine National Reference Stations (NRS. The network builds on one long-term location, where monthly water sampling has been sustained since the 1940s and two others that commenced in the 1950s. In-situ continuously moored sensors and an enhanced monthly water sampling regime now collect more than 50 data streams. Building on sampling for temperature, salinity and nutrients, the network now observes dissolved oxygen, carbon, turbidity, currents, chlorophyll a and both phytoplankton and zooplankton. Additional parameters for studies of ocean acidification and bio-optics are collected at a sub-set of sites and all data is made freely and publically available. Our preliminary results demonstrate increased utility to observe extreme events, such as marine heat waves and coastal flooding; rare events, such as plankton blooms; and have, for the first time, allowed for consistent continental scale sampling and analysis of coastal zooplankton and phytoplankton communities. Independent water sampling allows for cross validation of the deployed sensors for quality control of data that now continuously tracks daily, seasonal and annual variation. The NRS will provide multi-decadal time series, against which more spatially replicated short-term studies can be referenced, models and remote sensing products validated, and improvements made to our understanding of how large-scale, long-term change and variability in the global ocean are affecting Australia's coastal seas and ecosystems. The NRS network provides an example of how a continental scaled observing systems can be developed to collect observations that integrate across physics, chemistry and biology.

  8. Treatment and disposal of radioactive waste from nuclear power stations

    International Nuclear Information System (INIS)

    Baehr, W.

    1981-01-01

    The Federal Republic of Germany and many other European countries, having very high population densities, must make the most efficient use of their soil, their ground and surface waters. In Germany, no method of waste disposal could be used which included direct storage or seepage into the upper strata of the soil or a discharge into rivers or lakes. It has been shown after more than 20 years experience of treatment of low and intermediate level liquid and solid wastes and disposal of solidified residues in a salt mine, that a number of techniques and procedures are available for manageing this kind of waste with a high degree of safety. A complete system of waste collection, treatment methods and controlled disposal of low and intermediate radioactive residues in accordance with legally established rules and regulations offers the best guarantee for environmental protection. (orig./RW)

  9. Space Station Biological Research Project (SSBRP) Cell Culture Unit (CCU) and incubator for International Space Station (ISS) cell culture experiments

    Science.gov (United States)

    Vandendriesche, Donald; Parrish, Joseph; Kirven-Brooks, Melissa; Fahlen, Thomas; Larenas, Patricia; Havens, Cindy; Nakamura, Gail; Sun, Liping; Krebs, Chris; de Luis, Javier; hide

    2004-01-01

    The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.

  10. Nutrients requirements in biological industrial wastewater treatment ...

    African Journals Online (AJOL)

    In both these wastewaters nutrients were not added. A simple formula is introduced to calculate nutrient requirements based on removal efficiency and observed biomass yield coefficient. Key Words: Olive mill wastewater; anaerobic treatment; aerobic treatment; sequencing batch reactor; biomass yield; nutrient requirement.

  11. Akttvitas Selulase, Amilase Dan Invertase Pada Tanah Kebun Biologi Wamena*[cellulase, Amylase and Invertase Activities Achieved From Soil of Wamena Biological Research Station

    OpenAIRE

    Rahmansyah, M; Latupapua, HJD

    2003-01-01

    Enzymatic activities in soil as due to microbes action in organic matter degradation, lead to propose as indicators for determining soil degree enrichment.In this work, the enzymatic activities of cellulase, invertase and amylase were determined in tropical soil collected from Biological Research Station in Wamena. Result of measurement on five soil samples showed that cellulase activity occurred between 0.10 - 0.31 mg reducing sugar/g soil/hour in 2% Carboxymethylcellulose (CMC) substrate, a...

  12. WE-B-304-03: Biological Treatment Planning

    International Nuclear Information System (INIS)

    Orton, C.

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  13. Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis

    Science.gov (United States)

    Rettberg, P.; Horneck, G.; Zittermann, A.; Heer, M.

    1998-11-01

    The vitamin D synthesis in the human skin, is absolutely dependent on UVB radiation. Natural UVB from sunlight is normally absent in the closed environment of a space station like MIR. Therefore it was necessary to investigate the UV radiation climate inside the station resulting from different lamps as well as from occasional solar irradiation behind a UV-transparent quartz window. Biofilms, biologically weighting and integrating UV dosimeters successfully applied on Earth (e.g. in Antarctica) and in space (D-2, Biopan I) were used to determine the biological effectiveness of the UV radiation climate at different locations in the space station. Biofilms were also used to determine the personal UV dose of an individual cosmonaut. These UV data were correlated with the concentration of vitamin D in the cosmonaut's blood and the dietary vitamin D intake. The results showed that the UV radiation climate inside the Mir station is not sufficient for an adequate supply of vitamin D, which should therefore be secured either by vitamin D supplementat and/or by the regular exposure to special UV lamps like those in sun-beds. The use of natural solar UV radiation through the quartz window for `sunbathing' is dangerous and should be avoided even for short exposure periods.

  14. Combined chemical and biological treatment of recalcitrant ...

    African Journals Online (AJOL)

    , indicating that ozone treatment improved the biodegradability of the kraft pulp wastewater. The dynamic behaviours of microbial growth and substrate consumption were investigated in the biodegradation of organic acids using activated ...

  15. Biomedicines—Moving Biologic Agents into Approved Treatment Options

    Directory of Open Access Journals (Sweden)

    Kenneth Cornetta

    2013-03-01

    Full Text Available The development of biologic agents for therapeutic purposes, or biomedicines, has seen an active area of research both at the bench and in clinical trials. There is mounting evidence that biologic products can provide effective therapy for diseases that have been unresponsive to traditional pharmacologic approaches. Monoclonal antibody therapy for cancer and rheumatologic diseases has become a well accepted part of disease treatment plans. Gene therapy products have been approved in China and Europe. Bioengineering of new agents capitalizing on microRNA biology, nanoparticle technology, stem cell biology, and an increasing understanding of immunology predict a rich future for product development. [...

  16. The biology and treatment of oligometastatic cancer.

    Science.gov (United States)

    Reyes, Diane K; Pienta, Kenneth J

    2015-04-20

    Clinical reports of limited and treatable cancer metastases, a disease state that exists in a transitional zone between localized and widespread systemic disease, were noted on occasion historically and are now termed oligometastasis. The ramification of a diagnosis of oligometastasis is a change in treatment paradigm, i.e. if the primary cancer site (if still present) is controlled, or resected, and the metastatic sites are ablated (surgically or with radiation), a prolonged disease-free interval, and perhaps even cure, may be achieved. Contemporary molecular diagnostics are edging closer to being able to determine where an individual metastatic deposit is within the continuum of malignancy. Preclinical models are on the outset of laying the groundwork for understanding the oligometastatic state. Meanwhile, in the clinic, patients are increasingly being designated as having oligometastatic disease and being treated owing to improved diagnostic imaging, novel treatment options with the potential to provide either direct or bridging therapy, and progressively broad definitions of oligometastasis.

  17. Biologically resistant contaminants, primary treatment with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Echegaray, Diego F. [White Martins Gases Industriais do Nordeste S.A., Salvador, BA (Brazil); Olivieri, Nadja F. [White Martins Gases Industriais S.A., Cordovil, RJ (Brazil)

    1993-12-31

    Organic effluent oxidation tests were conducted in petrochemical companies, in Camacari Petrochemical Complex (Northeast Brazil), to reduce treatment costs and improve the primary treatment efficiency in each industrial process. Ozone achieved 99.96 percent benzene reduction and 100 percent ethyl benzene and toluene reduction. Process efficiency is strongly dependent on the wastewater chemical composition and concentration. For this reason it is necessary to run pilot trials for each specific case. Ozone was obtained feeding commercial oxygen through a corona discharge generator and dissolved in the effluent with a bubble column. Commercial oxygen was used instead of air to increase 250 percent the ozone production, using the same ozone generator. (author). 4 figs., 2 tabs.

  18. Biologically resistant contaminants, primary treatment with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Echegaray, Diego F [White Martins Gases Industriais do Nordeste S.A., Salvador, BA (Brazil); Olivieri, Nadja F [White Martins Gases Industriais S.A., Cordovil, RJ (Brazil)

    1994-12-31

    Organic effluent oxidation tests were conducted in petrochemical companies, in Camacari Petrochemical Complex (Northeast Brazil), to reduce treatment costs and improve the primary treatment efficiency in each industrial process. Ozone achieved 99.96 percent benzene reduction and 100 percent ethyl benzene and toluene reduction. Process efficiency is strongly dependent on the wastewater chemical composition and concentration. For this reason it is necessary to run pilot trials for each specific case. Ozone was obtained feeding commercial oxygen through a corona discharge generator and dissolved in the effluent with a bubble column. Commercial oxygen was used instead of air to increase 250 percent the ozone production, using the same ozone generator. (author). 4 figs., 2 tabs.

  19. Biological Treatment of Water Disinfection Byproducts using ...

    Science.gov (United States)

    Major disinfection by-products (DBPs) from the chlorination process of drinking water include trihalomethanes (THMs) and haloacetic acides (HAA5). THMs mainly consist of chloroform, and other harsh chemicals. Prolonged consumptions of drinking water containing high levels of THMs has been linked with diseases of the liver, kidneys, bladder, or central nervous system and may increase likelihood of cancer. A risk also exists for THMs exposure via inhalation while showering, bathing or washing clothes and dishes. Due to these risks, the U.S. EPA regulate THMs content in drinking water. This research investigates biological degradation of THM using chloroform as a model compound. The study aims to decrease possible risks of THMs through filtration. Throughout this year’s presentations, there is a common theme of health and safety concerns. UC researchers are working hard to clean water ways of naturally occurring contaminates as well as man-made toxins found in our waterways. The significance of these presentations translates into the promise of safer environments, and more importantly saved lives, as UC’s faculty continues to produce real-world solutions to problems threatening the world around us. A biotech process has been developed and demonstrated that effectively remove and treat volatile disinfection by-products from drinking water. The process strips low concentration disinfection by-products, such as trihalomethanes, that are formed during the chlori

  20. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia. Part 3

    DEFF Research Database (Denmark)

    Hasan, Alkomiet; Falkai, Peter; Wobrock, Thomas

    2015-01-01

    These updated guidelines are based on the first edition of the World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia published in the years 2005 and 2006. For this 2015 revision, all available publications pertaining to the biological...... treatment of schizophrenia were reviewed systematically to allow for an evidence-based update. These guidelines provide evidence-based practice recommendations which are clinically and scientifically relevant. They are intended to be used by all physicians diagnosing and treating patients with schizophrenia...

  1. Public attitudes toward legally coerced biological treatments of criminals.

    Science.gov (United States)

    Berryessa, Colleen M; Chandler, Jennifer A; Reiner, Peter

    2016-12-01

    How does the public view the offer of a biological treatment in lieu of prison for criminal offenders? Using the contrastive vignette technique, we explored this issue, using mixed-methods analysis to measure concerns regarding changing the criminal's personality, the coercive nature of the offer, and the safety of the proposed treatment. Overall, we found that of the three variables, the safety of the pill had the strongest effect on public acceptance of a biological intervention. Indeed, it was notable that the public was relatively sanguine about coercive offers of biological agents, as well as changing the personality of criminals. While respondents did not fully endorse such coercive offers, neither were they outraged by the use of biological treatments of criminals in lieu of incarceration. These results are discussed in the context of the retributive and rehabilitative sentiments of the public, and legal jurisprudence in the arena of human rights law.

  2. Biological off-gas treatment: let's make things better

    NARCIS (Netherlands)

    Groenestijn, J.W. van

    1998-01-01

    Biological off-gas treatment is the most effective cleaning method for many off-gases which contain low concentration of pollutants (<5 g/m3). The world market share in off-gas treatment is a few percent. Potential buyers are reserved because of existing biofilter quality differences and lack of

  3. Combining biological agents and chemotherapy in the treatment of cholangiocarcinoma

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Jakobsen, Anders

    2011-01-01

    is not always possible. Chemotherapy is effective and the combination of cisplatin and gemcitabine is considered a standard treatment of inoperable cholangiocarcinoma. Biological targeted treatment to date has minor effect when given as monotherapy, but some of the drugs hold promise as an adjunct...... to chemotherapy. It should, however, be noted that most of the trials are based on few patients, and thus far the literature does not allow for a conclusion as to the role of biological treatment on cholangiocarcinoma. This situation calls for well-designed randomized trials, and international cooperation as well...

  4. New treatments for psoriasis: which biologic is best?

    Science.gov (United States)

    Nelson, Andrew A; Pearce, Daniel J; Fleischer, Alan B; Balkrishnan, Rajesh; Feldman, Steven R

    2006-01-01

    Psoriasis is a chronic, debilitating disease affecting not only the skin, but also having a significant impact on a patient's quality of life. The treatment of severe psoriasis is quite challenging due to the chronic, relapsing nature of the disease and the difficulties inherent in treatment planning. Though the biologics are perhaps the most promising of available psoriasis treatments, the decision to institute a given therapy may be fraught with complexity for the clinician. Patients now hear of these promising new treatments for psoriasis via print, television and radio advertising; they frequently come to their physician asking if they are eligible for any of these agents and, if so, 'which biologic is best?'. This paper attempts to determine the ideal biologic agent based upon several parameters: FDA- and EU-approved indications, therapeutic efficacy, impact on quality of life, cost-effectiveness, and safety profile. Certainly the physician is central to medical decision-making, though ultimately patient preference may play the largest role in determining the 'best' biologic agent. There is no single ideal biologic for all patients and a physician's job is to educate patients on the relative advantages and disadvantages of each agent. Through informed discussion, the clinician can help each individual patient decide which biologic agent is ideal for them.

  5. Solvent extraction treatment of PCB contaminated soil at Sparrevohn Long Range Radar Station, Alaska

    International Nuclear Information System (INIS)

    Weimer, L. D.

    1999-01-01

    On-site soil treatment at a long range radar station in Alaska, which was contaminated with between 50 and 350 mg/kg of polychlorinated biphenyls (PCBs) is described. The stock-piled soil was treated by the Terra Kleen Response Group, using a solvent extraction process. After the treatment, PCB concentrations in the treated soil were found to have been reduced to less than the target treatment level of 15 mg/kg. Not only was the process successful, it also saved the government about $ 1 million over what hauling and off-site treatment and disposal would have cost. 1 tab

  6. [Intracranial plasmocytomas: biology, diagnosis, and treatment].

    Science.gov (United States)

    Belov, A I; Gol'bin, D A

    2006-01-01

    Intracranial plasmocytomas are a rare abnormality in a neurosurgeon's practice. The plasmocytomas may originate from the skull bones or soft tissue intracranial structures; they may be solitary or occur as a manifestation of multiple myeloma, this type being typical of most intracranial plasmocytomas. Progression of solitary plasmocytoma to multiple myeloma is observed in a number of cases. Preoperative diagnosis involves computed tomography or magnetic resonance imaging; angiography is desirable. The final diagnosis of plasmocytoma is chiefly based on a morphological study. Special immunohistochemical studies yield very promising results; these are likely to be of high prognostic value. Intracranial plasmocytomas require a differential approach and a meticulous examination since the presence or absence of multiple myeloma radically affects prognosis. There are well-defined predictors; however, it is appropriate that craniobasal plasmocytomas show a worse prognosis than plasmocytomas of the skull vault and more commonly progress to multiple myeloma. Plasmocytomas respond to radiotherapy very well. The gold standard of treatment for plasmocytoma is its total removal and adjuvant radiation therapy; however, there is evidence for good results when it is partially removed and undergoes radiotherapy or after radical surgery without subsequent radiation. The role of chemotherapy has not been defined today.

  7. Biomedicines?Moving Biologic Agents into Approved Treatment Options

    OpenAIRE

    Cornetta, Kenneth

    2013-01-01

    The development of biologic agents for therapeutic purposes, or biomedicines, has seen an active area of research both at the bench and in clinical trials. There is mounting evidence that biologic products can provide effective therapy for diseases that have been unresponsive to traditional pharmacologic approaches. Monoclonal antibody therapy for cancer and rheumatologic diseases has become a well accepted part of disease treatment plans. Gene therapy products have been approved in China and...

  8. Biological and radioecological investigations at the Ringhals nuclear power station, 1968-1987

    International Nuclear Information System (INIS)

    Grimaas, U.; Jacobsson, A.; Neuman, E.

    1989-09-01

    The summary is based on 19 papers, which are presented in the References. The reports concern fish, bottom-living animals, zooplankton and algae as well as the presence of radioactivity in the aquatic and terrestrial environments. The investigation has been conducted at the request of Vaesterbygden's Water Rights Court and present the experiences of twelve operational years, of which the last four years have been with the power station at full capacity. In judging the effects of the operation of the power station, particular emphasis has been placed on questions given priority by the Water Rights Court, namely fishing and radioactivity. As regards fishing, the direct effects of the cooling-system on fish in different developmental stages have been assessed to be of importance. Water-borne radioactivity has been traced in organisms and sediment in the area. The concentrations of different radionucleids originating from the power station are highest in algae and lowest in fish-meat. The results form the basis of calculations of the radioactive dose to man. (orig./HP)

  9. Solar-assisted MED treatment of Eskom power station waste water

    Science.gov (United States)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  10. U1/U2 crib groundwater biological treatment demonstration project

    International Nuclear Information System (INIS)

    Koegler, S.S.; Brouns, T.M.; Heath, W.O.

    1989-11-01

    The primary objective of the biological treatment project is to develop and demonstrate a process for Hanford groundwater remediation. Biodenitrification using facultative anaerobic microorganisms is a promising technology for the simultaneous removal of nitrates and organics from contaminated aqueous streams. During FY 1988, a consortium of Hanford groundwater microorganisms was shown to degrade both nitrates and carbon tetrachloride (CC1 4 ). A pilot-scale treatment system was designed and constructed based on the results of laboratory-and-bench-scale testing. This report summarizes the results of biological groundwater treatment studies performed during FY 1989 at the pilot-scale. These tests were conducted using a simulated Hanford groundwater with a continuous stirred-tank bioreactor, and a fluidized-bed bioreactor that was added to the pilot-scale treatment system in FY 1989. The pilot-scale system demonstrated continuous degradation of nitrates and CC1 4 in a simulated groundwater. 4 refs., 7 figs., 1 tab

  11. Biologics for the treatment of pyoderma gangrenosum in ulcerative colitis.

    Science.gov (United States)

    Arivarasan, K; Bhardwaj, Vaishali; Sud, Sukrit; Sachdeva, Sanjeev; Puri, Amarender Singh

    2016-10-01

    Pyoderma gangrenosum (PG) is an uncommon extra-intestinal manifestation of inflammatory bowel disease (IBD). Despite limited published literature, biologics have caused a paradigm shift in the management of this difficult-to-treat skin condition. The clinical data and outcomes of three patients with active ulcerative colitis and concurrent PG treated with biologics (infliximab two and adalimumab one) are reviewed in this report. Biologics were added because of the sub-optimal response of the colonic symptoms and skin lesions to parenteral hydrocortisone therapy. All three patients showed a dramatic response to the addition of the biologics. In view of the rapid healing of the skin lesions, superior response rate, and the additional benefit of improvement in the underlying colonic disease following treatment, anti-tumor necrosis factor blockers should be considered as a first line therapy in the management of PG with underlying IBD.

  12. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process

    Science.gov (United States)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.

    2017-08-01

    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  13. Treatment of laundry wastewater by biological and electrocoagulation methods.

    Science.gov (United States)

    Ramcharan, Terelle; Bissessur, Ajay

    2017-01-01

    The present study describes an improvement in the current electrocoagulation treatment process and focuses on a comparative study for the clean-up of laundry wastewater (LWW) after each wash and rinse cycle by biological and electrocoagulation treatment methods. For biological treatment, the wastewater was treated with a Bacillus strain of aerobic bacteria especially suited for the degradation of fats, lipids, protein, detergents and hydrocarbons. Treatment of the LWW by electrocoagulation involved the oxidation of aluminium metal upon the application of a controlled voltage which produces various aluminium hydroxy species capable of adsorbing pollutants from the wastewater. The efficiency of the clean-up of LWW using each method was assessed by determination of surfactant concentration, chemical oxygen demand and total dissolved solids. A rapid decrease in surfactant concentration was noted within 0.5 hour of electrocoagulation, whereas a notable decrease in the surfactant concentration was observed only after 12 hour of biological treatment. The rapid generation of aluminium hydroxy species in the electrocoagulation cell allowed adsorption of pollutants at a faster rate when compared to the aerobic degradation of the surfactant; hence a reduced period of time is required for treatment of LWW by electrocoagulation.

  14. Biological treatment of industrial wastes; Tratamiento biologico de residuos industriales

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz de Zarate Apodaca, J.M.; Abia Aguila, L

    1997-04-01

    There are organic elements used in industrial processes which are not able to be recovered. The biological treatment is the alternative for eliminating the organic pollutants from industrial waste water. This technology is being widely accepted because of its low environmental impact. (Author)

  15. Toluene : biological waste-gas treatment, toxicity and microbial adaptation

    NARCIS (Netherlands)

    Weber, F.J.

    1995-01-01

    Due to the increasing stringent legislation concerning the emission of volatile organic compounds, there is nowadays a growing interest to apply biological waste-gas treatment techniques for the removal of higher concentrations of specific contaminants from waste gases. Fluctuations in the

  16. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  17. Assessment and biological treatment of effluent from textile industry

    African Journals Online (AJOL)

    hope&shola

    (DS), odour and colour intensity prior to biological treatment with mixed culture of Aspergillus niger and Aspergillus ... bioremediation of TSS < 30 mg/l (99.5%), DS (99.6%) and SS (99.3%). Key words: ... (chemical, organic and thermal wastes), pesticides and fertilizers ... decolorisation by microorganism under anaerobic.

  18. DEMONSTRATION OF AN INTEGRATED, PASSIVE BIOLOGICAL TREATMENT PROCESS FOR AMD

    Science.gov (United States)

    An innovative, cost-effective, biological treatment process has been designed by MSE Technology Applications, Inc. to treat acid mine drainage (AMD). A pilot-scale demonstration is being conducted under the Mine Waste Technology Program using water flowing from an abandoned mine ...

  19. Biological investigations off the Oskarshamn nuclear power station during the 1980's

    International Nuclear Information System (INIS)

    Neuman, E.; Andersson, J.

    1990-11-01

    The Oscarshamn power station consists of three nuclear reactors, of which the first came into production in 1972 and the last in 1985. The power station uses large volumes of cooling-water; altogether 100 m 3 /s is heated 10 degrees C. During the 1970's, the investigations of the ecological effects of the use of cooling-water had a wide coverage, whereas during the 1980's, the years treated here, the investigations have mainly been concentrated on fish and bottom fauna. The temperature increase stimulates growth of many organisms and causes attraction. The cooling-water plume and the counter-currents it causes increase the transports of nutrients. The concentration of nutrients in different ways contributes to increased production further up in the food chains and strengthens the attraction of fish. The losses of fish in the cooling system have been relatively small. The parasitization frequency of eels in the receiving bay is extremely high, but otherwise there have been no abnormal disease or parasite attacks. Disturbances to the reproduction of fish in the heated water are present. The importance of this, particularly for surrounding areas, should be investigated within the continued monitoring. (authors)

  20. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  1. Biological Treatment of Wastewater by Sequencing Batch Reactors

    Directory of Open Access Journals (Sweden)

    Tsvetko Prokopov

    2014-04-01

    Full Text Available In the present paper the operation of wastewater treatment plant (WWTP in the town of Hisarya which includes a biological stage with aeration basins of cyclic type (SBR-method was studied. The values of the standard indicators of input and output water from the wastewater treatment plant were evaluated. Moreover, the reached effects due to the biological treatment of the wastewater in terms of the COD (95.7%, BOD5 (96.6%, total nitrogen (81.3%, total phosphorus (53.7% and suspended solids (95.7% were established. It was concluded that the indexes of the treated water were significantly below the emission limits specified in the discharge permit

  2. Evaluation of a commercial biologically based IMRT treatment planning system

    International Nuclear Information System (INIS)

    Semenenko, Vladimir A.; Reitz, Bodo; Day, Ellen; Qi, X. Sharon; Miften, Moyed; Li, X. Allen

    2008-01-01

    A new inverse treatment planning system (TPS) for external beam radiation therapy with high energy photons is commercially available that utilizes both dose-volume-based cost functions and a selection of cost functions which are based on biological models. The purpose of this work is to evaluate quality of intensity-modulated radiation therapy (IMRT) plans resulting from the use of biological cost functions in comparison to plans designed using a traditional TPS employing dose-volume-based optimization. Treatment planning was performed independently at two institutions. For six cancer patients, including head and neck (one case from each institution), prostate, brain, liver, and rectal cases, segmental multileaf collimator IMRT plans were designed using biological cost functions and compared with clinically used dose-based plans for the same patients. Dose-volume histograms and dosimetric indices, such as minimum, maximum, and mean dose, were extracted and compared between the two types of treatment plans. Comparisons of the generalized equivalent uniform dose (EUD), a previously proposed plan quality index (fEUD), target conformity and heterogeneity indices, and the number of segments and monitor units were also performed. The most prominent feature of the biologically based plans was better sparing of organs at risk (OARs). When all plans from both institutions were combined, the biologically based plans resulted in smaller EUD values for 26 out of 33 OARs by an average of 5.6 Gy (range 0.24 to 15 Gy). Owing to more efficient beam segmentation and leaf sequencing tools implemented in the biologically based TPS compared to the dose-based TPS, an estimated treatment delivery time was shorter in most (five out of six) cases with some plans showing up to 50% reduction. The biologically based plans were generally characterized by a smaller conformity index, but greater heterogeneity index compared to the dose-based plans. Overall, compared to plans based on dose

  3. Pilot tests for dismantling by blasting of the biological shield of a shut down nuclear power station

    International Nuclear Information System (INIS)

    Freund, H.U.

    1995-01-01

    Following free-field tests on concrete blocks the feasibility of explosive dismantling of the biological shield of nuclear power stations has been succesfully tested at the former hotsteam reaction in Karlstein/Main Germany. For this purpose a model shield of scale 1:2 was embedded into the reactor structure at which bore-hole blasting tests employing up to about 15 kg of explosive were performed. An elaborate measurement system allowed to receive detailed information on the blast side-effects: Special emphasis was focussed on the quantitative registration of the dynamic blast loads; data for the transfer of the dismantling method to the removal of real ractor structures were obtained. (orig.) [de

  4. Herpetofauna of the Beni Biological Station Biosphere Reserve, Amazonian Bolivia: Additional information, and current knowledge in context

    Science.gov (United States)

    Middendorf, G.; Reynolds, R.; Herrera-MacBryde, Olga; Dallmeier, Francisco; MacBryde, Bruce; Cominskey, James A.; Miranda, Carmen

    2000-01-01

    Previous collections in the Departamento del Beni in tropical Bolivia only hinted at high levels of herpetological biodiversity (Fugler 1986, 1988; de la Riva 1990a; Fugler and de la Riva 1990). Fieldwork (totaling 48 days) in July-August 1988 and September 1987 (dry seasons) and November-December 1990 (wet season) has resulted in collection and identification of 401 amphibian and reptilian specimens from the general area of the Beni Biological Station's (EBB) headquarters at El Porvenir. These collections represent 33 amphibian and 17 reptilian species in 29 genera (14 amphibian, 15 reptilian). The inventory of herpetofauna scientifically documented to occur in the Departamento del Beni is considered to have been increased by 6 amphibian and 10 reptilian species. Specimens that could not be definitively identified (reflecting taxonomic uncertainty and/or probably species new to science) include 3 amphibian species (anurans) and 2 reptilian species (snakes). The EBB harbors the richest savanna for anuran species known in South America.

  5. Biologicals in the treatment of psoriasis: The Indian perspective

    Directory of Open Access Journals (Sweden)

    Ajit B Janagond

    2017-01-01

    Full Text Available Psoriasis is a common inflammatory skin disorder characterized by itchy erythematous papules and plaques topped with silvery white scales. It has a chronic relapsing course and is associated with significant morbidity and reduction in the quality of life. Therapy of psoriasis is challenging. Topical therapy forms the first line of treatment for stable plaque psoriasis affecting a limited body surface area and in extensive disease systemic agents are indicated. All these drugs have inherent side effects, and none bring prolonged remission of the disease. The other therapeutic modality for psoriasis is phototherapy, but it is delivered through a specialized machine which can be available only at referral centers. Biologics have revolutionized the management of psoriasis as they can bring a remission of disease up to several years. Although limited availability and high cost prohibit their regular usage, Indian dermatologists are rapidly adopting biologics in the treatment of psoriasis.

  6. The sustainable utilization of malting industry wastewater biological treatment sludge

    Science.gov (United States)

    Vasilenko, T. A.; Svintsov, A. V.; Chernysh, I. V.

    2018-01-01

    The article deals with the research of using the sludge from malting industry wastewater’s biological treatment and the calcium carbonate slurry as organo-mineral fertilizing additives. The sludge, generated as a result of industrial wastewater biological treatment, is subject to dumping at solid domestic waste landfills, which has a negative impact on the environment, though its properties and composition allow using it as an organic fertilizer. The physical and chemical properties of both wastes have been studied; the recommendations concerning the optimum composition of soil mix, containing the above-mentioned components, have been provided. The phytotoxic effect on the germination capacity and sprouts of cress (Lepidium sativum), barley (Hordéum vulgáre) and oats (Avena sativa) in soil mixes has been determined. The heavy metals and arsenic contents in the sludge does not exceed the allowable level; it is also free of pathogenic flora and helminthes.

  7. Direct landfill disposal versus Mechanical Biological Treatment (MBT

    Directory of Open Access Journals (Sweden)

    Kulhawik Katarzyna

    2016-09-01

    Full Text Available After the implementation of a new waste management system, in which recycling is the most dominating process, landfill disposal still appears to be the most popular method of waste management in Poland, in which waste undergoes gradual decomposition and the influence of climate conditions, for example, air and atmospheric fallout, leads to the production of leachate and biogas emissions, which contribute to continual threats to the natural environment and humans. The above-mentioned threats can be limited by applying suitable techniques of waste treatment before its disposal. A technology that is oriented to these aims is a mechanical biological treatment (MBT before disposal.

  8. Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations

    Directory of Open Access Journals (Sweden)

    Ricardo Chacartegui

    2013-12-01

    Full Text Available Wastewater treatment stations take advantage of the biogas produced from sludge in anaerobic digesters to generate electricity (reciprocating gas engines and heat (cooling water and engine exhaust gases. A fraction of this electricity is used to operate the plant while the remaining is sold to the grid. Heat is almost entirely used to support the endothermic anaerobic digestion and a minimum fraction of it is rejected to the environment at a set of fan coolers. This generic description is applicable to on-design conditions. Nevertheless, the operating conditions of the plant present a large seasonal variation so it is commonly found that the fraction of heat rejected to the atmosphere increases significantly at certain times of the year. Moreover, the heat available in the exhaust gases of the reciprocating engine is at a very high temperature (around 650 oC, which is far from the temperature at which heat is needed for the digestion of sludge (around 40 oC in the digesters. This temperature difference offers an opportunity to introduce an intermediate system between the engines and the digesters that makes use of a fraction of the available heat to convert it into electricity. An Organic Rankine Cycle (ORC with an appropriate working fluid is an adequate candidate for these hot/cold temperature sources. In this paper, the techno-economic effect of adding an Organic Rankine Cycle as the intermediate system of an existing wastewater treatment station is analysed. On this purpose, different working fluids and system layouts have been studied for a reference wastewater treatment station giving rise to optimal systems configurations. The proposed systems yield very promising results with regard to global efficiency and electricity production (thermodynamically and economically.

  9. Carbamazepine degradation by gamma irradiation coupled to biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shizong [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China)

    2017-01-05

    Highlights: • Carbamazepine was removed by the combined gamma radiation and biodegradation. • The removal efficiency of carbamazepine increased with dose. • Irradiation could enhance the mineralization of carbamazepine significantly. • The combined irradiation and biodegradation was effective for carbamazepine removal. - Abstract: Carbamazepine is an emerging contaminant and resistant to biodegradation, which cannot be effectively removed by the conventional biological wastewater treatment processes. In this study, the combined gamma irradiation and biodegradation was employed to remove carbamazepine from wastewater. The effect of dose on the removal of carbamazepine was studied at different doses (300, 600 and 800 Gy). The results showed that the removal efficiency of carbamazepine increased with dose increasing during the irradiation process. The maximum removal efficiency was 99.8% at 800 Gy, while the removal efficiency of total organic carbon (TOC) was only 26.5%. The removal efficiency of TOC increased to 79.3% after the sequent biological treatment. In addition, several intermediates and organic acids were detected. The possible degradation pathway of carbamazepine during the integrated irradiation and biodegradation was proposed. Based on the overall analysis, the combined gamma irradiation and biological treatment process can be an alternative for removing the recalcitrant organic pollutants such as carbamazepine from wastewater.

  10. Biologic treatment in Sjögren's syndrome.

    Science.gov (United States)

    Sada, Pablo Ruiz; Isenberg, David; Ciurtin, Coziana

    2015-02-01

    SS is a chronic systemic autoimmune disease characterized by decreased exocrine gland function. A variety of other disease manifestations may also be present, including general constitutional symptoms and extraglandular features. A multidisciplinary approach focused on both local and systemic medical therapies is needed as the disease has a wide clinical spectrum. The current treatment for SS is mainly symptomatic. However, there is evidence that systemic drugs are effective in controlling extraglandular manifestations of the disease. Overall evidence for the role of conventional immunosuppressive therapy is limited. A number of attempts to use biologic therapies have led to variable results. Biologic agents targeting B cells, such as rituximab, epratuzumab and belimumab, have shown promising results, but further studies are needed to validate the findings. Early-phase studies with abatacept and alefacept proved that T cell stimulation inhibition is another potentially effective target for SS treatment. Modulation or inhibition of other targets such as IFN, IL-6 and Toll-like receptor are also currently being investigated. We have summarized the available evidence regarding the efficacy of biologic treatments and discuss other potential therapies targeting pathways or molecules recognized as being involved in the pathogenesis of SS. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Carbon footprint of aerobic biological treatment of winery wastewater.

    Science.gov (United States)

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  12. Biological treatment of inorganic ion contamination including radionuclides

    International Nuclear Information System (INIS)

    Cherry, R.S.

    1997-01-01

    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III)

  13. Biological treatment of inorganic ion contamination including radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, R S [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1997-12-01

    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III).

  14. Finding Balance Between Biological Groundwater Treatment and Treated Injection Water

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Mark A.; Nielsen, Kellin R.; Byrnes, Mark E.; Simmons, Sally A.; Morse, John J.; Geiger, James B.; Watkins, Louis E.; McFee, Phillip M.; Martins, K.

    2015-01-14

    At the U.S. Department of Energy’s Hanford Site, CH2M HILL Plateau Remediation Company operates the 200 West Pump and Treat which was engineered to treat radiological and chemical contaminants in groundwater as a result of the site’s former plutonium production years. Fluidized bed bioreactors (FBRs) are used to remove nitrate, metals, and volatile organic compounds. Increasing nitrate concentrations in the treatment plant effluent and the presence of a slimy biomass (a typical microorganism response to stress) in the FBRs triggered an investigation of nutrient levels in the system. Little, if any, micronutrient feed was coming into the bioreactors. Additionally, carbon substrate (used to promote biological growth) was passing through to the injection wells, causing biological fouling of the wells and reduced specific injectivity. Adjustments to the micronutrient feed improved microorganism health, but the micronutrients were being overfed (particularly manganese) plugging the injection wells further. Injection well rehabilitation to restore specific injectivity required repeated treatments to remove the biological fouling and precipitated metal oxides. A combination of sulfamic and citric acids worked well to dissolve metal oxides and sodium hypochlorite effectively removed the biological growth. Intensive surging and development techniques successfully removed clogging material from the injection wells. Ultimately, the investigation and nutrient adjustments took months to restore proper balance to the microbial system and over a year to stabilize injection well capacities. Carefully tracking and managing the FBRs and well performance monitoring are critical to balancing the needs of the treatment system while reducing fouling mechanisms in the injection wells.

  15. Strategies for the reduction of Legionella in biological treatment systems.

    Science.gov (United States)

    Nogueira, R; Utecht, K-U; Exner, M; Verstraete, W; Rosenwinkel, K-H

    A community-wide outbreak of Legionnaire's disease occurred in Warstein, Germany, in August 2013. The epidemic strain, Legionella pneumophila Serogruppe 1, was isolated from an industrial wastewater stream entering the municipal wastewater treatment plant (WWTP) in Wartein, the WWTP itself, the river Wäster and air/water samples from an industrial cooling system 3 km downstream of the WWTP. The present study investigated the effect of physical-chemical disinfection methods on the reduction of the concentration of Legionella in the biological treatment and in the treated effluent entering the river Wäster. Additionally, to gain insight into the factors that promote the growth of Legionella in biological systems, growth experiments were made with different substrates and temperatures. The dosage rates of silver micro-particles, hydrogen peroxide, chlorine dioxide and ozone and pH stress to the activated sludge were not able to decrease the number of culturable Legionella spp. in the effluent. Nevertheless, the UV treatment of secondary treated effluent reduced Legionella spp. on average by 1.6-3.4 log units. Laboratory-scale experiments and full-scale measurements suggested that the aerobic treatment of warm wastewater (30-35 °C) rich in organic nitrogen (protein) is a possible source of Legionella infection.

  16. Biological treatment and nanofiltration of denim textile wastewater for reuse

    International Nuclear Information System (INIS)

    Sahinkaya, Erkan; Uzal, Nigmet; Yetis, Ulku; Dilek, Filiz B.

    2008-01-01

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 ± 2% and 84 ± 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 ± 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 μm pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m 2 /h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria

  17. Cardiovascular safety of biologic therapies for the treatment of RA.

    Science.gov (United States)

    Greenberg, Jeffrey D; Furer, Victoria; Farkouh, Michael E

    2011-11-15

    Cardiovascular disease represents a major source of extra-articular comorbidity in patients with rheumatoid arthritis (RA). A combination of traditional cardiovascular risk factors and RA-related factors accounts for the excess risk in RA. Among RA-related factors, chronic systemic inflammation has been implicated in the pathogenesis and progression of atherosclerosis. A growing body of evidence--mainly derived from observational databases and registries--suggests that specific RA therapies, including methotrexate and anti-TNF biologic agents, can reduce the risk of future cardiovascular events in patients with RA. The cardiovascular profile of other biologic therapies for the treatment of RA has not been adequately studied, including of investigational drugs that improve systemic inflammation but alter traditional cardiovascular risk factors. In the absence of large clinical trials adequately powered to detect differences in cardiovascular events between biologic drugs in RA, deriving firm conclusions on cardiovascular safety is challenging. Nevertheless, observational research using large registries has emerged as a promising approach to study the cardiovascular risk of emerging RA biologic therapies.

  18. Integrated anaerobic/aerobic biological treatment for intensive swine production.

    Science.gov (United States)

    Bortone, Giuseppe

    2009-11-01

    Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment.

  19. Microbial ecology of denitrification in biological wastewater treatment.

    Science.gov (United States)

    Lu, Huijie; Chandran, Kartik; Stensel, David

    2014-11-01

    Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Élimination des micropolluants par les stations d’épuration domestiques Removal of micropollutants by wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    CHOUBERT, Jean-Marc ; POMIES, Maxime ; MARTIN-RUEL, Samuel ; BUDZINSKI, Hélène ; MIEGE, Cécile ; WISNIEWSKI, Christelle ; COQUERY, Marina

    2012-12-01

    Full Text Available Produits industriels, détergents, hydrocarbures, pesticides, médicaments : les stations d'épuration domestiques sont-elles efficaces pour éliminer toutes les substances chimiques issues des activités humaines retrouvées dans les milieux aquatiques? Cet article présente les principales connaissances récemment acquises relatives au comportement et au devenir des micropolluants dans les différentes filières de traitement des eaux ainsi que les perspectives d'amélioration des procédés.Domestic wastewater treatment plants were not designed for micropollutants removal. They perform substantial removal of several micropollutants, mainly by sorption process onto biological sludge and by biodegradation from the liquid phase for some substances. This article presents the main recent advances on the fate of micropollutants through primary, secondary and tertiary treatment processes. It also addresses research in progress for the optimization of micropollutants removal.

  1. Ionic interactions in biological and physical systems: a variational treatment.

    Science.gov (United States)

    Eisenberg, Bob

    2013-01-01

    Chemistry is about chemical reactions. Chemistry is about electrons changing their configurations as atoms and molecules react. Chemistry has for more than a century studied reactions as if they occurred in ideal conditions of infinitely dilute solutions. But most reactions occur in salt solutions that are not ideal. In those solutions everything (charged) interacts with everything else (charged) through the electric field, which is short and long range extending to the boundaries of the system. Mathematics has recently been developed to deal with interacting systems of this sort. The variational theory of complex fluids has spawned the theory of liquid crystals (or vice versa). In my view, ionic solutions should be viewed as complex fluids, particularly in the biological and engineering context. In both biology and electrochemistry ionic solutions are mixtures highly concentrated (to approximately 10 M) where they are most important, near electrodes, nucleic ids, proteins, active sites of enzymes, and ionic channels. Ca2+ is always involved in biological solutions because the concentration (really free energy per mole) of Ca2+ in a particular location is the signal that controls many biological functions. Such interacting systems are not simple fluids, and it is no wonder that analysis of interactions, such as the Hofmeister series, rooted in that tradition has not succeeded as one would hope. Here, we present a variational treatment of ard spheres in a frictional dielectric with the hope that such a treatment of an lectrolyte as a complex fluid will be productive. The theory automatically extends to spatially nonuniform boundary conditions and the nonequilibrium systems and flows they produce. The theory is unavoidably self-consistent since differential equations are derived (not assumed) from models of (Helmholtz free) nergy and dissipation of the electrolyte. The origin of the Hofmeister series is (in my view) an inverse problem that becomes well posed when

  2. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2014

    Science.gov (United States)

    Bodamer Scarbro, Betsy L.; Edwards, William; Gawne, Carrie; Kocovsky, Patrick M.; Kraus, Richard T.; Rogers, Mark W.; Stewart, Taylor

    2015-01-01

    In 2014, the USGS LEBS successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Forage Fish Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment, the Eastern Basin Coldwater Community Assessment, and LTLA (see FTG, CWTG, and FTG reports, respectively). Results from the surveys contribute to Lake Erie Committee Task Group data needs and analyses of trends in Lake Erie’s fish communities. The cruise survey schedule in 2014 was greatly increased by LEBS’s participation in the Lake Erie CSMI, which consisted of up-to two weeks of additional sampling per month from April to October. CSMI is a bi-national effort that occurs at Lake Erie every five years with the purpose of addressing data and knowledge gaps necessary to management agencies and the Lake Erie LaMP. LEBS deepwater science capabilities also provided a platform for data collection by Lake Erie investigators from multiple agencies and universities including: the USGS GLSC, ODW, KSU, OSU, UM, PU, UT, and the USNRL. Samples from this survey are being processed and a separate report of the findings will be made available in a separate document. Our 2014 vessel operations were initiated in mid-April, as soon after ice-out as possible, and continued into early December. During this time, crews of the R/V Muskie and R/V Bowfin deployed 196 bottom trawls covering 48.5 km of lake-bottom, nearly 6 km of gillnet, collected data from 60 hydroacoustics transects, 285 lower trophic (i.e., zooplankton and benthos) samples, and 330 water quality measures (e.g., temperature profiles, water samples). Thus, 2014 was an intensive year of field activity. Our June and September bottom trawl surveys in the Western Basin were numerically dominated by Emerald Shiner, White Perch, and Yellow Perch; however, Freshwater Drum were

  3. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  4. Tenosynovitis in rheumatoid arthritis patients on biologic treatment

    DEFF Research Database (Denmark)

    Hammer, Hilde Berner; Kvien, Tore K; Terslev, Lene

    2017-01-01

    , clinical and laboratory assessments were performed when starting biologic DMARD (bDMARD) and after 1, 2, 3, 6 and 12 months including bilateral grey-scale (GS) and power Doppler (PD) semi-quantitatively (0-3) scoring of ECU and TP tendons and 18 joints. Changes from baseline to follow-up were explored...... by Wilcoxon signed rank test, associations by Spearman's rank correlations and responses to treatment by Standardised Response Means (SRMs). RESULTS: 157 patients (mean age/disease duration 52.4/10.2 years) were included. ECU/TP tenosynovitis was frequent (baseline GS/PD pathology in 76/50% of patients...

  5. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1994-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  6. Pharmaceutical wastewater treatment by internal micro-electrolysis--coagulation, biological treatment and activated carbon adsorption.

    Science.gov (United States)

    Wang, Kangle; Liu, Suiqing; Zhang, Qiang; He, Yiliang

    2009-12-01

    Treatment of pharmaceutical wastewater by the combined process of internal micro-electrolysis and coagulation, biological treatment and activated carbon adsorption was studied. Internal micro-electrolysis and coagulation served as the pretreatment for the wastewater before biological treatment to reduce the contaminants' toxicity to microbes and improve the biodegradability of wastewater to guarantee the smooth operation of the biological process. Biological treatment was the main body of the whole process which took an unparalleled role in removing COD (chemical oxygen demand). Activated carbon adsorption was adopted as the post-treatment process to further remove the remaining non-biodegradable particles. Results showed that the removal rates of COD and S2- (sulphide ion) by pretreatment were 66.9% and 98.9%, respectively, and the biodegradability, as measured by the ratio of biodegradable COD to initial COD, of the wastewater was greatly improved from 0.16 +/- 0.02 to 0.41 +/- 0.02. The overall removal rate of COD in the wastewater achieved by this combined treatment process was up to 96%, and the effluent COD met the Chinese tertiary discharge standard (GB 8978-1996).

  7. Vegetation composition of the UCM Biological Field Station Finca de Ontalba; Composicion vegetal de la Estacion Biologica de la UCM Finca de Ontalba

    Energy Technology Data Exchange (ETDEWEB)

    Castoldi, E.; Molina, J. A.

    2012-07-01

    A vegetation study in the Biological Field Station of the Complutense University of Madrid named Finca de Ontalba, located in Guadarrama Mountains (North Madrid), was carried out. We identified 12 plant communities grouped in the following seven vegetation types: 1) Hygrophilous and aquatic communities; 2) Meadows; 3) Pioneer community of open disturbed soils; 4) Nitrophilous tall-herb vegetation of forest edge; 5) Forest-edge herbaceous community; 6) Forest-edge scrub community; and 7) Forest vegetation. The interest of the Station for research studies is pointed out. Its scope includes primary succession, amphibious environment, soil moisture gradient, ecotones, and forested environment. Besides, the Biological Station hosts a freshwater habitat type listed in the European Community Directive (92/43/EEC) which corresponds to water courses of plain or montane levels with Ranunculion fluitantis and Callitricho- Batrachion vegetation (habitat code 3260). (Author)

  8. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Rongjun Su

    2015-01-01

    Full Text Available Rotating biological contactors (RBC are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW. The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%. Microscopic observations illustrated that there were various active microorganisms displayed in the biofilms and their distribution changed from stage to stage. Compared with activated sludge, the biofilms in this study have higher content of dry matter and are easier to dehydrate and settle. Compared with current commercial incineration processes or advanced oxidation processes, RBC can greatly reduce the treatment cost. This research shows RBC is effective for such an inherently biorecalcitrant wastewater even at low ambient temperature.

  9. Selenium: environmental significance, pollution, and biological treatment technologies.

    Science.gov (United States)

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent

  10. Kinetic coefficients for the biological treatment of tannery wastewater

    International Nuclear Information System (INIS)

    Haydar, S.

    2008-01-01

    Determination of kinetic coefficients for a particular wastewater is imperative for the rational design of biological treatment-facilities. The present study was undertaken with the objective of finding out kinetic coefficients for tannery wastewater. A bench-scale model of aerated lagoon, consisting of an aeration tank and final clarifier, was use to conduct the studies. The model was operated continuously for 96 days, by varying the detention times from 3 to 9 days. Influent for the aerated lagoon was settled tannery wastewater. Biochemical oxygen demand (BOD) of the influent and effluent and the mixed-liquor suspended solids (MLSS) of aeration tank were determined at various detention-times so as to generate data for kinetic coefficients. The kinetic coefficients k, Ks, Y and Ed were found to be 3.125 day/sup -1/, 488 mg/L, 0.64 and 0.035 day/sup -1/ respectively. Overall rate-constant of BOD, removal 'K' was also determined and was found to be 1.43 day/sup -1/. Kinetic coefficients were determined, at mean reactor-temperature of 30.2 degree C. These coefficients may be utilized for the design of biological-treatment facilities for tannery wastewater. (author)

  11. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    Science.gov (United States)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    efficient wastewater treatment from oil as well as reduction of anthropogenic pressure on the environment and economic costs of the station for nature protection measures.

  12. Maleic acid treatment of biologically detoxified corn stover liquor.

    Science.gov (United States)

    Kim, Daehwan; Ximenes, Eduardo A; Nichols, Nancy N; Cao, Guangli; Frazer, Sarah E; Ladisch, Michael R

    2016-09-01

    Elimination of microbial and enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases, and other soluble inhibitors were eliminated by biological detoxification. Corn stover at 20% (w/v) solids was LHW pretreated LHW (severity factor: 4.3). The 20% solids (w/v) pretreated corn stover derived liquor was recovered and biologically detoxified using the fungus Coniochaeta ligniaria NRRL30616. After maleic acid treatment, and using 5 filter paper units of cellulase/g glucan (8.3mg protein/g glucan), 73% higher cellulose conversion from corn stover was obtained for biodetoxified samples compared to undetoxified samples. This corresponded to 87% cellulose to glucose conversion. Ethanol production by yeast of pretreated corn stover solids hydrolysate was 1.4 times higher than undetoxified samples, with a reduction of 3h in the fermentation lag phase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Large-scale experience with biological treatment of contaminated soil

    International Nuclear Information System (INIS)

    Schulz-Berendt, V.; Poetzsch, E.

    1995-01-01

    The efficiency of biological methods for the cleanup of soil contaminated with total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH) was demonstrated by a large-scale example in which 38,000 tons of TPH- and PAH-polluted soil was treated onsite with the TERRAFERM reg-sign degradation system to reach the target values of 300 mg/kg TPH and 5 mg/kg PAH. Detection of the ecotoxicological potential (Microtox reg-sign assay) showed a significant decrease during the remediation. Low concentrations of PAH in the ground were treated by an in situ technology. The in situ treatment was combined with mechanical measures (slurry wall) to prevent the contamination from dispersing from the site

  14. Biological treatment of aqueous effluents in a bacterial bed

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-14

    Biological treatment of aqueous effluents in a bacterial bed is carried out effectively for refinery waters having a low five-day BOD by using a plastic packing to support the bacteria in place of the less reliable pozzolana (volcanic ash) formerly employed. Such biofilters, developed by Lurgi S.A., are more sensitive to BOD overloading than activated sludge beds, so that very stable operating conditions are required. In these bacterial beds, the water trickles over the plastic packing and becomes oxygenated, which leads to degradation of undesirable substances in the water. In the refinery, this process can give excellent results when properly carried out, but the biofilter may generate suspended matter under unsatisfactory operating conditions, and is therefore usually placed upstream from the flocculation and filtration units. To date, all installations have remained below the required standard limit of 30 mg/l. of suspended matter.

  15. Biological control and management of the detoxication wastewater treatment technologies

    Directory of Open Access Journals (Sweden)

    Topalova Yana

    2007-01-01

    Full Text Available Detoxication technologies require the combination of theoretical and practical knowledge of xenobiotic biodegradation, wastewater treatment technologies, and management rules. The purpose of this complicated combination is to propose specialized strategies for detoxication, based on lab- and pilot-scale modeling. These strategies include preliminary created algorithms for preventing the risk of water pollution and sediments. The technologies and algorithms are essentially important outcome, applied in the textile, pharmaceutical, cosmetic, woodtreating, and oiltreating industries. In this paper four rehabilitation technologies for pretreatment of water contaminated by pentachlorophenol (PCP have been developed in the frame of the European and Bulgarian National projects. Emphasize is put on the biological systems and their potential of detoxication management. The light and transmission electron microscopy of the reconstructed activated sludges the microbial, kinetic and enzymological indicators are presented and approved as critical points in the biocontrol.

  16. Surface treatments for biological, chemical and physical applications

    CERN Document Server

    Karaman, Mustafa

    2017-01-01

    A step-by-step guide to the topic with a mix of theory and practice in the fields of biology, chemistry and physics. Straightforward and well-structured, the first chapter introduces fundamental aspects of surface treatments, after which examples from nature are given. Subsequent chapters discuss various methods to surface modification, including chemical and physical approaches, followed by the characterization of the functionalized surfaces. Applications discussed include the lotus effect, diffusion barriers, enzyme immobilization and catalysis. Finally, the book concludes with a look at future technology advances. Throughout the text, tutorials and case studies are used for training purposes to grant a deeper understanding of the topic, resulting in an essential reference for students as well as for experienced engineers in R&D.

  17. [Molecular Biology for Surgical Treatment of Lung Cancer].

    Science.gov (United States)

    Suda, Kenichi; Mitsudomi, Tetsuya

    2017-01-01

    Progress in lung cancer research achieved during the last 10 years was summarized. These include identification of novel driver mutations and application of targeted therapies, resistance mechanisms to targeted therapies, and immunotherapy with immune checkpoint inhibitors. Molecular biology also affects the field of surgical treatment. Several molecular markers have been reported to predict benign/ malignant or stable/growing tumors, although far from clinical application. In perioperative period, there is a possibility of atrial natriuretic peptide to prevent cancer metastasis. As adjuvant settings, although biomarker-based cytotoxic therapies failed to show clinical efficacy, several trials are ongoing employing molecular targeted agents (EGFR-TKI or ALK-TKI) or immune checkpoint inhibitors. In clinical practice, mutational information is sometimes used to distinguish 2nd primary tumors from pulmonary metastases of previous cancers. Surgery also has important role for oligo-progressive disease during molecular targeted therapies.

  18. Performance Evaluation of wastewater treatment plant of Noosh Azar company by online monitoring station

    Directory of Open Access Journals (Sweden)

    leila haddadi

    2018-02-01

    Full Text Available Background& Objective: One of the reuses of wastewater in industries is irrigation of green space. Therefore, with proper treatment and reduction of environmental pollution of wastewater and in compliance with environmental standards, it can be used for irrigation purposes. The present study was aimed to evaluate the performance of Noosh Azar Wastewater Treatment Plant by the online monitoring station in 2016.   Materials and Methods: This descriptive cross-sectional study was performed at Noosh Azar Waste Water Treatment Plant (WWTP in Tehran. The effluent outlet parameters include COD, BOD, TSS, TOC, Turbidity, pH and temperature which were measured 12 times/day by the online monitoring station of the refinery according to the standard methods (the Examinations of Water and Wastewater, and reported at the end of each month. Data were entered into SPSS software and analyzed using statistical indices including mean and standard deviation. Results: The average total of BOD/COD ratio in the wastewater was 0.8. The results of the study showed that the average concentration of COD, BOD and TSS of the wastewater was 1624.91 ±134.85, 1310±75.38 and 283.58± 39.76 mg/L, respectively. The average of total outlet parameters of turbidity, COD, BOD, TSS and TOC were 12.78±2.21, 83.73±12.90, 41.26±6.65, 6.70±2.14, 46.03±7.08 mg/L, and pH=7.80±0.35. The total average of removal efficiencies of COD, BOD and TSS were 93.92±3.62, 96.57±1.002 and 97.57±0.936, respectively. Conclusion: Regarding the proper performance of the activated sludge system of Noosh Azar Company, the effluent  parameters such as COD, BOD, TSS, TOC, turbidity and pH, were in accordance with the standard of the Iranian Environmental Protection Agency for irrigation use. However in order to ensure the quality of the wastewater for reuse, the microbial parameters should also be considered.

  19. Wastewater Treatment Model in Washing Stations for Vehicles Transporting Dangerous Goods

    Directory of Open Access Journals (Sweden)

    Robert Muha

    2004-09-01

    Full Text Available Car washing is a task performed by every passenger carowner more or less frequently, mainly to achieve a finer appearanceof the vehicle rather than for the need for cleanness.In the transport business, the owner's concern is to presentclean and orderly vehicles on the road as a relevant external elementof order, implying good corporate image to customers. Onthe other hand, in dangerous goods transportation there areother reasons requiring special technology of washing, applicableto the transport means used, depending on the change oftype of goods in carriage, the preliminary preparation of a vehicleto load the cargo, or to undergo maintenance.Water applied in the technology of washing collects the residueof goods carried in the vehicle and is polluted to such an extentthat it cannot be discharged into sewers - nor directly into awatercourse - without previous treatment.The paper presents a solution model and a sequence oftechnological procedures involved in an efficient treatment ofthe polluted wastewater in tank wash stations, in which mostlyvehicles carrying ADR goods are washed.

  20. Treatment with Biologicals in Rheumatoid Arthritis: An Overview.

    Science.gov (United States)

    Rein, Philipp; Mueller, Ruediger B

    2017-12-01

    Management and therapy of rheumatoid arthritis (RA) has been revolutionized by the development and approval of the first biological disease-modifying antirheumatic drugs (bDMARDs) targeting tumor necrosis factor (TNF) α at the end of the last century. Today, numerous efficacious agents with different modes of action are available and achievement of clinical remission or, at least, low disease activity is the target of therapy. Early therapeutic interventions aiming at a defined goal of therapy (treat to target) are supposed to halt inflammation, improving symptoms and signs, and preserving structural integrity of the joints in RA. Up to now, bDMARDs approved for therapy in RA include agents with five different modes of action: TNF inhibition, T cell co-stimulation blockade, IL-6 receptor inhibition, B cell depletion, and interleukin 1 inhibition. Furthermore, targeted synthetic DMARDs (tsDMARDs) inhibiting Janus kinase (JAK) and biosimilars also are approved for RA. The present review focuses on bDMARDs and tsDMARDS regarding similarities and possible drug-specific advantages in the treatment of RA. Furthermore, compounds not yet approved in RA and biosimilars are discussed. Following the American College of Rheumatology (ACR) and European League Against Rheumatism (EULAR) recommendations, specific treatment of the disease will be discussed with respect to safety and efficacy. In particular, we discuss the question of favoring specific bDMARDs or tsDMARDs in the two settings of insufficient response to methotrexate and to the first bDMARD, respectively.

  1. Toxicity of fluoride to microorganisms in biological wastewater treatment systems.

    Science.gov (United States)

    Ochoa-Herrera, Valeria; Banihani, Qais; León, Glendy; Khatri, Chandra; Field, James A; Sierra-Alvarez, Reyes

    2009-07-01

    Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).

  2. Preliminary Study of Greywater Treatment through Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Ashfaq Ahmed Pathan

    2011-07-01

    Full Text Available The characteristics of the greywater vary from country to country and it depends upon the cultural and social behavior of the respective country. There was a considerable need to characterize and recycle the greywater. In this regard greywater was separated from the black water and analyzed for various physiochemical parameters. Among various greywater recycling treatment technologies, RBC (Rotating Biological Contactor is more effective treatment technique in reducing COD (Chemical Oxygen Demand and organic matters from the greywater. But this technology was not applied and tested in Pakistan. There was extensive need to investigate the RBC technology for greywater recycling at small scale before applying at mass scale. To treat the greywater, a single-stage RBC simulator was designed and developed at laboratory scale. An electric motor equipped with gear box to control the rotations of the disks was mounted on the tank. The simulator was run at the rate of 1.7 rpm. The disc area of the RBC was immersed about 40% in the greywater. Water samples were collected at each HRT (Hydraulic Retention Time and analyzed for the parameters such as pH, conductivity, TDS (Total Dissolved Solids, salinity, BOD5 (Biochemical Oxygen Demand, COD and suspended solids by using standard methods. The results are encouraging with percentage removal of BOD5 and COD being 53 and 60% respectively.

  3. An electron beam flue gas treatment plant for a coal fired thermal power station. EBA demonstration plant in Chengdu thermal power station (China EBA Project)

    International Nuclear Information System (INIS)

    Doi, Yoshitaka; Nakanishi, Ikuo; Shi, Jingke

    1999-01-01

    Ebara's electron beam flue gas treatment plant was installed and is being demonstrated in Chengdu Thermal Power Station, Sichuan, China. The demonstration is proving that this plant is fully capable of meeting the target removal of sulfur dioxides from flue gas (flow rate : 300-thousand m 3 /h). Recovered by-products, namely ammonium sulfate and ammonium nitrate, from the treatment were actually tested as fertilizers, the result of which was favorable. The sale and distribution of these by-products are already underway. In May 1995, this plant was presented the certificate of authorization by China's State Power Corporation. It is noted that this was the first time a sulfur dioxide removal plant was certified as such in China. (author)

  4. Treatment of textiles industrial wastewater by electron beam and biological treatment (sbr)

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Khairul Zaman Mohd Dahlan; Zulkafli Ghazali; Ting Teo Ming

    2008-08-01

    Study of treating textiles industrial wastewater with combined of electron beam and Tower Style Biological Treatment (TSB) was investigated in Korea. In this project, textiles wastewater was also treated with electron beam, but hybrid with Sequencing Batch Reactor (SBR). The purpose of this research is to develop combined electron beam treatment with existing biological treatment facility (SBR), of textile industries in Malaysia. The objectives of this project are to determine the effective irradiation parameter for treatment and to identify effective total retention time in SBR system. To achieve the objective, samples fill in polypropyle tray were irradiated at 1 MeV, 20 mA and 1 MeV ,5 mA at doses 11, 20, 30, 40 and 50 kGy respectively. Raw effluent and two series of irradiated effluent at 1 MeV 20 mA (11, 20, 30, 40 and 50 kGy) and 1 MeV 5 mA (11, 20, 30, 40 and 50 kGy) were then treated in SBR system. Samples were analysed at 6, 14 and 20 hrs after aeration in the SBR. The results show that, average reduction in BOD was about 2-11% after irradiated at 5 mA, and the percentage increased to 21-73% after treatment in SBR system. At 20 mA, BOD reduced to 7-29% during irradiation and the value increased to 57-87% after treatment in SBR system. (Author)

  5. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Biggs, J.

    1995-01-01

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area

  6. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  7. Tianwan nuclear power station radioactive waste treatment and automatic conveying and temporary store system

    International Nuclear Information System (INIS)

    Long Chengyi; Tang Yifeng; Yang Zhida

    2012-01-01

    The treatment method of middle, low radioactive waste and the system of convey and temporal store in Tianwan nuclear power station were introduced. The primary system has some shortcoming, for example, the orientation precision isn't high, the work intensity is large, the operator is under superfluous nuclear radiation, and the capacity of storehouse isn't large, so the system need rebuild. In the premise of holding present house and facility, frequency conversion system was installed in the crane. In virtue of two laser telemeters and one revolving coder, three-dimensional coordinate parameter of crane can be measured. The application of IPC and PLC make the convey progress automatization, and the progress can be monitored by monitor system. After rebuild, the radioactivity to operator was reduced. Because of function of velocity regulating, the startup, running and braking of the crane is smooth, and the shake range of waste barrel was reduced. The crane orientation precision reach 1 mm, that reduce single waste barrel space, so the capacity of storehouse is evidently improved. (authors)

  8. Neural network models for biological waste-gas treatment systems.

    Science.gov (United States)

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression

  9. Decentralized wastewater treatment using passively aerated biological filter.

    Science.gov (United States)

    Abou-Elela, Sohair I; Hellal, Mohamed S; Aly, Olfat H; Abo-Elenin, Salah A

    2017-10-13

    This study aimed to evaluate the efficiency of a novel pilot-scale passively aerated biological filter (PABF) as a low energy consumption system for the treatment of municipal wastewater. It consists of four similar compartments, each containing 40% of a non-woven polyester fabric as a bio-bed. The PABF was fed with primary treated wastewater under a hydraulic retention time (HRT) of 3.5 hr and a hydraulic loading rate of 5.5 m 2 /m 3 /d. The effect of media depth, HRT, dissolved oxygen (DO) and surface area of the media on the removal efficiency of pollutants was investigated. Results indicated that increasing media depth along the axis of the reactor and consequently increasing the HRT and DO resulted in great removal of different pollutants. A significant increase in the DO levels in the final effluent up to 6.7 mg/l resulted in good nitrification processes. Statistical analysis using SPSS showed that the reactor performance has significant removal efficiency (p filter systems.

  10. Treatment plan ranking using physical and biological indices

    International Nuclear Information System (INIS)

    Ebert, M. A.; University of Western Asutralia, WA

    2001-01-01

    Full text: The ranking of dose distributions is of importance in several areas such as i) comparing rival treatment plans, ii) comparing iterations in an optimisation routine, and iii) dose-assessment of clinical trial data. This study aimed to investigate the influence of choice of objective function in ranking tumour dose distributions. A series of physical (mean, maximum, minimum, standard deviation of dose) dose-volume histogram (DVH) reduction indices and biologically-based (tumour-control probability - TCP; equivalent uniform dose -EUD) indices were used to rank a series of hypothetical DVHs, as well as DVHs obtained from a series of 18 prostate patients. The distribution in ranking and change in distribution with change in indice parameters were investigated. It is found that not only is the ranking of DVHs dependent on the actual model used to perform the DVH reduction, it is also found to depend on the inherent characteristics of each model (i.e., selected parameters). The adjacent figure shows an example where the 18 prostate patients are ranked (grey-scale from black to white) by EUD when an α value of 0.8 Gy -1 is used in the model. The change of ranking as α varies is evident. Conclusion: This study has shown that the characteristics of the model selected in plan optimisation or DVH ranking will have an impact on the ranking obtained. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  11. Recycling of dyehouse effluents by biological and chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Krull, R.; Doepkens, E. [Inst. of Biochemical Engineering, Technical Univ. of Braunschweig, Braunschweig (Germany)

    2003-07-01

    The introduction of the production integrated environmental protection by closing raw material cycles is shown exemplary for the textile finishing industry. Colored process water with a high content of dissolved organic dyes has always been a non-trivial problem for the sewage engineering sector. The recycling of process water of textile mills is often hindered by remaining color of water-soluable azo dyes after conventional wastewater treatment. Rising costs of emitted wastewater, lawful limits and restricted availability of water makes it of great interest to introduce sophisticated techniques helping to purify dye effluents and to recycle process water. A combined biological and chemical process of purification and recycling of residual dyehouse split flows into the production was developed, investigated and installed by a textile finishing company which produces 330,000 m{sup 3} colored wastewater effluents per year. The process contains anaerobic dye-cleavage, aerobic mineralization of cleavage-products and the decolorization and partial oxidation of traces of dyeresiduals by advanced oxidation. (orig.)

  12. Treatment of uranium mining and milling wastewater using biological adsorbents

    International Nuclear Information System (INIS)

    Tsezos, M.

    1983-01-01

    Selected samples of waste microbial biomass originating from various industrial fermentation processes and biological treatment plants have been screened for biosorbent properties in conjunction with uranium, thorium and radium in aqueous solutions. Biosorption isotherms were used for the evaluation of biosorptive uptake capacity of the biomass. The biomass was also compared to synthetic adsorbents such as activated carbon. Determined uranium, thorium and radium biosorption isotherms were independent of the initial solution concentrations. Solution pH affected uptake. Rhizopus arrhizus at pH 4 exhibited the highest uranium and thorium biosorptive uptake capacity in excess of 180 Mg/g. It removed about 2.5 and 3.3 times more uranium than the ion exchange resin and activated carbon tested. Penicillium chrysogenum adsorbed 50000 pCi/g radium at pH 7 and at an equilibrium radium concentration of 1000 pCi/L. The most effective biomass types studied exhibited removals in excess of 99% of the radium in solution

  13. The biological treatment of petroleum tank draw waters

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jose L. [Envirosystems Supply, Inc., Hollywood, FL (United States); Stephens, Greg [Plantation Pipeline, Atlanta, GA (United States)

    1993-12-31

    This work reviews and summarizes the performance of a biological process (followed by the state-of-the-art) for the removal of organic compounds in petroleum tank draw waters. Trickling filter and the extended aeration modification of activated sludge were selected as the biological processes tested in pilot units. 4 refs., 2 figs., 3 tabs.

  14. The biological treatment of petroleum tank draw waters

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jose L [Envirosystems Supply, Inc., Hollywood, FL (United States); Stephens, Greg [Plantation Pipeline, Atlanta, GA (United States)

    1994-12-31

    This work reviews and summarizes the performance of a biological process (followed by the state-of-the-art) for the removal of organic compounds in petroleum tank draw waters. Trickling filter and the extended aeration modification of activated sludge were selected as the biological processes tested in pilot units. 4 refs., 2 figs., 3 tabs.

  15. Treatment of rheumatoid arthritis with biologic DMARDS (Rituximab and Etanercept).

    Science.gov (United States)

    Gashi, Afrim A; Rexhepi, Sylejman; Berisha, Idriz; Kryeziu, Avni; Ismaili, Jehona; Krasniqi, Gezim

    2014-01-01

    To determine efficacy and safety of treatment with Rituximab and Etanercept plus Methotrexate in patients with active Rheumatoid Arthritis (RA), who had an inadequate response to nonbiologic DMARDS therapies and to explore the pharmacogenetics and pharmacodynamics of Rituximab and Etanercept in our populations. Study was done at Rheumatology Clinic of University Clinical Centre in Prishtina during 2009-2011 years. We evaluated primary efficacy and safety at 24 weeks in patients enrolled in the study of long-term efficacy of Rituximab and Etanercept. Patients with active Rheumatoid Arthritis and an inadequate response to 1 or more non biologic DMARDS were randomized to receive intravenous Rituximab (1 course consisting of 2 infusions of 1.000 mg each -one group, and Etanercept 25 mg twice weekly -second group, but both groups with background MTX. The primary efficacy end point was a response on the ACR 20%, improvement criteria at 24 weeks, Secondary end points were responses on the ACR 50 and ACR 70, improvement criteria, the DAS 28, and EULAR response criteria at 24 weeks. During our investigations we treated 20 patients, 15 females and 5 males, in the treated group with RTX and 13 patients 8 females and 5 males in the treated group with ETN. Patients of group 1 and group 2 were of ages 37-69 years old and 19-69 years old (average 47-44) Most of the patients belong in 2nd and 3rd functional stage according to Steinbrocker. All ACR response parameters were significantly improved in RTX treated patients who also had clinically meaningful improvement in fatigue, disability and quality of life. Patients showed a trend less progression in radiographic end points. Most adverse events occurred with the first RTX infusion and were mild to moderate severity. At 24 weeks, a single course of RTX and ETN provided significant and clinically meaningful improvements in disease activity in patients with active, longstanding RA who had an inadequate response to 1 or more

  16. Biological response of cancer cells to radiation treatment

    Directory of Open Access Journals (Sweden)

    Rajamanickam eBaskar

    2014-11-01

    Full Text Available Cancer is a class of diseases characterized by uncontrolled cell growth and has the ability to spread or metastasize throughout the body. In recent years, remarkable progress has been made towards the understanding of proposed hallmarks of cancer development, care and treatment modalities. Radiation therapy or radiotherapy is an important and integral component of cancer management, mostly conferring a survival benefit. Radiation therapy destroys cancer by depositing high-energy radiation on the cancer tissues. Over the years, radiation therapy has been driven by constant technological advances and approximately 50% of all patients with localized malignant tumors are treated with radiation at some point in the course of their disease. In radiation oncology, research and development in the last three decades has led to considerable improvement in our understanding of the differential responses of normal and cancer cells. The biological effectiveness of radiation depends on the linear energy transfer (LET, total dose, number of fractions and radiosensitivity of the targeted cells or tissues. Radiation can either directly or indirectly (by producing free radicals damages the genome of the cell. This has been challenged in recent years by a newly identified phenomenon known as radiation induced bystander effect (RIBE. In RIBE, the non-irradiated cells adjacent to or located far from the irradiated cells/tissues demonstrate similar responses to that of the directly irradiated cells. Understanding the cancer cell responses during the fractions or after the course of irradiation will lead to improvements in therapeutic efficacy and potentially, benefitting a significant proportion of cancer patients. In this review, the clinical implications of radiation induced direct and bystander effects on the cancer cell are discussed.

  17. Biological treatment of closed landfill leachate treatment by using Brevibacillus panacihumi strain ZB1

    Science.gov (United States)

    Er, X. Y.; Seow, T. W.; Lim, C. K.; Ibrahim, Z.; Mat Sarip, S. H.

    2018-04-01

    Landfills are widely used for solid waste disposal due to cost effectiveness and ease of operation. Poor landfill management generally accompanied with production of toxic leachate. Leachate refers to heavily polluted liquid produced due to waste decomposition and rainwater percolation. Direct discharge of untreated leachate into the environment will lead to environmental degradation and health hazards. The aim of this study was to study the efficiency of leachate biological treatment by B. panacihumi strain ZB1. In this study, leachate wastewater was treated by B. panacihumi strain ZB1 via 42-days anaerobic-aerobic treatment. Leachate characterization of both raw and treated samples was carried out based on ammonia nitrogen content, chemical oxygen demand (COD) and heavy metal content. Through leachate characterization, raw leachate carried high concentrations of ammonia nitrogen (1977 mg/L), COD (5320 mg/L) and certain heavy metals exceeding discharge standard. From this study, B. panacihumi strain ZB1 able to remove COD nearly 40%, ammonia nitrogen nearly 50% and different degrees of heavy metals from the leachate sample after combined anaerobic-aerobic treatment. As a result, B. panacihumi strain ZB1was expected to treat the leachate wastewater with certain treatment efficiency via combined anaerobic-aerobic treatment.

  18. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    Science.gov (United States)

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  19. Reductive Anaerobic Biological In Situ Treatment Technology Treatability Testing

    National Research Council Canada - National Science Library

    Alleman, Bruce

    2002-01-01

    Enhanced biological reductive dechlorination (EBRD) shows a great deal of promise for efficiently treating groundwater contaminated with chlorinated solvents, but demonstration sites around the country were reporting mixed results...

  20. Investigating the robustness of ion beam therapy treatment plans to uncertainties in biological treatment parameters

    CERN Document Server

    Boehlen, T T; Dosanjh, M; Ferrari, A; Fossati, P; Haberer, T; Mairani, A; Patera, V

    2012-01-01

    Uncertainties in determining clinically used relative biological effectiveness (RBE) values for ion beam therapy carry the risk of absolute and relative misestimations of RBE-weighted doses for clinical scenarios. This study assesses the consequences of hypothetical misestimations of input parameters to the RBE modelling for carbon ion treatment plans by a variational approach. The impact of the variations on resulting cell survival and RBE values is evaluated as a function of the remaining ion range. In addition, the sensitivity to misestimations in RBE modelling is compared for single fields and two opposed fields using differing optimization criteria. It is demonstrated for single treatment fields that moderate variations (up to +/-50\\%) of representative nominal input parameters for four tumours result mainly in a misestimation of the RBE-weighted dose in the planning target volume (PTV) by a constant factor and only smaller RBE-weighted dose gradients. Ensuring a more uniform radiation quality in the PTV...

  1. Development of biological treatment of high concentration sodium nitrate waste liquid

    International Nuclear Information System (INIS)

    Ogawa, Naoki; Kuroda, Kazuhiko; Shibata, Katsushi; Kawato, Yoshimi; Meguro, Yoshihiro; Takahashi, Kuniaki

    2009-01-01

    An electrolytic reduction, chemical reduction, and biological reduction have been picked up as a method of nitrate liquid waste treatment system exhausted from the reprocessing process. As a result of comparing them, it was shown that the biological treatment was the most excellent method in safety and the economy. (author)

  2. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia - a short version for primary care.

    Science.gov (United States)

    Hasan, Alkomiet; Falkai, Peter; Wobrock, Thomas; Lieberman, Jeffrey; Glenthøj, Birte; Gattaz, Wagner F; Thibaut, Florence; Möller, Hans-Jürgen

    2017-06-01

    Schizophrenia is a severe mental disorder and many patients are treated in primary care settings. Apart from the pharmacological management of disease-associated symptoms, the detection and treatment of side effects is of the utmost importance in clinical practice. The purpose of this publication is to offer relevant evidence-based recommendations for the biological treatment of schizophrenia in primary care. This publication is a short and practice-oriented summary of Parts I-III of the World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia. The recommendations were developed by the authors and consented by a task force of international experts. Guideline recommendations are based on randomized-controlled trials and supplemented with non-randomized trials and meta-analyses where necessary. Antipsychotics of different chemical classes are the first-line pharmacological treatments for schizophrenia. Specific circumstances (e.g., suicidality, depression, substance dependence) may need additional treatment options. The pharmacological and non-pharmacological management of side effects is of crucial importance for the long-term treatment in all settings of the healthcare system. This summary of the three available evidence-based guidelines has the potential to support clinical decisions and can improve treatment of schizophrenia in primary care settings.

  3. Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus intermedius) at the El Frío Biological Station, Venezuela.

    Science.gov (United States)

    Rossi Lafferriere, Natalia A; Antelo, Rafael; Alda, Fernando; Mårtensson, Dick; Hailer, Frank; Castroviejo-Fisher, Santiago; Ayarzagüena, José; Ginsberg, Joshua R; Castroviejo, Javier; Doadrio, Ignacio; Vilá, Carles; Amato, George

    2016-01-01

    The success of a reintroduction program is determined by the ability of individuals to reproduce and thrive. Hence, an understanding of the mating system and breeding strategies of reintroduced species can be critical to the success, evaluation and effective management of reintroduction programs. As one of the most threatened crocodile species in the world, the Orinoco crocodile (Crocodylus intermedius) has been reduced to only a few wild populations in the Llanos of Venezuela and Colombia. One of these populations was founded by reintroduction at Caño Macanillal and La Ramera lagoon within the El Frío Biological Station, Venezuela. Twenty egg clutches of C. intermedius were collected at the El Frío Biological Station for incubation in the lab and release of juveniles after one year. Analyzing 17 polymorphic microsatellite loci from 335 hatchlings we found multiple paternity in C. intermedius, with half of the 20 clutches fathered by two or three males. Sixteen mothers and 14 fathers were inferred by reconstruction of multilocus parental genotypes. Our findings showed skewed paternal contributions to multiple-sired clutches in four of the clutches (40%), leading to an overall unequal contribution of offspring among fathers with six of the 14 inferred males fathering 90% of the total offspring, and three of those six males fathering more than 70% of the total offspring. Our results provide the first evidence of multiple paternity occurring in the Orinoco crocodile and confirm the success of reintroduction efforts of this critically endangered species in the El Frío Biological Station, Venezuela.

  4. Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus intermedius at the El Frío Biological Station, Venezuela.

    Directory of Open Access Journals (Sweden)

    Natalia A Rossi Lafferriere

    Full Text Available The success of a reintroduction program is determined by the ability of individuals to reproduce and thrive. Hence, an understanding of the mating system and breeding strategies of reintroduced species can be critical to the success, evaluation and effective management of reintroduction programs. As one of the most threatened crocodile species in the world, the Orinoco crocodile (Crocodylus intermedius has been reduced to only a few wild populations in the Llanos of Venezuela and Colombia. One of these populations was founded by reintroduction at Caño Macanillal and La Ramera lagoon within the El Frío Biological Station, Venezuela. Twenty egg clutches of C. intermedius were collected at the El Frío Biological Station for incubation in the lab and release of juveniles after one year. Analyzing 17 polymorphic microsatellite loci from 335 hatchlings we found multiple paternity in C. intermedius, with half of the 20 clutches fathered by two or three males. Sixteen mothers and 14 fathers were inferred by reconstruction of multilocus parental genotypes. Our findings showed skewed paternal contributions to multiple-sired clutches in four of the clutches (40%, leading to an overall unequal contribution of offspring among fathers with six of the 14 inferred males fathering 90% of the total offspring, and three of those six males fathering more than 70% of the total offspring. Our results provide the first evidence of multiple paternity occurring in the Orinoco crocodile and confirm the success of reintroduction efforts of this critically endangered species in the El Frío Biological Station, Venezuela.

  5. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  6. FIELD INVESTIGATION OF BIOLOGICAL TOILET SYSTEMS AND GREY WATER TREATMENT

    Science.gov (United States)

    The objective of the field program was to determine the operational characteristics and overall acceptability of popular models of biological toilets and a few select grey water systems. A field observation scheme was devised to take advantage of in-use sites throughout the State...

  7. Effect of biological activated carbon pre-treatment to control organic fouling in the microfiltration of biologically treated secondary effluent.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2014-10-15

    Biological activated carbon (BAC) filtration was investigated as a pre-treatment for reducing the organic fouling of a microfiltration membrane (0.1 μm polyvinylidene fluoride) in the treatment of a biologically treated secondary effluent (BTSE) from a municipal wastewater treatment plant. BAC treatment of the BTSE resulted in a marked improvement in permeate flux, which was attributed to the effective removal of organic foulants and particulates. Although the BAC removed significantly less dissolved organic carbon than the granular activated carbon (GAC) treatment which was used as a control for comparison, it led to a markedly greater flux. This was attributed to the effective removal of the very high molecular weight substances such as biopolymers by the BAC through biodegradation and adsorption of those molecules on the biofilm. Size exclusion chromatography showed the BAC treatment led to approximately 30% reduction in these substances, whereas the GAC did not greatly remove these molecules. The BAC treatment led to a greater reduction of loosely-attached and firmly-attached membrane surface foulant, and this was confirmed by attenuated total reflection-fourier transform infrared spectroscopy analysis. This study demonstrated the potential of BAC pre-treatment for reducing organic fouling and thus improving flux for the microfiltration of BTSE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Treatment of relapsing polychondritis in the era of biological agents.

    LENUS (Irish Health Repository)

    McCarthy, Eoghan M

    2012-02-01

    Relapsing polychondritis (RP) is a rare disorder, often requiring high doses of immunosuppressive therapy to control its potentially life-threatening consequences. The advent of biological agents has added to the armamentarium available to treat RP, but the lack of controlled trials, along with the small numbers of patients and disease heterogeneity means that new therapies are prescribed without the benefits of rigorous clinical research. Thus, information on individual cases is of value in expanding our knowledge of the use of biologic agents in rare conditions. We report on the use of rituximab in a patient who subsequently developed catastrophic aortic incompetence, and we review the literature in relation to the use of this drug in RP.

  9. Biological treatment of the liquid effluents of a paper industry

    International Nuclear Information System (INIS)

    Mejia, Juan Felipe; Ramirez, Gladys Eugenia; Arias Zabala, Mario

    2001-01-01

    The objective of this paper is to determine the effect of the microorganisms Candida utilis and Candida tropicalis in the reduction of the chemical oxygen demand (COD) of the liquid effluents of a producing factory of paper kraft type, by means of fermentations made to pH of 5 and a 30 centigrade degrees during 6 days. The biological processing is preceded by a physicochemical process of directed acidulation to reduce pH of the effluent (liquor black) from its initial value, of approximately 13, to 5, in order to it is adapted for the growth of yeast. In this process, which forms precipitated, that is necessary to eliminate by centrifugation and filtration to facilitate the growth of the microorganisms, with is obtained one first removal of the COD of the order of 70 %. With the biological processing obtains for both yeasts a percentage of removal of 45 -50% of the COD surplus. The total removal of the COD, that is to say, obtained with the pre-cure and the fermentation it is of the order of 84% for the yeast. Additionally the possibility studied of implementing some complementary procedures to the biological processing, with a view to obtaining greater growth of yeast in the black liquor and thus obtaining additional reductions in the OCD of the same one

  10. Biological treatment of drinking water by chitosan based ...

    African Journals Online (AJOL)

    ABI

    2015-03-18

    Mar 18, 2015 ... method. A membrane filtration technique is used for the treatment of water to remove or kill ... The characterization of synthesized nanoparticles was done by dynamic ... water and just 3% is available for drinking, agriculture,.

  11. Biological treatment of chicken feather waste for improved biogas production

    Institute of Scientific and Technical Information of China (English)

    Gergely Forgács; Saeid Alinezhad; Amir Mirabdollah; Elisabeth Feuk-Lagerstedt; Ilona Sárvári Horwáth

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas.Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production.Chopped,autoclaved chicken feathers (4%,W/V) were completely degraded,resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain.During the subsequent anaerobic batch digestion experiments,methane production of 0.35 Nm3/kg dry feathers (i.e.,0.4 Nm3/kg volatile solids of feathers),corresponding to 80% of the theoretical value on proteins,was achieved from the feather hydrolyzates,independently of the prehydrolysis time period of 1,2 or 8 days.Cultivation with a native keratinase producing strain,Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate,which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers.Feather hydrolyzates treated with the wild type B.megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  12. Detection and treatment of chemical weapons and/or biological pathogens

    Science.gov (United States)

    Mariella Jr., Raymond P.

    2004-09-07

    A system for detection and treatment of chemical weapons and/or biological pathogens uses a detector system, an electrostatic precipitator or scrubber, a circulation system, and a control. The precipitator or scrubber is activated in response to a signal from the detector upon the detection of chemical weapons and/or biological pathogens.

  13. Water-immiscible solvents for the biological treatment of waste gases

    NARCIS (Netherlands)

    Cesario, M.T.

    1997-01-01

    In conventional biological systems for the treatment of waste gases, contaminants are transferred directly to the aqueous phase and then converted by the micro-organisms. When poorly water-soluble pollutants are to be removed, biological degradation is often limited by the slow transport

  14. Influences of mechanical pre-treatment on the non-biological treatment of municipal wastewater by forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada

    2016-01-01

    municipal wastewater treatment without the biological treatment step, including the effects of different pre-treatment configurations, e.g., direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pre-treatment......, e.g., microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using thin-film-composite, Aquaporin Inside(TM) and HTI membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested......-sized wastewater treatment plants....

  15. Potential of development of the mechanical-biological waste treatment; Entwicklungspotenzial der Mechanisch-Biologischen Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, Thomas; Balhar, Michael [ASA e.V., Ennigerloh (Germany); Abfallwirtschaftsgesellschaft des Kreises Warendorf mbH, Ennigerloh (Germany)

    2013-03-01

    The Consortium Material-Specific Waste Treatment eV (Ennigerloh, Federal Republic of Germany) is an association of plant operators having the opinion that an economic and ecologic waste treatment only can be guaranteed by material-specific processes permanently. Due to the specific treatment processes in plants with mechanical-biological waste treatment (MBA) material flows are resulting being available for the recycling or exploitation. Under this aspect, the authors of the contribution under consideration report on the development potential of the mechanical-biological waste treatment. The state of the art of the technology of mechanical-biological waste treatment in Germany as well as the contribution of this technology to the resource protection and climate protection are described. Further aspects of this contribution are the increase of the energy efficiency and reduction of emissions; further development of the efficient sorting technology; development of integrated total conceptions - MBA-sites as centres for the production of renewable energies.

  16. Biological effects of simulated discharge plume entrainment at Indian Point Nuclear Power Station, Hudson River estuary, USA

    International Nuclear Information System (INIS)

    Lanza, G.R.; Lauer, G.J.; Ginn, T.C.; Storm, P.C.; Zubarik, L.; New York Univ., N.Y.

    1975-01-01

    Laboratory and field simulations of the discharge plume entrainment of phytoplankton, zooplankton and fish were carried out at the Indian Point Nuclear Station, Hudson River estuary, USA. Phytoplankton assemblages studied on two dates produced different response patterns measured as photosynthetic activity. Chlorophyll-a levels did not change following simulated entrainment. Possible explanations for the differences are discussed. The two abundant copepods Acartia tonsa and Eurytemorta affinis appear to tolerate exposure to discharge plume ΔT without adverse effects. Copepods subjected to plume entrainment may suffer considerable mortality during periods of condenser chlorination. In general, the amphipod Gammarus spp. did not appear to suffer significant mortality during simulated entrainment. Juvenile striped bass, Morone saxatilis, were not affected by simulated plume transit before and during plant condenser chlorination; however, a simulated ''worst possible case'' plume ΔT produced statistically significant moralities. (author)

  17. Occurrence of xenobiotics in gray water and removal in three biological treatment systems

    NARCIS (Netherlands)

    Hernandez Leal, L.; Vieno, N.; Temmink, B.G.; Zeeman, G.; Buisman, C.J.N.

    2010-01-01

    Eighteen selected xenobiotics related to personal care and household chemicals (UV-filters, fragrances, preservatives, biocides, surfactants) were measured in gray water from 32 houses and in effluents of three different biological treatment systems (aerobic, anaerobic, and combined anaerobic +

  18. Biological Water Processor and Forward Osmosis Secondary Treatment

    Science.gov (United States)

    Shull, Sarah; Meyer, Caitlin

    2014-01-01

    The goal of the Biological Water Processor (BWP) is to remove 90% organic carbon and 75% ammonium from an exploration-based wastewater stream for four crew members. The innovative design saves on space, power and consumables as compared to the ISS Urine Processor Assembly (UPA) by utilizing microbes in a biofilm. The attached-growth system utilizes simultaneous nitrification and denitrification to mineralize organic carbon and ammonium to carbon dioxide and nitrogen gas, which can be scrubbed in a cabin air revitalization system. The BWP uses a four-crew wastewater comprised of urine and humidity condensate, as on the ISS, but also includes hygiene (shower, shave, hand washing and oral hygiene) and laundry. The BWP team donates 58L per day of this wastewater processed in Building 7.

  19. Towards biology-oriented treatment planning in hadrontherapy

    Czech Academy of Sciences Publication Activity Database

    Kundrát, Pavel

    2006-01-01

    Roč. 122, 1-4 (2006), s. 480-482 ISSN 0144-8420 R&D Projects: GA ČR GA202/05/2728 Institutional research plan: CEZ:AV0Z10100502 Keywords : treatment planning * hadron radiotherapy Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.446, year: 2006

  20. Description of station waste water treatment and study of reclaiming industry ceramic red

    International Nuclear Information System (INIS)

    Yadava, Y.P.; Rego, S.A.B.C.; Junior, B.S.; Bezerra, L.P.; Ferreira, R.A.S.

    2012-01-01

    So that the water meets potability standards required by the laws it passes through various treatment processes which generate waste called WTS (Water Treatment Sludge). This sludge is disposed of without any processing, however, environmental agencies and the public are demanding alternatives to this situation. Knowing this, this study aims to characterize the sludge from the Water Treatment Plant Botafogo and analyze its viability as a feedstock in the manufacture of red bricks. (author)

  1. Treatment of atrazine by integrating photocatalytic and biological processes

    International Nuclear Information System (INIS)

    Chan, C.Y.; Tao, S.; Dawson, R.; Wong, P.K.

    2004-01-01

    This research examines the degradation of atrazine by photocatalytic oxidation (PCO) under different experimental conditions. Deisopropylatrazine, deethylatrazine and deethyldeisopropylatrazine were formed as major intermediates based on gas chromatography-mass spectrometry. The reaction mixture was found to be toxic towards two bioassays, i.e. the Microtox[reg] and amphipods survival tests even when atrazine was completely degraded by PCO within 2 h under optimized conditions. The results indicate that adding H 2 O 2 could significantly enhance the degradation of atrazine by PCO. Ammeline, ammelide and cyanuric acid (CA) became the major intermediates/products as detected by high performance liquid chromatography from 6th to the 40th h of PCO treatment. After 72 h PCO treatment, only CA was detectable in the reaction mixture. Further degradation of CA was carried out by a newly isolated CA-degrading bacterium, Sphingomonas capsulata. The photochemical pretreatment integrated with microbial degradation lead to the complete degradation and detoxification of atrazine

  2. Clinical, biological, histological features and treatment of oral mucositis induced by radiation therapy: a literature review

    International Nuclear Information System (INIS)

    Bonan, Paulo Rogerio Ferreti; Lopes, Marcio Ajudarte; Almeida, Oslei Paes de; Alves, Fabio de Abreu

    2005-01-01

    The oral mucositis is a main side effect of radiotherapy on head and neck, initiating two weeks after the beginning of the treatment. It is characterized by sensation of local burning to intense pain, leading in several cases, to the interruption of the treatment. The purpose of this work is to review the main published studies that discuss the clinical, biological and histopathological features of oral mucositis induced by radiation therapy and to describe the main approaches recommended to prevent or to treat it. Although the clinical features of mucositis are intensively described in the literature, few studies address the histopathological alterations in oral mucositis and only recently, its biological processes have been investigated. The biological mechanisms involved in the radiation tissue damage have been only recently discussed and there is no consensus among treatment modalities. Yet, the progressive knowledge in the histopathology and biological characteristics of oral mucositis probably will lead to more effective in prevention and control strategies. (author)

  3. Quantifying capital goods for biological treatment of organic waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Petersen, Per H.; Nielsen, Peter D.

    2015-01-01

    for the AD plant. For the composting plants, gravel and concrete slabs for the pavement were used in large amounts. To frame the quantification, environmental impact assessments (EIAs) showed that the steel used for tanks at the AD plant and the concrete slabs at the composting plants made the highest...... on the different sizes for the three different types of waste (garden and park waste, food waste and sludge from wastewater treatment) in amounts of 10,000 or 50,000 tonnes per year. The AD plant was quantified for a capacity of 80,000 tonnes per year. Concrete and steel for the tanks were the main materials...

  4. The Current Status of the Space Station Biological Research Project: a Core Facility Enabling Multi-Generational Studies under Slectable Gravity Levels

    Science.gov (United States)

    Santos, O.

    2002-01-01

    The Space Station Biological Research Project (SSBRP) has developed a new plan which greatly reduces the development costs required to complete the facility. This new plan retains core capabilities while allowing for future growth. The most important piece of equipment required for quality biological research, the 2.5 meter diameter centrifuge capable of accommodating research specimen habitats at simulated gravity levels ranging from microgravity to 2.0 g, is being developed by NASDA, the Japanese space agency, for the SSBRP. This is scheduled for flight to the ISS in 2007. The project is also developing a multi-purpose incubator, an automated cell culture unit, and two microgravity habitat holding racks, currently scheduled for launch in 2005. In addition the Canadian Space Agency is developing for the project an insect habitat, which houses Drosophila melanogaster, and provides an internal centrifuge for 1 g controls. NASDA is also developing for the project a glovebox for the contained manipulation and analysis of biological specimens, scheduled for launch in 2006. This core facility will allow for experimentation on small plants (Arabidopsis species), nematode worms (C. elegans), fruit flies (Drosophila melanogaster), and a variety of microorganisms, bacteria, yeast, and mammalian cells. We propose a plan for early utilization which focuses on surveys of changes in gene expression and protein structure due to the space flight environment. In the future, the project is looking to continue development of a rodent habitat and a plant habitat that can be accommodated on the 2.5 meter centrifuge. By utilizing the early phases of the ISS to broadly answer what changes occur at the genetic and protein level of cells and organisms exposed to the ISS low earth orbit environment, we can generate interest for future experiments when the ISS capabilities allow for direct manipulation and intervention of experiments. The ISS continues to hold promise for high quality, long

  5. Biological treatment of model dyes and textile wastewaters.

    Science.gov (United States)

    Paz, Alicia; Carballo, Julia; Pérez, María José; Domínguez, José Manuel

    2017-08-01

    Previous works conducted in our laboratory, reveled that Bacillus aryabhattai DC100 produce ligninolytic enzymes such as laccases and/or peroxidases, opening new applications in different bioprocesses, including the treatment of disposal residues such as dyestuffs from textile processing industries. This work described the degradation of three commercial model dyes Coomassie Brilliant Blue G-250 (CBB), Indigo Carmine (IC) and Remazol Brilliant Blue R (RBBR) under different culture media and operational conditions. The process was optimized using a Central Composite Rotatable Design, and the desirability predicted complete decolorization of 150 mg/L CBB at 37 °C, 304.09 rpm and salt concentration of 19.204 g/L. The model was validated with concentrations up to 180 mg/L CBB and IC, not being able to remove high amount of RBBR. The procedure here developed also allowed Chemical Oxygen Demands (COD) reductions in CBB of about 42%, meanwhile tests on real effluents from a local textile industry involved COD reductions of 50% in a liquid wastewater and 14% in semi-liquid sludge. Thus, allow the authorized discharge of wastewater into the corresponding treatment plant. Decolorization efficiencies and COD reductions open on the potential application of B. aryabhattai DC100 on the bioremediation of real effluents from textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.

    Science.gov (United States)

    Rosa, Rui; Lopes, Ana Rita; Pimentel, Marta; Faleiro, Filipa; Baptista, Miguel; Trübenbach, Katja; Narciso, Luis; Dionísio, Gisela; Pegado, Maria Rita; Repolho, Tiago; Calado, Ricardo; Diniz, Mário

    2014-10-01

    Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health

  7. Treatment of Radiation Induced Biological Changes by Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    El-Missiry, M.A.; Shehata, G.; Roushdy, H.M; Fayed, Th.A.

    1999-01-01

    Preventing the propagation of radiation induced oxidative damage has been a subject of considerable investigations. The ultimate goal of the present study is to use bone marrow cells to ameliorate or to treat the radiation sickness. Transplantation of bone marrow cell has shown promising results in the present experimental radiation treatment. In this report, suspension of bone marrow cells was injected into rats 12 h. after exposure to 4.5 Gy whole body gamma irradiation. Significant results were recorded on the successful control of the radiation induced disorders in a number of biochemical parameters including certain enzymatic and nonenzymatic antioxidants (superoxide dismutase and glutathione) and certain parameters related to kidney function including creatinine, urea as well as Atpase Activity in blood serum, urine and kidney tissue

  8. Is Biology Destiny? Birth Weight and Differential Parental Treatment

    Science.gov (United States)

    Hsin, Amy

    2016-01-01

    Time diaries of sibling pairs from the PSID-CDS are used to determine whether maternal time investments compensate for or reinforce birth-weight differences among children. The findings demonstrate that the direction and degree of differential treatment vary by mother's education. Less-educated mothers devote more total time and more educationally oriented time to heavier-birth-weight children, whereas better-educated mothers devote more total and more educationally oriented time to lower-birth-weight children. The compensating effects observed among highly educated mothers are substantially larger than the reinforcing effects among the least-educated mothers. The findings show that families redistribute resources in ways that both compensate for and exacerbate early-life disadvantages. PMID:22865101

  9. Generalized anxiety disorder: comorbidity, comparative biology and treatment.

    Science.gov (United States)

    Nutt, David J; Ballenger, James C; Sheehan, David; Wittchen, Hans-Ulrich

    2002-12-01

    Generalized anxiety disorder (GAD) is a severe and chronic anxiety disorder characterized by uncontrollable worrying and somatic anxiety (tension, insomnia and hypervigilance). It is a common condition, with lifetime prevalence rates for DSM-IV GAD in the general population of approx. 5-6% being reported. In addition, like other anxiety disorders, GAD also shows comorbidity with depression and most of the other anxiety disorders. This article reviews data on the prevalence of GAD, its comorbidity with depression, and its social and economic impact. Proposed neurobiological mechanisms for GAD are discussed, since an understanding of these may help in the development of future therapies. Finally, current pharmacological and non-pharmacological treatment options for GAD are reviewed, with particular attention being paid to published clinical-trial data.

  10. Degradation of Some Textile Dyes using Biological and Physical Treatments

    International Nuclear Information System (INIS)

    Hmd, R.F.K.

    2011-01-01

    A total of twenty samples composed of ten samples of decaying eucalyptus leaves and ten soil samples were collected from El-Kanater El-Khairia district. All isolates were purified and identified to the species level. They found to be belonging to two main genera: Aspergillus sp. and Penicillium sp. The obtained fungal isolates were screened for testing their ability to decolorize Isolan dyes. The strain Aspergillus niger ES-5 was chosen for its highest ability to decolorize the four Isolan dyes. The biological decolorization of the textile metal azo dye was investigated under co-metabolic conditions. The decolorization capacity of the strain was influenced by the presence and/or absence of media components. The majority of decolorization was growth related, where resulted in 90.4%, 99.6%, 95.0% and 94.6% for I.Y, I.R, I.N and I.G, respectively after 72 h, only 2.5, 1.3, 1.4 and 3.0% for I.Y, I.R, I.N and I.G, respectively were desorbed, while negligible decolorization was detected using extracellular fluid (ECF) as well as using dead pellets. The addition of the dye to fungal cultures didn’t affect the extracellular GOD production while intracellular GOD production exhibited a different profile. Pictures of the mycelia represent dye uptake over the 72 h period of decolorization. The metal detection using Energy Dispersive X-ray Spectroscopy (EDS) of the outer fungal mycelium wall and ECF were both below detection level after the decolorization process took place. Thus, decolorization process and the removal of the elements by A. niger ES-5 involve initial adsorption followed by entrapment of the adsorbed dye inside the fungal biomass. Gamma rays increase color intensity in I.Y, while the other three Isolan dyes showed negative decolorization efficiency till 2.5 kGy after which, slow increase in the decolorization was observed.

  11. Treatment of real wastewater produced from Mobil car wash station using electrocoagulation technique.

    Science.gov (United States)

    El-Ashtoukhy, E-S Z; Amin, N K; Fouad, Y O

    2015-10-01

    This paper deals with the electrocoagulation of real wastewater produced from a car wash station using a new cell design featuring a horizontal spiral anode placed above a horizontal disc cathode. The study dealt with the chemical oxygen demand (COD) reduction and turbidity removal using electrodes in a batch mode. Various operating parameters such as current density, initial pH, NaCl concentration, temperature, and electrode material were examined to optimize the performance of the process. Also, characterization of sludge formed during electrocoagulation was carried out. The results indicated that the COD reduction and turbidity removal increase with increasing the current density and NaCl concentration; pH from 7 to 8 was found to be optimum for treating the wastewater. Temperature was found to have an insignificant effect on the process. Aluminum was superior to iron as a sacrificial electrode material in treating car wash wastewater. Energy consumption based on COD reduction ranged from 2.32 to 15.1 kWh/kg COD removed depending on the operating conditions. Finally, the sludge produced during electrocoagulation using aluminum electrodes was characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analysis.

  12. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    Science.gov (United States)

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  13. Anaerobic-aerobic biological treatment of a mixture of cheese whey and dairy manure

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.V.; Liao, P.H.

    1989-01-01

    The integrated anaerobic-aerobic biological treatment system consisted of an anaerobic rotating biological reactor and an aerobic sequencing batch reactor. Three sequencing batch reactors were used in the aerobic process. A mixture of cheese whey and dairy manure was successfully digested in an anaerobic rotating biological contactor which served as a first step in the waste treatment process. The methane production rate, which is dependent on the organic loading rate, ranged between 1.43 and 3.74 litres methane per litre reactor per day. As the organic loading rate increased, total methane production also increased. In the anaerobic digestion step, over 46% of chemical oxygen demand was removed. The potential pollutants were further destroyed by the aerobic treatment. More than 93% of the remaining chemical oxygen demand was removed in the sequencing batch reactors operated at 22/sup 0/C. The treatment efficiency was lower for the aerobic reactor operated at a lower temperature (10/sup 0/C). (author).

  14. Treatment planning for heavy ion radiotherapy: calculation and optimization of biologically effective dose

    International Nuclear Information System (INIS)

    Kraemer, M.; Scholz, M.

    2000-09-01

    We describe a novel approach to treatment planning for heavy ion radiotherapy based on the local effect model (LEM) which allows to calculate the biologically effective dose not only for the target region but for the entire irradiation volume. LEM is ideally suited to be used as an integral part of treatment planning code systems for active dose shaping devices like the GSI raster scan system. Thus, it has been incorporated into our standard treatment planning system for ion therapy (TRiP). Single intensity modulated fields can be optimized with respect to homogeneous biologically effective dose. The relative biological effectiveness (RBE) is calculated separately for each voxel of the patient CT. Our radiobiologically oriented code system is in use since 1995 for the planning of irradiation experiments with cell cultures and animals such as rats and minipigs. Since 1997 it is in regular and successful use for patient treatment planning. (orig.)

  15. USBF-system of biological wastewater treatment; Elsistema USBF en la depuracion biologica de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Ampudia Gutierrez, J.

    2003-07-01

    An advanced system of biological wastewater treatment, has been developed by the company Depuralia. This system brings up a technological innovation, which has been awarded with several international awards. The wastewater treatment, occurs in an activated sludge reactor of extended aeration with a very low mass loading, with a nitrification-denitrification process, and water separation-clarification by upflow sludge blanket-filtration. The arrangement of a compact biological reactor enables complex wastewater treatment. High efficiency of the separation through sludge filtration provides functionality of the equipment with high concentration of activated sludge, with less implementation surface and volume. The elements of the biological reactor are described, the advantages are enumerated, and the results obtained in several accomplishments are shown; in the industrial as well as in the urban water treatment plants. (Author) 9 refs.

  16. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  17. Biological Treatment of Leachate using Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    WDMC Perera

    2014-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE TA Abstract   In Sri Lanka municipal solid waste is generally disposed in poorly managed open dumps which lack liner systems and leachate collection systems. Rain water percolates through the waste layers to produce leachate which drains in to ground water and finally to nearby water bodies, degrading the quality of water. Leachate thus has become a major environmental concern in municipal waste management and treatment of leachate is a major challenge for the existing and proposed landfill sites.   The study was conducted to assess the feasibility of the usage of the Sequencing Batch Reactor in the treatment of the landfill leachate up to the proposed levels in the draft report of “Proposed Sri Lankan standard for landfill leachate to be disposed to the inland waters". Leachate collected from the open dumpsite at Meethotamulla, Western Province, Sri Lanka was used for leachate characterization.   SBR was constructed with a 10-liter working volume operated in an 18 hour cycle mode and each cycle consists of 15hours of aerobic, 2h settle and 0.5 h of fill/decant stages. The Dissolved Oxygen level within the SBR was maintained at 2 mg/l through the aerobic stage. Infeed was diluted with water during the acclimatization period and a leachate to water ratio of 55:45 was maintained. The removal efficiencies for different parameters were; COD (90.5%, BOD (92.6%, TS (92.1%, Conductivity (83.9%, Alkalinity (97.4%, Hardness (82.2%, Mg (80.5%, Fe (94.2%, Zn (63.4%, Cr (31.69%, Pb (99.6%, Sulphate (98.9%, and Phosphorus (71.4% respectively. In addition Ni and Cd were removed completely during a single SBR cycle. Thus the dilution of leachate in the dumpsites using municipal wastewater, groundwater or rainwater was identified as the most cost effective dilution methods. The effluent from the Sequencing batch reactor is proposed to be further treated using a constructed wetland before releasing to surface water.

  18. Biological Treatment of Petroleum in Radiologically Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    BERRY, CHRISTOPHER

    2005-11-14

    This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

  19. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  20. Bone biology in the elderly: clinical importance for fracture treatment

    Directory of Open Access Journals (Sweden)

    Rolvien Tim

    2016-12-01

    Full Text Available Age-related bone impairment often leads to fragility fractures in the elderly. Although excellent surgical care is widely provided, diagnosis and treatment of the underlying bone disorder are often not kept in mind. The interplay of the three major bone cells – osteoblasts, osteoclasts, and osteocytes – is normally well regulated via the secretion of messengers to control bone remodeling. Possible imbalances that might occur in the elderly are partly due to age, genetic risk factors, and adverse lifestyle factors but importantly also due to imbalances in calcium homeostasis (mostly due to vitamin D deficiency or hypochlorhydria, which have to be eliminated. Therefore, the cooperation between the trauma surgeon and the osteologist is of major importance to diagnose and treat the respective patients at risk. We propose that any patient suffering from fragility fractures is rigorously screened for osteoporosis and metabolic bone diseases. This includes bone density measurement by dual-energy X-ray absorptiometry, laboratory tests for calcium, phosphate, vitamin D, and bone turnover markers, as well as additional diagnostic modalities if needed. Thereby, most risk factors, including vitamin D deficiency, can be identified and treated while patients who meet the criteria for a specific therapy (i.e. antiresorptive and osteoanabolic receive such. If local health systems succeed to manage this process of secondary fracture prevention, morbidity and mortality of fragility fractures will decline to a minimum level.

  1. Aktivitas Biologis Imunoglobulin Yolk Anti Parvovirus Setelah Perlakuan Suhu (BIOLOGY ACTIVITIES OF IgY PARVOVIRUS AFTER HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Agung Suartini

    2016-02-01

    Full Text Available This study aims to determine the effect of temperature on the biological activity of various crude and precipitate specific Immunoglobulin (IgY Canine parvovirus (CPV. Hiperimun serum conducted on Isa Brown chickens injected with antigen CPV. Crude yolk Ig preparations derived from chicken serum without purification while the yolk Ig preparations precipitates obtained by the chicken serum was precipitated with ammonium sulfate and dialyzed. Both types of Ig yolk given treatment temperature 50ºC, 60ºC, 70ºC, and 80ºC for 15 minutes. To test Gel Precipitation Test (AGPT is performed to determine whether there is a specific IgY CPV in the serum of chickens. Biological activity of both types of Ig detected with Barriers Haemagglutination test (HI. The design used in this study is completely randomized design factorial. The results of this study indicate that the temperature was highly significant on the activities of IgY crude and precipitates. Activities IgY crude and precipitate down to the treatment temperature of 50ºC, 60ºC, 70ºC, and 80ºC. Geometric Mean Titer crude IgY respectively - were 26.67, 26, 25.33, and <2º Unit HI while IgY precipitates are respectively 26.33, 25.67, 24, and <2º Unit HI. Based on the results of this study concluded that the biological activity of crude IgY better than IgY precipitates after treatment of a wide range of temperatures.

  2. Automation of ETE-CC 2/3 (Effluent Treatment Station); Automacao da ETE-CC 2/3 (Estacao de Tratamento de Efluentes)

    Energy Technology Data Exchange (ETDEWEB)

    Sinzato, Frederico Takashi Di Tanno; Esteves, Joao Paulo Leite; Souza, Rafael Soares de; Gomes, Lucio Nascimento; Santos, Leonardo Paiva [Companhia Siderurgica Nacional (CSN), Volta Redonda, RJ (Brazil)

    2009-11-01

    The present technical contribution presents the results of the implantation of a complete automation system of the ETE-CC 2/3 (Effluent Treatment Station of Continuous Casting Machine 2 and 3 of CSN), improving the reliability and the operation mode of the plant. The implanted system has the following features: remote operation and remote monitoring of all equipment of station; redundancy of operation stations, PLC's, communication networks and UPS; possibility of local control of equipment without automation system; wireless system of control and monitoring for the filters; recording system for all process variables. (author)

  3. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent.

    Science.gov (United States)

    Katsoyiannis, Ioannis A; Gkotsis, Petros; Castellana, Massimo; Cartechini, Fabricio; Zouboulis, Anastasios I

    2017-04-01

    The operation and efficiency of a modern, high-tech industrial full-scale water treatment plant was investigated in the present study. The treated water was used for the supply of the boilers, producing steam to feed the steam turbine of the power station. The inlet water was the effluent of municipal wastewater treatment plant of the city of Bari (Italy). The treatment stages comprised (1) coagulation, using ferric chloride, (2) lime softening, (3) powdered activated carbon, all dosed in a sedimentation tank. The treated water was thereafter subjected to dual-media filtration, followed by ultra-filtration (UF). The outlet of UF was subsequently treated by reverse osmosis (RO) and finally by ion exchange (IX). The inlet water had total organic carbon (TOC) concentration 10-12 mg/L, turbidity 10-15 NTU and conductivity 3500-4500 μS/cm. The final demineralized water had TOC less than 0.2 mg/L, turbidity less than 0.1 NTU and conductivity 0.055-0.070 μS/cm. Organic matter fractionation showed that most of the final DOC concentration consisted of low molecular weight neutral compounds, while other compounds such as humic acids or building blocks were completely removed. It is notable that this plant was operating under "Zero Liquid Discharge" conditions, implementing treatment of any generated liquid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Biologic treatment or immunomodulation is not associated with postoperative anastomotic complications in abdominal surgery for Crohn's disease

    DEFF Research Database (Denmark)

    El-Hussuna, Alaa Abdul-Hussein H; Andersen, Jens; Bisgaard, Thue

    2012-01-01

    There are concerns that biologic treatments or immunomodulation may negatively influence anastomotic healing. This study investigates the relationship between these treatments and anastomotic complications after surgery for Crohn's disease.......There are concerns that biologic treatments or immunomodulation may negatively influence anastomotic healing. This study investigates the relationship between these treatments and anastomotic complications after surgery for Crohn's disease....

  5. Heat treatment of large-sized welded rotors of steam turbines for atomic power stations

    Energy Technology Data Exchange (ETDEWEB)

    Kutasov, R F; Mukhina, M P; Tustanovskii, A S

    1977-01-01

    The heat treatment of a welded rotor of grade 25Kh2NMFA steel for steam turbines of nuclear power plants was considered. A following heat treatment schedule was suggested: charging the rotor in to a furnace at 100-150 deg C, heating to 200-250 deg C and holding for 12 hrs; slow heating (10 deg C/h) to 400-450 deg C and holding for 12 hrs; slow heating to 630-640 deg C and holding for 50 hrs, cooling at a rate of 5 deg C/h down to 100 deg C, holding for 20 hrs and cooling with the furnace open. The proposed heat treatment schedule of a duration of 356 hrs ensures a temperature gradient throughout the cross section and the length of the rotor of not more than +-5 deg C, least deviations of geometric dimensions and makes possible machining finish to within 0-0.02 mm. Described are the particularities of the design of a roll-out hearth electric chamber furnace, measuring 13000x5500x5000 mm and built for the purpose of carrying out said heat treatment. The power rating of the furnace is 2850 kW.

  6. Management and construction of a major zero discharge water supply and treatment scheme at Mount Piper Power Station, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Wong, P.; Docker, P.; Gabbrielli, E.; Wade, P. [Pacific Power, Sydney, NSW (Australia)

    1994-09-01

    Excellence in the organisation and management of a large multi-disciplinary design and construct project such as the zero discharge water supply and treatment scheme for Mount Piper coal-fired power station was essential to its successful execution. This paper discusses the management philosophies and strategies of Pacific Power and Transfield-PWT Asia/Pacific that resulted in this project being completed to the satisfaction of the client in the minimum time without delays and cost increases caused by interfaces between the parties. It highlights the advantages of contract packaging and placing the total responsibility for the performance and integration of a complex project system on one organisation. 2 refs., 6 figs.

  7. A treatment station for solid radio-active waste at the Saclay nuclear research centre (1962)

    International Nuclear Information System (INIS)

    Cerre, P.; Mestre, E.; Lebrun, P.

    1962-01-01

    The waste from an atomic centre is very varied in nature, in form, and in activity, going from weakly contaminated laboratory waste to objects actuated in a pile and strongly radioactive. After one year's working of a pilot plant, a factory has been built, in which solide waste is treated and then conditioned in concrete blocks. The present communication describes the treatment and conditioning techniques in this factory which uses to a maximum remotely controlled operation. (authors) [fr

  8. Progress in the understanding and utilization of biologic response modifiers in the treatment of uveitis.

    Science.gov (United States)

    Maleki, Arash; Meese, Halea; Sahawneh, Haitham; Foster, C Stephen

    2016-07-01

    Uveitis is the third most common cause of blindness in developed countries. Considering the systemic and local complications of long-term corticosteroid therapy and the intolerance due to side effects and ineffectiveness of conventional chemotherapy, use of biologic response modifiers is a reasonable alternative in the treatment of non-infectious uveitis and persistent uveitic macular edema. The majority of the evidence presented here comes from open uncontrolled analyses. Based on these studies, tumor necrosis factor alpha inhibitors, especially infliximab and adalimumab, have been shown to be effective in the treatment of non-infectious uveitis in numerous studies. More research is necessary, particularly multi-center randomized clinical trials, to address the choice of biologic response modifier agent and the length of treatment as we employ biologic response modifiers in different types of uveitis and persistent uveitic macular edema.

  9. Evaluation of biological hydrogen sulfide oxidation coupled with two-stage upflow filtration for groundwater treatment.

    Science.gov (United States)

    Levine, Audrey D; Raymer, Blake J; Jahn, Johna

    2004-01-01

    Hydrogen sulfide in groundwater can be oxidized by aerobic bacteria to form elemental sulfur and biomass. While this treatment approach is effective for conversion of hydrogen sulfide, it is important to have adequate control of the biomass exiting the biological treatment system to prevent release of elemental sulfur into the distribution system. Pilot scale tests were conducted on a Florida groundwater to evaluate the use of two-stage upflow filtration downstream of biological sulfur oxidation. The combined biological and filtration process was capable of excellent removal of hydrogen sulfide and associated turbidity. Additional benefits of this treatment approach include elimination of odor generation, reduction of chlorine demand, and improved stability of the finished water.

  10. Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Neidel, Trine Lund; Damgaard, Anders

    2011-01-01

    The waste-LCA model EASEWASTE quantifies potential environmental effects from biological treatment of organic waste, based on mass and energy flows, emissions to air, water, soil and groundwater as well as effects from upstream and downstream processes. Default technologies for composting......, anaerobic digestion and combinations hereof are available in the model, but the user can change all key parameters in the biological treatment module so that specific local plants and processes can be modelled. EASEWASTE is one of the newest waste LCA models and the biological treatment module was built...... partly on features of earlier waste-LCA models, but offers additional facilities, more flexibility, transparency and user-friendliness. The paper presents the main features of the module and provides some examples illustrating the capability of the model in environmentally assessing and discriminating...

  11. Demonstration test of electron beam flue gas treatment pilot plant of a coal fired thermal power station

    International Nuclear Information System (INIS)

    Doi, Yoshitaka; Hayashi, Kazuaki; Izutsu, Masahiro; Watanabe, Shigeharu; Namba, Hideki; Tokunaga, Okihiro; Hashimoto, Shoji; Tanaka, Tadashi; Ogura, Yoshimi.

    1995-01-01

    The Japan Atomic Energy Research Institute, Chubu Electric Power Company and Ebara Corporation jointly constructed a pilot plant for electron beam flue gas treatment (dry process) capable of treating 12,000 m 3 /h (NTP) of flue gas from a coal fired boiler, at Shin-Nagoya Thermal Power Station, Chubu Electric Power Company. Various tests carried out at the plant over a period extending one year verified the followings. By appropriately controlling parameters such as electron beam dosage, flue gas temperature, and ammonia stoichiometric amount, highly efficient simultaneous SO 2 and NOx removal from flue gas was achieved under all gas conditions, equal to or more efficient than that by the highest level conventional treatment. The operation of the pilot plant was stable and trouble-free over a long term, and the operation and the process was easy to operate and control. By-products (ammonium sulfate and ammonium nitrate) produced by the flue gas treatment were proven to have superior quality, equivalent to that of market-available nitrogen fertilizers. These by-products had been registered as by-product nitrogen fertilizers. (author)

  12. Advances in the use of biologic agents for the treatment of systemic vasculitis

    Science.gov (United States)

    Chung, Sharon A.; Seo, Philip

    2010-01-01

    Purpose of review Due to the well-known toxicities of cyclophosphamide, substantial interest exists in finding other therapies to treat primary systemic vasculitis. Biologic agents have been proposed as an alternative to cyclophosphamide for these disorders because of their recent success in treating other rheumatic diseases. This article reviews the current state-of-the-art with regards to the use of biologic agents as a treatment for systemic vasculitis. Recent findings The greatest amount of experience with these agents for the treatment of systemic vasculitis is with anti-tumor necrosis factor agents, pooled intravenous immunoglobulin, and anti-B cell therapies such as rituximab. Intravenous immunoglobulin is already a standard therapy for Kawasaki's disease, but should also be considered for the treatment of ANCA-associated vasculitis when standard therapies are either ineffective or contraindicated. Early experience with tumor necrosis factor inhibitors indicates that they may be effective for the treatment of Takayasu's arteritis, but their role in the treatment of other forms of vasculitis remains controversial. Early experience with rituximab for the treatment of several forms of vasculitis has been quite promising, but must be confirmed by ongoing randomized clinical trials. Summary Biologic agents represent the next evolution in treatment for the primary systemic vasculitides. Greater understanding of these diseases has allowed use to move further away from non-specific, highly toxic therapies towards a more directed approach. As our experience with these agents increases, they will likely form the keystone of treatment in the near future. PMID:19077713

  13. Application of the k{sub 0}-INAA method for analysis of biological samples at the pneumatic station of the IEA-R1 nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puerta, Daniel C.; Figueiredo, Ana Maria G.; Semmler, Renato, E-mail: dcpuerta@hotmail.com, E-mail: anamaria@ipen.br, E-mail: rsemmler@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Jacimovic, Radojko, E-mail: radojko.jacimovic@ijs.si [Jozef Stefan Institute (JSI), Ljubljana, LJU (Slovenia). Department of Environmental Sciences

    2013-07-01

    As part of the process of implementation of the k{sub 0}-INAA standardization method at the Neutron Activation Laboratory (LAN-IPEN), Sao Paulo, Brazil, this study presents the results obtained for the analysis of short and medium-lived nuclides in biological samples by k{sub 0}-INAA using the program k{sub 0}-IAEA, provided by the International Atomic Energy Agency (IAEA). The elements Al, Ba, Br, Na, K, Mn, Mg, Sr and V were determined with respect to gold ({sup 197}Au) using the pneumatic station facility of the IEA-R1 4.5 MW swimming pool nuclear research reactor, Sao Paulo. Characterization of the pneumatic station was carried out by using the 'bare triple-monitor' method with {sup 197}Au-{sup 96}Zr-{sup 94}Zr. The Certified Reference Material IRMM-530R Al-0.1%Au alloy and high purity zirconium comparators were used. The efficiency curves of the gamma-ray spectrometer used were determined by measuring calibrated radioactive sources at the usually utilized counting geometries. The method was validated by analyzing the reference materials NIST SRM 1547 Peach Leaves, INCT-MPH-2 Mixed Polish Herbs and NIST SRM 1573a Tomato Leaves. The concentration results obtained agreed with certified, reference and recommended values, showing relative errors (bias, %) less than 30% for most elements. The Coefficients of Variation were below 20%, showing a good reproducibility of the results. The E{sub n}-number showed that all results, except Na in NIST SRM 1547 and NIST SRM 1573a and Al in INCT-MPH-2, were within 95% confidence interval. (author)

  14. Biological effective dose evaluation in gynaecological brachytherapy: LDR and HDR treatments, dependence on radiobiological parameters, and treatment optimisation.

    Science.gov (United States)

    Bianchi, C; Botta, F; Conte, L; Vanoli, P; Cerizza, L

    2008-10-01

    This study was undertaken to compare the biological efficacy of different high-dose-rate (HDR) and low-dose-rate (LDR) treatments of gynaecological lesions, to identify the causes of possible nonuniformity and to optimise treatment through customised calculation. The study considered 110 patients treated between 2001 and 2006 with external beam radiation therapy and/or brachytherapy with either LDR (afterloader Selectron, (137)Cs) or HDR (afterloader microSelectron Classic, (192)Ir). The treatments were compared in terms of biologically effective dose (BED) to the tumour and to the rectum (linear-quadratic model) by using statistical tests for comparisons between independent samples. The difference between the two treatments was statistically significant in one case only. However, within each technique, we identified considerable nonuniformity in therapeutic efficacy due to differences in fractionation schemes and overall treatment time. To solve this problem, we created a Microsoft Excel spreadsheet allowing calculation of the optimal treatment for each patient: best efficacy (BED(tumour)) without exceeding toxicity threshold (BED(rectum)). The efficacy of a treatment may vary as a result of several factors. Customised radiobiological evaluation is a useful adjunct to clinical evaluation in planning equivalent treatments that satisfy all dosimetric constraints.

  15. Biologic Treatments for Sports Injuries II Think Tank-Current Concepts, Future Research, and Barriers to Advancement, Part 1: Biologics Overview, Ligament Injury, Tendinopathy.

    Science.gov (United States)

    LaPrade, Robert F; Geeslin, Andrew G; Murray, Iain R; Musahl, Volker; Zlotnicki, Jason P; Petrigliano, Frank; Mann, Barton J

    2016-12-01

    Biologic therapies, including stem cells, platelet-rich plasma, growth factors, and other biologically active adjuncts, have recently received increased attention in the basic science and clinical literature. At the 2015 AOSSM Biologics II Think Tank held in Colorado Springs, Colorado, a group of orthopaedic surgeons, basic scientists, veterinarians, and other investigators gathered to review the state of the science for biologics and barriers to implementation of biologics for the treatment of sports medicine injuries. This series of current concepts reviews reports the summary of the scientific presentations, roundtable discussions, and recommendations from this think tank. © 2016 The Author(s).

  16. Radiological study of the sludge generated in a station drinking water treatment

    International Nuclear Information System (INIS)

    Baeza, A.; Salas, A.; Gragera, J.

    2011-01-01

    The purification process involves removing the water or at least reducing the legally permitted levels of undesirable substances that become part of the precipitates that originate, called sludge. The importance of the study is given because it will find, in the event that the process effectively reduce its radioactive contents, significant activities of the radionuclides eliminated. In this sense, the concentration of radioactive sludge and, above all, the chemical forms in which these radionuclides are retained condition the danger of the waste produced on the basis of their potential availability. In this study, we analyzed the sludge generated in a water treatment plant that has operated under both routine operation and in conditions designed to optimize the reduction of the radioactive contents for uranium and radium present in the treated water. (Author)

  17. The improvement program of radwaste treatment at Chinshan nuclear power station

    International Nuclear Information System (INIS)

    Lin, M.M.H.; Huang, C.Y.

    1986-01-01

    Chinshan-1 and 2, the twin 636-megawatt boiling water reactors with independent radwaste treatment facilities, located at northern Taiwan, started power generation in 1977 and 1978, respectively. Initial years of operation of CSNPS indicated a need for improvement of the radwaste scheme originally provided. The major betterment programs for radwaste system include: (1) addition of auxiliary demineralization system and addition resin storage tank/demineralizer, (2) addition of dry laundry and miscellant drain system, (3) addition of off-gas charcoal delay system, (4) tie connection of the liquid waste system of unit 1 and 2, (5) solid waste system retrofit study, (6) volume reduction study. The administration and water quality controls have also been much improved and the discharge of radioactivity is considerably lower after the improvement has been implemented

  18. On-load chelating agent treatments for conventional and nuclear power stations

    International Nuclear Information System (INIS)

    Turner, D.J.

    1978-01-01

    The paper is concerned with the application of on-load chelating agent treatments to those types of water circuit for which they are not currently available: high pressure drum boilers, sub-critical once-through boilers and water reactors. An attempt was made to see whether the most thermally stable types of chelating agent are likely to be sufficiently strong chelating agents either to dissolve established Fe 3 O 4 deposits or to prevent their precipitation from solution. It seems likely that they are strong enough to prevent Fe 3 O 4 depositing in a once-through boiler, through some may require that mildly reducing conditions are maintained. They would not be effective in a high pressure drum boiler (at 350 0 C) unless much more strongly reducing conditions could be maintained. For such boilers it would probably be better to seek multidentate ligands of less than maximum thermal stability. There are some indications that chelating agents based on carbon chains are more stable than NTA or EDTA so that citric acid or some of the unidentified chelating agents recently found to be produced radiolytically may have potential in the treatment of high pressure drum boilers. The prospects for periodic full-load cleaning seem less good for both types of boiler. There may also be a role for radiolytically produced chelating agents in alleviating some of the problems caused by the deposition of radioactive corrosion products in water reactor circuits. The chances for successful development fall from quite good to very low down the series SGHWR moderator circuit, PWR primary circuit, ammonia dosed BWR, neutral chemistry BWR (including SGHWR). (author)

  19. Accumulating Data to Optimally Predict Obesity Treatment (ADOPT): Recommendations from the Biological Domain.

    Science.gov (United States)

    Rosenbaum, Michael; Agurs-Collins, Tanya; Bray, Molly S; Hall, Kevin D; Hopkins, Mark; Laughlin, Maren; MacLean, Paul S; Maruvada, Padma; Savage, Cary R; Small, Dana M; Stoeckel, Luke

    2018-04-01

    The responses to behavioral, pharmacological, or surgical obesity treatments are highly individualized. The Accumulating Data to Optimally Predict obesity Treatment (ADOPT) project provides a framework for how obesity researchers, working collectively, can generate the evidence base needed to guide the development of tailored, and potentially more effective, strategies for obesity treatment. The objective of the ADOPT biological domain subgroup is to create a list of high-priority biological measures for weight-loss studies that will advance the understanding of individual variability in response to adult obesity treatments. This list includes measures of body composition, energy homeostasis (energy intake and output), brain structure and function, and biomarkers, as well as biobanking procedures, which could feasibly be included in most, if not all, studies of obesity treatment. The recommended high-priority measures are selected to balance needs for sensitivity, specificity, and/or comprehensiveness with feasibility to achieve a commonality of usage and increase the breadth and impact of obesity research. The accumulation of data on key biological factors, along with behavioral, psychosocial, and environmental factors, can generate a more precise description of the interplay and synergy among them and their impact on treatment responses, which can ultimately inform the design and delivery of effective, tailored obesity treatments. © 2018 The Obesity Society.

  20. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis

    DEFF Research Database (Denmark)

    Loft, N D; Skov, L; Iversen, L

    2017-01-01

    Biological agents including anti-tumor necrosis factor (anti-TNF; adalimumab, infliximab, etanercept) and anti-interleukin-12/13 (IL12/23; ustekinumab) are essential for treatment of patients with severe psoriasis. However, a significant proportion of the patients do not respond to a specific...... of ustekinumab treatment. Associations between genetic variants and treatment outcomes (drug survival and Psoriasis Area Severity Index reduction) were assessed using logistic regression analyses (crude and adjusted for gender, age, psoriatic arthritis and previous treatment). After correction for multiple...

  1. Recent advances and industrial viewpoint for biological treatment of wastewaters by oleaginous microorganisms.

    Science.gov (United States)

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Xiong, Lian; Li, Xiao-Mei; Chen, Xin-De

    2017-05-01

    Recently, technology of using oleaginous microorganisms for biological treatment of wastewaters has become one hot topic in biochemical and environmental engineering for its advantages such as easy for operation in basic bioreactor, having potential to produce valuable bio-products, efficient wastewaters treatment in short period, etc. To promote its industrialization, this article provides some comprehensive analysis of this technology such as its advances, issues, and outlook especially from industrial viewpoint. In detail, the types of wastewaters can be treated and the kinds of oleaginous microorganisms used for biological treatment are introduced, the potential of industrial application and issues (relatively low COD removal, low lipid yield, cost of operation, and lack of scale up application) of this technology are presented, and some critical outlook mainly on co-culture method, combination with other treatments, process controlling and adjusting are discussed systematically. By this article, some important information to develop this technology can be obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Combining biologic and phototherapy treatments for psoriasis: safety, efficacy, and patient acceptability

    Directory of Open Access Journals (Sweden)

    Farahnik B

    2016-07-01

    Full Text Available Benjamin Farahnik,1 Viraat Patel,2 Kourosh Beroukhim,3 Tian Hao Zhu,4 Michael Abrouk,2 Mio Nakamura,5 Rasnik Singh,3 Kristina Lee,5 Tina Bhutani,5 John Koo5 1University of Vermont College of Medicine, Burlington, VT; 2School of Medicine, University of California, Irvine, 3David Geffen School of Medicine, University of California, Los Angeles, 4University of Southern California Keck School of Medicine, Los Angeles, 5Department of Dermatology, Psoriasis and Skin Treatment Center, University of California, San Francisco, CA, USA Background: The efficacy and safety of biologic and phototherapy in treating moderate-to-severe psoriasis is well known. However, some patients may not respond well to biologic agents or phototherapy on their own and may require combination therapy. Skillfully combining a biologic agent and phototherapy may provide an additive improvement without much increase in risks.Objective: To summarize the current state of evidence for the efficacy and safety of combining biologics with phototherapy in the treatment of moderate-to-severe plaque psoriasis.Methods: We conducted an extensive search on Pubmed database for English language literature that evaluated the use of a combination of biologic and phototherapy for the treatment of moderate-to-severe psoriasis through January 2016. The search included the following keywords: psoriasis, etanercept, adalimumab, infliximab, ustekinumab, biologics, phototherapy, and combination therapy.Results: The primary literature included randomized controlled trials, a head-to-head study, open-label controlled and uncontrolled trials, case series, and case reports. Etanercept was used in over half of the reported cases, but other biologic agents used included ustekinumab, adalimumab, and infliximab. The vast majority of phototherapy was narrowband ultraviolet B (NBUVB radiation. Most cases reported enhanced improvement with combination therapy. Serious adverse events throughout the study duration

  3. Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water

    International Nuclear Information System (INIS)

    Suryaman, Dhanus; Hasegawa, Kiyoshi

    2010-01-01

    We investigated biological, photocatalytic, and combination of biological and photocatalytic treatments in order to remove a mixture of 2-chlorophenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, and pentachlorophenol in tap water (total: 100 mg L -1 , each: 25 mg L -1 ). The removal of chlorinated phenols was conducted with a flow biological treatment and a circulative flow photocatalytic treatment under black light and sunlight irradiations integrated with titanium dioxide separation and reuse. The combined biological-photocatalytic treatment significantly shortened the degradation and mineralization time of both the biological treatment and the photocatalytic treatment. The removed chlorophenols per hour by the combined biological-photocatalytic treatment was 25.8 mg h -1 , whereas by the combined photocatalytic-biological treatment was 10.5 mg h -1 . After a large portion of biodegradable 2-chlorophenol and 2,4-dichlorophenol, and around half amount of slightly biodegradable 2,4,5-trichlorophenol were removed by the biological treatment, the remained three chlorophenols, biorecalcitrant pentachlorophenol, and biodegradation products were completely removed by the subsequent photocatalytic treatment. Since titanium dioxide particles in tap water spontaneously sedimented on standing after the photocatalytic treatment, the combined treatment can be operated by integrating with the titanium dioxide separation and reuse. The TiO 2 particles were recovered and reused at least three times without significantly decreasing the removal efficiency.

  4. Biological and photocatalytic treatment integrated with separation and reuse of titanium dioxide on the removal of chlorophenols in tap water

    Energy Technology Data Exchange (ETDEWEB)

    Suryaman, Dhanus, E-mail: dhanussuryaman@yahoo.com [Agency for the Assessment and Application of Technology, M.H. Thamrin No. 8, Jakarta 10340 (Indonesia); Department of Chemical and Biochemical Engineering, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Hasegawa, Kiyoshi [Department of Chemical and Biochemical Engineering, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan)

    2010-11-15

    We investigated biological, photocatalytic, and combination of biological and photocatalytic treatments in order to remove a mixture of 2-chlorophenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, and pentachlorophenol in tap water (total: 100 mg L{sup -1}, each: 25 mg L{sup -1}). The removal of chlorinated phenols was conducted with a flow biological treatment and a circulative flow photocatalytic treatment under black light and sunlight irradiations integrated with titanium dioxide separation and reuse. The combined biological-photocatalytic treatment significantly shortened the degradation and mineralization time of both the biological treatment and the photocatalytic treatment. The removed chlorophenols per hour by the combined biological-photocatalytic treatment was 25.8 mg h{sup -1}, whereas by the combined photocatalytic-biological treatment was 10.5 mg h{sup -1}. After a large portion of biodegradable 2-chlorophenol and 2,4-dichlorophenol, and around half amount of slightly biodegradable 2,4,5-trichlorophenol were removed by the biological treatment, the remained three chlorophenols, biorecalcitrant pentachlorophenol, and biodegradation products were completely removed by the subsequent photocatalytic treatment. Since titanium dioxide particles in tap water spontaneously sedimented on standing after the photocatalytic treatment, the combined treatment can be operated by integrating with the titanium dioxide separation and reuse. The TiO{sub 2} particles were recovered and reused at least three times without significantly decreasing the removal efficiency.

  5. Risk of serious infection in biological treatment of patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Singh, Jasvinder A; Cameron, Chris; Noorbaloochi, Shahrzad

    2015-01-01

    ). We did a systematic review and meta-analysis of serious infections in patients treated with biological drugs compared with those treated with traditional DMARDs. METHODS: We did a systematic literature search with Medline, Embase, Cochrane Central Register of Controlled Trials, and Clinical......Trials.gov from their inception to Feb 11, 2014. Search terms included "biologics", "rheumatoid arthritis" and their synonyms. Trials were eligible for inclusion if they included any of the approved biological drugs and reported serious infections. We assessed the risk of bias with the Cochrane Risk of Bias Tool......BACKGROUND: Serious infections are a major concern for patients considering treatments for rheumatoid arthritis. Evidence is inconsistent as to whether biological drugs are associated with an increased risk of serious infection compared with traditional disease-modifying antirheumatic drugs (DMARDs...

  6. Excessive biologic response to IFNβ is associated with poor treatment response in patients with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Richard A Rudick

    Full Text Available BACKGROUND: Interferon-beta (IFNβ is used to inhibit disease activity in multiple sclerosis (MS, but its mechanisms of action are incompletely understood, individual treatment response varies, and biological markers predicting response to treatment have yet to be identified. METHODS: The relationship between the molecular response to IFNβ and treatment response was determined in 85 patients using a longitudinal design in which treatment effect was categorized by brain magnetic resonance imaging as good (n = 70 or poor response (n = 15. Molecular response was quantified using a customized cDNA macroarray assay for 166 IFN-regulated genes (IRGs. RESULTS: The molecular response to IFNβ differed significantly between patients in the pattern and number of regulated genes. The molecular response was strikingly stable for individuals for as long as 24 months, however, suggesting an individual 'IFN response fingerprint'. Unexpectedly, patients with poor response showed an exaggerated molecular response. IRG induction ratios demonstrated an exaggerated molecular response at both the first and 6-month IFNβ injections. CONCLUSION: MS patients exhibit individually unique but temporally stable biological responses to IFNβ. Poor treatment response is not explained by the duration of biological effects or the specific genes induced. Rather, individuals with poor treatment response have a generally exaggerated biological response to type 1 IFN injections. We hypothesize that the molecular response to type I IFN identifies a pathogenetically distinct subset of MS patients whose disease is driven in part by innate immunity. The findings suggest a strategy for biologically based, rational use of IFNβ for individual MS patients.

  7. The study of potable water treatment process in Algeria (boudouaou station) -by the application of life cycle assessment (LCA).

    Science.gov (United States)

    Mohamed-Zine, Messaoud-Boureghda; Hamouche, Aksas; Krim, Louhab

    2013-12-19

    Environmental impact assessment will soon become a compulsory phase in future potable water production projects, in algeria, especially, when alternative treatment processes such sedimentation ,coagulation sand filtration and Desinfection are considered. An impact assessment tool is therefore developed for the environmental evaluation of potable water production. in our study The evaluation method used is the life cycle assessment (LCA) for the determination and evaluation of potential impact of a drink water station ,near algiers (SEAL-Boudouaoua).LCA requires both the identification and quantification of materials and energy used in all stages of the product's life, when the inventory information is acquired, it will then be interpreted into the form of potential impact " eco-indicators 99" towards study areas covered by LCA, using the simapro6 soft ware for water treatment process is necessary to discover the weaknesses in the water treatment process in order for it to be further improved ensuring quality life. The main source shown that for the studied water treatment process, the highest environmental burdens are coagulant preparation (30% for all impacts), mineral resource and ozone layer depletion the repartition of the impacts among the different processes varies in comparison with the other impacts. Mineral resources are mainly consumed during alumine sulfate solution preparation; Ozone layer depletion originates mostly from tetrachloromethane emissions during alumine sulfate production. It should also be noted that, despite the small doses needed, ozone and active Carbone treatment generate significant impacts with a contribution of 10% for most of the impacts.Moreover impacts of energy are used in producing pumps (20-25 GHC) for plant operation and the unitary processes (coagulation, sand filtration decantation) and the most important impacts are localized in the same equipment (40-75 GHC) and we can conclude that:- Pre-treatment, pumping and EDR (EDR: 0

  8. Influences of mechanical pretreatment on the non-biological treatment of municipal wastewater by forward osmosis.

    Science.gov (United States)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2017-09-01

    Municipal wastewater treatment involves mechanical, biological and chemical treatment steps for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates municipal wastewater treatment without the biological treatment step, including the effects of different pretreatment configurations, for example, direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pretreatment, for example, microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using Aquaporin Inside™ and Hydration Technologies Inc. (HTI) membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested in parallel for the different types of pretreated feed and evaluated in terms of water flux and solute rejection, that is, biochemical oxygen demand (BOD 7 ) and total and soluble phosphorus contents. The Aquaporin and HTI membranes achieved a stable water flux with rejection rates of more than 96% for BOD 7 and total and soluble phosphorus, regardless of the type of mechanical pretreated wastewater considered. This result indicates that forward osmosis membranes can tolerate exposure to municipal waste water and that the permeate can fulfil the Swedish discharge limits.

  9. Decontamination of industrial wastewater from sugarcane crops by combining solar photo-Fenton and biological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Marin, Claudia; Osorio, Paula [Department of Chemistry, Faculty of Science, Universidad del Valle, A.A. 25360 Cali (Colombia); Benitez, Norberto, E-mail: lubenite@univalle.edu.co [Department of Chemistry, Faculty of Science, Universidad del Valle, A.A. 25360 Cali (Colombia)

    2010-05-15

    The department of Valle del Cauca is the region with the largest sugarcane production in Colombia. This agricultural activity uses high quantities of herbicides, mainly Diuron and 2,4-Dichlorophenoxyacetic acid. Wastewater generated in the washing process of spray equipment and empty pesticide containers must be treated to keep natural water sources from being polluted with these pesticides when these effluents are disposed off. Conventional biological treatments are not able to remove recalcitrant substances like Diuron and 2,4-Dichlorophenoxyacetic acid; therefore, it is essential to have alternative treatment systems. In recent years, photocatalytic processes have been proven efficient methods in treating polluted water with recalcitrant organic substances. This study sought to evaluate the efficiency of a coupled treatment constituted for a solar photo-Fenton treatment and a biological system like an immobilized biological reactor to treat industrial wastewater containing pesticides (2,4-Dichlorophenoxyacetic acid and Diuron). The mineralization and degradation of pesticides were followed by measuring the dissolved organic carbon and pesticide concentrations. The results revealed that industrial wastewaters with high Diuron and 2,4-Dichlorophenoxyacetic acid concentrations can be successfully treated by a combined solar photo-Fenton-biological system, achieving mineralization of 79.8% in prepared wastewater and 82.5% in real industrial wastewater by using low Fe{sup 2+} and H{sub 2}O{sub 2} concentrations.

  10. Decontamination of industrial wastewater from sugarcane crops by combining solar photo-Fenton and biological treatments

    International Nuclear Information System (INIS)

    Mendoza-Marin, Claudia; Osorio, Paula; Benitez, Norberto

    2010-01-01

    The department of Valle del Cauca is the region with the largest sugarcane production in Colombia. This agricultural activity uses high quantities of herbicides, mainly Diuron and 2,4-Dichlorophenoxyacetic acid. Wastewater generated in the washing process of spray equipment and empty pesticide containers must be treated to keep natural water sources from being polluted with these pesticides when these effluents are disposed off. Conventional biological treatments are not able to remove recalcitrant substances like Diuron and 2,4-Dichlorophenoxyacetic acid; therefore, it is essential to have alternative treatment systems. In recent years, photocatalytic processes have been proven efficient methods in treating polluted water with recalcitrant organic substances. This study sought to evaluate the efficiency of a coupled treatment constituted for a solar photo-Fenton treatment and a biological system like an immobilized biological reactor to treat industrial wastewater containing pesticides (2,4-Dichlorophenoxyacetic acid and Diuron). The mineralization and degradation of pesticides were followed by measuring the dissolved organic carbon and pesticide concentrations. The results revealed that industrial wastewaters with high Diuron and 2,4-Dichlorophenoxyacetic acid concentrations can be successfully treated by a combined solar photo-Fenton-biological system, achieving mineralization of 79.8% in prepared wastewater and 82.5% in real industrial wastewater by using low Fe 2+ and H 2 O 2 concentrations.

  11. História dos tratamentos biológicos Biologicals treatments's history

    Directory of Open Access Journals (Sweden)

    Sérgio Paulo Rigonatti

    2004-01-01

    Full Text Available Contexto: Trata-se de uma discussão de como surgiram os tratamentos biológicos no decorrer da história da psiquiatria.Context: It's about a discussion on how begun the biological treatment throughout Psychiatry History.

  12. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  13. Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist V.; Jeppsson, Ulf

    2012-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  14. Radiation oncology - Linking technology and biology in the treatment of cancer

    International Nuclear Information System (INIS)

    Coleman, C. Norman

    2002-01-01

    Technical advances in radiation oncology including CT-simulation, 3D-conformal and intensity-modulated radiation therapy (IMRT) delivery techniques, and brachytherapy have allowed greater treatment precision and dose escalation. The ability to intensify treatment requires the identification of the critical targets within the treatment field, recognizing the unique biology of tumor, stroma and normal tissue. Precision is technology based while accuracy is biologically based. Therefore, the intensity of IMRT will undoubtedly mean an increase in both irradiation dose and the use of biological agents, the latter considered in the broadest sense. Radiation oncology has the potential and the opportunity to provide major contributions to the linkage between molecular and functional imaging, molecular profiling and novel therapeutics for the emerging molecular targets for cancer treatment. This process of 'credentialing' of molecular targets will require multi disciplinary imaging teams, clinicians and basic scientists. Future advances will depend on the appropriate integration of biology into the training of residents, continuing post graduate education, participation in innovative clinical research and commitment to the support of basic research as an essential component of the practice of radiation oncology

  15. Latent tuberculosis infection screening prior to biological treatment in Tunisian patients.

    Science.gov (United States)

    Slouma, Marwa; Mahmoud, Ines; Saidane, Olfa; Bouden, Selma; Abdelmoula, Leila

    2017-10-01

    The screening of latent tuberculosis infection (LTBI) is necessary to prevent infection in patients with chronic inflammatory disease (CID) undergoing biological treatment. We aimed to assess the efficacy of LTBI screening prior to biological treatment in Tunisia, considered as a high-incidence area of active TB disease. We conducted a retrospective study over a period of 8 years [2007-2014] including patients with chronic inflammatory rheumatism receiving biologic agents since at least 6 months. The screening of LTBI was performed according to national Tunisian guidelines. There were 35 men and 78 women. The mean age was 47.67±13.50 years. Rheumatoid arthritis (70.8%) was the most common cause of CID. The diagnosis of LTBI was established in 23 cases. Among these 23 patients, 12 patients had negative tuberculin skin test (TST) associated with positive QuantiFERON-TB Gold (QFT-G), 10 had TST more than 10mm, one patient had a TST between 5 and 10mm associated with positive QFT-G and one patient had a history of tuberculosis inadequately treated. Preventive anti-tuberculous therapy was prescribed before biological therapy initiation in cases of LTBI. During the follow-up period (3.91 years), no case of tuberculosis reactivation has been reported among patients diagnosed with LTBI. However, 2 cases of active pulmonary tuberculosis were reported in patients with initially negative TST and QFT-G. Our study showed that the Tunisian recommendations allowed detecting a LTBI in 20% of biologic therapy candidates. Preventive measures including screening of LTBI and eventually a prophylactic treatment improve the safety of biological treatments. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  16. Development of biological treatment known as SBR process for supporting radiation treatment of industrial wastewater using electron beam

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Siti Aishah Hashim; Zulkafli Ghazali; Khairul Zaman Dahlan; Ismail Yaziz

    2005-01-01

    Electron beam irradiation of wastewater is capable of degrading stable non-biodegradable compound. However it requires high dose and in turn increase the cost of operation. A combination of irradiation and biological treatment is expected to overcome this problem. In this study, the treatment system will use a biological process known as Sequencing Batch Reactor (SBR). The SBR will be developed in a series and each series consist of reaction tank and clarifier tank. Filling and reaction step will occur in reaction tank while settling, decanting and idling step will ensue in the clarifier tank. The process is designed as such to enable rapid and simultaneous analysis on treated sample in order to achieve reliable results. (Author)

  17. Thyroid Autoimmunity and Function after Treatment with Biological Antirheumatic Agents in Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Bliddal, Sofie; Borresen, Stina Willemoes; Feldt-Rasmussen, Ulla

    2017-01-01

    With the increased pro-inflammatory response in both rheumatoid arthritis and thyroid autoimmune diseases, treatment with biological antirheumatic agents (BAAs) of the former may affect the course of the latter. In hepatitis C and cancer patients, treatment with biological agents substantially...... increases the risk of developing thyroid autoimmunity. As the use of BAAs in the treatment of rheumatoid arthritis is increasing, this review aimed to investigate if such use affected thyroid status in rheumatoid arthritis patients. We conducted a systematic literature search and included six studies...... status: a reduction of thyroid peroxidase and thyroglobulin antibody concentrations, and a reduction of thyrotropin levels in hypothyroid patients. Despite the small number of studies, they presented compliant data. The BAAs used in rheumatoid arthritis thus did not seem to negatively affect thyroid...

  18. Standard and biological treatment in large vessel vasculitis: guidelines and current approaches.

    Science.gov (United States)

    Muratore, Francesco; Pipitone, Nicolò; Salvarani, Carlo

    2017-04-01

    Giant cell arteritis and Takayasu arteritis are the two major forms of idiopathic large vessel vasculitis. High doses of glucocorticoids are effective in inducing remission in both conditions, but relapses and recurrences are common, requiring prolonged glucocorticoid treatment with the risk of the related adverse events. Areas covered: In this article, we will review the standard and biological treatment strategies in large vessel vasculitis, and we will focus on the current approaches to these diseases. Expert commentary: The results of treatment trials with conventional immunosuppressive agents such as methotrexate, azathioprine, mycophenolate mofetil, and cyclophosphamide have overall been disappointing. TNF-α blockers are ineffective in giant cell arteritis, while observational evidence and a phase 2 randomized trial support the use of tocilizumab in relapsing giant cell arteritis. Observational evidence strongly supports the use of anti-TNF-α agents and tocilizumab in Takayasu patients with relapsing disease. However biological agents are not curative, and relapses remain common.

  19. Update on the use of systemic biologic agents in the treatment of noninfectious uveitis

    Directory of Open Access Journals (Sweden)

    Pasadhika S

    2014-02-01

    Full Text Available Sirichai Pasadhika,1 James T Rosenbaum2 1Department of Ophthalmology, Southern Arizona Veterans Administration Health Care System, Tucson, AZ, USA; 2Legacy Devers Eye Institute, Portland, OR, USA Abstract: Uveitis is one of the leading causes of blindness worldwide. Noninfectious uveitis may be associated with other systemic conditions, such as human leukocyte antigen B27-related spondyloarthropathies, inflammatory bowel disease, juvenile idiopathic arthritis, Behçet's disease, and sarcoidosis. Conventional therapy with corticosteroids and immunosuppressive agents (such as methotrexate, azathioprine, mycophenolate mofetil, and cyclosporine may not be sufficient to control ocular inflammation or prevent non-ophthalmic complications in refractory patients. Off-label use of biologic response modifiers has been studied as primary and secondary therapeutic agents. They are very useful when conventional immunosuppressive therapy has failed or has been poorly tolerated, or to treat concomitant ophthalmic and systemic inflammation that might benefit from these medications. Biologic therapy, primarily infliximab, and adalimumab, have been shown to be rapidly effective for the treatment of various subtypes of refractory uveitis and retinal vasculitis, especially Behçet's disease-related eye conditions and the uveitis associated with juvenile idiopathic arthritis. Other agents such as golimumab, abatacept, canakinumab, gevokizumab, tocilizumab, and alemtuzumab may have great future promise for the treatment of uveitis. It has been shown that with proper monitoring, biologic therapy can significantly improve quality of life in patients with uveitis, particularly those with concurrent systemic symptoms. However, given high cost as well as the limited long-term safety data, we do not routinely recommend biologics as first-line therapy for noninfectious uveitis in most patients. These agents should be used with caution by experienced clinicians. The present

  20. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    Science.gov (United States)

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate.

    Science.gov (United States)

    Baiju, Archa; Gandhimathi, R; Ramesh, S T; Nidheesh, P V

    2018-03-15

    Treatment of stabilized landfill leachate is a great challenge due to its poor biodegradability. Present study made an attempt to treat this wastewater by combining electro-Fenton (E-Fenton) and biological process. E-Fenton treatment was applied prior to biological process to enhance the biodegradability of leachate, which will be beneficial for the subsequent biological process. This study also investigates the efficiency of iron molybdophosphate (FeMoPO) nanoparticles as a heterogeneous catalyst in E-Fenton process. The effects of initial pH, catalyst dosage, applied voltage and electrode spacing on Chemical Oxygen Demand (COD) removal efficiency were analyzed to determine the optimum conditions. Heterogeneous E-Fenton process gave 82% COD removal at pH 2, catalyst dosage of 50 mg/L, voltage 5 V, electrode spacing 3 cm and electrode area 25 cm 2 . Combined E-Fenton and biological treatment resulted an overall COD removal of 97%, bringing down the final COD to 192 mg/L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Pollution control in pulp and paper industrial effluents using integrated chemical-biological treatment sequences.

    Science.gov (United States)

    El-Bestawy, Ebtesam; El-Sokkary, Ibrahim; Hussein, Hany; Keela, Alaa Farouk Abu

    2008-11-01

    The main objective of the present study was to improve the quality of pulp and paper industrial wastewater of two local mills RAKTA and El-Ahlia, Alexandria, Egypt, and to bring their pollutant contents to safe discharge levels. Quality improvement was carried out using integrated chemical and biological treatment approaches after their optimization. Chemical treatment (alum, lime, and ferric chloride) was followed by oxidation using hydrogen peroxide and finally biological treatment using activated sludge (90 min for RAKTA and 60 min for El-Ahlia effluents). Chemical coagulation produced low-quality effluents, while pH adjustment during coagulation treatment did not enhance the quality of the effluents. Maximum removal of the tested pollutants was achieved using the integrated treatment and the pollutants recorded residual concentrations (RCs) of 34.67, 17.33, 0.13, and 0.43 mg/l and 15.0, 11.0, 0.0, and 0.13 mg/l for chemical oxygen demand (COD), biochemical oxygen demand (BOD5), tannin and lignin, and silica in RAKTA and El-Ahlia effluents, respectively, all of which were below their maximum permissible limits (MPLs) for the safe discharge into water courses. Specific oxygen uptake rate (SOUR) and sludge volume index (SVI) values reflect good conditions and healthy activated sludge. Based on the previous results, optimized conditions were applied as bench scale on the raw effluents of RAKTA and El-Ahlia via the batch chemical and the biological treatment sequences proposed. For RAKTA effluents, the sequence was as follows: (1) coagulation with 375 mg/l FeCl3, (2) oxidation with 50 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 90 min hydraulic retention time (HRT), while for El-Ahlia raw effluents, the sequence was (1) coagulation with 250 mg/l FeCl3, (2) oxidation with 45 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 60

  3. Biological fluidized-bed treatment of groundwater from a manufactured gas plant site

    International Nuclear Information System (INIS)

    Grey, G.M.; Scheible, O.K.; Maiello, J.A.; Guarini, W.J.; Sutton, P.M.

    1995-01-01

    Bench- and pilot-scale biological treatability studies were performed as part of a comprehensive study for developing an on-site treatment system for contaminated groundwater at a former manufactured gas plant site. The bench-scale work, which included evaluations of activated sludge and fluidized-bed biological processes, indicated that a carbon-based fluidized-bed process was most appropriate. The process was then demonstrated on a pilot level at the site. The bench and pilot studies demonstrated significant reductions of chemical oxygen demand (COD), and all target organics including polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs)

  4. Development of radioactive wastewater treatment systems at Fukushima Daiichi Nuclear Power Station and Toshiba's efforts

    International Nuclear Information System (INIS)

    Arima, Yuki; Takeuchi, Tsutomu; Yoshino, Akira

    2012-01-01

    In keeping the condition of the Fukushima Daiichi Nuclear Power Station (NPS) of The Tokyo Electric Power Company, Inc. under control, following the serious damage to the NPS as a result of the Great East Japan Earthquake and subsequent tsunami on March 11, 2011, both stable cooling of the reactors and spent fuel pools and control of the radioactive wastewater to prevent release have been crucial issues. The reactor cooling has depended on the injection of water from outside, with seawater used first for approximately one month, after which the supply was changed to filtered water. In both cases, however, the water flowed into the reactor buildings and turbine buildings. Toshiba contributed to the realization of circulating water injection cooling at the NPS by supplying a radioactive wastewater transferral system and the first purification system in the initial three months, followed by a second purification system, called SARRY TM , which provided stable treatment capability. These systems make it possible to reuse injected water by purification for further injection, eliminating the need for additional water from the outside. These systems also decrease wastewater generation in the NPS and minimize the risk of spills into the environment. (author)

  5. From Earth to Space: Application of Biological Treatment for the Removal of Ammonia from Water

    Science.gov (United States)

    Pickering, Karen; Adam, Niklas; White, Dawn; Ghosh, Amlan; Seidel, Chad

    2014-01-01

    Managing ammonia is often a challenge in both drinking water and wastewater treatment facilities. Ammonia is unregulated in drinking water, but its presence may result in numerous water quality issues in the distribution system such as loss of residual disinfectant, nitrification, and corrosion. Ammonia concentrations need to be managed in wastewater effluent to sustain the health of receiving water bodies. Biological treatment involves the microbiological oxidation of ammonia to nitrate through a two-step process. While nitrification is common in the environment, and nitrifying bacteria can grow rapidly on filtration media, appropriate conditions, such as the presence of dissolved oxygen and required nutrients, need to be established. This presentation will highlight results from two ongoing research programs - one at NASA's Johnson Space Center, and the other at a drinking water facility in California. Both programs are designed to demonstrate nitrification through biological treatment. The objective of NASA's research is to be able to recycle wastewater to potable water for spaceflight missions. To this end, a biological water processor (BWP) has been integrated with a forward osmosis secondary treatment system (FOST). Bacteria mineralize organic carbon to carbon dioxide as well as ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system testing planned for this year is expected to produce water that requires only a polishing step to meet potable water requirements for spaceflight. The pilot study in California is being conducted on Golden State Water Company's Yukon wells that have hydrogen sulfide odor

  6. Sequential solar photo-fenton-biological system for the treatment of winery wastewaters.

    Science.gov (United States)

    Mosteo, R; Sarasa, J; Ormad, Maria P; Ovelleiro, J L

    2008-08-27

    In this study, winery wastewaters are considered for degradation using heterogeneous photo-Fenton as a preliminary step before biotreatment. The heterogeneous photo-Fenton process assisted by solar light is able to partially degrade the organic matter present in winery wastewaters. When an initial hydrogen peroxide concentration of 0.1 M is used over 24 h of treatment, a degradation yield of organic matter (measured as TOC) of around 50% is reached. The later treatment (activated sludge process) allows the elimination of 90% of the initial TOC present in pretreated winery wastewaters without producing nondesired side-effects, such as the bulking phenomenon, which is usually detected when this treatment is used alone. The final effluent contains a concentration of organic matter (measured as COD) of 128 mg O2/L. The coupled system comprising the heterogeneous photo-Fenton process and biological treatment based on activated sludge in simple stage is a real alternative for the treatment of winery wastewater.

  7. Combined oxidative and biological treatment of separated streams of tannery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, G.; Nieto, J. [Environmental Science Center EULA - Chile, Univ. of Concepcion, Concepcion (Chile); Mansilla, H.D. [Lab. of Renewable Resources, Univ. of Concepcion, Concepcion (Chile); Bornhardt, C. [Chemical Engineering Dept., Univ. of La Frontera, Temuco (Chile)

    2003-07-01

    Leather tanning effluents are a source of severe environmental impacts. In particular, the unhairing stage, belonging to the beamhouse processes, generates an alkaline wastewater with high concentrations of organic matter, sulphides, suspended solids, and salts, which shows significant toxicity. The objective of this work was to evaluate the biodegradation of this industrial wastewater by combined oxidative and biological treatments. An advanced oxidation process (AOP) with Fenton's reagent was used as batch pre-treatment. The relationships of H{sub 2}O{sub 2}/Fe{sup 2+} and H{sub 2}O{sub 2}/COD were 9 and 4, respectively, reaching an organic matter removal of about 90%. Subsequently, the oxidised beamhouse effluent was fed to an activated sludge system, at increasing organic load rates (OLR), in the range of 0.4 to 1.6 g COD/L.d. The biological organic matter removal of the pre-treated wastewater ranged between 35% and 60% for COD, and from 60% to 70% for BOD. Therefore, sequential AOP pretreatment and biological aerobic treatment increased the overall COD removal up to 96%, compared to 60% without pretreatment. Bioassays with D. magna and D. pulex showed that this kind of treatment achieves only a partial toxicity removal of the tannery effluent. (orig.)

  8. Biological treatment of petroleum sludges in liquid/solids contact reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stroo, H F [Remediation Technologies, Inc., Kent, WA (USA)

    1989-10-01

    Biological treatment of hazardous wastes (bioremediation) is now recognized as an effective and cost-efficient approach for on-site cleanup of petroleum-contaminated soils and sludges. These strategies may require pretreatment of oily sludges produced as refinery wastes. Recent work has shown that liquid/solids contact (LSC) bioreactors are capable of adequate pretreatment at lower cost than competing technologies. Since LSC operations aim to maximize microbial numbers and activity, inexpensive microbiological monitoring can provide rapid feedback on performance. LSC technology represents a method for rapid biological treatment of petroleum sludges in a contained reactor. The technology has proven highly effective for a variety of oil refinery sludges, with degradation rates up to ten times faster than those observed during land treatment. The most promising use of LSC is a pretreatment. Because biological treatment in LSC can degrade and detoxify contaminants rapidly and relatively inexpensively, with little risk of off-site contamination, this technology should be considered by refiners having to close sites or treat current waste-streams. 7 refs., 1 figs., 1 tab.

  9. Biological treatment of concentrated hazardous, toxic, and radionuclide mixed wastes without dilution

    International Nuclear Information System (INIS)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-01-01

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel

  10. Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-06-15

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

  11. Thermal ecological study on the water quality and biological impact assessment in the vicinity of Madras Atomic Power Station, Kalpakkam, India

    International Nuclear Information System (INIS)

    Shahul Hameed, P.; Syed Mohamed, H.E.; Krishnamoorthy, R.

    2007-01-01

    Madras Atomic Power Station (MAPS), Kalpakkam uses seawater as tertiary coolant at the rate of 35m3/sec employing a once through type of circuit. The discharged water travels as a canal and mixes with seawater at the mixing zone. The present study investigated the impact of the discharged thermal effluent on the physical chemical and biological quality of the receiving seawater body. Measurements of ΔT between Intake and Outfall ranged from 6.1 to 9.8 deg C and between Intake and Mixing zone from 3.2 to 6.0 deg C. These values are well within the legal limits. The thermal plume is shore attached and extended up to 300 m from the shore and registered a ΔT of 3-4 deg C. No measurable Change in the physical and chemical parameters of seawater (DO, Salinity NO 3 , NO 2 , NH 3 , PO 4 and SiO 3 ) in relation to thermal discharges was observed. However, these parameters fluctuated with seasonal changes. The shore attached thermal plume adversely affected the density and distribution of macro benthic animals. The benthos are absent in the mixing zone and their density decreased about 500 m on either side of the mixing zone. The natural shift in the mixing zone provides opportunities for the recolonization of macro benthos. The thermal tolerance study revealed that the experimental fish species Mugil cephalus and Alepeus djidapa did not show any mortality or loss of equilibrium at Δ5 degC (33 degC) and Δ T 7 degC (35 degC) and the maximum ΔT recorded at the impact area is 6 degC. The gradual increase in temperature as found in the plume favors the fishes to escape the acute thermal exposures. (author)

  12. A comprehensive review and update on the biologic treatment of adult noninfectious uveitis: part II.

    Science.gov (United States)

    Lee, Kyungmin; Bajwa, Asima; Freitas-Neto, Clovis A; Metzinger, Jamie Lynne; Wentworth, Bailey A; Foster, C Stephen

    2014-11-01

    Treatment of adult, noninfectious uveitis remains a major challenge for ophthalmologists around the world, especially in regard to recalcitrant cases. It is reported to comprise approximately 10% of preventable blindness in the USA. The cause of uveitis can be idiopathic or associated with infectious and systemic disorders. The era of biologic medical therapies provides new options for patients with otherwise treatment-resistant inflammatory eye disease. This two-part review gives a comprehensive overview of the existing medical treatment options for patients with adult, noninfectious uveitis, as well as important advances for the treatment ocular inflammation. Part I covers classic immunomodulation and latest information on corticosteroid therapy. In part II, emerging therapies are discussed, including biologic response modifiers, experimental treatments and ongoing clinical studies for uveitis. The hazard of chronic corticosteroid use in the treatment of adult, noninfectious uveitis is well documented. Corticosteroid-sparing therapies, which offer a very favorable risk-benefit profile when administered properly, should be substituted. Although nothing is currently approved for on-label use in this indication, many therapies, through either translation or novel basic science research, have the potential to fill the currently exposed gaps.

  13. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    International Nuclear Information System (INIS)

    Oller, I.; Malato, S.; Sanchez-Perez, J.A.

    2011-01-01

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  14. Ozonisation of model compounds as a pretreatment step for the biological wastewater treatment

    International Nuclear Information System (INIS)

    Degen, U.

    1979-11-01

    Biological degradability and toxicity of organic substances are two basic criteria determining their behaviour in natural environment and during the biological treatment of waste waters. In this work oxidation products of model compounds (p-toluenesulfonic acid, benzenesulfonic acid and aniline) generated by ozonation were tested in a two step laboratory plant with activated sludge. The organic oxidation products and the initial compounds were the sole source of carbon for the microbes of the adapted activated sludge. The progress of elimination of the compounds was studied by measuring DOC, COD, UV-spectra of the initial compounds and sulfate. Initial concentrations of the model compounds were 2-4 mmole/1 with 25-75ion of sulfonic acids. As oxidation products of p-toluenesulfonic acid the following compounds were identified and quantitatively measured: methylglyoxal, pyruvic acid, oxalic acid, acetic acid, formic acid and sulfate. With all the various solutions with different concentrations of initial compounds and oxidation products the biological activity in the two step laboratory plant could maintain. p-Toluenesulfonic acid and the oxidation products are biologically degraded. The degradation of p-toluenesulfonic acid is measured by following the increasing of the sulfate concentration after biological treatment. This shows that the elimination of p-toluenesulfonic acid is not an adsorption but a mineralization step. At high p-toluenesulfonic acid concentration and low concentration of oxidation products p-toluenesulfonic acid is eliminated with a high efficiency (4.3 mole/d m 3 = 0.34 kg p-toluenesulfonic acid/d m 3 ). However at high concentration of oxidation products p-toluenesulfonic acid is less degraded. The oxidation products are always degraded with an elimination efficiency of 70%. A high load of biologically degradable oxidation products diminished the elimination efficiency of p-toluenesulfonic acid. (orig.) [de

  15. Update on the use of systemic biologic agents in the treatment of noninfectious uveitis

    Science.gov (United States)

    Pasadhika, Sirichai; Rosenbaum, James T

    2014-01-01

    Uveitis is one of the leading causes of blindness worldwide. Noninfectious uveitis may be associated with other systemic conditions, such as human leukocyte antigen B27-related spondyloarthropathies, inflammatory bowel disease, juvenile idiopathic arthritis, Behçet’s disease, and sarcoidosis. Conventional therapy with corticosteroids and immunosuppressive agents (such as methotrexate, azathioprine, mycophenolate mofetil, and cyclosporine) may not be sufficient to control ocular inflammation or prevent non-ophthalmic complications in refractory patients. Off-label use of biologic response modifiers has been studied as primary and secondary therapeutic agents. They are very useful when conventional immunosuppressive therapy has failed or has been poorly tolerated, or to treat concomitant ophthalmic and systemic inflammation that might benefit from these medications. Biologic therapy, primarily infliximab, and adalimumab, have been shown to be rapidly effective for the treatment of various subtypes of refractory uveitis and retinal vasculitis, especially Behçet’s disease-related eye conditions and the uveitis associated with juvenile idiopathic arthritis. Other agents such as golimumab, abatacept, canakinumab, gevokizumab, tocilizumab, and alemtuzumab may have great future promise for the treatment of uveitis. It has been shown that with proper monitoring, biologic therapy can significantly improve quality of life in patients with uveitis, particularly those with concurrent systemic symptoms. However, given high cost as well as the limited long-term safety data, we do not routinely recommend biologics as first-line therapy for noninfectious uveitis in most patients. These agents should be used with caution by experienced clinicians. The present work aims to provide a broad and updated review of the current and in-development systemic biologic agents for the treatment of noninfectious uveitis. PMID:24600203

  16. Advanced biological treatment of aqueous effluent from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Pitt, W.W. Jr.; Hancher, C.W.; Patton, B.D.; Shumate, S.E. II.

    1979-01-01

    Many of the processing steps in the nuclear fuel cycle generate aqueous effluent streams bearing contaminants that can, because of their chemical or radiological properties, pose an environmental hazard. Concentration of such contaminants must be reduced to acceptable levels before the streams can be discharged to the environment. Two classes of contaminants, nitrates and heavy metals, are addressed in this study. Specific techniques aimed at the removal of nitrates and radioactive heavy metals by biological processes are being developed, tested, and demonstrated. Although cost comparisons between biological processes and current treatment methods are presented, these comparisons may be misleading because biological processes yield environmentally better end results which are difficult to price. However, a strong case is made for the use of biological processes for removing nitrates and heavy metals fron nuclear fuel cycle effluents. The estimated costs for these methods are as low as, or lower than, those for alternate processes. In addition, the resulting disposal products - nitrogen gas, CO 2 , and heavy metals incorporated into microorganisms - are much more ecologically desirable than the end products of other waste treatment methods

  17. Biological contributions to addictions in adolescents and adults: prevention, treatment, and policy implications.

    Science.gov (United States)

    Potenza, Marc N

    2013-02-01

    Despite significant advances in our understanding of the biological bases of addictions, these disorders continue to represent a huge public health burden that is associated with substantial personal suffering. Efforts to target addictions require consideration of how the improved biological understanding of addictions may lead to improved prevention, treatment, and policy initiatives. In this article, we provide a narrative review of current biological models for addictions with a goal of placing existing data and theories within a translational and developmental framework targeting the advancement of prevention, treatment, and policy strategies. Data regarding individual differences, intermediary phenotypes, and main and interactive influences of genetic and environmental contributions in the setting of developmental trajectories that may be influenced by addictive drugs or behavior indicate complex underpinnings of addictions. Consideration and further elucidation of the biological etiologies of addictions hold significant potential for making important gains and reducing the public health impact of addictions. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  18. Fire Stations

    Data.gov (United States)

    Department of Homeland Security — Fire Stations in the United States Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their...

  19. Small wastewater treatment plants in mountain areas: combination of septic tank and biological filter.

    Science.gov (United States)

    Maunoir, S; Philip, H; Rambaud, A

    2007-01-01

    Research work has been carried out for more than 20 years by Eparco and the University of Montpellier (France) on the application of biological wastewater treatment processes for small communities. This research has led to a new process which is particularly suitable for remote populations, taking into account several specificities such as as the seasonal fluctuations in the population, the accessibility of the site, the absence of a power supply on site, the reduced area of land available and the low maintenance. Thus, the process, which combines a septic tank operating under anaerobic conditions and a biological aerobic filter, is a solution for wastewater treatment in mountain areas. This paper presents the process and three full-scale applications in the region of the Alps.

  20. Recycling of waste bread as culture media for efficient biological treatment of wastewater

    International Nuclear Information System (INIS)

    Kim, Young-Ju; Kim, Pil-Jin; Kim, Ji-Hoon; Lee, Chang-Soo; Qureshi, T.I.

    2012-01-01

    Possibilities of recycling of waste bread as culture media for efficient biological treatment of wastewater were investigated. In order to get the highest growth of microorganism for increased contaminants' removal efficiency of the system, different compositions of waste bread and skim milk with and without adding Powdered Activated Carbon (PAC) were tested. Mixed waste bread compositions with added PAC showed relatively higher number of microorganisms than the compositions without added PAC. A composition of 40% mixed waste bread and 60% skim milk produced highest number of microorganisms with subsequent increased contaminants' removal efficiency of the system. 'Contrast' alone showed lower contaminants' removal efficiency than mixed bread compositions. Use of waste bread in the composition of skim milk reduced cost of using foreign source of nutrients in biological treatment of wastewater and also facilitated waste bread management through recycling. (author)

  1. Solid recovered fuel production through the mechanical-biological treatment of wastes

    OpenAIRE

    Velis, C. A.

    2010-01-01

    This thesis is concerned with the production of solid recovered fuel (SRF) from municipal solid waste using mechanical biological treatment (MBT) plants. It describes the first in-depth analysis of a UK MBT plant and addresses the fundamental research question: are MBT plants and their unit operations optimised to produce high quality SRF in the UK? A critical review of the process science and engineering of MBT provides timely insights into the quality management and standa...

  2. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis

    DEFF Research Database (Denmark)

    Loft, N D; Skov, L; Iversen, L.

    2018-01-01

    Biological agents including anti-tumor necrosis factor (anti-TNF; adalimumab, infliximab, etanercept) and anti-interleukin-12/13 (IL12/23; ustekinumab) are essential for treatment of patients with severe psoriasis. However, a significant proportion of the patients do not respond to a specific tre...... with ustekinumab.The Pharmacogenomics Journal advance online publication, 11 July 2017; doi:10.1038/tpj.2017.31....

  3. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter

    International Nuclear Information System (INIS)

    Kornaros, M.; Lyberatos, G.

    2006-01-01

    The aim of this work was to assess the effectiveness of a biological trickling filter for the treatment of wastewaters produced by a company manufacturing organic dyes and varnishes. The combined wastewater effluent was fed to a pilot-scale trickling filter in two feeding modes, continuously and as a sequencing batch reactor (SBR). The biodegradability of the diluted wastewaters that were subjected to physicochemical treatment, using Ca(OH) 2 and FeSO 4 , was initially studied using a continuously operated trickling filter. The system efficiency ranged up to 60-70% for a hydraulic loading of 1.1 m 3 /m 2 day and up to 80-85% for a hydraulic loading 0.6 m 3 /m 2 day. A stable chemical oxygen demand (COD) removal efficiency of 60-70% was achieved even in the case of undiluted wastewater at a hydraulic loading of 1.1 m 3 /m 2 day. The effectiveness of biological treatment of a mixture of the company's main wastewater streams was also examined. The microorganisms developed in the trickling filter were able to efficiently remove COD levels up to 36,000 mg/L, under aerobic conditions at pH values between 5.5 and 8.0. Depending on the operating conditions of the system, about 30-60% of the total COD removal was attributed to air stripping caused by the air supply at the bottom of the filter, whereas the rest of the COD was clearly removed through biological action. The proposed biological treatment process based on a trickling filter, which was operated either continuously or even better in an SBR mode, appears as a promising pretreatment step for coping with dye manufacturing wastewaters in terms of removing a significant portion of the organic content

  4. Soil washing and post-wash biological treatment of petroleum hydrocarbon contaminated soils

    OpenAIRE

    Bhandari, Alok

    1992-01-01

    A laboratory scale study was conducted to investigate the treatability of petroleum contaminated soils by soil washing and subsequent biological treatment of the different soil fractions. In addition to soils obtained from contaminated sites, studies were also performed on soils contaminated in the laboratory. Soil washing was performed using a bench-scale soil washing system. Washing was carried out with simultaneous fractionation of the bulk soil into sand, silt and clay fractions. Cl...

  5. Innovative biological systems for anaerobic treatment of grain and food processing wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, P M

    1986-09-01

    The application of two innovative fixed film and suspended growth anaerobic biological systems to the treatment of grain and food processing wastewaters is discussed. A fluidized bed fixed film system and a suspended growth membrane system are described. The technical and economic factors dictating which system is selected for treatment of a specific industrial wastewater are discussed. Case history results from successful operation of full-scale, demonstration, and pilot-scale systems treating respectively, soy whey, cheese whey, and wheat flour processing wastewaters are presented.

  6. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    Science.gov (United States)

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment

  7. Use of microalgae of Chlorophyta division in the biological treatment of acid drains of coal mines

    Directory of Open Access Journals (Sweden)

    Darkys Devia Torres

    2017-07-01

    Full Text Available The environmental impact caused by coal mining wastewater is significant due to the pollution load, usually represented in high concentrations of suspended solids, metals (mainly iron and other trace elements and low pH values. The aim of this study was to evaluate the efficiency of a biological treatment system using microalgae belonging to the Chlorophyta division, for the removal of contaminants from the wastewater from a mine owned by Coal North Energy S.A.S. At the end of treatment, it was possible to remove up to 66.67% of total iron, 46.67% for chloride and 95.1% for Chemical Oxigen Demand.

  8. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis

    DEFF Research Database (Denmark)

    Loft, N D; Skov, L; Iversen, L

    2017-01-01

    Biological agents including anti-tumor necrosis factor (anti-TNF; adalimumab, infliximab, etanercept) and anti-interleukin-12/13 (IL12/23; ustekinumab) are essential for treatment of patients with severe psoriasis. However, a significant proportion of the patients do not respond to a specific tre...... with ustekinumab.The Pharmacogenomics Journal advance online publication, 11 July 2017; doi:10.1038/tpj.2017.31....... with response to ustekinumab treatment (qhigh interferon-γ levels may be favorable when treating psoriasis...

  9. Treatment of high strength distillery wastewater (cherry stillage) by integrated aerobic biological oxidation and ozonation.

    Science.gov (United States)

    Beltrán, F J; Alvarez, P M; Rodríguez, E M; García-Araya, J F; Rivas, J

    2001-01-01

    The performance of integrated aerobic digestion and ozonation for the treatment of high strength distillery wastewater (i.e., cherry stillage) is reported. Experiments were conducted in laboratory batch systems operating in draw and fill mode. For the biological step, activated sludge from a municipal wastewater treatment facility was used as inoculum, showing a high degree of activity to distillery wastewater. Thus, BOD and COD overall conversions of 95% and 82% were achieved, respectively. However, polyphenol content and absorbance at 254 nm (A(254)) could not be reduced more than 35% and 15%, respectively, by means of single biological oxidation. By considering COD as substrate, the aerobic digestion process followed a Contois' model kinetics, from which the maximum specific growth rate of microorganisms (mu(max)) and the inhibition factor, beta, were then evaluated at different conditions of temperature and pH. In the combined process, the effect of a post-ozonation stage was studied. The main goals achieved by the ozonation step were the removal of polyphenols and A(254). Therefore, ozonation was shown to be an appropriate technology to aid aerobic biological oxidation in the treatment of cherry stillage.

  10. Effects of different temperature treatments on biological ice nuclei in snow samples

    Science.gov (United States)

    Hara, Kazutaka; Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Matsuki, Atsushi

    2016-09-01

    The heat tolerance of biological ice nucleation activity (INA) depends on their types. Different temperature treatments may cause varying degrees of inactivation on biological ice nuclei (IN) in precipitation samples. In this study, we measured IN concentration and bacterial INA in snow samples using a drop freezing assay, and compared the results for unheated snow and snow treated at 40 °C and 90 °C. At a measured temperature of -7 °C, the concentration of IN in untreated snow was 100-570 L-1, whereas the concentration in snow treated at 40 °C and 90 °C was 31-270 L-1 and 2.5-14 L-1, respectively. In the present study, heat sensitive IN inactivated by heating at 40 °C were predominant, and ranged 23-78% of IN at -7 °C compared with untreated samples. Ice nucleation active Pseudomonas strains were also isolated from the snow samples, and heating at 40 °C and 90 °C inactivated these microorganisms. Consequently, different temperature treatments induced varying degrees of inactivation on IN in snow samples. Differences in the concentration of IN across a range of treatment temperatures might reflect the abundance of different heat sensitive biological IN components.

  11. Biological drugs for the treatment of psoriasis in a public health system

    Directory of Open Access Journals (Sweden)

    Luciane Cruz Lopes

    2014-08-01

    Full Text Available OBJECTIVE To analyze the access and utilization profile of biological medications for psoriasis provided by the judicial system in Brazil. METHODS This is a cross-sectional study. We interviewed a total of 203 patients with psoriasis who were on biological medications obtained by the judicial system of the State of Sao Paulo, from 2004 to 2010. Sociodemographics, medical, and political-administrative characteristics were complemented with data obtained from dispensation orders that included biological medications to treat psoriasis and the legal actions involved. The data was analyzed using an electronic data base and shown as simple variable frequencies. The prescriptions contained in the lawsuits were analyzed according to legal provisions. RESULTS A total of 190 lawsuits requesting several biological drugs (adalimumab, efalizumab, etanercept, and infliximab were analyzed. Patients obtained these medications as a result of injunctions (59.5% or without having ever demanded biological medication from any health institution (86.2%, i.e., public or private health services. They used the prerogative of free legal aid (72.6%, even though they were represented by private lawyers (91.1% and treated in private facilities (69.5%. Most of the patients used a biological medication for more than 13 months (66.0%, and some patients were undergoing treatment with this medication when interviewed (44.9%. Approximately one third of the patients discontinued treatment due to worsening of their illness (26.6%, adverse drug reactions (20.5%, lack of efficacy, or because the doctor discontinued this medication (13.8%. None of the analyzed medical prescriptions matched the legal prescribing requirements. Clinical monitoring results showed that 70.3% of the patients had not undergone laboratory examinations (blood work, liver and kidney function tests for treatment control purposes. CONCLUSIONS The plaintiffs resorted to legal action to get access to biological

  12. Biological drugs for the treatment of psoriasis in a public health system

    Science.gov (United States)

    Lopes, Luciane Cruz; Silveira, Miriam Sanches do Nascimento; de Camargo, Iara Alves; Barberato, Silvio; Del Fiol, Fernando de Sá; Osorio-de-Castro, Claudia Garcia Serpa

    2014-01-01

    OBJECTIVE To analyze the access and utilization profile of biological medications for psoriasis provided by the judicial system in Brazil. METHODS This is a cross-sectional study. We interviewed a total of 203 patients with psoriasis who were on biological medications obtained by the judicial system of the State of Sao Paulo, from 2004 to 2010. Sociodemographics, medical, and political-administrative characteristics were complemented with data obtained from dispensation orders that included biological medications to treat psoriasis and the legal actions involved. The data was analyzed using an electronic data base and shown as simple variable frequencies. The prescriptions contained in the lawsuits were analyzed according to legal provisions. RESULTS A total of 190 lawsuits requesting several biological drugs (adalimumab, efalizumab, etanercept, and infliximab) were analyzed. Patients obtained these medications as a result of injunctions (59.5%) or without having ever demanded biological medication from any health institution (86.2%), i.e., public or private health services. They used the prerogative of free legal aid (72.6%), even though they were represented by private lawyers (91.1%) and treated in private facilities (69.5%). Most of the patients used a biological medication for more than 13 months (66.0%), and some patients were undergoing treatment with this medication when interviewed (44.9%). Approximately one third of the patients discontinued treatment due to worsening of their illness (26.6%), adverse drug reactions (20.5%), lack of efficacy, or because the doctor discontinued this medication (13.8%). None of the analyzed medical prescriptions matched the legal prescribing requirements. Clinical monitoring results showed that 70.3% of the patients had not undergone laboratory examinations (blood work, liver and kidney function tests) for treatment control purposes. CONCLUSIONS The plaintiffs resorted to legal action to get access to biological medications

  13. Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.

    Science.gov (United States)

    Ioannou, L A; Li Puma, G; Fatta-Kassinos, D

    2015-04-09

    Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Rotating biological contractor treatment of 2-nitrophenol and 2-chlorophenol containing hazardous wastes

    International Nuclear Information System (INIS)

    Tokuz, R.Y.

    1990-01-01

    Rotating Biological Contactors (RBCs) have a number of advantages over other biological treatment systems. For example, they can provide high treatment efficiencies of activated sludge systems with much lower energy inputs. Organic shock loads are handled well because large biomass is present. No bulking, foaming, or floating of sludge occurs and sludge has good settleability and dewaterability. Another advantage of RBC systems is the minimal labor requirement for operation and maintenance. Even though RBC systems have these advantages, their acceptance was slow mainly due to operational problems with the earlier units (such as shaft failures) and the lack of considerable design and operation data. A review of literature shows that there is only limited information available on the wastewater treatment with RBCs. Recently, there has been considerable contributions to the knowledge on RBC technology. However, information on the treatment of organic hazardous wastes using RBCs is still very limited. This paper reports that a considerable number of studies on the biological treatment of organic hazardous compounds was sponsored by U.S. Environmental Protection Agency (EPA). For example, an EPA sponsored study examined the effect of such compounds on the performance of activated sludge process. Bench-scale continuous-flow and batch units were used. Influent was settled municipal wastewater to which toxic compounds were added. In batch operations, 2-chlorophenol and pentachlorophenol caused an increase in the effluent Chemical Oxygen Demand (COD) at an influent concentration of 5 mg/L. No adverse effect of 2-nitrophenol on the batch system was reports. 2-Chlorophenol was one of the compounds that upset the performance of continuous-flow activated sludge units, yielding higher than normal levels of effluent suspended solids

  15. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    Science.gov (United States)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  16. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, Michael, E-mail: m.kraemer@gsi.de; Scifoni, Emanuele; Schuy, Christoph; Rovituso, Marta; Maier, Andreas; Kaderka, Robert; Kraft-Weyrather, Wilma [Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Tinganelli, Walter; Durante, Marco [Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany and Trento Institute for Fundamental Physics and Application (TIFPA-INFN), 38123, via Sommarive 14, Trento (Italy); Brons, Stephan; Tessonnier, Thomas [Heidelberger Ionenstrahl-Therapiezentrum (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany and Radioonkologie und Strahlentherapie, Universitätsklinikums Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Parodi, Katia [Heidelberger Ionenstrahl-Therapiezentrum (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg (Germany); Radioonkologie und Strahlentherapie, Universitätsklinikums Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Department of Medical Physics, Am Coulombwall 1, 85748 Munich (Germany)

    2016-04-15

    Purpose: Modern facilities for actively scanned ion beam radiotherapy allow in principle the use of helium beams, which could present specific advantages, especially for pediatric tumors. In order to assess the potential use of these beams for radiotherapy, i.e., to create realistic treatment plans, the authors set up a dedicated {sup 4}He beam model, providing base data for their treatment planning system TRiP98, and they have reported that in this work together with its physical and biological validations. Methods: A semiempirical beam model for the physical depth dose deposition and the production of nuclear fragments was developed and introduced in TRiP98. For the biological effect calculations the last version of the local effect model was used. The model predictions were experimentally verified at the HIT facility. The primary beam attenuation and the characteristics of secondary charged particles at various depth in water were investigated using {sup 4}He ion beams of 200 MeV/u. The nuclear charge of secondary fragments was identified using a ΔE/E telescope. 3D absorbed dose distributions were measured with pin point ionization chambers and the biological dosimetry experiments were realized irradiating a Chinese hamster ovary cells stack arranged in an extended target. Results: The few experimental data available on basic physical processes are reproduced by their beam model. The experimental verification of absorbed dose distributions in extended target volumes yields an overall agreement, with a slight underestimation of the lateral spread. Cell survival along a 4 cm extended target is reproduced with remarkable accuracy. Conclusions: The authors presented a simple simulation model for therapeutical {sup 4}He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with {sup 4}He beams, either exclusively or in

  17. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    Science.gov (United States)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  18. Mass balance to assess the efficiency of a mechanical-biological treatment

    International Nuclear Information System (INIS)

    Araujo Morais, J. de; Ducom, G.; Achour, F.; Rouez, M.; Bayard, R.

    2008-01-01

    Using mechanical-biological treatment of residual municipal solid waste, it is possible to significantly lower landfill volume and gas and leachate emissions. Moreover, the landfill characteristics are improved. The performance of the Mende (France) mechanical-biological treatment plant is assessed via mass balances coupled with manual sorting according to the MODECOM TM methodology and biochemical methane potential after 90 days of incubation. The site includes mechanical sorting operations, a rotary sequential bioreactor, controlled aerobic stabilisation corridors, maturation platforms, and a sanitary landfill site for waste disposal in separated cells. Results showed that several steps could be improved: after a first sieving step, about 12% of the potentially biodegradable matter is landfilled directly without any treatment; mechanical disintegration of papers and cardboards in the rotary sequential bioreactor is insufficient and leads to a high proportion of papers and cardboards being landfilled without further treatment. Two fine fractions go through stabilisation and maturation steps. At the end of the maturation step, about 54% of the potentially biodegradable matter is degraded. The biochemical methane potential after 90 days of incubation is reduced by 81% for one of the two fine fractions and reduced by 88% for the other one. Considering the whole plant, there is a reduction of nearly 20% DM of the entering residual municipal solid waste

  19. The impact of tumor biology on cancer treatment and multidisciplinary strategies

    International Nuclear Information System (INIS)

    Molls, Michael; Vaupel, Peter; Nieder, Carsten; Anscher, Mitchell S.

    2009-01-01

    This book provides an overview of the fundamentals of tumor biology and the influence of various biologic factors, including inhomogeneity of cancer cells, microenvironment, and host factors, on the design of therapeutic strategies and the outcome of established and emerging treatments. Particular attention is devoted to multidisciplinary combined modality therapy. The topics reviewed include tumorigenesis, cell proliferation, angiogenesis, physiology of malignant tissues, adhesion and invasion, development of metastases, and the role of the immune system in cancer development. Subsequent chapters focus on cancer prevention, detection, and treatment. The principles of chemotherapy, radiotherapy, and molecularly targeted therapy are discussed, treatment resistance is explained, and strategies for rational combinations are provided, including the design of translational studies. Furthermore, the principles and clinical implications of new diagnostic and therapeutic approaches, such as gene expression profiling, gene transfer and silencing, proteomics, and molecular imaging, are presented. The chapters in this book have been written by an outstanding group of basic scientists, clinical researchers, and cancer professionals with long experience in the field. Their aim is to educate and inspire all those who devote most of their work to research into cancer and its treatment. (orig.)

  20. Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment

    International Nuclear Information System (INIS)

    Tantak, Nilesh P.; Chaudhari, Sanjeev

    2006-01-01

    A two stage sequential Fenton's oxidation followed by aerobic biological treatment train was used to achieve decolorization and to enhance mineralization of azo dyes, viz. Reactive Black 5 (RB5), Reactive Blue 13 (RB13), and Acid Orange 7 (AO7). In the first stage, Fenton's oxidation process was used while in the second stage aerobic sequential batch reactors (SBRs) were used as biological process. Study was done to evaluate effect of pH on Fenton's oxidation process. Results reveal that pH 3 was optimum pH for achieving decolorization and dearomatization of dyes by Fenton's process. Degradation of dye was assessed by COD reduction and reduction in aromatic amines (naphthalene chromophores) which was measured by reduction in absorbance at 200 nm. More than 95% of color was removed with Fenton's oxidation process in all dyes. In overall treatment train 81.95, 85.57, and 77.83% of COD reduction was achieved in RB5, RB13, and AO7 dyes, respectively. In the Fenton's oxidation process 56, 24.5, and 80% reduction in naphthalene group was observed in RB5, RB13, and AO7, respectively, which further increased to 81.34, 68.73, and 92% after aerobic treatment. Fenton's oxidation process followed by aerobic SBRs treatment sequence seems to be viable method for achieving significant degradation of azo dye

  1. Diversidad de Agaricomycetes clavarioides en la Estación de Biología de Chamela, Jalisco, México Diversity of clavarioid Agaricomycetes at the Chamela Biological Station, Jalisco, Mexico

    Directory of Open Access Journals (Sweden)

    Itzel Ramírez-López

    2012-12-01

    Full Text Available Este estudio es una contribución al conocimiento de la diversidad y estructura de los Agaricomycetes clavarioides que se desarrollan en los bosques tropicales de la Estación de Biología de Chamela, Jalisco, México. Las recolecciones se realizaron durante la temporada de lluvias de los años 2005 a 2008; se registraron datos de hábitat y morfología de los basidiomas, tipo de vegetación y sustrato donde se desarrollan, así como del patrón de crecimiento, área de distribución, abundancia y orientación e inclinación de las laderas donde se localizaron. Los 86 ejemplares registrados corresponden a 17 especies, de las cuales Physalacria changensis, P. inflata, Pterula verticillata y Scytinopogon scaber son nuevos registros para México. Scytinopogon pallescens, Pterula sp. 2 y Thelephora sp. fueron las más abundantes y 6 especies se registraron sólo 1 vez. Los datos obtenidos indican que la frecuencia con la que se hallan los basidiomas de los clavarioides en los distintos hábitats no es aleatoria, sino que su producción se da preferentemente en las laderas sur con inclinación de 21° a 30° y en el bosque tropical subperennifolio.This study is a contribution to the biodiversity and community structure of clavarioid Agaricomycetes in the tropical forests of the Chamela Biological Station, in Jalisco, Mexico. The collections were made during the rainy seasons from 2005 to 2008 during which we recorded the morphological and ecological information, including basidiocarp morphology and patterns of growth. Likewise, records were also taken for habitat preferences, types of substrate, orientation, slope inclination, range of distribution and abundance. The 86 specimens recorded, corresponded to 17 different species, from which Physalacria changensis, P. inflata, Pterula verticillata and Scytinopogon scaber are new records for Mexico. The species S. pallescens, Pterula sp. 2 and Thelephora sp. were the most abundant, while other 6 species

  2. Treatment of complex biological mixtures with pulsed electric fields An energy transfer characterization

    International Nuclear Information System (INIS)

    Schrive, Luc

    2004-01-01

    Sewage sludge from waste water treatment plants is a complex biological mixture and a problematic by-product because of valorisation restrictions. In order to limit its production, pulsed electric fields (PEF) were studied because of their biological effects and their potentially physico-chemical action. This work demonstrated a paradoxical phenomenon: cell lysis triggered a respirometric activation followed by a delayed lethality. This phenomenon was related to the leakage of internal compounds which were immediately bio-assimilated. At high energy expense, the plasmic membrane permeabilization led to cell death. Practically, with the technical configuration of the equipment, no hydrolysis was detected. This limitation decreases the interest for excess sludge reduction, but for the same reason, PEF cold sterilization technique can be assessed as a promising process. The representation of the electric energy transfer from electrodes to cell was exchanged by the study of mass transfer from the biological cell to the surrounding media under an electromotive force. Thus, the survival rate was modelled by a Sherwood number taking account of electrical, biological and hydraulic parameters. (author) [fr

  3. Removal of arsenic and iron removal from drinking water using coagulation and biological treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2016-02-01

    Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals.

  4. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia–a short version for primary care

    DEFF Research Database (Denmark)

    Hasan, Alkomiet; Falkai, Peter; Wobrock, Thomas

    2017-01-01

    Objective: Schizophrenia is a severe mental disorder and many patients are treated in primary care settings. Apart from the pharmacological management of disease-associated symptoms, the detection and treatment of side effects is of the utmost importance in clinical practice. The purpose of this ......Objective: Schizophrenia is a severe mental disorder and many patients are treated in primary care settings. Apart from the pharmacological management of disease-associated symptoms, the detection and treatment of side effects is of the utmost importance in clinical practice. The purpose...... of this publication is to offer relevant evidence-based recommendations for the biological treatment of schizophrenia in primary care. Methods: This publication is a short and practice-oriented summary of Parts I–III of the World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological...

  5. Evaluation of treatment response for breast cancer: are we entering the era of "biological complete remission"?

    Institute of Scientific and Technical Information of China (English)

    Li Bian; Tao Wang; Yi Liu; Hui-Qiang Zhang; Jin-Jie Song; Shao-Hua Zhang; Shi-Kai Wu; San-Tai Song; Ze-Fei Jiang

    2012-01-01

    Breast cancer is one of the most common malignancies in women.The post-operative recurrence and metastasis are the leading causes of breast cancer-related mortality.In this study,we tried to explore the role of circulating tumor cell (CTC) detection combination PET/CT technology evaluating the prognosis and treatment response of patients with breast cancer; meanwhile,we attempted to assess the concept of "biological complete remission" (bCR) in this regard.A 56-year-old patient with breast cancer (T2N1M1,stage Ⅳ left breast cancer,with metastasis to axillary lymph nodes and lungs) received 6 cycles of salvage treatment with albumin-bound paclitaxel plus capecitabine and trastuzumab.Then,she underwent CTC detection and PET/CT for efficacy evaluation.CTC detection combination PET/CT is useful for the evaluation of the biological efficacy of therapies for breast cancer.The bCR of the patient appeared earlier than the conventional clinical imaging complete remission and promised the histological (pathological) complete remission.The integrated application of the concepts including bCR,imageological CR,and histological CR can achieve the early and accurate assessment of biological therapeutic reponse and prognosis of breast cancer.

  6. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation

    International Nuclear Information System (INIS)

    Rodrigues, Carmen S.D.; Madeira, Luis M.; Boaventura, Rui A.R.

    2009-01-01

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5 h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD 5 and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  7. Biological treatment of textile mill wastewater in the. presence of activated carbon

    International Nuclear Information System (INIS)

    Liaquat, F.; Hassan, M.; Mahboob, S.; Rehman, A.; Liaquat, S.; Khalid, Z.M.

    2005-01-01

    The main goal of this study was to find out effectiveness of biological treatment for the reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD) of the textile processing industrial wastewater in the absence and presence of granular activated carbon (GAC) in shake flask experiment. To check the pollution level, physio-chemical analysis of effluent from Amtex industry (Faisalabad) was carried out. The outlet effluent contained high value of COD (1100 mg/l), BOD (309 mg/l) with pH 9.2, electrical conductivity (Ec) 3.7 mS/m, total dissolved solids (TDS) (2640 mg/l), total solids (TS) (3060 mg/l), total suspended solids (TSS) (420 19/l) and phenol (.34 mg/l). After initial period of activated sludge adaptation to wastewater, shake flask batch cultures (with and without activated carbon) were operated on lab scale. The COD and BOD were noted after very 12 hours for 3 days. The maximum reduction in COD (82%) and BOD (90%) was observed biological treatment in presence of activated carbon at retention time of 72 hours. (author)

  8. Key data elements for use in cost-utility modeling of biological treatments for rheumatoid arthritis.

    Science.gov (United States)

    Ganz, Michael L; Hansen, Brian Bekker; Valencia, Xavier; Strandberg-Larsen, Martin

    2015-05-01

    Economic evaluation is becoming more common and important as new biologic therapies for rheumatoid arthritis (RA) are developed. While much has been published about how to design cost-utility models for RA to conduct these evaluations, less has been written about the sources of data populating those models. The goal is to review the literature and to provide recommendations for future data collection efforts. This study reviewed RA cost-utility models published between January 2006 and February 2014 focusing on five key sources of data (health-related quality-of-life and utility, clinical outcomes, disease progression, course of treatment, and healthcare resource use and costs). It provided recommendations for collecting the appropriate data during clinical and other studies to support modeling of biologic treatments for RA. Twenty-four publications met the selection criteria. Almost all used two steps to convert clinical outcomes data to utilities rather than more direct methods; most did not use clinical outcomes measures that captured absolute levels of disease activity and physical functioning; one-third of them, in contrast with clinical reality, assumed zero disease progression for biologic-treated patients; little more than half evaluated courses of treatment reflecting guideline-based or actual clinical care; and healthcare resource use and cost data were often incomplete. Based on these findings, it is recommended that future studies collect clinical outcomes and health-related quality-of-life data using appropriate instruments that can convert directly to utilities; collect data on actual disease progression; be designed to capture real-world courses of treatment; and collect detailed data on a wide range of healthcare resources and costs.

  9. Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments.

    Science.gov (United States)

    Balasubramanian, V; Natarajan, K; Rajeshkannan, V; Perumal, P

    2014-11-01

    Partially degraded high-density polyethylene (HDPE) was collected from plastic waste dump yard for biodegradation using fungi. Of various fungi screened, strain MF12 was found efficient in degrading HDPE by weight loss and Fourier transform infrared (FT-IR) spectrophotometric analysis. Strain MF12 was selected as efficient HDPE degraders for further studies, and their growth medium composition was optimized. Among those different media used, basal minimal medium (BMM) was suitable for the HDPE degradation by strain MF12. Strain MF12 was subjected to 28S rRNA sequence analysis and identified as Aspergillus terreus MF12. HDPE degradation was carried out using combinatorial physical and chemical treatments in conjunction to biological treatment. The high level of HDPE degradation was observed in ultraviolet (UV) and KMnO4/HCl with A. terreus MF12 treatment, i.e., FT10. The abiotic physical and chemical factors enhance the biodegradation of HDPE using A. terreus MF12.

  10. Hypo-fractionated treatment in radiotherapy: radio-biological models Tcp and NTCP

    International Nuclear Information System (INIS)

    Astudillo V, A. J.; Mitsoura, E.; Paredes G, L.; Resendiz G, G.

    2014-08-01

    At the present time the breast cancer in Mexico has the first place of incidence of the malignant neoplasia s in the women, and represents 11.34% of all the cancer cases. On the other hand, the treatments for cancer by means of ionizing radiations have been dominated under the approaches of the medical radio-oncologists which have been based on test and error by many years. The radio-biological models, as the Tcp, NTCP and dosimetric variables, for their clinical application in the conventional radiotherapy with hypo-fractionation have as purpose predicting personalized treatment plans that they present most probability of tumor control and minor probability of late reactions, becoming this way support tools in the decisions taking for the patient treatments planning of Medical Physicists and Radio-oncologists. (Author)

  11. A Systematic Review of the Cost-Effectiveness of Biologics for the Treatment of Inflammatory Bowel Diseases.

    Directory of Open Access Journals (Sweden)

    Saara Huoponen

    Full Text Available Biologics are used for the treatment of inflammatory bowel diseases, Crohn´s disease and ulcerative colitis refractory to conventional treatment. In order to allocate healthcare spending efficiently, costly biologics for inflammatory bowel diseases are an important target for cost-effectiveness analyses. The aim of this study was to systemically review all published literature on the cost-effectiveness of biologics for inflammatory bowel diseases and to evaluate the methodological quality of cost-effectiveness analyses.A literature search was performed using Medline (Ovid, Cochrane Library, and SCOPUS. All cost-utility analyses comparing biologics with conventional medical treatment, another biologic treatment, placebo, or surgery for the treatment of inflammatory bowel diseases in adults were included in this review. All costs were converted to the 2014 euro. The methodological quality of the included studies was assessed by Drummond's, Philips', and the Consolidated Health Economic Evaluation Reporting Standards checklist.Altogether, 25 studies were included in the review. Among the patients refractory to conventional medical treatment, the incremental cost-effectiveness ratio ranged from dominance to 549,335 €/Quality-Adjusted Life Year compared to the incremental cost-effectiveness ratio associated with conventional medical treatment. When comparing biologics with another biologic treatment, the incremental cost-effectiveness ratio ranged from dominance to 24,012,483 €/Quality-Adjusted Life Year. A study including both direct and indirect costs produced more favorable incremental cost-effectiveness ratios than those produced by studies including only direct costs.With a threshold of 35,000 €/Quality-Adjusted Life Year, biologics seem to be cost-effective for the induction treatment of active and severe inflammatory bowel disease. Between biologics, the cost-effectiveness remains unclear.

  12. Data collecting and treatment control system in the «Alpha-Electron» space experiment on board the International Space Station

    International Nuclear Information System (INIS)

    Galper, A M; Batischev, A G; Naumov, P P; Naumov, P Yu

    2017-01-01

    The fast multilayer scintillation detector of the new telescope-spectrometer for the ALFA-ELECTRON space experiment is in ground testing mode now. Modules of data control system for spectrometer are discussed. The structure of the main data format and functional blocks for data treatment are presented. The device will planned to install on the outer surface of the Russian Segment (RS) of the International Space Station (ISS) in 2018. (paper)

  13. Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia).

    Science.gov (United States)

    Jemli, Meryem; Karray, Fatma; Feki, Firas; Loukil, Slim; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2015-04-01

    The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR. Copyright © 2015. Published by Elsevier B.V.

  14. WE-B-304-02: Treatment Planning Evaluation and Optimization Should Be Biologically and Not Dose/volume Based

    International Nuclear Information System (INIS)

    Deasy, J.

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  15. Down-titration of biologics for the treatment of rheumatoid arthritis: a systematic literature review.

    Science.gov (United States)

    Lau, Chak Sing; Gibofsky, Allan; Damjanov, Nemanja; Lula, Sadiq; Marshall, Lisa; Jones, Heather; Emery, Paul

    2017-11-01

    Biologic therapies have improved the management of rheumatoid arthritis (RA) and the treat-to-target approach has resulted in many patients achieving remission. In the current treatment landscape, clinicians have begun considering dose reduction/tapering for their patients. Rheumatology guidelines in Asia, Europe, and the United States include down-titration of biologics but admit that the level of evidence is moderate. We conducted a systematic literature review to assess the published studies that evaluate down-titration of biologics in RA. The published literature was searched for studies that down-titrated the following biologics: abatacept, adalimumab, certolizumab, etanercept, golimumab, infliximab, rituximab, and tocilizumab. Eligible studies included randomized controlled trials (RCTs), non-RCTs, observational, and pharmacoeconomic studies. The outcomes of interest were (1) efficacy and health-related quality of life, (2) disease flares, and (3) impact on cost. Eleven full-text publications were identified; only three were RCTs. Study results suggest that dosing down may be an option in many patients who have achieved remission or low disease activity. However, some patients are likely to experience a disease flare. Across the studies, the definition of disease flare and the down-titration criteria were inconsistent, making it difficult to conclude which patients may be appropriate and when to attempt down-titration. Studies have evaluated the practice of dosing down biologic therapy in patients with RA; however, a relatively small number of RCTs have been published. Although down-titration may be an option for some patients in LDA or remission, additional RCTs are needed to provide guidance on this practice.

  16. Characteristics of microbial community functional structure of a biological coking wastewater treatment system.

    Science.gov (United States)

    Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min

    2018-01-01

    Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.

  17. A review of soft-tissue sarcomas: translation of biological advances into treatment measures

    Directory of Open Access Journals (Sweden)

    Hoang NT

    2018-05-01

    Full Text Available Ngoc T Hoang,* Luis A Acevedo,* Michael J Mann, Bhairavi Tolani Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA *These authors contributed equally to this work Abstract: Soft-tissue sarcomas are rare malignant tumors arising from connective tissues and have an overall incidence of about five per 100,000 per year. While this diverse family of malignancies comprises over 100 histological subtypes and many molecular aberrations are prevalent within specific sarcomas, very few are therapeutically targeted. Instead of utilizing molecular signatures, first-line sarcoma treatment options are still limited to traditional surgery and chemotherapy, and many of the latter remain largely ineffective and are plagued by disease resistance. Currently, the mechanism of sarcoma oncogenesis remains largely unknown, thus necessitating a better understanding of pathogenesis. Although substantial progress has not occurred with molecularly targeted therapies over the past 30 years, increased knowledge about sarcoma biology could lead to new and more effective treatment strategies to move the field forward. Here, we discuss biological advances in the core molecular determinants in some of the most common soft-tissue sarcomas – liposarcoma, angiosarcoma, leiomyosarcoma, rhabdomyosarcoma, Ewing’s sarcoma, and synovial sarcoma – with an emphasis on emerging genomic and molecular pathway targets and immunotherapeutic treatment strategies to combat this confounding disease. Keywords: sarcoma, molecular pathways, immunotherapy, genomics

  18. Amtrak Stations

    Data.gov (United States)

    Department of Homeland Security — Updated database of the Federal Railroad Administration's (FRA) Amtrak Station database. This database is a geographic data set containing Amtrak intercity railroad...

  19. Biological indicators capable of assessing thermal treatment efficiency of hydrocarbon mixture-contaminated soil.

    Science.gov (United States)

    Wang, Jiangang; Zhan, Xinhua; Zhou, Lixiang; Lin, Yusuo

    2010-08-01

    In China, there are many special sites for recycling and washing the used drums, which release a variety of C5-C40 hydrocarbon mixture into the soil around the site. The remediation of these contaminated sites by thermal treatment is adopted ubiquitously and needs to be assessed. Here we report the feasibility of biological indicators applied to assess thermal treatment efficiency in such contaminated soil. A series of biological indicators, including seed germination index (SGI), root elongation index (REI), plant growth height, biomass, carbon dioxide evolved (CDE), soil respiration inhibition (SRI) and soil enzymatic activities, were employed to monitor or assess hydrocarbon mixture removal in thermal treated soil. The results showed that residual hydrocarbon mixture content correlated strongly negatively with SGI for sesamum (Sesamum indicum L.), plant height, and biomass for ryegrass (Lolium perenne L.) in the concentration ranges of 0-3990, 0-3170 and 0-2910 mg kg(-1), respectively. In contrast, REI for sesamum was positively correlated with residual hydrocarbon mixture content from 0 to 1860 mg kg(-1). In addition, both CDE and SRI demonstrated that 600 mg kg(-1) of residual hydrocarbon mixture content caused the highest amount of soil carbon dioxide emission and inhabitation of soil respiration. The results of soil enzymes indicated that 1000 mg kg(-1) of residual hydrocarbon mixture content was the threshold value of stimulating or inhibiting the activities of phosphatase and catalase, or completely destroying the activities of dehydrogenase, invertase, and urease. In conclusion, these biological indicators can be used as a meaningful complementation for traditional chemical content measurement in evaluating the environmental risk of the contaminated sites before and after thermal treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments

    Directory of Open Access Journals (Sweden)

    Michael J. Nelson

    2017-06-01

    Full Text Available Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

  1. The effect of biological sealants and adhesive treatments on matrix metalloproteinase expression during renal injury healing.

    Directory of Open Access Journals (Sweden)

    José Miguel Lloris-Carsí

    Full Text Available Renal injuries are relatively common in cases of abdominal trauma. Adhesives and sealants can be used to repair and preserve damaged organs. Using a rat model, this study explores the activity of different matrix metalloproteinases (MMP during the healing of renal injuries treated by two biological adhesives (TachoSil and GelitaSpon and a new synthetic elastic cyanoacrylate (Adhflex.Renal traumatic injuries were experimentally induced in 90 male Wistar rats by a Stiefel Biopsy Punch in the anterior aspect of the left kidney. Animals were divided into five groups: 1, sham non-injured (n = 3; 2, non-treated standard punch injury (n = 6; 3, punch injury treated with TachoSil (n = 27; 4, punch injury treated with GelitaSpon (n = 27; and, 5, punch injury treated with Adhflex (n = 27. Wound healing was evaluated 2, 6, and 18 days after injury by determining the expression of MMPs, and the histopathological evolution of lesions.Histologically, the wound size at 6 days post-injury was larger in Adhflex-treated samples than in the other treatments, but the scarring tissue was similar at 18 days post-injury. Only the MMPs subtypes 1, 2, 8, 9, and 13 were sufficiently expressed to be quantifiable. Both time since injury and treatment type had a significant influence on MMPs expression. Two days after injury, the expression of MMP8 and MMP9 was predominant. MMP2 expression was greater 6 days after injury. The Adhflex-treated group had a significantly higher MMPs expression than the other treatment groups at all healing stages.All three sealant treatments induced almost similar expression of MMPs than untreated animals indicating a physiological healing process. Given that all renal trauma injuries must be considered emergencies, both biological and synthetic adhesives, such as Adhflex, should be considered as a treatment options.

  2. Soybean seed treatment with nickel improves biological nitrogen fixation and urease activity

    Directory of Open Access Journals (Sweden)

    José eLavres Junior

    2016-05-01

    Full Text Available Nickel (Ni is an essential micronutrient required for plants’ metabolism due to its role as a structural component of urease and hydrogenase, which in turn perform nitrogen (N metabolism in many legume species. Seed treatment with cobalt, molybdenum and Bradyrhizobium strains has been widely practiced to improve crops. Additionally, seed treatment together with Ni fertilization of soybean might improve the efficiency of biological nitrogen fixation (BNF, boosting grain dry matter yield and N content. The objective of this study was to evaluate the effect of soybean seed treatment with Ni rates (0, 45, 90,135, 180, 360 and 540 mg kg-1 on biological nitrogen fixation (BNF, directly by the 15N natural abundance method (δ15N‰ and by measurement of urease [E.C. 3.5.1.5] activity, as well as indirectly by nitrogenase (N-ase activity [E.C. 1.18.6.1]. Soybean plants (cultivar BMX Potência RR were grown in a sandy soil up to the R7 developmental stage (grain maturity, at which point the nutrient content in the leaves, chlorophyll content, urease and N-ase activities, Ni and N content in the grains, nodulation (at R1 - flowering stage, as well as the contribution of biological nitrogen fixation (δ15N ‰, were evaluated. The proportion of N derived from N2 fixation varied from 77 to 99% using the natural 15N abundance method and non-nodulating Panicum miliaceum and Phalaris canariensis as references. A Ni rate of 45 mg kg-1 increased BNF by 12% compared to the control. The increased N uptake in the grains was closely correlated with chlorophyll content in the leaves, urease and N-ase activities, as well as with nodulation. Grain dry matter yield and aerial part dry matter yield increased, respectively, by 84% and 51% in relation to the control plants at 45 mg kg-1 Ni via seed treatment. Despite, Ni concentration was increased with Ni-seed treatment, Ni rates higher than 135 mg kg-1 promoted negative effects on plant growth and yield. In these

  3. Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis and Treatment With a Biologic: A Case Report.

    Science.gov (United States)

    Chong, Ian; Chao, Alice

    2017-01-01

    One of the most dangerous dermatologic emergencies is Stevens-Johnson Syndrome (SJS)/toxic epidermal necrolysis (TEN). Although a rare disease, it can often lead to significant mortality. In this case report, we present a 77-year-old man who developed a sloughing rash that was secondary to a nonsteroidal anti-inflammatory drug. In addition to the recommended supportive care, the patient was treated with etanercept, a new, less commonly used intervention. We provide a brief review of SJS/TEN. Nonsteroidal anti-inflammatory drugs are a rare cause of SJS/TEN, and additionally, the use of biologics is a novel treatment modality for SJS/TEN.

  4. Biological Treatments: New Weapons in the Management of Monogenic Autoinflammatory Disorders

    Directory of Open Access Journals (Sweden)

    Antonio Vitale

    2013-01-01

    Full Text Available Treatment of monogenic autoinflammatory disorders, an expanding group of hereditary diseases characterized by apparently unprovoked recurrent episodes of inflammation, without high-titre autoantibodies or antigen-specific T cells, has been revolutionized by the discovery that several of these conditions are caused by mutations in proteins involved in the mechanisms of innate immune response, including components of the inflammasome, cytokine receptors, receptor antagonists, and oversecretion of a network of proinflammatory molecules. Aim of this review is to synthesize the current experience and the most recent evidences about the therapeutic approach with biologic drugs in pediatric and adult patients with monogenic autoinflammatory disorders.

  5. Mechanical-biological waste treatment and the associated occupational hygiene in Finland

    International Nuclear Information System (INIS)

    Tolvanen, Outi K.; Haenninen, Kari I.

    2006-01-01

    A special feature of waste management in Finland has been the emphasis on the source separation of kitchen biowaste (catering waste); more than two-thirds of the Finnish population participates in this separation. Source-separated biowaste is usually treated by composting. The biowaste of about 5% of the population is handled by mechanical-biological treatment. A waste treatment plant at Mustasaari is the only plant in Finland using digestion for kitchen biowaste. For the protection of their employees, the plant owners commissioned a study on environmental factors and occupational hygiene in the plant area. During 1998-2000 the concentrations of dust, microbes and endotoxins and noise levels were investigated to identify possible problems at the plant. Three different work areas were investigated: the pre-processing and crushing hall, the bioreactor hall and the drying hall. Employees were asked about work-related health problems. Some problems with occupational hygiene were identified: concentrations of microbes and endotoxins may increase to levels harmful to health during waste crushing and in the bioreactor hall. Because employees complained of symptoms such as dry cough and rash or itching appearing once or twice a month, it is advisable to use respirator masks (class P3) during dusty working phases. The noise level in the drying hall exceeded the Finnish threshold value of 85 dBA. Qualitatively harmful factors for the health of employees are similar in all closed waste treatment plants in Finland. Quantitatively, however, the situation at the Mustasaari treatment plant is better than at some Finnish dry waste treatment plants. Therefore is reasonable to conclude that mechanical sorting, which produces a dry waste fraction for combustion and a biowaste fraction for anaerobic treatment, is in terms of occupational hygiene better for employees than combined aerobic treatment and dry waste treatment

  6. Development of a biocidal treatment regime to inhibit biological growths on cultural heritage: BIODAM

    Science.gov (United States)

    Young, M. E.; Alakomi, H.-L.; Fortune, I.; Gorbushina, A. A.; Krumbein, W. E.; Maxwell, I.; McCullagh, C.; Robertson, P.; Saarela, M.; Valero, J.; Vendrell, M.

    2008-12-01

    Existing chemical treatments to prevent biological damage to monuments often involve considerable amounts of potentially dangerous and even poisonous biocides. The scientific approach described in this paper aims at a drastic reduction in the concentration of biocide applications by a polyphasic approach of biocides combined with cell permeabilisers, polysaccharide and pigment inhibitors and a photodynamic treatment. A variety of potential agents were screened to determine the most effective combination. Promising compounds were tested under laboratory conditions with cultures of rock deteriorating bacteria, algae, cyanobacteria and fungi. A subsequent field trial involved two sandstone types with natural biofilms. These were treated with multiple combinations of chemicals and exposed to three different climatic conditions. Although treatments proved successful in the laboratory, field trials were inconclusive and further testing will be required to determine the most effective treatment regime. While the most effective combination of chemicals and their application methodology is still being optimised, results to date indicate that this is a promising and effective treatment for the control of a wide variety of potentially damaging organisms colonising stone substrates.

  7. Performance of Submerged Aerated Biofilters for Wastewater Treatment and Excess Biological Sludge Production

    Directory of Open Access Journals (Sweden)

    Mohammad A. Baghapour

    2007-01-01

    Full Text Available Minimizing sludge production in the treatment facility is a reasonable measure to reduce waste in sewage treatment, especially as regards excess biological sludge. In this regard, submerged aerated filters' (SAFs have recently found increasing applications in treatment facilities. Thanks to their treatment mechanism, they have greatly contributed to reduction of waste production and, thereby, to reduced treatment costs. Biomass growths of both attached and suspended types take place in these filters. However, little attention has been paid to suspended sludge production and to its relationship with the physical properties of the filter. The design and application criterion for these filters is the organic loadings on unit of area or unit of volume of the media used in these filters. In this study, four filters with different physical properties and different specific areas were loaded with synthetic wastewater made of low-fat dry milk powder for five different hydraulic retention times to evaluate excess sludge production rates in submerged aerated filters. It was shown that increasing specific area increased SCOD removal efficiency up to a maximum level in saturated growths after which point the removal efficiency remained unchanging or decreased. The results also revealed that decreased hydraulic retention times increased sludge production rates in all the study columns and that media with higher porosity levels produced less excess sludge despite lower pollutant removal efficiency.

  8. Results of the F/H Effluent Treatment Facility biological monitoring program, July 1987--July 1991

    International Nuclear Information System (INIS)

    Specht, W.L.

    1992-07-01

    As required by the South Carolina Department of Health and Environmental Control (SCDHEC) under NPDES Permit SCO000175, biological monitoring was conducted in Upper Three Runs Creek to determine if discharges from the F/H Effluent Treatment Facility have adversely impacted the biotic community of the receiving stream. Data included in this summary report encompass July 1987 through July 1991. As originally designed, the F/H ETF was not expected to remove all of the mercury from the wastewater; therefore, SCDHEC specified that studies be conducted to determine if mercury was bioaccumulating in aquatic biota. Subsequent to approval of the biological monitoring program, an ion exchange column was added to the F/H ETF specifically to remove mercury, which eliminated mercury from the F/H ETF effluent. The results of the biological monitoring program indicate that at the present rate of discharge, the F/H ETF effluent has not adversely affected the receiving stream with respect to any of the parameters that were measured. The effluent is not toxic at the in-stream waste concentration and there is no evidence of mercury bioaccumulation

  9. Investigations on mechanical biological treatment of waste in South America: Towards more sustainable MSW management strategies

    International Nuclear Information System (INIS)

    Bezama, Alberto; Aguayo, Pablo; Konrad, Odorico; Navia, Rodrigo; Lorber, Karl E.

    2007-01-01

    This work presents an analysis on the suitability of mechanical biological treatment of municipal solid waste in South America, based on two previous experimental investigations carried out in two different countries. The first experiment was performed for determining the mass and volume reduction of MSW in the province of Concepcion (Chile). The implemented bench-scale process consisted of a manual classification and separation stage, followed by an in-vessel biological degradation process. The second experiment consisted of a full-scale experiment performed in the city of Estrela (Brazil), where the existing municipal waste management facility was adapted to enhance the materials sorting and separation. Expressed in wet weight composition, 85.5% of the material input in the first experiment was separated for biological degradation. After 27 days of processing, 60% of the initial mass was reduced through degradation and water evaporation. The final fraction destined for landfilling equals 59% of the total input mass, corresponding to about 50% of the initial volume. In the second experiment, the fraction destined to landfill reaches 46.6% of the total input waste mass, whilst also significantly reducing the total volume to be disposed. These results, and the possible recovery of material streams suitable for recycling or for preparing solid recovered fuels, are the main advantages of the studied process

  10. The World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for the Biological Treatment of Substance Use and Related Disorders. Part 2: Opioid dependence

    NARCIS (Netherlands)

    Soyka, Michael; Kranzler, Henry R.; van den Brink, Wim; Krystal, John; Möller, Hans-Jürgen; Kasper, Siegfried

    2011-01-01

    Objectives. To develop evidence-based practice guidelines for the pharmacological treatment of opioid abuse and dependence. Methods. An international task force of the World Federation of Societies of Biological Psychiatry (WFSBP) developed these practice guidelines after a systematic review of the

  11. Biology and potential clinical implications of tissue inhibitor of metalloproteinases-1 in colorectal cancer treatment

    DEFF Research Database (Denmark)

    Sørensen, Nanna Møller; Sørensen, irene Vejgaard; Würtz, Sidse Ørnbjerg

    2008-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in the industrialized world. About half of "curatively" resected patients develop recurrent disease within the next 3-5 years despite the lack of clinical, histological and biochemical evidence of remaining overt disease...... after resection of the primary tumour. Availability of validated biological markers for early detection, selection for adjuvant therapy, prediction of treatment efficacy and monitoring of treatment efficacy would most probably increase survival. Tissue inhibitor of metalloproteinases-1 (TIMP-1) may...... patients, suggesting that TIMP-1 could have a tumour-promoting function. Furthermore, measurement of plasma TIMP-1 has been shown to be useful for disease detection, with a high sensitivity and high specificity for early-stage colon cancer. This review describes some basic information on the current...

  12. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  13. Current technologies for biological treatment of textile wastewater--a review.

    Science.gov (United States)

    Sarayu, K; Sandhya, S

    2012-06-01

    The release of colored wastewater represents a serious environmental problem and public health concern. Color removal from textile wastewater has become a big challenge over the last decades, and up to now, there is no single and economically attractive treatment method that can effectively decolorize the wastewater. Effluents from textile manufacturing, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries, chemicals like acids, waxes, fats, salts, binders, thickeners, urea, surfactants, reducing agents, etc. The various chemicals such as biocides and stain repellents used for brightening, sequestering, anticreasing, sizing, softening, and wetting of the yarn or fabric are also present in wastewater. Therefore, the textile wastewater needs environmental friendly, effective treatment process. This paper provides a critical review on the current technology available for decolorization and degradation of textile wastewater and also suggests effective and economically attractive alternatives.

  14. Biological and Irradiation Treatment of Mix Industrial Wastewater in Flood Mitigation Pond at Prai Industrial Zone

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Jamaliah Sharif; Selambakkanu, S.; Ming, T.M.; Natasha Isnin; Hasnul Nizam Osman; Khasmidatul Akma Mohd Khairul Azmi

    2014-01-01

    In this work, activated sludge process and E-Beam was used to treat mixed industrial waste water from mitigation pond A. The objectives of this study to analyze the effect of mix liquor volatile suspended solid (MLVSS) concentration on the properties of wastewater and duration of time taken to achieve steady stage condition for biological treatment. Besides that, effect of electron beam energy on the characteristic of wastewater after irradiation with electron beam machine EPS 3000 was studied as well. The result shows removal percentage of COD, suspended solid and color was linearly proportional with MLVSS. Maximum reduction values recorded for COD, suspended solid and color removal was 69.4, 73.0 and 43.7 % respectively with 3500 mg/l MLVSS at 48 h HRT. In irradiation treatment, significant reduction of COD was obtained with the increase of electron beam energy but the results for suspended solid and color was not favorable. (author)

  15. Variations in criteria regulating treatment with reimbursed biologic DMARDs across European countries. Are differences related to country's wealth?

    DEFF Research Database (Denmark)

    Putrik, Polina; Ramiro, Sofia; Kvien, Tore K

    2014-01-01

    To explore criteria regulating treatment with reimbursed biologic disease-modifying antirheumatic drugs (bDMARDs) in patients with rheumatoid arthritis (RA) across Europe and to relate criteria to indicators of national socioeconomic welfare.......To explore criteria regulating treatment with reimbursed biologic disease-modifying antirheumatic drugs (bDMARDs) in patients with rheumatoid arthritis (RA) across Europe and to relate criteria to indicators of national socioeconomic welfare....

  16. Molecular biological methods (DGGE) as a tool to investigate nitrification inhibition in wastewater treatment.

    Science.gov (United States)

    Kreuzinger, N; Farnleitner, A; Wandl, G; Hornek, R; Mach, R

    2003-01-01

    Incomplete nitrification at an activated sludge plant for biological pre-treatment of rendering plant effluents led to a detailed investigation on the origin and solution of this problem. Preliminary studies revealed that an inhibition of ammonia oxidising microorganisms (AOM) by process waters of the rendering plant was responsible for the situation. We were able to show a correlation between the existence of specific AOM and nitrification capacity expressed as oxygen uptake rate for maximal nitrification (OURNmax). Only Nitrosospira sp. was found in the activated sludge of the rendering plant and another industrial wastewater treatment plant with problems in nitrification, while reference plants without nitrification problems showed Nitrosomonas spp. as the predominant ammonia oxidising bacteria. By accompanying engineering investigations and experiments (cross-feeding experiments, operation of a two-stage laboratory plant) with molecular biological methods (DGGE--Denaturing Gradient Gel Electrophoresis) we were able to elaborate an applicable solution for the rendering plant. Laboratory experiments with a two-stage process layout finally provided complete nitrification overcoming the inhibiting nature of process waters from the rendering plant. DGGE analysis of the second stage activated sludge from the laboratory plant showed a shift in population structure from Nitrosospira sp. towards Nitrosomonas spp. simultaneous to the increase of nitrification capacity. Nitrification capacities comparable to full-scale municipal wastewater treatment plants could be maintained for more than two months. As the design of wastewater treatment plants for nitrification is linked to the growth characteristics of Nitrosomonas spp., established criteria can be applied for the redesign of the full-scale plant.

  17. The cost-effectiveness of biologics for the treatment of rheumatoid arthritis: a systematic review.

    Directory of Open Access Journals (Sweden)

    Jaana T Joensuu

    Full Text Available Economic evaluations provide information to aid the optimal utilization of limited healthcare resources. Costs of biologics for Rheumatoid arthritis (RA are remarkably high, which makes these agents an important target for economic evaluations. This systematic review aims to identify existing studies examining the cost-effectiveness of biologics for RA, assess their quality and report their results systematically.A literature search covering Medline, Scopus, Cochrane library, ACP Journal club and Web of Science was performed in March 2013. The cost-utility analyses (CUAs of one or more available biological drugs for the treatment of RA in adults were included. Two independent investigators systematically collected information and assessed the quality of the studies. To enable the comparison of the results, all costs were converted to 2013 euro.Of the 4890 references found in the literature search, 41 CUAs were included in the current systematic review. While considering only direct costs, the incremental cost-effectiveness ratio (ICER of the tumor necrosis factor inhibitors (TNFi ranged from 39,000 to 1,273,000 €/quality adjusted life year (QALY gained in comparison to conventional disease-modifying antirheumatic drugs (cDMARDs in cDMARD naïve patients. Among patients with an insufficient response to cDMARDs, biologics were associated with ICERs ranging from 12,000 to 708,000 €/QALY. Rituximab was found to be the most cost-effective alternative compared to other biologics among the patients with an insufficient response to TNFi.When 35,000 €/QALY is considered as a threshold for the ICER, TNFis do not seem to be cost-effective among cDMARD naïve patients and patients with an insufficient response to cDMARDs. With thresholds of 50,000 to 100,000 €/QALY biologics might be cost-effective among patients with an inadequate response to cDMARDs. Standardization of multiattribute utility instruments and a validated standard conversion method

  18. Final Bioventing Pilot Test Work Plan for Base Exchange Service Station Underground Storage Tank Area, Vandenberg Air Force Base, California. Part I

    National Research Council Canada - National Science Library

    1992-01-01

    This pilot test work plan presents the scope of an in situ enhanced biological degradation, or "bioventing", pilot test for treatment of gasoline- contaminated soils at the Base Exchange Service Station (BXSS...

  19. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    Science.gov (United States)

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Elucidation of biotransformation of diclofenac and 4'hydroxydiclofenac during biological wastewater treatment.

    Science.gov (United States)

    Bouju, Helene; Nastold, Peter; Beck, Birgit; Hollender, Juliane; Corvini, Philippe F-X; Wintgens, Thomas

    2016-01-15

    This study aimed at gaining knowledge on the degradation pathway during biological treatment of wastewater of diclofenac and 4'-hydroxydiclofenac, its main human metabolite. For that purpose, an aerobic MBR was acclimatised to diclofenac, and the MBR biomass subsequently incubated with (14)C-diclofenac or (14)C-4'hydroxydiclofenac over 25 days. It was demonstrated that diclofenac degradation was much slower and limited than that of 4'-hydroxydiclofenac. Indeed, after 18 days of batch incubation, diclofenac was removed up to 40%, this rate remained stable till the end of the experiment, while 4'-hydroxydiclofenac was completely degraded within nine days. The analyses of supernatant samples have shown that diclofenac degradation led to four transformation products, more polar than the parent compound, one of them being 4'-hydroxydiclofenac. The degradation of 4'-hydroxydiclofenac led to the formation of the same metabolites than those detected during diclofenac degradation. With these results, the hydroxylation of diclofenac to 4'-hydroxydiclofenac was identified as one major bottleneck in diclofenac degradation during biological treatment of wastewater. Copyright © 2015. Published by Elsevier B.V.

  1. Biological prevention and/or treatment strategies for radiation myelopathy. Discussion of a new perspective

    International Nuclear Information System (INIS)

    Nieder, C.; Ataman, F.; Price, R.E.; Kian Ang, K.

    1999-01-01

    Background: Radiosensitivity of the spinal cord makes both curative first-line treatment of numerous malignancies and re-irradiation of recurrent or second tumors more difficult. This review discusses recent advances in basic research that alter the view on the pathogenesis of radiation myelopathy, possibly offering strategies for prevention and/or therapy. Results: Available data of developmental neurobiology and preclinical studies of demyelinating diseases revealed interesting insights into oligodendrocyte development, intercellular signaling pathways, and myelination processes. Current findings suggest that administration of cytokines could increase proliferation of oligodendrocyte progenitor cells, enhance their differentiation, upregulate synthesis of myelin constituents, and promote myelin regeneration in the adult central nervous system. Other compounds might also be able to modulate progression of pathogenic processes that eventually lead to radiation myelopathy. This offers several possible biological prevention and/or treatment strategies, which currently are being investigated in animal studies. Conclusions: Technical options as well as optimization of fractionation parameters should be given priority in the attempt to reduce iatrogenic neurotoxicity. However, rational biological strategies could offer a new perspective for many patients. (orig.) [de

  2. Biological Treatments in Behçet’s Disease: Beyond Anti-TNF Therapy

    Directory of Open Access Journals (Sweden)

    Francesco Caso

    2014-01-01

    Full Text Available Behçet’s disease (BD is universally recognized as a multisystemic inflammatory disease of unknown etiology with chronic course and unpredictable exacerbations: its clinical spectrum varies from pure vasculitic manifestations with thrombotic complications to protean inflammatory involvement of multiple organs and tissues. Treatment has been revolutionized by the progressed knowledge in the pathogenetic mechanisms of BD, involving dysfunction and oversecretion of multiple proinflammatory molecules, chiefly tumor necrosis factor- (TNF- α, interleukin- (IL- 1β, and IL-6. However, although biological treatment with anti-TNF-α agents has been largely demonstrated to be effective in BD, not all patients are definite responders, and this beneficial response might drop off over time. Therefore, additional therapies for a subset of refractory patients with BD are inevitably needed. Different agents targeting various cytokines and their receptors or cell surface molecules have been studied: the IL-1 receptor has been targeted by anakinra, the IL-1 by canakinumab and gevokizumab, the IL-6 receptor by tocilizumab, the IL12/23 receptor by ustekinumab, and the B-lymphocyte antigen CD-20 by rituximab. The aim of this review is to summarize all current experiences and the most recent evidence regarding these novel approaches with biological drugs other than TNF-α blockers in BD, providing a valuable addition to the actually available therapeutic armamentarium.

  3. Biological treatments in Behçet's disease: beyond anti-TNF therapy.

    Science.gov (United States)

    Caso, Francesco; Costa, Luisa; Rigante, Donato; Lucherini, Orso Maria; Caso, Paolo; Bascherini, Vittoria; Frediani, Bruno; Cimaz, Rolando; Marrani, Edoardo; Nieves-Martín, Laura; Atteno, Mariangela; Raffaele, Carmela G L; Tarantino, Giusyda; Galeazzi, Mauro; Punzi, Leonardo; Cantarini, Luca

    2014-01-01

    Behçet's disease (BD) is universally recognized as a multisystemic inflammatory disease of unknown etiology with chronic course and unpredictable exacerbations: its clinical spectrum varies from pure vasculitic manifestations with thrombotic complications to protean inflammatory involvement of multiple organs and tissues. Treatment has been revolutionized by the progressed knowledge in the pathogenetic mechanisms of BD, involving dysfunction and oversecretion of multiple proinflammatory molecules, chiefly tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, and IL-6. However, although biological treatment with anti-TNF-α agents has been largely demonstrated to be effective in BD, not all patients are definite responders, and this beneficial response might drop off over time. Therefore, additional therapies for a subset of refractory patients with BD are inevitably needed. Different agents targeting various cytokines and their receptors or cell surface molecules have been studied: the IL-1 receptor has been targeted by anakinra, the IL-1 by canakinumab and gevokizumab, the IL-6 receptor by tocilizumab, the IL12/23 receptor by ustekinumab, and the B-lymphocyte antigen CD-20 by rituximab. The aim of this review is to summarize all current experiences and the most recent evidence regarding these novel approaches with biological drugs other than TNF-α blockers in BD, providing a valuable addition to the actually available therapeutic armamentarium.

  4. The assessment of the coke wastewater treatment efficacy in rotating biological contractor.

    Science.gov (United States)

    Cema, G; Żabczyński, S; Ziembińska-Buczyńska, A

    2016-01-01

    Coke wastewater is known to be relatively difficult for biological treatment. Nonetheless, biofilm-based systems seem to be promising tool for such treatment. That is why a rotating biological contactor (RBC) system focused on the Anammox process was used in this study. The experiment was divided into two parts with synthetic and then real wastewater. It was proven that it is possible to treat coke wastewater with RBC but such a procedure requires a very long start-up period for the nitritation (190 days), as well as for the Anammox process, where stable nitrogen removal over 70% was achieved after 400 days of experiment. Interestingly, it was possible at a relatively low (20.2 ± 2.2 °C) temperature. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based monitoring of the bacterial community showed that its biodiversity decreased when the real wastewater was treated and it was composed mainly of GC-rich genotypes, probably because of the modeling influence of this wastewater and the genotypes specialization.

  5. Frequency of the use of biological treatment of patients with rheumatoid arthritis and ankylosing spondylitis in Lower Silesia

    Directory of Open Access Journals (Sweden)

    Wojciech Tański

    2016-09-01

    Full Text Available Background: Rheumatoid arthritis (RA and ankylosing spondylitis (AS are chronic connective tissue diseases. Inadequate treatment of RA and AS results in health failure, disability and premature death. In recent years, development of immunology and genetic engineering techniques has started a new generation of drugs in the treatment of RA and AS, called biologic response modifiers or biologics. It is a very effective therapy of serious RA and AS. In many cases, they represent the only way to improve the quality of life, slowing or even arresting the development of these diseases. According to national statistics, the percentage of patients with rheumatic diseases treated with biologic treatment in Poland is less than 1.5%, and it is much lower than in Western European countries (20%.Purpose: The aim of the study was to evaluate the use of biological treatment in Lower Silesia in patients with RA and AS in the years 2006-2015, based on data obtained from the Lower Silesian Branch of the Polish National Health Fund.Results and conclusions: In the last 10 years the frequency of biological treatment of RA or AS in Lower Silesia was estimated as 2.06% of patients (in 2011 to 6.03% of patients (during the first 8 months of 2015. Biological treatment is more often used in Lower Silesia in comparison to national statistics and ranks at a similar level as in other countries of Central and Eastern Europe.

  6. Clinical significance of cumulative biological effective dose and overall treatment time in the treatment of carcinoma cervix

    Directory of Open Access Journals (Sweden)

    Mandal Abhijit

    2007-01-01

    Full Text Available The purpose of this retrospective study is to report the radiotherapy treatment response of, and complications in, patients with cervical cancer on the basis of cumulative biologic effective dose (BED and overall treatment time (OTT. Sixty-four (stage II - 35/64; stage III - 29/64 patients of cervical cancer were treated with combination of external beam radiotherapy (EBRT and low dose rate intracavitary brachytherapy (ICBT. The cumulative BED was calculated at Point A (BED 10 ; and bladder, rectal reference points (BED 2.5 using the linear-quadratic BED equations. The local control (LC rate and 5-year disease-free survival (DFS rate in patients of stage II were comparable for BED 10 < 84.5 and BED 10 > 84.5 but were much higher for BED 10 > 84.5 than BED 10 < 84.5 ( P < 0.01 in stage III patients. In the stage II patients, The LC rate and 5-year DFS rate were comparable for OTT < 50 days and for OTT> 50 days but were much higher in stage III patients with OTT < 50 than OTT> 50 days ( P < 0.001. It was also observed that patients who received BED 2.5 < 105 had lesser rectal ( P < 0.001 and bladder complications than BED 2.5 > 105. Higher rectal complication-free survival (CFS R rate, bladder complication-free survival (CFS B rate and all-type late complication-free survival rate were observed in patients who received BED 2.5 < 105 than BED 2.5 > 105. A balanced, optimal and justified radiotherapy treatment schedule to deliver higher BED 10 (>84.5 and lower BED 2.5 (< 105 in lesser OTT (< 50 days is essential in carcinoma cervix to expect a better treatment outcome in all respects.

  7. On the possibility of using biological toxicity tests to monitor the work of wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Zorić Jelena

    2008-01-01

    Full Text Available The aim of this study was to ascertain the possibility of using biological toxicity tests to monitor influent and effluent wastewaters of wastewater treatment plants. The information obtained through these tests is used to prevent toxic pollutants from entering wastewater treatment plants and discharge of toxic pollutants into the recipient. Samples of wastewaters from the wastewater treatment plants of Kragujevac and Gornji Milanovac, as well as from the Lepenica and Despotovica Rivers immediately before and after the influx of wastewaters from the plants, were collected between October 2004 and June 2005. Used as the test organism in these tests was the zebrafish Brachydanio rerio Hamilton - Buchanon (Cyprinidae. The acute toxicity test of 96/h duration showed that the tested samples had a slight acutely toxic effect on B. rerio, except for the sample of influent wastewater into the Cvetojevac wastewater treatment plant, which had moderately acute toxicity, indicating that such water should be prevented from entering the system in order to eliminate its detrimental effect on the purification process.

  8. Characterization and aerobic biological treatment of msw: a case study of hyderabad city

    International Nuclear Information System (INIS)

    Korai, M.S.; Mahar, R.B.

    2014-01-01

    This study was conducted to assess the MSW (Municipal Solid Waste) generated in Hyderabad city for its suitability to make compost product through AB (Aerobic Biological) treatment. Assessment of MSW regarding its generation rate, quantification and characterization decides its suitability for composting process. Three AB treatment reactors R1 (natural air circulation and manually mixed reactor), R2 (compressed air circulation and manually mixed reactor) and R3 (compressed air circulation and mechanically mixed reactor) were designed and fabricated. AB treatment of the segregated food and yard waste reveals that there is no any significant change occurs in the moisture content of the compost product in all the reactors but, significant loss of VS (Volatile Solids) and gain of ash content was observed for reactor R2. Thus, the reactor R2 is the most efficient reactor in comparison to other reactors. Moreover, the mechanical mixing in AB treatment does not significantly increase VS loss. Further the reactor R1 does not consumes electricity and thus can be employed as the solution for converting segregated food and yard waste from MSW into a compost product. (author)

  9. Biologically-equivalent dose and long-term survival time in radiation treatments

    International Nuclear Information System (INIS)

    Zaider, Marco; Hanin, Leonid

    2007-01-01

    Within the linear-quadratic model the biologically-effective dose (BED)-taken to represent treatments with an equal tumor control probability (TCP)-is commonly (and plausibly) calculated according to BED(D) = -log[S(D)]/α. We ask whether in the presence of cellular proliferation this claim is justified and examine, as a related question, the extent to which BED approximates an isoeffective dose (IED) defined, more sensibly, in terms of an equal long-term survival probability, rather than TCP. We derive, under the assumption that cellular birth and death rates are time homogeneous, exact equations for the isoeffective dose, IED. As well, we give a rigorous definition of effective long-term survival time, T eff . By using several sets of radiobiological parameters, we illustrate potential differences between BED and IED on the one hand and, on the other, between T eff calculated as suggested here or by an earlier recipe. In summary: (a) the equations currently in use for calculating the effective treatment time may underestimate the isoeffective dose and should be avoided. The same is the case for the tumor control probability (TCP), only more so; (b) for permanent implants BED may be a poor substitute for IED; (c) for a fractionated treatment schedule, interpreting the observed probability of cure in terms of a TCP formalism that refers to the end of the treatment (rather than T eff ) may result in a miscalculation (underestimation) of the initial number of clonogens

  10. Biological treatment of soils contaminated with hydrophobic organics using slurry and solid phase techniques

    International Nuclear Information System (INIS)

    Cassidy, D.P.; Irvine, R.L.

    1995-01-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurry is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bioslurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay load contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the ate and extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies

  11. Micropollutant removal during biological wastewater treatment and a subsequent ozonation step

    Energy Technology Data Exchange (ETDEWEB)

    Schaar, Heidemarie, E-mail: hschaar@iwag.tuwien.ac.a [Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna (Austria); Clara, Manfred; Gans, Oliver [Umweltbundesamt, Spittelauer Lande 5, 1090 Vienna (Austria); Kreuzinger, Norbert [Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna (Austria)

    2010-05-15

    The design criteria for wastewater treatment plants (WWTP) and the sludge retention time, respectively, have a significant impact on micropollutant removal. The upgrade of an Austrian municipal WWTP to nitrogen removal (best available technology, BAT) resulted in increased elimination of most of the analyzed micropollutants. Substances, such as bisphenol-A, 17alpha-ethinylestradiol and the antibiotics erythromycin and roxithromycin were only removed after the upgrade of the WWTP. Nevertheless, the BAT was not sufficient to completely eliminate these compounds. Thus, a pilot scale ozonation plant was installed for additional treatment of the effluent. The application of 0.6 g O{sub 3} g DOC{sup -1} increased the removal of most of the micropollutants, especially for compounds that were not degraded in the previous biological process, as for example carbamazepine and diclofenac. These results indicated that the ozonation of WWTP effluent is a promising technology to further decrease emissions of micropollutants from the treatment process. - SRT is an important criterion for micropollutant removal in wastewater treatment and the application of ozone is suitable for further removal of micropollutants.

  12. Characterization and Aerobic Biological Treatment of MSW: A Case Study of Hyderabad City

    Directory of Open Access Journals (Sweden)

    Muhammad Safar Korai

    2014-07-01

    Full Text Available This study was conducted to assess the MSW (Municipal Solid Waste generated in Hyderabad city for its suitability to make compost product through AB (Aerobic Biological treatment. Assessment of MSW regarding its generation rate, quantification and characterization decides its suitability for composting process. Three AB treatment reactors R1 (natural air circulation and manually mixed reactor, R2 (compressed air circulation and manually mixed reactor and R3 (compressed air circulation and mechanically mixed reactor were designed and fabricated. AB treatment of the segregated food and yard waste reveals that there is no any significant change occurs in the moisture content of the compost product in all the reactors but, significant loss of VS (Volatile Solids and gain of ash content was observed for reactor R2. Thus, the reactor R2 is the most efficient reactor in comparison to other reactors. Moreover, the mechanical mixing in AB treatment does not significantly increase VS loss. Further the reactor R1 does not consumes electricity and thus can be employed as the solution for converting segregated food and yard waste from MSW into a compost product

  13. Micropollutant removal during biological wastewater treatment and a subsequent ozonation step

    International Nuclear Information System (INIS)

    Schaar, Heidemarie; Clara, Manfred; Gans, Oliver; Kreuzinger, Norbert

    2010-01-01

    The design criteria for wastewater treatment plants (WWTP) and the sludge retention time, respectively, have a significant impact on micropollutant removal. The upgrade of an Austrian municipal WWTP to nitrogen removal (best available technology, BAT) resulted in increased elimination of most of the analyzed micropollutants. Substances, such as bisphenol-A, 17α-ethinylestradiol and the antibiotics erythromycin and roxithromycin were only removed after the upgrade of the WWTP. Nevertheless, the BAT was not sufficient to completely eliminate these compounds. Thus, a pilot scale ozonation plant was installed for additional treatment of the effluent. The application of 0.6 g O 3 g DOC -1 increased the removal of most of the micropollutants, especially for compounds that were not degraded in the previous biological process, as for example carbamazepine and diclofenac. These results indicated that the ozonation of WWTP effluent is a promising technology to further decrease emissions of micropollutants from the treatment process. - SRT is an important criterion for micropollutant removal in wastewater treatment and the application of ozone is suitable for further removal of micropollutants.

  14. Comparing Effects of Biologic Agents in Treating Patients with Rheumatoid Arthritis: A Multiple Treatment Comparison Regression Analysis.

    Directory of Open Access Journals (Sweden)

    Ingunn Fride Tvete

    Full Text Available Rheumatoid arthritis patients have been treated with disease modifying anti-rheumatic drugs (DMARDs and the newer biologic drugs. We sought to compare and rank the biologics with respect to efficacy. We performed a literature search identifying 54 publications encompassing 9 biologics. We conducted a multiple treatment comparison regression analysis letting the number experiencing a 50% improvement on the ACR score be dependent upon dose level and disease duration for assessing the comparable relative effect between biologics and placebo or DMARD. The analysis embraced all treatment and comparator arms over all publications. Hence, all measured effects of any biologic agent contributed to the comparison of all biologic agents relative to each other either given alone or combined with DMARD. We found the drug effect to be dependent on dose level, but not on disease duration, and the impact of a high versus low dose level was the same for all drugs (higher doses indicated a higher frequency of ACR50 scores. The ranking of the drugs when given without DMARD was certolizumab (ranked highest, etanercept, tocilizumab/ abatacept and adalimumab. The ranking of the drugs when given with DMARD was certolizumab (ranked highest, tocilizumab, anakinra/rituximab, golimumab/ infliximab/ abatacept, adalimumab/ etanercept [corrected]. Still, all drugs were effective. All biologic agents were effective compared to placebo, with certolizumab the most effective and adalimumab (without DMARD treatment and adalimumab/ etanercept (combined with DMARD treatment the least effective. The drugs were in general more effective, except for etanercept, when given together with DMARDs.

  15. Elucidation of biotransformation of diclofenac and 4′hydroxydiclofenac during biological wastewater treatment

    International Nuclear Information System (INIS)

    Bouju, Helene; Nastold, Peter; Beck, Birgit; Hollender, Juliane; Corvini, Philippe F.-X.; Wintgens, Thomas

    2016-01-01

    Highlights: • The presence of DF specific degraders in activated sludge was confirmed. • The hydroxylation of DF to 4′OHDF is a bottleneck in diclofenac biodegradation. • Two biotransformation end products of DF and 4'OHDF were identified. • In wastewater treatment plants 4′-OHDF can be of both human and microbial origin. • A tentative biotransformation pathway for DF and 4′OHDF was proposed. - Abstract: This study aimed at gaining knowledge on the degradation pathway during biological treatment of wastewater of diclofenac and 4′-hydroxydiclofenac, its main human metabolite. For that purpose, an aerobic MBR was acclimatised to diclofenac, and the MBR biomass subsequently incubated with "1"4C-diclofenac or "1"4C-4′hydroxydiclofenac over 25 days. It was demonstrated that diclofenac degradation was much slower and limited than that of 4′-hydroxydiclofenac. Indeed, after 18 days of batch incubation, diclofenac was removed up to 40%, this rate remained stable till the end of the experiment, while 4′-hydroxydiclofenac was completely degraded within nine days. The analyses of supernatant samples have shown that diclofenac degradation led to four transformation products, more polar than the parent compound, one of them being 4′-hydroxydiclofenac. The degradation of 4′-hydroxydiclofenac led to the formation of the same metabolites than those detected during diclofenac degradation. With these results, the hydroxylation of diclofenac to 4′-hydroxydiclofenac was identified as one major bottleneck in diclofenac degradation during biological treatment of wastewater.

  16. Biological treatment processes for PCB contaminated soil at a site in Newfoundland

    International Nuclear Information System (INIS)

    Punt, M.; Cooper, D.; Velicogna, D.; Mohn, W.; Reimer, K.; Parsons, D.; Patel, T.; Daugulis, A.

    2002-01-01

    SAIC Canada is conducting a study under the direction of a joint research and development contract between Public Works and Government Services Canada and Environment Canada to examine the biological options for treating PCB contaminated soil found at a containment cell at a former U.S. Military Base near Stephenville, Newfoundland. In particular, the study examines the feasibility of using indigenous microbes for the degradation of PCBs. The first phase of the study involved the testing of the microbes in a bioreactor. The second phase, currently underway, involves a complete evaluation of possible microbes for PCB degradation. It also involves further study into the biological process options for the site. Suitable indigenous and non-indigenous microbes for PCB dechlorination and biphenyl degradation are being identified and evaluated. In addition, the effectiveness and economics of microbial treatment in a conventional bioreactor is being evaluated. The conventional bioreactor used in this study is the two-phase partitioning bioreactor (TPPB) using a biopile process. Results thus far will be used to help Public Works and Government Services Canada to choose the most appropriate remedial technology. Preliminary results suggest that the use of soil classification could reduce the volume of soil requiring treatment. The soil in the containment cell contains microorganisms that could grow in isolation on biphenyl, naphthalene and potentially Aroclor 1254. Isolated native microbes were inoculated in the TPPB for growth. The TPPB was also run successfully under anaerobic conditions. Future work will involve lab-scale evaluation of microbes for PCB dechlorination and biphenyl degradation using both indigenous and non-indigenous microbes. The next phase of study may also involve field-scale demonstration of treatment methods. 2 refs., 3 tabs., 5 figs

  17. Elucidation of biotransformation of diclofenac and 4′hydroxydiclofenac during biological wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bouju, Helene; Nastold, Peter [Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, CH 4132 Muttenz (Switzerland); Beck, Birgit; Hollender, Juliane [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); Corvini, Philippe F.-X. [Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, CH 4132 Muttenz (Switzerland); School of the Environment, Nanjing University, Nanjing 210093 (China); Wintgens, Thomas, E-mail: thomas.wintgens@fhnw.ch [Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, CH 4132 Muttenz (Switzerland)

    2016-01-15

    Highlights: • The presence of DF specific degraders in activated sludge was confirmed. • The hydroxylation of DF to 4′OHDF is a bottleneck in diclofenac biodegradation. • Two biotransformation end products of DF and 4'OHDF were identified. • In wastewater treatment plants 4′-OHDF can be of both human and microbial origin. • A tentative biotransformation pathway for DF and 4′OHDF was proposed. - Abstract: This study aimed at gaining knowledge on the degradation pathway during biological treatment of wastewater of diclofenac and 4′-hydroxydiclofenac, its main human metabolite. For that purpose, an aerobic MBR was acclimatised to diclofenac, and the MBR biomass subsequently incubated with {sup 14}C-diclofenac or {sup 14}C-4′hydroxydiclofenac over 25 days. It was demonstrated that diclofenac degradation was much slower and limited than that of 4′-hydroxydiclofenac. Indeed, after 18 days of batch incubation, diclofenac was removed up to 40%, this rate remained stable till the end of the experiment, while 4′-hydroxydiclofenac was completely degraded within nine days. The analyses of supernatant samples have shown that diclofenac degradation led to four transformation products, more polar than the parent compound, one of them being 4′-hydroxydiclofenac. The degradation of 4′-hydroxydiclofenac led to the formation of the same metabolites than those detected during diclofenac degradation. With these results, the hydroxylation of diclofenac to 4′-hydroxydiclofenac was identified as one major bottleneck in diclofenac degradation during biological treatment of wastewater.

  18. Biological treatment of acute agitation or aggression with schizophrenia or bipolar disorder in the inpatient setting.

    Science.gov (United States)

    Correll, Christoph U; Yu, Xin; Xiang, Yutao; Kane, John M; Masand, Prakash

    2017-05-01

    Schizophrenia and bipolar disorders are chronic illnesses that commonly present with symptoms of acute agitation and aggression. These symptoms must be managed rapidly to prevent potential harm to the patient and others, including their caregivers, peers, and health care workers. A number of treatment options are available to clinicians to manage acute agitation and aggression, including non-pharmacologic behavioral and environmental de-escalation strategies, as well as biological treatment options such as pharmacologic agents and electroconvulsive therapy. We summarize the available biological treatment options for patients with schizophrenia or bipolar disorder presenting with acute agitation or aggression in the inpatient setting, focusing on antipsychotics. The following searches were used in PubMed to obtain the most relevant advances in treating schizophrenia or bipolar disorder with acute agitation and aggression: (agitation, agitated, aggression, aggressive, hostile, hostility, violent, or violence) and (schizophr*, psychosis, psychot*, psychos*, mania, manic, or bipolar) and (*pharmacologic, antipsychotic*, neuroleptic*, antiepileptic*, anti-seizure*, mood stabilizer*, lithium, benzodiazepine*, beta blocker, beta-blocker, alpha2, alpha-2, *histamine*, electroconvulsive, ECT, shock, or transcranial). Individual searches were performed for each drug class. The studies were limited to peer-reviewed, English-language, and human studies. Most were placebo-controlled randomized controlled trials (RCTs) or meta-analyses. Among pharmacologic agents, antipsychotics, benzodiazepines, anticonvulsants, and lithium have been studied in randomized trials. Some typical and, more recently, atypical antipsychotics are available as both oral and short-acting intramuscular (IM) formulations, with 1 typical antipsychotic also available as an inhalable formulation. Among the pharmacologic agents studied in RCTs, atypical antipsychotics have the best evidence to support

  19. SU-F-BRD-08: Guaranteed Epsilon-Optimal Treatment Plans with Minimum Number of Beams for SBRT Using RayStation

    International Nuclear Information System (INIS)

    Yarmand, H; Winey, B; Craft, D

    2014-01-01

    Purpose: To efficiently find quality-guaranteed treatment plans with the minimum number of beams for stereotactic body radiation therapy using RayStation. Methods: For a pre-specified pool of candidate beams we use RayStation (a treatment planning software for clinical use) to identify the deliverable plan which uses all the beams with the minimum dose to organs at risk (OARs) and dose to the tumor and other structures in specified ranges. Then use the dose matrix information for the generated apertures from RayStation to solve a linear program to find the ideal plan with the same objective and constraints allowing use of all beams. Finally we solve a mixed integer programming formulation of the beam angle optimization problem (BAO) with the objective of minimizing the number of beams while remaining in a predetermined epsilon-optimality of the ideal plan with respect to the dose to OARs. Since the treatment plan optimization is a multicriteria optimization problem, the planner can exploit the multicriteria optimization capability of RayStation to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing quality. For the numerical experiments two liver cases and one lung case with 33 non-coplanar beams are considered. Results: The ideal plan uses an impractically large number of beams. The proposed technique reduces the number of beams to the range of practical application (5 to 9 beams) while remaining in the epsilon-optimal range of 1% to 5% optimality gap. Conclusion: The proposed method can be integrated into a general algorithm for fast navigation of the ideal dose distribution Pareto surface and finding the treatment plan with the minimum number of beams, which corresponds to the delivery time, in epsilon-optimality range of the desired ideal plan. The project was supported by the Federal Share of program income

  20. SU-F-BRD-08: Guaranteed Epsilon-Optimal Treatment Plans with Minimum Number of Beams for SBRT Using RayStation

    Energy Technology Data Exchange (ETDEWEB)

    Yarmand, H; Winey, B; Craft, D [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-15

    Purpose: To efficiently find quality-guaranteed treatment plans with the minimum number of beams for stereotactic body radiation therapy using RayStation. Methods: For a pre-specified pool of candidate beams we use RayStation (a treatment planning software for clinical use) to identify the deliverable plan which uses all the beams with the minimum dose to organs at risk (OARs) and dose to the tumor and other structures in specified ranges. Then use the dose matrix information for the generated apertures from RayStation to solve a linear program to find the ideal plan with the same objective and constraints allowing use of all beams. Finally we solve a mixed integer programming formulation of the beam angle optimization problem (BAO) with the objective of minimizing the number of beams while remaining in a predetermined epsilon-optimality of the ideal plan with respect to the dose to OARs. Since the treatment plan optimization is a multicriteria optimization problem, the planner can exploit the multicriteria optimization capability of RayStation to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing quality. For the numerical experiments two liver cases and one lung case with 33 non-coplanar beams are considered. Results: The ideal plan uses an impractically large number of beams. The proposed technique reduces the number of beams to the range of practical application (5 to 9 beams) while remaining in the epsilon-optimal range of 1% to 5% optimality gap. Conclusion: The proposed method can be integrated into a general algorithm for fast navigation of the ideal dose distribution Pareto surface and finding the treatment plan with the minimum number of beams, which corresponds to the delivery time, in epsilon-optimality range of the desired ideal plan. The project was supported by the Federal Share of program income

  1. Stump treatment against Heterobasidion annosum - Techniques and biological effect in practical forestry

    Energy Technology Data Exchange (ETDEWEB)

    Thor, M. [SkogForsk, Uppsala (Sweden)

    1997-12-31

    This thesis summarises and discusses results from two studies on mechanized stump treatment to control the root rot fungus Heterobasidion annosum (Fr.) Bref. In Sweden, stump treatment is at present carried out with two chemical compounds, urea and disodium octaborate tetrahydrate (DOT), and a biological control agent, Phlebiopsis gigantea (Fr.) Juel. The first study investigated the H. annosum colonization of Norway spruce (Picea abies (L.) Karst) stumps following mechanized thinning and stump treatment with the three control agents mentioned. The stumps were treated in the summer and were compared with untreated stumps, cut in the summer and winter, respectively. Experimental plots were established in 12 first thinning stands of Norway spruce. Six to seven weeks after thinning and treatment, sample discs were collected (N=1246) and examined for presence of H. annosum. Stump treatment with any of the control agents reduced the colonized stump area 6-7 weeks after thinning by 88-98% as compared with untreated stumps cut in the summer. The effects of the different treatments differed neither from each other nor from the effect of winter thinning. The variation between the stands was considerable, but mechanized stump treatment provided as good protection as manual treatment against H. annosum infections. Study II examined the survival of P. gigantea oidiospores in aqueous suspension when exposed to high temperature or pressure, which are potential problems in mechanized application. In the laboratory, temperatures of 20, 30 or 35 deg C did not affect the survival. The spores could withstand 40 deg C for a short period, but died at 60 deg C. Pressure of up to 2 200 kPa for 24 h did not affect P. gigantea spore germination. In the field, temperatures of the working suspension (10{sup 7} spores I{sup -1}) was assessed during practical operations. Spore viability was maintained through the applicator system. As long as the prescriptions are followed up to the time of

  2. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Gabriel Timm [Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS (Brazil); Giacobbo, Alexandre [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil); Santos Chiaramonte, Edson Abel dos [Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS (Brazil); Rodrigues, Marco Antônio Siqueira [Universidade FEEVALE, ICET, RS 239, 2755, CEP 93352-000 Novo Hamburgo, RS (Brazil); Meneguzzi, Alvaro [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil); Bernardes, Andréa Moura, E-mail: amb@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil)

    2015-02-15

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm{sup −2}, 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment.

  3. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    International Nuclear Information System (INIS)

    Müller, Gabriel Timm; Giacobbo, Alexandre; Santos Chiaramonte, Edson Abel dos; Rodrigues, Marco Antônio Siqueira; Meneguzzi, Alvaro; Bernardes, Andréa Moura

    2015-01-01

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm −2 , 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment

  4. BIOLOGICAL AND SYNTHETIC MATERIALS IN RECONSTRUCTIVE SURGERY FOR BREAST CANCER TREATMENT (LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    A. D. Zikiryakhodzhaev

    2018-01-01

    Full Text Available During the last years has been a worldwide trend towards rejuvenating breast cancer, and the evolution of reconstructive breast surgery is proceeding at a rapid pace. The surgical method is the primary method in the combined and complex treatment of breast cancer, and radical mastectomy is still the main option for surgical treatment in most Russian clinics. Most women who need a mastectomy prefer a one-stage breast reconstruction, because the woman is quickly rehabilitated psychologically and physically after this operation. Nevertheless, the use of silicone endoprostheses did not solve the problems of breast reconstruction in combined treatment in oncology. The issue remains unresolved of various complications, related not only to infections, but also to the development of capsular contracture after radiotherapy. Many patients with a one-stage breast reconstruction using a silicone endoprostheses lack the volume of their own tissues for reliable shelter of the endoprosthesis. In such cases, synthetic reticulated implants, biological implants or autologous flaps are used to cover and strengthen the lower slope of the reconstructed breast.

  5. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation.

    Science.gov (United States)

    Rosal, Roberto; Rodríguez, Antonio; Perdigón-Melón, José Antonio; Petre, Alice; García-Calvo, Eloy; Gómez, María José; Agüera, Ana; Fernández-Alba, Amadeo R

    2010-01-01

    This work reports a systematic survey of over seventy individual pollutants in a Sewage Treatment Plant (STP) receiving urban wastewater. The compounds include mainly pharmaceuticals and personal care products, as well as some metabolites. The quantification in the ng/L range was performed by Liquid Chromatography-QTRAP-Mass Spectrometry and Gas Chromatography coupled to Mass Spectrometry. The results showed that paraxanthine, caffeine and acetaminophen were the main individual pollutants usually found in concentrations over 20 ppb. N-formyl-4-amino-antipiryne and galaxolide were also detected in the ppb level. A group of compounds including the beta-blockers atenolol, metoprolol and propanolol; the lipid regulators bezafibrate and fenofibric acid; the antibiotics erythromycin, sulfamethoxazole and trimethoprim, the antiinflammatories diclofenac, indomethacin, ketoprofen and mefenamic acid, the antiepileptic carbamazepine and the antiacid omeprazole exhibited removal efficiencies below 20% in the STP treatment. Ozonation with doses lower than 90 microM allowed the removal of many individual pollutants including some of those more refractory to biological treatment. A kinetic model allowed the determination of second order kinetic constants for the ozonation of bezafibrate, cotinine, diuron and metronidazole. The results show that the hydroxyl radical reaction was the major pathway for the oxidative transformation of these compounds. (c) 2009 Elsevier Ltd. All rights reserved.

  6. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.

    Science.gov (United States)

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2018-06-01

    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies.

    Science.gov (United States)

    Bengtsson, Simon; de Blois, Mark; Wilén, Britt-Marie; Gustavsson, David

    2018-03-20

    The aerobic granular sludge (AGS) technology is growing towards becoming a mature option for new municipal wastewater treatment plants and capacity extensions. A process based on AGS was compared to conventional activated sludge processes (with and without enhanced biological phosphorus removal), an integrated fixed-film activated sludge (IFAS) process and a membrane bioreactor (MBR) by estimating the land area demand (footprint), electricity demand and chemicals' consumption. The process alternatives compared included pre-settling, sludge digestion and necessary post-treatment to achieve effluent concentrations of 8 mg/L nitrogen and 0.2 mg/L phosphorus at 7°C. The alternative based on AGS was estimated to have a 40-50% smaller footprint and 23% less electricity requirement than conventional activated sludge. In relation to the other compact treatment options IFAS and MBR, the AGS process had an estimated electricity usage that was 35-70% lower. This suggests a favourable potential for processes based on AGS although more available experience of AGS operation and performance at full scale is desired.

  8. Biological treatment and toxicity of low concentrations of oily wastewater (bilgewater)

    Energy Technology Data Exchange (ETDEWEB)

    Stamper, D.M. [NAVSEA Carderrock Div., West Bethesda, MD (United States). Biological Sciences Group; Montgomery, M.T. [Naval Research Laboratory, Washington, DC (United States). Marine Biochemistry Section

    2008-08-15

    Oily waste water from ships occurs when materials leak, spill, or are washed off the decks and drain into the bilge compartments of ships. The wastes include diesel fuel, coolants, and engine, transmission, and hydraulic oils. Treatments for oily waste water in the United States Navy are based on a combination of density separation and ceramic membrane ultrafiltration techniques, which may not meet planned regulations that will require lower levels of oil pollutants. This study tested the biodegradability and toxicity of low concentrations of oily waste water in order to establish the feasibility of using a combined shipboard oily and sanitary waste water treatment system. The toxic effects of diesel fuel and other components of the waste water were also tested. The study showed that diluting the oily effluent with the sanitary waste stream resulted in waste water with low enough oil content to meet the anticipated changes in waste water regulations. The study also showed that the low concentrations of waste water were catabolized in the presence of the sanitary waste stream. A modified PolyTox assay was used to test the waste water samples. Results of the study showed that heterotrophic bacterial production rates did not show any toxic effects. The addition of detergent in the samples had no impact on toxicity levels. It was concluded that combining oil and sanitary waste water in a single biological treatment system is a feasible option for ensuring the future regulations are met. 37 refs., 2 tabs., 4 figs.

  9. Evaluation of the biological differences of canine and human factor VIII in gene delivery: Implications in human hemophilia treatment

    Science.gov (United States)

    The canine is the most important large animal model for testing novel hemophilia A(HA) treatment. It is often necessary to use canine factor VIII (cFIII) gene or protein for the evaluation of HA treatment in the canine model. However, the different biological properties between cFVIII and human FVII...

  10. Energy Effectiveness of Direct UV and UV/H2O2 Treatment of Estrogenic Chemicals in Biologically Treated Sewage

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2012-01-01

    and the UV/H2O2-treatment were investigated in biologically treated sewage for most of the estrogenic compounds reported in wastewater. The investigated compounds included parabens, industrial phenols, sunscreen chemicals and steroid estrogens. Treatment experiments were performed in a flow through set...

  11. Biological treatment of PAH-contaminated sediments in a Sequencing Batch Reactor

    International Nuclear Information System (INIS)

    Chiavola, Agostina; Baciocchi, Renato; Gavasci, Renato

    2010-01-01

    The technical feasibility of a sequential batch process for the biological treatment of sediments contaminated by polycyclic aromatic hydrocarbons (PAHs) was evaluated through an experimental study. A bench-scale Sediment Slurry Sequencing Batch Reactor (SS-SBR) was fed with river sediments contaminated by a PAH mixture made by fluorene, anthracene, pyrene and crysene. The process performance was evaluated under different operating conditions, obtained by modifying the influent organic load, the feed composition and the hydraulic residence time. Measurements of the Oxygen Uptake Rates (OURs) provided useful insights on the biological kinetics occurring in the SS-SBR, suggesting the minimum applied cycle time-length of 7 days could be eventually halved, as also confirmed by the trend observed in the volatile solid and total organic carbon data. The removal efficiencies gradually improved during the SS-SBR operation, achieving at the end of the study rather constant removal rates above 80% for both 3-rings PAHs (fluorene and anthracene) and 4-ring PAHs (pyrene and crysene) for an inlet total PAH concentration of 70 mg/kg as dry weight (dw).

  12. New-onset vitiligo and progression of pre-existing vitiligo during treatment with biological agents in chronic inflammatory diseases.

    Science.gov (United States)

    Méry-Bossard, L; Bagny, K; Chaby, G; Khemis, A; Maccari, F; Marotte, H; Perrot, J L; Reguiai, Z; Sigal, M L; Avenel-Audran, M; Boyé, T; Grasland, A; Gillard, J; Jullien, D; Toussirot, E

    2017-01-01

    The development of vitiligo during treatment with biological agents is an unusual event and only a few isolated cases have been reported. To describe the clinical characteristics and evolution of patients developing new-onset vitiligo following initiation of a biological agent for chronic inflammatory disease; and also to report the clinical course of pre-existing vitiligo under biological therapy. This nationwide multicentre, retrospective study, carried out between July 2013 and January 2015, describes the characteristics of a large series of 18 patients (psoriasis N = 8, inflammatory rheumatic diseases N = 8, ulcerative colitis N = 1, uveitis N = 1) who developed new-onset vitiligo while receiving a biological agent. TNFα inhibitors were the most common biological agent involved (13/18) while anti-IL-12/23 and anti-IL-17 agents or abatacept were less common (4/18 and 1/18 respectively). Mean duration of biological agent exposure before vitiligo onset was 13.9 ± 16.5 months. Outcome was favourable for most patients (15/17) while maintaining the biological agent. Data were also collected for 18 patients (psoriasis N = 5, inflammatory rheumatic diseases N = 10, inflammatory bowel diseases N = 2, SAPHO N = 1) who had pre-existing vitiligo when treatment with a biological agent started (TNFα inhibitors N = 15, ustekinumab N = 1, rituximab N = 1, tocilizumab N = 1). Vitiligo progressed in seven patients and was stable or improved in eight cases. Vitiligo may thus emerge and/or progress during treatment with various biological agents, mainly TNFα inhibitors and could be a new paradoxical skin reaction. De novo vitiligo displays a favourable outcome when maintaining the biological agent, whereas the prognosis seems worse in cases of pre-existing vitiligo. © 2016 European Academy of Dermatology and Venereology.

  13. World Federation of Societies of Biological Psychiatry guidelines for the pharmacological treatment of dementias in primary care

    DEFF Research Database (Denmark)

    Ihl, Ralf; Bunevicius, Robertas; Frölich, Lutz

    2015-01-01

    OBJECTIVE: To define a practice guideline for biological treatment of dementias for general practitioners in primary care. METHODS: This paper is a short and practical summary of the World Federation of Biological Psychiatry (WFSBP) guidelines for the Biological treatment of Alzheimer's disease...... and other dementias for treatment in primary care ( Ihl et al. 2011 ). The recommendations were developed by a task force of international experts in the field and are based on randomized controlled studies. RESULTS: Anti-dementia medications neither cure, nor arrest, or alter the course of the disease....... The type of dementia, the individual symptom constellation and the tolerability and evidence for efficacy should determine what medications should be used. In treating neuropsychiatric symptoms, psychosocial intervention should be the treatment of first choice. For neuropsychiatric symptoms, medications...

  14. The nuclear techniques in function of improving the efficiency of the flocculators and floats in the industrial waste treatment station of PETROBRAS

    International Nuclear Information System (INIS)

    Damera Martinez, Arnaldo; Ramos Espinosa, Kenia A.; Pinto, Amenonia Ferreira; Barbalho, Andrea de Magalhaes; Derivet Zarzabal, Milagros

    2001-01-01

    This work was carried out in the Station of Treatment of Industrial Waste (STIW) in PETROBRAS (Brazil). The STIW has the function of receiving, to treat and storage liquid wastes coming from diverse points of the refinery, avoiding the environment contamination. This study consists on the determination of the time of residence inside the flocculators and floats, by means of nuclear technique of radioactive tracer, using Tc-99m. This technique has a great economic and environmental importance because the time of residence obtained experimentally in the flocculators and the floats, can be compared with those obtained theoretically, which allow to influence on the system, optimizing its operation

  15. Mechanical–biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization

    DEFF Research Database (Denmark)

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen

    2013-01-01

    recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal...... of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials...... electricity source in the system. It was estimated that, overall, up to ca. 180—190 kt CO2-eq. y−1 may be saved by optimizing the MBT plants under assessment....

  16. Biology, diagnosis and treatment of canine appendicular osteosarcoma: similarities and differences with human osteosarcoma.

    Science.gov (United States)

    Morello, Emanuela; Martano, Marina; Buracco, Paolo

    2011-09-01

    Osteosarcoma (OSA) is the most common primary bone tumour in dogs. The appendicular locations are most frequently involved and large to giant breed dogs are commonly affected, with a median age of 7-8 years. OSA is a locally invasive neoplasm with a high rate of metastasis, mostly to the lungs. Due to similarities in biology and treatment of OSA in dogs and humans, canine OSA represents a valid and important tumour model. Differences between canine and human OSAs include the age of occurrence (OSA is most commonly an adolescent disease in humans), localisation (the stifle is the most common site of localisation in humans) and limited use of neoadjuvant chemotherapy in canine OSA. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  18. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    Science.gov (United States)

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  19. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge

    OpenAIRE

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zieli?ska, Magdalena

    2013-01-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerpri...

  20. International Conference on Innovative Biological Treatment of Toxic Wastewaters Held in Arlington, Virginia on June 24-26, 1986.

    Science.gov (United States)

    1987-04-01

    el Tratamiento de Aguas Residuales," presented at the November 6-11, 1983, X Interamerican Congress of Chemical Engineering, held at Santiago, Chile ...OF SUSPENDED-GROWTH INHIBITED BIOLOGICAL SYSTEMS Pablo B. Siez. Department of Hydraulic Engineering, Catholic University of Chile , Casilla 6177...Santiago, Chile . INTRODUCTION The kinetic of suspended-growth biological processes used in wastewater treatment has continuously been studied during the

  1. [Therapeutic Concepts for Treatment of Patients with Non-infectious Uveitis Biologic Disease Modifying Antirheumatic Drugs].

    Science.gov (United States)

    Walscheid, Karoline; Pleyer, Uwe; Heiligenhaus, Arnd

    2018-04-12

    Biologic disease modifying antirheumatic drugs (bDMARDs) can be highly efficient in the treatment of various non-infectious uveitis entities. Currently, the TNF-α-inhibitor Adalimumab is the only in-label therapeutic option, whereas, all other bDMARDs need to be given as an off-label therapy. bDMARDs are indicated in diseases refractory to conventional synthetic DMARD therapy and/or systemic steroids, or in patients in whom treatment with those is not possible due to side effects. Therapeutic mechanisms currently employed are cytokine-specific (interferons, inhibition of TNF-α or of interleukin [IL]-1-, IL-6- or IL-17-signalling), inhibit T cell costimulation (CTLA-4 fusion protein), or act via depletion of B cells (anti-CD20). All bDMARDs need to be administered parenterally, and therapy is initiated by the treating internal specialist only after interdisciplinary coordination of all treating subspecialties and after exclusion of contraindications. Regular clinical and laboratory monitoring is mandatory for all patients while under bDMARD therapy. Georg Thieme Verlag KG Stuttgart · New York.

  2. Structural Biology of the TNFα Antagonists Used in the Treatment of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Heejin Lim

    2018-03-01

    Full Text Available The binding of the tumor necrosis factor α (TNFα to its cognate receptor initiates many immune and inflammatory processes. The drugs, etanercept (Enbrel®, infliximab (Remicade®, adalimumab (Humira®, certolizumab-pegol (Cimzia®, and golimumab (Simponi®, are anti-TNFα agents. These drugs block TNFα from interacting with its receptors and have enabled the development of breakthrough therapies for the treatment of several autoimmune inflammatory diseases, including rheumatoid arthritis, Crohn’s disease, and psoriatic arthritis. In this review, we describe the latest works on the structural characterization of TNFα–TNFα antagonist interactions related to their therapeutic efficacy at the atomic level. A comprehensive comparison of the interactions of the TNFα blockers would provide a better understanding of the molecular mechanisms by which they neutralize TNFα. In addition, an enhanced understanding of the higher order complex structures and quinary structures of the TNFα antagonists can support the development of better biologics with the improved pharmacokinetic properties. Accumulation of these structural studies can provide a basis for the improvement of therapeutic agents against TNFα for the treatment of rheumatoid arthritis and other autoimmune inflammatory diseases in which TNFα plays an important role in pathogenesis.

  3. Application of the biological forced air soil treatment (BIOFAST trademark) technology to diesel contaminated soil

    International Nuclear Information System (INIS)

    Lyons, K.A.; Leavitt, M.E.; Graves, D.A.; Stanish, S.M.

    1993-01-01

    A subsurface Biological Forced Air Soil Treatment (BIOFAST trademark) system was constructed at the Yellow Freight System, Inc. (Yellow Freight) New Haven facility in Connecticut as a means of expediting the remediation of soils impacted by a diesel fuel release. Prior to beginning construction activities the soils were evaluated for the feasibility of bioremediation based on soil characteristics including contaminant degrading bacteria, moisture content, and pH. Based on results of stimulant tests with oxygen and nutrients, the addition of fertilizer during the construction of the cell was recommended. Following the removal of underground storage tanks, the bioremediation cell was constructed by lining the enlarged excavation with high density polyethylene (HDPE) and backfilling alternating layers of nutrient-laden soil and pea gravel. Passive and active soil vapor extraction (SVE) piping was included in the gravel layers and connected to a blower and vapor treatment unit, operated intermittently to supply oxygen to the subsurface cell. Operating data have indicated that the bacteria are generating elevated levels of CO 2 , and the SVE unit is evacuating the accumulated CO 2 from the soils and replacing it with fresh air. These data suggest that the bioremediation process is active in the soils. Soil samples collected from within the soil pit subsequent to installation and again after 10 months of operation indicate that TPH concentrations have decreased by as much as 50%

  4. Characteristics of Nanoparticles in Drinking Water Treatment using Biological Activated Carbon

    Directory of Open Access Journals (Sweden)

    Desmiarti Reni

    2018-01-01

    Full Text Available Characteristics of nanoparticles in drinking water treatment were performed using five types of biological activated carbon (BAC columns (BAC1-BAC5 in continuous flow experiments. The BAC was created by covering granular activated carbon (GAC with attached microorganisms from water samples taken from the Nagara River in Japan. The total running time was about 2000 h. The characteristics of the nanoparticles were investigated based on size distribution and volume distribution measured by Zetasizer Nano. Total dissolved organic carbon (DOC and ultraviolet absorbance at 260 nm (UV260 were also studied. The important results in this study were that the detached nanoparticles in the effluent were within the size distribution ranges of 0.26~5.62 nm, 0.62~3.62 nm, 0.62~3.12 nm, 0.62~4.19 nm, and 0.62~6.50 for BAC 1, 2, 3, 4 and 5, respectively. The profile of peak size and peak number along the bed depth of the BAC columns was evaluated for better understanding the characteristics of the nanoparticles. This result is very important for improving drinking water treatment using granular activated carbon to remove microorganisms.

  5. Effect of Biological Contact Filters (BCFs on Membrane Fouling in Drinking Water Treatment Systems

    Directory of Open Access Journals (Sweden)

    Susumu Hasegawa

    2017-12-01

    Full Text Available Membrane fouling is a serious problem in drinking water treatment systems. Biological contact filters (BCFs are often used as a pretreatment to remove ammonia, dissolved organic matter (DOM, and metal ions such as iron and manganese. In this study, the effect of BCF as a pretreatment for membrane fouling was evaluated using a laboratory-scale mini module consisting of a mini BCF column and a mini MF column. Initially, it was confirmed that the main foulant was a biopolymer (at low concentration in the raw water. Subsequently, the biopolymer concentrations in the BCF influent and effluent were measured with the excitation emission matrix (EEM fluorescence spectroscopy and the liquid chromatograph organic carbon detector (LC-OCD. The fouling potential of the BCF influent and effluent was also measured to evaluate MF membrane fouling rate. The results demonstrate that application of the BCF reduced the biopolymer concentration of the effluent and reduced membrane fouling. The effect of BCF was also established in an actual drinking water treatment plant. It was found that optimizing the contact time of raw water with the BCF was crucial to reduce membrane fouling.

  6. Emerging Biodegradation of the Previously Persistent Artificial Sweetener Acesulfame in Biological Wastewater Treatment.

    Science.gov (United States)

    Kahl, Stefanie; Kleinsteuber, Sabine; Nivala, Jaime; van Afferden, Manfred; Reemtsma, Thorsten

    2018-03-06

    The persistence of acesulfame (ACE) in wastewater treatment (and subsequently the aquatic environment) has led to its use as a marker substance for wastewater input into surface water and groundwater. However, ACE degradation of >85% during summer and autumn was observed in nine German wastewater treatment plants (WWTPs). Annual removal performance was more stable in larger plants, enhanced by low biological oxygen demand and impeded by water temperatures below 10 °C. Literature data suggest that the potential to degrade ACE emerged in WWTPs around the year 2010. This development is ongoing, as illustrated by ACE content in the German rivers Elbe and Mulde: Between 2013 and 2016 the ACE mass load decreased by 70-80%. In enrichment cultures with ACE as sole carbon source the carbonaceous fraction of ACE was removed completely, indicating catabolic biotransformation and the inorganic compound sulfamic acid formed in quantitative amounts. Sequencing of bacterial 16S rRNA genes suggests that several species are involved in ACE degradation, with proteobacterial species affiliated to Phyllobacteriaceae, Methylophilaceae, Bradyrhizobiaceae, and Pseudomonas becoming specifically enriched. ACE appears to be the first micropollutant for which the evolution of a catabolic pathway in WWTPs has been witnessed. It can yet only be speculated whether the emergence of ACE removal in WWTPs in different regions of the world is due to independent evolution or to global spreading of genes or adapted microorganisms.

  7. Performance of mechanical biological treatment of residual municipal waste in Poland

    Science.gov (United States)

    den Boer, Emilia; Jędrczak, Andrzej

    2017-11-01

    The number and capacity of mechanical-biological treatment (MBT) plants in Europe increased significantly in the past two decades as a response to the legal obligation to limit the landfilling of biodegradable waste in landfills and to increase recycling and energy recovery from waste. The aim of these plants is to prepare residual municipal waste for recovery and disposal operations, including especially separation and stabilization of the easily biodegradable fraction (the biofraction). The final products of MBP technology are recyclables, stabilate, high calorific fraction which is used for the production of refuse derived fuel (RDF) and the remaining residual fraction. The shares of the output fractions, especially of the recyclables and RDF determine the overall efficiency of MBT technology in diverting waste from landfills. In this paper results of an assessment of one exemplary MBT plant are provided. The analysis was performed within a comparative study in which 20 selected MBT plants in Poland were subject to a detailed analysis, focusing, both at the design parameters as well as operational ones. The selected plant showed relatively higher overall materials recovery efficiency. With the view to circular economy targets, increased automation of the mechanical waste treatment will be required to support achieving high level diversion from landfills. The study reviled that stabilisation of biofraction should be improved by a better control of process conditions, especially moisture content.

  8. Integration of an innovative biological treatment with physical or chemical disinfection for wastewater reuse

    International Nuclear Information System (INIS)

    De Sanctis, Marco; Del Moro, Guido; Levantesi, Caterina; Luprano, Maria Laura; Di Iaconi, Claudio

    2016-01-01

    In the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively. Lower removal efficiency was observed for phosphorus with an average concentration in the effluent of 3 mg/L. Plant effluent was also characterized by an average electrical conductivity and sodium adsorption ratio of 680 μS/cm and 2.9, respectively. Therefore, according to these gross parameters, the SBBGR effluent was conformed to the national standards required in Italy for agricultural reuse. Moreover, disinfection performances of the SBBGR was higher than that of conventional municipal wastewater treatment plants and met the quality criteria suggested by WHO (Escherichia coli < 1000 CFU/100 mL) for agricultural reuse. In particular, the biological treatment by SBBGR removed 3.8 ± 0.4 log units of Giardia lamblia, 2.8 ± 0.8 log units of E. coli, 2.5 ± 0.7 log units of total coliforms, 2.0 ± 0.3 log units of Clostridium perfringens, 2.0 ± 0.4 log units of Cryptosporidium parvum and 1.7 ± 0.7 log units of Somatic coliphages. The investigated disinfection processes (UV and peracetic acid) resulted very effective for total coliforms, E. coli and somatic coliphages. In particular, a UV radiation and peracetic acid doses of 40 mJ/cm"2 and 1 mg/L respectively reduced E. coli content in the effluent below the limit for agricultural reuse in Italy (10 CFU/100 mL). Conversely, they were both ineffective on C.perfringens spores. - Highlights: • SBBGR system showed high

  9. Integration of an innovative biological treatment with physical or chemical disinfection for wastewater reuse

    Energy Technology Data Exchange (ETDEWEB)

    De Sanctis, Marco, E-mail: marco.desanctis@ba.irsa.cnr.it [Water Research Institute, CNR, Via F. De Blasio 5, 70123 Bari (Italy); Del Moro, Guido [Water Research Institute, CNR, Via F. De Blasio 5, 70123 Bari (Italy); Levantesi, Caterina; Luprano, Maria Laura [Water Research Institute, CNR, Via Salaria Km 29.600, 00015 Monterotondo, RM (Italy); Di Iaconi, Claudio [Water Research Institute, CNR, Via F. De Blasio 5, 70123 Bari (Italy)

    2016-02-01

    In the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively. Lower removal efficiency was observed for phosphorus with an average concentration in the effluent of 3 mg/L. Plant effluent was also characterized by an average electrical conductivity and sodium adsorption ratio of 680 μS/cm and 2.9, respectively. Therefore, according to these gross parameters, the SBBGR effluent was conformed to the national standards required in Italy for agricultural reuse. Moreover, disinfection performances of the SBBGR was higher than that of conventional municipal wastewater treatment plants and met the quality criteria suggested by WHO (Escherichia coli < 1000 CFU/100 mL) for agricultural reuse. In particular, the biological treatment by SBBGR removed 3.8 ± 0.4 log units of Giardia lamblia, 2.8 ± 0.8 log units of E. coli, 2.5 ± 0.7 log units of total coliforms, 2.0 ± 0.3 log units of Clostridium perfringens, 2.0 ± 0.4 log units of Cryptosporidium parvum and 1.7 ± 0.7 log units of Somatic coliphages. The investigated disinfection processes (UV and peracetic acid) resulted very effective for total coliforms, E. coli and somatic coliphages. In particular, a UV radiation and peracetic acid doses of 40 mJ/cm{sup 2} and 1 mg/L respectively reduced E. coli content in the effluent below the limit for agricultural reuse in Italy (10 CFU/100 mL). Conversely, they were both ineffective on C.perfringens spores. - Highlights: • SBBGR system showed high

  10. Station Capacity

    DEFF Research Database (Denmark)

    Landex, Alex

    2011-01-01

    the probability of conflicts and the minimum headway times into account. The last method analyzes how optimal platform tracks are used by examining the arrival and departure pattern of the trains. The developed methods can either be used separately to analyze specific characteristics of the capacity of a station......Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore...... for platform tracks and the probability that arriving trains will not get a platform track immediately at arrival. The third method is a scalable method that analyzes the conflicts in the switch zone(s). In its simplest stage, the method just analyzes the track layout while the more advanced stages also take...

  11. Patient Characteristics, Health Care Resource Utilization, and Costs Associated with Treatment-Regimen Failure with Biologics in the Treatment of Psoriasis.

    Science.gov (United States)

    Foster, Shonda A; Zhu, Baojin; Guo, Jiaying; Nikai, Enkeleida; Ojeh, Clement; Malatestinic, William; Goldblum, Orin; Kornberg, Lori J; Wu, Jashin J

    2016-04-01

    Psoriasis is a chronic, incurable, and immune-mediated skin disorder that is characterized by erythematous scaly papules and plaques. Understanding of psoriasis at the molecular level has led to the development of biologic agents that target disease-specific inflammatory mediators in psoriatic lesions. Biologic agents have become important components of the psoriasis armamentarium, but some patients become refractory to these agents over time or fail to respond to subsequent biologics. To (a) evaluate demographic and clinical characteristics of psoriasis patients who have treatment patterns suggestive of failure to a newly initiated biologic agent (treatment-regimen failures) compared with those who do not (non-treatment-regimen failures) and (b) to assess health care-related resource utilization and costs in non-treatment-regimen failures and treatment-regimen failures. In this retrospective observational cohort study, patients were selected from the MarketScan claims database of commercially insured individuals and individuals with Medicare supplemental insurance. The index event was a newly initiated biologic agent for the treatment of psoriasis (etanercept, adalimumab, ustekinumab, or infliximab) between January 2010 and December 2011. The analysis included psoriasis patients aged ≥ 18 years with ≥ 1 prescription claim for a biologic and continuous enrollment 12 months pre- and post-index date. Patients with claims for a biologic in the pre-index period were excluded. Patients were divided into treatment-regimen-failure and non-treatment-regimen-failure groups based on their treatment patterns post-index date. The treatment-regimen-failure group included patients who switched to another biologic, discontinued the biologic without restarting, increased the dose of the biologic, or augmented treatment with a nontopical psoriasis medication during the post-index period. Between-group patient characteristics and medication use were compared using analysis of

  12. Analysis of the Treatment of a Biological Weapon Spread through a Transportation Network

    Science.gov (United States)

    2014-03-27

    public. Most of the skepticism stems from religion, rare complications, and parent concerns over a refuted study suggesting vaccines can cause autism. In...CHI 40 CHICAGO, IL MDW 22 CHICAGO, IL ORD 44 CINCINNATI, OH CVG 52 CLEVELAND, OH CLE 59 CODY, WY COD 2 COLLEGE STATION, TX CLL 1 COLORADO...CDC 1 COLLEGE STATION, TX CLL 1 COLUMBIA, MO COU 1 CORDOVA, AK CDV 1 DAYTONA BEACH, FL DAB 1 DUBUQUE, IA DBQ 1 DURANGO, CO DRO 1 DUTCH HARBOR

  13. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, Helene, E-mail: helene.rahn@gmail.com [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany); Alexiou, Christoph [ENT-Department, Section for Experimental Oncology and Nanomedicine (Else Kröner-Fresenius-Stiftungsprofessur), University Hospital Erlangen, Waldstraße 1, Erlangen 91054 (Germany); Trahms, Lutz [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, Berlin 10587 (Germany); Odenbach, Stefan [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany)

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration. - Highlights: • Local cancer treatments are promising in reducing negative side effects occurring during conventional chemotherapy. • The nanoparticles play an important role in delivering drugs to the designated area during local cancer treatments as magnetic drug targeting. • We study the nanoparticles distribution in tumor tissue after magnetic drug targeting with X-ray computed tomography. • We achieved a 3-dimensional quantification of the nanoparticles content in tumor tissue out of digital tomographic data.

  14. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems.

    Science.gov (United States)

    Lakshminarasimman, Narasimman; Quiñones, Oscar; Vanderford, Brett J; Campo-Moreno, Pablo; Dickenson, Eric V; McAvoy, Drew C

    2018-05-28

    This study determined biotransformation rates (k bio ) and sorption-distribution coefficients (K d ) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems. Copyright © 2018. Published by Elsevier B.V.

  15. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit.

    Science.gov (United States)

    Qin, Nan; Shen, Chenyang; Tsai, Min-Yu; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun

    2018-01-01

    One of the major benefits of carbon ion therapy is enhanced biological effectiveness at the Bragg peak region. For intensity modulated carbon ion therapy (IMCT), it is desirable to use Monte Carlo (MC) methods to compute the properties of each pencil beam spot for treatment planning, because of their accuracy in modeling physics processes and estimating biological effects. We previously developed goCMC, a graphics processing unit (GPU)-oriented MC engine for carbon ion therapy. The purpose of the present study was to build a biological treatment plan optimization system using goCMC. The repair-misrepair-fixation model was implemented to compute the spatial distribution of linear-quadratic model parameters for each spot. A treatment plan optimization module was developed to minimize the difference between the prescribed and actual biological effect. We used a gradient-based algorithm to solve the optimization problem. The system was embedded in the Varian Eclipse treatment planning system under a client-server architecture to achieve a user-friendly planning environment. We tested the system with a 1-dimensional homogeneous water case and 3 3-dimensional patient cases. Our system generated treatment plans with biological spread-out Bragg peaks covering the targeted regions and sparing critical structures. Using 4 NVidia GTX 1080 GPUs, the total computation time, including spot simulation, optimization, and final dose calculation, was 0.6 hour for the prostate case (8282 spots), 0.2 hour for the pancreas case (3795 spots), and 0.3 hour for the brain case (6724 spots). The computation time was dominated by MC spot simulation. We built a biological treatment plan optimization system for IMCT that performs simulations using a fast MC engine, goCMC. To the best of our knowledge, this is the first time that full MC-based IMCT inverse planning has been achieved in a clinically viable time frame. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Biological in situ treatment of soil contaminated with petroleum - Laboratory scale simulations

    International Nuclear Information System (INIS)

    Palvall, B.

    1997-06-01

    Laboratory scale simulations of biological in situ treatment of soil contaminated with petroleum compounds have been made in order to get a practical concept in the general case. The work was divided into seven distinct parts. Characterisation, leaching tests and introductory microbiological investigations were followed by experiments in suspended phases and in situ simulations of solid phase reactors. For the suspensions, ratios L/S 3/1 and shaking for a couple of hours were enough to detach organic compounds in colloid or dissolved form. When testing for a time of one month anaerobic environment and cold temperatures of 4 centigrade as well gave acceptable reductions of the actual pollution levels. The range of variation in the soil tests performed showed that at least triple samples are needed to get satisfactory statistical reliability. It was shown that adequate experimental controls demand very high concentrations of e.g. sodium azide when dealing with soil samples. For triple samples in suspended phase without inoculation the weight ratios of oxygen consumption/biological degradation of aliphatic compounds were 2.41 to 2.96. For the complex overall reduction no exact rate constants could be found. The reduction of hydrocarbons were in the interval 27 to 95 % in suspension tests. Solid phase simulations with maximum water saturation showed the highest degree of reduction of hydrocarbons when using dissolved peroxide of hydrogen as electron acceptor while the effect of an active sludge reactor in series was little - reductions of aliphatic compounds were between 21 and 33 % and of aromatic compounds between 32 and 65 %. The influence of different contents of water was greater than adding inoculum or shaking the soil at different intervals in the unsaturated cylinders. The starting level of hydrocarbons was 2400 mg/kg dry weight soil and the end analyses were made after 100 days. The reduction was between 32 and 80 %. 82 refs

  18. Mixing regime as a key factor to determine DON formation in drinking water biological treatment.

    Science.gov (United States)

    Lu, Changqing; Li, Shuai; Gong, Song; Yuan, Shoujun; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) can act as precursor of nitrogenous disinfection by-products formed during chlorination disinfection. The performances of biological fluidized bed (continuous stirred tank reactor, CSTR) and bio-ceramic filters (plug flow reactor, PFR) were compared in this study to investigate the influence of mixing regime on DON formation in drinking water treatment. In the shared influent, DON ranged from 0.71mgL(-1) to 1.20mgL(-1). The two biological fluidized bed reactors, named BFB1 (mechanical stirring) and BFB2 (air agitation), contained 0.12 and 0.19mgL(-1) DON in their effluents, respectively. Meanwhile, the bio-ceramic reactors, labeled as BCF1 (no aeration) and BCF2 (with aeration), had 1.02 and 0.81mgL(-1) DON in their effluents, respectively. Comparative results showed that the CSTR mixing regime significantly reduced DON formation. This particular reduction was further investigated in this study. The viable/total microbial biomass was determined with propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) and qPCR, respectively. The results of the investigation demonstrated that the microbes in BFB2 had higher viability than those in BCF2. The viable bacteria decreased more sharply than the total bacteria along the media depth in BCF2, and DON in BCF2 accumulated in the deeper media. These phenomena suggested that mixing regime determined DON formation by influencing the distribution of viable, total biomass, and ratio of viable biomass to total biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Review of the contemporary cytotoxic and biologic combinations available for the treatment of metastatic breast cancer.

    Science.gov (United States)

    Tkaczuk, Katherine H Rak

    2009-01-01

    Treatment of metastatic breast cancer (MBC) with > or =2 chemotherapeutic agents concurrently has been shown to increase response rates, often at the cost of a substantial increase in toxicity, and with minimal impact on the overall survival. However, some combinations of the newer cytotoxic agents, as well as combinations of chemotherapeutic agents and targeted biologic anticancer agents, can produce synergistic efficacy with a manageable toxicity profile. The aims of this work were to provide an overview of the currently approved combination regimens available for the treatment of MBC and to consider the clinical data supporting other drug combinations that may supplement the current therapeutic choices in the near future. Literature searches were performed using MEDLINE/PubMed, with a focus on combination therapies for the treatment of MBC that are approved by the US Food and Drug Administration (FDA) or in Phase III clinical trials. The National Institutes of Health's Clinical Trial Registry was searched for relevant ongoing clinical trials in specific areas. Bibliographies were also searched for additional relevant material. Preference was given to recently published, larger, well-designed clinical trials that influence current prescribing practices. Phase I and II studies, and/or studies older than 10 years (ie, published earlier than 1999), were afforded less emphasis or were disregarded. Combinations of taxanes with capecitabine or gemcitabine, and ixabepilone plus capecitabine, are approved by the FDA as combination regimens for the treatment of MBC. The use of targeted therapies such as trastuzumab, bevacizumab, or lapatinib in combination with taxanes (for the former two) or capecitabine (for lapatinib) is also approved. Several investigational drug combinations are also currently undergoing evaluation in clinical trials, including combinations of bevacizumab and gemcitabine with capecitabine or alternative taxanes. Although results from Phase I and II

  20. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat

  1. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    International Nuclear Information System (INIS)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-01-01

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ primary /100 MJ input waste. • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ primary /100 MJ input waste , in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS

  2. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.

    Science.gov (United States)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-07-01

    Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full

  3. New developments in the treatment of osteoarthritis – focus on biologic agents

    Directory of Open Access Journals (Sweden)

    Torrero JI

    2015-07-01

    Full Text Available Jose Ignacio Torrero,1 Carlos Martínez2 1BioTrauma Centre, Escaldes, Principality of Andorra; 2University of Illinois Hospital and Health Sciences System, Chicago, IL, USA Abstract: Osteoarthritis (OA is one of the most common diseases around the world. Medical, social, and financial consequences oblige clinicians, surgeons, and researchers to focus on finding the best treatment option, to eradicate and stop this degenerative joint disease, in order to avoid surgical options which in many instances are over-indicated. Noninvasive treatments, such as anti-inflammatory drugs, physiotherapy, orthotic devices, dietary supplements, have demonstrated lack of effectiveness. The possibility to perform intra-articular injections with hyaluronic acid, corticosteroids, or the newest but criticized treatment based on platelet-rich plasma (PRP has changed the management of OA disease. The use of PRP has led to many differences in treatment since there is a lack of consensus about protocols, indications, number of doses, cost-effectiveness, and duration of the treatment. Many publications have suggested efficacy in tendon injuries, but when PRP has been indicated to treat cartilage injuries, things are more inconsistent. Some authors have reported their experience treating OA with PRP, and it seems that, if well indicated, it is an option as a supplementary therapy. Therefore, we need to understand that OA is a mechanical disease which not only produces changes in radiographs, but also affects the quality of life. Pathogenesis of OA has been well explained, providing us new knowledge and future possibilities to improve the clinical approach. From basic science to surgery, there is a great field we all need to contribute to, because the general population is aging and total joint replacements should not be the only solution for OA. So herein is an actual review of the developments for treating OA with biologics, intended to be useful for the population inside

  4. [The significance of enviromental and biological monitoring in workers employed in service stations after the elimitation of tetraethyl lead from gasoline].

    Science.gov (United States)

    Ghittori, S; Ferrari, M; Maestri, L; Negri, S; Zadra, P; Gremita, C; Imbriani, M

    2005-01-01

    The chemical risk in service stations may be due to toxic compounds present in fuel (particularly benzene and additives) and to the emission of exhausts and fine particulate from vehicles. Owing to the elimination of lead (Pb) from fuel and to the necessity of lowering CO emission, several oxygenated additives have been added to fuel, in particular methyl-tert-butyl-ether (MTBE), whose toxic properties are at present under investigation. The introduction of reformulated gasoline (RFG) and the use of catalytic converters (with possible release of platinum (Pt) in the environment) may have modified the risks for workers employed in service stations. The paper shows data collected from 26 subjects (divided into three specific tasks, namely: fuel dispenser, "self-service" attendant and controller, and cashier) to estimate the actual chemical risk and to compare it with the previous data taken from literature. For this purpose, besides performing the usual medical surveillance, we measured the environmental concentrations of benzene, MTBE and formaldehyde, the urinary levels of benzene metabolites S-phenylmercapturic acid (S-PMA) and t,t-muconic acid (MA) and of unmodified MTBE, and the blood concentrations of Pb and Pt for each subject. Mean values of these compounds were, respectively: 38.81 microg/m3; 174.04 microg/m3; 10.38 microg/m3; 2.36 microg/g creatinine; 96.57 microg/g creatinine; 1.41 microg/L; 7.00 microg/100 mL; 0.0738 ng/ml. The above values were much lower than the corresponding limit values reported by ACGIH and DFG. In particular, after the introduction of vapour recycle systems and the widespread use of "self-service" systems, airborne benzene concentration dropped from 300/400 microg/m3 to lower than 100 microg/m3, without noticeable increasing of exposure to formaldehyde. The disappearing of Pb from gasoline leads to a progressive lowering of its blood levels, while the possible risks due to the very low amounts of Pt released from catalytic

  5. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes.

    Science.gov (United States)

    Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester

    2015-09-15

    Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Recent progress in the biology of multiple myeloma and future directions in the treatment.

    Science.gov (United States)

    Pico, J L; Castagna, L; Bourhis, J H

    1998-04-01

    A great amount of scientific information, accumulated over recent years on the biology of Multiple Myeloma (MM), has fuelled speculation about the origin of malignant plasma cells, about a purported critical role played by the bone marrow stroma, and further still, on cytokine interactions and in particular that of IL-6 and its relationship with the immune system. Among the growth factors secreted by stroma cells, IL-6 is a potent stimulator of myeloma cells in vitro but does not induce a malignant phenotype in normal plasma cells. Many efforts have been produced to identify the stem cell in MM and probably memory B lymphocytes are the best candidates. The demonstration of a Graft vs Myeloma effect in the allogeneic setting strongly supports the immunotherapy in MM. Recent data also suggest that a virus (Kaposi-associated herpes virus, HHV-8) may be significantly associated with the development of MM. In parallel, progress has been achieved in the treatment of this incurable disease with well defined prognostic factors, more efficient supportive care and its corollary, improved quality of life and dose-intensified chemo-radiotherapy followed by autologous hematopoietic stem cell support. Improving the quality of grafts with the selection of CD34 positive cells is another approach aimed at reducing plasma cell contamination without impairing haematological recovery. An EBMT randomized study assessing the role of CD34 selection has been initiated by our group Increasingly efficient first-line therapy, better quality autografts and improved post-remission treatment with, for example, anti-idiopathic vaccination are the most promising future directions.

  7. Immunogenicity induced by biologicals in the treatment of psoriasis and psoriatic arthritis: View of the problem

    Directory of Open Access Journals (Sweden)

    T. V. Korotaeva

    2015-01-01

    Full Text Available The present-day views of the immunogenicity of biological agents (BAs used to in the treatment of psoriasis and psoriatic arthritis are analyzed. The immunogenicity of these medicaments is noted to depend on their molecular structure, individual patient characteristics, and used treatment regimens. As this takes place, the primary structure of the drug and its posttranslation modifications during manufacture are key factors. It is pointed out that a number of antigenic structures may give rise to the body's BA antibodies – murine epitopes, idiotopes, and allotropes, neoantigens forming in the coupling area of hybrid proteins, nonlinear epitopes present in the aggregated preparations. BAs that tend to form large immune complexes with these antibodies are most immunogenic. The antibodies to most BAs, except drugs based on soluble tumor necrosis factor-α receptors (etanercept, are neutralizing, i.e. they affect the efficiency of therapy, particularly when used over a long period of time.The results of trials evaluating the impact of antibodies to BAs on their clinical value are considered. It is believed that immunogenicity is itself of great importance in respect to the occurrence of the escape phenomenon of a response to BA therapy and to its safety. Attention is drawn to immunogenicity diagnostic problems; at the same it is noted that none of the used laboratory diagnostic techniques can reveal individual BA antibody forms and isotypes. It is concluded that there is a need for further investigations to standardize optimal methods for diagnosing neutralizing antibodies, to elaborate criteria for predicting a response to therapy in terms of an immunogenicity factor, and to reveal pathogenetic mechanisms responsible for the production of antibodies to BAs. The design of novel medicaments with minimal immunogenicity will depend on whether these mechanisms are common to all drugs or specific.

  8. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    Science.gov (United States)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  9. Emerging treatments in the management of psoriasis: biological targeting with ustekinumab

    Directory of Open Access Journals (Sweden)

    Marina Papoutsaki

    2009-05-01

    Full Text Available Marina Papoutsaki, Antonio Costanzo, Sergio ChimentiDepartment of Dermatology, University of Rome, “Tor vergata”, Rome, ItalyAbstract: Psoriasis is a chronic, genetically determined, immune-mediated, inflammatory skin disease affecting approximately 2% to 3% of Caucasian population. Given the well-established role of the immuno-mediated inflammation in the pathogenesis of psoriasis, in the past few years several key steps in the pathogenesis of this disease have been elucidated and the increased knowledge led to the development of specific drugs, commonly defined as “biologics” targeting one or more of these steps. At present an anti-CD11a antibody (efalizumab, an anti-LFA3/CD2 receptor (alefacept and 3 antitumor necrosis factor alpha agents (adalimumab, etanercept, infliximab are now commercially available for the treatment of both psoriasis and psoriatic arthritis. Recent studies have demonstrated that interleukins (IL 12 and 23 play an important role in the pathophysiology of psoriasis. In fact members of the IL-12 family of cytokines have the potential to act as the next major cytokine(s in pathogenesis and the treatment of psoriasis. Ustekinumab (CNTO 1275, Centocor Inc, Malvern, PA, USA is a human monoclonal antibody that binds to the shared p40 protein subunit of human interleukins 12 and 23 with high affinity and specificity, thereby preventing interaction with their surface IL-12Rβ1 receptor. Different clinical studies have been conducted to date. In particular a phase II study and two phase III studies, PHOENIX 1 together with PHOENIX 2, show very encouraging results. This review reports on the latest progress made in the clinical use of biologic drugs for psoriasis focusing on the new human IL-12/23 monoclonal antibody, ustekinumab, for psoriasis.Keywords: psoriasis, ustekinumab, interleukin-12/23 monoclonal antibody

  10. Does a plant for mechanical-biological waste treatment require a sanitary landfill?; Braucht die MBA eine Deponie?

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Burkart [GVoA mbH und Co. KG, Hille (Germany)

    2012-11-01

    In mechanical-biological waste treatment, an interesting recyclable fraction is dumped in landfill together with other treatment residues. This may be 10-20% depending on the energy content of the initial material. Some operators of mechanical-biological waste treatment plants are currently working on modifying their waste treatment processes. Results so far have shown that this may also reduce the cost. (orig.) [German] Bei der bisherigen Abfallentsorgung mittels einer MBA (mechanisch-biologische Abfallbehandlung) wird immer noch ein interessanter Wertstoffanteil mit dem Deponat auf der Deponie abgelagert. Je nach Qualitaet der Vorbehandlung sind dies alleine vom Energieinhalt des Eingangsmaterials ca. 10-20%. Um auch diesen Anteil zu verwerten, sind aktuell einige MBA-Betreiber dabei, ihre Verfahren entsprechend umzustellen. Erste Ergebnisse zeigen, dass dies auch noch zu Kosteneinsparungen fuehren kann. (orig.)

  11. Time-slicing subsystem of the biology small-angle x-ray scattering station at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Stubblefield, F.W.

    1985-11-01

    The time-slicing subsystem of the Biology Small-Angle X-ray Scattering divides the time period during which the data for small-angle x-ray diffraction patterns from biological samples is collected into time slices (or frames). The subsystem, being part of a multiprocessor experiment control and data acquisition system, has its own dedicated processor; it also has special-purpose front-end electronics sufficient to generate the gating and other control signals required to produce a sequence of as many as 256 time slices, measured with a basic time unit of 1 μsec. The electronics also synchronizes with execution of the time slice sequence the application of stimuli to the biological sample, the measurement of voltages generated by the sample, and the application of auxiliary device trigger pulses and routes detector data and auxiliary scaler data into appropriate time-slice-indexed buffers in a large external data memory array. The structure of the entire experiment control and data acquisition system is briefly reviewed. Details of the structure and operation of the time slice subsystem are presented. 7 refs., 5 figs

  12. Biological treatment of refinery spent caustics under halo-alkaline conditions.

    Science.gov (United States)

    de Graaff, Marco; Bijmans, Martijn F M; Abbas, Ben; Euverink, Gert-J W; Muyzer, Gerard; Janssen, Albert J H

    2011-08-01

    The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na(+)= 0.8M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80-90% saturation) at 35°C. Sulfide loading rates up to 27 mmol L(-1)day(-1) were successfully applied at a HRT of 3.5 days. Sulfide was completely converted into sulfate by the haloalkaliphilic sulfide-oxidizing bacteria belonging to the genus Thioalkalivibrio. Influent benzene concentrations ranged from 100 to 600 μM. At steady state, benzene was removed by 93% due to high stripping efficiencies and biodegradation. Microbial community analysis revealed the presence of haloalkaliphilic heterotrophic bacteria belonging to the genera Marinobacter, Halomonas and Idiomarina which might have been involved in the observed benzene removal. The work shows the potential of halo-alkaliphilic bacteria in mitigating environmental problems caused by alkaline waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The Role of Biologically Active Ingredients from Natural Drug Treatments for Arrhythmias in Different Mechanisms.

    Science.gov (United States)

    Li, Jie; Hu, Dan; Song, Xiaoli; Han, Tao; Gao, Yonghong; Xing, Yanwei

    2017-01-01

    Arrhythmia is a disease that is caused by abnormal electrical activity in the heart rate or rhythm. It is the major cause of cardiovascular morbidity and mortality. Although several antiarrhythmic drugs have been used in clinic for decades, their application is often limited by their adverse effects. As a result, natural drugs, which have fewer side effects, are now being used to treat arrhythmias. We searched for all articles on the role of biologically active ingredients from natural drug treatments for arrhythmias in different mechanisms in PubMed. This study reviews 19 natural drug therapies, with 18 active ingredient therapies, such as alkaloids, flavonoids, saponins, quinones, and terpenes, and two kinds of traditional Chinese medicine compound (Wenxin-Keli and Shensongyangxin), all of which have been studied and reported as having antiarrhythmic effects. The primary focus is the proposed antiarrhythmic mechanism of each natural drug agent. Conclusion . We stress persistent vigilance on the part of the provider in discussing the use of natural drug agents to provide a solid theoretical foundation for further research on antiarrhythmia drugs.

  14. Heightening in efficiency of biological treatment by additives. Tenkazai ni yoru seibutsu shori no koritsuka

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M. (Fukui Institute of Technology, Fukui (Japan))

    1991-11-01

    The activated sludge process and other biological treatments, though utilized for most sewerage and drainage water disposals, often necessitate the maintenance to be managed with a professional knowledge so that confrontation is oftem impossible with trouble in management. In the present report, different basic studies are to be introduced of microbial activation by an addition with saponin. Saponin'', etymologically identical with savon'' and soap'', has been being used as natural cleaner, emulsifier and foamer in South America and Europe since olden times, and is used also for the processed food and potable water in the USA. The present experiment concluded that, in case of using it as microbial activator, the activated sludge can be considerably increased in load quantity of disposal by the heightening in oxygen-supplying power, high concentration microbial maintenance, microbial activation, etc. In the future, there will remain many problems unsolved such as what is the optimized condition for the addition depending upon the condition of base material. 3 refs., 6 figs., 1 tab.

  15. Biological treatment of paper pulp effluents: the application of ligninolytic white rot-fungi

    International Nuclear Information System (INIS)

    Martin, C; Fajardo, S.; Manzanares, P.

    1996-01-01

    Biological treatments using white-rot fungi, based in their ability to degrade lignin, can constitute an interesting approach to remove colour and toxic compounds usually contained in paper pulp effluents due to the presence of recalcitrant lignin derived molecules. In this work, strains A-137 and A-136 (IJFM collection, CIB-CSIC, Madrid) of Trameles versicolor, a ligninolytic white-rot fungus that have been frequently reported in relation to degradation of lignin, have been used for decolorisation studies of the straw alkaline-pulping effluent from SAICA factory (Zaragoza, Spain). From results obtained it can be concluded that decolorisation percentages about 80% can be obtained in 4-6 days (for maximum initial colour effluent between 12,000 and 15,000 CU) and total phenolics content can be reduced in about 90%. Mn-dependent peroxidase (about 20 IU/I) and high values of laccase activities (up to 700 IU/I) were produced, what may be of great interest to set up ligninolytic enzymes production processes for industrial uses. (Author) 19 refs

  16. Enhance wastewater biological treatment through the bacteria induced graphene oxide hydrogel.

    Science.gov (United States)

    Shen, Liang; Jin, Ziheng; Wang, Dian; Wang, Yuanpeng; Lu, Yinghua

    2018-01-01

    The interaction between bacteria and graphene-family materials like pristine graphene, graphene oxide (GO) and reduced graphene oxide (rGO) is such an elusive issue that its implication in environmental biotechnology is unclear. Herein, two kinds of self-assembled bio-rGO-hydrogels (BGHs) were prepared by cultivating specific Shewanella sp. strains with GO solution for the first time. The microscopic examination by SEM, TEM and CLSM indicated a porous 3D structure of BGHs, in which live bacteria firmly anchored and extracellular polymeric substances (EPS) abundantly distributed. Spectra of XRD, FTIR, XPS and Raman further proved that GO was reduced to rGO by bacteria along with the gelation process, which suggests a potential green technique to produce graphene. Based on the characterization results, four mechanisms for the BGH formation were proposed, i.e., stacking, bridging, rolling and cross-linking of rGO sheets, through the synergistic effect of activities and EPS from special bacteria. More importantly, the BGHs obtained in this study were found able to achieve unique cleanup performance that the counterpart free bacteria could not fulfill, as exemplified in Congo red decolorization and Cr(VI) bioreduction. These findings therefore enlighten a prospective application of graphene materials for the biological treatment of wastewaters in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    Science.gov (United States)

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.

  18. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter.

    Science.gov (United States)

    Fan, Li; Ni, Jinren; Wu, Yanjun; Zhang, Yongyong

    2009-03-15

    The wastewater originated from the production of bromoamine acid was treated in a sequential system of micro-electrolysis (ME) and biological aerobic filter (BAF). Decolorization and COD(Cr) removal rate of the proposed system was investigated with full consideration of the influence of two major controlling factors such as organic loading rate (OLR) and hydraulic retention time (HRT). The removal rate of COD(Cr) was 81.2% and that of chrominance could be up to 96.6% at an OLR of 0.56 kg m(-3)d(-1) when the total HRT was 43.4h. Most of the chrominance was removed by the ME treatment, however, the BAF process was more effective for COD(Cr) removal. The GC-MS and HPLC-MS analysis of the contaminants revealed that 1-aminoanthraquinone, bromoamine acid and mono-sulfonated 1,2-dichlorobenzene were the main organic components in the wastewater. The reductive transformation of the anthraquinone derivatives in the ME reactor improved the biodegradability of the wastewater, and rendered the decolorization. After long-term of operation, it was observed that the predominant microorganisms immobilized on the BAF carriers were rod-shaped and globular. Four bacterial strains with apparent 16S rDNA fragments in the Denaturing Gradient Gel Electrophoresis (DGGE) profiles of BAF samples were identified as Variovorax sp., Sphingomonas sp., Mycobacterium sp., and Microbacterium sp.

  19. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter

    Energy Technology Data Exchange (ETDEWEB)

    Fan Li [Shenzhen Graduate School, Peking University, Key Laboratory for Environmental and Urban Sciences, Guang Dong 518055 (China); Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China); Ni Jinren [Shenzhen Graduate School, Peking University, Key Laboratory for Environmental and Urban Sciences, Guang Dong 518055 (China); Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)], E-mail: nijinren@iee.pku.edu.cn; Wu Yanjun; Zhang Yongyong [Shenzhen Graduate School, Peking University, Key Laboratory for Environmental and Urban Sciences, Guang Dong 518055 (China); Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)

    2009-03-15

    The wastewater originated from the production of bromoamine acid was treated in a sequential system of micro-electrolysis (ME) and biological aerobic filter (BAF). Decolorization and COD{sub Cr} removal rate of the proposed system was investigated with full consideration of the influence of two major controlling factors such as organic loading rate (OLR) and hydraulic retention time (HRT). The removal rate of COD{sub Cr} was 81.2% and that of chrominance could be up to 96.6% at an OLR of 0.56 kg m{sup -3} d{sup -1} when the total HRT was 43.4 h. Most of the chrominance was removed by the ME treatment, however, the BAF process was more effective for COD{sub Cr} removal. The GC-MS and HPLC-MS analysis of the contaminants revealed that 1-aminoanthraquinone, bromoamine acid and mono-sulfonated 1,2-dichlorobenzene were the main organic components in the wastewater. The reductive transformation of the anthraquinone derivatives in the ME reactor improved the biodegradability of the wastewater, and rendered the decolorization. After long-term of operation, it was observed that the predominant microorganisms immobilized on the BAF carriers were rod-shaped and globular. Four bacterial strains with apparent 16S rDNA fragments in the Denaturing Gradient Gel Electrophoresis (DGGE) profiles of BAF samples were identified as Variovorax sp., Sphingomonas sp., Mycobacterium sp., and Microbacterium sp.

  20. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter

    International Nuclear Information System (INIS)

    Fan Li; Ni Jinren; Wu Yanjun; Zhang Yongyong

    2009-01-01

    The wastewater originated from the production of bromoamine acid was treated in a sequential system of micro-electrolysis (ME) and biological aerobic filter (BAF). Decolorization and COD Cr removal rate of the proposed system was investigated with full consideration of the influence of two major controlling factors such as organic loading rate (OLR) and hydraulic retention time (HRT). The removal rate of COD Cr was 81.2% and that of chrominance could be up to 96.6% at an OLR of 0.56 kg m -3 d -1 when the total HRT was 43.4 h. Most of the chrominance was removed by the ME treatment, however, the BAF process was more effective for COD Cr removal. The GC-MS and HPLC-MS analysis of the contaminants revealed that 1-aminoanthraquinone, bromoamine acid and mono-sulfonated 1,2-dichlorobenzene were the main organic components in the wastewater. The reductive transformation of the anthraquinone derivatives in the ME reactor improved the biodegradability of the wastewater, and rendered the decolorization. After long-term of operation, it was observed that the predominant microorganisms immobilized on the BAF carriers were rod-shaped and globular. Four bacterial strains with apparent 16S rDNA fragments in the Denaturing Gradient Gel Electrophoresis (DGGE) profiles of BAF samples were identified as Variovorax sp., Sphingomonas sp., Mycobacterium sp., and Microbacterium sp

  1. Biological treatment of paper pulp effluents: the application of ligninolytic white rot-fungi

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C; Fajardo, S.; Manzanares, P.

    1996-07-01

    Biological treatments using white-rot fungi, based in their ability to degrade lignin, can constitute an interesting approach to remove colour and toxic compounds usually contained in paper pulp effluents due to the presence of recalcitrant lignin derived molecules. In this work, strains A-137 and A-136 (IJFM collection, CIB-CSIC, Madrid) of Trameles versicolor, a ligninolytic white-rot fungus that have been frequently reported in relation to degradation of lignin, have been used for decolorisation studies of the straw alkaline-pulping effluent from SAICA factory (Zaragoza, Spain). From results obtained it can be concluded that decolorisation percentages about 80% can be obtained in 4-6 days (for maximum initial colour effluent between 12,000 and 15,000 CU) and total phenolics content can be reduced in about 90%. Mn-dependent peroxidase (about 20 IU/I) and high values of laccase activities (up to 700 IU/I) were produced, what may be of great interest to set up ligninolytic enzymes production processes for industrial uses. (Author) 19 refs.

  2. Conversion of a MBA to the treatment of biological wastes; Umnutzung einer MBA zur Bioabfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Deubig, Jan B. [Zentrale Abfallwirtschaft Kaiserslautern (ZAK) AoeR Kapiteltal, Kaiserslautern (Germany); Stadtmueller, Gregor [Zentrale Abfallwirtschaft Kaiserslautern (ZAK) AoeR Kapiteltal, Kaiserslautern (Germany). Abt. Technik; Greuel, Michael [Schirmer Umwelttechnik GmbH, Mainz (Germany); Deubig, Isabel [Zentrale Abfallwirtschaft Kaiserslautern (ZAK) AoeR Kapiteltal, Kaiserslautern (Germany). Abt. Stoffstrommanagement

    2013-03-01

    The Zentrale Abfallwirtschaft Kaiserslautern (ZAK) - gemeinsame kommunale Anstalt der Stadt und des Landkreises Kaiserslautern (Kaiserslautern, Federal Republic of Germany) is a public waste management authority being responsible for 250,000 inhabitants with respect to the utilization of municipal waste and with respect to the collection of problematic waste materials and electric appliances. Due to the changing framework conditions in the waste management, ZAK looks for solutions which facilitate the handling with increasing specific costs at simultaneously preservation of created values and compliance with social and ecologic standards. The change of the utilization of the cluster of plants to a mechanical-biological biowaste treatment plant within a regional cooperation project with formation of clusters in the waste management is an alternative to the unchanged continuation of the status quo or to a shutdown. Within the project transformation, existing power plants have been partly subject to a utilization conversion for the second time. ZAK increases its profile as a biomass competence centre. The MBA technology demonstrates its process-technical determined enhanced flexibility of mass flow.

  3. Advances in Wilms Tumor Treatment and Biology: Progress Through International Collaboration.

    Science.gov (United States)

    Dome, Jeffrey S; Graf, Norbert; Geller, James I; Fernandez, Conrad V; Mullen, Elizabeth A; Spreafico, Filippo; Van den Heuvel-Eibrink, Marry; Pritchard-Jones, Kathy

    2015-09-20

    Clinical trials in Wilms tumor (WT) have resulted in overall survival rates of greater than 90%. This achievement is especially remarkable because improvements in disease-specific survival have occurred concurrently with a reduction of therapy for large patient subgroups. However, the outcomes for certain patient subgroups, including those with unfavorable histologic and molecular features, bilateral disease, and recurrent disease, remain well below the benchmark survival rate of 90%. Therapy for WT has been advanced in part by an increasingly complex risk-stratification system based on patient age; tumor stage, histology, and volume; response to chemotherapy; and loss of heterozygosity at chromosomes 1p and 16q. A consequence of this system has been the apportionment of patients into such small subgroups that only collaboration between large international WT study groups will support clinical trials that are sufficiently powered to answer challenging questions that move the field forward. This article gives an overview of the Children's Oncology Group and International Society of Pediatric Oncology approaches to WT and focuses on four subgroups (stage IV, initially inoperable, bilateral, and relapsed WT) for which international collaboration is pressing. In addition, biologic insights resulting from collaborative laboratory research are discussed. A coordinated expansion of international collaboration in both clinical trials and laboratory science will provide real opportunity to improve the treatment and outcomes for children with renal tumors on a global level. © 2015 by American Society of Clinical Oncology.

  4. Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system.

    Science.gov (United States)

    Inyang, Mandu; Flowers, Riley; McAvoy, Drew; Dickenson, Eric

    2016-09-01

    The removal of trace organic compounds (TOrCs) and their biotransformation rates, kb (LgSS(-)(1)h(-)(1)) was investigated across different redox zones in a biological nutrient removal (BNR) system using an OECD batch test. Biodegradation kinetics of fourteen TOrCs with initial concentration of 1-36μgL(-)(1) in activated sludge were monitored over the course of 24h. Degradation kinetic behavior for the TOrCs fell into four groupings: Group 1 (atenolol) was biotransformed (0.018-0.22LgSS(-)(1)h(-)(1)) under anaerobic, anoxic, and aerobic conditions. Group 2 (meprobamate and trimethoprim) biotransformed (0.01-0.21LgSS(-)(1)h(-)(1)) under anoxic and aerobic conditions, Group 3 (DEET, gemfibrozil and triclosan) only biotransformed (0.034-0.26LgSS(-)(1)h(-)(1)) under aerobic conditions, and Group 4 (carbamazepine, primidone, sucralose and TCEP) exhibited little to no biotransformation (<0.001LgSS(-)(1)h(-)(1)) under any redox conditions. BNR treatment did not provide a barrier against Group 4 compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Prevention of the bad dry of the malanga by treatment of natural, biological origin

    Directory of Open Access Journals (Sweden)

    Michel Chamizo Nicao

    2014-04-01

    Full Text Available One of the most important causes of the decrease of yields in taro crops (Xanthosoma spp. isthe roots rot caused by soil fungi (Bad dry which it’s propagated by the agamic seed used as propagules. One of the most important measures to prevent it is the use of “in vitro” plants free of fungi. In this research was studied the incorporation of several natural and biological products in the plots employed to acclimatize the “invitro” plants. Were evaluated: Trichoderma harzianum, Chitosan, and lobster shell ( Panulirus argus (Latreilleand as control Mancozeb. The taro cultivars employed were Blanca INIVIT and Blanca Venegas, considerate as intermediated and susceptible respectively. Each plot was inoculated with propagules of Sclerotium rolsfii (Sacc.. In order to infer the action mechanism was conducted susceptible tests under “in vitro” conditions. The results showed that the most susceptible cultivar was Blanca Venegas. All treatments decrease the incidence of dry rot, among these. T. harzianum produced the highest effect, antagonist capacity and antagonist effect type. The Chitosan and the lobster shell do not showed antifungal direct effect and probably act for stimulation of the protein synthesis related with the pathogenesis or structural barrier of defense in natural conditions.

  6. SCLC extensive disease – treatment guidance by extent or/and biology of response?

    International Nuclear Information System (INIS)

    Eckert, Franziska; Müller, Arndt-Christian

    2008-01-01

    In extensive disease of small cell lung cancer a doubling of the one-year-survival rate was reported in August 2007 by prophylactic cranial irradiation applied to patients who experienced any response to initial chemotherapy. We discuss the treatment concept of extensive disease in the face of the latest results and older studies with additional thoracic irradiation in this subgroup. A randomized trial with prophylactic cranial irradiation published in 1999 demonstrated an improvement of 5-year-overall-survival for complete responders (at least at distant levels) receiving additional thoracic radiochemotherapy compared to chemotherapy alone (9.1% vs. 3.7%). But, these results were almost neglected and thoracic radiotherapy was not further investigated for good responders of extensive disease. However, in the light of current advances by prophylactic cranial irradiation these findings are noteworthy on all accounts. Considering both, a possible interpretation of these data could be a survival benefit of local control by simultaneous thoracic radiochemotherapy in the case of improved distant control due to chemotherapy and prophylactic cranial irradiation. Furthermore the question arises whether the tumor biology indicated by the response to chemotherapy should be integrated in the present classification

  7. High blood pressure in Panama: prevalence, sociodemographic and biologic profile, treatment, and control (STROBE).

    Science.gov (United States)

    Mc Donald Posso, Anselmo J; Motta Borrel, Jorge A; Fontes, Flavia; Cruz Gonzalez, Clara E; Pachón Burgos, Alvaro A; Cumbrera Ortega, Alberto

    2014-11-01

    The objective of this study is to estimate the prevalence, treatment, and control of high blood pressure, hypertension (HBP) in Panama and assess its associations with sociodemographic and biologic factors.A cross-sectional, descriptive study was conducted in Panama by administering a survey on cardiovascular risk factors to 3590 adults and measuring their blood pressure 3 times. A single-stage, probabilistic, and randomized sampling strategy with a multivariate stratification was used. The average blood pressure, confidence intervals (CIs), odds ratio (OR), and a value of P ≤ 0.05 were used for the analysis.The estimated prevalence of HBP was 29.6% (95% CI, 28.0-31.1); it was more prevalent in men than in women, OR = 1.37 (95% CI, 1.17-1.61); it increased with age and was more frequent among Afro-Panamanians (33.8%). HBP was associated with a family history of HBP with being physically inactive and a body mass index ≥25.0 kg/m or a waist circumference >90 cm in men and >88 cm in women (P control (<140/90 mm Hg).HBP is the most common cardiovascular risk factor among Panamanians and consequently an important public health problem in Panama. The health care system needs to give a high priority to HBP prevention programs and integrated care programs aimed at treating HBP, taking into consideration the changes in behavior that have been brought about by alterations in nutrition and sedentary lifestyles.

  8. Merkel cell carcinoma - recent advances in the biology, diagnostics and treatment.

    Science.gov (United States)

    Czapiewski, Piotr; Biernat, Wojciech

    2014-08-01

    Merkel cell carcinoma (MCC) is an uncommon primary cutaneous carcinoma with neuroendocrine differentiation. Since recent discovery of MCCs strong association with Merkel cell polyomavirus (MCPyV), there has been a rapid increase in the understanding of the carcinomas genetics, molecular biology and pathogenesis. In our study, we reviewed recent advances and controversies concerning MCC histogenesis, epidemiology, diagnostic and prognostic markers. We analyzed the association of MCPyV with MCC and the possible new targets for therapy. We also examined English-based literature regarding MCC pathogenesis published between 2008 and 2013, which lead to a deeper understanding of the topic. Our study showed that the association of MCPyV strongly influences the course of MCC. Additionally, it has been shown that a immunological response to MCPyV may in the future give hope to identify new therapeutic strategies in treatment of this fatal malignancy. This article is part of a Directed Issue entitled: Rare Cancers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology

    Directory of Open Access Journals (Sweden)

    Zhigang Xie

    2014-01-01

    Full Text Available In order to improve adsorption of macromolecular contaminants and promote the growth of microorganisms, active carbon for biological wastewater treatment or follow-up processing requires abundant mesopore and good biophile ability. In this experiment, biophile mesopore active carbon is produced in one-step activation with orange peel as raw material, and zinc chloride as activator, and the adsorption characteristics of orange peel active carbon is studied by static adsorption method. BET specific surface area and pore volume reached 1477 m2/g and 2.090 m3/g, respectively. The surface functional groups were examined by Fourier transform infrared spectroscopy (FT-IR. The surface of the as-prepared activated carbon contained hydroxyl group, carbonyl group, and methoxy group. The analysis based on X-ray diffraction spectrogram (XRD and three-dimensional fluorescence spectrum indicated that the as-prepared activated carbon, with smaller microcrystalline diameter and microcrystalline thickness and enhanced reactivity, exhibited enhanced adsorption performance. This research has a deep influence in effectively controlling water pollution, improving area water quality, easing orange peel waste pollution, and promoting coordinated development among society, economy, and environment.

  10. Tumour biology of obesity-related cancers: understanding the molecular concept for better diagnosis and treatment.

    Science.gov (United States)

    Teoh, Seong Lin; Das, Srijit

    2016-11-01

    Obesity continues to be a major global problem. Various cancers are related to obesity and proper understanding of their aetiology, especially their molecular tumour biology is important for early diagnosis and better treatment. Genes play an important role in the development of obesity. Few genes such as leptin, leptin receptor encoded by the db (diabetes), pro-opiomelanocortin, AgRP and NPY and melanocortin-4 receptors and insulin-induced gene 2 were linked to obesity. MicroRNAs control gene expression via mRNA degradation and protein translation inhibition and influence cell differentiation, cell growth and cell death. Overexpression of miR-143 inhibits tumour growth by suppressing B cell lymphoma 2, extracellular signal-regulated kinase-5 activities and KRAS oncogene. Cancers of the breast, uterus, renal, thyroid and liver are also related to obesity. Any disturbance in the production of sex hormones and insulin, leads to distortion in the balance between cell proliferation, differentiation and apoptosis. The possible mechanism linking obesity to cancer involves alteration in the level of adipokines and sex hormones. These mediators act as biomarkers for cancer progression and act as targets for cancer therapy and prevention. Interestingly, many anti-cancerous drugs are also beneficial in treating obesity and vice versa. We also reviewed the possible link in the mechanism of few drugs which act both on cancer and obesity. The present review may be important for molecular biologists, oncologists and clinicians treating cancers and also pave the way for better therapeutic options.

  11. Integrating biological treatment of crop residue into a hydroponic sweetpotato culture

    Science.gov (United States)

    Trotman, A. A.; David, P. P.; Bonsi, C. K.; Hill, W. A.; Mortley, D. G.; Loretan, P. A.

    1997-01-01

    Residual biomass from hydroponic culture of sweetpotato [Ipomoea batatas (L.) Lam.] was degraded using natural bacterial soil isolates. Sweetpotato was grown for 120 days in hydroponic culture with a nutrient solution comprised of a ratio of 80% modified half Hoagland solution to 20% filtered effluent from an aerobic starch hydrolysis bioreactor. The phytotoxicity of the effluent was assayed with `Waldmann's Green' lettuce (Lactuca sativa L.) and the ratio selected after a 60-day bioassay using sweetpotato plants propagated vegetatively from cuttings. Controlled environment chamber experiments were conducted to investigate the impact of filtrate from biological treatment of crop residue on growth and storage root production with plants grown in a modified half Hoagland solution. Incorporation of bioreactor effluent, reduced storage root yield of `Georgia Jet' sweetpotato but the decrease was not statistically significant when compared with yield for plants cultured in a modified half Hoagland solution without filtrate. However, yield of `TU-82-155' sweetpotato was significantly reduced when grown in a modified half Hoagland solution into which filtered effluent had been incorporated. Total biomass was significantly reduced for both sweetpotato cultivars when grown in bioreactor effluent. The leaf area and dry matter accumulation were significantly (P < 0.05) reduced for both cultivars when grown in solution culture containing 20% filtered effluent.

  12. Treatment with biologic agents improves the prognosis of patients with rheumatoid arthritis and amyloidosis.

    Science.gov (United States)

    Kuroda, Takeshi; Tanabe, Naohito; Kobayashi, Daisuke; Sato, Hiroe; Wada, Yoko; Murakami, Shuichi; Saeki, Takako; Nakano, Masaaki; Narita, Ichiei

    2012-07-01

    Reactive amyloid A (AA) amyloidosis is a serious and life-threatening systemic complication of rheumatoid arthritis (RA). We evaluated the safety of therapy with anti-tumor necrosis factor and anti-interleukin 6 biologic agents in RA patients with reactive AA amyloidosis, together with prognosis and hemodialysis (HD)-free survival, in comparison with patients with AA amyloidosis without such therapy. One hundred thirty-three patients with an established diagnosis of reactive AA amyloidosis participated in the study. Clinical data were assessed from patient records at the time of amyloid detection and administration of biologics. Survival was calculated from the date when amyloid was first demonstrated histologically or the date when biologic therapy was started until the time of death or to the end of 2010 for surviving patients. Patients who had started HD were selected for inclusion only after the presence of amyloid was demonstrated. Fifty-three patients were treated with biologic agents (biologic group) and 80 were not (nonbiologic group). Survival rate was significantly higher in the biologic group than in the nonbiologic group. Nine patients in the biologics group and 33 in the nonbiologic group started HD. Biologic therapy had a tendency for reduced risk of initiation of HD without any statistical significance. Patients with amyloidosis have a higher mortality rate, but the use of biologic agents can reduce risk of death. The use of biologics may not significantly influence the HD-free survival rate.

  13. Is the Treatment with Biological or Non-biological DMARDS a Modifier of Periodontal Condition in Patients with Rheumatoid Arthritis?

    Science.gov (United States)

    Romero-Sanchez, Consuelo; Rodríguez, C; Santos-Moreno, P; Mesa, A M; Lafaurie, G I; Giraldo-Q, S; De-Avila, J; Castillo, D M; Duran, M; Chalem, P Ch; Bello Gualtero, J M; Valle-Oñate, R

    2017-01-01

    Experimental models suggest the use of different therapy protocols in rheumatoid arthritis (RA) as modulators on periodontal condition. This study evaluated the effects of conventional drug treatment and anti-TNF therapy in patients with RA on microbiological and periodontal condition, establishing the association of markers of periodontal infection with indexes of rheumatic activity. One hundred seventy nine individuals with RA were evaluated (62 with anti-TNF-. and 115 with only DMARDs). The periodontal evaluation included plaque and gingival indexes, bleeding on probing (BOP), clinical attachment loss (CAL), pocket depth (PD) and subgingival plaque samples for microbiological analysis. Rheumatologic evaluations included a clinical examination, rheumatoid factor (RF), antibodies against cyclic-citrullinated peptides (ACPAs), and activity markers (DAS28-ERS), high sensitive C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR). Anti-TNF-alpha therapy influenced periodontal microbiota with a higher frequency of T. denticola (p=0.01). Methotrexate combined with leflunomide exhibited a higher extension of CAL (p=0.005), and anti-TNF-alpha therapy with methotrexate was associated with a lower extension of CAL (p=0.05). The use of corticosteroids exerted a protective effect on the number of teeth (p=0.027). The type of DMARD affected P. gingivalis, T. forsythia and E. nodatum presence. Elevated ACPAs titers were associated with the presence of red complex periodontal pathogens (p=0.025). Bleeding on probing was associated with elevated CPR levels (p=0.05), and ESR was associated with a greater PD (p=0.044) and presence of red complex (p=0.030). Different pharmacological treatments for RA affect the clinical condition and subgingival microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Power stations

    International Nuclear Information System (INIS)

    Cawte, H.; Philpott, E.F.

    1980-01-01

    The object is to provide a method of operating a dual purpose power station so that the steam supply system is operated at a high load factor. The available steam not required for electricity generation is used to provide process heat and the new feature is that the process plant capacity is determined to make the most economic use of the steam supply system, and not to match the passout capacity of the turbine of the turbogenerator. The product of the process plant should, therefore, be capable of being stored. A dual-purpose power station with a nuclear-powered steam source, turbogenerating means connected to the steam source and steam-powered process plant susceptible to wide variation in its rate of operation is described. (U.K.)

  15. Aqueous media treatment and decontamination of hazardous chemical and biological substances by contact plasma

    International Nuclear Information System (INIS)

    Pivovarov, A.; Kravchenko, A.; Kublanovsky, V.

    2009-01-01

    Usage of non-equilibrium contact plasma for processes of decontamination and neutralization in conditions of manifestation of chemical, biological and radiation terrorism takes on special significance due to portability of equipment and its mobility in places where toxic liquid media hazardous for people's health are located. Processes of decontamination of aqueous media, seminated with pathogenic microorganisms and viruses, treatment of water containing toxic heavy metals, cyanides, surface-active substances, and heavy radioactive elements, are investigated. Examples of activation processes in infected water and toxic aqueous solutions present convincing evidence of the way, how new quality technological approach for achievement of high enough degree of the said media treatment is used in each specific case. Among new properties of water activated as a result of action of non-equilibrium contact plasma, it is necessary to mention presence of cluster structure, confirmed by well-known spectral and physical-chemical methods, presence of peroxide compounds, active particles and radicals. Anti-microbial activity which is displayed under action of plasma in aqueous media (chemically pure water, drinking water, aqueous solutions of sodium chloride, potassium iodide, as well as other inorganic compounds) towards wide range of pathogenic and conventionally pathogenic microorganisms allows use them as reliable, accessible and low-cost preparations for increasing the degree of safety of food products. Combination of such processes with known methods of filtration and ultra-filtration gives an efficient and available complex capable of withstanding any threats, which may arise for population and living organisms. Present-day level of machine-building, electrical engineering, and electronics allows predict creation of industrial plasma installations, adapted to conditions of various terrorist threats, with minimized power consumption and optimized technological parameters

  16. Aqueous media treatment and decontamination of hazardous chemical and biological substances by contact plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pivovarov, A; Kravchenko, A [Ukrainian State University of Chemical Engineering, Dnepropetrovsk (Ukraine); Kublanovsky, V [V. I. Vernadsky Institute of General and Inorganic Chemistry of National Academy of Science, Kiev (Ukraine)

    2009-07-01

    Usage of non-equilibrium contact plasma for processes of decontamination and neutralization in conditions of manifestation of chemical, biological and radiation terrorism takes on special significance due to portability of equipment and its mobility in places where toxic liquid media hazardous for people's health are located. Processes of decontamination of aqueous media, seminated with pathogenic microorganisms and viruses, treatment of water containing toxic heavy metals, cyanides, surface-active substances, and heavy radioactive elements, are investigated. Examples of activation processes in infected water and toxic aqueous solutions present convincing evidence of the way, how new quality technological approach for achievement of high enough degree of the said media treatment is used in each specific case. Among new properties of water activated as a result of action of non-equilibrium contact plasma, it is necessary to mention presence of cluster structure, confirmed by well-known spectral and physical-chemical methods, presence of peroxide compounds, active particles and radicals. Anti-microbial activity which is displayed under action of plasma in aqueous media (chemically pure water, drinking water, aqueous solutions of sodium chloride, potassium iodide, as well as other inorganic compounds) towards wide range of pathogenic and conventionally pathogenic microorganisms allows use them as reliable, accessible and low-cost preparations for increasing the degree of safety of food products. Combination of such processes with known methods of filtration and ultra-filtration gives an efficient and available complex capable of withstanding any threats, which may arise for population and living organisms. Present-day level of machine-building, electrical engineering, and electronics allows predict creation of industrial plasma installations, adapted to conditions of various terrorist threats, with minimized power consumption and optimized technological parameters

  17. Availability of uranium present in the sludge generated at two stations of potable water treatment; Disponibilidad del uranio presente en el fango generado en dos estaciones de tratamiento de agua potable

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Serrano, A.; Baeza, A.; Salas, A.; Guillen, J.

    2013-07-01

    During the treatment is carried out in a Station Potable Water Treatment Plant sludge enriched are produced in components that have been removed from the water. The concentration and availability of radionuclides accumulated in a sludge during coagulation-flocculation will condition possible later use, so it is essential to carry out the characterization of sludge and its chemical speciation. (Author)

  18. Science review of the Beaufort Institute of Oceanography, the Halifax Fisheries Research Laboratory, and the St. Andrews Biological Station, 1990-91. Revue des sciences de l'Institut oceanographique de Bedford, du Laboratoire de recherche halieutique de Halifax, et de la Station biologique de St. Andrews, 1990-91

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T E; Cook, J [eds.

    1992-01-01

    A review is presented of the research and survey programs being undertaken in 1990-91 at the Bedford Institute of Oceanography, the Halifax Fisheries Research Laboratory, and the St. Andrews Biological Station (all in Nova Scotia). The broad objectives of these programs are to perform applied research leading to the provision of advice on the management of marine and freshwater environments, including fisheries and offshore hydrocarbon resources; to perform targeted basic research in accordance with the mandates of Canada's Department of Fisheries and Oceans, Environment Canada, and Energy, Mines and Resources; to perform surveys and cartographic work; and to respond to major marine environmental emergencies. The research and survey work encompasses the fields of marine geology and geophysics, physical oceanography, marine chemistry, biological oceanography, fisheries research, seabird research, and navigational surveys and cartography. Topics of specific projects reviewed include marine pollution detection, phytoplankton profiling, seal populations, ocean mapping, geographic information systems, fish and invertebrate nutrition, shellfish culture, lobster habitat ecology, physics and biology of the Georges Bank frontal system, water-level instrumentation, data acquisition techniques, sea ice monitoring, salmon management, nearshore sedimentary processes, and oil/gas distribution in offshore basins. Separate abstracts have been prepared for three project reports from this review.

  19. Biotechnology opportunities on Space Station

    Science.gov (United States)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  20. The World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for the Biological Treatment of Bipolar Disorders: Update 2010 on the treatment of acute bipolar depression

    DEFF Research Database (Denmark)

    Grunze, Heinz; Vieta, Eduard; Goodwin, Guy M

    2010-01-01

    OBJECTIVES: These guidelines are based on a first edition that was published in 2002, and have been edited and updated with the available scientific evidence until September 2009. Their purpose is to supply a systematic overview of all scientific evidence pertaining to the treatment of acute bipo...... edition of this guideline in 2002, there are many areas which still need more intense research to optimize treatment. The majority of treatment recommendations is still based on limited data and leaves considerable areas of uncertainty.......OBJECTIVES: These guidelines are based on a first edition that was published in 2002, and have been edited and updated with the available scientific evidence until September 2009. Their purpose is to supply a systematic overview of all scientific evidence pertaining to the treatment of acute...... bipolar depression in adults. METHODS: The data used for these guidelines have been extracted from a MEDLINE and EMBASE search, from the clinical trial database clinicaltrials.gov, from recent proceedings of key conferences, and from various national and international treatment guidelines...

  1. The World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for the Biological Treatment of Bipolar Disorders: Update 2010 on the treatment of acute bipolar depression

    DEFF Research Database (Denmark)

    Grunze, Heinz; Vieta, Eduard; Goodwin, Guy M

    2010-01-01

    OBJECTIVES: These guidelines are based on a first edition that was published in 2002, and have been edited and updated with the available scientific evidence until September 2009. Their purpose is to supply a systematic overview of all scientific evidence pertaining to the treatment of acute...... with at least limited positive evidence for efficacy in bipolar depression, several of them still experimental and backed up only by a single study. Only one medication was considered to be sufficiently studied to merit full positive evidence. CONCLUSIONS: Although major advances have been made since the first...... edition of this guideline in 2002, there are many areas which still need more intense research to optimize treatment. The majority of treatment recommendations is still based on limited data and leaves considerable areas of uncertainty....

  2. Technique treatment of early stage support construction system for Gaoling mountain tunnel engineering of Daya Bay nuclear power station

    International Nuclear Information System (INIS)

    Ma Keli

    2010-01-01

    This article studies the technical treatment of primary support system used in Gaoling mountain tunnel construction process at Daya by nuclear power plant in combination with the new austrian tunneling construction method, this article first analyzes the design of primary support system, and the key point of the analyses lies in the primary support technical treatment schemes of Gaoling mountain tunnel with the examples of tunnel collapse and primary support design alteration for bias voltage section, then the construction technology of the primary support system is summarized, and the safety of wall rock is analyzed as well with the measurement data. In the end, suggestions are put forward on the design and construction of primary support system for tunnels on the basis of practical working experience. (author)

  3. Energy Effectiveness of Direct UV and UV/H2O2 Treatment of Estrogenic Chemicals in Biologically Treated Sewage

    Directory of Open Access Journals (Sweden)

    Kamilla M. S. Hansen

    2012-01-01

    Full Text Available Continuous exposure of aquatic life to estrogenic chemicals via wastewater treatment plant effluents has in recent years received considerable attention due to the high sensitivity of oviparous animals to disturbances of estrogen-controlled physiology. The removal efficiency by direct UV and the UV/H2O2 treatment was investigated in biologically treated sewage for most of the estrogenic compounds reported in wastewater. The investigated compounds included parabens, industrial phenols, sunscreen chemicals, and steroid estrogens. Treatment experiments were performed in a flow through setup. The effect of different concentrations of H2O2 and different UV doses was investigated for all compounds in an effluent from a biological wastewater treatment plant. Removal effectiveness increased with H2O2 concentration until 60 mg/L. The treatment effectiveness was reported as the electrical energy consumed per unit volume of water treated required for 90% removal of the investigated compound. It was found that the removal of all the compounds was dependent on the UV dose for both treatment methods. The required energy for 90% removal of the compounds was between 28 kWh/m3 (butylparaben and 1.2 kWh/m3 (estrone for the UV treatment. In comparison, the UV/H2O2 treatment required between 8.7 kWh/m3 for bisphenol A and benzophenone-7 and 1.8 kWh/m3 for ethinylestradiol.

  4. The effect of lameness treatments and treatments for other health disorders on the weight gain and feed conversion in boars at a Danish test station

    DEFF Research Database (Denmark)

    Jensen, Tina Birk; Baadsgaard, Niels Peter; Houe, Hans

    2007-01-01

    treatments, records of non-lameness treatments (yes/no), breed (Duroc, Hampshire, Landrace, Yorkshire) and weight at 4 weeks with each of the outcome variables: MDWG and FCR. In order to improve the assumption of normality, we used a quadratic transformed MDWG and an inverse transformed FCR in the analyses...

  5. Treatment of biological waste and residues V. Biological - mechanical - thermal processes; Bio- und Restabfallbehandlung V. Biologisch - mechanisch - thermisch

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, K.; Kern, M. (eds.); Weber-Wied, R. (comp.)

    2001-07-01

    From 2005, the TA Siedlungsabfall (Waste Management Regulation) will come into force, and European legislation will overrule national legislation. Dumping of untreated waste in landfills will be prohibited, i.e. incinerators for thermal waste treatment must be constructed. In view of the rigid specifications for emissions and residues and the demand for Europe-wide invitations for tender, time is running short. The book outlines the options for action of the German states and of some applicant states for EC membership. The German government already issued an Ordinance for Power Generation from Biomass. Independent of this, also secondary fuels are gaining ground, and several contributions of the conference discussed quality assurance and utilization of secondary fuels. Composting and sewage sludge utilization are further current issues. Air pollution, soil and groundwater protection, job security and energy potential are gone into, and an outline of the current situation of waste management is attempted. [German] Die aktuelle abfallwirtschaftliche Situation wird in besonderem Masse gepraegt durch das nahende Jahr 2005 sowie die zunehmende Abhaengigkeit nationalstaatlicher Handlungsspielraeume von den Vorgaben europaeischer Rahmenrichtlinien. Hierbei wird der Handlungsdruck spuerbar, spaetestens ab dem Jahr 2005 der TA Siedlungsabfall Rechnung tragen zu muessen. Die verbleibenden Zeitraeume sind daher eng bemessen, beruecksichtigt man insbesondere die langen Genehmigungs- und Errichtungszeitraeume fuer thermische Behandlungsanlagen. Vor dem Hintergrund der europaweiten Ausschreibungspflicht wird die gegenwaertige technische Diskussion zur MBA sehr stark durch die nunmehr von der Bundesregierung konkretisierten Emissions- und Ablagerungsanforderungen gepraegt. Der vorliegende Band soll aufzeigen, welche Handlungsspielraeume sich hierbei aus Sicht der verschiedenen Bundeslaender ergeben. Ein Blick ueber die Grenzen hinaus zu einigen zukuenftigen EU

  6. Stabilization of organic matter and nitrogen immobilization during mechanical-biological treatment and landfilling of residual municipal solid waste

    International Nuclear Information System (INIS)

    Heiss-Ziegler, C.

    2000-04-01

    Synthesis of humic substances and nitrogen immobilization during mechanical-biological treatment of waste and the behavior of biologically stabilized waste under anaerobic landfill conditions were investigated. Samples were taken from a large-scale treatment plant. Anaerobic conditions were simulated in lab scale test cells. Humic substances were analyzed photometrically and gravimetrically. The nitrogen immobilization was investigated by sequential leaching tests and by analyzing the non acid hydrolyzable nitrogen. Humic acids were mainly synthesized during the beginning of the intensive rotting phase. Later on in the process no significant changes occurred. The humic acid content rose up to 6,8 % DS org. It correlated well with the stability parameters respiration activity and accumulated gas production. In the coarse of the treatment the nitrogen load emitted during the consecutive leaching tests dropped from 50 % down to less than 20 % total nitrogen. The non acid hydrolyzable nitrogen rose from 17 up to 42 % Kjeldahl nitrogen content. Nevertheless the mechanical-biological treatment is not significantly shortening the aftercare period of a landfill concerning liquid nitrogen emissions. The reduced nitrogen emission potential is released more slowly. When reactive waste material was exposed to anaerobic conditions, humic and fulvic acids were synthesized up to the point when intensive gas production started and then were remineralized. Stabilized waste materials after treatment of various intensity behaved differently under anaerobic conditions. Steady and decreasing humic acid contents were observed. (author)

  7. Biological iron(II) oxidation as pre-treatment to limestone neutralisation of acid water

    CSIR Research Space (South Africa)

    Maree

    1998-01-01

    Full Text Available at investigating the effect of surface area of the medium that supports bacterial growth on the rate of biological iron (II) oxidation. The study showed that the biological iron (II) oxidation rate is directly proportional to the square root of the medium specific...

  8. Management options for food production systems affected by a nuclear accident. Task 7: biological treatment of contaminated milk

    International Nuclear Information System (INIS)

    Nisbet, A.F.; Marchant, J.K.; Woodman, R.F.M.; Wilkins, B.T.; Mercer, J.A.

    2003-01-01

    In the event of a nuclear accident affecting the UK, regulation of contamination in the foodchain would involve both the Food Standards Agency (FSA) and the Environment Agency (EA). Restrictions would be based on intervention levels imposed by the Council of the European Communities (often referred to as Council Food Intervention Levels, CFILs). FSA would be responsible for preventing commercial foodstuffs with concentrations of radionuclides above the CFILs from entering the foodchain, while EA would regulate the storage and disposal of the waste food. Milk is particularly important in this respect because it is produced continually in large quantities in many parts of the UK. An evaluation of various options for the management of waste foodstuffs has been carried out by NRPB, with support from FSA and its predecessor, the Ministry of Agriculture, Fisheries and Food, and EA. This report describes an evaluation of the practicability of one of those options, namely the biological treatment of contaminated milk. Whole milk has a high content of organic matter and in consequence a high biochemical oxygen demand (BOD) and chemical oxygen demand (COD). If not disposed of properly, releases of whole milk into the environment can have a substantial detrimental effect because of the high BOD. Biological treatments are therefore potentially an attractive management option because the fermentation by bacteria reduces the BOD in the resultant liquid effluent. The objectives of this study were as follows: a. To compile information about the options available for the biological treatment of milk; b. To establish the legal position; c. To assess practicability in terms of technical feasibility, capacity, cost, environmental and radiological impacts and acceptability; d. To assess the radiation doses that might be received by process operators, contractors, farmers and the general public from the biological treatment of contaminated milk. The radionuclides of interest were 131II

  9. Supporting Treatment Decisions in Patients with Differentiated Thyroid Carcinoma (DTC) under Radioiodine-131 Therapy: Role of Biological Dosimetry Assessment

    International Nuclear Information System (INIS)

    Fadel, A.M.; Chebel, G.M.; Di Giorgio, M.; Vallerga, M.B.; Taja, M.R.; Radl, A.; Bubniak, R.V.; Oneto, A.

    2010-01-01

    Radioiodine-131 therapy is applied in patients with differentiated thyroid carcinoma (DTC), within the therapeutic scheme following thyroidectomy, for the ablation of thyroid remnants and treatment of metastatic disease. Several approaches for the selection of a therapeutic dose were applied. The aim of this therapy is to achieve a lethal dose in the tumor tissue, without exceeding the dose of tolerance in healthy tissues (doses greater than 2 Gy in bone marrow could lead to myelotoxicity). In this work, the treatment protocol used incorporates the assessment by biological dosimetry (BD) for estimating doses to whole body and bone marrow, to tailor patient's treatment. Biological Dosimetry prospective studies conducted on samples from patients with cumulative activities, before and after each therapeutic administration, allows to evaluate DNA damage and repair capacity in peripheral blood lymphocytes. (authors)

  10. Biologically active filters - An advanced water treatment process for contaminants of emerging concern.

    Science.gov (United States)

    Zhang, Shuangyi; Gitungo, Stephen W; Axe, Lisa; Raczko, Robert F; Dyksen, John E

    2017-05-01

    With the increasing concern of contaminants of emerging concern (CECs) in source water, this study examines the hypothesis that existing filters in water treatment plants can be converted to biologically active filters (BAFs) to treat these compounds. Removals through bench-scale BAFs were evaluated as a function of media, granular activated carbon (GAC) and dual media, empty bed contact time (EBCT), and pre-ozonation. For GAC BAFs, greater oxygen consumption, increased pH drop, and greater dissolved organic carbon removal normalized to adenosine triphosphate (ATP) were observed indicating increased microbial activity as compared to anthracite/sand dual media BAFs. ATP concentrations in the upper portion of the BAFs were as much as four times greater than the middle and lower portions of the dual media and 1.5 times greater in GAC. Sixteen CECs were spiked in the source water. At an EBCT of 18 min (min), GAC BAFs were highly effective with overall removals greater than 80% without pre-ozonation; exceptions included tri(2-chloroethyl) phosphate and iopromide. With a 10 min EBCT, the degree of CECs removal was reduced with less than half of the compounds removed at greater than 80%. The dual media BAFs showed limited CECs removal with only four compounds removed at greater than 80%, and 10 compounds were reduced by less than 50% with either EBCT. This study demonstrated that GAC BAFs with and without pre-ozonation are an effective and advanced technology for treating emerging contaminants. On the other hand, pre-ozonation is needed for dual media BAFs to remove CECs. The most cost effective operating conditions for dual media BAFs were a 10 min EBCT with the application of pre-ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    Science.gov (United States)

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Impact of temperature on nitrification in biological activated carbon (BAC) filters used for drinking water treatment.

    Science.gov (United States)

    Andersson, A; Laurent, P; Kihn, A; Prévost, M; Servais, P

    2001-08-01

    The impact of temperature on nitrification in biological granular activated carbon (GAC) filters was evaluated in order to improve the understanding of the nitrification process in drinking water treatment. The study was conducted in a northern climate where very cold water temperatures (below 2 degrees C) prevail for extended periods and rapid shifts of temperature are frequent in the spring and fall. Ammonia removals were monitored and the fixed nitrifying biomass was measured using a method of potential nitrifying activity. The impact of temperature was evaluated on two different filter media: an opened superstructure wood-based activated carbon and a closed superstructure activated carbon-based on bituminous coal. The study was conducted at two levels: pilot scale (first-stage filters) and full-scale (second-stage filters) and the results indicate a strong temperature impact on nitrification activity. Ammonia removal capacities ranged from 40 to 90% in pilot filters, at temperatures above 10 degrees C, while more than 90% ammonia was removed in the full-scale filters for the same temperature range. At moderate temperatures (4-10 degrees C), the first stage pilot filters removed 10-40% of incoming ammonia for both media (opened and closed superstructure). In the full-scale filters, a difference between the two media in nitrification performances was observed at moderate temperatures: the ammonia removal rate in the opened superstructure support (more than 90%) was higher than in the closed superstructure support (45%). At low temperatures (below 4 degrees C) both media performed poorly. Ammonia removal capacities were below 30% in both pilot- and full-scale filters.

  13. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    International Nuclear Information System (INIS)

    Ogunlaja, O.O.; Parker, W.J.

    2015-01-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD −1 d −1 for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD −1 d −1 . A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2

  14. A gravity independent biological grey water treatment system for space applications

    Science.gov (United States)

    Nashashibi, Majda'midhat

    2002-09-01

    Biological treatment of grey water in space presents serious challenges, stemming mainly from microgravity conditions. The major concerns are phase separation and mass transfer limitations. To overcome solid-liquid phase separation, novel immobilized cell packed bed (ICPB) bioreactors have been developed to treat synthetic grey water. Packed bed bioreactors provide a unique environment for attached microbial growth resulting in high biomass concentrations, which greatly enhance process efficiency with substantial reductions in treatment time and reactor volume. To overcome the gas-liquid phase separation and mass transfer limitations, an oxygenation module equipped with tubular membranes has been developed to deliver bubble-less oxygen under pressure. The selected silicone membranes are hydrophobic, non-porous and oxygen selective. Oxygen dissolves in the walls of the membranes and then diffuses into the water without forming bubbles. Elevated pressures maintain all gaseous by-products in solution and provide high dissolved oxygen concentrations within the system. The packing media are lightweight, inexpensive polyethylene terephthalate (PET) flakes that have large specific surface area, act as a filter for solids and yield highly tortuous flow paths thereby increasing the contact time between the biomass and contaminants. Tests on both pressurized and ambient pressure ICPB bioreactors revealed organic carbon removal efficiencies over 90%. Despite the high ammonia level in the influent, nitrification occured in both the ambient pressure and pressurized nitrification bioreactors at efficiencies of 80% and 60%, respectively. Biomass yield was approximately 0.20 g volatile suspended solids per gram of grey water-COD processed in the pressurized bioreactor. The biomass yield of such novel aerobic ICPB systems is comparable to that of anaerobic processes. These efficient systems produce minimal amounts of biomass compared to other aerobic processes, making them less

  15. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlaja, O.O., E-mail: oogunlaj@uwaterloo.ca; Parker, W.J., E-mail: wjparker@uwaterloo.ca

    2015-05-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD{sup −1} d{sup −1} for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD{sup −1} d{sup −1}. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2.

  16. Persistence, switch rates, drug consumption and costs of biological treatment of rheumatoid arthritis: an observational study in Italy.

    Science.gov (United States)

    Degli Esposti, Luca; Favalli, Ennio Giulio; Sangiorgi, Diego; Di Turi, Roberta; Farina, Giuseppina; Gambera, Marco; Ravasio, Roberto

    2017-01-01

    The aim of this analysis was to provide an estimate of drug utilization indicators (persistence, switch rate and drug consumption) on biologics and the corresponding costs (drugs, admissions and specialist care) incurred by the Italian National Health Service in the management of adult patients with rheumatoid arthritis (RA). We conducted an observational retrospective cohort analysis using the administrative databases of three local health units. We considered all patients aged ≥18 years with a diagnosis of RA and at least one biologic drug prescription between January 2010 and December 2012 (recruitment period). Persistence was defined as maintenance over the last 3 months of the follow-up period of the same biological therapy administered at the index date. A switch was defined as the presence of a biological therapy other than that administered at the index date during the last 3 months of the follow-up period. Hospital admissions (with a diagnosis of RA or other RA-related diagnoses), specialist outpatient services, instrumental diagnostics and pharmaceutical consumption were assessed. The drug utilization analysis took into account only biologics with at least 90 patients on treatment at baseline (adalimumab n=144, etanercept n=236 and infliximab n=94). In each year, etanercept showed better persistence with initial treatment than adalimumab or infliximab. Etanercept was characterized by the lowest number of patients increasing the initial drug consumption (2.6%) and by the highest number of patients reducing the initial drug consumption (10.5%). The mean cost of treatment for a patient persisting with the initial treatment was €12,388 (€14,182 for adalimumab, €12,103 for etanercept and €11,002 for infliximab). The treatment costs for patients switching from initial treatment during the first year of follow-up were higher than for patients who did not switch (€12,710 vs. €11,332). Persistence, switch rate and drug consumption seem to directly

  17. Fuel debris characterization and treatment technologies development for TEPCO's Fukushima Daiichi Nuclear Power Station. 2012 annual research and development report

    International Nuclear Information System (INIS)

    2014-03-01

    Since March 11, 2011, severe accidents occurred at Fukushima Daiichi Nuclear Power Station (1F NPS), the Government of Japan and Tokyo Electric Power Company (TEPCO) and all Japan's companies have been worked on the remediation. The first meeting of 'Government and TEPCO's Mid-to-Long Term Countermeasure Meeting' was held on December 16, 2011, and then' the Council for the Decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station' was established on February 8, 2013, and 19 research and development projects and Working team / Sub working team were launched. Japan Atomic Energy Agency (JAEA); Fukushima Project Teams in Nuclear Fuel Cycle Laboratories and Nuclear Science Research Institute are belonging to the projects of 'Fuel debris characterization (2-(3)-1)', 'Analysis of fuel debris (2-(3)-2)' and 'Treatment technology development of fuel debris (2-(3)-3)'. In the 2012 JFY, we carried out research and development on the 'Fuel debris characterization (2-(3)-1)' and 'Treatment technology development of fuel debris (2-(3)-3)', and obtained some results on the debris properties and debris treatment technologies. This document report annual research and development results of above two projects in 2012 JFY. In the Project of 'Fuel debris characterization (2-(3)-1)', the debris chemical form, phase state and composition were estimated by thermodynamic calculation with referring sever accident code results and the fuel debris properties which needed for developing the methods/devices for defueling was identified with information of Three Mile Island and sever accident study. As for investigation of reaction and products specific to 1F accident, fundamental data on the debris such as mechanical properties i.e. hardness, and effects of sea water, B 4 C, ratio of Zr content and O/M, and thermal properties as melting points, thermal conductivity, etc. were obtained by

  18. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

    1999-06-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  19. New trends in the use of biological response modifiers for treatment of malignant neoplasm

    International Nuclear Information System (INIS)

    Saad, Sherif Y.

    2002-01-01

    Biological response modifiers are critical controllers of cell division and hence tissue, growth, migration development and differentiation. The family of biological response modifiers includes interferons, tumor necrosis factor, interleukins, colony stimulating factors and hematopoietic growth factors as well as tumor vaccines and monoclonal antibodies. Biological response modifiers have important roles in cancer development and progression, control of cell replication and apoptosis and modulation of immune reactions such as sensitization. This article reviews the biology, pharmacology and clinical application of biological response modifiers in oncology. The antitumor activity of biological response modifiers may be augmented immune response including activation of natural killer lymphocytes and enhanced expression of cell surface antigens (MHC I and II). Combination of biological therapy with chemotherapy improves the response of those tumors refractory to conventional therapies. Colony stimulating factors are used for manipulating immune system to fight against cancer and to prevent chemotherapy-induced neutropenia. Recent advances in tumor immunology, most notably the identification of genes encoding for cancer regression antigens, have paved the way for the development of a variety of novel and specific vaccines and monoclonal antibody approaches. These approaches are discussed from a therapeutic perspective. (author)

  20. Full-scale effects of addition of sludge from water treatment stations into processes of sewage treatment by conventional activated sludge.

    Science.gov (United States)

    Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque

    2018-06-01

    An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. [French Society for Biological Psychiatry and Neuropsychopharmacology task force. Formal consensus for the treatment of bipolar disorder: an update (2014)].

    Science.gov (United States)

    Samalin, L; Guillaume, S; Courtet, P; Abbar, M; Lancrenon, S; Llorca, P-M

    2015-02-01

    As part of a process to improve the quality of care, the French Society for Biological Psychiatry and Neuropsychopharmacology developed in 2010 formal consensus guidelines for the treatment of bipolar disorder. The evolution of therapeutic options available in France for the treatment of bipolar disorder has justified the update of this guideline. The purpose of this work was to provide an updated and ergonomic document to promote its use by clinicians. This update focuses on two of the six thematic previously published (acute treatment and long-term treatment). Aspects of the treatment of bipolar patients sparking debate and questions of clinicians (use of antidepressant, place of the bitherapy, interest of long-acting antipsychotics…) were also covered. Finally, we proposed graded recommendations taking into account specifically the risk-benefit balance of each molecule. Copyright © 2014 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  2. Compact Electro-Permeabilization System for Controlled Treatment of Biological Cells and Cell Medium Conductivity Change Measurement

    Directory of Open Access Journals (Sweden)

    Novickij Vitalij

    2014-10-01

    Full Text Available Subjection of biological cells to high intensity pulsed electric field results in the permeabilization of the cell membrane. Measurement of the electrical conductivity change allows an analysis of the dynamics of the process, determination of the permeabilization thresholds, and ion efflux influence. In this work a compact electro-permeabilization system for controlled treatment of biological cells is presented. The system is capable of delivering 5 μs - 5 ms repetitive square wave electric field pulses with amplitude up to 1 kV. Evaluation of the cell medium conductivity change is implemented in the setup, allowing indirect measurement of the ion concentration changes occurring due to the cell membrane permeabilization. The simulation model using SPICE and the experimental data of the proposed system are presented in this work. Experimental data with biological cells is also overviewed

  3. Cost and Performance Report for Reductive Anaerobic Biological in Situ Treatment Technology (RABITT) Treatability Testing

    National Research Council Canada - National Science Library

    Alleman, Bruce

    2003-01-01

    Enhanced biological reductive dechlorination (EBRD) shows a great deal of promise for efficiently treating groundwater contaminated with chlorinated solvents, but demonstration sites around the country were reporting mixed results...

  4. Biological wastewater treatment. II Nutrient elimination; Tratamiento biologico de aguas residuales. II Eliminacion de nutrientes

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isac, L.; Lebrato, J. [Universidad de Sevilla (Spain)

    2000-07-01

    Most biological wastewater processes are designed for carbonaceous compounds removal. In some cases, nutrient removal is required. In this work, biodiversity and microbial interactions of nitrogen and phosphorus removal are described. (Author) 12 refs.

  5. Permanent magnetic field treatment of nonpenetrating corneal injuries at oil drilling site medical aid stations in Udmurt ASSR

    Energy Technology Data Exchange (ETDEWEB)

    Zaykova, M.V.; Gorkunov, E.S.; Liyaskin, M.I.; Osipov, N.A.; Koshevoy, V.P.; Vlasova, E.F.; Solovev, A.A.

    1985-01-01

    Therapeutic trials were conducted with permanent magnetic field magnetotherapy in the management of nonpenetrating corneal injuries. The low intensity fields (10 mTesla) were applied to closed eyelids of 100 workers, 20-30 years of age, injured at oil drilling sites in Udmurtia, with another 100 workers treated in the conventional manner without adjunct magnetotherapy to provide a control group. Treatment consisted of 3-20 half-hour sessions following foreign body removal. In the experimental group 98% of the patients showed recovery of 0.9-1.0 visual acuity, with superficial traumatic keratitis evident in only 2% of the subjects. Full recovery of visual acuity was obtained in only 89% of the control group, with 11% of the patients in that group presenting with traumatic keratitis. In addition, discharge time for the former group was 2.5 days on the average, and 4.5 days for the control group. The severity of complications in the magnetotherapy group was also less pronounced than in the control cohort.

  6. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: a pilot-scale investigation.

    Science.gov (United States)

    Li, Guiying; Zhang, Zhengyong; Sun, Hongwei; Chen, Jiangyao; An, Taicheng; Li, Bing

    2013-04-15

    Volatile organic compounds (VOCs) and biohazards air pollution in municipal solid waste transfer station were investigated. As compressor working, the concentrations of almost all quantified 14 VOCs (0.32-306.03 μg m(-3)) were much higher than those as compressor off (0-13.31 μg m(-3)). Comparatively, only 3 VOCs with extremely low concentrations could be detected at control area. Total microorganism was 7567 CFU m(-3) as compressor working, which was 1.14 and 6.22 times higher than that of compressor off and control area, respectively. Bacteria were the most abundant microorganism at all three sampling places. At pilot-scale, during whole 60-day treatment, for VOCs, the average removal efficiencies were over 92% after biotrickling filter-photocatalytic (BTF-PC) treatment. Although non-cancer and cancer risks of some VOCs were over the concern level before treatment, almost all VOCs were removed substantially and both potential risks were below the concern after BTF-PC treatment. Additionally, biohazard concentrations decreased dramatically and air quality was purified from polluted to cleanness after PC treatment. All results demonstrated that the integrated technology possessed high removal capacity and long stability for the removal of VOCs and biohazards at a pilot scale. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process.

    Science.gov (United States)

    Qian, Jin; Lu, Hui; Cui, Yanxiang; Wei, Li; Liu, Rulong; Chen, Guang-Hao

    2015-02-01

    Thiosulfate, as an intermediate of biological sulfate/sulfite reduction, can significantly improve nitrogen removal potential in a biological sulfur cycle-based process, namely the Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI(®)) process. However, the related thiosulfate bio-activities coupled with organics and nitrogen removal in wastewater treatment lacked detailed examinations and reports. In this study, S2O3(2-) transformation during biological SO4(2-)/SO3(2-) co-reduction coupled with organics removal as well as S2O3(2-) oxidation coupled with chemolithotrophic denitrification were extensively evaluated under different experimental conditions. Thiosulfate is produced from the co-reduction of sulfate and sulfite through biological pathway at an optimum pH of 7.5 for organics removal. And the produced S2O3(2-) may disproportionate to sulfide and sulfate during both biological S2O3(2-) reduction and oxidation most possibly carried out by Desulfovibrio-like species. Dosing the same amount of nitrate, pH was found to be the more direct factor influencing the denitritation activity than free nitrous acid (FNA) and the optimal pH for denitratation (7.0) and denitritation (8.0) activities were different. Spiking organics significantly improved both denitratation and denitritation activities while minimizing sulfide inhibition of NO3(-) reduction during thiosulfate-based denitrification. These findings in this study can improve the understanding of mechanisms of thiosulfate on organics and nitrogen removal in biological sulfur cycle-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Mathematical modeling of heat treatment processes conserving biological activity of plant bioresources

    Science.gov (United States)

    Rodionova, N. S.; Popov, E. S.; Pozhidaeva, E. A.; Pynzar, S. S.; Ryaskina, L. O.

    2018-05-01

    The aim of this study is to develop a mathematical model of the heat exchange process of LT-processing to estimate the dynamics of temperature field changes and optimize the regime parameters, due to the non-stationarity process, the physicochemical and thermophysical properties of food systems. The application of LT-processing, based on the use of low-temperature modes in thermal culinary processing of raw materials with preliminary vacuum packaging in a polymer heat- resistant film is a promising trend in the development of technics and technology in the catering field. LT-processing application of food raw materials guarantees the preservation of biologically active substances in food environments, which are characterized by a certain thermolability, as well as extend the shelf life and high consumer characteristics of food systems that are capillary-porous bodies. When performing the mathematical modeling of the LT-processing process, the packet of symbolic mathematics “Maple” was used, as well as the mathematical packet flexPDE that uses the finite element method for modeling objects with distributed parameters. The processing of experimental results was evaluated with the help of the developed software in the programming language Python 3.4. To calculate and optimize the parameters of the LT processing process of polycomponent food systems, the differential equation of non-stationary thermal conductivity was used, the solution of which makes it possible to identify the temperature change at any point of the solid at different moments. The present study specifies data on the thermophysical characteristics of the polycomponent food system based on plant raw materials, with the help of which the physico-mathematical model of the LT- processing process has been developed. The obtained mathematical model allows defining of the dynamics of the temperature field in different sections of the LT-processed polycomponent food systems on the basis of calculating the

  9. Chemico-biological treatment of polluted soils by polychorinated biphenyls; Tratamiento integrado quimico-biologico de suelos contaminados por bifenilos policlorados

    Energy Technology Data Exchange (ETDEWEB)

    Manzano Quinones, M. A.

    2001-07-01

    In this work a study of biological and chemical treatment of polychlorinated biphenyls (PCBs) in soil has been done. The experiments have been carried out in pilot scale reactors and the results obtained showed 98% elimination and a high mineralization of PCBs employing a Integrated Chemical-Biological Treatment. (Author) 12 refs.

  10. A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater.

    Science.gov (United States)

    Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun

    2015-11-01

    A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of biological and coagulation pre-treatments to control organic and biofouling potential components of ultrafiltration membrane in the treatment of lake water.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Kajol, Annaduzzaman; Suja, Fatihah; Md Zain, Shahrom

    2017-03-01

    Biological aerated filter (BAF), sand filtration (SF), alum and Moringa oleifera coagulation were investigated as a pre-treatment for reducing the organic and biofouling potential component of an ultrafiltration (UF) membrane in the treatment of lake water. The carbohydrate content was mainly responsible for reversible fouling of the UF membrane compared to protein or dissolved organic carbon (DOC) content. All pre-treatment could effectively reduce these contents and led to improve the UF filterability. Both BAF and SF markedly led to improvement in flux than coagulation processes, and alum gave greater flux than M. oleifera. This was attributed to the effective removal and/or breakdown of high molecular weight (MW) organics by biofilters. BAF led to greater improvement in flux than SF, due to greater breakdown of high MW organics, and this was also confirmed by the attenuated total reflection-Fourier transform infrared spectroscopy analysis. Coagulation processes were ineffective in removing biofouling potential components, whereas both biofilters were very effective as shown by the reduction of low MW organics, biodegradable dissolved organic carbon and assimilable organic carbon contents. This study demonstrated the potential of biological pre-treatments for reducing organic and biofouling potential component and thus improving flux for the UF of lake water treatment.

  12. Biological treatment of waste waters of high salt content; Depuracion biologica de efluentes con alto contenido salino

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.I.; Goytia, M.; Muguruza, I.; Blanco, F. [GAIKER, Zamudio (Spain)

    1996-09-01

    The fish canning industry, a national industrial sector of economical significance, generates high volumes of wastewater containing a high organic load and salt concentration. In addition to other problems presented for the aerobic biological treatment of these effluents, the presence of a high chloride concentration produces an inhibitory effect on the growth of aerobic microorganisms. In this work the inhibitory effect of chloride has been analyzed by means of a biokinetic study carried out using the electrolytic respirometry techniques and tuna boiling water as wastewater. This kind of study is highly appropriated for the search of solutions to specific problems created during the treatment of different industrial sectors wastewater. (Author) 10 refs.

  13. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment.

    Science.gov (United States)

    Rangel-Castilla, Leonardo; Russin, Jonathan J; Martinez-Del-Campo, Eduardo; Soriano-Baron, Hector; Spetzler, Robert F; Nakaji, Peter

    2014-09-01

    Arteriovenous malformations (AVMs) are classically described as congenital static lesions. However, in addition to rupturing, AVMs can undergo growth, remodeling, and regression. These phenomena are directly related to cellular, molecular, and physiological processes. Understanding these relationships is essential to direct future diagnostic and therapeutic strategies. The authors performed a search of the contemporary literature to review current information regarding the molecular and cellular biology of AVMs and how this biology will impact their potential future management. A PubMed search was performed using the key words "genetic," "molecular," "brain," "cerebral," "arteriovenous," "malformation," "rupture," "management," "embolization," and "radiosurgery." Only English-language papers were considered. The reference lists of all papers selected for full-text assessment were reviewed. Current concepts in genetic polymorphisms, growth factors, angiopoietins, apoptosis, endothelial cells, pathophysiology, clinical syndromes, medical treatment (including tetracycline and microRNA-18a), radiation therapy, endovascular embolization, and surgical treatment as they apply to AVMs are discussed. Understanding the complex cellular biology, physiology, hemodynamics, and flow-related phenomena of AVMs is critical for defining and predicting their behavior, developing novel drug treatments, and improving endovascular and surgical therapies.

  14. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge.

    Science.gov (United States)

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2013-07-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerprints and technological data were subjected to the canonical correspondence and correlation analyses. The number of separated biological processes realized in the treatment line and the presence of industrial wastewater in the influent were the key factors determining the species structure of total and ammonia-oxidizing bacteria in biomass. The N2O-reducers community composition depended significantly on the design of the facility; the highest species richness of denitrifiers was noted in the WWTPs with separated denitrification tanks. The contribution of industrial streams to the inflow affected the diversity of total and denitrifying bacterial consortia and diminished the diversity of ammonia oxidizers. The obtained data are valuable for engineers since they revealed the main factors, including the design of wastewater treatment plant, influencing the microbial groups critical for the stability of purification processes.

  15. Composting system for waste treatment coca leaf with the addition of three biological activators in the Experimental Center Kallutaca

    Directory of Open Access Journals (Sweden)

    Apaza-Condori Emma Eva

    2015-11-01

    Full Text Available The objective of this study was to evaluate the composting process waste coca leaf with the addition of three biological activators (yogurt, whey and yeast. This work was carried out Kallutaca Experimental Center, Biofertilizers module Career Agricultural Engineering at the Public University of El Alto, La Paz municipality of Laja. Posed treatments were: T1 (+ Yogurt Coca wastes; T2 (Coca wastes + whey; T3 (Coca wastes + yeast and T4 (Control. The design was completely randomized with 4 treatments and 3 repetitions. The values in N are classified medium and high levels the quantities of P, K are classified as middle levels. The value obtained 7.9 pH, EC 12950 µS/cm and 61% organic matter belong to treatment T1. The decomposition time was a period of 105 days corresponds to treatment T3.

  16. A role for biological optimization within the current treatment planning paradigm

    International Nuclear Information System (INIS)

    Das, Shiva

    2009-01-01

    Purpose: Biological optimization using complication probability models in intensity modulated radiotherapy (IMRT) planning has tremendous potential for reducing radiation-induced toxicity. Nevertheless, biological optimization is almost never clinically utilized, probably because of clinician confidence in, and familiarity with, physical dose-volume constraints. The method proposed here incorporates biological optimization after dose-volume constrained optimization so as to improve the dose distribution without detrimentally affecting the important reductions achieved by dose-volume optimization (DVO). Methods: Following DVO, the clinician/planner first identifies ''fixed points'' on the target and organ-at-risk (OAR) dose-volume histograms. These points represent important DVO plan qualities that are not to be violated within a specified tolerance. Biological optimization then maximally reduces a biological metric (illustrated with equivalent uniform dose (EUD) in this work) while keeping the fixed dose-volume points within tolerance limits, as follows. Incremental fluence adjustments are computed and applied to incrementally reduce the OAR EUDs while approximately maintaining the fixed points. This process of incremental fluence adjustment is iterated until the fixed points exceed tolerance. At this juncture, remedial fluence adjustments are computed and iteratively applied to bring the fixed points back within tolerance, without increasing OAR EUDs. This process of EUD reduction followed by fixed-point correction is repeated until no further EUD reduction is possible. The method is demonstrated in the context of a prostate cancer case and olfactory neuroblastoma case. The efficacy of EUD reduction after DVO is evaluated by comparison to an optimizer with purely biological (EUD) OAR objectives. Results: For both cases, EUD reduction after DVO additionally reduced doses, especially high doses, to normal organs. For the prostate case, bladder/rectum EUDs were

  17. [Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material].

    Science.gov (United States)

    Almeida, Maria Cristina Mendes de; Canini, Silvia Rita Marin da Silva; Reis, Renata Karina; Toffano, Silmara Elaine Malaguti; Pereira, Fernanda Maria Vieira; Gir, Elucir

    2015-04-01

    To assess adherence to clinical appointments by health care workers (HCW) and students who suffered accidents with potentially infectious biological material. A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. A total of 461 individuals exposed to biological material were treated, of which 389 (84.4%) were HCWs and 72 (15.6%) students. Of the 461 exposed individuals, 307 (66.6%) attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83). The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  18. Biomechanical and biological aspects of defect treatment in fractures using helical plates.

    Science.gov (United States)

    Perren, S M; Regazzoni, P; Fernandez, A A D

    2014-01-01

    conventional plate is the extent of surgical trauma at the critical site of healing. - Shingling and/or applying an autologous cancellous bone graft: This procedure provides initially no relevant load sharing but will do so after a couple of weeks. The mechanical coupling of the comparably soft graft and the main fracture fragments presents little problems. Applying a cortical bone graft: Such a graft does provide initial only small load sharing and does a less good job inducing callus than a cancellous graft. Furthermore, the coupling by callus between a somewhat rigid bone graft and the mobile main fracture fragments requires a solid maintained contact. If the cortical graft is fixed using implants with small contact area to the graft such as screws or cerclage loops, the local stress may be critical and the graft may break. When the cortical graft is fixed with cerclage wires the procedure must take into account the limited strength of the individual cerclage. Therefore multiple and well-spaced cerclages are required and may lead to success especially if an intramedullary component of the implant contributes to protection (6). The degree of unloading depends apparently on the stiffness of the material of the protecting splint. Though, more important is the effect of the dimensions of the splint. While titanium as a material is about 50% less stiff than steel, the thickness of the implant changes the stiffness with the third power. That is doubling the thickness results in eightfold increased stiffness. When considering the unloading by application of a second plate the leverage of the second plate plays an important role. The larger the distance between the axis of bending and the second implant the larger the protecting effect. The helical plate (2, 3, 7) as introduced by A.A.D. Fernandez offers biological and mechanical advantages. It can be applied without touching the fracture site maintaining the critical biology intact and provides mechanically efficient unloading

  19. Some Contributions for a Pedagogical Treatment of Alternative Conceptions in Biology: An Example from Plant Nutrition.

    Science.gov (United States)

    Vaz, Adelaine Neto; And Others

    This paper reports on a study that investigated the alternative conceptions of students in a biology and geology teacher education course regarding plant nutrition. Data were collected from first year and final year students using a questionnaire that had both multiple choice and descriptive items. Findings indicate common features related to the…

  20. Treatment of acid and sulphate-rich effluents in an integrated biological/chemical process

    CSIR Research Space (South Africa)

    Maree, JP

    2004-04-01

    Full Text Available .4 g SO4/(l.d). The rate of biological sulphate removal was found to be directly related to the square root of sulphate, COD and VSS concentrations respectively, and inversely proportional to sulphide concentration. The practical value of simultaneous...

  1. Biodegradation of chlorinated unsaturated hydrocarbons in relation to biological waste-gas treatment

    NARCIS (Netherlands)

    Hartmans, S.

    1993-01-01

    The original goal of the research described in this thesis was to develop a biological process for the removal of vinyl chloride from waste gases. The gaseous and carcinogenic vinyl chloride is used to produce the plastic polyvinyl chloride (PVC). During this production process waste gases

  2. Comparative study on the treatment of raw and biologically treated textile effluents through submerged nanofiltration.

    Science.gov (United States)

    Chen, Qing; Yang, Ying; Zhou, Mengsi; Liu, Meihong; Yu, Sanchuan; Gao, Congjie

    2015-03-02

    Raw and biologically treated textile effluents were submerged filtrated using lab-fabricated hollow fiber nanofiltration membrane with a molecular weight cut-off of about 650 g/mol. Permeate flux, chemical oxygen demand (COD) reduction, color removal, membrane fouling, and cleaning were investigated and compared by varying the trans-membrane pressure (TMP) and volume concentrating factor (VCF). It was found that both raw and biologically treated textile effluents could be efficiently treated through submerged nanofiltration. The increase of TMP resulted in a decline in water permeability, COD reduction, color removal, and flux recovery ratio, while the increase of VCF resulted in both increased COD reduction and color removal. Under the TMP of 0.4 bar and VCF of 5.0, fluxes of 1.96 and 2.59 l/m(2)h, COD reductions of 95.7 and 94.2%, color removals of 99.0, and 97.3% and flux recovery ratios of 91.1 and 92.9% could be obtained in filtration of raw and biologically treated effluents, respectively. After filtration, the COD and color contents of the raw effluent declined sharply from 1780 to 325 mg/l and 1.200 to 0.060 Abs/cm, respectively, while for the biologically treated effluent, they decreased from 780 to 180 mg/l and 0.370 to 0.045 Abs/cm, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The Treatment of Geological Time & the History of Life on Earth in High School Biology Textbooks

    Science.gov (United States)

    Summers, Gerald; Decker, Todd; Barrow, Lloyd

    2007-01-01

    In spite of the importance of geological time in evolutionary biology, misconceptions about historical events in the history of life on Earth are common. Glenn (1990) has documented a decline from 1960 to 1989 in the amount of space devoted to the history of life in high school earth science textbooks, but we are aware of no similar study in…

  4. Persistence, switch rates, drug consumption and costs of biological treatment of rheumatoid arthritis: an observational study in Italy

    Directory of Open Access Journals (Sweden)

    Degli Esposti L

    2016-12-01

    Full Text Available Luca Degli Esposti,1 Ennio Giulio Favalli,2 Diego Sangiorgi,1 Roberta Di Turi,3 Giuseppina Farina,4 Marco Gambera,5 Roberto Ravasio,6 1CliCon S.r.l. – Health, Economics & Outcomes Research, Ravenna, 2Department of Rheumatology, Istituto Ortopedico Gaetano Pini, Milan, 3Local Pharmaceutical and Supplementary Assistance Unit, Roma Local Health Authority D, Rome, 4Internal Management Control Unit – Pharmaceutical Spending Control Sector, Caserta Local Health Authority, Caserta, 5Local Pharmaceutical Service, Bergamo Local Health Authority, Bergamo, 6Health Publishing & Services Srl, Milan, Italy Objectives: The aim of this analysis was to provide an estimate of drug utilization indicators (persistence, switch rate and drug consumption on biologics and the corresponding costs (drugs, admissions and specialist care incurred by the Italian National Health Service in the management of adult patients with rheumatoid arthritis (RA.Methods: We conducted an observational retrospective cohort analysis using the administrative databases of three local health units. We considered all patients aged ≥18 years with a diagnosis of RA and at least one biologic drug prescription between January 2010 and December 2012 (recruitment period. Persistence was defined as maintenance over the last 3 months of the follow-up period of the same biological therapy administered at the index date. A switch was defined as the presence of a biological therapy other than that administered at the index date during the last 3 months of the follow-up period. Hospital admissions (with a diagnosis of RA or other RA-related diagnoses, specialist outpatient services, instrumental diagnostics and pharmaceutical consumption were assessed.Results: The drug utilization analysis took into account only biologics with at least 90 patients on treatment at baseline (adalimumab n=144, etanercept n=236 and infliximab n=94. In each year, etanercept showed better persistence with initial

  5. Brief Report: Risk of Gastrointestinal Perforation Among Rheumatoid Arthritis Patients Receiving Tofacitinib, Tocilizumab, or Other Biologic Treatments.

    Science.gov (United States)

    Xie, Fenglong; Yun, Huifeng; Bernatsky, Sasha; Curtis, Jeffrey R

    2016-11-01

    To evaluate gastrointestinal (GI) perforation in rheumatoid arthritis (RA) patients receiving tofacitinib, tocilizumab, or other biologic agents. Using health plan data from 2006 through 2014, RA patients without prior GI perforation were identified. Those in whom treatment with tofacitinib or a biologic agent was being initiated were followed up for incident GI perforation with hospitalization. Crude incidence rates were calculated by exposure. Adjusted Cox proportional hazards models were used to evaluate the association between GI perforation and exposures. Hazard ratios (HRs) with 95% confidence intervals (95% CIs) were calculated. A cohort of 167,113 RA patients was analyzed. Among them, 4,755 began treatment with tofacitinib, 11,705 with tocilizumab, 115,047 with a tumor necrosis factor inhibitor (TNFi), 31,214 with abatacept, and 4,392 with rituximab. Compared to TNFi recipients, abatacept recipients were older, tofacitinib and rituximab recipients were younger, and tocilizumab recipients were similar in age. Patients beginning treatment with a non-TNFi agent were more likely to have previously received biologic agents than patients beginning treatment with a TNFi. The incidence of GI perforation per 1,000 patient-years was 0.86 (tofacitinib), 1.55 (tocilizumab), 1.07 (abatacept), 0.73 (rituximab), and 0.83 (TNFi). Most perforations occurred in the lower GI tract: the incidence of lower GI tract perforation per 1,000 patient-years was 0.86 (tofacitinib), 1.26 (tocilizumab), 0.76 (abatacept), 0.48 (rituximab), and 0.46 (TNFi). Lower GI tract perforation risk was significantly elevated with tocilizumab treatment, and numerically elevated with tofacitinib treatment, versus treatment with TNFi. Adjusted HRs were 2.51 (95% CI 1.31-4.80) for tocilizumab and 1.94 (95% CI 0.49-7.65) for tofacitinib. Older age (HR 1.16 per 5 years [95% CI 1.10-1.22]), diverticulitis/other GI conditions (HR 3.25 [95% CI 1.62-6.50]), and prednisone use at >7.5 mg/day (HR 2.29 [95% CI 1

  6. Weather Station: Hawaii: Oahu: Coconut Island

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hawaii Institute of Marine Biology (HIMB) automatic weather station (AWS) records hourly measurements of precipitation, air temperature, wind speed and...

  7. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: A pilot-scale investigation

    International Nuclear Information System (INIS)

    Li, Guiying; Zhang, Zhengyong; Sun, Hongwei; Chen, Jiangyao; An, Taicheng; Li, Bing

    2013-01-01

    Highlights: ► VOCs and biohazards emitted during garbage compressing process were monitored. ► BTF–PC integrated reactor was employed for VOCs and biohazards removal. ► Health risk of target VOCs and biohazards were assessed before and after treatment. -- Abstract: Volatile organic compounds (VOCs) and biohazards air pollution in municipal solid waste transfer station were investigated. As compressor working, the concentrations of almost all quantified 14 VOCs (0.32–306.03 μg m −3 ) were much higher than those as compressor off (0–13.31 μg m −3 ). Comparatively, only 3 VOCs with extremely low concentrations could be detected at control area. Total microorganism was 7567 CFU m −3 as compressor working, which was 1.14 and 6.22 times higher than that of compressor off and control area, respectively. Bacteria were the most abundant microorganism at all three sampling places. At pilot-scale, during whole 60-day treatment, for VOCs, the average removal efficiencies were over 92% after biotrickling filter–photocatalytic (BTF–PC) treatment. Although non-cancer and cancer risks of some VOCs were over the concern level before treatment, almost all VOCs were removed substantially and both potential risks were below the concern after BTF–PC treatment. Additionally, biohazard concentrations decreased dramatically and air quality was purified from polluted to cleanness after PC treatment. All results demonstrated that the integrated technology possessed high removal capacity and long stability for the removal of VOCs and biohazards at a pilot scale

  8. Evaluation of the physicochemical properties of coffee chaff when subjected to a biological treatment and its potential impact as a raw material in subsequent biological processes or thermochemical

    International Nuclear Information System (INIS)

    Valverde Camacho, Edgar

    2014-01-01

    An investigation is carried out using white rot fungi in coffee pulp to study the impact on the physicochemical properties. The use of brushwood in thermochemical processes, biochemists is evaluated for later use and production of energy or any product with added value. The strain is selected by growth in Petri dishes and fresh pulp is then inoculated with a strain of Trametes versicolor and Pleurotus ostreatus one. Each treatment was maintained in growth for seven weeks . The measurement of each of the response variables used were subsequently performed to characterize the fresh pulp, including: concentration of cellulose, hemicellulose, lignin, extractables total polyphenols, total ash, moisture, combustion heat and thermal gravimetric analysis. Measurements in the fresh pulp and brushwood-fungal matrix is performed at the end of treatment. An impact on the concentration of extractable total polyphenols is obtained with an apparent reduction of 87.7% in the treated Pult with Trametes versicolor and 80.5% in the treated with Pleurotus ostreatus, with regard to the fresh brushwood. Lignin concentration was affected; however, errors were found in the analytical method associated with the presence of the fungus in the analysis, leading to erroneous readings in the measurement parameter. Thermogravimetric analysis have allowed to observe a change in the whole matrix microorganism-brushwood. The biological treatment has generated a positive impact on the region pyrolysis at temperatures in the range of 150 to 400 degrees centigrade, improving processes of decomposition. Both treatments have shown a stabilization of the thermolysis in the region of temperatures above 400 degrees centigrade. The impact on a larger scale of the pre-treatment is evaluated on the gasification process, specifically on the production of tars has been necessary for field tests in a pilot team and in the same way for the case of enzymatic fermentation. Tests of ergosterol concentration and

  9. Incorporation of sludge of the sewage treatment station (STS) into red ceramic; Incorporacao de lodo da estacao de tratamento de esgoto (ETE) em ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Areias, I.O.R.; Vieira, C.M.F.; Manhaes, R. da S.T.; Intorne, A.C., E-mail: oraisabela@gmail.com, E-mail: vieira@uenf.br, E-mail: rosane.toledo@gmail.com, E-mail: aline_intorne@yahoo.com.br [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ (Brazil)

    2017-07-15

    This study aimed to evaluate the waste incorporation of sewage treatment station (STS) on the production of red ceramic. The used raw materials were clayey ceramic body and STS waste from Campos dos Goytacazes - RJ. The raw materials were characterized through techniques of X-ray fluorescence and X-ray diffraction; moreover, the specific surface area was determined by means of the BET and blue methylene techniques. The thermal behavior of STS waste was evaluated by thermal gravimetric analysis. Formulations were prepared with 0, 2.5, 10 and 15 wt% STS waste in the clayey ceramic. Specimens were prepared by uniaxial pressing at 20 MPa with 8% moisture content and calcination at 950 °C. The evaluated physical and mechanical properties of the calcined ceramics were water absorption and compression strength. The microstructure of calcined pieces was investigated by scanning electron microscopy. The results showed that this type of waste must be incorporated in low amounts (up to 2.5 wt%) to avoid deleterious effects on the ceramic physical and mechanical properties. (author)

  10. Biological and genetic effects of combined treatments of sodium azide, gamma rays and EMS in barley

    International Nuclear Information System (INIS)

    Cheng, X.Y.; Gao, M.W.

    1988-01-01

    Dry seeds of diploid barley were subjected to mutagenic treatments of sodium azide, gamma rays and EMS alone or in combination. Damage (reduction in seedling height, plant height and fertility), the frequency of chimeras in the M1 generation, and the frequency of chlorophyll-deficient mutations as well as morphological mutations in the M2 generation induced by combined treatments were greater than those by either of the single treatments. Synergistic increase in the frequency of chimeras, chlorphyll-deficient mutations and morphological mutations were observed in both sodium azide post-irradiation treatments and pre-EMS treatments; interaction among the mutagens in the treatment combinations on M1 damage was generally subtractive. An 8- to 16-hr soaking period of irradiated seeds in distilled water prior to sodium azide treatment significantly increased chlorophyll mutation frequency, as compared to that from the non-soaking treatment. Damage and frequency of chimeras, chlorophyll mutations and morphological mutations were consistently reduced by the soaking treatment in sodium azide plus EMS treatments. (author)

  11. Combined chemical-biological treatment for prevention/rehabilitation of clogged wells by an iron-oxidizing bacterium.

    Science.gov (United States)

    Gino, Efrat; Starosvetsky, Jeanna; Kurzbaum, Eyal; Armon, Robert

    2010-04-15

    Groundwater wells containing large concentrations of ferrous iron face serious clogging problems as a result of biotic iron oxidation. Following a short time after their start off, wells get clogged, and their production efficiency drop significantly up to a total obstruction, making cleanup and rehabilitation an economic burden. The present study was undertaken to test an experimental combined treatment (chemical and biological) for future prevention or rehabilitation of clogged wells. Sphaerotilus natans (an iron-oxidizing bacterium) freshly isolated from a deep well was grown to form biofilms on two systems: coupons and sand buried miniature wedge wire screen baskets. A combined chemical-biological treatment, applied at laboratory scale by use of glycolic acid (2%) and isolated bacteriophages against Sphaerotilus natans (SN1 and ER1-a newly isolated phage) at low multiplicity of infection (MOI), showed inhibition of biofilm formation and inactivation of the contaminant bacteria. In addition to complete inactivation of S. natans planktonic bacteria by the respective phages, earlier biofilm treatment with reduced glycolic acid concentration revealed efficient exopolysaccharide (EPS) digestion allowing phages to be increasingly efficient against biofilm matrix bacteria. Utilization of this combined treatment revealed clean surfaces of a model stainless steel wedge wire screen baskets (commonly used in wells) for up to 60 days.

  12. [Cost-effectiveness analysis of etanercept compared with other biologic therapies in the treatment of rheumatoid arthritis].

    Science.gov (United States)

    Salinas-Escudero, Guillermo; Vargas-Valencia, Juan; García-García, Erika Gabriela; Munciño-Ortega, Emilio; Galindo-Suárez, Rosa María

    2013-01-01

    to conduct cost-effectiveness analysis of etanercept compared with other biologic therapies in the treatment of moderate or severe rheumatoid arthritis in patients with previous unresponse to immune selective anti-inflammatory derivatives failure. a pharmacoeconomic model based on decision analysis to assess the clinical outcome after giving etanercept, infliximab, adalimumab or tocilizumab to treat moderate or severe rheumatoid arthritis was employed. Effectiveness of medications was assessed with improvement rates of 20 % or 70 % of the parameters established by the American College of Rheumatology (ACR 20 and ACR 70). the model showed that etanercept had the most effective therapeutic response rate: 79.7 % for ACR 20 and 31.4 % for ACR 70, compared with the response to other treatments. Also, etanercept had the lowest cost ($149,629.10 per patient) and had the most cost-effective average ($187,740.40 for clinical success for ACR 20 and $476,525.80 for clinical success for ACR 70) than the other biologic therapies. we demonstrated that treatment with etanercept is more effective and less expensive compared to the other drugs, thus making it more efficient therapeutic option both in terms of means and incremental cost-effectiveness ratios for the treatment of rheumatoid arthritis.

  13. Combined photo-Fenton and biological treatment for Diuron and Linuron removal from water containing humic acid

    International Nuclear Information System (INIS)

    Farre, Maria Jose; Domenech, Xavier; Peral, Jose

    2007-01-01

    A combined chemical (photo-Fenton) and biological treatment has been proposed for Diuron and Linuron degradation in water containing natural dissolved organic matter (DOM). Humic acid (HA) was used to simulate the DOM. During the photo-Fenton process ([Fe(II)]=15.9mgL -1 , [H 2 O 2 ]=202mgL -1 , 60min of UVA irradiation time), the chemical oxygen demand (COD), total organic carbon (TOC), toxicity (EC 50 15 ) and biodegradability (BOD 5 /COD) of the generated intermediates were assessed. A reduction of photo-Fenton efficiency was observed when HA was present in solution. This effect has been explained as the result of a UVA light screening as well as a OH? radical quenching process by the HA. After the photo-Fenton process, the initial toxic and non-biodegradable herbicides were transformed into intermediates suitable for a subsequent aerobic biological treatment that was performed in a sequencing batch reactor (SBR). Complete elimination of the intermediates in presence of HA was reached at the end of the chemical-biological coupled system. Biosorption of HA onto the aerobic biomass was characterized. The results indicate that the Freundlich model adequately describes the adsorption of HA, a phenomena that follows a pseudo second-order adsorption kinetic model

  14. Microbeam radiation therapy. Physical and biological aspects of a new cancer therapy and development of a treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Bartzsch, Stefan

    2014-11-05

    Microbeam Radiation Therapy (MRT) is a novel treatment strategy against cancer. Highly brilliant synchrotron radiation is collimated to parallel, a few micrometre wide, planar beams and used to irradiate malignant tissues with high doses. The applied peak doses are considerably higher than in conventional radiotherapy, but valley doses between the beams remain underneath the established tissue tolerance. Previous research has shown that these beam geometries spare normal tissue, while being effective in tumour ablation. In this work physical and biological aspects of the therapy were investigated. A therapy planning system was developed for the first clinical treatments at the European Synchrotron Radiation Facility in Grenoble (France) and a dosimetry method based on radiochromic films was created to validate planned doses with measurements on a micrometre scale. Finally, experiments were carried out on a cellular level in order to correlate the physically planned doses with the biological damage caused in the tissue. The differences between Monte Carlo dose and dosimetry are less than 10% in the valley and 5% in the peak regions. Developed alternative faster dose calculation methods deviate from the computational intensive MC simulations by less than 15% and are able to determine the dose within a few minutes. The experiments in cell biology revealed an significant influence of intercellular signalling on the survival of cells close to radiation boundaries. These observations may not only be important for MRT but also for conventional radiotherapy.

  15. Combined photo-Fenton and biological treatment for Diuron and Linuron removal from water containing humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Farre, Maria Jose [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Domenech, Xavier [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Peral, Jose [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)]. E-mail: jose.peral@uab.es

    2007-08-17

    A combined chemical (photo-Fenton) and biological treatment has been proposed for Diuron and Linuron degradation in water containing natural dissolved organic matter (DOM). Humic acid (HA) was used to simulate the DOM. During the photo-Fenton process ([Fe(II)]=15.9mgL{sup -1}, [H{sub 2}O{sub 2}]=202mgL{sup -1}, 60min of UVA irradiation time), the chemical oxygen demand (COD), total organic carbon (TOC), toxicity (EC{sub 50}{sup 15}) and biodegradability (BOD{sub 5}/COD) of the generated intermediates were assessed. A reduction of photo-Fenton efficiency was observed when HA was present in solution. This effect has been explained as the result of a UVA light screening as well as a OH? radical quenching process by the HA. After the photo-Fenton process, the initial toxic and non-biodegradable herbicides were transformed into intermediates suitable for a subsequent aerobic biological treatment that was performed in a sequencing batch reactor (SBR). Complete elimination of the intermediates in presence of HA was reached at the end of the chemical-biological coupled system. Biosorption of HA onto the aerobic biomass was characterized. The results indicate that the Freundlich model adequately describes the adsorption of HA, a phenomena that follows a pseudo second-order adsorption kinetic model.

  16. Management of periodontally compromised patient by orthodontic treatment: Does it help esthetically and biologically?

    Directory of Open Access Journals (Sweden)

    Subhash C Rao

    2012-01-01

    Full Text Available Adults are always keen to know whether they can still opt for orthodontic treatment and they often ask the same question to the orthodontist and the orthodontist replies, it primarily depends on the health of the bone supporting the teeth. Yes, it is the bone health which is of prime importance to undergo orthodontic treatment. Here is a case report of a patient who underwent orthodontic treatment because of lower midline spacing and protrusion of the upper anteriors. The bone health of the upper and lower anteriors was compromised. At the end of the treatment, there was marked improvement in the bone level and the profile of the patient.

  17. Cilioprotists as biological indicators for estimating the efficiency of using Gravel Bed Hydroponics System in domestic wastewater treatment.

    Science.gov (United States)

    El-Serehy, Hamed A; Bahgat, Magdy M; Al-Rasheid, Khaled; Al-Misned, Fahad; Mortuza, Golam; Shafik, Hesham

    2014-07-01

    Interest has increased over the last several years in using different methods for treating sewage. The rapid population growth in developing countries (Egypt, for example, with a population of more than 87 millions) has created significant sewage disposal problems. There is therefore a growing need for sewage treatment solutions with low energy requirements and using indigenous materials and skills. Gravel Bed Hydroponics (GBH) as a constructed wetland system for sewage treatment has been proved effective for sewage treatment in several Egyptian villages. The system provided an excellent environment for a wide range of species of ciliates (23 species) and these organisms were potentially very useful as biological indicators for various saprobic conditions. Moreover, the ciliates provided excellent means for estimating the efficiency of the system for sewage purification. Results affirmed the ability of this system to produce high quality effluent with sufficient microbial reduction to enable the production of irrigation quality water.

  18. [Sarcoptic mange of dogs: biology of the organism, epidemiology, pathogenesis, clinical aspect, diagnosis and treatment].

    Science.gov (United States)

    Kraiss, A; Kraft, W; Gothe, R

    1987-01-01

    A review is presented on the biology of the causative agent, epidemiology, pathogenesis, clinical features, diagnosis and therapy of canine Sarcoptes scabiei infestation. This survey includes also clinical data of the period 1978-1986 in the Small Animal Hospital, Munich Veterinary Faculty. Several skin scrapings are usually necessary for diagnosis. For therapy application of acaricides once a week, altogether at least three times is sufficient. Simultaneously a decontamination of the dog's surroundings should be carried out.

  19. The Role of Biologically Active Ingredients from Natural Drug Treatments for Arrhythmias in Different Mechanisms

    OpenAIRE

    Li, Jie; Hu, Dan; Song, Xiaoli; Han, Tao; Gao, Yonghong; Xing, Yanwei

    2017-01-01

    Arrhythmia is a disease that is caused by abnormal electrical activity in the heart rate or rhythm. It is the major cause of cardiovascular morbidity and mortality. Although several antiarrhythmic drugs have been used in clinic for decades, their application is often limited by their adverse effects. As a result, natural drugs, which have fewer side effects, are now being used to treat arrhythmias. We searched for all articles on the role of biologically active ingredients from natural drug t...

  20. Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment.

    Science.gov (United States)

    Weinrich, Lauren; LeChevallier, Mark; Haas, Charles N

    2016-09-15

    Biological fouling occurs on RO membranes when bacteria and nutrients are present in conditions that are conducive to growth and proliferation of the bacteria. Controlling microbial growth on the membranes is typically limited to biocide application (i.e., disinfectants) in seawater RO plants. However, biological growth and subsequent fouling has not been well-managed. Pretreatment has not been focused on nutrient limitation. This project used a biological assay, the assimilable organic carbon (AOC) test to evaluate pretreatment effects on the nutrient supply. The AOC test provided a useful surrogate measurement for the biodegradability or biofouling potential of RO feed water. Biofouling observed in controlled conditions at the bench- and pilot-scale resulted in statistically significant correlations between AOC and the operational effects caused by biofouling. Membrane fouling rates are observed through operational changes over time such as increased differential pressure between the membrane feed and concentrate locations and decreased permeate flux through the membrane. In full scale plants there were strong correlations when AOC was used as a predictor variable for increased differential pressure (0.28-0.55 bar from September-December 2012) and decreased specific flux (1.40 L per hour/(m(2) · bar)). Increased differential pressure was associated with RO membrane biological fouling when the median AOC was 50 μg/L during pilot testing. Conditions were also evaluated at the bench-scale using a flat sheet RO membrane. In a comparison test using 30 and 1000 μg/L AOC, fouling was detected on more portions of the membrane when AOC was higher. Biofilm and bacterial deposits were apparent from scanning electron microscope imaging and biomass measurements using ATP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Toward a 'all high rate' brachytherapy: organisation, biology and perspectives after treatment of 192 patients

    International Nuclear Information System (INIS)

    Hannoun-Levi, J.M.; Ferre, M.; Gautier, M.; Marcie, S.

    2007-01-01

    As a result of radiation protection regulations aimed at reducing the exposure to ionizing radiation from care-givers, low dose rate brachytherapy is usually replaced by a pulsed rate brachytherapy. The center Antoine Lacassagne has directed the outset to the use of a high-dose rate brachytherapy. The implications in terms of organization, biology and the prospects for such a change are the principal questions studied. (N.C.)

  2. Insights from life history theory for an explicit treatment of trade-offs in conservation biology.

    Science.gov (United States)

    Charpentier, Anne

    2015-06-01

    As economic and social contexts become more embedded within biodiversity conservation, it becomes obvious that resources are a limiting factor in conservation. This recognition is leading conservation scientists and practitioners to increasingly frame conservation decisions as trade-offs between conflicting societal objectives. However, this framing is all too often done in an intuitive way, rather than by addressing trade-offs explicitly. In contrast, the concept of trade-off is a keystone in evolutionary biology, where it has been investigated extensively. I argue that insights from evolutionary theory can provide methodological and theoretical support to evaluating and quantifying trade-offs in biodiversity conservation. I reviewed the diverse ways in which trade-offs have emerged within the context of conservation and how advances from evolutionary theory can help avoid the main pitfalls of an implicit approach. When studying both evolutionary trade-offs (e.g., reproduction vs. survival) and conservation trade-offs (e.g., biodiversity conservation vs. agriculture), it is crucial to correctly identify the limiting resource, hold constant the amount of this resource when comparing different scenarios, and choose appropriate metrics to quantify the extent to which the objectives have been achieved. Insights from studies in evolutionary theory also reveal how an inadequate selection of conservation solutions may result from considering suboptimal rather than optional solutions when examining whether a trade-off exits between 2 objectives. Furthermore, the shape of a trade-off curve (i.e., whether the relationship between 2 objectives follows a concave, convex, or linear form) is known to affect crucially the definition of optimal solutions in evolutionary biology and very likely affects decisions in biodiversity conservation planning too. This interface between evolutionary biology and biodiversity conservation can therefore provide methodological guidance to

  3. Annual biologic treatment cost for new and existing patients with moderate to severe plaque psoriasis in Greece

    Directory of Open Access Journals (Sweden)

    Fragoulakis V

    2015-01-01

    Full Text Available Vassilis Fragoulakis,1 Efklidis Raptis,2 Elli Vitsou,2 Nikolaos Maniadakis1 1Health Services Organization and Management, National School of Public Health, 2Pfizer Hellas, Athens, Greece Aim: The aim of the present study was to estimate the annual per-patient cost of treatment with adalimumab, etanercept, infliximab, and ustekinumab by response status for new and existing patients with moderate to severe psoriasis in Greece. Methods: An economic analysis was developed from a national health care perspective to estimate the direct cost of treatment alternatives for new and existing patients within a 1-year time horizon. The model included drug acquisition and administration costs for responders and nonresponders. Real-world treatment pattern and resource use data were extracted through nationwide field research using telephone-based interviews with a representative sample of dermatologists. Unit costs were collected from official sources in the public domain. Results: The mean annual cost of treatment for new patients who responded (or did not respond to treatment was as follows: adalimumab €10,686 (€3,821, etanercept €10,415 (€3,224, infliximab €14,738 (€7,582, and ustekinumab €17,155 (€9,806. For existing patients the mean annual cost was €9,916, €9,462, €12,949, and €17,149, respectively. Results did not change significantly under several one-way sensitivity and scenario analyses. Conclusion: Under the base-case scenario, the cost of treatment with etanercept is lower than that of the other biological agents licensed for moderate to severe plaque psoriasis in Greece, for both new and existing patients, irrespective of response status. Keywords: adalimumab, etanercept, infliximab, ustekinumab, economic evaluation, biologics

  4. Molecular image-guided radiation treatment planing using biological target volume (BTV)for advanced esophageal cancer

    International Nuclear Information System (INIS)

    Tamamura, Hiroyasu; Sasaki, Makoto; Bou, Sayuri; Satou, Yoshitaka; Minami, Hiroki; Saga, Yusuke; Aoyama, Masashi; Yamamoto, Kazutaka; Kawamura, Mariko

    2016-01-01

    As the biological mechanisms of cancer cell proliferation become clear at molecular level, 'precision therapy' is attracting a great attention, in which the irradiation dose and area are determined in consideration of these molecular mechanism. For this sophisticated radiotherapy, it is essential to evaluate the tumor morphology and proliferation/activation of cancer cells before radiation treatment planning. Generally, cancer cells start to proliferate when their activity levels increase, and subsequently primary tumor or metastatic tumor that can De recognized by CT scan or MRI start to develop. Thus, when proliferation of cancer cells occurs and tumor start to develop, a vast amount of energy is required for proliferation and cancer cells obtain a part of this energy from glucose in the body. Therefore, we can get the information on the status of metabolism and density of cancer cells by PET using F-18-FDG, which is structurally similar to glucose. It is a general belief that, when conducting evaluation using F18-FDG-PET, evaluation of proliferation of cancer cells before tumor formation might be possible at the cell level by evaluating and visualizing glucose metabolism in cancer cells that proliferate in a manner that they cannot be visualized morphologically by using CT scan or MRI. Therefore, when performing sophisticated precision radiotherapy, it is important to implement radiation treatment plan including information obtained from FDG-PET imaging. Many studies have reported usefulness of FDG-PET imaging for esophagus cancer so far, indicating the efficacy of using FDG-PET imaging for radiation treatment plan of esophagus cancer as well. However, few studies have described how to use FDG-PET imaging for radiation treatment plan for esophagus cancer. In this review, therefore, we will outline the usefulness of molecular image-guided radiation treatment plan, in which biological target volume (BTV) and the actual radiation treatment plan using FDG

  5. Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mendes de Almeida

    2015-04-01

    Full Text Available OBJECTIVE To assess adherence to clinical appointments by health care workers (HCW and students who suffered accidents with potentially infectious biological material. METHOD A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. RESULTS A total of 461 individuals exposed to biological material were treated, of which 389 (84.4% were HCWs and 72 (15.6% students. Of the 461 exposed individuals, 307 (66.6% attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83. CONCLUSION The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  6. Components for real-time state monitoring of biological sewage treatment plants; Komponenten zur Echtzeit-Zustandserfassung biologischer Klaeranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Obenaus, F.; Rosenwinkel, K.H. [Hannover Univ. (Germany). Inst. fuer Siedlungswasserwirtschaft und Abfalltechnik

    1999-07-01

    Described is a method for the acquision of comprehensive state monitoring data from a sewage treatment plant's biological stage. The focus is on the measuring point in the effluent from preliminary cleaning. This is the most critical point of the system, its function being safeguarded only if the pollution load induced by the inflow to the biological stage can be exactly monitored. (orig.) [German] Beschrieben wurde eine Methode zum Erhalt umfassender Zustandsinformationen aus der biologischen Reinigungsstufe einer Klaeranlage, wobei der Schwerpunkt der Ausfuehrungen sich der Messstelle im Ablauf der Vorklaerung als kritischstem Punkt des Systems widmete, dessen Funktion nur bei genauer Erfassung der durch den Zulauf zur biologischen Stufe induzierten Belastung gewaehrleistet ist. (orig.)

  7. MODELLING OF RING-SHAPED ULTRASONIC WAVEGUIDES FOR TESTING OF MECHANICAL PROPERTIES AND THERAPEUTIC TREATMENT OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2011-01-01

    Full Text Available The article presents results of modelling of ring-shaped waveguide tool for ultrasonic treatment of biological materials, particularly malignant tumours, and testing of their mechanical properties. Harmonic analysis of forced flexural vibration of the waveguide using ANSYS software and APDL programming language was implemented for determination of waveguide geometric parameters providing its resonance for the given excitation frequency. The developed finite element model accounts for interaction between the waveguide and tumour tissue as well as initial prestressing of tissue radially compressed by the waveguide. Resonant curves of the waveguide in terms of its thickness and diameter are calculated and presented. Principle of application of the developed modeling technique for extraction of diagnostic data on mechanical properties of biological tissues is described.

  8. Mechanical-biological waste treatment and anaerobic processes. 59. information meeting, Neuwied, October 1999; Mechanisch-biologische Restabfallbehandlung und Anaerobverfahren. 59. Informationsgespraech in Neuwied im Oktober 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O.; Euler, H.; Leonhardt, H.W. [comps.

    1999-10-01

    This proceedings volume discusses the specifications for and cost of mechanical-biological waste treatment, the optimisation of economic efficiency and pollutant emissons, the combination of mechanical-biological and thermal waste treatment processes, the value of mechanical-biological waste treatment, waste management concepts, process engineering and practical experience, and the eco-balance of the process. [German] Themen dieses Proceedingsbandes sind: Anforderungen und Kosten der mechanisch-biologischen Abfallbehandlung; Optimierung der Wirtschaftlichkeit und Emissionssituation; Kombination von mechanisch-biologischer und thermischer Muellbehandlung; Bewertung der mechanisch-biologischen Abfallbehandlung, Abfallwirtschaftskonzepte, Verfahrenstechnik und Betriebserfahrungen; Oekobilanz. (SR)

  9. Operational and biological analyses of branched water-adjustment and combined treatment of wastewater from a chemical industrial park.

    Science.gov (United States)

    Xu, Ming; Cao, Jiashun; Li, Chao; Tu, Yong; Wu, Haisuo; Liu, Weijing

    2018-01-01

    The combined biological processes of branched water-adjustment, chemical precipitation, hydrolysis acidification, secondary sedimentation, Anoxic/Oxic and activated carbon treatment were used for chemical industrial wastewater treatment in the Taihu Lake Basin. Full-scale treatment resulted in effluent chemical oxygen demand, total nitrogen, NH 3 -N and total phosphorus of 35.1, 5.20, 3.10 and 0.15 mg/L, respectively, with a total removal efficiency of 91.1%, 67.1%, 70.5% and 89.3%, respectively. In this process, short-circuited organic carbon from brewery wastewater was beneficial for denitrification and second-sulfate reduction. The concentration of effluent fluoride was 6.22 mg/L, which also met the primary standard. Gas Chromatography-Mass Spectrometry analysis revealed that many types of refractory compounds were present in the inflow. Microbial community analysis performed in the summer by PCR-denaturing gradient gel electrophoresis and MiSeq demonstrated that certain special functional bacteria, such as denitrificans, phosphorus-accumulating bacteria, sulfate- and perhafnate-reducing bacteria, aromatic compound-degrading bacteria and organic fluoride-degrading bacteria, present in the bio-tanks were responsible for the acceptable specific biological pollutant reduction achieved.

  10. Biological analysis of endocrine disrupting compounds in Tunisian sewage treatment plants

    International Nuclear Information System (INIS)

    Minif, W.; Dagnino, S.; Pillon, A.; Escande, A.; Fenet, E.; Gomez, E.; Casellas, C.; Duchesne, M. J.; Cavailles, V.

    2009-01-01

    The endocrine disrupting compounds (EDCs) are frequently found in sewage treatment plant (STPs) works. Natural and synthetic hormones have been identified as the major contributors to the estrogenic activity in sewage. Dosing and identification of EDCs are certainly of great interest and can lead to the improvement of chemicals treatments. With reporter cell lines developed in the laboratory and allowing the detection of nuclear receptor activities, we characterized the endocrine disrupting profile of water, particulate matter and sludge from three Tunisian sewage, treatment plants (STPs). (Author)

  11. Biological analysis of endocrine disrupting compounds in Tunisian sewage treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Minif, W.; Dagnino, S.; Pillon, A.; Escande, A.; Fenet, E.; Gomez, E.; Casellas, C.; Duchesne, M. J.; Cavailles, V.

    2009-07-01

    The endocrine disrupting compounds (EDCs) are frequently found in sewage treatment plant (STPs) works. Natural and synthetic hormones have been identified as the major contributors to the estrogenic activity in sewage. Dosing and identification of EDCs are certainly of great interest and can lead to the improvement of chemicals treatments. With reporter cell lines developed in the laboratory and allowing the detection of nuclear receptor activities, we characterized the endocrine disrupting profile of water, particulate matter and sludge from three Tunisian sewage, treatment plants (STPs). (Author)

  12. Survey results of corroding problems at biological treatment plants, Stage II Protection of concrete - State of the Art

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Ylva (CBI, Boraas (Sweden)); Henriksson, Gunilla (SP, Boraas (Sweden))

    2011-07-01

    A pilot study on the degradation and corrosion of concrete in biological treatment plants was conducted in 2009/2010 in a Waste Refinery Project WR-27 'Survey results of corroding problems at biological treatment plants'. The results showed that the concrete does not have sufficient resistance in the current aggressive plant environment. Furthermore, it is stated that some form of surface protection system is needed to ensure the good performance of concrete constructions, and that the system must withstand the aggressive environment and the traffic that occurs on site. Consequently, a new study was proposed in order to develop specifications for surface protection of concrete in aggressive food waste environments. Results from that study are presented in this report. The report includes various types of waterproofing/protection coating for concrete in biological treatment plants. A number of proposals from the industry are presented in the light of results from project WR-27, i.e., the materials must, among other things, withstand the aggressive leachate from waste food at temperatures up to 70 deg C, and some degree of wear. Some systems are compared in terms of technical material properties as reported by the manufacturer. It turns out that different testing methods were used, and the test results are thus generally not directly comparable. A proposal for a test program has been developed, focusing on chemical resistance and wear resistance. A test solution corresponding to leachate is specified. Laboratory tests for verification of the proposed methodology and future requirements are proposed, as well as test sites and follow-up in the field

  13. Effect of calcium-ozone treatment on chemical and biological properties of polyethylene terephthalate.

    Science.gov (United States)

    Rashid, Ahmed Nafis; Tsuru, Kanji; Ishikawa, Kunio

    2015-05-01

    Ozone (O3 ) treatment of polyethylene terephthalate (PET) in distilled water was performed in the presence and absence of calcium (Ca(2+) ). PET was oxidized and thus carboxylic and hydroxyl functional groups were introduced on its surface after O3 treatment, regardless of the presence or absence of Ca(2+) . In the case of O3 treatment with Ca(2+) , PET surface was modified with Ca(2+) . Ca(2+) immobilization was confirmed by X-ray photoelectron spectrometric analysis. Hydrophilicity was investigated by measuring contact angles (CA). CA of PET decreased significantly after ozonation. Surface topography of PET before and after ozone treatment was observed by scanning electron microscopy, and showed no morphological changes. In vitro studies showed enhanced rat bone marrow cell responses on the O3 -treated PET surface. Ca(2+) -O3 oxidation at 37°C for 6 h is expected to be an effective method to fabricate PET with good biocompatibility. © 2014 Wiley Periodicals, Inc.

  14. Temporal Variation in the Estrogenicity of a Sewage Treatment Plant Effluent and its Biological Significance

    Science.gov (United States)

    This paper describes variations in the estrogenic potency of effluent from a "model" wastewater treatment plant in Duluth, MN, and explores the significance of these variations relative to sampling approaches for monitoring effluents and their toxicity to fish.

  15. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    Energy Technology Data Exchange (ETDEWEB)

    Venglovsky, J.; Sasokova, N.; Juris, P.; Papajova, I.; Vargova, M.; Ondrasovicova, O.; Ondrasovic, M.

    2009-07-01

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  16. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    International Nuclear Information System (INIS)

    Venglovsky, J.; Sasokova, N.; Juris, P.; Papajova, I.; Vargova, M.; Ondrasovicova, O.; Ondrasovic, M.

    2009-01-01

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  17. The behaviour, fate and removal of pharmaceuticals in biological nutrient removal sewage treatment

    OpenAIRE

    Popple, Tina

    2013-01-01

    Pharmaceuticals that are intended for human use are frequently detected in the aquatic environment. This is predominantly from the excretion of pharmaceuticals by patients, in their urine and faeces, which subsequently enter sewage treatment plants. Sewage treatment provides a final opportunity for pharmaceutical removal, prior to discharge into the environment, however, removal is often incomplete. Once in the environment, pharmaceuticals have the potential to cause effects on aquatic organi...

  18. A comparative examination of sample treatment procedures for ICAP-AES analysis of biological tissue

    Science.gov (United States)

    De Boer, J. L. M.; Maessen, F. J. M. J.

    The objective of this study was to contribute to the evaluation of existing sample preparation procedures for ICAP-AES analysis of biological material. Performance characteristics were established of current digestion procedures comprising extraction, solubilization, pressure digestion, and wet and dry ashing methods. Apart from accuracy and precision, a number of criteria of special interest for the analytical practice was applied. As a test sample served SRM bovine liver. In this material six elements were simultaneously determined. Results showed that every procedure has its defects and advantages. Hence, unambiguous recommendation of standard digestion procedures can be made only when taking into account the specific analytical problem.

  19. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on On-site treatment of pig carcasses

    DEFF Research Database (Denmark)

    Hald, Tine

    EFSA’s Scientific Panel on Biological Hazards (BIOHAZ) was asked for a scientific opinion on an alternative method for processing Category (Cat) 2 Animal By-Products (ABP). The materials to be treated are placentas and fallen pigs; this implies that the animals died due to a disease, which in most...... of the animals’ death, the presence of more resistant hazards cannot be considered negligible. The sterilisation process defined in the current legislation is able to minimise the risks due to unidentified agents, such as Bacillus anthracis and TSE agents. The BIOHAZ Panel concluded that the process proposed...

  20. Lignocellulose-derived thin stillage composition and efficient biological treatment with a high-rate hybrid anaerobic bioreactor system

    KAUST Repository

    Oosterkamp, Margreet J.; Mé ndez-Garcí a, Celia; Kim, Chang-H.; Bauer, Stefan; Ibá ñ ez, Ana B.; Zimmerman, Sabrina; Hong, Pei-Ying; Cann, Isaac K.; Mackie, Roderick I.

    2016-01-01

    Results showed that thin stillage contains easily degradable compounds suitable for anaerobic digestion and that hybrid reactors can efficiently convert thin stillage to methane under mesophilic and thermophilic conditions. Furthermore, we found that optimal conditions for biological treatment of thin stillage were similar for both mesophilic and thermophilic reactors. Bar-coded pyrosequencing of the 16S rRNA gene identified different microbial communities in mesophilic and thermophilic reactors and these differences in the microbial communities could be linked to the composition of the thin stillage.

  1. Carbon dioxide evolution rate as a method to monitor and control an aerobic biological waste treatment system

    Science.gov (United States)

    Lee, S. S.; Shuler, M. L.

    1986-01-01

    An experimental system was developed to study the microbial growth kinetic of an undefined mixed culture in an erobic biological waste treatment process. The experimental results were used to develop a mathematical model that can predict the performance of a bioreactor. The bioreactor will be used to regeneratively treat waste material which is expected to be generated during a long term manned space mission. Since the presence of insoluble particles in the chemically undefined complex media made estimating biomass very difficult in the real system, a clean system was devised to study the microbial growth from the soluble substrate.

  2. Phytate (IP6) is a powerful agent for preventing calcifications in biological fluids: usefulness in renal lithiasis treatment.

    Science.gov (United States)

    Grases, F; Costa-Bauzá, A

    1999-01-01

    The extraordinary capacity of phytate (myo-inositol hexaphosphate), a substance present in blood, urine, interstitial and intracellular fluids, to inhibit crystallization of calcium salts (oxalate and phosphate) is discussed. Its role in preventing calcium renal stone formation is specifically presented and discussed. "In vitro" and "in vivo" experiments, as well as clinical studies clearly demonstrated that phytate plays an important role as a crystallization inhibitor of calcium salts in biological fluids and becomes a clear alternative in the treatment of calcium oxalate renal lithiasis.

  3. TH-EF-BRB-06: Implementation of a Modulated-Arc Total Body Irradiation (TBI) Technique Using the RayStation Treatment Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J; Cheung, J; Held, M; Han, D; Morin, O [UCSF, San Francisco, CA (United States)

    2016-06-15

    Purpose: To develop a clinical workflow for delivering a modulated-arc total body irradiation (TBI) with RayStation scripting. This technique uses arc fields with the patient lying at floor level on a padded table and is validated through measurements taken on a custom-made TBI phantom. Methods: Treatment planning was performed for a retrospective cohort of eight patients with a diverse range of heights and body types. Each was replanned using an open-field dual arc method, with the patient in supine and prone positions on the floor of the vault. All plans were optimized using Raystation Planning 4.7.2.5 (RaySearch Laboratories, Stockholm, Sweden), with 200 cGy prescribed to the 95% of the body contour − 5mm. This results in an open-field beam that sweeps craniocaudally across the length of the patient. The technique is validated with measurements at 10 cm intervals in a custom-milled, 5 cm thick acrylic phantom. A centrally located CC13 ion chamber and a Mobile MOSFET (Best Medical Canada, Ottawa, ON) detector array were used to measure dose. Supine and prone arcs for each patient were consecutively delivered, and the aggregate dose at each point was compared to the planned dose calculated in the phantom. Results: The ion chamber measurements differed from the planned dose by an average of .5%, with a standard deviation of 2.1%. All measured data for the MOSFETS were within 10% of the corresponding planned dose except for two outlying points. The standard deviation of dose differences across the entire cohort was 4.0%. Most significant discrepancies occurred either in inhomogeneous regions with large gradients, or at inferior points where beam angle was steepest. Conclusion: We have confirmed that the planned dose is well matched to our measurements within 10% for this method of planning and delivery. We are currently incorporating this technique into our clinical workflow. This work is supported by RaySearch.

  4. Development of methods for treatment and conditioning of biological radioactive waste in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Holub, J [NYCOM, Prague (Czech Republic)

    1997-02-01

    Incineration of biological radioactive waste was performed in a facility manufactured in the Czech Republic for combustion of burnable, radioactive and non-radioactive residues. The equipment has shown an adequate capability for combustion of biological waste. Basic technical parameters of the incinerator SP-603 can guarantee combustion of majority of wastes from different radionuclide users in the country. To ensure proper further handling with the resulting ash, three conditioning options were studied, the bituminization process, incorporation into cement, and embedding of ash into a mixture of bituminous and cementitious materials. Mechanical properties of the conditioned ash were in good compliance with those published elsewhere. Bituminized ash exhibits lowest leachibility, followed by the ash conditioned by means of the mixed process. Potential abnormal operation conditions were evaluated and their consequences assessed. The evaluation encompassed sensitivity analysis of the consequences potentially affecting the operating staff, nearby population and the environment. Cost estimate was carried out using a national approach for the calculation. From the results it can be seen that there are no large differences between the conditioning and disposal of wastes resulting from different conditioning processes. (author). 16 refs, 4 figs, 15 tabs.

  5. Development of methods for treatment and conditioning of biological radioactive waste in the Czech Republic

    International Nuclear Information System (INIS)

    Holub, J.

    1997-01-01

    Incineration of biological radioactive waste was performed in a facility manufactured in the Czech Republic for combustion of burnable, radioactive and non-radioactive residues. The equipment has shown an adequate capability for combustion of biological waste. Basic technical parameters of the incinerator SP-603 can guarantee combustion of majority of wastes from different radionuclide users in the country. To ensure proper further handling with the resulting ash, three conditioning options were studied, the bituminization process, incorporation into cement, and embedding of ash into a mixture of bituminous and cementitious materials. Mechanical properties of the conditioned ash were in good compliance with those published elsewhere. Bituminized ash exhibits lowest leachibility, followed by the ash conditioned by means of the mixed process. Potential abnormal operation conditions were evaluated and their consequences assessed. The evaluation encompassed sensitivity analysis of the consequences potentially affecting the operating staff, nearby population and the environment. Cost estimate was carried out using a national approach for the calculation. From the results it can be seen that there are no large differences between the conditioning and disposal of wastes resulting from different conditioning processes. (author). 16 refs, 4 figs, 15 tabs

  6. Generation of Composite Dose and Biological Effective Dose (BED) Over Multiple Treatment Modalities and Multistage Planning Using Deformable Image Registration

    International Nuclear Information System (INIS)

    Zhang, Geoffrey; Huang, T-C; Feygelman, Vladimir; Stevens, Craig; Forster, Kenneth

    2010-01-01

    Currently there are no commercially available tools to generate composite plans across different treatment modalities and/or different planning image sets. Without a composite plan, it may be difficult to perform a meaningful dosimetric evaluation of the overall treatment course. In this paper, we introduce a method to generate composite biological effective dose (BED) plans over multiple radiotherapy treatment modalities and/or multistage plans, using deformable image registration. Two cases were used to demonstrate the method. Case I was prostate cancer treated with intensity-modulated radiation therapy (IMRT) and a permanent seed implant. Case II involved lung cancer treated with two treatment plans generated on two separate computed tomography image sets. Thin-plate spline or optical flow methods were used as appropriate to generate deformation matrices. The deformation matrices were then applied to the dose matrices and the resulting physical doses were converted to BED and added to yield the composite plan. Cell proliferation and sublethal repair were considered in the BED calculations. The difference in BED between normal tissues and tumor volumes was accounted for by using different BED models, α/β values, and cell potential doubling times. The method to generate composite BED plans presented in this paper provides information not available with the traditional simple dose summation or physical dose summation. With the understanding of limitations and uncertainties of the algorithms involved, it may be valuable for the overall treatment plan evaluation.

  7. Should over-treatment of axial spondyloarthritis with biologics remain a concern after the issue of the new ASAS c